Performance analysis of the Linux firewall in a host

A Thesis
Presented to the Faculty of
California Polytechnic State University
San Luis Obispo

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in Electrical Engineering

By
Américo J. Melara
June 2002



Authorization for Reproduction of Master’s Thesis

| hereby grant permission for the reproduction of thisthesis, in whole or in part,

without further authorization from me.

Signature (Américo J. Melara)

Date



Title:

Author:

Date Submitted:

Dr. James Harris

Approval Page

Performance analysis of the Linux firewall in a host

Américo J. Melara

June 12, 2002

Advisor

Dr. Hugh Smith

Committee Member

Dr. Phillip Nico

Committee Member

Dr. Fred DePiero

Committee Member

Signature

Signature

Signature

Signature



Abstract

Performance analysis of the Linux firewall in a host

Firewalls are one of the most commonly used security systems to protect
networks and hosts. Most researchers have focused on analyzing the latency and
throughput of router firewalls. Different from this approach, this research focuses on
studying the performance impact and the sensitivity of the Linux firewal
(i pt abl es) for asingle host.

In order to be able to measure the performance and the sensitivity of the
firewall, we designed and instrumented each layer of the Linux TCP/IP stack. This
instrumentation was used to test the host’s firewall under two scenarios: In the first
scenario, we captured the path and the latency of one single packet; in the second
scenario, we captured the latency of multiple packets sent to the host at various
transmission rates.

Our measurement results indicate that the firewall is sensitive to the number
of rules, the type of filtering, and the transmission rate. The results of our first
scenario demonstrate that for each type of filtering, latency increases linearly as the
number of rules increase. Furthermore, the second test scenario shows that latency
decreases as the packet transmission rate increases.

Our results show that the percentage overhead generated by a firewall when a
single packet of 64 bytes of payload travels the TCP/IP stack, for a rule-set of zero

and 100 rules, ranges from 6% to up to 75%, respectively.
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Chapter 1  Introduction

Network Security is one of the most important fields dealing with the Internet. The
ability to access and transfer information in a few seconds allows the government,
companies, educational institutions, and individuals to accelerate the decision process
or simply be “informed.” However, information can be very valuable and there is a
need for better and faster security systems to protect information and networks.

Attacks are prevalent on the Internet, and for that reason Firewalls, Intrusion
Detection Systems, Virus Scanners, File Protection and Integrity checks software,
Buffer overflow protection techniques, and Encryption tools have been developed as
security services to protect systems and information. The CiNIC is an independent
network device designed to control all of the networking services for the host.
Thereby, it can serve as the front line defense mechanism against attacks. The vision
for it is to run security services such as the firewall, encryption, authentication,
intrusion detection, and other services to secure the host.

Firewalls are the first front line defense mechanism against intruders. There
are two different goals for testing them. The first goal is to analyze and test the
firewall policies, in other words, to model and test how secure a firewall isin a*“real-
world” environment. The second goal is to test the performance impact generated by
the firewall. Given that our first step to increase the security functions of the CiNIC
is to port the firewall to it, we decided to analyze the performance cost of having a

firewall in the host. After searching for conference papers that addressed the firewall



performance on single hosts, we found that very little research had been done on the
topic. In our end-of-the-year meeting with 3Com in December 2001, we were told
that a third party vendor discovered that the firewall would degrade the performance
of a system tremendoudly after 30 rules. In view of the lack of research and the
uncertainty on what the firewall performance cost might be, we decided to study the
performance of the Linux firewall i pt abl es. This thesis presents a study of the
sensitivity and the performance impact produced by the Linux firewall i pt abl es in
ahost.

We decided to test the performance of the firewall under two scenarios
changing various parameters. The first scenario included tracing one single packet in
order to measure the sensitivity of the firewall to:

(1) The INPUT policy

(2) The number of rules

(3) Thetype of filtering

(4) The payload size

(5) The transmission protocol.

The second scenario included a series of tests varying the throughput by
sending a stream of packets at 5 and 10 Mbps. The first test results documented in
this thesis will show that the performance is only sensitive to the number of rules and
the type of filtering. The measurement results obtained in the throughput tests will
confirm that the single-packet test measurements are valid, and that may serve as

conservative estimates for finding the performance impact generated by the firewall.



The remainder of this document is organized as follows: Chapter 2 gives an
overview on the most recent types of security attacks (e.g. denia of service attacks,
buffer overflows, operating systems protection) as well as an overview on some
security mechanisms (e.g. Intrusion Detection, Authentication, Firewalls). It also
explains Firewalls in more detail. Chapter 3 covers the receiving operation of the
Linux TCP/IP stack, the i pt abl es agorithm, the instrumentation technique used to
measure a packet’s process throughout the stack, and presents the parameters under
test that will be used to determine the sensitivity of the firewall performance. Chapter
4 presents the analysis of the performance of a single packet to determine the
sensitivity of the firewall to the parameters mentioned earlier. It also presents the
performance of the firewall as afunction of the rate of incoming packets. The results
are compared in terms of the performance of the host when it runs with and without
the firewall. Finaly, the summary of the results and future work are presented in

Chapter 5.



Chapter 2  Overview of Security

For individuals and enterprises the main purpose of security on a network system is
the protection of information. We all use a network system one way or the other,
either for sending e-mails, reading the news, making traveling plans, or shopping. In
most of our transactions we wish to have one thing — protection of our information.
But, what type of protection? Protection from whom? For large firms security
includes not only the protection of the company’ s information from outsiders but also
the protection of their entire internal network. For example, top executives do not
want their competitors to know their marketing or acquisitions strategies. Nor does a
manager want intruders to read, delete, or acquire budgeting information or
consumer’s information. Thus, the goal of security is to protect information and
systems from “malicious intruders.”

This chapter’s intent is to organize and summarize the area of Security, and
explain firewalls in more detail. The chapter is laid out as follows: First, the most
relevant vulnerabilities for a host are explained briefly. Following, some of the
techniques and tools used to prevent and detect attacks are presented. Finally, the

idea of porting afirewall to the CiNIC architecture is presented.

2.1 Network Vulnerabilities —an OSI perspective

Security can be implemented throughout each layer of the network. Using the
TCP/IP model we can show how every layer is vulnerable to security breaches and
what software is used to protect the systems. The reader should be aware, however,

that in spite of the number of security software he may buy for your system it does
4



not make it immune or does not take away the chance of getting a virus, a Trojan
horse, or just “get hacked.” So, the more knowledgeable the reader is about how
someone can break into his system, the more cautious he will be, and the harder it
will beto break in.

Figure 2-1 shows the end system’s TCP/IP stack model and some of the tools
created to provide security for each layer. The figure can be explained as follows.
Secure services are available at the Operating System level (OS) and at User space
level. The transport layer is the point where the OS and user space separate. At the
OS level we have afirewall (e.g. i pt abl es), intrusion detection systems (e.g. Linux
Intrusion Detection System ak.a. LI DS), IP Security or | pSec, and Denia of
Service prevention. One of the goals of the CiNIC project is to offload these security
services from the host to the co-host. For that reason, this research will focus on the
firewall for the Linux Operating System.

At the user level we have secure standard protocols that use cryptography to
secure the transmission of data, such as Secure Socket Layer (SSL) and Transport
Secure Layer (TLS) [1][2], which are discussed later in this chapter. Another service
used to provide encryption of data is the Pretty Good Privacy (PGP) protocol; this
protocol uses keys to encrypt the data sent through e-mails [3]. In addition, virus
scanners (e.g. Norton and McAffee) and file integrity software [4] (e.g. Tripwire) are

tools commonly used to protect end systems from viruses, worms, and Trojan horses.
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A security issue implied in the network stack is that a weakness or “hol€” in

one layer could lead to the exploitation of alower layer, and vice-versa. For example,

through asimple t el net session anyone can find out the type of operating system

running on a particular machine. In Figure 2-2 the host fornax has requested a telnet
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session with the host orion. When the session starts, we observe that the host orion is

running Red- Hat Linux 7.1 with akernel version 2.4.2-2. This may lead the attacker
to look for software tools designed to attack the specific vulnerabilities found in the
kernel 2.4.2-2.

f5| (=] [+ [=]
File Sessions Settings Help

[amelaral@fornax amelaral$ telnet orian
Trying 192 .165.24.76. ..
Connected to orlon.cpnprg.calpoly.edu.

s

Escape character is '™]°'. r

Red Hat Linux release 7.1 (Seawolf)
Fernel 2.4.2-2 on an 1686

login: |

] D NewJ[ @Terminal Mo 1

[ ]

!

Figure 2-2 Acquiring the server’s Operating System type and version through a Telnet
Session

On their search for vulnerable systems, attackers use a technique called
footprinting. Footprinting is defined as the fine art of gathering information! [5]
Information can be gathered through scanning or enumeration. Scanning is a tool
used to find open ports and services running on a system, enumeration is the “ability
to extract valid accounts or exported resource names from systems [5].” Some of the
information to be gathered include Domain Names, specific IP addresses of systems
reachable through the Internet, TCP and UDP services running on each system,
system architecture, routing tables, access control mechanisms, related access control
lists, etc. The list of tools available to extract this type of information is large, but
some of the most common ones are nmap, the ping of death, tcpdunp,

r pci nf o, Cheops [5].



The network protocol by nature has its pitfalls. For example, an ICMP
(Internet Control Message Protocol) packet, which is normally used to communicate
control messages on the Internet between hosts and routers, contains diagnostics
about your system. For example, a pi ng contains error detection information (e.g.
network/host/port), control messages (e.g. source guench, redirect) or some general
information (e.g. timestamp, address mask request.)

Computers inside a local area network (LAN) are usually sitting behind a
router and firewall but, even then, the network is not secure. A report from the FBI
Computer Crime Unit says that approximately 80% of network security breaches for
an Enterprise happen internal to the network [6].

An intruder can have access to an entire network for days and even weeks
without being noticed, because the larger the network, the more complicated it is to
design policies to secure that network and the more security holes. Subsequently,
responsibility to protect a system (e.g. entire network, server, hosts) cannot be left to
the network administrator alone. Therefore, there is indeed a need to make better

software and hardware tools to provide greater security for the end systems/hosts

211 Operating Systems attacks

Our first security checkpoint is the operating system. The operating system controls
every single process, entire network operation, and all the hardware and the software;
thus, it is the most delicate and the highest priority point of protection for a system.

Operating systems are vulnerable to buffer overflows, worms, and viruses.



2111 Buffer overflows

At a recent software engineering conference, Richard Pethia from the Carnegie
Mellon Software Engineering Institute (CERT), identified buffer overflow attacks as
the single most important security problem [7].

In her research, Nicole Decker [8], explains buffer overflows and how they
are used to break into systems. Let's look at the following example: Consider a
program that reserves a buffer of 1024 bytes. In such a case, the program’s maximum
allowable input to that buffer is 1024 bytes. If the size of the input data typed in by
the user exceeds the size alocated, and if the input is not checked to reject anything
larger than 1024 bytes, it is said that the buffer has been overflowed.

Now, recall the function of the instruction pointer. The function pointer
stores the memory address of the next command to be executed by a program. It is
through the instruction pointer that the computer knows what should and should not
be executed - the computer cannot differentiate between data and instructions.

Assume that the next statement, after reading the user’s input just mentioned
in the example above, is a pri ntf statement. The instruction pointer holds the
memory address to the pri ntf statement. Let's walk through the process: the
computer will read the input from the user, store it into the buffer, check the
instruction pointer to find what function should execute next (i.e. the pri ntf
statement), find the memory address of the pri nt f statement, retrieve the contents
into ainput buffer, and finally, print the data input to the screen.

If the program’s buffer is overflowed, those extra bytes (usually allocated on a

neighboring region to the original buffer) could overwrite the address of the



instruction pointer. If we overwrite this address, instead of pointing to the pri nt f
statement, we can give to the instruction pointer an address to malicious code.

How does that relate to networks? Well, the most simple buffer overflow
attack is called stack smashing [8]. Here, the attacker sends a stream of modified
packets to overflow the buffers so that the return address of the instruction pointer
points to their code - in most cases the function to executeis/ bi n/ sh. If aprogram
is running with r oot privileges and the buffer is overflowed, the attacker will gain
r oot access and have complete control of your system. Programs written in C are
particularly susceptible to buffer overflow attacks because most C code allows direct
pointer manipulations without any bound checking [9].

Some solutions to buffer overflows have been proposed. Some of them are:
StackGuard [10], Software fault isolation (SFI) [11], LCLint [12], an extension of

LCLint [13], among others.

2.1.1.2 Wormsand Trojan horses
A Trojan horse is an executable program that “contains hidden functions that can
exploit the privileges of a user [running the program], with a resulting security threat.
A Trojan horse does things that the user’s program did not intend [14].” In other
words, a Trojan horse is an executable program that modifies an origina file by
adding extra functions - malicious code - that the original program was not intended
to execute.

A worm is a self-propagating malicious code [15]. In other words, it is a
malicious code that does not require the user to do something to continue its

propagation. “Highly automated nature of worms coupled with the relatively
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widespread nature of the vulnerabilities they exploit, alows a large number of
systems to be compromised within a matter of hours. Code Red infected more than
250,000 systems in 9 hours on July 2001 [15].” Trojan horses and worms can have

fileextensionslike “exe”, “vbs”, “cont, “bat ", “pi f 7, “scr”, “I nk”, or “j s.”

212 Denia of Service Attacks

Denia of Service (DoS) attacks, which are one of the most prevalent attacks on the
Internet, will force a machine to stop providing services to a legitimate user. “DoS
attacks use multiple systems to attack one or more victim systems with the intent of
denying services to the victims [15].” The University of California - San Diego,
observed 12,805 denial-of-service attacks on over 5,000 distinct Internet hosts
belonging to more than 2,000 distinct organizations during a three-week period [16].
There are two types of Denia of Service (DoS) attacks: Operating Systems attacks,
which exploit the bugs of a specific operating system (e.g. Windows 98/NT/2000,
Linux, Solaris); and networking attacks, which exploit inherent limitations of
networks.

To protect from operating system attacks it is important to continuously check
on the patches and updates available for your specific operating system. Network
attacks, however, are more complicated. These attacks include ping flood (a.k.a.
ICMP flood) and smurf which are outright floods of data to overwhelm the finite
capacity of your connection; and also spoofed unreach/redirect a.k.a. “ click” which
trick your computer into thinking there is a network failure and voluntarily breaking

the connection [17]. The latest type of network attack is the distributed denial of
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service attack in which the attacker controls one or more “masters’ which then

control several more “zombies’ (compromised systems) to attack one victim [18].

2.2 Network Protection Technigques

Most known protection techniques are used to provide authentication, encryption,

identify attacks, and block and filter packets.

221  Authentication and Encryption

2211 Kerberos

Designed in the mid-'80s at the Massachusetts Institute of Technology (MIT), the
Kerberos network protocol is designed to provide secure Authentication between one
or severa parties. Kerberos [19] uses a cryptographic distributed service system. In
Figure 2-3 we show the simplest scenario, which involves three parties. a client or
user, an application server or verifier, and an Authentication Server (AS). In order to
establish a connection between the client and the server/iverifier, the client needs to
prove to the verifier its identity by means of an encrypted key. Neither the verifier
nor the client hold any encrypted keys. Only the AS provides the keys. So the
process is the following: (1) the client connects to the AS to obtain a key. (2) The
verifier obtains a key (server key) from the AS which will serve to verify the
authenticity of the client. (3) After the client and the server have obtained the keys,
the client will forward its key to the verifier. The latter will decrypt the key and allow

the connection to be established.
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Figure 2-3 Authentication processto establish an encrypted communication between a
client and a server using Kerberos

2212 SQJ/TLS
The Secure Socket Layer [1] (SSL) and Transport Layer Security [2] (TLS) Protocols
are security protocols that use cryptography to provide privacy. These protocols
provide “integrity between two communicating applications’ by means of (1) a
private connection — “using data encryption and transaction of keys’ and (2) areliable
connection — “the message includes a message integrity check using a keyed MAC.”
More information, libraries, and software toolkits can be found in the OpenSSL
Project [20] website.

The difference between SSL/TLS protocols and the Kerberos protocol is that the

latter needs an Authentication Server to transfer keys while the first two do not.
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Therefore, the communication and transaction of keys is only performed between a

client and a server, there is no need of athird party to hold keys.

2.2.2 Intrusion Detection

The purpose of Intrusion-Detection Expert Systems (IDES) is to detect suspicious or
abnormal use of a system. An IDES works as a system monitor of all the activities
performed in the targeted system.

There are two types of detection techniques. anomaly detection and misuse
detection. The former “uses models of the intended behavior or users and
applications, interpreting deviations from this ‘normal’ behavior as a problem [21].”
In other words, it keeps an activity log of either the users or the applications used of a
system. When it finds an activity different than what is normally used for, it will flag
the activity as suspicious.

Misuse detection systems “contain attack descriptions (or ‘signatures’) and match
them against the audit data stream, looking for evidence of known attacks [21].” The
intrusion is detected by a “rule-based pattern matching [22].” When a given action is
generated, the action is matched against the profiles or the rule-set and the IDES fires

an aarm.
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2.2.3 Firewalls

Our research focuses on the free available Linux firewall i pt abl es. In this section
we describe what a firewall is, the ways to implement it, the types, and the
architectures.

A firewall is the front line defense mechanism against intruders. “It is a
system designed to prevent unauthorized access to or from a private network.
Firewalls can be implemented in both hardware and software, or a combination of
both [23].”

Firewalls can be applied in different ways [24]: Packet filtering firewalls are
those designed to filter IP addresses, MAC addresses, TCP or UDP ports, and
subnets, among others. Proxy firewall is a proxy that separates internal networks
from the external networks (e.g. the Internet), so that, for outsiders the proxy operates
as a server, and for the insiders the proxy operates as the client. A dateful-inspection
firewall has the capability of tracking connections and to make decisions based on the
dynamic connection state of packets [25]. For example, if an interna client
establishes a connection to the Internet through a specific port, the firewall will
maintain state information about the connection pertaining to that specific port. Thus,
an ICMP packet is checked if it is related to that TCP/UDP connection. Any
TCP/UDP packets are checked against the state table to find if the packet matches
with the established port of that connection. An application firewall is a software-
based firewall (e.g. McAffee persona firewall) in which a user can control (in rea-
time) to alow or deny connections to it [26]. These different firewall

implementations can be used alone or as a combination of severa of them.
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Firewalls can be implemented in two different architectures [24]: single box
(Figure 2-4) and as stand-alone edge device (Figure 2-5). Our research focuses on
firewallsin asingle-box. The firewall in asingle box is designed to protect only that
single machine. Usualy, only outgoing connections are allowed and all incoming
connection requests are rgjected. On the other hand, a stand-alone edge device can be
arouter or a dual-homed host. A router is a device that forwards packets between
different subnets. A router firewall is a router that can filter packets, block ports,
maintain stateful-inspection, or do some other type of filtering. A dual-home host isa
single computer, with at least two network interface cards, serving the function of a

firewall router.

Internet

Figure 2-4 A Single-host Firewall protects only one computer

In general, firewalls can be of two types. packet filtering gateways and
application proxys. Packet filtering gateways look at each packet header entering or
leaving the network and accept or reject a particular packet based on specific rules
defined by the user/network administrator. Packet filtering is fairly effective and
transparent to users. They, however, are difficult to configure and are aso
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susceptible to IP spoofing — a technique used to gain unauthorized access to
computers, whereby the intruder sends messages to a computer with an IP address
indicating that the message is coming from atrusted host. Proxy servers, on the other
hand, intercept all the messages entering and leaving the network but it differsin that

the proxy hides IP addresses of the clients in the internal network.

Wa.,
gyt

s
Router Firewall R

Figure 2-5 Example of a Router Firewall protecting multiple computersinside a network

Firewalls can be commercia or freely available (i.e. opensource such as
iptables). But which one is more secure? An expert comments, “Open source
follows the ‘many eyes principle — the more developers work on the code the fewer
secrets and the harder to compromise.  Security-by-obscurity argues for hiding the
code as a deterrent to breaking the code. Which approach is better is not a simple
guestion [27].” The fact is that a firewall is an extremely important tool that can
protect systems from malicious traffic; not having one only means that you want

other people to have fun with your systems!
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2.2.3.1 Futureof firewalls

In 1997, Scuba and Spafford from COAST Labs submitted a paper describing a
model or framework for the design of firewalls [28]. According to them, firewalls
should provide authentication —provide assurance of the integrity of the connecting
host or server, integrity — “shielding communication traffic from unnoticed and
unauthorized modifications such as insertion, replacement or deletion of data,” access
control — to provide a dynamic mechanism that generates questions about a particular
traffic (e.g. IP x.x.x.x wants to establish connection on port 21, do you want to alow
this connection?) Audit —keeping track of connectiong/traffic flowing through the
firewall, also referred as “log files.”

Some of these functions (e.g. authentication and audit) are built in CISCO’s
IOS [27]. However, persona firewalls do not provide authentication but some of
them, such as McAffee's personal firewall [26], provide dynamic access control
where the user is notified “on the fly” if a certain IP address desiring to establish a
connection should be alowed or not. So, persona or end-client firewalls are still
under development.

Orman said, “We should look to a future in which every machine is its own
firewall [1].” The CiNIC [29] is an independent network device that provides control
of al networking services for the host. Thereby, it can serve as the front line defense
mechanism against attacks. The vision is that it may not only run a firewall but aso
provide encryption, authentication, intrusion detection, and other services to secure
the host. The Cal Poly Network Performance Research Group is working towards

making this future areality.
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Chapter 3 Firewall Performance Study

A firewall is*adevice that enforces an access control policy between networks [30].”
Firewalls can be used in two ways, as a stand-alone edge device that protects and
forwards packets to a local area network or as an operating system component for
protecting a single host. As we will see, researchers have focused on studying the
latency, throughput, and total transaction time of a firewall as a stand-alone edge
device, but we were unable to find peer-reviewed research papers that specifically
addressed the performance of the firewall on a single host. For this reason, our
investigation focuses on studying the performance of single-host firewalls, and
specifically on the Linux firewall i pt abl es.

By the time our research began, we were unable to find documentation that
depicted the exact path that a packet follows as it traverses the network stack. Thus,
our first efforts focused on capturing this path. Once the path was captured, we
performed our first tests. The purpose of the first tests was to understand the firewall
sengitivities and the performance impact on the host by varying the transmission
speed, payload size, INPUT policy, number of rules, and packet transmission
protocol.

For our second test analysis, we sent multiple frames at various transmission
rates to asingle host. Here, we tried to overload the host using the SmartBits network
testing system and measure the host’s latency depending on the packet transmission
rate, or throughput. The results obtained from these measurements will confirm if the

single-packet test measurements are valid.
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3.1 Previous Research

There are two different goals for testing firewalls. The first goal isto analyze and test
the firewall policies, in other words, modeling and testing how secure a firewall isin

a“real-world” environment. The second goal to test the firewall performance.

3.1.1 Anayzing and Testing Firewall Policies

Most experts would agree that the most difficult part in the design of afirewall isthe
process of defining the security policy and the configuration of the firewall [31]. The
configuration is the process of deploying the policy. To define the policy means to
understand the network topology of the LAN, decide what services will be allowed,
and who will have access to what information.

Various research papers have presented methods that could serve as abasis for
testing firewalls that protect internal networks. Vigna proposes a mathematical model
for firewall “field-testing” taking into account the topology and operationa
environment and not the internal architecture of the firewall [32]. Another method
presented is the Firewall ANalysis enGine (Fang) [33]. Fang is atool that “reads
relevant configuration files, and builds an internal representation of the implied policy
and network topology” to simulate spoofing attacks and the behavior of the firewall
in response to those attacks. Hazelhurs, Attar, and Sinnapan [34] present a “binary
decision diagram” to test the rules of firewalls. All of the above are similar in that
they all target to model LANs and not personal firewalls.

Experts may use the mathematical models above or some hacking tools in

order to test firewalls. But in redlity, there are no standard procedures to test
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firewalls. Vigna says that the current methodologies to test firewals are mainly
based on expertise and individual skill [35]. The reason behind this is because, in
business terms, every customer wants a different specification for the network and for
its security (e.g. topology, services running). So, experts use hacking tools such as
SATAN, Neus, COPS, Internet Security Scanner (ISS), and BSD Monitor to test if

the firewall is secure enough to protect aLAN and satisfy the customer’ s need.

3.1.2  Testing the Performance of the Firewall

3.1.2.1 Router firewalls

A firewall router reads header information of a packet, checks the header with a
number of rules, and decides to forward the packet or not. Various studies have been
made on router firewals. In [27], Patton, Doss, and Yurcik compared the
performance of open source versus commercial firewalls. So, they compared the old
Linux i pchai ns included in RedHat version 6.0 against CISCO’s IOS firewall, the
latter consisting of hardware and software. At the time, the older Linux netfilter
(i pchai ns) had the disadvantage of lacking functionality; it was not a stateful
firewall while IOS was.

“The results show that the Linux firewall has consistently higher transaction
throughput rates than the Cisco’s stateful firewall for rule sets varying from 0 to 200
rules and for packet sizes of 1 and 128 bytes [27].” No specifics were given on the
rule set used.

Other studies measured and compared the latency and total transaction time to
download small and large HTTP and FTP files [35]. The tests setup included several
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clients inside a LAN connecting to a server outside the LAN and a router firewall
gitting in between the networks. The firewall would be configured to 7 different
policies, one for each HTTP and FTP test. The clients would run a script to establish
the connections. The tests for HTTP and FTP were performed independent from one
another. For HTTP tests, the clients made connections to download small sizes of
data. On the other hand, for FTP tests the client would make small or large number
of connections and download files of either IMB files during one test or 5SMB filesin
another. Those tests were aso independent from one another.

The results implied that “the performance difference among security levels
due to the overhead of packet filtering for more security is negligible when compared
with the outside traffic interface [35].” In other words, performance decreases as the
number of connections increase, and is not affected by the security policy.
Unfortunately, no specifics were given on the rule-set.

Other tests, such as [36] [37] and [38], have been performed to compare
commercia router firewalls, but the results are not presented in this document

because they are out of the scope of our research.

3.1.2.2 Sngle-host firewalls

Different from edge firewall routers, there has not been much research done to
anayze the performance or the processing overhead produced by single-host
firewalls. One paper presented the results on the throughput and CPU utilization of
two machines connected through a 10Mb hub [39]. The purpose of the tests was to
measure i pt abl es on a single-host. The CPU utilization was measured using

“vmstat 3.” The sending box sent a byte stream of 187,000,000 bytes. The payload
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size per packet was 3,700 bytes. The throughput was measured by dividing the size
of the bit stream by the time (in seconds) to receive the stream. Finally, the input
policies (i.e. INPUT/ OUTPUT/ FORWARD) were set to ACCEPT. The results of
the four tests are described below.

On the first test, without a firewall and with one single connection, the
throughput was 9.09 Mbits/sec. The CPU utilization was not provided. Another test
running “real-world” i pt abl es rules and one single connection showed a 9.10
Mbps and a CPU utilization of 19-23% on the sender and 16-20% on the receiver.
Another test included establishing five TCP connections and no rules, in order to
measure the CPU impact by TCP/IP traffic. The sum of the throughput was 9.13
Mbps, and the CPU utilization varied from 19-20% on the sender and 15-18% in the
receiver.

For the last test, the intention was to “measure real-world stress on the iptables
rule-set. Five connections were used: two open TCP ports, a TCP port rejected with
a TCP reset, a closed TCP port, and an open UDP port.” The CPU utilization on the
receiver was 15-20% and 23-30% on the sender. For the UDP component the
throughput yielded 10.57 Mbps. For the two non-blocked TCP connections the
throughput yielded 8.14 Mbps. For TCP in the latter test, it is understandable that as
the amount of filtering and connections increase the throughput might decrease.

However, for UDP, having a 10.57M bps throughput on a 10 Mbps hub is suspect.
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3.2 Terminology

As we have seen, firewall performance has been studied in terms of the latency,
throughput, and total transaction time. In those tests the parameters used have been
the number of rules, the number of connections, and the number of bytes per packet
or per file, the type of download (e.g. HTTP and FTP).

Some of the researchers have used the firewall-benchmarking terminology
defined in the RFC 2647 [30]. However, we had to redefine some terms to make
them applicable to our investigation.

Earlier studies made by the Cal Poly Network Project Research Group
(CPNPRG) on the performance of the Linux and Windows [29] have been made on
the sending operation, that is, a study of the latency and throughput when a packet is
sent from the application layer until the datais sent out to the wire. Our study focuses
on the receiving operation, and specificaly, in studying of the performance impact

produced by afirewall when a packet is traveling up the stack.

321 Performance Metrics

The first portion of our study focuses on finding the start latency. Now, latency isthe
period of time that a packet takes to be transmitted from one end (e.g. a host) to
another. Protocol latency as the period of time that a network sub-layer holds a
payload before it forwards it to the next sub-layer [40] and is divided into: start and

stop latency. See Figure 3-1 shows a picture of alatency model.
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Figure 3-1 Example of a packet in order to measureitslatency to traver se the stack

Start latency = T5 - T1 of each packet [seconds]
Stop latency = T5 of the last packet - T1 of the first packet [seconds]
Payload throughput = (payload size) / (stop latency) [bps]

From Figure 3-1 the start latency can be defined as the period of time the
beginning of the packet’s payload (d1) to reach the bottom of the stack (T1) until the
beginning of the payload (d1) reaches the top of the stack (T5). Start latency can be
used to determine the efficiency of the Device Under Test (DUT) because it provides
“per payload” processing information. Sop latency is the amount of time that it takes

for the beginning of the payload to pass from the bottom of the stack until the last-bit
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of the payload reaches the top of the stack. The stop latency can be affected by
packets that are dropped by either the network or by the host’s TCP/IP stack because,
if apacket is dropped, the stop latency will include the start latency plus the time that
it takes for TCP to ask for retransmission and the packet to be retransmitted.

Sart and stop latency are equal to each other when the payload is less than or
equal to the maximum transfer unit (MTU) minus the Ethernet headers. Firewall
overhead in the protocol latency, or just overhead, is the impact in the processing
time caused by the firewall asit processes every packet header.

The following terms will also be used in this document: Packet, used
interchangeably with Ethernet frame, includes al the headers plus the payload.
Payload is the information data encapsulated inside the Ethernet frame excluding all
headers. The throughput is the “measure of the rate at which data can be sent through
the network, and is usualy specified in bits per second [40]”. The protocol
throughput is the amount of data that a protocol stack can process per unit of time
(Kbps or Mbps). The payload throughput is the amount of payload that the DUT can

process per unit time. It is calculated as follows™:

Payload throughput = (size of the payload) / (stop latency)

! Morein depth explanation about latency, throughput, and CPU utilization can be found in Peter Xie's master’ s thesis [37]
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3.2.2 Parameters to determine the firewall sensitivity

As mentioned earlier, firewalls have been tested by modifying a set of parameters
such as the number of rules, the number of connections, the number of bytes and the
transmission rate.

Our investigation focuses on analyzing and testing the sensitivity of the
firewall, and the performance impact generated by it, by varying a set of external and
internal parameters presented in Figure 3-2. External parameters are those that
cannot be controlled by the firewall such as transmission protocol, transmission
speed, and payload size. Interna parameters are those that can be controlled by the

firewall such asInput policy, filtering type, and number of rules.

Protocol Transmission Payload Input Filter Number
speed Size Policy Type of Rules
4 sec delay in
TCP between 64
packets 128 PT 10
256 40
Bursts: 1.4K /ROP 100
10| 2/
75| 1r 64 K
External Parameters Internal Parameters
Figure 3-2 Par ameter sto deter mine the sensitivity of the firewall

A series of tests will involve varying the parameters presented aove in two

different scenarios. The first scenario will consist on capturing a single packet and
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analyzing the performance impact as it traverses the stack. The second test consists
on tracing a stream of packets at various transmission rates. We explain the two

scenarios below.

3.3 Testsdefinitions

There are two main issues to resolve in the two scenarios just mentioned above, and
they can be summarized in two questions: (1) Does a single packet carry enough
information to explain the sensitivities of the firewall? (2) Will the measurements
obtained for single-packet tests be sufficient enough to measure the performance on
the host?

The data collected from tracing a single packet in the stack should provide
enough information to find a time approximation of the sensitivities of the firewall
and the total processing time to the parameters already presented. On the other hand,
multiple packets will provide more “accurate” results. This can be explained with the
following example: think of the operating system to be analog to the plumbing
system of akitchen sink. Imagine that you desire to know how long would 100 liters
of water take to pass through the plumbing. There are two ways to measure the time:
the first way is by pouring one liter of water and multiplying it by 100; the second
way isto drain the 100 liters.

In the first scenario, you pour 1 liter of water, let it go down the drain, and
measure how long it took for that liter to enter and exit the system. An average can
be calculated after doing this several times. The average can be multiplied by 100
times to find an approximate to pouring the 100 liters. In the second scenario, you

can open up the faucet and measure the time that it takes to drain the 100 liters. The
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former is a clean and fast way to find an approximation of the total time to complete
the system because, whether we pour 1 or 100 liters, the water will flow through the
same path. On the other hand, the latter will provide more “accurate” results because
they include the rate at which the water was expelled from the faucet and the pressure
exerted by the mass of water pushing down the pipe.

Just as the water flows through the same path, in the same way, packets follow
the same path when they traverse the TCP/IP stack. Consequently, single-packet tests
are analogous to pouring only one liter at a time. These tests will provide an
approximation of the time that a packet is held at each point in the stack.
Furthermore, throughput or multiple packets tests at various rates are analogous to
pouring 100 liters at one time because they take into account the queuing of packets
by the OS, the processor speed, and the rate of transmission.

In this thesis, only single packet tests are performed to understand and
measure the sensitivities of the firewall. They aso provide a conservative

approximation to the actual latency for multiple packet tests.

331 Single-packet tests

Single-packet tests are performed using two PCs. Volans, our Device Under Test
(DUT), is a dua 450MHz Intel Pentium processor with a modified 2.4.7 kernel
running the server application. One of the CPUs is turned off in the SMP option of
the kernel configuration — the kernel configuration file is included in the CD attached
with this document. The i pt abl es- 1. 2. 4 version was installed to the kernel.

The modified kernel has 5 different points to store timing measurements as the packet
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traverses throughout the stack. The files modified are: dev.c, ip_input.c, tcp_input.c,
udp.c, and socket.c. At boot time, both machines will start in run-level 3. During the
tests, no services will run in the background, see Appendix B and C for details on
how to run the tests and to see the scripts. Libra, the client, is a 233MHz Pentium |1
processor. Both machines are isolated from any outside traffic and connected through

a 100 Mbps 3Com switch. Refer to Figure 3-3 to see the test bed.

DUT: Volans

CLIENT: Libra

3Com switch

Figure 3-3 Test setup to measur e the latency when a single packet is sent every 4 seconds

Single packet tests procedures are included in Chapter 4. See Appendix C for

the source code used to generate the rules.

3.32 Throughput tests

Throughput tests are performed using the Spirent's Network Tester “SmartBits’.
These tests will show the latency of the network stack when multiple packets are sent
at different transmission rates.

The tests are performed in the Ca Poly Cisco lab. A Windows 95 PC is

connected via a Patch panel to control the SmartBits 2000. The SmartBits cards,
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model ML-7710, are connected via the patch panel to a Cisco 2900 XL switch to

communicate with our DUT, which isVolans. Thetest bed is shown in Figure 3-4.

Management

connection Spirent Tester
already wired

150 Net

' Patch Panel !
Lab Backbone ! !
(via Patch Panel i
Por 12)
Cisco switch
PC Volans
Controls the
Spirent Tester
Figure 3-4 Test setup using the Spirent’s network tester to vary thethroughput

Two SmartBit cards were connected to the switch, oneisto send the stream of
test packets at different rates, and the other is used to send 2 packets to port 6789
which serves to reset the memory buffers where the measurements are stored. During
the tests, the Smartbits would run for one minute before the timestamp measurements
were taken. Thisis because we considered that one-minute would be enough to reach
steady-state for the transmission rate performance testing.

Given that the number of packets increase as the transmission rate increases,

the timestamping instrumentation inside the kernel was modified for each test. A new
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counter was added to the code so that the timestamps would be taken after one
minute. The number of packets sent in a minute is automatically obtained with the
SmartWindows application. The second modification was to increase the memory
buffers in order to store 4000 timestamps instead of 50 as it was before. A third
modification was to match incoming packets on the port number instead of reading
the payload. One last change had to be made to the instrumentation code inside the
netif_rx function. Since neti f_rx executes with interrupts disabled and 1/0

operations are costly, we removed the only nenctpy from our instrumentation code.

3.33 Packet specifications

The test’s packets must be less than the MTU because of fragmentation. If the
payload is larger than the MTU, by nature, the protocol stack will fragment the
payload into packets, one(s) that will have the size of an Ethernet frame with the last
one possibly having a payload less than an Ethernet frame. Having to dea with
different payload sizes in atest may cause a discrepancy and could ruin the results, or

at least make the results difficult to interpret.

3.4 TheLinux TCP/IP stack

34.1 Understanding the packet data flow

It is critical to understand the packet data flow in order to be able to add the
timestamps and perform the measurements. Unfortunately, by the time this analysis

was made, there was no detailed documentation on the receiving operation or the
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netfilter/firewall hooks specific to the Linux kernel 2.4 other than the source code.
Thus, our first efforts focused on capturing the data flow from the data link layer to
the application layer and finding the netfilter hooks. On the other hand, by the time
this document was written we found documentation (sections 3.6.2 and 3.6.3) that

confirmed our findings.

3.4.1.1 Thereceiving operation

From the basics of networking we understand that in order to establish a TCP
connection a server must be listening to an open port. A client wanting to establish a
connection sends a SYN packet to the server. The server responds by sending a
SYN ACK to finish the handshake and the client sends an ACK plus the PACKET.
Followed by the handshake only PACKETS are sent to the server until a Fl N packet

isreceived in order to close the connection [41]. Refer to Figure 3-5.
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N e T
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L close ( ) FIN

read () |

L

T

Figure 3-5 Basic TCP client-server connection

The Linux operating system separates the receiving operation in two parts.
The first is when the server holds listening to a port, which is from the application
layer down to the Linux socket layer [42]. The other happens when a packet is
coming in from the network, or from the physical layer up. These two operations are

explained in detail in the next sections.



3.4.1.2 Analysisfromthe application down

When a server application opens a connection and is ready to receive a packet, it will
make a call to read( ) or recv( ) on a socket. Then, read( ) makes a system call to
sock read( ). The latter will call sock recvmsg( ), which will then call sock->ops-
>recvmsg( ). For a TCP connection the “ ops’ corresponds to a pointer to inet, where
inet calls the recvmsg( ) function. Finally, the inet recvmsg( ) calls sk-
>proto[ tcp|udp] ->recvmsg( ) and the application sleeps. The latter is put into the run
gueue or is woken up after the TCP layer has processed any incoming packets.

Figure 3-6 shows this process.

Application
Layer

sock_read( )

Goee

Figure 3-6 Receiving operation from Application to Socket layer

Socket
Layer
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3.4.1.3 Analysisfrom Datalink layer to Socket layer

Initially, as a packet comes in from the physical layer it causes the Ethernet device to
“fire up” an interrupt. Interrupts are handled by top-halves and bottom-halves [43].
The top-half is handled by the network adapter’s device driver (e.g. 3c59x.c). The
device driver callstheet h_type_trans() function located in the eth.c file. This
function organizes the first part of the packet header (i.e. MAC header) inside an
sk_buf f structure.

All the information contained inside a packet is carried out through the stack
in the form of an skbuf f structure until we get to the socket layer. In the Linux
source code we aways find a structure skb of type skbuf f. So, for example,
when a packet enters from the network, skb- >dat a points to beginning of the
entire information of that incoming packet. The data is not organized in the skbuf f
structure all at once but, as the packet passes through the stack, each layer will
reorganize the packet’s information inside that skb structure. After the TCP/UDP
layer has been processed, it will pass the pointer to skb structure to the socket layer.
The socket layer will extract information inside the skb structure and create a new
structure of type sock. Thus, the sock structure will contain information such as
source and destination port, the pointer to the payload, and more. More details on the
information inside these structures can be found in the sock. h and skbuff. h
files of the Linux source code.

Going back to the execution of the top-half, when the et h_t ype_trans
function returns the device driver calls the device controller (i.e. neti f _rx) located

inside the dev.c file. Thisfile controls all the network device drivers and it is located
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in the usr/src/linux/net/corel/ directory. Two main functions separate the
top-half from the bottom-half: netif _rx() andnet_rx_action(), respectively.

After the top-half executes, the swapper will be in charge of running the
bottom-half. Note that it is the swapper and not the scheduler who handles this
operation. The difference between the swapper and the scheduler is that the swapper
is in charge of completing the execution of the pending bottom-halves [43] and the
latter isin charge of handling processes.

The netif_rx() function takes a timestamp by caling the
get _fast _time(&skb->stanp) function. This timestamp serves as a unique ID
for each packet. This packet ID is transferred throughout the entire stack inside the
skb structure, serving as a mean to match/differentiate the measurements for a
specific packet at each layer. After the top-half executes, the swapper schedules to
execute the bottom-half which startswithnet _rx_action().

Figure 3-7 presents the example of a single packet traversing the TCP/IP stack
with afirewall of two rules, matching a MAC address and a TCP port. The packet is
traced through all the layers of the stack until the socket layer hands the data to the
application. The symbolsin Figure 3-7 represent the following:

<> enter and exit function ()
>>> enter function ()
K exit function ()

several functions

Figure 3-7 will serve as the basis for the instrumentation and analysis because
every TCP and UDP packet destined for the host will follow the path outlined in this

figure. Notice that the IP layer and the firewall are inside the Data Link layer. Thisis
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because the MAC header is “stripped off” along with the IP header right before the

net rx_action() function exits.

<<< sock_recvmsg S
<-——-— TIMESTAMP 5 ————- > 8
K
>>> sock_recvmsg
<<< tcp_rcv_established T <<< udp_recvmsg U
<-—- TIMESTAMP 4 —--> g <-—- TIMESTAMP 4 --> B
>>> tcp_rcv_established >>> udp_recvmsg
<<< net_rx_action
< > ip_local_deliver_finish
<--- TIMESTAMP 3 @ beginning of ip_local_deliver_finish
<<< ipt_do_table
<> ip_packet_match
<< do_match E D
< > match - for MAC address I A
>>> do_match [didn"t match] R | X
<>ip_packet_match E P L
<«< do_match XV L I
<> port_match L A N
< > port_match L Y K
< > tcp_match E L
>>> do_match didn"t match R A
<> ip_packet_match Y
>>> ipt_do_table E
R
<<< ip_local deliver [NF_I1P_LOCAL_IN]
<---- TIMESTAMP 2 / before fnc returns --->
>>> ip_local_deliver [called by above fnc ]
<>ip_rcv_finish
< > ip_rcv [NF_IP_PRE ROUTING]
>>> net_rx_action
< > netif_rx <---- TIMESTAMP 1 @ the beginning of the function
Figure 3-7 Traversing the Network Stack — from bottom up
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Notice the timestamps placed throughout the stack in Figure 3-7; these are
placed at critica points in order to take timing measurements in the stack.
Timestamp 1 is our reference point (“T1” in Figure 3-1). Timestamp 2 is placed
before the firewall starts its execution. Note that this is not the point where the IP
layer begins, but the point where the netfilter/firewall begins. Timestamp 3 is placed
after the firewall has processed the packet and has finished its execution. The
difference between the measured values of Timestamp 3 and Timestamp 2 tell us the
cost of having afirewall.

Timestamp 4 is placed after the TCP or UDP layers have been processed. At
first, we speculated that if we block on TCP ports or MAC addresses, filtering should
happen at the TCP layer or at the Data Link layer respectively, but Figure 3-7 proved
uswrong. Finaly, Timestamp 5 (point “T5”of Figure 3-1) is placed before the socket
layer passes the payload to the application.

Once the path followed by a packet in the stack was studied, we performed
various tests. To understand the results we found it necessary to study the source
code and the i pt abl es agorithm, which is explained in the last section of this

chapter.

3.5 Software instrumentation

351 Software design and issues

The design and implementation of the timestamps involved some challenges. When
tracing a packet through the stack, an important factor to take into consideration was

the uniqueness of a packet. For example, after performing our first tests the
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measurement results showed that some of the packets were missing at the TCP and
socket layers. It was not until we ran the network sniffer that we found the problem
to be in the client application and in the timestamps implementation. Timestamps
were taken for every single packet coming in from the network. For the client
application, every time that the client would send a packet it would close the
connection, re-negotiate with the server, and send the packet. So, when packets were
“lost” it was because our instrumentation was taking measurements for ARPs, SYN,
ACKs and other packets which do not traverse all the way up to the socket layer!
Another problem encountered was running other services, such as Xwindows,
system logger, and NIS. Since we had a timestamp at this layer, the timestamp code
would be called constantly, thus, taking measurements that did not belong to our test
packets. NIS was the worst of them because both PCs would constantly send ARPs
to find the NIS server and undesired packets kept coming in. The best solution was to
shut down all the services (which we did later in our tests) but, if we wanted to have
different traffic coming in, how do we identify our test packets? Well, we marked the
payload. So we changed the hub for a switch and marked the payload with A’s at the

beginning of the dataand E’s at the end, just like this:

MAC header | IP header | TCP header | AAAAA®*#k&xkk sikxskssinnsksninssis EEEEE

Marking the packet lead to finding out a way to read the payload as it
traversed the stack. Well, recall the skb structure of type skbuf f discussed in
previous sections. This structure is modified in every layer of the stack. For an

incoming packet, the dat a element inside the structure points to the beginning of the
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entire packet. So, when a packet comes in through the network, skb- >dat a[ 0]

points to the beginning of the MAC header. Then, in order to read the A’sand E’s of
the payload, we have to offset skb- >dat a to the beginning of the payload. For
example, for a TCP packet the first A is at offset 52, (i.e. skb- >dat a[ 52] — see
Figure 3-8) and for a UDP packet the offset is at 29 (i.e. skb- >dat a[ 29] ). As
the packet traverses the stack, the offset decreases because the layers modify the

structure and strip off some parts of the header.

35.2 Instrumentation of the Timestamps

The performance measurement timestamps are taken by using the rt dscl macro.
This macro reads the lower 32 bits of the Time Stamp Counter (TSC) using assembly

instructions thus, giving a more precise time [43].

3.5.2.1 Timing measurements at the Data Link layer

As it has been explained, we place the first timing measurement inside the
netif _rx() because this is the starting point of the stack. Only the packets
marked with A’s and E’s will be measured. The skb- >dat a is the pointer to the
beginning of all the data. At this point in the stack skb- >dat a[ 0] points to the
beginning of the IP header. The payload starts at skb- >dat a[ 52] for TCP and for
UDPisat skb- >dat a[ 29] . The packet information (i.e. timestamp, ID, count, and
TCP header) is stored in arrays declared as global in order to reserve the memory
space at boot time. The pointer to the data structure where the information is stored is

passed to the /pr oc filesystemusing __ TSCt i mest anp function.
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1222 dnt netif_rzistruct sk_buff =ski

1223 4
1224
1225
1226
1227
1228
1229
1220
1231
12322
1233
1224

int this_cpu = smp_processor_id();
struct softnet_data “queue;
unsigned Tong flags;

u_int3z_t low = 0;

i

= Zontinue operation
M

if (skb—stamp. tu_sec == 0

get_fast_time(&skb->stampl;

1235 ll}xxxxxxxxxxxxxxxxxxxxxx

1226 * start timestamp hack

BT REEMEEEEEIENRMERREERER

if ( (skb-rdatal[S2]== 0xCC) &% (skb-rdata[57] == 0xCC) &%

12282
12323
1240
1241
1242
1243
1244
1245
124E
1247
1243
12439
1280
1251
1282
1282
1254
12EE
1256
1257
1285
12849
1260
1261
1262
1262
1264
12EE
1266
1267
1262
12689
1270
1271
1272
1273
1274
1275
1276
1277
1278
1273
1220
1281
128z
1283

¥

(skbh—rdatalskb-»Ten—1] == 0xCC) &%
(skb—>datalskb-»Ten-5] == 0xCC) ) 4
memset (&sck_tstamp_hack_head, 0, sizeof(sck_tstamp_hack_head));
memset (&dlink_time, 0, sizeof(sTruct TsCTstampl)
pkt_counter = 0;
printk{"flushing dew, chn");

if (__Tsctimestamp) <

£ check header pointer in packet AM
# if not null then copy the &4 bytes of the header into the array
i
if (pkt_counter >= ARRAY_LIST) 4
memset(&sck_tstamp_hack_head, 0, sizeofisck_tstamp_hack_head));
memset (&d1ink_time, 0, sizeof(struct TsCTstampll;
pkt_counter = 0;
printki"deu, c buffer FULL »>»> RESTARTINGYH"D;
¥

if ( (skb-rdata[52] == Oxasd
&% (skb-:data[57] == OxanR)
&% (skb-:datalskb—Ten—1] == 0OXEE)
&% (skb-:datal[skb-»len-5] == OXEE) ) {
mencpy (sck_tstamp_hack_head[pkt_counter],
skb—rdata+12, HACKED_HDR_LEN);

Sfprintk("»»> EMTER: netif_rxn");

JAprintkl"  skb-:stamp: ®17 |",skb-rstamp. tu_usec);
S7oget time

rdtscTiTaow;

dlink_time, Tawlpkt_counter] = low;

dlink_time. tstamp[pkt_counter] skb-»stamp, tu_usec;
dlink_time. thread[pkt_counter] pkt_caunter;

A% Make the call to get the time =/
if(pkt_counter < 21 £
(*__TeCtimestamp) (R¥,

(unsigned char =)sck_tstamp_hack_head[0],

(unsigned chars)&dTink_time , pkt_counter);

¥

Aéprintkl"  pkt_counter: xdhn",pkf_counterd;
dlink_time, index++;

pkt_counter++;

2Eg JeEnEREENRENERMERERNENLS

1255 *  end timing measurement

A

QBEE *rrRERERRE AR R RN A RA R /
"dew,c" 2304L, FI1S22C written 1z2z2z2,32 L
'8 —
Figure 3-8 Timestamp hack for the devicedriver (Timestamp 1)
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3522 IP Layer

Theoretically, when a packet traverses throughout the stack the operating system
should strip-off the header of each layer as it moves up. As mentioned earlier, in the
Linux kernel, the MAC and the IP headers are not stripped-off until the firewall has
processed the packet.

Timestamps 2 and 3 are taken at this layer to measure the firewall. Timestamp 2 is
located right beforethei p_| ocal _del i ver () returns. Thisis because when this
function returns it makesacal toNF_| P_LOCAL | N. Timestamp 3 is placed at the
beginning of i p_| ocal _del i ver _fi ni sh. Noticein the Figures 3-9 and 3-10
that thecallsto __ TABLES I P_INand _ TABLES | P_QUT are the entry points
to take the timestamps. When our instrumentation is not loaded, the addresses of
__TABLES IP IN and _ TABLES |P_OUT point to NULL. Again, the
timestamp is taken using the r dt scl macro. In order to reset the memory buffers,
we send a packet marked with C’'s at the beginning and at the end of the payload.

Thusthe ‘if’ statement:
i f ((skb->data[52] == OxCC) && (skb->data[57] == OxCC) &&
(skb->dat a[ skb->l en-1] == 0xCC) &&
(skb->dat a[ skb- >l en-5] == 0xCC) )
reads the C’s inside the payload and resets the buffers using and the counters. At the

bottom of Figure 3-9 we observe the call to the NF_HOX (i.e. netfilter hook), which

isthe entry point to the firewall.
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280 int dip_Tocal_deliver(struct sk_buff =skh) N

391 4

=82 #

283 * Reassemble IF fragments,

394 =

jei= 1

396 if (skb—rnh,iph-:frag_ofT & htons(IF_MF | IF_OFFSETI) {

287 skb = ip_defrag(skb);

395 if (!skh)

ezt return O;

400 ¥

401 l{'xxxxxxxxxxxxxxx

402 * HACEKE start

GOF rEREEEREEEmEEEEx

404 if © (skb—rdatal[Sz]== 0x2C) &% (skb—rdata[S7] == 0xCC) &%

405 [(skbh-rdatalskb->Ten—1] == 0x2C) &%

405 [skb-rdatalskb-r1en-5] == 0xI2) 2

407

408 memset (Fipt_in_time , 0, sizeof(struct TSCtstampl);

403 ipt_in_counter = 0;

410 ipt_in_time,index = 0;

411 printk("flushing ip_insn");

Mz ¥

43

414 if (__TAELES_IP_IN) 1

415 int Tow=0;

HE

T if( Cipt_in_time,index) »= ARRAY_LIST) £

418 memset(Eipt_in_time, 0, sizeof(struct TsCtstampl);

413 ipt_in_counter = 0,

420 ipt_in_time,index = 0;

421 printk"ipt_in_time =» RESTART —rbuffer FULL >>%n");

4z2 ¥

423

424 if  (skb-—:datalS2] == Odan) &%

azg (skh-rdata[E7] == 0xAA) &%

426 [(skbh-rdatalskb-rlen—1] == OXEE) &%

427 [(skbh-rdatalskb->1en-5] == OXEE]) £

423

429 A4 get time

420 rdtscl(low);

431 ipt_in_time, Tow[ipt_in_counter] = Tow;

432 ipt_in_time.tstamp[ipt_in_counter] = skb-»stamp,tu_usec;

433

434 Adget TCP header data

43E déiphdr_tables_in_tstamp, sport[tcp_counter] = sk-:sport;

435 Adiphdr_tables_in_tstamp. dport[tcp_counter] = sk-rdport;

437 Adiphdr_tables_in_tstamp, seq[tcp_counter] = th-rseq;

433

439 if(ipt_in_counter < 2) {

440 [*__TAELES_IF_IM)CIP_FW_IN, HULL,

444 (unsigned char “)&ipt_in_time,

44z Ript_in_counter);

443 ¥

444 Aeprintki” St

445 A/printk("ENTER FIREWALL CHAINYN'");

445 ipt_in_time, index++;

447 ipt_in_counter++;

443 ¥

445 ¥

450 K’xxxxxxxxxxxxxx

451 * EHD HACK

452 xxxxxxxxxxxxxxf'

453 return WF_HOOKCPF_INET, NF_IP_LOCAL_IN, skh, skh—rdew, HULL,

454 ip_Tacal_deliver_finish); £

"ip_input,c" S96L, 170130 written 442,32-50 e
4 =
Figure 3-9 I P layer — Beginning of thefirewall (Timestamp 2)
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261 static inline int ip_Tocal_deliver_finish(struct sk_buff =skh) N

2E2 4

263 int ih1 = skb—:nh.iph—+ih1*4;

ZE4

265 {ifdef CONFIC_NMETFILTER_DEELS

ZEE nf_debug_ip_local_deTiver(skh);

257 ffendif MCONFIG_WETFILTER_DEEUGH /

ZES

2E9

270 * IPTAELES TIMESTAMP GOES HERE

271 %S

2?2 K’xxxxxxxxxxxxxxx

273 % HACE start

ST REEEEEREEEEEERERE

275 if © (skb—rdatal[Sz]== 0x2C) &% (skb—rdata[S7] == 0xCC) &%

276 [(skbh-rdatalskb->Ten—1] == 0x2C) &%

277 [skb-rdata[skb->1en-5] == 0xIC) 2 1

27

274 memset (Fipt_out_time , 0, sizeof(struct TSCtstamp));

250 ipt_out_counter = 0;

281 ipt_out_time, index = 0;

282 printk("flushing ipt_outsn");

=] ¥

84

285 if (__TRELES_IP_QUT) £

286 int Tow=0;

287

288 if( Cipt_out_time,index) »= ARRAY_LIST) -4

289 memset(Eipt_out_time, 0, sizeof(struct TSCtstamp));

290 ipt_out_counter = 0;

291 ipt_out_time, index = 0;

282 Adprintk("ip_ipt_in =» RESTART —rbuffer FULL »>%n");

293 ¥

=84

285 if  (skb-—:datalS2] == Odan) &%

296 (skh-rdata[E7] == 0xAA) &%

287 [(skbh-rdatalskb-rlen—1] == OXEE) &%

292 [(skbh-rdatalskb->1en-5] == OXEE]) £

293

200 Adprintk("sport: %1 Sn",sk-rsport);

| Adprintk("skb—>stamp: %1i%n", skb-:stamp, tu_usec);

202

303 A4 get time

204 rdtscl(low);

205 ipt_out_time, Tow[ipt_out_counter] = low;

208 ipt_out_time, tstamp[ipt_out_counter] = skb-:stamp, tv_usec;

207

208 if(ipt_out_counter < 21

203 (*__TABLES_IP_QUT) CIP_FW_QUT, HULL,

210 (unsigned char *)&ipt_out_time,

211 ipt_out_counter);

M2 ¥

M3 AAprintkC"ERIT FIREWALL CHAINYN");

214 Adprintk(” Wt

5 ipt_out_time, index++;

B ipt_oMt_Counte r++;

M7 ¥

38 ¥

319 lf'xxxxxxxxxxxxxx

20 * END TIMESTAMP

321 xxxxxxxxxxxxxxf'

22

23 A PU1T out additionT 2 bytes to save some space in protaocols, */

24 if (tpskb_may_pulliskb, ih1+21)

325 goto out; £

"ip_input,c" 594L, 16935C written 309, 7-35 4%

4 =

Figure 3-10 IP layer —End of thefirewall (Timestamp 3)
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3.5.23 TCP and UDP layers

The timestamp is taken at the top of the TCP and UDP layers. For TCP the pointer to

the payload is skb->data[ 0], but for UDP the pointer to the payload is at

skb- >dat a[ 8], See Figure 3-11 and 3-12.
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2442 * HACK start — end of top_rou_established()

D3 HEsEEsEEHEREEmEs

3414 if © (skb—>datal0]== 0x22) && (skb—:data[S] == 0x0C) &&

345 (skb—:data[skb—:Ten-1] == 0xIC) &&

3B (skb—:data[skb—:Ten-5] == 0xCC) ) 1

37 memset (&tcphdr_tstamp, 0, sizeof(struct tcp_stack_hack));

3 E memset (&tcp_TSC_time , 0, sizeof(struct TSCtstampll;

3414 top_counter = 0;

3420 tephdr_tstamp, index = 0;

2421 printke"flushing tophn'l;

422 ¥

2423

2424 if (__ToPtimestamp) £

3425 int Tow=0;

2425

3427 AfC Ctcphdr_tstamp, index) := ARRAY_LIST) £

3428 memset(&tcphdr_tstamp, 0, sizeof(struct tcp_stack_hack));

3423 tcp_counter = 0;

3430 tcphdr_tstamp, index = 0;

3431 printk{"tcp.c »> RESTART -:buffer FULL >:%n");

3432 >

3433

3434 if ( (skb-:datal0] == OXan) &&

3438 (skb->data[E] == ORAR) &&

3436 (skb-rdatalskb—:T1en—1] == OXEE) &=

3437 (skb-rdatal[skb-:Ten-5] == OHEE) ) {

438

2439 Aeprintkl"  top o:r th—seqr x02x | ", th—seq);

2440 Aeprintk("sport: i Sn",sk-rsport);

2444 Aeprintkl"  top :r skb—len: i | ", skb—Tend;

3442 Séprintk"skb—>stamp: ®1i%n", skb-rstamp. tu_usec);

3443

3444

3445 A4 get time

3448 rdtsc1(Taw);

3447 top_TSC_time, Tow[tcp_counter] = Tow;

3448 top_TsC_time, tstamp [top_counter] = skb—rstamp, tu_usec;

3443 tep_TsC_time, thread[tep_counter] = tcp_counter;

2450

2461 JAget TCF header data

3452 tophdr_tstamp, sport[tcp_counter] = sk-rsport;

3453 tephdr_tstamp, dport[tcp_counter] = sk—>dport;

23454 tephdr_tstamp, bufflen[tcp_counter] = skb-:Ten;

3455 tophdr_tstamp, seq[tcp_counter] = th-rseq;

24EE

3457 if(tcp_counter < 2) 4

3458 (*__TCPTimestamp) (TP,

3453 (unsigned char *)&tcphdr_tstamp,

3480 (unsigned char *)&tcp_TSC_time,

3481 top_counter);

3462

3463 éprintki"tep, o = counter: Hdhn', top_counterd;

24E4 Aeprintk("EXIT: top_rov_estabTlishedyn); L

BMEE Aeprintki" Wh';

Z4EE tephdr_tstamp, index++;

3467 TCP_COURTE P4+ )

3458 ¥

3459 ¥

2470

2471 lr.'xxxxxxxxxxxxxx

3472 ¥ EMD HACK

2473 xxxxxxxxxxxxxxl‘f

3474 return 0]

3475 I £
"top_input.c" 40110, 1138390 written 3475, 216 26
8 =

Figure 3-11 TCP layer — Timing the end of the TCP/I P stack
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¥
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Figure 3-12 UDP layer — Timestamp 4
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3.5.2.4 SOCKET layer

The socket layer isthe portion of the stack that forwards the data to the application

layer. At this point we can no longer match the A’sand E’s of the payload, so we

trace the packet using the port that it is destined for (i.e. 12345). See Figure 3-13.

=

__ El& ]
File Edit Tools Syntax Buffers  Window Help

aERs @8 X

DRRED S0 TEHD 2 2
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Af( (sock_tstamp. index) »= ARRAY_LIST) £
memset (&sock_tstamp, 0, sizeofi(struct sock_stack_hdri);
sock_counter = 0;
sock_tstamp,index = 0;
printki"socket.c == RESTART —>buffer FULL EEAY

Aéprintki"sport: xu | size: Hive",sock-rsk-:sport, size);
Afprintk("sock—rnum[Tocal port]: zush",sock-:sk-xnumd;

A4 get time

rdtscTCTow

sock_TSC_time, Tow[sock_counter]=low;
sock_TsZ_time, thread[sock_counter]= sock_counter;

Afget TCP header data
sock_tstamp, sport[sock_counter]
sock_tstamp, dport[sock_counter]

sock-rsk-rsport;
sock-rsk-rdport;

if(sock_counter < 21 {
*__soCKtimestamp)d (SCK,
{unsigned char *)&sock_tstamp,
Cunsigned char *)&sock_TSC_time,sock_counter);

¥
sefprintk("socket, c = counter: FdWwn", snck_cnunter)J
Sfprintki” EXIT W'l
sock_tstamp, index++;
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A
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Figure 3-13 SOCKET layer — Before datais sent to the application (Timestamp 5)
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3.6 ThelLinux Firewall —IPTABLES

3.6.1 | ptables Application

The Linux i pt abl es was introduced with the 2.4.0 kernel to replacei pchai ns.
With i pt abl es the user can create and delete chains and matching rules to filter
packets. There are 3 default policies. INPUT — to check the headers of incoming
packets, OUTPUT - for outgoing packets/connections, and FORWARD - if the
machine is used as a router (e.g. as a Network Address Trandator.) Each policy has
its own set of rules.

Basicaly, rules are instructions with pre-defined characteristics to match on a
packet. When a match is found the firewall makes a decision to handle that packet.
Each ruleis executed in order until amatchisfound. A rule can be set like this:

iptables [table] <command> <match> <tar get/jump>

See the example below:

#i pt abl es —P | NPUT ACCEPT

#i ptables —A I NPUT —p tcp —-dport 23 —j DROP

#i ptabl es —A I NPUT —p udp —-dport 80 —j DROP

#i ptables —A INPUT —p icnp —j DROP
Where: —P: policy; —A: append; —p: protocol; —dpor t : destination port; —j : jump

In the example, the first rule says that we accept any incoming connections

from anywhere from the network. The next rule checks if the packet isa TCP, UDP
or ICMP packet, respectively. If the incoming packet is TCP and if it is trying to
establish a connection to port 23 (i.e. telnet), the packet is DROPed. The next rule
drops any UDP packets trying to connect to port 80. The last rule drops al ICMP

packets.
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Iptables and ipchains, ironically enough, have the benefit of “chains’!!
Chains are basically a sublayer of rules so that, if we want to capture a packet with
specific characteristics, it is efficient not to make it go through the rest of rules that

might never match that specific packet.

POLICIES

B Bl 2 B

upd_packets

FROTOCOL ALL - TCP - UDP - #P I
IF ARG SOURCE - BESTINATION

INTERFACE IM / QOUT INTERFACES

CHAINS {

TARGET

LROP
ACCEPT
REJECT
|| QuELE
RETLRN

Figure 3-14 | ptables configuration Process

In Figure 3-14 we see how, under each POLICY, we can create chains. For

example, imagine that the user wants to accept only those packets coming from the
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subnet 192.168.X.X. Also, for those specific packets belonging to that subnet, the
user wants to accept TCP packets destined to ports 21 and 80, and UDP packets
destined for ports 81 and 12345. In that case, the configuration of the firewall looks
likethis:

#i pt abl es —P | NPUT DROP

#i ptabl es —A I NPUT —s 192. 168. 0. 0/ 16 ACCEPT

#i pt abl es —N tcp_packets

#i pt abl es —N udp_packet s

#i ptables —A INPUT —p tcp —j tcp_packets

#i ptabl es —A I NPUT —p udp —j udp_packets

#i ptabl es —A tcp_packets —dport 21 —j ACCEPT

#i ptabl es —A tcp_packets —-dport 80 —j ACCEPT

#i pt abl es —A udp_packets —-dport 81 —j ACCEPT

#i ptabl es —A udp_packets —dport 12345 —j ACCEPT

In the example, we have specified to drop every packet except those packets

coming from the subnet 192.168.X.X, and they should be checked under the rule set.
We create two chains, t cp_packet s and udp_packet s. Under each chain we
create a set of rules to match the packet and with the rule we specify a target (e.g.
ACCEPT / DROP/ REJECT / QUEUE / RETURN). A TCP packet coming from the
trusted IP will be checked under the t cp_packet s chain. Inside that chain we
check if the packet is destined for ports 21 or 80. If it is not destined for any of the
two ports the packet is dropped. Only TCP packets will be checked under the
t cp_packet s chain. The same happens for UDP, anything destined for port 81

and 12345 is accepted, otherwise the packets will be dropped.
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3.6.2  Architecture of the Netfilter?

The Linux Netfilter consists in a series of “hooks’ placed in severa points in the

network stack — so far I1Pv4, |Pv6 and DECnet.

——» (4] —™ ROUTE —™ [C] —x—™ [D] —*

Figure 3-15 Packet traver sesthe netfilter

In Figure 3-15 a packet comes in from the left hand side of the picture. The
first check point to the netfilter's framework is the NF _IP_ PRE ROUTING [A]
hook; this is after the packet has passed ssimple sanity checks, such as not truncated,
IP checksum OK, not a promiscuous receive. The routing code will decide whether
the packet is destined for another interface, or for a local process. Packets that are

unroutable may be dropped.

The information provided in sections 3.6.2 and 3.6..3 have been taken, and some parts even copi ed, “asis’ from the “ Netfilter
Hacking HOWTO: Netfilter Architecture” Document [22]. | want to take no credit for the information presented in these two
sections because the document is short, simple to understand, and to the point. Some things have been reworded but the author,

and maintainer of iptables Rusty Russell, did an excellent job presenting thisin avery simple way.
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If the packet is destined for the box itself, the netfilter's framework
NF_IP_LOCAL_IN [B] hook is called. The anaysis of the performance of the
firewall starts at this point.

However, if the packet is destined to another interface, the netfilter framework
is called for the NF_IP_FORWARD [C] hook. Finally, the packet is passed to the
NF_IP_POST_ROUTING [D] hook it goes out to the outside.

When packets are created locally and the netfilter has been configured to filter
outgoing traffic, the NF_IP_LOCAL_OUT [E] hook is called. Here, “routing occurs
after this hook is called - in fact, the routing code is called first (to figure out the
source IP address and some IP options) - if you want to alter the routing, you must

ater the‘skb- >dst ’ field yourself, asis donein the NAT code.”

3.6.3 Netfilter Base

The firewall is modular; this means that the network hooks will only be called when a
rule has registered that hook. Rusty Russell explains, “Kernel modules can be
registered to listen at any of these hooks. A module that registers a function must
specify the priority of the function within the hook.” In other words, when creating a
module, the module should specify what netfilter hook(s) will be used so that “when a
netfilter hook is called from the networking code, each module registered at that point
is caled in the order of priorities, and is free to manipulate the packet.” The module
can then tell netfilter to do one of five things:
1 NF_ACCEPT: continue traversal as normal

2. NF_DROP: drop the packet; don’t continue traversal
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3. NF_STOLEN: I've taken over the packet; don’t continue traversal
4, NF_QUEUE: queue the packet (usually for userspace handling)

5. NF_REPEAT: call thishook again

For example, when using Network Address Trandation (NAT), “for non-local
packets, the NF_IP_ PRE_ROUTING and NF_IP_ POST ROUTING hooks are
perfect for destination and source alterations respectively;” thisis because pre-routing
checks on the destination address of the packet and makes a decision to forward it or
pass it to the host itself. Post-routing checks if the packet is allowed to be forwarded

or not. More detailed information can be found in [22].

3.6.4 | ptables Algorithm

Thei pt abl es agorithm will explain the results in Chapter 4. Notice what happens
when the netfilter's framework NF_I P_LOCAL_|I N hook is called in Figure 3-16.
| pt abl es executesi pt _do_t abl e, which then executesi pt _packet mat ch,

Figure 3-17.



1
ipt_do_tabled

MO MATCH

IP_MATCH_ITERATE
<h_thatcal |

MO MATCH

< MF_IP_LOCAL_IM >
ple

YESKATEH  r-------- 1
'

___________

TARGET()

OFF3ET

VERDICT

ol

YES

LROP
Hotdrop? return NF_DROP

VERDICT return WYERDIET

| nf_hou:_s o 1 |

Figure 3-16 IPTABLES Algorithm —ipt_do_table() checksfor matchesin therule-set

Observe in Figure 3-17 that the firewall checks the source and destination IP
address first. If no match is found, it tries to find a match for the input device, then
check for the output interface device, then the protocol, and finally it checks if the
packet is a fragment. If a match is not found, i p_packet _mat ch will return O,

continue to the next rule, or break out of the loop.

55



[ Ip_packet _match J Return O
MG
Return O
MO
Return 0
Mo
YES Return 0
o
Return 0
N
[ Return 1 ]
Figure 3-17 ip_packet_match function—| P addr ess ar e always checked regar dless of the type

of filteringin the rule-set

After passing through the i p_packet _mat ch and finding no matches, the
next step is to execute the | P_MATCH | TERATE, in Figure 3-16.  Here, the
firewall callsthe do_nat ch function pertaining to the specific rule. Every module
has a specific do match function. In other words, if we are filtering/matchinga MAC
address the i pt abl es agorithm will call the do_mat ch function specific to MAC
addresses. If a match is found, the chain breaks to perform a TARGET check.
Targets can be ACCEPT, DROP, QUEUE, STOLEN, REPEAT or “JUMP’ to
another chain when a chain has been added to the rule-set. If | P_MATCH | TERATE

does not find amatch it will either continue to the next rule or exit the loop.
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Iptables breaks out of the loop when it finds a match, when the packet is a
fragment, or when all the rules have been checked. Hotdrop is a variable initialized
to zero; when a packet is a fragment the hotdrop variable is changed to a 1, which
indicates that the packet should be dropped. A fragment is a malicious packet (e.g. a
packet with a TCP header larger or smaller than the standard) and will always be
dropped. The VERDICT is a variable that tells the algorithm what to do with the
packet (e.g. NF_ACCEPT, NF_DROP).

In summary, the firewall will always go through thei p_packet _mat ch
function regardless of the type of matching. For example, every rule that filters TCP
ports includes checking for IPs, interfaces, protocol, fragments, and at last matching

the TCP port.
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Chapter 4  Firewall Performance Results

In this chapter we will compare the host’ s performance with and without the firewall.
We will analyze the data in terms of the host’s latency for a single packet and also for
a stream of packets when they traverse the stack. The analysis of the latency for a
single packet will show us the firewall sensitivity to the number of rules, the type of
filtering (also referred as the type of matching), and the payload size. For both
scenarios, single packets and throughput tests, the latency will show how the total
processing time is impacted by the transmission rate. The chapter is divided in two
parts:
(1) Resultsfrom single packet tests

(2) Resultsfrom throughput tests

4.1 Back-to-back timing for the single-packet tests instrumentation

The back-to-back timestamps were placed at the beginning and at the end of the
timestamping instrumentation in order to measure the overhead created by it. The
back-to-back timestamps were taken using the r dt scl () macro. Two tests were
performed in which 40 UDP packets were sent to the host, for atotal of 80 samples.
The difference between the end time and the beginning time is the
instrumentation overhead. This overhead is subtracted from the test results to obtain
better estimates. In other words, for example, the total time to process one TCP
packet of 64 bytes of payload (i.e. T5-T1) with the instrumentation is 31.86 us as
shown in Table 4-1. This time included the overhead generated by T1, T2, T3, T4,

and T5. Subtracting the overhead from the measurements will give a better estimate.
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Table4-1 Packet’slatency (including the instrumentation over head) asit travelsthe
TCP/IP stack

NOFIREWALL [units: ps]

T2-T1 T3-T1 T4-T1 T5-T1
64 bytes 11.89 14.04 28.35 31.86
1400 bytes 13.49 15.61 39.71 42.92

T3-T1 T4-T1 T5-T1

64 bytes 12.11 14.46 24.44 27.74
1400 bytes 13.97 16.35 36.38 40.18

Table 4-1 shows the time that it takes for a packet to travel from the bottom of
the stack to any other point in the stack, for example T2-T1 isthe time that it takes for
a packet to travel from the device driver to the beginning of the firewall. Thesetimes
include the instrumentation overhead. Now, Table 4-2 shows the results of the back-
to-back tests. Here, the Datalink layer’s overhead is about 1 s and the rest of them
add a little more than half of a microsecond each. The reason why the overhead of
the Datalink is greater than the rest of them is because of a nentpy(). This
mencpy() served to copy the header of the packet into an array that was passed to
the/ pr oc file system in order compare the headers of each packet and the sequence
number. Later, for the throughput tests, we found the mencpy() to be unnecessary

and it was removed from the instrumentation code.

Table4-2 Overhead of the single-packet testsinstrumentation

Test 1 Test 2 Average
Overhead of T1 (OT1) [us] 1.0725 1.0775 1.075 us
Overhead of T2 (OT2) [us] 0.555 0.555 0.555 us

Overhead of T3 (OT3) [us] 0.515 0.515 0.515 ps
Overhead of T4 (OT4) [us] 0.5675 0.5675 0.5675 us
Overhead of T5 (OT5) [us] --- --- 0.5675 us
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Notice that in the Table 4-2, T5 was not included in the back-to-back tests
because of an error in our back-to-back instrumentation. This error was found and
fixed for the throughput back-to-back tests. However, given that the code for T5 is
very similar to that of T2, T3, and T4, we inferred the back-to-back time for T5 is
approximately the same as the others. For the purpose of our analysis, we selected
0.5675 (the same value as T4) as a conservative estimate for T5.

The results in Table 4-2 were subtracted from the results in Table 4-1. So,
T2-T1 without the instrumentation overhead is equal to: T2-T1 with overhead minus
the overhead of T1 (OT1) + the overhead of T2 (OT2). Then, T3-T1 without the
overhead is equal to: T3-T1 with overhead minus OT1 + OT2 + OT3, and so on.
Thus, the time to process the stack without the instrumentation overhead is shown in

Table 4-3.

Table 4-3 Packet’s latency (excluding the instrumentation overhead) asit travelsthe
TCP/IP stack

NOFIREWALL [us]

T2-T1 T3-T1 T4-T1 T5-T1
10.26 11.90 25.63
11.86 13.46 37.00

T2-T1 T3-T1  T4-T1 T5-T1
64 bytes 10.48 12.32 21.73 24.46
1400 bytes 12.34 14.21 33.67 36.90

From this point on, all the results shown in the tables exclude the

instrumentation overhead.
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4.2 Procedures for single-packet tests

The parameters under test, shown in Table 4-4, included the transmission protocol,

connection speed, payload size, number of rules, type of filtering, and the INPUT

policy.

Table 4-4 Parametersunder test
Generic Test Setup
Transmission Protocol TCP UDP
Type of filtering/matching TCP, IP, MAC UDP, 1P, MAC
INPUT policy ACCEPT & DROP DROP
Connection speed 100Mbps
Payload size 64 &1400 bytes
Number of rules No firewall, 10, 40, 100

Table 4-4 shows a generic table for the test setup. During the tests neither the
server nor the client ran any services. Both machines used a 10/100 Mbps 3Com
NIC, model 3C905C. The connection speed was 100 Mbps in an isolated system,
sending one packet every 4 seconds. The payload size varied between 64 and 1400
bytes. The type of filtering was IP and MAC addresses for both protocols, and TCP
and UDP for each respective transmission protocol. The number of rules under each
type of filtering was zero (or No Firewall), 10, 40, and 100 rules. Both INPUT
policies ACCEPT and DROP were tested for TCP, but only the INPUT policy DROP
was tested for UDP. A total of 40 packets or samples on one single test were sent to
the host. The results were accessed viathe/ proc/ file system. Three tests were
performed for each type of filtering, from which we took the median of the total

samples to exclude any outliers. The medians were averaged for afinal result.
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4.3 Single-packet test results

The results obtained from single-packet tests provided the following information: (a)

that the payload size impacts the performance before and after the firewall but not the

firewal itself, (b) that the INPUT policy does not affect the performance of the

firewall, (c) that the firewall (T3 — T2) is affected only by type of filtering/matching

and the number of rules, and (d) that the time to process a packet from T1 to T5 is

affected by the parametersin (c) and also by the payload size.

43.1

Timing the network stack

The first analysis involved plotting al the measurement data obtained at each layer.

Figure 4-1 shows the timestamps of T2 to T5 with respect to T1. The line connecting

T2-T1 and T3-T1 represents the time that it takes for the firewall to execute.

No firewall - TCP packet - INPUT policy DROP

80.00
70.00
60.00
50.00
3
o 40.00 m
9 /-—/
30.00 /0—/”
20.00
10.00 '_”:_'//
0.00
T2-T1 T3-T1 T4-T1 T5-T1
—e— 64 bytes 10.26 11.90 25.63 28.58
—— 1400 bytes 11.86 13.46 37.00 39.64
Position of the packet in the TCP/IP stack
Figure4-1 L atency increases asthe payload size increases
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From Figure 4-1 and 3-7 we have:
Starttime=T2-T1
Firewall = (T3-T1)—(T2-T1) =T3-T2
TCPlayer = (T4-T1) - (T3-T1) =T4-T3
Socket layer = (T5-T1) - (T4-T1) =T5-T4

Total processingtime=T5-T1

4.3.2 T2-T1

The resultsfor TCP and UDP in Table 4-5 show that the difference between T2 -T1
increases as the payload size increases. For example, compare the averages for 64

bytes with the averages for 1400 bytes. The reason for thisis because the packet is

copied from the network into kernel space.

Table4-5 Payload impact in T2-T1 —timeincreases asthe payload size increases
[units: us] ‘
UDP

IP MAC UDP
64 bytes T2 - T1|T2 - T1|T2 - T1 |64 bytes T2 -T1 | T2 -T1 | T2 -T1
No firewall 10.26 10.26 10.26| No firewall 10.48 10.48 10.48
10 rules 10.46 10.23 10.54 10 rules 10.45 10.50 10.45
40 rules 10.58 10.59 10.26 40 rules 10.51 10.60 10.61
100 rules 10.72 10.64 10.56 100 rules 10.66 10.55 10.68

Average 10.51 10.43 10.40 Average 10.52 10.53 10.55

1400 bytes 1400 bytes

No firewall 11.86 11.86 11.86] No firewall 12.34 12.34 12.34
10 rules 12.02 11.90 11.94 10 rules 12.38 12.27 12.36
40 rules 12.05 12.10 11.92 40 rules 12.39 12.43 12.52
100 rules 12.31 12.15 12.30 100 rules 12.42 12.48 12.54

Average 12.06 12.00 12.00 Average 12.38 12.38 12.44
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4.3.3 T4-T3

At the TCP and UDP layers, the latter is processed faster than the TCP layer because
of the nature of the complexity of their algorithm. However, the time to process the
layers is influenced by the payload size because the data is copied from kernel space
to user space. For example, the resultsin Table 4-6 demonstrate that the average time

to process 64 bytes of payload is shorter than 1400 bytes of payload.

Table 4-6 Impact of the payload sizein T4 — T3 —timeincreases asthe payload size
increases
‘ T4 [units:‘ us]
- TCP UDP |
MAC UDP 64 bytes MAC UDP
No firewall 13.74 13.74 13.74|No firewall 9.42 9.42 9.42
10 13.89 1414 14.20 10 9.48 9.40 942
40 14.32 1468 14.72 40 9.63 995 9.89
100 14,57 15.02 1481 100 10.09 10.25 10.18
Average 14.13 14.39 14.37|Average 9.65 9.75 9.72
TCP
MAC UDP 1400 bytes IP
No firewall 2354 2354 23.54No firewall 19.46 19.46 19.46
10 23.65 24.07 24.22 10 19.46 19.35 19.23
40 24.00 2486 24.67 40 19.48 19.83 19.75
100 2438 25.07 24.62 100 19.90 20.02 20.03
Average 23.89 24.38 24.26lAverage 19.57 19.66 19.62

434 T5-T4

Different from T2 — T1 and T4 — T3, the socket layer is processed at random times.
Two tests were performed in order to study the time to process the socket layer with
respect to the size of the payload. The tests did not include a firewall. Figure 4-2
shows that the time to process this layer is not dependent on the payload size but

given that it is a process controlled by the scheduler, it is executed at a random time.
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Figure 4-2 Randomness at the socket layer —socket layer is called randomly regar dless of
the number of rules

4.4 INPUT policy ACCEPT vs. DROP

After having analyzed the other layers, we study the sensitivities of the firewall. The
anaysis of the INPUT policies is done first. Table 4-7 shows the time difference

between T5 - T1 for each policy using various types of matching, number of rules and
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payload size. It becomes evident that the time differences between the TS5 — T1 for
both policies (i.e. Accept — Drop) are insignificant. Consequently, we believe that the

policy has no effect in the performance.

Table 4-7 Difference between INPUT policy ACCEPT and DROP —firewall is not
sensitiveto the INPUT policy

Number of rules - (payload size) [units: ps]

INPUT policy - [T5 - T1]
IP matching Accept Drop Acc - Drop

10 rules - (64 bytes) 29.94 29.92 0.02
10 rules - (1400) 41.14] 40.77 0.38
40 rules - (64) 34.12 34.00 0.12
40 rules - (1400) 45.00 44.90 0.10
INPUT policy - [T5 - T1]
MAC matching Accept Drop
10 rules - (64) 35.66 35.23 0.43
10 rules - (1400) 47.00 46.57 0.43
40 rules - (64) 57.13 55.41 1.72
40 rules - (1400) 68.67 66.84 1.83
INPUT policy - [T5 - T1]
Accept Drop
10 rules - (64 ) 35.93 36.00 0.07]
10 rules - (1400) 47.02 47.30 0.28
40 rules - (64 ) 54.48 54.73 0.25
40 rules - (1400) 65.66 65.92 0.26]

4.5 TCPand UDP Firewall Performance [T3 - T2]

As mentioned at the beginning of the chapter, the type of filtering and the number of
rules have a performance impact in the firewall (T3 - T2) but the payload size does

not. The tables presented in this section show our findings.
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The results are organized as follows:

1. Study of the impact generated by the payload size

2. Study of the impact generated by the number of rules

Note: Theresultsin the tables are from tests that used INPUT policy DROP.

451

Payload size effect

The tables below (Table 4-8 through Table 4-10) present the results for different

types of matching.

payload sizes, 64 and 1400 bytes.

Inside each table and under N rules, there are two different

It is clear that the time difference [T3 — T2]

between the payload sizes belonging to a specific number of rulesisvery small. This

demonstrates that the payload size does not affect the performance between T2 and

T3. Also notice that, as expected, IP matching took less processing time than any

other type of matching —refer to thei pt abl es algorithm in Chapter 3.

Table 4-8 IP matching for TCP and UDP packets —firewall is not sensitive to the payload
size

TCP 1P 1P

PACKETS [units: ps] [units: ps]

10 RULES T2 -T1 | T3 -T1 | T3 - T2 | |10 RULES T2 -T1| T3 -T1 | T3 -T2

64 bytes 10.46 13.10 2.64 64 bytes 10.45 13.59 3.13

1400 bytes 12.02 14.66 2.63 1400 bytes 12.38 15.57 3.18

40 RULES |T3 -T2 40 RULES T3 -T2

64 bytes 10.58 16.81 6.22 64 bytes 10.51 17.01 6.50

1400 bytes 12.05 18.44 6.38 1400 bytes 12.39 19.12 6.73

100 RULES |T3 -T2 100 RULES T3 -T2

64 bytes 10.72 24.66 13.94 64 bytes 10.66 24.72 14.06

1400 bytes 12.31 26.27 13.96 1400 bytes 12.42 27.10 14.68
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Table4-9 MAC matching for TCP and UDP packets —firewall isnot sensitiveto the
payload size
MAC UDP MAC
[units: ps] PACKETS [units: ps]
10 RULES T2 -T1| T3 -T1 |T3 - T2| [10 RULES T2-T1 T3-T1 T3 -T2
64 bytes 10.23 18.19 7.96| |64 bytes 10.50 19.59 9.09
1400 bytes 11.90 19.95 8.06| (1400 bytes 12.27 21.65 9.38
40 RULES T3 - T2 | 40 RULES T3 -T2
64 bytes 10.59 37.94 27.35| |64 bytes 10.60 3941 28.81
1400 bytes 12.10 39.49 27.40| 1400 bytes 12.43 41.75 29.32
100 RULES T3 - T2 | 100 RULES T3 -T2
64 bytes 10.64 80.56 69.92| 64 bytes 10.55 80.65 70.09
1400 bytes 12.15 82.08 69.93| 1400 bytes 12.48 82.86 70.38
Table 4-10 TCP/UDP ports matching for TCP and UDP packets — firewall isnot sensitive

to the payload size

TCP UDP - UDP
[units: ps] PACKETS [units: ps]
10 RULES 2-T1 T3-T1 (T3 -T2 | [A0RULES |[T2-T1| T3-T1 |T3 -T2
64 bytes 10.54 19.04 8.51| |64 bytes 10.45 19.16 8.71
1400 bytes 11.94 20.53 8.59| (1400 bytes 12.36 21.33 8.97
40 RULES T3 - T2 | |40 RULES T3 -T2
64 bytes 10.26 37.19 26.93| |64 bytes 10.61 38.67 28.06|
1400 bytes 11.92 38.81  26.89| (1400 bytes 12.52 41.30 28.78
100 RULES 100 RULES T3 -T2
64 bytes 10.56 78.46  67.90| |64 bytes 10.68 78.56 67.89
1400 bytes 12.30 80.28  67.98| 1400 bytes 12.54 80.69 68.16|

Tables 4-8 through 4-10 show matching for 10, 40, and 100 rules for TCP and

UDP packets. It is evident that the payload size can be considered negligible for the

performance given by T3-T2.
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452 Number of rules effect

To demonstrate that the number of rules and the type of matching have an effect in
the performance of the firewall, the tables presented above are reorganized. Notice,
in the Tables 4-11 through 4-13, that as the number of rules increase the difference
between T3 — T2 aso increases. Subsequently, the number of rules impacts the
performance of the firewall.

Notice in the tables that for “No firewall,” the results for T3 — T2 is non-zero.
This can be explained with the i pt abl es agorithm because, as depicted in Figure
3-16, whenthei p_I| ocal _del i ver function returnsit makes acall to the netfilter
hook NF IP LOCAL _IN. When a netfilter hook is called, the function
i pt _hook() isexecuted. Thislatter returnsacall toi pt _do_t abl e. This latter
will check the iptables rule-set and if no rules are found, the function will exit
ipt_do table and ipt_hook and finaly make a cal to

i p_l ocal _deliver_finish. Thisprocesswill take between 1.60 to 1.90 us.

Table4-11 Matching IP —timeincreases astherulesincrease
1P 1P

matching UDP packets matching

[units: ps] [units: ps]
64 bytes T2-T1| T3-7T1 [T3-T2||e4bytes [T2-T1| T3-T1 [ T3-T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.46 13.10 2.64 10 rules 10.45 13.59 3.13
40 rules 10.58 16.81 6.22 40 rules 10.51 17.01 6.50|
100 rules 10.72 24.66 13.94 100 rules 10.66 24.72 14.06

1400 bytes T2 -T1| T3-T1 |T3 - T2| (1400 bytes |T2 - T1| T3 -T1 | T3 - T2

No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 12.02 14.66 2.63 10 rules 12.38 15.57 3.18
40 rules 12.05 18.44 6.38 40 rules 12.39 19.12 6.73
100 rules 12.31 26.27 13.96 100 rules 12.42 27.10 14.68
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Table4-12

Matching M AC addresses —timeincreases asrulesincrease

MAC MAC
matching UDP packets matching
[units: ps] [units: us]
64 bytes T2-T1| T3-T1 |T3 - 72|64 bytes T2-T1| 13-T1 [1T3-T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.23 18.19 7.96 10 rules 10.50 19.59 9.09
40 rules 10.59 37.94 27.35 40 rules 10.60 39.41 28.81
100 rules 10.64 80.56 69.92 100 rules 10.55 80.65 70.09
1400 bytes | T2 - T1 T3 -T1 |T3 - T2||1400 bytes T2 -T1| T3 -T1 |T3 -T2
No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 11.90 19.95 8.06 10 rules 12.27 21.65 9.38
40 rules 12.10 39.49 27.40 40 rules 12.43 41.75 29.32
100 rules 12.15 82.08 69.93 100 rules 12.48 82.86 70.38|
Table4-13 Matching TCP ports—timeincreases astherulesincrease

TCP
matching

UDP packets

UDP
matching

[units: ps] [units: ps]

64 bytes T2-T1| T3-T1 [T3 - T2| 64 bytes T2-T1| 73-T1 [T3-T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.54 19.04 8.51 10rules  10.45 19.16 8.71
40 rules 10.26 3719  26.93 40 rules  10.61 3867  28.06
100 rules 10.56 7846  67.90 100 rules  10.68 7856  67.89
1400 bytes |[T2 - T1| T3 -T1 [T3 - T2|[1400 bytes |T2-T1| T3 -T1 |T3 -T2
No firewall 11.86 13.46 1.60| No firewall 12.34 14.21 1.87]
10 rules 11.94 20.53 8.59 10rules  12.36 21.33 8.97
40 rules 11.92 3881  26.89 40 rules 1252 4130  28.78
100 rules 12.30 80.28  67.98 100 rules 12,54 80.69  68.16
45.3 Linear relationship of [T3 —T2]

The plot of the data just presented shows a linear relationship between the

performance impact and the number of rules. Figures 4-3 and 4-4 present the T3—-T2

trendlines for TCP and UDP using the data obtained for packets of 64 bytes of

payload. They also present a set of equations that may serve to estimate the time to

process T3 —T2 up to 100 rules.
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Graph of [T3- T2] for TCP packets of 64 bytes of payload
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Figure 4-3 TCP connection —[T3—T2] —linear relationship between the number of rules
and thetimeto processthefirewall
Graph of [T3 - T2] for UDP packets of 64 bytes of payload
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Figure4-4 UDP connection —[T3-T2] - linear relationship between the number of rules

and thetimeto processthefirewall

Evidently, there is a linear relationship between the number of rules and time

to process T3 -T2.
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4.6 Total processing time[T5 — T1] with respect to [T3 —T2]

The total processing time (T5 —T1) is expected to be slower for TCP packets than for
UDP packets; refer to the T4 — T3 section presented earlier. The resultsin the Table
4-14 confirm that the number of rules directly affects the total processing time. In
addition, it shows that the payload size also impacts the total processing time (e.g.

compare “No firewall” for 64 and 1400 bytes.)

Table4-14 TCP and UDP - Differencein Total processingtime[T5 —T1] for threetypes of
filtering rules

T5-T1 [units: ps]
UDP PACKETS
: | : : MAC UDP

64 bytes T5-T1| T5-T1 | T5-T1 |64 bytes T5-T1 | T5-T1| T5-T1
No firewall 28.58 28.58 28.58| INo firewall 24.46 24.46 24.46
10 rules 29.92 35.23 36.00 |10 rules 25.81 31.81 31.42
40 rules 34.00 5541 54.73 140 rules 29.46 52.25 51.48
100 rules 41.99 98.28 95.90| {100 rules 3764 9387 91.75
1400 bytes 1400 bytes

No firewall 39.64 39.64 39.64{ |No firewall 36.90 36.90 36.90
10 rules 40.77 46.57 47.30 10 rules 38.37 44.17 43.78
40 rules 44.90 66.84 65.92 140 rules 41.91 64.97 64.45
100 rules 53.09 109.47 107.18[[100 rules 50.37 106.32 103.99

4.6.1 Firewall % overhead with respect to T5 —T1

The impact of T3 — T2 can be expressed in terms of a percentage overhead generated
by the firewall over the total processing time (T5—T1). The resultsin Tables 4-15
through 4-17 show that: (1) as the number of rules increases the percentage overhead
increases up to a 75% for UDP and up to 71% for TCP; on the other hand, (2) as the
payload size increases for a specific number of rules, the percentage overhead

decreases — this is because the firewall is not sensitive to the payload size,
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consequently, an increase in payload will increase T5—T1 while T3 -T2 will remain

the same. The percentage overhead was calculated as follows:

Table 4-15

Firewall's % overhead = (T3 - T2)/(T5-T1) * 100

Per centage overhead of | P matching over the T5 — T1 —overhead increases as
the number of rulesincrease

TCP PACKETS

UDP PACKETS

IP matching IP matching

64 bytes T5-T1|T3-T2| % overhead | |64 bytes % overhead
No firewall 28.58 1.64 6%| [No Ffirewall 24.46 1.84 8%
10 rules 29.92 2.64 9% 10 rules 2581 3.13 12%
40 rules 34.00 6.22 18%) 40 rules 29.46 6.50 22%
100 rules 41.99 13.94 33%| {100 rules 37.64 14.06 37%
1400 bytes 1400 bytes

No firewall 39.64 1.60 4% |No firewall 36.90 1.87 5%
10 rules 40.77 2.63 6% 10 rules 38.37 3.18 8%
40 rules 44.90 6.38 14%| {40 rules 41.91 6.73 16%
100 rules 53.09 13.96 26%)| (100 rules 50.37 14.68 29%
Table 4-16 Per centage overhead of MAC matching over the T5 —T1 - overhead increases

TCP PACKETS

asthe number of rulesincrease

UDP PACKETS

MAC matching

MAC matching

64 bytes T5-T1 T3-T2 % overhead| [64 bytes T5-T1|T3 -T2 % overhead

No firewall 28.58 1.64 6%| [No Ffirewall 24.46 1.84 8%
10 rules 35.23 7.96 23%| (10 rules 3181 9.09 29%
40 rules 5541 27.35 49%| 40 rules 5225 2881 55%
100 rules 98.28 69.92 71%| (10O rules 93.87 70.09 75%
1400 bytes % overhead | 1400 bytes % overhead
No firewall 39.64 1.60 4% |No firewall 36.90 1.87 5%
10 rules 46.57 8.06 17%] 10 rules 4417 9.38 21%
40 rules 66.84 27.40 41%| 40 rules 64.97 29.32 45%
100 rules 109.47 69.93 649% [LOO rules 106.32 70.38 66%
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Table4-17 Per centage overhead of TCP matching over T5 —T1 - overhead increases asthe

number of rulesincrease

TCP PACKETS UDP PACKETS

TCP matching

UDP matching

64 bytes T5-T1|T3 -T2 % overhead 64 bytes T5-T1| T3-T2 [% overhead
No firewall 28.58 1.64 6%| [No firewall 24.46 1.84 8%
10 rules 36.00 8.51 24%| 10 rules 31.81 8.71 27%]
40 rules 5473 26.93 49% |40 rules 52.25 28.06 54%
100 rules 9590 67.90 71%| (100 rules 93.87 67.89 72%
1400 bytes % overhead 1400 bytes % overhead
No firewall 39.64 1.60 4%| |No firewall 36.90 1.87 5%
10 rules 47.30 8.59 18%| |10 rules 4417 8.97 20%|
40 rules 6592 26.89 41%) |40 rules 64.97 28.78 44%
100 rules 107.18 67.98 63%] (100 rules 106.32 68.16 64%

4.7 Latency resultsfor various throughputs

471  Test procedures

The tests were performed using the SmartBits network tester. Because of the
limitation of the system, we only tested UDP packets. The SmartBits was configured
to transmit packets to the DUT for one minute before the timestamps were taken. The
SmartBits' “Smart Window” application automatically showed how many packets
would be transmitted in one minute. The DUT kept the count of the number of
incoming packets until a minute had elapsed. A total of 4000 timestamps were stored
in the memory buffers. The median of 3 tests with 4000 measurements each was

calculated for afinal result. The parameters for each test are shown in the Table 4-18.

Table4-18 Parametersunder test
Transmission Protocol UDP
Type of filtering/matching 1P, MAC
INPUT policy DROP
Throughput / transmission rates 5 & 10 Mbps
Payload size 64 bytes
Number of rules No firewall & 100
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The tests were performed only for two types of filtering, IP addresses and
MAC addresses. The number of rules used was zero (or No firewall) and 100. Even
though the hardware supported a 100 Mbps throughput, only tests for 5 and 10 Mbps
were performed because the timestamping instrumentation made the DUT loose
interrupts. When our instrumentation was loaded and 100 rules filtering MAC
addresses were added to the rule-set, a link utilization higher than 12% (i.e. 12 Mbps)
would cause loss of interrupts. Tests were performed without the instrumentation and
100% link utilization (i.e. 100 Mbps) could be reached without any loss of interrupts
even when filtering 100 MAC addresses. This latter test is very important because it
eliminates the possibility that the firewall is the cause of the interrupt loss but that the

problem is caused by the instrumentation.

4.7.2 Back-to-back timing measurements for throughput tests

As described in detail in Chapter 3 some changes were made to the instrumentation.
S0, as it was done for the single-packet tests, new back-to-back measurements were
taken and subtracted from the measurement results to obtain better estimates. Notice
in the results in the Table 4-19 that the overhead produced by T1 is 0.36 us compared
to the 1 us overhead obtained for the single-packet back-to-back tests shown in the

Table 4-2; thisis because of the changes made to thedev. c file.

Table 4-19 I nstrumentation over head

Test 1l Test 2 Average
Overhead of T1 (OT1) [us] 0.37 0.3625 0.3625

Overhead of T2 (OT2) [us]| 0.4625| 0.4625| 0.4625
Overhead of T3 (OT3) [us]| 0.4675| 0.4775 0.4775
Overhead of T4 (OT4) [us] 0.6075 0.6025 0.6025
Overhead of T5 (OT5) [us] 0.545 0.545 0.545
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Notice that this time we were able to measure the overhead of T5. As
mentioned earlier, the error found for the single-packet back-to-back tests for T5 was
fixed; this allowed us to measure the overhead of T5 for the instrumentation used in

the throughput tests.

473  Testresults
The results obtained using the SmartBits tool show in the Table 4-20 that as
the throughput increases, the latency decreases. In other words, the faster the

transmission rate, the faster the packet is processed in the stack.

Table 4-20 Differencein the latency for variousthroughput — latency decreases asthe
throughput increases

SINGLE-PACKET every 4 seconds [units: us]

64 BYTES T2-T1 T3 -T1 T4-T1 T5-T1

No firewall
100 rules 1P 37.64
100 rules MAC 93.87]

MULTIPLE PACKETS - 5 Mbps
No firewall

100 rules 1P
100 rules MAC

MULTIPLE PACKETS - 10 Mbps
64 BYTES T2 - T1
No firewall
100 rules 1P
100 rules MA

28.29
84.95

Notice in the Figure 4-5 that the single-packet tests show the highest latency
between T5-T1. On the other hand, the smallest latency (i.e. faster processing time)

is when the throughput is 10 Mbps. Consequently, this data shows that the single-
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packet measurement results may serve as a conservative upper bound to estimate the

time to process the packets by the stack.

Comparison between T5 - T1 as the throughput increases
100.00
80.00 =
60.00
(8]
(3]
(2]
> 40.00 .\F
- —m
20.00 = + 4
0.00
1 pkt every 4 sec 5 Mbps 10 Mbps
—&— No firew all 24.46 20.40 19.51
—@— 100 rules IP 37.64 29.15 28.29
—A— 100 rules MAC 93.87 87.14 84.95
Percent utilization on the link
Figure 4-5 Comparison between T5-T1 for different transmission rates — latency decr eases

asthethroughput increases

By breaking up the stack into layers, the results in Table 4-21 show the time
that a packet is held by the firewall, the UDP layer, and the Socket layer. Noticein
the table that between T3-T2 (i.e. the firewall) and T4-T3 (i.e. the UDP layer) the
packet is processed faster as the throughput increases. On the other hand, this is not
the case for T5-T4 (i.e. the socket layer) where the time to process this layer is

random, lying between 2 and 3 pus regardless of the throughput.
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Table4-21 Timethat a packet isheld on each layer

SINGLE-PACKET every 4 seconds [units: us]
T4 - T3 T5 - T4

MULTIPLE PACKETS 5 Mbps
64 BYTES

100 rules 1P

MULTIPLE PACKETS 10 Mbps
64 BYTES

100 rules 1P

100 rules MAC 2.30
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Chapter 5  Conclusion and Future Work

5.1 Summary

The goal of this research was to study the sensitivities and the performance impact of

the Linux firewall i pt abl es in a host. We placed timestamps throughout the

TCP/IP stack of a host PC running Linux version 2.4.7. With each timestamp, we

looked at the latency of a packet as it traversed the entire network stack. To collect

accurate data from our instrumentation, we analyzed the path that an incoming packet

follows in the stack.

The purpose of the single-packet tests was to find the sensitivities of the

firewall. The results obtained showed the following:

(1)

(2)

That the firewall is not sensitive to the transmission protocol (i.e. TCP or
UDP), the INPUT policy, or the payload size. However, we found that the
transmission protocol and the payload size impact the host’ s network stack.

We found the firewall to be sensitive to the type of filtering and the number of
rules. When filtering IP addresses, TCP/UDP ports, and MAC addresses the
cost per rule increases linearly and its cost is approximately 0.12, 0.66, and
0.68 ps/rule, respectively. We were able to explain the difference in the
performance cost between IP and the other types of filtering through the
i pt abl es agorithm. Also, our results showed that the percentage overhead
generated by afirewall when a single packet of 64 bytes of payload travels the
TCP/IP stack, and for arule-set of zero and 100 rules, ranges from 6% to up to

75%, respectively.
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We performed throughput tests for 5 and 10 Mbps with the instrumentation, and
for 100 Mbps without the instrumentation. The results were surprising because we
did not expect to see a decrease in the latency for higher throughput, neither did we
expected to be able to perform a 100% link utilization (i.e. 100 Mbps throughput)
without any interrupt loss. The performance measurements obtained in the 5 and 10
Mbps tests demonstrated that the single-packet test results hold to be valid
conservative estimates, and that they can serve as an upper bound to estimate the
overhead generated by the firewall. The 100 Mbps tests showed that there is no
interrupt loss for a firewall with 100 rules filtering MAC addresses. From this, we
infer that the firewall does not affect the protocol throughput.

Finally, as mentioned in the Introduction, according to 3Com, a third party
vendor discovered that after 30 rules a firewall degraded the performance of a system
tremendously. Our results have proved a steady increase in performance overhead as
the number of rules increase, proving that their data does not pertain to the

I pt abl es netfilter.

5.2 Possible future work

Our studies have focused only on 4 types of i pt abl es matches (i.e. IP,
MAC, TCP and UDP.) Future work could expand on this by testing the
performance of other types of matches. Also, it would be interesting to
compare the performance of commercia firewalls versus the open source

firewal i pt abl es.
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Some problems were found in the instrumentation. When loaded, as the
throughput and number of rules in the iptables rule-set increased, the
timestamp instrumentation caused the kernel network device driver to lose
interrupts. On the other hand, without the timestamp instrumentation and with
100 rules filtering MAC addresses a 100% utilization in the link (i.e. 100
Mbps) could be reached without any packet loss.  Therefore, the
instrumentation must be debugged to support higher throughputs.

Test the performance of TCP packets. We were not able to perform this tests
because of our timestamp instrumentation and the SmartBits tester only allows
us to control the flow of UDP packets.

Analyze and compare the performance of the netfilter when it is used as a
firewall router.

The i pt abl es netfilter has been ported to the CiNIC architecture for the
kernel 2.4.3. In order to be able to compare the results presented in this
document, the CiNIC should be upgraded to the 2.4.7 version of the Linux
kernel, and then compare the tests results.

A feature not yet supported by firewalls but mentioned by some experts [31],
isto design afirewall that filters the payload data inside packets. Filtering the
data inside the packet could serve to prevent packets carrying worms or

viruses. Future research can be done to study this matter.
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Appendix A Performing tests in the co-host

Testing the firewall on the EBSA285 board will serve to find out how the
performance in a co-host scales in comparison to the host. We were unable to
benchmark the co-host, however, we build the software platform to perform the tests.

Bellow we describe the hardware and software implementation on the host.

A.1 Hardware

Our DUT is Sextans, an EBSA285 board with a StrongArm (SA-110) Intel
chip, see Figure A-2. The board is connected via a seria port to Hydra, the client.
We connect Sextans to Hydra via the same 3Com switch used to make the tests for

the host, see Figure A-1.

Switch —| Orion

Figure A-1 Co-host test setup
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Intel EBSA-285 Host PC

Secondary PCI
host bridge slot
on the 21554

Intel 21554 &
Secondary PCI

FuturePlus
FS2000 PCI
Probe

3Com
3c905C NIC

Promise Ultra 66 EIDE Card
(not installed as shown)

Figure A-2 CiNIC Architecture[22]

A.2 Softwarein the co-host

After having problems compiling a 2.4.7 version of the kernel for the co-host, we
decided to use a 2.4.3-rmk2-bpa-jdf version of the kernel. To install iptables to the
co-host’s sources we first took the original sources for the 2.4.3 kernel and applied
the iptables patch. Then, we applied Russell King's patch (i.e. rmk2), then the Big
Physical Area (i.e. pgh) patch, and finally Jim Fisher’s patch.

Usually we log-in to Sextans using a Telnet session, however, in order to
avoid any traffic in the connection (just as we did for single-packet tests) we connect
the seria port to adifferent PC and use a console to maintain communication with the
CiNIC [29]. We tested the firewall only with the INPUT policy set to ACCEPT

because otherwise, if the firewall’s INPUT policy is DROP, the firewall will block all
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the ports (even the seria port) and we will not be able to log in. You may ask if the
INPUT policy make a difference to the sensitivity of the firewall? Aswe saw earlier
in the first section of Chapter 4, the INPUT policy does not make any difference. The

test procedures are the same as the one explained in Appendix C.

A.3 Timestamp implementation on the EBSA21285

A.3.1 Clocks

The StrongArm SA-110 microprocessor does not have an internal clock fulfilling the
same functionality that Time Stamp Counter of the x86 processor architecture. It,
however, operates at any one of 16 core clock frequencies but its maximum frequency
of operation is limited by the speed of the core clock of the EBSA-285 [33]. Thus,

the maximum frequency of the EBSA-285 core clock is 233 MHz.

A.3.2 Times

Since the SA-110 does not have an internal clock we use a timer Control register.
The timer register should be able to provide us with accuracy in the microseconds.
We found that the EBSA-285 has four 24-bit timers “that can be preloaded and either
free-run, or decremented to zero and then reloaded [34].” In other words, we can use
one of the EBSA’ s timers to perform our measurements since we can control the start
and stop times.

The timer block diagram for the EBSA-285 is shown in Figure A-3 [34]:
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[ LoadRegister | |  Control Register

System |
Clock Divide Divide
by 16 by 16

24-Bit Down Counter I_bTermmal Count

Interrut
il'q_i n_| v
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Figure A-3 EBSA-21285 Timer Block Diagram

The 21285 Core Logic Data Sheet [34] says that the four timers can be clocked in

four different ways:

fclk _in: 50 MHz

fclk_in divided by 16

fclk_in divided by 256

External input: 3.6874 MHz

In order to obtain precise measurements we need at least microseconds
resolution. Then, we must calculate the precision that a 24-bit register can provide as
well as the roll-over time for we do not want the timer to roll over while the packet in
passing through the stack.
The resolution can be calculated as follows:

CLOCKING 1: Inverse of ( Input Frequency ) =1/( 50 MHz ) = 0.02 us

CLOCKING 2: Inverse of ( Input Frequency div 16 ) = 1/( 50 MHz / 16 ) = 0.32 ps

CLOCKING 3: Inverse of ( Input Frequency div 16 ) = 1/( 50 MHz / 256 ) =5.12 us
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Therollover timeis obtained by:

CLOCKING 1: Resolution * 22* = 0.02 ps * 22* = 0.34 seconds

CLOCKING 2: Resolution * 24 = 0.32 ps * 2% = 5.36 seconds

CLOCKING 3: Resolution * 224 = 5.12 ps * 22* = 85.9 seconds
We timed to a microsecond resolution by dividing the input frequency by 16,
and as a matter of fact, that is what the kernel uses to control the number of jiffies for

the EBSA. SeeFigure A-4.

'P"i Linuxiinclude/asm-arm/arch-ebs a285/time_h - Konqueror : 2 |=I |g|5|
Location Edit View Go Beokmarks Tools Setings Window Help
i o ey fa ;
EXET R 1R & “RXKAR A
k> LgcationlIusra“src.l’linux-“include.-“asm-arrnfarch-ebsa285r'tirne_h j |

Z0 A

251 if (machine_is_ebsa285() ||

252 machine_is_co285() ||

253 machine_is_personal_senver()) {

254 geftimeoffset = timerl_gettimeoffset;

255

256 *CSR_TIMER1_CLR =0;

257 *CSRB_TIMER1_LOAD = LATCH;

258 *CSR_TIMERT_CNTL = TIMER_CNTL_EMNABLE | TIMER_CNTL_AUTORELOAD | TIMER_CNTL_DIV16;

259

260 timer_irg.handler = timer1_interrupt;

261 ig = IRQ_TIMER;

262 } else { s |

263 /* enable PIT timer */ LI

Figure A-4 ARM Linux useto control of timers

A.3.3  Controlling thetime registers

The ARM Linux kernel provides a very simple way to access the Timer Control and
Status registers. Figure A-5 shows how to control the third timer (i.e. TIMER3) to

take timing measurementsin the dev.c file.
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[ rooti@sextans.cpnpry.calpoly.edu: fusrisrcilinux/netfcore - Terminal [=][ol[x]

File sessions Seftings Help

JImV|C]

Slprintk (" skbh-rztampi Eli |".skb-rztamp,ty_uszec):?

A4 oget time

=CSRE_TIMERZ_CLR=0;

=[5k _TIMERZ_LOAD=0xFFFFFF &

*[5R_TIMERZ_CHTL= TIMER_CHTL_EMAELE | HIMER_CNTL_AUTORELCAD | TIMER_CHTL_DIVIG:

low = readl{CSE_TIMER3_VALLE}:

Afprintk (" dlink_stamp: Zlu A", low?:

dlink_time, low[pkt_counter] = low:
dlink_time.tstamplpkt_counter] = skb->stamp.tv_usect
dlink_time,threadlpkt_counter] = pkt_counter:

[a]w]

1190, 40-47 41%

Figure A-5 Using Timer Control Registersin the EBSA285

First of al we clear/reset the register using the *CSR_TI MER3_CLR=0. Timers
usually decrement, therefore, we have to load the 24 bit timer
*CSR_TI MER3_LOAD=0xFFFFFF. The* CSR_TI MER3_CNTL controls the timer, sets
the bits to autoreload, and set the bits that divide the clock by 16 in order to give us a
microsecond resolution. Thetimers are read by using ther eadl () macro.

Given that the timer will reset after 5.32 seconds, it is best to reset the timer at
the socket layer. Figure A-6 shows how at the socket layer we read the timer and

after all the data has been stored we reset and stop it.
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1 root@sextans.cpnpry.calpoly.edu: fusrisrciinuxmet - Terminal E@E

File Sessions Settings Help

[

megi{ztruct socket #=zock. struct meghdr =msg. int size. int flags)
struct scm_cookie =cm;

memset fgscn, O, sizecof {zcm));?
size = sock-rops--BEBMnsg (sock, msg. size, flags,. sscm);
if {=ize »= 0}

scn_BBeM sock,. nsg. sscm, flags):

fewexxess god timestamp =/
if ({mock->sh-»num == &789) aa {(size == 10243} i
menzet (gzock_tstamp. 0. zizeof {ztruct sock_stack_hdrl iz
menzet (gzock_TSC_time . 0. sizeof {ztruct TSCtstamp?):
zock_counter = 07
zock_tstamp, index = Of
*CSRE_TIMERS_CLR=0;
*CSRE_TIMERS_CHTL=0¢
3 *CSRE_TIMERS_LOAD=0 ¢
if f__SOCKtimestamp? €
if (fzock-rsk->num == 12345} se {(size >= 541} {
u_int32_t low=0z
Afprintkd "sock_FEEMnsz "2
if{ {=ock_tstamp,index! »= ARRAY_LIST) {
memzet (gzock_tstamp,. 0, sizeof (ztruct sock_sta
ck_hdrli:
zock_counter = 0f
3 zock_tstamp, index = Of
£ et Lime
low = readl{CSE_TIMERZ_VALUE?:
sock_TSC_time,low[sock_counter]= low:
sock_TSC_time,thread[=ock_counter]= sock_counter:

ffget TCP header data
sock_tstame,sport[sock_counter]
zock_tstame ,dport[=ock_counter]

zock-rsk-report 2
=ock -k -rdport 2

iftzock_counter < 20 £
(=__SOCKtimestamp! (SCK. (unzigned char =)asock
_t=stamp. {unzigred char #)zszock_TSC_time.sock_counteri:

b
Sfprintk ("SOCKET >» counter: Xdw". sock_counter);
Sfprintk (" socket_stampo: Elu wn". low!;
Aiprinthk (' -—-———-——- EHLT  Soc—ranr Ny
zock_tstamp, index++x
zock_counter++:

3
=CSRE_TIMERZ_CLR=0;
=CSRE_TIMERZ_CHTL=0¢
=CSRE_TIMERZ_LOAD=0¢

fewnnnnnn ond hack =/
ﬂ return sizez

608, 1 21%

[a]w]

Figure A-6 Reseting TIMER3 at the socket layer
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Appendix B Setup for testing afirewall for a single host

B.1 Single packet tests

DUT: Volans

CLIENT: Libra

3Com switch

Switch:

3Com Office Connect
10/100 Dual Speed Switch 8
Serial: 7L5V016E08

DUT characteristics:
Name; Volans
Dell PowerEdge 2300 — Dual Pentium Il

Operating System:  Windows 2000
RedHat 7.1
Kernel 2.4.7
Lilo:
To perform TCP tests choose:
Lilo: tcptest
Image: /boot/ame/2002/02/06/2.4.7-tcp/ Livmlinyz-2.4.7-tcp

Lilo: printks > to watch the printk statements choose
Image: /boot/printks/2001/12/13/2.4.7-printks/2/vmlinuz-2.4.7-printks

To perform UDP tests choose:
Lilo: udperf > to perform the tests
Image: /boot/ame/udp/2002/03/10/2.4.7-udperf/L/vmlinuz-2.4.7-udperf

Lilo:  udprint> to watch the printk statements choose
Image: /boot/ame/2002/
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TCP server application:
[root/ametest/performance-PC/server
from Cfile: server.cc

UDP server application:

Directory: /root/ametest/performance/udp_client_server
Execulablefile: server_udp
Cfile udp_server.cc

L oadable module — critical load to perform tests:

Binary file:  asm32_sys.0

Cfile asm32_sys.c

The reason behind naming this module “asm32_sys’ is the following. The
“sys’ is because the module is “triggered” via a system call. You cannot load the
functions in the kernel unless you trigger the module via the driver (see Driver
below). The “asm32” is because at first | was going to use an assembly macro that
read the entire 64 bits of the RTSC — | named that file asm64_sys.c. Later | decided
that it would be better to read the lower 32 bits of the RTSC. So, | made a new file
asm32_sys.c and never changed the name after that.
Driver:

Executable: a32[ START |STOP]

Cfile driver.c
The asm32_sys loadable module is “triggered” via a system call.

Random gener ators. /root/ametest/iptables.tests/generators/
P ip-random-generator
MAC: mac-random-generator
TCP: tcp-random-generator

List of scripts:
To run before tests are performed for both TCP and UDP:
[root/ametest/performance-PC/install.sh

Firewall rules;
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[/root/ametest/iptables.tests/

MAC: iptables.mac.accept_but_drop
iptables.mac.drop_but_accept

TCP: iptables.tcp.accept_but_drop
iptables.tcp drop_but_accept

P iptables.ip.accept_but_drop
iptables. ip. drop_but_accept

UDP: iptables.udp.accept_but_drop
iptables.udp drop_but_accept

Run to perform TCP tests:
[/root/ametest/performance-PC/./autotest.sh

Run to perform UDP tests:
[root/ametest/performance-PC/udp_client_server/./autotest1.sh
[/root/ametest/performance-PC/udp_client_server/./autotest2.sh
[/root/ametest/performance-PC/udp_client_server/./autotest3.sh

How torun TCP tests
1. AtBOOT time: choose the label ‘tcptest’

The kernel must be set to boot to run level 3, that means that no X window should
run. Y ou can do the above either by typing ‘tcptest 3' when you get to *boot:” option
asthe kernel starts of if you want to set it up automatically change the /etc/inittab file
to the following:

Find theline: id:5:initdefault and
Changeitto: id:3:initdefault.
Save and exit.

2. Login as root and go to the /root/ametest/performance-PC directory. Run the
“install.sh” script. This script STOPS a list of processes and also loads the
asm32_sys.0 module and triggers it to START. This means that the test is ready
to run.

3. Check the running processes. In the prompt shell call the ‘uptime’ command.
DO NOT perform any tests until the load average is 0.00 0.00 0.00.

4. Make sure no other processes are running. Usethe command ‘ps ax’ to check that

the ‘install.sh’ stopped all the processes. Also make sure that the PCs are not
transferring any data. Y ou can run a network sniffer (e.g. tcpdump) to test it.
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5. Once uptime shows 0.00 0.00 0.00 load average, go to the
[/root/ametest/iptables_tests directory and choose the rules that you want to add.
Inside every script (e.g. iptables.[FILTERTY PE].accept_but_drop or
iptables.[FILTERTY PE].drop_but_accept) you may change the number of rules
that you want to have.

Go to ‘increment_rule={ xxxx}’ variable and make the change. For example, in
the iptables.ip.accept_but_drop script the INPUT policy is ACCEPT which
means to ACCEPT everything but drop the following rules or matches to the rule.
The ‘increment_rule={ip_10_addr}’ variable meansto add only 10 rulesto the
table. When the variable ‘increment_rule={ip_40 addr}’ meansto filter 40 rules.
If “increment_rule={ip_10 addr ip_40 addr}’ theip 10 _addr rules will be called
twice because ip_40 addr already contain theip_10 addr rules. Take aclose
look to the script and you will understand what | mean!

To add the rules to the firewall run the script, for example:
Jiptables.ip.accept_but_drop

6. Check the ‘uptime’ to be 0.00 0.00 0.00 — yes, again!

7. Torun the test run the script:
Jautotest.tcp.sh

The script creates a path to store the results in the /proc/TCPresults file

Client side
At boot time, Libraisasoruninleve 3.

8. Run /ametest/pktgen/./install script to shut down al other services

9. Run .Jauto_pktgen on the client

10. Wait until everything is done and change the rule-set, change the variablesin
autotest.tcp.sh and perform the tests again.

How torun UDP tests

Running UDP testsis not much different than TCP

1. BOOT: udptest

2. Login asroot
cd /root/ametest/performance-PC/./install

3. Check ‘uptime’ to be 0.00 0.00 0.00
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4. No processes should be running. Usethe‘psax’ command
5, 6, 7 arethe same as TCP
8. cd/udp_client_n_server

9. .Jautotestl.udp.sh & for test 1
Jautotest2.udp.sh & for test 2
Jautotest3.udp.sh & for test 3

These are the same as autotest.tcp.sh, the only differenceisthe variable ‘TEST’ |
made a copy of each one to save time.

Client
In Libra
10. Do the‘install.sh’ script to shutdown all other services

11. /root/ametest/udp_client_n_server/./Jauto_pktgen

The script will automatically save the resultsin a directory specified in the
variablesin the script. Y ou have to change the variables in the * autotest.tcp/udp.sh
scripts to match the type of test that you' re going to do. Take alook athe scripts and
will become clear.

For example, if you want to perform atest with the following parameters:
UDP PACKETS

FILTER 10 IP addresses

INPUT ACCEPT

:
Q

cd /root/ametest/performance-PC/./install
uptime —wait until it is0.00 0.00 0.00
in the mean time run
cd ../iptables.tests/./iptables.ip.accept_but_drop
iptables—L & to seethelist of rules
cd ../performance-PC/udp_client_n_server/
vi autotestsl.udp.sh

a. PROTO="“UDP

b. INPUT_POLICY =“ACCEPT”

c. SPEED ="“100Mbps’

d. FILTER TYPE="ip"

e. TEST_NO = “testl”

f. RULES="10"
8. .Jautotestl.udp.sh

NougkrwbdpE
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Client
9.

10.
11.
12.

cd /udp_client_n_server/./install

uptime

Jauto_pktgen

repeat for autotest2.udp.sh in server...and so on!

B.2 Multiple packets

Client

AW

N O

0.

10.
11.

Load themodule: i nsnmod —f asnB2_sys. o
Changeto the UDP directory: cd udp_client _n_server
runthe./init.sh script
Set up the packet information in the Smartbits
a MACDST
b. SRCIP
c. PORT NUMBER
d. PAYLOAD LENGTH (for a 64 bytes payload you must add 42 bits for
the CRC)
e. Setthe RATE per packet
Runthe. /fl ushser script to clear al the counters
Runthe./server _udp
Run Smartbits
After all the packets have been sent run ./readproc to read the /proc file system
to read all the 4000 timestamps
Check if the file “filename” had datain it
Backup “filename’
Redo from step 3

Smartbits

NP

SP LI S

~

Connect the Windows 95 PC to port 12 in the patch panel

Connect 2 SmartBits cards Model ML-7710 to the patch panel and from the
patch panel to the Cisco 2900 series XL switch

Connect “Volans’ to the Cisco 2900 series XL switch

Set the Smartbit cards to the same subnet as the client

Set the Smartbits cards to “ Smart Metrics mode” and ping the cards from

Volans
Turn off the “ Smart Metrics Mode” to perform the tests
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8. Transmit Setup Window for Card 1.

i.

ii.
iii.
iv.

\Y

Mode: Timed

Time: 60

Length: 106

Background: UDP

Rate: 5% - Units. % utilization

b. Frame Editor: UDP EDIT

i.
ii.
iii.
iv.
V.

MAC DEST: 00 50 da 26 b0 55
MAC SRC: 00 00 00 00 00 Oa

SRCIP: 192.168.50.20
DST IP: 192.168.50.10
dst: 12345

9. Transmit Setup Window for Card 2:

V.
V.

Mode: single burst
Count: 4

Length — Fixed 106
Background: UDP
Rate: 0.96% - util

b. Frame Editor: UDP edit

i
ii.
iii.
iv.
V.

MAC DEST: 00 50 da 26 b0 55
MAC SRC: 0000 00 00 00 02

SRC IP: 192.168.50.30
DST IP: 192.168.50.10
dst: 6789
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Appendix C [IPTABLES rules random generators and scripts

File name: random-ip-generator.c

/*

* Random | P address generat or

* Max Roth <nodified by Anerico Mel ara>
*/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(int argc, char *argv[]){

int ret;
int c;

i f(argv[1l] == NULL) {
printf("usage: ./ip-random generator [m ssing
nunber]\n");
return O;
}
srand(tinme(0));
for(c = 0; ¢ < atoi(argv[1l]); c++){
printf("%l. %l. %d. %\ n", (rand() % 255), (rand() %
255), (rand() % 255), (rand() % 255));
}

return O;
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File name: random-mac-generator.c

/*

* Random MAC addr ess gener at or

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

int main(int argc, char *argv[]){

int ret;
int c;

char hex[]="0123456789ABCDEF";

if(argv[1l] == NULL) {
printf("usage: ./mac-ra
nunber]\n");
return O;
}

srand(time(0));

for(c = 0;

c < atoi(argv[1]);

ndom gener ator [m ssing

c++) {

printf("00: YCUC: YECUC: YECHC. UCHC: YECY0 n”

}

return O;

(hex[ rand()
(hex[rand()
(hex[rand()
(hex[rand()
(hex[ rand()

% 16] ), (hex[ rand()
% 16] ), (hex[ rand()
% 16] ), (hex[ rand()
% 16] ), (hex[ rand()
% 16] ), (hex[ rand()

% 16] )
% 16] )
% 16] )
% 16] )

%16]));
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File name: random-tcp-generator.c <also used for udp>

/*

* Random TCP addr ess gener ator
* Anmerico Mel ara

*/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

int main(int argc, char *argv[]){
int ret;

int c;

if(argv[1l] == NULL) {
printf("usage: ./tcp-random generator [m ssing
nunber]\n");
return O;
}

srand(time(0));
for(c = 0; c < atoi(argv[1l]); c++){

printf("%l\n", (rand() % 6555));
}

return O;
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