
ABSTRACT

TIM LOWMAN. Secure Computer Applications in an Enterprise Environment. (Under the
direction of Dr. Vicki Jones.)

Sophisticated computing environments support many of the complex tasks which

arise in modern enterprises. An enterprise environment is a collective of the organization’s

software, hardware, networking, and data systems. Typically, many user workstations com-

municate with shared servers, balancing computer processing throughout the organization.

In a “secure” modern enterprise issues of authentication, private communication, and pro-

tected, shared data space must be addressed. In this thesis we present a general model

for adding security to the currently popular enterprise architecture: the World Wide Web

(WWW).

The results of our investigation into adding security to the general WWW ar-

chitecture are reported in this document. We focus on authenticating users (Kerberos),

establishing a secure communication link for private data exchange (SSL), protected space

to store shared data (AFS filesystem), and an enhanced server (Apache) to integrate these

components. After presenting our secure model, we describe a prototype application, built

using our approach, which addresses a common problem of secure online submission of

homework assignments in a university environment.

ii

BIOGRAPHY

Tim Lowman is the Systems Programmer II for North Carolina State University. He

earned his Bachelors of Science in 1990. He also teaches at NC State, CSC255: String

Processing with the Perl Language.

iii

ACKNOWLEDGEMENTS

I would like to thank all of the people who gave me support. My mother (Carolyn

Lowman) and my father (Jimmy Lowman) who always told me I would go far. Dr. Fornaro

and Carol Miller, two instructors who were there from start to end of my undergraduate

and graduate career. Dr. Vicki Jones for accepting the position as chair of the committee.

Dr. Rob St. Amant for comments about the user interface. The entire AD&D crew (Dan

Deter, Dana and Charles Brabec, Jeff Webster, Lee Gray, Dwayne Sorrell, and James Deal)

for repeated kicks in the rear to get this work finished. I would like to thank Lou Harrison

for being so understanding when I was down to the final wire. Lastly, I would like to thank

my hero Larry Wall (creator of Perl and many other tools I use on a daily basis).

iv

Contents

List of Figures vi

1 Introduction 1
1.1 Enterprise Environment . 1
1.2 Security Issues . 1
1.3 Literature Search . 2
1.4 Problem Statement . 3

1.4.1 Encryption . 4
1.4.2 Authentication . 5
1.4.3 Secure Transmission Protocol . 8
1.4.4 Secure Storage Areas . 9

1.5 Thesis Organization . 9

2 Background 10
2.1 The Basic Language: HTML . 11
2.2 The Server: HTTP . 13
2.3 Dynamically Created HTML: CGI . 15
2.4 How to Secure the Protocol . 17

2.4.1 Digital Certificates . 17
2.4.2 Secure Socket Layer: SSL . 19

2.5 Authentication Methods: Kerberos . 23
2.6 Securing the File Area: Andrew File System 25
2.7 Database Shared Resources . 26

3 The Architecture of a Solution 29
3.1 Identifying the User . 29
3.2 Setting up an SSL Connection . 30
3.3 Uploading, Downloading, and Modifying Data 31
3.4 Building a Secure Enterprise Application . 33

3.4.1 Upgrading the Web Server . 34
3.4.2 Preparing the User’s Browser . 37
3.4.3 CGI Application Setup . 37
3.4.4 Creating IP Based Authentication 39

v

4 Submit 40
4.1 Submit Background . 40
4.2 Submit Implementation . 41

5 Conclusions 48
5.1 Conclusions . 48

Bibliography 49

A Apache Kerberos Module 53

B access.conf 80

C Certficate Authority Creation 83

D Sybase Scripts 85

E Submit Perl Library 94

F Submit 106

vi

List of Figures

1.1 Pros and Cons of Current Security Methods. 3
1.2 Encryption. 4
1.3 A Sample UNIX /etc/passwd Entry. 4
1.4 A Simple Perl One Way Encryption. 4
1.5 A Sample Crypt Session. 5
1.6 Basic Authentication. 6
1.7 Third Party Authentication - A wants to talk to B. 7

2.1 General Purpose Communication Model. 10
2.2 A Simple HTML Document. 12
2.3 Multipart/form-data: File Uploads in HTML Version 4. 12
2.4 Hypertext Transfer Protocol. 13
2.5 A Sample JavaScript. 16
2.6 t.pl - A Simple CGI Program. 17
2.7 Output of CGI program. 18
2.8 Digital Certificates Explained. 19
2.9 A Sample X.509 Digital Certificate. 20
2.10 SSL High Level Setup. 20
2.11 A Sample Apache MIME Types File. 21
2.12 CGI Program to Download Certificates. 21
2.13 Netscape Insecure and Secure Key Icon. 22
2.14 Tcpdump output. 23
2.15 AFS Tickets and Tokens. 26
2.16 PTS Command. 26
2.17 Perl Script Which Connects to an SQL Server. 27

3.1 New Model of the Application with Security Enhancements. 30
3.2 Initial Communication. 30
3.3 Obtaining the Public Certificate. 31
3.4 Site Certificate. 32
3.5 SSL Handshake. 32
3.6 Authentication. 33
3.7 CGI Execution on the HTTP Server. 33

vii

3.8 Apache Secure Server. 35
3.9 Kerberos Authentication in access.conf. 35
3.10 A URL for Loading a Digital Certificate. 37
3.11 mdtest.pl, A Perl Example of MD5. 38
3.12 Output of the Perl MD5 Program. 38

4.1 Sparcstation 5 Machine Configuration. 42
4.2 Apache Secure Server. 42
4.3 Algorithm for Submit. 45
4.4 Sybase Tables. 47
4.5 A Flat-file Database. 47

1

Chapter 1

Introduction

1.1 Enterprise Environment

What is an enterprise environment? An enterprise environment is the collective

of an organization’s software, hardware, networking, and data systems. The environment

can effectively place all enterprise computing power on each user’s desktop. It also cre-

ates an organization-wide network, perhaps linking many smaller networks. Typically, an

enterprise environment comprises workstations, servers, shared database resources, and a

communications network. In an enterprise environment processing is distributed among

workstations and servers where servers specialize in their function. Large databases exist

which contain shared information that is available to users in the enterprise environment.

Individual computers are linked together via a network backbone which allows devices to

communicate with one another. However in the enterprise environment, the network is not

necessarily guaranteed to be secure. In this work, we study the problems associated with

securing computer applications in an enterprise environment, provide a general solution

architecture for securing computer applications, and discuss a prototype implementation of

the general solution architecture.

1.2 Security Issues

Before enterprise environments, users were protected from each other by the op-

erating system running on a central processing unit (CPU). In the enterprise environment,

users no longer work on a single system, but instead work in the computing collective.

2

Applications, which were once bound to a single system, may now use the full resources of

an enterprise environment: remote databases, high capacity networks, and a multiple CPU

configuration. Collaborative ventures require users to cooperate or share data with each

other. Data transactions within the environment need to occur in a secure manner. Why?

If transactions are not secure, one risks revealing private data to individuals who are not

part of the collaborative venture.

“Secure manner” has many meanings based on the functions the application per-

forms. At one end of the spectrum, there is a need for protection, but in which the conse-

quences of a security breach are minimal. At the opposite end, the requirement is to protect

the classified data at all costs. In a minimal consequence environment, a simple security

protocol might require the user to enter a birth date, phone number, or other trivial data

item which would be used to establish the user’s identity. While this “soft-security” ap-

proach works with applications that have minimal consequences of a security breach, other

applications involving classified data require a maximum security approach. This maximum

security approach may require complex challenge/response schemes, complex passwords, or

additional security hardware for example a key to the computer console or a keyed magnetic

card.

1.3 Literature Search

Security literature offers competing technologies to provide computer network se-

curity in an enterprise environment. The Web Realm Authentication Protocol [27] (WRAP)

is a cookie-based approach to securing the enterprise environment which requires homoge-

neous machine architectures within the enterprise environment and browsers which are

capable of cookie technology. Another approach, Secure MIME [14] (S/MIME), which im-

plements security as a part of the Multipurpose Internet Mail Extensions (MIME) standard

requires substantial modifications to existing software packages to make them compliant to

this protocol. Another approach is IP Secure (IPSEC) [14]. IPSEC protects IP packets.

IPSEC provides security using HMACS, a special form of key seeded hashes. Figure 1.1

illustrates a table listing advantages and disadvantages of these methods. After evaluating

the these approaches to securing applications, a new method needs to be found which re-

quires little, if any, modification to the computer applications, is easy to setup and use, and

operates over a variety of hardware architectures and operating systems.

3

Easy to create securely linked network

 entities.

Able to provide services based on
 digital certificates
Able to protect objects inside of the
 individual messages.

WRAP

S/MIME

IPSEC

Advantage Disadvantage

 Currently the code is in alpha.
Requires Cookies to be enabled.
Currently authentication enabled only on
the same hardware architecture.

Currently few applications make use of
this method.

Currently few, if any, applications take
advantage of this method.

Setup and use is complicated and difficult.

Easy to add to a web based application.
Centrally managed.
Easy for the user to implement.

Figure 1.1: Pros and Cons of Current Security Methods.

1.4 Problem Statement

This thesis provides a model for securing network-based computer applications

in an enterprise environment. Transmissions over the network need to occur in a secure

manner. The data protection (armor) that we use for these connections must keep the

data sent private. Another goal of this research is to find a method of providing a secure

application on heterogeneous machine architectures without having to make substantial

modifications to the client computer applications.

In order to accomplish these goals, we need to address problems of:

1. Encryption

2. Authentication

3. Secure Transmission Protocol

4. Secure Storage Areas

These problems are explored in further detail in the following sections.

4

1.4.1 Encryption

Encryption is the process of converting a data file into a coded ciphertext. Figure

1.2 shows the basic flow through an encryption operation. Many forms of encryption exist.

DATA file
Encryption method

Encrypted File

A data file is passed into an encryption method (which may require additional
information (cipher key, etc.) Some encryption methods allow for decryption
of the data while others are one way operations.

Figure 1.2: Encryption.

Some encryption methods are one way: UNIX password hashes (see Figure 1.3) or MD5

digest [24] keys.

tkl:XABJd9N3RfR2U:100:100:Tim Lowman:/usr/users/staff/tkl:/bin/csh

Figure 1.3: A Sample UNIX /etc/passwd Entry.

One way encryption produces an encrypted ciphertext which cannot be reconsti-

tuted back into the original. For example in Figure 1.4, the crypt function in Perl is given

the text string “This is a test” and a salt value, “XA”.

perl -e ’print crypt("This is a test", "XA");’

XAJmKDacV6BL6

Figure 1.4: A Simple Perl One Way Encryption.

Perl will then use the UNIX DES encryption routine, with the two character salt

value, to produce an encrypted string. Once this encryption has taken place, no algorithm

exists which will convert the encrypted string back to its original form. In the case of one

way encryption, the encrypted form is stored, usually in a secure location on the server.

5

This is the approach taken by many password systems. User passwords are encrypted and

stored in the system. When a user wants access, he supplies his password, it is encrypted,

and compared against the stored encrypted form. If the encrypted results match, the user

is granted access. If the results do not match, the user is denied access.

Other encryption methods: UNIX crypt or PGP allow the user to apply the original

cipherkey to decrypt the ciphertext thus reproducing the original plaintext data file.

[418] astorath /users/staff/tkl>cat testfile

This is a test

[419] astorath /users/staff/tkl>crypt < testfile > testfile.crypt

Enter key:katmandu

[420] astorath /users/staff/tkl>less testfile.crypt

<92><92>ll*f<D4>\<8B><8D>^Y^LD<C2><E7>

[421] astorath /users/staff/tkl>crypt < testfile.crypt > testfile.orig

Enter key:katmandu

[422] astorath /users/staff/tkl>cat testfile.orig

This is a test

Figure 1.5: A Sample Crypt Session.

In Figure 1.5, the UNIX crypt function is used to encrypt a data file, “testfile”. The

data file is read by the crypt command and a password is requested. “crypt” implements a

one-rotor machine designed along the lines of the German Enigma [16], with a 256-element

rotor. The password supplied is used to set the rotor. In order to decrypt the file, the same

password is entered to the crypt command.

1.4.2 Authentication

Authentication is the verification of the identity of a person or process that allows

access to a resource. The resource might be data or it might be a service: network, machine

access, etc. At the heart of this problem is making sure that a user is who he says he is.

Authentication can be accomplished by shared secrets, such as UNIX passwords, or by other

methods: voice recognition, thumb prints, retinal scans, etc. [15] Most password schemes

fall under the category of password challenges to verify the shared secret password between

the user and the authenticating service. Several methods of authentication exist which fall

under this category.

6

BA

A wants to talk to B.

A sends request to B

B will ACK or NACK

A will communication

if ACK was sent.

Figure 1.6: Basic Authentication.

The basic form of authentication asks the service for permission (see Figure 1.6).

In this basic authentication, the client asks for permission to use the service and the service

either grants or denies access based on a challenge to the user. Challenge Handshake

Authentication Protocol (CHAP) is one approach. CHAP uses a random challenge and a

secret key to provide authentication. One of the drawbacks of this approach is that the

secret key is in clear text on the server system. If the server were compromised, the secret

key could allow authentication as any user.

Another approach is to use standard UNIX password challenges. Passwords are

typed in by the user and authenticated against the encrypted password stored on the server.

This method is “soft-secure” since the password is transmitted across the network in clear

text mode. Network “sniffers”, devices/programs which copy datagram packets from the

network and reassemble them in order to reproduce the datagram, allow any user with a

sniffer on the network to see these clear text passwords and authenticate as another user.

For maximum security, we must choose an authentication method which does not store the

passwords/secrets in clear text and does not pass the password information in clear text

over our enterprise network. We also need a strong method of authentication which allows

enterprise applications to trust the user.

In an enterprise environment, another form of authentication is common: third

party authentication (see Figure 1.7). For this authentication method to operate, both A

and B must have registered with an authentication server by providing their secret keys.

When A wants to talk to B, A generates a random number for its identification (Ra) and

passes this with its id (A), and the host it wishes to talk with (B), to the authentication

server. The authentication server (AS) returns the random identification number and session

information encrypted using A’s secret key (Ka). The session information contains a session

7

Authentication Server (AS)

BA

{Sk,A}Kb

{Ra,B,Sk,{Sk,A}Kb}Ka

{A,B,Ra}

time of events to prevent playback attacks

{Rb}Sk

{f(Rb)}Sk

Ra = Random number generated by A
Rb = Random number generated by B
Ka = A’s secret key (known by both A and AS)
Kb = B’s secret key (known to both B and AS)
Sk = Session key (generated by AS and never sent in plain text
 over the network)

{X}Y = Encrypt the packet containing X with the key Y

f(X) = apply some function to X to get the next result

Figure 1.7: Third Party Authentication - A wants to talk to B.

key generated by AS, the identification number, and the same session key again encrypted

with B’s secret key. A then decrypts the session information using its secret key and sends

the session key and requesting host (A) encrypted with B’s secret key to B. B then decrypts

the session key and requesting host, and B uses the session key to talk with A after verifying

that it was A that was requesting the communication. Once the session key is established

on both sides, secure communication can occur. For each subsequent communication a new

message number is produced by applying a known function. The authentication set in this

model occurs when A sends a request to the AS in order to speak with B. If A was not

permitted to speak with B, no session information would be returned.

Consider the following example of third party authentication using these sample

constructs. Suppose Alice wishes to talk to Bob. Our secret key algorithm will be repre-

sented by a number showing how many letters forward in the alphabet to rotate. Thus a

key of “2” would mean that the letter A would be “C”, the letter “B” would be “D”, and

“Z” would be “B”. Alice knows that her secret key is “4” and Bob knows that his secret

8

key is “2”. Chuck, the third party authentication person, knows that both Alice’s secret

key is “4” and that Bob’s secret key is “2”. Alice picks an id number and sends it and

the person she wants to speak with (Bob) to Chuck. Chuck checks to see if Bob wants to

communicate with Alice and if he does, he returns to Alice the id number she used (Bob’s

name) a special session key, and the same session key encrypted with Bob’s secret key. In

order to prevent anyone other than Alice reading the message, Chuck encrypts the entire

return packet with Alice’s secret key. Alice receives the key and decrypts it using her key

of “4”. She now has the session key and a special packet for Bob containing a copy of the

session key encrypted with Bob’s secret key. Alice cannot read the encrypted session key

since she does not know Bob’s secret key. Bob receives this information from Alice and uses

his secret key to decrypt the session information and the name of the person who wished to

speak with him. He can now check to see if the person who asked to speak with him is the

same as the person listed with the session key. If they are the same, Bob can then create a

message identification number and using the session key (which both Alice and Bob know)

encrypt the data with the session key and send messages back and forth. To keep messages

in order, a function can be applied to the message identification number to generate the

next message number.

1.4.3 Secure Transmission Protocol

The problem with selecting a secure protocol is that the protocol must be usable

on many different machine platforms. Applications which are limited to a single platform

and are not portable are not truly viable in an enterprise environment. The application

programmer has two choices when confronted with this problem: use an existing protocol or

create a new protocol. The problem creating a new protocol is the application programmer

faces code conversion difficulties. Converting socket based applications to stream, ANSI

code to POSIX, and System V constructs to BSD when porting are examples of such

difficulties. The overhead of porting software would certainly slow, if not halt, a multi-

platform application. If the application programmer chooses an existing protocol, then the

protocol must support all of the necessary features (preventing users from collecting or

modifying data passed between applications) allowing the secure transfer of information in

the enterprise environment.

9

1.4.4 Secure Storage Areas

The areas where the application shares information within an enterprise environ-

ment must be protected. These areas may be file system areas, memory areas, or other

mass storage devices. Without protection, other entities may gain access to privileged data.

The secured area will act as a repository for the user’s stored data. The application will

act on behalf of the user to manipulate this stored data and provide access to it in a secure

manner. By authenticating users, we have reasonable certainty of the user’s identity. We

can grant access to stored data based on their identity. Several methods exist for securing

file system areas. Unix File system (UFS) provides security by a series of protection bits.

Each of these bits grants access for a specific user, a group of users, or any user on the sys-

tem. Windows NT provides another approach: user groups. Groups exist or can be created

for specific purposes. Members of these groups are granted access to specified directories in

the NT file system.

1.5 Thesis Organization

In Chapter 2, background terms and ideas used in this document are explained.

Chapter 3 sets forth a generic, secure network-based computer application model. Chapter

4 describes a specific secure application implementation of this network-based computer

application model. Finally, Chapter 5 presents conclusions and directions for future work.

10

Chapter 2

Background

Figure 2.1 illustrates a typical client/server architecture of an enterprise applica-

tion. Before describing the components of the model, a brief explanation of the terms and

ideas used in this paper will be presented.

User’s Machine

WWW
Browser

Sockets

Network Language

Sockets
WWW Server

HTTP

CGI

File Space

Figure 2.1: General Purpose Communication Model.

1. The basic language: Hypertext Mark-up Language (HTML)

2. Dynamically Created HTML: Common Gateway Interface (CGI)

3. The Server: Hypertext Transfer Protocol Server (HTTP)

11

4. Securing the Protocol: Digital Certificates and Secure Socket Layer (SSL)

5. Kerberos: An authentication method

6. A Secure File System: Andrew File System (AFS)

7. Database Shared Resources

2.1 The Basic Language: HTML

HTML aims to provide an easy to use, distributed, hypermedia system. The

early roots of HTML came from Ted Nelson who in the 1960s came up with the idea of

using a “hyperlinked” document retrieval system to connect many different documents on

many different machines. Later in 1990, at CERN, the European Laboratory for Particle

Physics, Tim Berners-Lee expanded this hypertext linking system to operate as an elaborate

document retrieval system he called the “World Wide Web” [2]. Documents in this “Web”

were retrievable by users of CERN utilizing a series of “notes with links (like references)

between them” [2], thus allowing easy access to the many documents stored in the archives

at CERN.

Since that time, HTML developed into a powerful system designed to support

multimedia presentations. The HTML language is made up of many different tags. Each

tag is a command which will be interpreted by the browser (a program such as Netscape,

Internet Explorer, or Lynx which allows a user to browse the Web) to display the data in

the browser window. Tags in HTML typically follow the form <command> (start command),

followed by text which is subject to this command, followed by </command> (end command).

A typical HTML version document is presented in Figure 2.2. The symbols <!-- ... -->

are HTML comments describing each line in the HTML document.

The first <HTML> is the opening of the HTML document. <HEAD> starts the heading

section of the document. In the heading section, one can define any META tags which will

be used to describe the document content and the title of the document. After closing the

heading section with the </HEAD> closing tag, the body of the HTML document starts.

<BODY> marks the beginning of the body of the document. The body is where the contents

of an HTML document are kept. </BODY> ends the body section of an HTML document.

Finally, the closing </HTML> tag signals the end of the document.

12

<HTML> <!-- Begin the HTML Document -->

<HEAD> <!-- Begin the Heading of the Document -->

<TITLE>Title of Document</TITLE> <!-- Title of the Document -->

</HEAD> <!-- Close the Heading of the Document -->

<BODY> <!-- Begin the Body of the Document -->

Document Contents ...

</BODY> <!-- Close the Body of the Document -->

</HTML> <!-- Close the HTML Document -->

Figure 2.2: A Simple HTML Document.

A Quick primer for HTML can be found at http://www.w3c.org/MarkUp/Guide

[22]. Another excellent tutorial is located at http://www.csc.ncsu.edu/csc_info/csc251/

www/tutorial/index.html [18]. The version of HTML discussed in this thesis is “HTML

version 4” [23] (HTML4). HTML4 has an important feature which allows our model to

operate: multipart/form-data [21]. Multipart/form-data allows the browser to upload data

from the user’s data space to the web server. The syntax for file uploads can be seen in

Figure 2.3.

<FORM ENCTYPE="multipart/form-data" ACTION="_URL_" METHOD=POST>

File to process: <INPUT NAME="userfile1" TYPE="file">

<INPUT TYPE="submit" VALUE="Send File">

</FORM>

Figure 2.3: Multipart/form-data: File Uploads in HTML Version 4.

Once the user selects the file to upload (he may type in the name of the file or use

the “browse” facility to select the file using the graphical user interface provided by the web

browser), the browser will then send the form data containing the file to the web server.

Since the file may contain binary or other data which would make the standard

“application/x-www-form-urlencoded” [21] unsuitable, the encoding method selected

will be that of the application type of the file or “application/octet-stream” [11]. All

of these encoding types are a form of Multipurpose Internet Mail Extensions [10](MIME).

MIME extensions allow for transmission of data via the Internet which might contain textual

messages in character sets other than US-ASCII, non-textual message bodies, multi-part

13

message bodies, and textual header information in character sets other than US-ASCII. A

complete list of MIME types can be found at

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

and are not included in this document (several thousand of these types exist).

Why choose HTML as our communications language? Since HTML browsers

are established on so many different platforms, they provide the ideal medium to allow

communications in an enterprise environment. HTML’s rich language set allows for FORM

data communication, the ability to present graphics and sound with any presentation, and

the ability to upload text files using the file upload multipart/form-data added to HTML4.

File integrity is maintained by having the uploaded files encoded by the chosen MIME

methods. All of these features allow for seamless communication with the user regardless

of data types being exchanged.

2.2 The Server: HTTP

HTTP is “an application-level protocol with the lightness and speed necessary for

distributed, collaborative, hypermedia information systems” [1]. HTTP is the typical means

by which HTML data are transfered from a server to a client browser and vice versa. HTTP

is a low bandwidth protocol which is stateless. Figure 2.4 shows that a user’s browser can

contact a given server using a Uniform Resource Locator (URL). A URL is much like an

address for a house on a given street. Given an address, the house can be located easily.

User’s Machine

Browser

1. User enters URL

Server

Web server

2. A name lookup of the

remote machine is made
and the host contacted on
port 80.

3. The URL is located and
the resulting data are sent back.

4. Data are displayed

Figure 2.4: Hypertext Transfer Protocol.

As mentioned earlier this protocol is stateless. During each cycle of contacting the

14

HTTP server, the HTTP server looses all state information: variables, connecting machine

name, IP address, etc. Since the connection is stateless, any information which needs to

be saved must be encoded into the HTML document, otherwise it will be lost. A common

method of encoding these data is using hidden fields. Hidden fields are not displayed in the

browser but remain in the HTML data sent from the server. Another method of storing

the data between cycles is by storing it on the server using an ID mechanism. The data are

stored in files using the ID number for the connection to the HTTP server. When using this

server-stored method, the stored data must be removed from the server when it expires to

prevent filling the storage area. The problem with using this method is determining when

these data expire.

CGI allows the server to execute arbitrary applications. A CGI application is

activated by a Uniform Resource Locator (URL) call. Just as HTTP is stateless, so is a

CGI call. When the CGI program is activated via a URL call, the server executes the

CGI program and passes HTTP server data (environment variables) and the contents of

standard in (STDIN) to the CGI program. The CGI program, executing with the privileges

and userid of the HTTP server, reads this input, processes the data, and outputs the newly

processed data back to the HTTP server. The server reads the “content-type” data header

placed on the returned data by the CGI program and sends the data back to the user’s

browser. Between CGI calls no state information is kept since the program starts, executes,

and then completes/exits. The same method, hidden fields, can be used to continue data

elements from one CGI call to another CGI call.

The “NCSA HTTPd server” [25] was one of the original HTTP servers. This

HTTP server was designed to work with NCSA Mosaic, an early browser. NCSA HTTPd

supports CGI programs, imagemap, security access based on URL directory, HTTP 1.0 basic

authentication, MD5 digest authentication, and Kerberos versions 4 and 5 authentication.

NCSA HTTPd is no longer under development as of version 1.5.2a. [25] In mid-1994 Rob

McCool, who worked at NCSA, left the company and with other volunteers, started an

organized effort to develop their own HTTP server with additional extensions. The server

changes were distributed in the form of “patches.” Thus came, by way of a play on words, the

“Apache Server” [13] (a-patchy server). The Apache server is the HTTP server used in our

model and prototype. It is available for most, if not all, UNIX systems, Windows(9x/NT)

platforms, and Macintosh systems.

15

2.3 Dynamically Created HTML: CGI

CGI provides a standard interface between a web server and a user’s program.

Normally an HTML page is “static, which means [the HTML page] exists in a constant

state” [20]. These static pages do not change without someone editing the pages manually.

CGI allows for dynamic pages. Dynamic pages are pages which are created “on-the-fly”

by the web server executing an external program. The executing program operates in the

common gateway defined interface. A particular coding language is not required for a CGI

program. The code can be written in C, C++, Pascal, FORTRAN, or a scripting language

such as Perl, C-Shell, Korn Shell, or Bourne Shell. Typically a CGI program executes on

the HTTP server and produces HTML code. Since Java applets and JavaScript execute

on the user’s browser, these are two examples of languages which are not generally used

to create CGI programs. Java applets and JavaScript are both downloaded to the user’s

browser which executes there. Figure 2.5 illustrates an example of JavaScript mixed with

HTML which will execute on a user’s browser. This external CGI program implements the

specific functionality of an enterprise application.

When the CGI program executes, it reads from standard input any information

that is provided by the user and is passed operating system environment variables by the

web server. The data are then processed by program and new content is produced. The

new content is then passed back to the web server with a “content-type” [11] describing

what type of information is contained in the new data. The new data could be an image,

HTML, a ASCII text document, or any other MIME type. The web server recognizes what

type the new data are said to be and passes that information and the new data back to

the user’s browser. A simple example of a CGI program is included in Figure 2.6 and the

output is in Figure 2.7.

The program shown in Figure 2.6, t.pl, creates a dynamic HTML page which

displays all the operating system environment variables and standard input passed to the

CGI program. t.pl is a typical program one might have in a CGI directory in order to

debug or test the HTTP server or a new form. This program (t.pl) illustrates the basic

functionality of CGI programs.

Commonly, CGI programs are used to produce HTML form data. Once generated,

an HTML form is sent to the user’s browser, interpreted, filled in by the user, and sent back

to the same or different CGI program for additional processing. We use CGI capability to

16

<script>

<!--

if (document.images) {

image1on = new Image();

image1on.src = "./graphics/fiszz8.gif";

image2on = new Image();

image2on.src = "./graphics/fiszz8.gif";

image3on = new Image();

image3on.src = "./graphics/fiszz8.gif";

image1off = new Image();

image1off.src = "./graphics/fiszz5.gif";

image2off = new Image();

image2off.src = "./graphics/fiszz5.gif";

image3off = new Image();

image3off.src = "./graphics/fiszz5.gif";

image4off = new Image();

image4off.src = "./graphics/fiszz5.gif";

}

function turnOn(imageName) {

if (document.images) {

document[imageName].src = eval(imageName + "on.src");

}

}

function turnOff(imageName) {

if (document.images) {

document[imageName].src = eval(imageName + "off.src");

}

}

// -->

</script>

Figure 2.5: A Sample JavaScript.

intercept multi-part encoded files, decode the files, and place these files in secure locations.

Web servers run under a particular userid on the server machine. While many times

this is considered a possible security hole [6], our model uses this feature to its advantage. By

giving the HTTP server’s trusted userid the authority to make modifications to protected

space, the web server becomes a trusted process which can place files and manipulate

sensitive data in a secure manner. The trusted web server then becomes the entity that

moves files and changes data inside of our protected file space.

17

#!/usr/local/bin/perl

print "Content-type: text/html\n\n";

foreach $k (sort keys %ENV) {

print "$k = $ENV{$k}
\n";

}

print "Data from STDIN:
\n";

while (<STDIN>) {

print;

print "
\n";

}

Figure 2.6: t.pl - A Simple CGI Program.

2.4 How to Secure the Protocol

2.4.1 Digital Certificates

Digital certificates make up an important part of public key cryptography. A user

must have a pair of cryptographic keys, a private key and a public key, to send or receive

messages. The private and public keys are composed of long strings of data containing 500

to 1000 bits [7]. The user stores his private key somewhere safe (encrypted on his hard-

drive, in a secured file space area) but makes his public key known to those individuals

that he wishes to communicate. Suppose Alice wants to send a secure message to Bob.

Secure means that the message can be verified as coming from her, Figure 2.8 shows how

this secure communication occurs using digital certificates.

Alice first uses cryptographic software to generate a private key (keypriv) and

a public key (keypub). She then sends the public key to a certification authority (CA)

and asks for a digital certificate. The CA, through whatever means it requires, validates

the authenticity of Alice’s identity. After the CA is sure Alice is Alice, it issues her a

digital certificate confirming that Alice’s public key is really Alice’s public key. Inside of

the certificate is the CA’s digital signature. This signature can be validated by anyone who

knows the CA’s public key to prove that the CA validated Alice’s public key.

Alice then digitally signs her message to Bob. First she uses a hash function on

the message to create a message digest. The message digest is then encrypted with Alice’s

18

DOCUMENT_ROOT = /usr/local/htdocs

GATEWAY_INTERFACE = CGI/1.1

HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP_CONNECTION = Keep-Alive

HTTP_HOST = www.csc.ncsu.edu

HTTP_USER_AGENT = Mozilla/3.04Gold (X11; I; SunOS 5.5.1 sun4m)

PATH = /usr/sbin:/usr/bin

QUERY_STRING =

REMOTE_ADDR = 152.1.61.13

REMOTE_HOST = astorath.csc.ncsu.edu

REMOTE_PORT = 34234

REQUEST_METHOD = GET

REQUEST_URI = /cgi-bin/t.pl

SCRIPT_FILENAME = /usr/local/httpd/cgi-bin/t.pl

SCRIPT_NAME = /cgi-bin/t.pl

SCRIPT_URI = http://www.csc.ncsu.edu/cgi-bin/t.pl

SCRIPT_URL = /cgi-bin/t.pl

SERVER_ADMIN = webmaster@csc.ncsu.edu

SERVER_NAME = www.csc.ncsu.edu

SERVER_PORT = 80

SERVER_PROTOCOL = HTTP/1.0

SERVER_SIGNATURE =

SERVER_SOFTWARE = Apache/1.3.4 (Unix)

TZ = US/Eastern

Figure 2.7: Output of CGI program.

private key to make her digital signature. She sends her signature, the message, and a copy

of her digital certificate (remember, this digital certificate includes a copy of her public

key). Bob receives the above data. Bob uses the CA’s public key to verify the CA’s digital

certificate on Alice’s certificate. Bob can not be sure that the certificate he has is indeed

Alice’s, since someone could be impersonating Alice by sending Bob messages using a forged

certificate. Bob then uses the Alice’s known public key extracted from the digital certificate

to decrypt Alice’s digital signature, which recreates the message digest. Bob then, using the

same hash function, creates a message digest of the message sent. If Bob’s message digest

and the recreated message digest from Alice’s digital signature match, Bob can be certain

that Alice sent him the message and that it has not been tampered with by anyone along

the way.

19

CA Key +
pubkey cert.

privkey

Bob

CA Key +
pubkey cert.

pubkey Authority
Certificate

Alice

message
diguest

Alice’s
digital
signature

CA Public
Key

Figure 2.8: Digital Certificates Explained.

2.4.2 Secure Socket Layer: SSL

“Secure Socket Layer” [12] (SSL) was developed by Netscape Communications

to provide a method of secure transactions over the Internet. SSL provides a method

of client/server communications which prevents “eavesdropping, tampering, or message

forgery” [12]. SSL is application protocol independent which means that different protocols

(e.g. Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and even Telnet)

can be transparently layered on top of SSL without having to alter the chosen protocol.

The SSL protocol consists of two phases: server authentication and an optional client

authentication. During server authentication, the client requests a digital certificate and

cipher preferences from the server. We use a “X.509” [5] certificate. X.509 is a certificate

format proposed by the International Telecommunications Union (ITU-T), formerly known

as CCITT, to provide standards for digital certificate formats. X.509 is part of the ITU-T

X.500 [4] directory services. An example of an X.509 certificate can be seen in Figure 2.9.

The client creates a master key, which is encrypted with the server’s public key

taken from the X.509 certificate, and transmits it to the server. The server recovers the

20

-----BEGIN CERTIFICATE-----

MIICTTCCAbagAwIBAgIBADANBgkqhkiG9w0BAQQFADBMMQswCQYDVQQGEwJHQjEM

MAoGA1UEChMDVUNMMRgwFgYDVQQLEw9JQ0UtVEVMIFByb2plY3QxFTATBgNVBAMT

DFRydXN0RmFjdG9yeTAeFw05NzA0MjIxNDM5MTRaFw05ODA0MjIxNDM5MTRaMEwx

CzAJBgNVBAYTAkdCMQwwCgYDVQQKEwNVQ0wxGDAWBgNVBAsTD0lDRS1URUwgUHJv

amVjdDEVMBMGA1UEAxMMVHJ1c3RGYWN0b3J5MIGcMAoGBFUIAQECAgQAA4GNADCB

iQKBgQCEieR8NcXkUW1f0G6aC6u0i8q/98JqS6RxK5YmHIGKCkuTWAUjzLfUa4dt

U9igGCjTuxaDqlzEim+t/02pmiBZT9HaX++35MjQPUWmsChcYU5WyzGErXi+rQaw

zlwS73zM8qiPj/97lXYycWhgL0VaiDSPxRXEUdWoaGruom4mNQIDAQABo0IwQDAd

BgNVHQ4EFgQUHal1LZr7oVg5z6lYzrhTgZRCmcUwDgYDVR0PAQH/BAQDAgH2MA8G

A1UdEwEB/wQFMAMBAf8wDQYJKoZIhvcNAQEEBQADgYEAfaggfl6FZoioecjv0dq8

/DXo/u11iMZvXn08gjX/zl2b4wtPbShOSY5FhkSm8GeySasz+/Nwb/uzfnIhokWi

lfPZHtlCWtXbIy/TN51eJyq04ceDCQDWvLC2enVg9KB+GJ34b5c5VaPRzq8MBxsA

S7ELuYGtmYgYm9NZOIr7yU0=

-----END CERTIFICATE-----

Figure 2.9: A Sample X.509 Digital Certificate.

Client ServerChange cipher spec/authenticate

Server Hello (exchange cipher spec)

Client Hello

Application Data between Client/Server

Figure 2.10: SSL High Level Setup.

master key by decrypting it with the server’s private key and authenticates itself with the

client by returning a message authenticated by the master key. Any data sent after this

point are encrypted and authenticated with keys derived from the original master key. In

the optional second phase, the server can challenge the client. The client authenticates

itself to the server by returning the client’s digital signature on the challenge, as well as the

server’s public-key. Figure 2.10 illustrates a typical SSL setup.

Once the SSL authentication challenge has been passed, the server and browser

communicate via an encrypted data-stream. To pass the SSL handshake, the user must

have a copy of the X.509 certificate from the server on a local machine in order to encrypt

the master key with the server’s public key.

21

The server certificate can be downloaded from the server using the “application/x-

x509-ca-cert” [11] MIME type. MIME types are usually of the form CLASSIFICATION/TYPE.

For instance, take our application/x-x509-ca-cert type. The classification is application and

its type is x-x509-ca-cert. By associating helper applications and utilizing built in MIME

extensions, applications such as browsers are able to perform the required actions to use the

MIME data. Figure 2.11 shows a section of a MIME types file which describes the feature

of the application/x-x509-ca-cert type.

...

application/news-transmission

application/octet-stream bin

application/pdf pdf

application/x-x509-ca-cert der

video/x-msvideo avi

video/x-sgi-movie movie

...

Figure 2.11: A Sample Apache MIME Types File.

#!/bin/sh

if [-n "$PATH_INFO" -a -r "$PATH_INFO"]; then

echo "Content-Type: application/x-x509-ca-cert"; echo

cat $PATH_INFO

else

cat << END

Content type: text/html

<HTML>

<HEAD><TITLE>Certificate not found!</TITLE></HEAD>

<BODY>

<P>

Sorry, I can’t find the certificate that I planned to send back.

</BODY>

</HTML>

END

fi

exit 0

Figure 2.12: CGI Program to Download Certificates.

22

Downloading the certificate can be accomplished by adding the application/x-

x509-ca-cert type to an HTTP server’s known MIME types or by using a CGI script such

as is included in Figure 2.12. The certificate is typically verified by a Certificate Authority

(CA). In this case, we self-sign the site certificate we plan to use, thus setting us as our

own CA. We chose to implement this method due to the fees associated with using a

known CA such as Verisign, Thawte, or CyberTrust. The package used to do this is the

SSLeay package which is found at http://www.psy.uq.oz.au/~ftp/Crypto/. SSLeay is a

free implementation of Netscape’s Secure Socket Layer. SSLeay implements both the SSL

version 2 [8] and the SSL version 3 [12] protocols. For our model, the SSLeay package is

used to add SSL capability to the HTTP server. The SSLeay package is used to generate

and sign certificates.

Once we have generated our certificate and the user has downloaded it into his

browser, the HTTP server then compares the user’s certificate with its copy of the CA

during the SSL handshake. Once the authentication occurs, the web server communicates

with the browser using encrypted connections. The user can differentiate between secure

connections and insecure connections by looking at the secure icon in the browser.

Figure 2.13: Netscape Insecure and Secure Key Icon.

Netscape’s Navigator uses a key symbol (see Figure 2.13) for this icon while Mi-

crosoft’s Internet Explorer uses a padlock symbol. Suppose we use Navigator as our example.

When the key icon is lit and not broken, a secure connection has been established. When

the key is broken and unlit, the connection is not secure.

Why use SSL? SSL provides a means of encrypting data sent from the user’s

browser to the HTTP server and vice versa. In today’s society, the technology is readily

available to “sniff” networks. Sniffers take packets from the network and collect them in

large data files. Tcpdump is a simple sniffer that exists on most machines. Figure 2.14

shows output from the tcpdump program. The data contained within the packets can be

seen. Saving large number of packets would allow unsecured sources a view of the data

transmitted between the user and the web server. Since the data travelling between the

user and web server might contain sensitive information such as passwords, private data,

etc. SSL provides an armor for the TCP/IP connection which prevents external sources

23

from viewing the data. Thus when passing sensitive information in an enterprise model,

armored connections prevent unauthorized access to these data or the passwords which

would grant access to these data.

12:59:55.354 8:0:9:90:14:c5 ff:ff:ff:ff:ff:ff 0064 100:

e0e0 03ff ff00 6000 0098 013a 00ff ffff

ffff ff04 5298 013a 0008 0009 9014 c504

5200 0203 0c30 3830 3030 3939 3031 3443

3538 3038 484e

12:59:55.354 8:0:9:90:14:c5 ff:ff:ff:ff:ff:ff 8137 96:

ffff 0060 0000 9801 3a00 ffff ffff ffff

0452 9801 3a00 0800 0990 14c5 0452 0002

030c 3038 3030 3039 3930 3134 4335 3832

3848 4e50 4939

12:59:56.018 arp who-has uni00bf.unity.ncsu.edu tell pa-ece03.ece.ncsu.edu

12:59:56.143 0:60:b0:2e:34:76 ff:ff:ff:ff:ff:ff 0063 99:

e0e0 03ff ff00 6000 0098 013a 00ff ffff

ffff ff04 5298 013a 0000 60b0 2e34 7604

5200 0203 0c30 3036 3042 3032 4533 3437

3638 3043 544e

12:59:56.143 0:60:b0:2e:34:76 ff:ff:ff:ff:ff:ff 8137 96:

ffff 0060 0000 9801 3a00 ffff ffff ffff

030c 3030 3630 4230 3245 3334 3736 3832

4354 4e50 4932

Figure 2.14: Tcpdump output.

2.5 Authentication Methods: Kerberos

Kerberos [19] is an authentication protocol originally developed at MIT. Kerberos

provides integrity and authentication in our model. It operates by a method known as

shared secrets [19].

A Kerberos authentication server (KAS) and one or more ticket granting servers

(TGS) are the primary components of this approach. First the user requests a ticket,

containing the user’s name and the name of the TGS, from the KAS. The KAS looks up

the user in its database and generates a session key which will be used between the user

and the various TGSs. The KAS encrypts this session key using the user’s secret key (a one

24

way hashing algorithm of the user’s password) and creates a ticket granting ticket (TGT)

which is encrypted with the TGS’s secret key, known only to the KAS and the TGS, for the

user to present to the TGS. The KAS sends the TGT back to the user. The user decrypts

the message and recovers the session key. Next, the user creates an authenticator consisting

of his name and a time stamp, all encrypted with the session key. The user then sends

a request to the TGS for a ticket to a particular target server. The request contains the

name of the server, the TGT received from the authentication server, and the encrypted

authenticator. The TGS decrypts the TGT with its secret key and then uses the session

key included in the TGT to decrypt the authenticator. The TGS compares the information

in the authenticator with the information in the ticket, the user’s network address with the

address the request was sent from, and the time stamp with the current time. If everything

matches, it allows the request to proceed. The TGS creates a new session key for the user

and target server and incorporates this key into a valid ticket for the user to present to the

requested server. The ticket also contains the user’s name, network address, a time stamp,

an expiration time for the ticket, and the name of the server. The TGS also encrypts the

new target-user session key using the session key shared by the user and the TGS. The

TGS then sends both messages to the user. The user receives and decrypts these messages,

extracting the target-user session key from the ticket. The user is now ready to authenticate

with the target server. The user creates a new authenticator with the target-user session

key and sends this encrypted authenticator and the original TGT to the target server. The

target server decrypts the ticket and the authenticator, and it compares the session keys,

target-user session keys, time stamp, and user’s address. If everything checks out, the user

is allowed access to that server. Since the time stamps are compared, it prevents a captured

Kerberos session from being played back at a later time. Play back attacks are commonly

used to thwart authentication methods which do not have time stamps. Sessions between

a client and server are recorded and then played back to the server. Since each challenge

would be correct, the server would willingly perform the set of operations again. Suppose

the play back was adding one cent to an account balance. You can see how this play back

method could be used again and again to add thousands of dollars to the account. Time

stamps, such as those used in Kerberos, prevent play back attacks by voiding the requested

operations if the time stamps are too far from the current time.

A user has a password, a shared secret, which is encrypted and compared with an

encrypted copy stored on the server. If these two encrypted copies match, the Kerberos

25

system provides one with a ticket granting ticket which can be used later to authenticate

other transactions. A good paper describing the operation of Kerberos on a non-technical

level is the “Dialogue in Four Scenes” [3] by Bill Bryant. In this paper, the logical progression

of the idea of Kerberos’s shared secret and ticket granting ticket scheme is explained.

Why use Kerberos? In an enterprise environment, any authentication method

could be employed. The main reason for choosing Kerberos is the ability to incorporate

Kerberos authentication algorithms into the Apache HTTP server. Once a password chal-

lenge has been made, the Kerberos authentication provides reasonable certainty that the

user is who he claims to be. Since Kerberos passwords are never passed in plain text on the

network, this method provides a good solution to problems of sniffers picking up the user’s

password from the network.

2.6 Securing the File Area: Andrew File System

The Andrew File System (AFS) was originally developed at Carnegie Mellon Uni-

versity. AFS provides a distributed file system to multiple platforms and a method of

authentication known as access control lists (ACLs). ACL authentication comes from the

Kerberos ticket granting ticket, which in turn grants a file system ticket,

afs.eos.ncsu.edu@EOS.NCSU.EDU, shown in Figure 2.15.

The file system ticket is then used to grant an AFS token. Figure 2.15 shows an

example of the tickets and tokens used to gain AFS permissions. One can view tickets and

tokens using the klist and token commands, respectively. The AFS token is used, much

like the Kerberos ticket, to authenticate the user and allow him access to the file system.

You can view the contents of an ACL by using the pts [26] command. pts allows the user

to modify or list AFS ids in an ACL. Figure 2.16 shows an example of the pts command.

The AFS token is used to access the file system. Another method of authentication

is IP authentication. IP authentication allows AFS system administrators to create AFS

users whose AFS id matches their IP address. The AFS id is then placed into an ACL which

will allow that IP address the same access as a normal user, but the authentication does not

require any additional challenges except that the IP address of the machine originating the

request be the same as the AFS id. By using this method of authentication, no password

challenges or requests are required. All processes running on the machine have the ability

to be authentic and can read/write data to the secure area using the AFS IP-based id.

26

[36] astorath /users/staff/tkl> klist

Ticket file: /tmp/tkt269

Principal: tkl@EOS.NCSU.EDU

Issued Expires Principal

Nov 17 07:11:52 Nov 17 17:11:52 krbtgt.EOS.NCSU.EDU@EOS.NCSU.EDU

Nov 17 07:11:53 Nov 17 17:11:53 afs.eos.ncsu.edu@EOS.NCSU.EDU

Nov 17 07:11:54 Nov 17 17:11:54 afs.bp.ncsu.edu@EOS.NCSU.EDU

Nov 17 07:11:54 Nov 17 17:11:54 afs.unity.ncsu.edu@EOS.NCSU.EDU

Nov 17 07:24:02 Nov 17 17:14:02 afs.tx.ncsu.edu@EOS.NCSU.EDU

[37] astorath /users/staff/tkl> tokens

Tokens held by the Cache Manager:

User’s (AFS ID 269) tokens for afs@unity.ncsu.edu [Expires Nov 17 17:11]

User’s (AFS ID 269) tokens for afs@eos.ncsu.edu [Expires Nov 17 17:11]

User’s (AFS ID 269) tokens for afs@bp.ncsu.edu [Expires Nov 17 17:11]

--End of list--

Figure 2.15: AFS Tickets and Tokens.

[39] astorath /users/staff/tkl> pts membership course-admin

Members of course-admin (id: -1965614004) are:

submit

tkl

152.1.9.104

Figure 2.16: PTS Command.

AFS was chosen because it provides a distributed file system over many different

platforms. Network file system, NFS, would also make a good choice, but due to the lack

of NFS in our environment, AFS was chosen for the file system.

2.7 Database Shared Resources

A common problem in enterprise applications is that data need to be shared data.

Shared data provides information to the computer applications. The information could be

27

course lockers, mailing lists, user ids, social security numbers, etc. A Structured Query

Language (SQL) database server provides an effective means of managing the data.

#!/usr/local/bin/perl

#

Example program using the Sybase::DBlib library

Written by Dr. Charles J. Brabec

Used with Permission

#

include Sybase::DBlib extensions

use Sybase::DBlib;

make sure we know where sybase lives

$ENV{’SYBASE’} = "/afs/eos.ncsu.edu/project/csc_sybase";

Login information for the Sybase server

$username = "perl";

$password = "larrywall";

$server = "CSCDEV";

$Progname = "DBlib Demo";

Open a connection to the server

$dbh = new Sybase::DBlib $username,

$password, $server, $Progname;

Set our SQL command

$stat= $dbh->dbcmd("select * from info\n");

print STDERR "DBcmd Stat = $stat\n";

Execute our SQL command

$stat = $dbh->dbsqlexec;

print STDERR "DBsqlexec Stat = $stat\n";

Retrieve the results

$stat = $dbh->dbresults;

print STDERR "DBresults Stat = $stat\n";

Parse the returned rows, one at a time

while (@data = $dbh->dbnextrow) {

print "$data[0]\n";

}

Close the server connection

$dbh->dbclose;

exit 0;

Figure 2.17: Perl Script Which Connects to an SQL Server.

In our prototype application we are creating, Sybase was chosen to fill the need of

an SQL server. Any SQL server could have been chosen to fill this need. Other SQL servers

28

are Informix, MySQL, mSQL, Postgress, and Microsoft Back Office SQL server. The data

can be stored in an SQL server and queried to provide information to the application. The

data are extracted from the SQL server using Perl SQL modules. Figure 2.17 shows an

example of connecting to an SQL server using Perl and Sybase SQL server.

29

Chapter 3

The Architecture of a Solution

What type of solution to the enterprise network security problem does this paper

present? The solution presented here includes a description of appropriate network struc-

tures, software algorithms, cipher-ware encryption/authentication, and instructions on how

these elements must interact to:

1. Provide a means of identifying the user is who he claims to be.

2. Create a secure environment for passing data, including the userid and password, from

the user to the server and vice versa.

3. Upload, download, and modify protected data.

A pictorial design of the solution model can be seen in Figure 3.1. This new appli-

cation model includes security enhancements to authenticate users (Kerberos), communicate

privately (SSL network connections), and store protected data (secure AFS filespace). The

Apache HTTP server allows the secure interoperation of these security features. The follow-

ing sections will describe how the secure application model operates inside of the enterprise

environment.

3.1 Identifying the User

The method used to identify the user is Kerberos (described in Section 2.5). By

having the user enter a Kerberos userid and password and having the Kerberos server

authenticate the user, the application can have reasonable certainty that the user is who

30

User’s Machine WWW Server

Apache
HTTP Server

CGIHTML code from user
and server.

SSL Connection

User’s

Browser
WWW

Secure AFS
Filespace

Kerberos

Figure 3.1: New Model of the Application with Security Enhancements.

he claims to be. “Reasonable certainty” is defined as a positive identification based on

the authentication method. The computer application can now use this userid with the

certainty that it is authentic.

3.2 Setting up an SSL Connection

SSL Browser

User’s Machine

Public Key

WWW Server

port 80

1. Connect to
server to obtain
the Digital
Certificate which
will be used in the
exchange.

HTTP server

Figure 3.2: Initial Communication.

We assume the user has an SSL1 capable browser on his machine. The user’s

browser, as in Figure 3.2, connects to the insecure HTTP server on the remote server.

1Netscape version 3.0+ and IE version 3.0+ are SSL capable.

31

During this initial connection, the browser requests the public digital certificate of the

server from the insecure HTTP server if that digital certificate does not already exist in

the browser’s certificate list. The HTTP server locates the public certificate and returns

the certificate using the application/x-x509-ca-cert MIME type. The public key certificate

is located in unsecured space on the web server. Figure 3.3 illustrates an example of this

transaction. Since the public key cannot be used to gain access to secure data, the key is

free to travel in clear text over the network connection.

SSL Browser

User’s Machine

2. Server responds
with Server’s
Public Certificate
which will be used in
SSL connection.

Public Key

WWW Server

HTTP server

Figure 3.3: Obtaining the Public Certificate.

Once the user’s browser has the digital certificate loaded into the browser (see

Figure 3.4), the user’s browser then begins the SSL handshake (described in Section 2.4.2)

with the secure server (see Figure 3.5).

After the initial SSL handshake, some form of authentication must take place. It is

this authentication which proves to the secure HTTP server that the user is who he claims

to be. Since the authentication happens after the initial SSL handshake, the data the user

enters (passwords, userids, etc.) will be encrypted so as not to be passed in clear text over

the network. Figure 3.6 shows the steps of the authentication process.

3.3 Uploading, Downloading, and Modifying Data

Once the authentication has been completed, the user can execute CGI programs

on the secure HTTP server. Since the HTTP server is a trusted user, the scripts have the

privilege to change the data stored in the secure data areas on the server. Figure 3.7 shows

the process of executing a CGI program on the HTTP server.

32

Figure 3.4: Site Certificate.

SSL Browser

User’s Machine

3. Begin the SSL handshake protocol and forward to
port 443 (SSL port).

Private Key Public Key

WWW Server

HTTP server

Secure HTTP Server

Figure 3.5: SSL Handshake.

By using the multipart form file upload facility in HTML4, the user can upload

or download data from the HTTP server via the CGI scripts. Since this transaction occurs

inside of the SSL connection, the data uploaded or download are protected from sniffers.

This model satisfies all of the security requirements by using SSL to encrypt the

data, including the userid and password, between the user’s browser and the secure HTTP

server. The secure HTTP server is able to authenticate the user to the level of certainty

33

SSL Browser

User’s Machine

server
key

4. Web Server sends request
for authorization.

5. User enters password.
Private Key

WWW Server

Secure HTTP Server

Figure 3.6: Authentication.

SSL Browser

User’s Machine

server
key

6. User and Server
communicate via SSL.

Private Key

Secure HTTP Server

CGI
Calls

Secure
Filespace

WWW Server

Figure 3.7: CGI Execution on the HTTP Server.

required for most enterprise applications. The HTML4 multipart form data constructs

and the CGI programs running on the secure HTTP server allow uploading, downloading,

and modification of the data stored on the HTTP server. This is the general software

architecture of the prototype system.

3.4 Building a Secure Enterprise Application

In this section we present the detailed steps for creating a secure enterprise appli-

cation. Our approach requires the following activities:

1. Upgrading the web server

(a) Apache web server

(b) Kerberos authentication mechanism

34

(c) SSLeay

(d) Digital certificates

2. Preparing the user’s browser

3. Setting up the CGI application

(a) Importing the userid from the web server

(b) Adding digests to important form data

4. Creating IP based authentication

3.4.1 Upgrading the Web Server

Apache Web Server

The web server used in our solution is Apache [13] version 1.3.1. The Apache

web server was chosen for its many exceptional features: loadable modules, enhanced log-

ging, ease of setup, and exceptional user support base. Our solution’s Apache server is

built using gcc [28], the GNU compiler, and with Apache’s additional modules to provide

authentication for Kerberos and SSL support.

Kerberos Authentication Mechanism

Since Eos (the enterprise environment used at NC State) relies on Kerberos as

its method of authenticating users, Kerberos is an excellent choice for our solution. In

order to add Kerberos authentication to the Apache web server, a module and patch is

applied to the Apache source code. The module is mod_auth_kerb.c in the Appendix A.

mod_auth_kerb.c was written by James E. Robinson, III. The Kerberos module allows for

the authentication of userids based on a user’s Kerberos password. The Kerberos method

of authentication is illustrated in Figure 3.8.

The URL request comes in on port 443, the secure web server port. The Uniform

Resource Locator (URL) is parsed by the URL processing routines in the Apache server.

The base portion of the URL is located in a file called access.conf (part of the Apache

configuration files). An example of this file is shown in Figure 3.9.

If the URL was http://submit.ncsu.edu/eos-bin/submit, then http://submit.

ncsu.edu/eos-bin would be the basename. The basename path is resolved, using the

35

Access.conf

URL processing routines

Sparcstation 5

mod_auth_kerberos
calls to Hesiod
and Kerberos Servers

Port 443

Apache Secure Web Server

Figure 3.8: Apache Secure Server.

<Directory /local/etc/https/eos-bin>

AuthName NCSU Realm

AuthType KerberosV4

<Limit GET PUT POST>

require valid-user

order allow,deny

allow from all

</Limit>

</Directory>

Figure 3.9: Kerberos Authentication in access.conf.

Apache URL processing routines, to a local directory on the web server. In this example, the

basename resolves to the directory /local/etc/https/eos-bin. The directory is searched for

in the access.conf file. If the directory is located in the access.conf, then authentication

(in this case KerberosV4) must occur before the URL is resolved. Once the authentication

occurs the URL can be processed. In KerberosV4, the user types in his userid and password

and is authenticated.

36

SSLeay

The module used to provide the SSL portion is the “SSLeay” [29] 0.9.0b package.

SSLeay is a free implementation of the Netscape SSL. SSLeay implements SSL, versions

2 and 3, TLS version 1, DES, RSA, RC4, IDEA, and Blowfish2. Building this package

provides the necessary cipher-ware libraries: libcrypto.a, libssl.a, and libRSAglue.a

such that the Apache SSL patch can be used. Ben Laurie provides a patch [17] which can

be applied to the standard Apache 1.3.1 version to allow one to build a secure web server.

Once the SSLeay package is built and the SSL patch applied to the standard Apache code,

the server’s digital certificate must be obtained.

Adding the Digital Certificate

In order for the Apache secure server (created as described in the previous two sec-

tions) to operate, it must have a digital certificate. Two choices are available for obtaining

this certificate: buying a certificate or creating a certificate. In order to buy a certificate

from Verisign, Thawte, or one of the many Certificate Authority (CA) vendors, the ad-

ministrator operating the Apache server must apply for the certificate, be processed by the

vendor (supplying the server id, contact information, and other validation information) and

pay for the certificate. The alternative is to create a CA digital certificate, and then create

and sign the certificate. SSLeay can be used to first create a CA signing certificate. This

low cost approach can be used to generate the same type of digital certificate that CA

vendors generate. The steps for generating a digital certificate are given in Appendix C.

After the certificate is created, the certificate is placed in a read-only directory

accessible only by the web server. The Apache configuration lines in the httpd.conf file

are modified to reflect the certificate’s location:

SSLCACertificatePath /local/etc/https/SSLconf/conf

SSLCACertificateFile /local/etc/https/SSLconf/conf/httpsd.pem

These configuration variables provide the path and location of the digital certificate used

by the Apache secure web server.

2DES, RSA, RC4, IDEA, and Blowfish are common ciphers.

37

3.4.2 Preparing the User’s Browser

In order for the user’s SSL capable browser to operate, it must have a copy of the

digital certificate from the server. If the certificate was purchased from a CA vendor, the

certificate is automatically loaded in the user’s browser when he first contacts the secure

server. This action happens automatically because the user’s browser was distributed with

a copy of the CA vendors certificate. The SSL capable browser understands that the digital

certificate it is receiving from the secure web server is signed by an authority which is

already trusts (the CA vendor certificate which is already loaded in the browser). However

if the secure server’s digital certificate was created using the SSLeay method, the certificate

has to be manually loaded to prevent the user from being questioned by the browser each

session about the validity of the digital certificate being loaded. One can setup a URL link

which allows this certificate download to take place. Figure 3.10 shows an example of one

such URL.

Certificate

Figure 3.10: A URL for Loading a Digital Certificate.

3.4.3 CGI Application Setup

A few modifications must be made to existing CGI programs in order to use out

solution: all application programs import the userid from the web server and add digests

to important form data.

Importing the Userid

The Apache secure web server provides many different types of information ac-

cessible to CGI programs. The userid of the authorized user is one type of information

provided. The userid can be imported into the CGI program by means of the environment

variable REMOTE_USER and is set by the secure web server after the authorization phase.

Since a CGI program does not execute until after the authorization phase, the CGI is guar-

anteed not to be supplied a userid unless the authorization was successful (the program

would not be executed if authorization failed).

38

Adding Digests to Important Form Data

CGI programs often produce forms to gather data from the user. Since CGI is

stateless, the form data sent to the user is not retained by the server and exists only within

the user’s browser. If a user were to modify the data before returning the form to the secure

web server, a security breach would occur. In order to prevent data modification, an MD5

digest key is created of each of the form items before being sent to the user’s browser.

#!/usr/local/bin/perl

use MD5;

$md5 = new MD5;

$md5->add(’There are six white wolves’,

’In the dead of the night’);

$digest = $md5->digest();

print "Digest is " . unpack("H*", $digest) . "\n";

$md5->reset();

$md5->add(’There are six white wolves’,

’In the dead of the Night’);

$digest = $md5->digest();

print "Digest is " . unpack("H*", $digest) . "\n";

Figure 3.11: mdtest.pl, A Perl Example of MD5.

The MD5 digest algorithm creates a one way digest hash. An example of an MD5

implementation in Perl can be seen in Figure 3.11. In the first part of the Perl program

(mdtest.pl), a digest is created using the strings “There are six white wolves” and “In the

dead of the night”. The digest produced is “042e73ea45e003caf7a1e77fd7a3ed37”. If a small

change is made to the strings (the “n” in night is changed to “N”), the digest produces a

completely different digest: “09810ea2e3430502e42036fca023a73e”. One can see how small

changes cause big differences in the digest produced.

[197] astorath /users/staff/tkl>./mdtest.pl

Digest is 042e73ea45e003caf7a1e77fd7a3ed37

Digest is 09810ea2e3430502e42036fca023a73e

Figure 3.12: Output of the Perl MD5 Program.

39

The digest value can be passed to the user’s browser using a hidden text field. A

hidden text field is not displayed on the user’s browser, but the hidden field is returned

with the form data. By applying the MD5 digest algorithm to the returning form data and

comparing it with the hidden digest field, the CGI program would be aware of any data

falsification by the user.

3.4.4 Creating IP Based Authentication

AFS provides the secure file space in our solution architecture. IP authentication

is the key to how the secure filespace is accessed. AFS provides a mechanism for allowing

a machine to become the equivalent of a user. This mechanism is called IP authentication.

A system administrator who has administrative privileges for the AFS realm first creates

a user who has the same userid as the IP address of the web server. The web server user

created can then be added to ACL groups for a directory and given permissions to read,

write, or modify data to that directory.

40

Chapter 4

Submit

In this section we describe our prototype application, submitV2, which supports

online homework submission in our enterprise environment (Eos).

4.1 Submit Background

Submit is a homework submission program originally written by Dan Sharpe and

Tim Lowman in early 1992. It was later rewritten and revised by Tim Lowman in 1997, 1998,

and 1999. The goal of the work was to write a secure, command-line, homework submission

program for the Eos environment. Submit operated by means of AFS ACL protection groups

and a collection of “lockers” (dynamically mountable directories). Each locker contains a

master ACL group, tkl:CSCXXX/admin/sup, which is granted full access to the locker. The

locker contains a directory called “LEC”, which contains numbered directories for each sec-

tion of the course. A “SUBMITTED” directory is located inside of each of these numbered

directories. Each SUBMITTED directory contains a directory named for each student in

that particular section of the course. The SUBMITTED directory is accessible only by the

course administrators, those who are members of tkl:CSCXXX/admin/sup, the course TAs,

and the students of that particular section. Access by the TAs and students is controlled for

each section by means of the tkl:CSCXXX/YYY/tas and tkl:CSCXXX/YYY/students ACL

groups, respectively. Using a command line interface, students specify the files they wish

to submit for a particular homework assignment. If the student’s group is given read/write

access to the directory which matches their userid, then the submit program copies the

specified files from the user’s directory to the SUBMITTED area. AFS provides the sole

41

mechanism for authorizing users to submit homework assignments.

Since AFS is used as the method of authentication, many AFS groups must be

generated each semester and updated as students add or drop classes. The number of AFS

protection groups usually grows to such a large number that creating and maintaining these

groups requires over one thousand groups. AFS ACL servers [Protection Database Servers

(PTS)] soon become swamped by the simple act of destroying a semester’s groups. Thus a

new method, utilizing fewer ACL groups, was necessary.

Submit operates on machines where the C source code can be compiled. While

most UNIX machines fall into this category, Windows NT machines and Macintosh comput-

ers do not. This limitation prevents user homework submissions from non-UNIX machines.

The increasing number of students using non-UNIX machines mandates the quest for a

solution to multi-platform submissions.

NC State teaches many Video Based Education (VBE) courses. The courses are

taught by way of taped classroom instruction and other multimedia tools: video white-

boards, online conferencing, and WWW based instruction. Submit, being an application

which is local to the Eos system, is not available for VBE students. The homework submis-

sion solution must allow students at remote sites to submit, using many different machine

architectures. Our prototype submitV2 (version 2.0 of Submit) is a tool which solves these

problems.

4.2 Submit Implementation

Our prototype web server host machine is a Sparcstation 5. The Sparcstation’s

operating system, Solaris, provides the rich environment needed. The configuration of the

Sparcstation host is shown in Figure 4.1.

The prototype system’s web server is a secure Apache web server built according

to the methods outlined in Chapter 3. As mentioned in Section 3.4.1, mod_auth_kerb.c is

the module which provides authentication for the SSL connection. Figure 4.2 shows a basic

diagram of the authentication process via this module.

42

SunOS Release 5.5.1 Version Generic [UNIX(R) System V Release 4.0]

Copyright (c) 1983-1996, Sun Microsystems, Inc.

vac: enabled in write through mode

cpu0: FMI,MB86904 (mid 0 impl 0x0 ver 0x4 clock 70 MHz)

mem = 65536K (0x4000000)

avail mem = 61558784

Ethernet address = 8:0:20:71:8f:a0

root nexus = SUNW,SPARCstation-5

Figure 4.1: Sparcstation 5 Machine Configuration.

User / Password Pair
(basic auth)

kerb_authenticate_user

was a Kerberos IV or V
 authentication type

was not a
Kerberos IV
or V type

DECLINE

kerb_validate_user_pass_V[4/5]

AUTH_REQUIRED

bad passwordcorrect
password

OK

Figure 4.2: Apache Secure Server.

43

When the SSL handshake initiates, the userid/password pair enters the

kerb_authenticate_user function. This function retrieves grplist data from the Hesiod1

server (in case additional grplist authentication is required). The authentication type

is checked to see if it is Kerberos related. If the authentication type is not Kerberos,

kerb_authenticate_user returns DECLINED. Once the userid/password pair are pro-

cessed into Kerberos records, they are passed to kerb_validate_user_pass_V[4,5] (4

being the Kerberos IV version and 5 being the Kerberos V version). The password is veri-

fied by attempting to obtain a Kerberos ticket granting ticket in the routine

kerb_validate_user_pass_V4. If the routine returns OK, the password was able to gain

a ticket. The routine returns AUTH_REQUIRED if the ticket granting ticket could not be

obtained. If no ticket was obtained (the Kerberos routine returned DECLINED), a web

server code of 401 is returned with the AUTH_REQUIRED code showing that authentication is

required to run/view this URL.

The prototype application (submitV2) is written in Perl. Perl was chosen because

of the ease of coding CGI applications, its rich support of string processing, and its ability

to add additional support modules to the core distribution. The additional modules needed

for submitV2, which is listed in Appendix F, are [these modules are available from the

Comprehensive Perl Archive Network (CPAN)] [9]:

1. AFS - a custom written AFS module adapted from Roland Schemers’s AFS code

2. CGI.pm-2.42 - CGI generation modules

3. Crypt-DES-1.0 - Crypt-DES encryption algorithms

4. Data-Dumper-2.09 - Data Dumper

5. Getopt-Tabular-0.2 - Tabular Getopt

6. GetoptLong-2.17 - Getopt long

7. HTML-Parser-2.20 - HTML Parser

8. HTML-TableLayout-1.001006 - HTML Table Layout

9. Hesiod-1.0 - Hesiod Interface
1Hesiod is a modified BIND server which provides user information such as password, mail drops, or

group lists in addition to BIND data.

44

10. IO-1.20 - Input Output addition

11. IO-File-Multi-1.01 - Multi-file I/O addition

12. IO-stringy-1.203 - String processing I/O addition

13. LockFile-Simple-0.1 - Lock file support

14. Log-Logger-1.01 - System logging support

15. Logfile-0.202 - Log file processing support

16. MD5-1.7 - MD5 digest support

17. MIME-Base64-2.06 - MIME support for BASE64 encoding

18. MIME-tools-4.121 - MIME tool support

19. MailTools-1.11 - Mailer packages

20. PGP-Sign-0.09 - PGP support

21. Schedule-At-1.02 - Scheduler support

22. SyslogScan-0.32 - Syslog processing support

23. Time-HiRes-01.18 - Timing support

24. Time-modules-98.060902 - Time function modules

25. libnet-1.0605 - Network/Internet support

26. libwww-perl-5.35 - WWW support (LWP)

27. sybperl-2.09 - Sybase Support

The basic algorithm of the submitV2 program is shown in Figure 4.3. Since CGI

programs are stateless, submitV2 uses a series of hidden variables to store information

needed between CGI executions. It also creates an MD5 digest which is used to prevent

form data from being modified by the user and re-submitted to the server. The basic

algorithm is as follows. The initial submitV2 form is displayed when the user connects

45

Lookup Class

Select Submit

Select Class

Lookup
Assignments

Select Assignment

Display Upload
Form

Display
Welcome Form

Upload File

Select file(s) to upload

Display
Acknowledgement

Figure 4.3: Algorithm for Submit.

to the secure server. The user selects the “submit” facility triggering a Sybase2 query to

obtain a class list for the student. The returned classes are formatted using HTML4 code

to display a pull-down menu, and the dynamically created HTML4 document is sent to the

user.

The user then selects the class for which he wishes to submit his homework as-

signment and clicks on the “submit” button. This button triggers another submitV2 CGI

2The CSC department maintains a Sybase database of student information including courses, student
data, and email addresses. This information is available to the submitV2 CGI program via Sybperl calls.

46

call and the form data are passed to submitV2. SubmitV2 processes the data from the

form, the class the user selected. SubmitV2 retrieves all the possible assignments available

for that class and returns another dynamically created HTML4 form. This time the form

has two hidden variables “key” which contains an MD5 digest of the course selected and

“course” which contains the actual course selected. The form data also have radio-group

buttons listing the possible homework assignments.

The user can click the radio-group button beside the assigned homework and then

on the “submit” button. This button triggers another call to submitV2. SubmitV2 receives

the form data (with the hidden fields) and the selected homework assignment. To verify

the course, passed back in the hidden field, was not altered, submitV2 computes a MD5

digest based on that value. This computed value is compared with the MD5 digest passed

as a hidden field. If the values differ, submitV2 knows the form data were modified and can

take appropriate action. SubmitV2 checks to see if the homework assignment selected is

active. If the assignment is not active, a message that the homework assignment is not valid

is returned to the user. If the assignment is valid, a new form is dynamically generated.

The new form contains the hidden variables “courses” (the course), “assignments” (the

assignment), and “key” (the new MD5 digest key comprised of the “courses” string and the

“assignments” string). The form also contains a multi-part/form-data file selection dialogue

box. The file selection box will be used to select the file the user wishes to upload.

Once the user has selected the file to upload, the “submit” button is pressed. The

click triggers another submitV2 call. SubmitV2 creates a new MD5 digest of the course

and assignment names and compares it against the MD5 digest key received with the form

data. Again if these digests fail to match, the user is displayed a message that the form data

has been modified. If the digests match, the file is uploaded and placed in the homework

submission area for that course.

The database packages used for this prototype is Sybase(tm) SQL server. Informa-

tion is loaded into the database by a series of Sybperl scripts. The database is accessed via

the Sybperl module mentioned in earlier. SQL queries occur via a common Sybase account.

Multiple queries can happen simultaneously. The Sybase server regenerates its data each

morning from the most recent information provided by NC State’s Academic Computing

Services. Information held in this database includes the student’s classes, preferred email

addresses, current course standing: Freshman, Sophomore, Junior, etc, and the course data

on which courses are being offered. Several indexed tables exist which allow faster searches

47

of the 245,000 entries. Figure 4.4 shows a listing of table names and types created for this

prototype. Additional table information is include in Appendix D.

Name Owner Object_type

--------------- --------------- ----------------------

addr dbo user table

enroll dbo user table

people dbo user table

stu_addr dbo user table

stu_crs dbo user table

user_crs dbo user table

userinfo dbo user table

Figure 4.4: Sybase Tables.

Another type of database used by submitV2 is flat-file text files holding information

about each assignment. These files hold a list of active homework assignments, start and

end assignment times, and additional information for late homework submissions. Figure

4.5 shows an example flat-file database.

hw1:0:909991439:001

hw1:0:999999999:tkl

hw2:0:988888888:001

Figure 4.5: A Flat-file Database.

SubmitV2 modifies these flat files in order to create the information that the

program will later use to determine if an assignment is open for submission, is available for

late submission, needs to be turned on, or needs to be turned off.

The submitV2 prototype resolves the problems of securely submitting homework

assignments from remote sites, from different machine architectures, and requires fewer AFS

ACL groups. A submitV2 production system is currently under discussion by several NC

State departments.

48

Chapter 5

Conclusions

5.1 Conclusions

By utilizing the secure Apache web server, SSL encoding, Kerberos authentication,

AFS’s IP based file protection, and Perl as the CGI language, a secure application prototype

can be shown to operate in a manner which protects the user’s information in a large

enterprise environment such as Eos. Users are protected from each other. User information

passed over a common network is protected from sniffing. By using the HTML transmission

method, we have enabled anyone with a SSL capable browser to use this prototype. The

AFS portion used for file security could be substituted with NFS file security and a setuid

program. Likewise, Kerberos as an authentication mechanism could be substituted by

another authentication protocol which may be available at that site. The cost of this setup

was quite small: our CA key was self generated and all the software used is in the public

domain with the exception of Sybase. Another public domain database such as MySQL

could be substituted into this scenario with very little modification. Our secure model is

appropriate for many other application: online book trading, online advising, or a multitude

of others which require user authentication and security in a large enterprise environment.

49

Bibliography

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol – HTTP/1.0,

November 1996. http://www.cis.ohio-state.edu/rfc/rfc1945.txt (28 October

1998).

[2] Tim Berners-Lee. The original proposal of the WWW, May 1990. http://www.w3c.

org/History/1989/proposal.html (28 October 1998).

[3] Bill Bryant. Designing an authentication system: A dialogue in four scenes. Technical

report, MIT: Project Athena, Feburary 1988.

[4] CCITT. Recommendation X.500: The Directory Overview of Concepts, Models, and

Services. Technical report, CCITT, 1988.

[5] CCITT. Recommendation X.509: The Directory Authentication Framework. Technical

report, CCITT, 1988.

[6] CERT. Security for a public web site, September 1997. http://www.cert.org/

security-improvement/modules/m02.html (8 November 1998).

[7] William Cheswick, Warwick Ford, and James Gosling. How computer security works.

Scientific American, 279(4):108, October 1998.

[8] Netscape Corporation. Netscape SSL 2.0 certificate format. Technical report, Netscape

Corporation, 1997.

[9] CPAN. Comprehensive Perl archive network (CPAN), March 1999. ftp://ftp.csc.

ncsu.edu/pub/CPAN/SITES.html (28 October 1998).

50

[10] N. Freed and N. Borenstein. Multipurpose Internet mail extensions (MIME) part one:

Format of Internet message bodies, November 1996. http://www.cis.ohio-state.

edu/rfc/rfc2045.txt (28 October 1998).

[11] N. Freed and N. Borenstein. Multipurpose Internet mail extensions (MIME) part two:

Media types, November 1996. http://www.cis.ohio-state.edu/rfc/rfc2046.txt

(28 October 1998).

[12] A. Freier, P. Karlton, and P. C. Kocher. The SSL protocol version 3.0. Technical

report, Netscape Communications, November 1996.

[13] Apache Group. Apache project, October 1998. http://www.apache.org/ (28 October

1998).

[14] John Hughes. Brief comparison of SSL, S/MIME, and IPSEC security technologies,

February 1998. http://www.entegrity.com/papers/WHITE_PAPER_4_SSL-SMIME.

htm (3 March 1999).

[15] I/O Software Inc. I/O Software – biometrics explained, September 1998. http://www.

iosoftware.com/about/biometrics.htm (3 March 1999).

[16] David Kahn. Seizing the Enigma: The race to break the German U-boat codes, 1939-

1943. Houghton Mifflin Co., Boston, 1991.

[17] Ben Laurie. Apache-SSL, March 1998. https://www.apache-ssl.org (3 March 1999).

[18] Tim Lowman. HTML tutorial, May 1996. http://www.csc.ncsu.edu/csc_info/

csc251/www/tutorial/ (28 October 1998).

[19] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos authentication

and authorization system. Technical report, MIT: Project Athena Technical Plan,

October 1988.

[20] NCSA. Common gateway interface, October 1996. http://hoohoo.ncsa.uiuc.edu/

cgi/ (28 October 1998).

[21] E. Nebel and L. Masinter. Form-based file upload in HTML, November 1995. http:

//www.cis.ohio-state.edu/rfc/rfc1867.txt (28 October 1998).

51

[22] Dave Raggett. Raggett’s 10 minute guide to HTML, July 1998. http://www.w3c.org/

MarkUp/Guide/ (28 October 1998).

[23] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 specification, April 1998.

http://www.w3c.org/TR/1998/REC-html40/ (28 October 1998).

[24] R. Riest. The MD5 message-digest algorithm, April 1992. http://www.cis.

ohio-state.edu/rfc/rfc1321.txt (28 October 1998).

[25] NCSA HTTPd Development Team. The NCSA HTTPd home page, January 1998.

http://hoohoo.ncsa.uiuc.edu/ (29 October 1998).

[26] Transarc Corporation. AFS installation guide. Technical report, Transarc Corporation,

February 1991.

[27] North Carolina State University. Security for a public web site, February 1999. http:

//www.ncsu.edu/wrap (8 November 1998).

[28] The GNU Webmasters. GNU’s not Unix! - the GNU project and the Free Software

Foundation (FSF), September 1998. http://www.gnu.org/ (8 November 1998).

[29] Eric Young. SSLeay: SSL and supporting libararies, June 1998. ftp://ftp://ftp.

psy.uq.oz.au/pub/Crypto/SSL/ (28 October 1998).

52

Appendices

53

Appendix A

Apache Kerberos Module

mod_auth_kerb.c is an Apache module which performs Kerberos authentication.

/*

* James E. Robinson, III <jamesncstate.net>

*

* Source and Documentation can be found at:

* http://www.ncstate.net/nts/research/software/mod auth kerb/

*

* $Id: mod auth kerb.c,v 3.6 1998/09/01 00:34:07 jerobins Exp $

*

* −−
* James E. Robinson, III | jamesncstate.net | Lead Systems Programmer

* NC State University | NCState.Net | http://www.ncstate.net/

* Information Technology | PGP key at http://www.ncstate.net/james/pgp/

*

*/

/*

* Further modifications to this code done at the National Center

* for Supercomputing Applications by Von Welch <vwelchncsa.edu>

*

* And also Modifications for sending back WWW−Authenticate headers on

* each 401 by Mark Mentovai <markmoxienet.com>

*/

54

/* ====================================

* Copyright (c) 1996-1998 The Apache Group. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* “This product includes software developed by the Apache Group

* for use in the Apache HTTP server project (http://www.apache.org/).”

*

* 4. The names “Apache Server” and “Apache Group” must not be used to

* endorse or promote products derived from this software without

* prior written permission.

*

* 5. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* “This product includes software developed by the Apache Group

* for use in the Apache HTTP server project (http://www.apache.org/).”

*

* THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ‘‘AS IS’’ AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE GROUP OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

55

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ===================================

*

* This software consists of voluntary contributions made by many

* individuals on behalf of the Apache Group and was originally based

* on public domain software written at the National Center for

* Supercomputing Applications, University of Illinois, Urbana-Champaign.

* For more information on the Apache Group and the Apache HTTP server

* project, please see <http://www.apache.org/>.

*

*/

/*

* Portions developed at the National Center for Supercomputing

* Applications at the University of Illinois at Urbana-Champaign.

*/

/* Ouch, conflicting header file. Make sure ssl des.h is ignored. */

#define HEADER DES H

#ifdef APACHE SSL

#undef APACHE SSL

#endif /* APACHE SSL */

#include "httpd.h"

#include "http_config.h"

#include "http_core.h"

#include "http_log.h"

#include "http_protocol.h"

/*

* Prevent warning about closesocket redefinition (Apache’s

* ap config.h and Kerberos’ cc-unix.h both define it as close)

*/

#ifdef closesocket

#undef closesocket

#endif /* closesocket */

#ifdef HESIOD

#include <hesiod.h>

56

#endif /* HESIOD */

#if (defined(DUAL AUTH)) && (! defined(KRB5))

#define KRB5

#endif

#if (defined(DUAL AUTH)) && (! defined(KRB4))

#define KRB4

#endif

#ifdef KRB5

#include "krb5.h"

#endif

#ifdef KRB4

#include "krb.h"

#include "des.h"

#endif

#ifdef KRB5

#define KRB5 DEFAULT OPTIONS 0

#ifndef KRB5 SAVE CREDENTIALS

#define KRB5 DEFAULT LIFE 60 * 5 /* 5 minutes */

#else

#define KRB5 DEFAULT LIFE 60 * 30 /* 30 minutes */

#endif

krb5 data tgtname = {
0,

KRB5 TGS NAME SIZE,

KRB5 TGS NAME

};

char k5 srvtab[MAX STRING LEN] = "";

#endif

#ifdef KRB5 SAVE CREDENTIALS

/* Are we saving our credentials? */

static int krb5 save credentials;

57

#endif

#ifndef MAX KDATA LEN

#define MAX KDATA LEN 2048 /* Biggest Kerberos passwd string */

#endif

/* make this the default */

#ifdef KRB DEF REALM

#ifdef KRB REALM

#undef KRB REALM

#endif /* KRB REALM */

#define KRB REALM KRB DEF REALM

#endif /* KRB DEF REALM */

/* default location for srvtab file */

#ifndef KRB V4 SRVTAB

#define KRB V4 SRVTAB KEYFILE

#endif

#ifdef DEFAULT TKT LIFE

#undef DEFAULT TKT LIFE

#define DEFAULT TKT LIFE 1 /* default tkt life to 5 mins */

#endif

#ifdef KRB4

/* our httpd server kerberos realm */

static char realm[REALM SZ];

#endif

/* forward declaration, see defination at end of file */

module kerb auth module;

/* configuration record defination*/

typedef struct {
char *auth def krb realm;

} kerb auth config rec;

/* map the valid commands to the config record */

/* we allow the user to set AuthRealm in the dir config */

command rec kerb auth cmds[] = {

58

{ "KrbAuthRealm", ap set string slot,

(void*)XtOffsetOf(kerb auth config rec, auth def krb realm),

OR AUTHCFG, TAKE1, "Kerberos realm to associate with users." },
{ NULL }

};

/* Tables for converting binary values to and from hexadecimal */

static char hex[] = "0123456789abcdef";

static char dec[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 37 */

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ’ ’ - ’/’ */

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, /* ’0’ - ’?’ */

0,10,11,12,13,14,15, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ’*/

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ’P’ - ’ ’ */

0,10,11,12,13,14,15, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ’‘’ - ’o’ */

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* ’p’ - DEL */

};

/***

* kdata to str – convert 8-bit char array to ascii string

*

* Accepts: input array and length

* Returns: a pointer to the result, or null pointer on malloc failure

* The caller is responsible for freeing the returned value.

*

**/

static char *kdata to str(char *in data, int length)

{
char *result, *p;

int i;

p = result = malloc(length*2+1);

if (!result) {
return (char *) NULL;

}

59

for (i=0; i < length; i++) {
*p++ = hex[(in data[i]>>4)&0xf];

*p++ = hex[(in data[i])&0xf];

}

*p++ = ’\0’;

return result;

}

/***

* str to kdata – Converts ascii string to a (binary) char array

*

* Accepts: string to convert

* pointer to output array

* Returns: length of output array, NULL on failure

*

**/

static int str to kdata(const char *in str, char *out str)

{
int inlen, outlen;

inlen = strlen(in str);

if (inlen & 1) {
return NULL; /* must be even number, in this scheme */

}

inlen /= 2;

if (inlen > MAX KDATA LEN) {
return NULL;

}

for (outlen=0; *in str; outlen++, in str += 2) {
out str[outlen] = (dec[in str[0]]<<4) + dec[in str[1]];

}

return outlen;

}

60

/***

* kerb get server realm – retrieve the realm information for the server

*

* Accepts: request record

* Returns: sets the global variable ’realm’ to the server’s realm

*

**/

#ifdef KRB4

static void kerb get server realm(request rec *r)

{
/* get the config information */

kerb auth config rec *sec =

(kerb auth config rec *)ap get module config(r−>per dir config,

&kerb auth module);

/*

* did the user specify a different realm than compiled in default

* for the server?

*/

if(sec−>auth def krb realm) {
strncpy(realm, sec−>auth def krb realm, REALM SZ);

} else {
/* if not, try and get the one from the system */

if (krb get lrealm(realm, 1) != KSUCCESS) {
/* else, result to the compiled in default */

strncpy(realm, KRB REALM, REALM SZ);

}
}

return;

}
#endif

/***

* kerb validate user pass – validate user with principal and passwd

*

* Accepts: request record and sent password

* Returns: OK, DECLINED, AUTH REQUIRED or SERVER ERROR

*

61

**/

#ifdef KRB4

static int kerb validate user pass V4(request rec *r, const char *sent pw)

{
char errstr[MAX STRING LEN];

int krbval;

int kpass ok = 0; /* not allowed until we say so */

char krb tkt file[MAXPATHLEN − 1];

/* need to be sure ticket file is set to something reasonable

* since multiple processes could be authenticating at once

* better make sure files don’t conflict

*/

sprintf(krb tkt file, "/tmp/apache_tkt_%ld", (long)getpid());

krb set tkt string(krb tkt file);

/* see if they are who they say they are */

krbval = krb get pw in tkt(r−>connection−>user, "", realm,

"krbtgt", realm, DEFAULT TKT LIFE, (char *)sent pw);

/* destroy all the evidence */

/* well, it is still in memory on the browser. . */

dest tkt();

/* see what kerberos told us */

switch (krbval) {
case INTK OK:

case INTK W NOTALL:

kpass ok = 1;

break;

default:

sprintf(errstr, "Kerberos error: %s", krb err txt[krbval]);

/* first, the error log */

ap log reason (errstr, r−>uri, r);

break;

}

/* are they ok? */

62

if (kpass ok) {
return OK;

}

/* if not, let somebody else take care of it */

return AUTH REQUIRED;

}
#endif

#ifdef KRB5

static int kerb validate user pass V5(request rec *r, const char *sent pw)

{
krb5 context kcontext;

krb5 ccache ccache = NULL;

krb5 principal me;

krb5 principal server;

krb5 creds my creds;

krb5 timestamp now;

long lifetime = KRB5 DEFAULT LIFE;

int options = KRB5 DEFAULT OPTIONS;

krb5 preauthtype *preauth = NULL;

krb5 error code code;

char *client name;

char errstr[MAX STRING LEN];

krb5 init context(&kcontext);

krb5 init ets(kcontext);

if (code = krb5 parse name(kcontext, r−>connection−>user, &me)) {
sprintf(errstr, "krb5_parse_name(): Parsing name %s - %s (%d)",

r−>connection−>user, error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

if (code = krb5 unparse name(kcontext, me, &client name)) {
sprintf(errstr, "krb5_unparse_name(): Unparsing name - %s (%d)",

error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

63

}

#ifdef KRB5 SAVE CREDENTIALS

/*

* krb5 save credentials is set in kerb validate user pass V5

*/

if (krb5 save credentials) {
/*

* We want to save the credentials somewhere a CGI script can find them.

* I’ve choosen to put them in /tmp/krb5cc <username>. Obviously this

* holds some problems if <username> contains slashes (’/’), but I’m

* not sure what a better solution is at this point.

*/

char cache name[MAX STRING LEN];

/*

* We want to check the username to make sure there is no funny bussiness

* going on.

*/

if (strchr(r−>connection−>user, ’.’) | |
strchr(r−>connection−>user, ’/’)) {

sprintf(errstr, "Checking krb5 password: Bad character in username \"%s\".",

r−>connection−>user);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

sprintf(cache name, "/tmp/krb5cc_%s", r−>connection−>user);

if (code = krb5 cc resolve(kcontext, cache name, &ccache)) {
sprintf(errstr,

"krb5_cc_resolve(%s): Getting credential cache - %s (%d)",

cache name, error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

if (code = krb5 cc initialize(kcontext, ccache, me)) {

64

sprintf(errstr,

"krb5_cc_initialize(): Initializing credential cache - %s (%d)",

error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

/*

* XXX This should really be an option somewhere.

*/

options |= KDC OPT FORWARDABLE;

}

/*

* If we’re not saving the credentials, then we want to leave ccache == NULL

*/

#endif /* KRB5 SAVE CREDENTIALS */

memset((char *)&my creds, 0, sizeof(my creds));

my creds.client = me;

if (code = krb5 build principal ext(kcontext, &server,

krb5 princ realm(kcontext, me)−>length,

krb5 princ realm(kcontext, me)−>data,

tgtname.length, tgtname.data,

krb5 princ realm(kcontext, me)−>length,

krb5 princ realm(kcontext, me)−>data,

0)) {
sprintf(errstr, "krb5_build_principal_ext(): Building server name - %s (%d)",

error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

my creds.server = server;

if (code = krb5 timeofday(kcontext, &now)) {
sprintf(errstr, "krb5_timeofday(): Getting time of day - error %s (%d)",

65

error message(code), code);

ap log reason (errstr, r−>uri, r);

return SERVER ERROR;

}

my creds.times.starttime = 0;

my creds.times.endtime = now + lifetime;

my creds.times.renew till = 0;

code = krb5 get in tkt with password(kcontext,

options, 0, NULL, preauth, sent pw, ccache, &my creds, 0);

/* This frees the principals as well */

krb5 free cred contents(kcontext, &my creds);

#ifdef KRB5 SAVE CREDENTIALS

if (krb5 save credentials) {
if (code == 0) {

krb5 cc close(kcontext, ccache);

} else {
krb5 cc destroy(kcontext, ccache);

}
}

#endif /* KRB5 SAVE CREDENTIALS */

if (code) {
switch(code) {
case KRB5KRB AP ERR BAD INTEGRITY:

sprintf(errstr,

"krb5_get_in_tkt_with_password(): User \"%s\" - Password incorrect",

r−>connection−>user);

break;

case KRB5KDC ERR C PRINCIPAL UNKNOWN:

sprintf(errstr,

"krb5_get_in_tkt_with_password(): Unknown user \"%s\"",

r−>connection−>user);

break;

default:

66

sprintf(errstr,

"krb5_get_in_tkt_with_password(): User \"%s\" - %s (%d)",

r−>connection−>user, error message(code), code);

break;

}
ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}

return OK;

}
#endif

/***

* kerb validate ticket – validate the tkt sent by the browser

*

* Accepts: request record

* Returns: OK, DECLINED, AUTH REQUIRED or SERVER ERROR

*

**/

#ifdef KRB4

static int kerb validate ticket V4(request rec *r)

{
int krbval;

char errstr[MAX STRING LEN];

KTEXT ST authent;

char instance[INST SZ];

static AUTH DAT kdata;

char k4 srvtab[MAX STRING LEN];

des cblock session; /* Our session key */

des key schedule schedule; /* Schedule for our session key */

char *type, *p;

const char *sent pw, *auth line;

/* get the auth line the user sent us */

auth line = ap table get (r−>headers in, "Authorization");

/* did they send us the information required? */

if (auth line == NULL) {

67

/* tell the client what to expect */

ap table set (r−>err headers out, "WWW-Authenticate", "KerberosV4");

return AUTH REQUIRED;

}

/* get the auth type sent to us */

type = ap getword(r−>pool, &auth line, ’ ’);

/*

* These two fields in the connection record are used elsewhere

* in the Apache modules. (check access)

* They really appreciate them being set to useful values. :)

*/

r−>connection−>user = ap getword(r−>pool, &auth line, ’ ’);

r−>connection−>ap auth type = "KerberosV4";

sent pw = ap getword(r−>pool, &auth line, ’\0’);

if ((authent.length = str to kdata(sent pw, (char *)authent.dat)) == NULL) {
sprintf(errstr,"Invalid Kerberos authenticator");

/* log it to the error file */

ap log reason (errstr, r−>uri, r);

/* let somebody else take care of it */

return AUTH REQUIRED;

}

/* configure the srvtab file location */

strncpy(k4 srvtab, KRB V4 SRVTAB, MAX STRING LEN);

/* configure the default instance */

strcpy(instance, "*");

/* Verify authenticator */

if (k4 srvtab[0]) {
krbval = krb rd req(&authent, "khttp", instance, 0L, &kdata, k4 srvtab);

} else {
/* not likely to work, but we’ll try without the srvtab */

krbval = krb rd req(&authent, "khttp", instance, 0L, &kdata, NULL);

}

68

/* see what the master says */

/* this code should be similar to the other case statement */

if (krbval) {
/* No eh? log it so the admin can see what happened */

sprintf(errstr, krb err txt[krbval]);

ap log reason (errstr, r−>uri, r);

/* let somebody else take care of it */

return AUTH REQUIRED;

}

/* Check Kerberos principal versus the username they sent us */

if (strncmp(kdata.pname, r−>connection−>user, ANAME SZ)) {
sprintf(errstr, "Permission denied; name/username mismatch.");

ap log reason (errstr, r−>uri, r);

/* let somebody else take care of it */

return AUTH REQUIRED;

}

/* Save the session key */

memcpy(session, kdata.session, sizeof(des cblock));

key sched(session, schedule);

/* Construct the response for mutual authentication */

authent.length = sizeof(des cblock);

memset(authent.dat, 0x00, sizeof(des cblock));

*((long *)authent.dat) = htonl(kdata.checksum + 1);

des ecb encrypt((des cblock *)authent.dat, (des cblock *)authent.dat,

schedule, 1);

/* Convert response to string and place in buffer */

p = kdata to str((char *)authent.dat, authent.length);

if (p) {
sprintf(errstr, "[%s] User %s authenticated", p, r−>connection−>user);

free(p);

ap table set (r−>headers out, "WWW-Authenticate", errstr);

} else {
/* Out of memory */

sprintf(errstr, "Not enough memory to create reply, eek!");

ap log reason (errstr, r−>uri, r);

69

/* let somebody else take care of it */

return AUTH REQUIRED;

}

return OK;

}
#endif

#ifdef KRB5

static int kerb validate ticket V5(request rec *r)

{
krb5 data k5authent;

krb5 error code code;

krb5 context k5context;

krb5 keytab k5keytabid = NULL;

krb5 auth context *k5auth context = NULL;

krb5 principal serverp;

krb5 principal clientp;

krb5 ticket *k5ticket = NULL;

krb5 data k5ap rep data;

char *type, *p;

char errstr[MAX STRING LEN], tmpstr[MAX KDATA LEN];

const char *sent pw, *auth line;

auth line = ap table get (r−>headers in, "Authorization");

/* did they send us the information required? */

if (auth line == NULL) {
/* tell the client what to expect */

ap table set (r−>err headers out, "WWW-Authenticate", "KerberosV5");

return AUTH REQUIRED;

}

/* get the auth type sent to us */

type = ap getword(r−>pool, &auth line, ’ ’);

/*

* These two fields in the connection record are used elsewhere

* in the Apache modules. (check access)

* They really appreciate them being set to useful values. :)

*/

70

r−>connection−>user = ap getword(r−>pool, &auth line, ’ ’);

r−>connection−>ap auth type = "KerberosV5";

sent pw = ap getword(r−>pool, &auth line, ’\0’);

if ((k5authent.length = str to kdata(sent pw, tmpstr)) == NULL) {
sprintf(errstr,"Invalid Kerberos authenticator");

/* log it to the error file */

ap log reason (errstr, r−>uri, r);

/* let somebody else take care of it */

return AUTH REQUIRED;

}

k5authent.data = tmpstr;

code = krb5 init context(&k5context);

if (code) {
sprintf(errstr, "krb5_init_context(): Error - %s", error message(code));

ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}

krb5 init ets(k5context);

/* find server principal name; NULL means krb libs determine my hostname */

code = krb5 sname to principal(k5context,

NULL, "khttp", KRB5 NT SRV HST, &serverp);

if (code) {
sprintf(errstr,

"krb5_sname_to_principal(): Error finding server principal name: %s",

error message(code));

ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}

/* Check for user-specified keytab */

if (k5 srvtab[0]) {
code = krb5 kt resolve(k5context, k5 srvtab, &k5keytabid);

71

if (code) {
sprintf(errstr, "krb5_kt_resolve(): Error resolving keytab file: %s",

error message(code));

ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}
}

/* and most importantly, check the client’s authenticator */

code = krb5 rd req(k5context,

&k5auth context, &k5authent, serverp, k5keytabid, NULL, &k5ticket);

if (code) {
sprintf(errstr, "krb5_rd_req(): Error - %s", error message(code));

ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}

clientp = k5ticket−>enc part2−>client;

/* send an AP REP message to complete mutual authentication */

code = krb5 mk rep(k5context, k5auth context, &k5ap rep data);

if (code) {
sprintf(errstr, "krb5_mk_rep(): Error - %s", error message(code));

ap log reason (errstr, r−>uri, r);

return AUTH REQUIRED;

}

/* Convert response to string and place in buffer */

p = kdata to str(k5ap rep data.data, k5ap rep data.length);

if (p) {
sprintf(errstr, "[%s] User %s authenticated", p, r−>connection−>user);

free(p);

ap table set (r−>headers out, "WWW-Authenticate", errstr);

} else {
/* Out of memory */

sprintf(errstr, "Not enough memory to create reply, eek!");

ap log reason (errstr, r−>uri, r);

72

return AUTH REQUIRED;

}

return OK;

}
#endif

#ifdef HESIOD

/***

* check user auth – entry point for kerberos with hesiod group authentication

*

* Accepts: request record

* Returns: OK, DECLINED, AUTH REQUIRED or SERVER ERROR

*

**/

int check user auth (request rec *r) {
char *user = r−>connection−>user;

int m = r−>method number;

int method restricted = 0;

register int x;

const char *t, *w;

array header *reqs arr = requires (r);

require line *reqs;

table *grpstatus;

char **user groups, *grpret;

char errstr[50];

int i;

if (!reqs arr) {
return kerb authenticate user(r);

}

reqs = (require line *)reqs arr−>elts;

for (x=0; x < reqs arr−>nelts; x++) {

if (! (reqs[x].method mask & (1 << m))) {
continue;

}

73

method restricted = 1;

t = reqs[x].requirement; /* t = “require valid-user/user/group u g” */

w = ap getword(r−>pool, &t, ’ ’); /* w = “valid-user/user/group” */

if (!strcmp(w,"valid-user")) {
return kerb authenticate user(r);

} else if (!strcmp(w,"user")) {
return kerb authenticate user(r);

} else if (!strcmp(w,"group")) {

if (kerb authenticate user(r) != OK) {
return AUTH REQUIRED; /* not in our realm */

}

user groups = hes resolve(r−>connection−>user, "grplist");

if (!user groups) {
return AUTH REQUIRED; /* no groups found? */

}

grpstatus = user groups[0];

while (t[0]) {
w = ap getword(r−>pool, &t, ’ ’); /* w = “u”, then “g” */

grpret = strstr(grpstatus, w);

if (grpret) {
i = strlen(w);

if ((grpret[i]==’:’)| |(grpret[i]==NULL)) {
return OK;

}
}

}
}

}

return AUTH REQUIRED;

}
#endif /* HESIOD */

74

/***

* kerb authenticate user – entry point for kerberos authentication

*

* Accepts: request record

* Returns: OK, DECLINED, AUTH REQUIRED or SERVER ERROR

*

**/

int kerb authenticate user (request rec *r)

{
int ticket = 1; /* ticket or no, assume yes */

int res; /* fcn result code */

const char *type, *name; /* auth information */

const char *auth line, *sent pw;

int KerberosV4 = 0; /* authtype v4? */

int KerberosV5 = 0; /* authtype v5? */

char *ptr; /* string place holder */

/* get the type specified in .htaccess */

type = ap auth type(r);

/* get the user realm specified in .htaccess */

name = ap auth name(r);

/* if AuthType is not Kerberos, then don’t touch it */

#ifdef KRB4

if((type != NULL) && (strncasecmp(type, "KerberosV4", 10) == 0)) {
KerberosV4 = 1;

}
#endif

#ifdef KRB5

if((type != NULL) && (strncasecmp(type, "KerberosV5", 10) == 0)) {
KerberosV5 = 1;

}
#endif

if (!(KerberosV4 | | KerberosV5)) {
/* we decline the offer. . . . */

return DECLINED;

75

}

#ifdef KRB5 SAVE CREDENTIALS

/*

* Big Hack: Check for a SaveCredentials on end of authtype.

*/

if ((type!=NULL) && strstr(type, "SaveCredentials")) {
krb5 save credentials = 1;

} else {
krb5 save credentials = 0;

}
#endif /* KRB5 SAVE CREDENTIALS */

/* get what the user sent us in the HTTP header */

auth line = ap table get (r−>headers in, "Authorization");

/* did we get an auth line? */

if(!auth line) {
/* nope, well, tell the client what to send */

#if (defined(KRB4)) | | (defined(KRB5))

/* check for those browsers that we know need basic anyways */

/* */

if (ap table get(r−>subprocess env, "use_basic_auth")) {

ap table set (r−>err headers out, "WWW-Authenticate",

"Basic realm=\"Kerberos\"");

} else if (ap table get(r−>subprocess env, "use_kerberos_auth")) {
#ifdef KRB4

if (KerberosV4) {
ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "KerberosV4 realm=\"", name, "\"", NULL));

}
#endif

#ifdef KRB5

if (KerberosV5) {
ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "KerberosV5 realm=\"", name, "\"", NULL));

76

}
#endif

} else {
/* this is the new “more correct” default behavior */

ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "Basic realm=\"", name, "\"", NULL));

}
#endif

return AUTH REQUIRED;

}

/*

* Did they send us a Basic auth?

*/

if (strncasecmp(ap getword (r−>pool, &auth line, ’ ’), "Basic", 5) == 0) {
/*

* No problem! Let’s get the userid/passwd pair they sent and

* see if we can buy them a ticket.

*/

sent pw = ap uudecode (r−>pool, auth line);

/*

* These two fields in the connection record are used elsewhere

* in the Apache modules. (check access)

* They really appreciate them being set to useful values. :)

*/

r−>connection−>user = ap getword (r−>pool, &sent pw, ’:’);

r−>connection−>ap auth type = "Basic";

/* flag this as a ticket-less connection for processing */

ticket = 0;

}

#ifdef KRB4

/* do this for each connection since it can be set per directory */

kerb get server realm(r);

#endif

77

/* based on what we have so far, let’s see if we can help them out */

if (ticket) {
/* what? a ticket? must have a hacked browser */

#ifdef KRB4

if (KerberosV4) {
res = kerb validate ticket V4(r);

}
#endif

#ifdef KRB5

if (KerberosV5) {
res = kerb validate ticket V5(r);

}
#endif

} else {

/* do not allow user to override realm setting of server */

if ((ptr = strchr(r−>connection−>user,’@’)) != NULL) {
/* just null terminate the string sooner */

*ptr = ’\0’;

}

/* do they know the magic word? */

#ifdef KRB4

if (KerberosV4) {
res = kerb validate user pass V4(r, sent pw);

#if (defined(DUAL AUTH)) && (defined(KRB5))

if (res != OK) {
res = kerb validate user pass V5(r, sent pw);

}
#endif /* DUAL AUTH && KRB5 */

}
#endif /* KRB4 */

#ifdef KRB5

if (KerberosV5) {
res = kerb validate user pass V5(r, sent pw);

#if (defined(DUAL AUTH)) && (defined(KRB4))

if (res != OK) {
res = kerb validate user pass V4(r, sent pw);

78

}
#endif /* DUAL AUTH && KRB4 */

}
#endif /* KRB5 */

memset((char *)sent pw, 0x00, strlen(sent pw));

}

/*

* Send a WWW-Authenticate: header back to the client even if they

* supplied a bad password - as per HTTP standards.

*

* The WWW-Authenticate: header must be sent along with every 401

* response, which returning AUTH REQUIRED will generate.

*/

if (res == AUTH REQUIRED) {
#if (defined(KRB4)) | | (defined(KRB5))

/* check for those browsers that we know need basic anyways */

if (ap table get(r−>subprocess env, "use_basic_auth")) {
ap table set (r−>err headers out, "WWW-Authenticate",

"Basic realm=\"Kerberos\"");

} else if (ap table get(r−>subprocess env, "use_kerberos_auth")) {
#ifdef KRB4

if (KerberosV4) {
ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "KerberosV4 realm=\"", name, "\"", NULL));

}
#endif

#ifdef KRB5

if (KerberosV5) {
ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "KerberosV5 realm=\"", name, "\"", NULL));

}
#endif

} else {
/* this is the new “more correct” default behavior */

ap table set (r−>err headers out, "WWW-Authenticate",

ap pstrcat(r−>pool, "Basic realm=\"", name, "\"", NULL));

}

79

#endif /* KRB4 | | KRB5 */

}

return res;

}

/***

* create kerb auth dir config – does the configuration

*

* Accepts: memory pool and dummy char

* Returns: pointer to allocated config record

*

**/

void *create kerb auth dir config (pool *p, char *d)

{
return ap pcalloc (p, sizeof(kerb auth config rec));

}

/* register the functions in the correct places */

module kerb auth module = {
STANDARD MODULE STUFF,

NULL, /* initializer */

create kerb auth dir config, /* dir config creater */

NULL, /* dir merger — default is to override */

NULL, /* server config */

NULL, /* merge server config */

kerb auth cmds, /* command table */

NULL, /* handlers */

NULL, /* filename translation */

kerb authenticate user, /* check user id */

#ifdef HESIOD

check user auth, /* check auth */

#else

NULL, /* check auth */

#endif /* HESIOD */

NULL, /* check access */

NULL, /* type checker */

NULL, /* fixups */

NULL /* logger */

};

80

Appendix B

access.conf

Access.conf is an Apache configuration file which is sued to control access to URL paths.

access.conf: Global access configuration

Online docs at http://www.apache.org/

This file defines server settings which affect which types of services

are allowed, and in what circumstances.

Each directory to which Apache has access, can be configured with respect

to which services and features are allowed and/or disabled in that

directory (and its subdirectories).

Originally by Rob McCool

This should be changed to whatever you set DocumentRoot to.

<Directory /local/etc/https/htdocs>

This may also be "None", "All", or any combination of "Indexes",

"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

Note that "MultiViews" must be named *explicitly* −−− "Options All"

doesn’t give it to you (or at least, not yet).

Options Indexes FollowSymLinks

81

This controls which options the .htaccess files in directories can

override. Can also be "All", or any combination of "Options", "FileInfo",

"AuthConfig", and "Limit"

AllowOverride AuthConfig Limit

Controls who can get stuff from this server.

order allow,deny

allow from all

</Directory>

/usr/local/etc/httpd/cgi-bin should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured.

<Directory /local/etc/https/cgi-bin>

AllowOverride AuthConfig

Options None

</Directory>

You may place any other directories or locations you wish to have

access information for after this one.

require Realm authentication on these spaces

#

<Directory /local/etc/https/eos-bin>

AuthName NCSU Realm

AuthType KerberosV4

<Limit GET PUT POST>

require valid-user

order allow,deny

allow from all

</Limit>

</Directory>

<Directory /local/etc/https/ssldocs>

AuthName NCSU Realm

82

AuthType KerberosV4

<Limit GET PUT POST>

require valid-user

order allow,deny

allow from all

</Limit>

</Directory>

83

Appendix C

Certficate Authority Creation

The following steps were performed to generate generating our Certificate Authority (CA)

key.

req -config CA.conf -new -nodes -out request.pem -keyout request.pem

US

North Carolina

Raleigh

NC State University

Computer Science Dept.

submit.ncsu.edu

webmaster@csc.ncsu.edu

"" (no passwd)

"" (no company name)

ca −config CA.conf −in request.pem −out newcert.pem

<passwd>

sign? Y

commit? Y

vi newcert.pem

Remove all but certificate

Add RSA key from request.pem

mv newcert.pem submit.pem

mv request.pem submit.req.pem

84

x509 −noout −hash < submit.pem

Save HASH string

Copy certificate to httpsd.pem on Apache server.

ln −s httpsd.pem HASH.0

Restart Apache Server.

85

Appendix D

Sybase Scripts

The following Sybase scripts create and build the student and course database tables.

−− ADD UNITYACS:

−− creates basic tables and login

−−
−− USAGE: isql −Usa −iadd unityacs −e

−−
−− DATABASE:

create database acsdb

on default = 140

go

sp dboption acsdb,

"select into/bulkcopy", true

go

sp dboption acsdb,

"trunc log on chkpt", true

go

−− LOGINS:

sp addlogin XXXXXXXX,"XXXXXXXXXX", acsdb

go

use acsdb

go

sp changedbowner XXXXXXXX

go

−− TABLES:

86

create table people (

ssn varchar(9) NOT NULL,

username varchar(12) NOT NULL,

firstname varchar(25) NULL,

middlename varchar(25) NULL,

lastname varchar(25) NULL,

)

go

create table userinfo (

ssn varchar(9) NOT NULL,

username varchar(12) NOT NULL,

uid int NOT NULL,

fullname varchar(75) NOT NULL,

add date datetime NOT NULL,

active date datetime NULL,

disable date datetime NULL,

status code char(2) NULL,

last access time datetime NULL,

)

go

create table stu crs (

sem yy char(2) NULL,

sem code char(1) NULL,

student id char(9) NULL,

index name char(30) NULL,

sex char(1) NULL,

ethnic code char(1) NULL,

reg status char(1) NULL,

sch code char(2) NULL,

curr code char(5) NULL,

class code char(2) NULL,

enrol stat char(2) NULL,

tui res cd char(3) NULL,

career lvl char(1) NULL,

sem hrs real NULL,

crs prefix char(5) NULL,

crs num char(3) NULL,

crs suffix char(1) NULL,

sect num char(3) NULL,

crs cr hrs real NULL,

87

grade opt char(1) NULL,

crs status char(1) NULL,

crs st chg char(6) NULL,

tui rate char(1) NULL,

date first enroll char(3) NULL,

extract date smalldatetime NULL,

)

go

create clustered index course index

on stu crs (crs prefix, crs num, sect num)

go

create index id index on stu crs (student id)

go

create table stu addr (

student id char(9) NOT NULL,

index name varchar(30) NOT NULL,

label name varchar(30) NOT NULL,

sex char(1) NOT NULL,

marital char(1) NOT NULL,

ethnic varchar(30) NOT NULL,

dob smalldatetime NOT NULL,

sem code char(1) NOT NULL,

sem name char(7) NOT NULL,

sem yy char(2) NOT NULL,

reg status char(1) NOT NULL,

sch code char(2) NOT NULL,

sch name varchar(45) NOT NULL,

curr code varchar(5) NOT NULL,

curr name varchar(40) NOT NULL,

sch code2 varchar(2) NOT NULL,

sch name2 varchar(45) NOT NULL,

curr code2 varchar(5) NOT NULL,

curr name2 varchar(40) NOT NULL,

class code char(2) NOT NULL,

class name varchar(30) NOT NULL,

privacy varchar(20) NOT NULL,

p street1 varchar(23) NOT NULL,

p street2 varchar(23) NOT NULL,

p city varchar(25) NOT NULL,

p state char(2) NOT NULL,

88

p zip varchar(10) NOT NULL,

p s c name varchar(30) NOT NULL,

p phone varchar(12) NOT NULL,

c street1 varchar(23) NOT NULL,

c street2 varchar(23) NOT NULL,

c city varchar(25) NOT NULL,

c state char(2) NOT NULL,

c zip varchar(10) NOT NULL,

l street1 varchar(23) NOT NULL,

l street2 varchar(23) NOT NULL,

l city varchar(25) NOT NULL,

l state char(2) NOT NULL,

l zip varchar(10) NOT NULL,

l phone varchar(12) NOT NULL,

l housing type char(1) NOT NULL,

father nam varchar(30) NOT NULL,

father liv char(1) NOT NULL,

mother nam varchar(30) NOT NULL,

mother liv char(1) NOT NULL,

guard name varchar(30) NOT NULL,

date first enro char(3) NOT NULL,

email addr varchar(60) NOT NULL,

email addr override char(1) NOT NULL,

extract date smalldatetime NOT NULL,

)

go

−− USER PERMISSIONS

−− ALL DONE

checkpoint

go

quit

89

−− USAGE: isql −ibuild addr −e

−−
−−
−− BUILD TABLE:

select distinct

p.student id, p.index name, p.sem code, p.sem yy,

p.sem name, p.privacy, p.email addr,

p.email addr override, s.username

into addr

from stu addr p, people s

where p.student id = s.ssn

go

−− BUILD INDEX:

create index a index on addr (student id)

go

−− ALL DONE

checkpoint

go

quit

90

−− USAGE: isql −ibuild enroll −e

−−
−−
−− REGEN INDEXES FOR STU CRS:

update statistics stu crs

go

−− BUILD TABLE:

select distinct

p.*, s.curr code, s.class code

into enroll

from people p, stu crs s

where p.ssn = s.student id

go

−− ALL DONE

checkpoint

go

quit

91

#!/usr/local/bin/perl

$homepath = "/usr/sybase/XXXXXXXX";

$infi`e = "$homepath/userinfo";

$outfi`e = "$homepath/people";

%suffix = (

"JR", 1,

"SR", 1,

"II", 1,

"III", 1,

"IV", 1,

"V", 1,

"VI", 1,

"VII", 1,

"VIII", 1,

);

print STDERR "Building people data from userinfo file. . .";

open(FIN,$infi`e) | | die "Failed to open input file: $infile\n";

open(FOUT,">$outfile") | | die "Failed to write output file: $outfile\n";

while ($`in = <FIN>) {
$ssn = substr($`in, 0, 9);

$username = substr($`in, 9, 12);

$uid = substr($`in, 21, 6);

$fu``name = substr($`in, 27, 75);

$firstname=""; $midd`ename=""; $`astname="";

$ssn =˜ s/\s//g;

$username =˜ s/\s//g;

$fu``name =˜ tr/a−z/A−Z/;

$fu``name =˜ s/[^A−Z\−\s]//g;

$fu``name =˜ s/\s+/ /g;

$fu``name =˜ s/^ +//;

$fu``name =˜ s/ +$//;

@names = split(/ /,$fu``name);

$`astname = pop(@names);

if ($suffix{$`astname}) {
$`astname = pop(@names)." ".$`astname;

}
$firstname = shift(@names);

92

$midd`ename = join(" ",@names);

print FOUT join("\t",$ssn, $username, $firstname, $midd`ename, $`astname),"\n";

}
close(FOUT);

close(FIN);

print STDERR "Done!\n";

exit;

93

−− USAGE: isql −ibuild user crs −e

−−
−−
−− BUILD TABLE:

select distinct

p.ssn, p.username, s.crs prefix, s.crs num, s.crs suffix, s.sect num,

s.sem yy, s.sem code, s.curr code, s.index name, s.class code

into user crs

from people p, stu crs s

where p.ssn = s.student id

go

−− BUILD INDEX:

create index u index on user crs (username)

go

−− ALL DONE

checkpoint

go

quit

94

Appendix E

Submit Perl Library

The following Perl support library contains all functions used by submitV2.

use Sybase::DBlib;

use CGI qw(:standard :html3);

use Hesiod;

use AFS;

uncomment to see the AFS rx errors

#AFS::raise exception(1);

Where is sybase and the interface file?

$ENV{’SYBASE’} = ’/local/sybase’;

$USER = $ENV{’REMOTE_USER’};

Where is the current courses file?

$CURRENT COURSES = "/afs/eos.ncsu.edu/info/csc_info/CURRENT-COURSES";

Where is sybase and the interface file?

$ENV{’SYBASE’} = ’/local/sybase’;

What is the sybase user, passowrd, and server?

$SYBUSER = ’XXXXXXXX’;

$SYBSERVER = ’XXXXXXX’;

$SYBPASSWD = ’XXXXXXXXXX’;

95

Graphics

$BASEURL = ’https://submit.ncsu.edu’;

$ADMINURL = ’https://submit.ncsu.edu/eos-bin/submit-admin’;

$GRAPHIX = "$BASEURL/graphics";

$TSTART = "$GRAPHIX/fancy-tstart.gif";

$TBAR = "$GRAPHIX/fancy-tbar.gif";

$LOGO = "$GRAPHIX/submit-logo.gif";

$TEND = "$GRAPHIX/fancy-tend.gif";

$SIDE = "$GRAPHIX/fancy-side.gif";

$BSTART = "$GRAPHIX/fancy-bstart.gif";

$BBAR = "$GRAPHIX/fancy-bbar.gif";

$BEND = "$GRAPHIX/fancy-bend.gif";

%console = (

’end’ => {’graphic’=>"$GRAPHIX/console-bar-end.gif",

’action’=>""},
’bar’ => {’graphic’=>"$GRAPHIX/console-bar.gif",

’action’=>""},
’submit-admin’ => {’graphic’=>"$GRAPHIX/console-submit-admin.gif",

’action’=>"$ADMINURL"},
’side’ => {’graphic’=>"$GRAPHIX/console-side.gif",

’action’=>""},
#

’update-student’ => {’graphic’=>"$GRAPHIX/console-update-student.gif",

’action’=>"$ADMINURL?tool=\"update-student\""},
’delete-student’ => {’graphic’=>"$GRAPHIX/console-delete-student.gif",

’action’=>"$ADMINURL?tool=\"delete-student\""},
’add-student’ => {’graphic’=>"$GRAPHIX/console-add-student.gif",

’action’=>"$ADMINURL?tool=\"add-student\""},
#

’add-support’ => {’graphic’=>"$GRAPHIX/console-add-support.gif",

’action’=>"$ADMINURL?tool=\"add-support\""},
’delete-support’ => {’graphic’=>"$GRAPHIX/console-delete-support.gif",

’action’=>"$ADMINURL?tool=\"delete-support\""},
#

’add-assignment’ => {’graphic’=>"$GRAPHIX/console-add-assignment.gif",

’action’=>"$ADMINURL?tool=\"add-assignment\""},
’delete-assignment’ => {’graphic’=>"$GRAPHIX/console-delete-assignment.gif",

’action’=>"$ADMINURL?tool=\"delete-assignment\""},
);

96

Colors

$BGCOLOR = ’#000000’;

$TEXT = ’#FFBB00’;

$VLINK = ’#C0C0C0’;

$LINK = ’#FFFF00’;

$ALINK = ’#C0FFC0’;

#−−−−−−−−− Error Handlers −−−−−−−−−−−−−
##

##

sub cgi die {
##

##

my (@err) = @ ;

print header;

print start html(−title=>"Error"),

"An error has occured:",

br,

join(’ ’, @err),

end html;

}

#−−−−−−−−− Sybase Handlers −−−−−−−−−−−−−−
##

##

sub syb lookup user {
##

##

my ($user) = @ ;

my $dbh = new Sybase::DBlib $SYBUSER, $SYBPASSWD, $SYBSERVER, "Submit";

$dbh−>dbcmd("select distinct username, crs_prefix, crs_num, sect_num\n");

$dbh−>dbcmd("from user_crs\n");

$dbh−>dbcmd("where username = \’$user\’\n");

my $sybstat = $dbh−>dbsqlexec;

$sybstat = $dbh−>dbresults;

my @courses = ();

my @sybdata = ();

97

while (@sybdata = $dbh−>dbnextrow) {
push(@courses, $sybdata[1] . $sybdata[2] . ’-’ . $sybdata[3]);

}
$dbh−>dbclose;

return(\@courses);

}

#−−−−−−−−−−−− Page Layout −−−−−−−−−−−−−−−
##

##

sub begin submit {
##

##

print header(−expires=>’+30s’);

print "\n";

print start html(−title=>’NC State Online Submit’,

−BGCOLOR=>"$BGCOLOR",

−TEXT=> "$TEXT",

−LINK=> "$LINK",

−VLINK=>"$VLINK",

−ALINK=>"$ALINK");

print "\n";

}

##

##

sub end submit {
##

##

print end html;

}

##

sub begin table {
##

print "<TABLE CELLSPACING=\"0\" BORDER=\"0\" CELLPADDING=\"0\" \n";

print "WIDTH=\"640\">\n";

print "<TR>\n";

print " <TD></TD>\n";

98

print " <TD></TD>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print "</TR>\n";

}

##

##

sub print data {
my ($data) = @ ;

you need a better calculation for this.

my $height = int(length($data) / 2);

print "<TR>\n";

print " <TD></TD>\n";

print " <TD COLSPAN=\"4\"> $data </TD>\n";

print "</TR>\n";

}

##

##

sub console line {
my (@line) = @ ;

my $x;

for ($i = 0; $i <= 2; $i++) {
if ($line[$i] eq "") {

$line[$i] = "bar";

}
}
print "<TR>\n";

print " <TD>{’graphic’}\"",

"WIDTH=\"100\" HEIGHT=\"39\"></TD>\n";

if ($console{$line[0]}−>{’action’}) {
print " <TD>{’action’}\">",

"{’graphic’}\" BORDER=\"0\"",

"WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

} else {
print " <TD>{’graphic’}\"",

"WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

}

99

if ($console{$line[1]}−>{’action’}) {
print " <TD>{’action’}\">",

"{’graphic’}\" ",

"BORDER=\"0\" WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

} else {
print " <TD>{’graphic’}\"",

"WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

}
if ($console{$line[2]}−>{’action’}) {

print " <TD>{’action’}\">",

"{’graphic’}\" ",

BORDER=\"0\" WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

} else {
print " <TD>{’graphic’}\"",

"WIDTH=\"180\" HEIGHT=\"39\"></TD>\n";

}
print " <TD WIDTH=\"20\">{’graphic’}\"",

"WIDTH=\"20\" HEIGHT=\"39\"></TD>\n";

print "</TR>\n";

}

##

##

sub end table {
print "<TR>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print " <TD></TD>\n";

print "<TR>\n";

print "</TABLE>\n";

}

#−−−−−−− Course Locker Tools −−−−−−−−−−
##

##

sub get locker location {
my ($locker name) = @ ;

$locker name = lc($locker name);

100

makes assumption that all lockers are XXXYYY info

if ($locker name !˜ / info$/) {
$locker name .= ’_info’;

}
my ($location, $path, $write, $shortcut) = split(’ ’,

resolve($locker name, ’filsys’), 4);

return ($path);

}

##

##

sub get submission path {
my ($course) = @ ;

my ($class, $section) = split(’-’, $course, 2);

my $path = &get locker location($class);

$path = $path ."/SUBMITTED/$section/";

return ($path);

}

##

##

sub create path {
my ($path) = @ ;

my @parts = split(’/’, $path);

foreach $x (@parts) {
$pathname .= "/$x";

next if ($x eq "");

if (! −d $pathname) {
mkdir ("$pathname", 0755);

}
}

}
##

##

sub get user info {
my ($user, $path) = @ ;

looks up the user and returns the information about him.

$path = $path ."/ADMIN/ROLL";

open (DATA, "$path") | |
&cgi die("Could not open the $path/ADMIN/ROLL file\n");

101

my @roll = ();

my $line = "";

while ($line = <DATA>) {
@roll = split(’:’,$line, 5);

if ($roll[0] =˜ /^$user$/) {
last;

}
}
close(DATA);

return(\@roll);

}

##

##

sub get homework assignments {
my ($user, $course) = @ ;

looks up the section and then what assignments are available.

my ($class, $sec) = split(’-’, $course,2);

$class = lc($class);

my ($path) = &get locker location($class);

open(ASSIGNMENTS, "$path/ADMIN/ASSIGNMENTS") | |
&cgi die ("Could not open the $path/ADMIN/ASSIGNMENTS file\n");

initialization

my $line = "";

my $current time = time();

my %assignments = ();

while ($line = <ASSIGNMENTS>) {
chomp $line;

my ($hw name, $start, $end, $type) = split(’:’, $line,4);

if (($start < $current time) && ($end > $current time) &&

($sec eq $type)) {
$assignments{$hw name} = $line;

} elsif (($start < $current time) && ($end > $current time) &&

($user eq $type)) {
$assignments{$hw name} = $line;

102

}
}
return (\%assignments);

}

#

get courses

#

sub get courses {
my (@courses) = ();

open (CURRENT COURSES, "$CURRENT_COURSES");

while (<CURRENT COURSES>) {
if (/^([^%]+)\%([^:]+):([^:]+):$/) {

push @courses, $3;

}
}
close(CURRENT COUSES);

return (\@courses);

}

#

pts 2 support

#

sub pts 2 support {
my ($course) = @ ;

my ($pts) = newpts;

my ($over) = 0;

my (@members) = $pts−>members("tkl:$course/admin/sup",1,$over);

my $x = 0;

my $path = &get locker location($course);

open(SUP, "> $path/ADMIN/SUP");

close(SUP);

}

#

add support

#

sub add support {

103

my($user, $course) = @ ;

&pts add($user, "tkl:$course/admin/sup");

}

#−−−−−−−− AFS Tools −−−−−−−−−
##

##

sub pts membership {
my ($group) = @ ;

my $pts = newpts;

my @members = ();

my $over = 0;

@members = $pts−>members($group, 1, $over);

return (\@members);

}

##

##

sub pts add {
my ($user, $group) = @ ;

my $pts = newpts;

my $success = $pts−>adduser($user, $group);

return ($success); # 1 = true 0 = error

}

##

##

sub pts del {
my ($user, $group) = @ ;

my $pts = newpts;

my $success = $pts−>removeuser($user, $group);

return ($success); # 1 = true 0 = error

}

104

##

##

sub pts create {
my ($group, $owner) = @ ;

my $pts = newpts;

my $id = $pts −>creategroup($name,$owner, $id);

return ($id);

}

##

##

sub pts destroy {
my ($group) = @ ;

my $pts = newpts;

my $success = $pts −>delete($name);

return ($success);

}

##

##

sub pts chown {
my ($group, $newowner) = @ ;

my $pts = newpts;

my $success = $pts−>chown($group, $newowner);

return($success);

}

##

−−−−−− Authentication −−−−−−−−
##

sub check auth {
my ($user) = @ ;

not complete

return (1);

}

sub check auth sub {
my ($user, $course) = @ ;

my ($pts) = newpts;

my ($over) = 0;

105

my (@members) = ();

@members = $pts−>members("tkl:$course/admin/sup", 1, $over);

return (1) if (scalar(grep(/^$user$/, @members)));

return (0);

}

106

Appendix F

Submit

The following Perl code implements SubmitV2, our prototype application.

#!/local/bin/perl

#

#

require ". ./submit-lib/submit-lib.pl";

use MD5;

use CGI qw(:standard :html3);

$CGI::POST MAX = 1024 * 8000; # MAX UPLOAD is 8mb.

@phase = param(’phase’);

@key = param(’key’);

if (!param()) {
first pass into the page (select class and (check or submit))

*courses = &syb lookup user($USER);

$md5 = new MD5;

$md5−>add ($USER);

$md5hash = unpack("H*",$md5−>digest());

$layout = em(’Username: ’). $USER. p.

start form.

em(’Select Course: ’).

popup menu(−name=>’course’,

−values=>[@courses]).

p."\n".

em(’Choose One: ’).

107

radio group(−name=>’type’,

−values=>[’submit’, ’check’],

−default=>’submit’).

p.

hidden(−name=>’phase’, −default=>[’phase1’]).

hidden(−name=>’key’, −default=>[$md5hash]).

submit.

end form;

&begin submit;

&begin table;

&print data($layout);

&end table;

&end submit;

} elsif ($phase[0] eq ’phase1’) {
submitting a homework

display form.

request file.

*assignments = &get homework assignments($USER,param(’course’));

param(’phase’, ’upload’);

$md5 = new MD5;

$md5−>add ($USER);

$md5hash = unpack("H*",$md5−>digest());

if ($md5hash ne $key[0]) {
&cgi die ("MD5 key does not match.\n");

}

$md5−>reset;

$md5−>add($USER, param(’course’));

$md5hash = unpack("H*", $md5−>digest());

$layout .= em(’Username: ’). $USER. p.

em(’Submitting for class: ’). param(’course’). p.

start multipart form.

hidden(’course’, param(’course’)).

hidden(−name=>’phase’, −default=>[’upload’]).

hidden(−name=>’key’, −default=>[$md5hash]).

"Choose the assignment: ".

radio group(−name=>’assignment’, −values=>[keys(%assignments)]). p.

108

filefield(−name=>’upload’).

p.

submit.

end form;

&begin submit;

&begin table;

&print data($layout);

&end table;

&end submit;

} elsif ($phase[0] eq ’upload’) {

$md5 = new MD5;

$md5−>add ($USER, param(’course’));

$md5hash = unpack("H*",$md5−>digest());

if ($md5hash ne $key[0]) {
&cgi die ("MD5 key does not match.\n");

}

$dataname = join(’ ’,param(’upload’));

$dataname =˜ s#^.*/([^/]*)$#$1#; # take care of /usr/foo/bar/dog as dog

$dataname =˜ s#^.*\\([^\\]*)$#$1#; # take care of c:\usr\foo\bar\dog as dog

$basename = &get submission path(param(’course’));

$basename = $basename . param(’assignment’) . "/$USER";

$dataname = $basename . "/" . $dataname;

&create path($basename);

$filename = param(’upload’);

open (OUTFILE, "> $dataname");

while ($bytesread = read($filename, $buffer, 1024)) {
print OUTFILE $buffer;

}
close(OUTFILE);

do the graphics

&begin submit;

&begin table;

&print data($layout . $dataname);

109

&end table;

&end submit;

} elsif (param(’type’) eq ’check’) {
checking on an assignment.

display files.

&cgi die(’You can not get there from here.’);

} else {
we are here because there was an error.

&cgi die(’You can not get there from here.’);

}

