

Performance analysis of the Linux firewall in a host

A Thesis
Presented to the Faculty of

California Polytechnic State University
San Luis Obispo

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Electrical Engineering

By
Américo J. Melara

June 2002

 ii

Authorization for Reproduction of Master’s Thesis

I hereby grant permission for the reproduction of this thesis, in whole or in part,

without further authorization from me.

 Signature (Américo J. Melara)

 Date

 iii

Approval Page

Title: Performance analysis of the Linux firewall in a host

Author: Américo J. Melara

Date Submitted: June 12, 2002

Dr. James Harris
Advisor Signature

Dr. Hugh Smith

Committee Member Signature

Dr. Phillip Nico

Committee Member Signature

Dr. Fred DePiero

Committee Member Signature

 iv

Abstract

Performance analysis of the Linux firewall in a host

Firewalls are one of the most commonly used security systems to protect

networks and hosts. Most researchers have focused on analyzing the latency and

throughput of router firewalls. Different from this approach, this research focuses on

studying the performance impact and the sensitivity of the Linux firewall

(iptables) for a single host.

In order to be able to measure the performance and the sensitivity of the

firewall, we designed and instrumented each layer of the Linux TCP/IP stack. This

instrumentation was used to test the host’s firewall under two scenarios: In the first

scenario, we captured the path and the latency of one single packet; in the second

scenario, we captured the latency of multiple packets sent to the host at various

transmission rates.

Our measurement results indicate that the firewall is sensitive to the number

of rules, the type of filtering, and the transmission rate. The results of our first

scenario demonstrate that for each type of filtering, latency increases linearly as the

number of rules increase. Furthermore, the second test scenario shows that latency

decreases as the packet transmission rate increases.

Our results show that the percentage overhead generated by a firewall when a

single packet of 64 bytes of payload travels the TCP/IP stack, for a rule-set of zero

and 100 rules, ranges from 6% to up to 75%, respectively.

 v

Acknowledgments

First of all I would like to thank God for the opportunity to be able to come to Cal

Poly and finish up my two master’s degrees. I want to thank my family for their

financial support and unlimited amount of encouragement. I want to thank 3Com for

their financial support and commitment to the project. I want to give special thanks

to Dr. Jim Harris for giving me the opportunity join the project for even when I did

not have the background, he gave me the chance, gave me continuous direction, and

encouraged me. I want to thank Dr. Hugh Smith and Dr. Phillip Nico for the

unlimited amount of questions and solutions which helped me to set a path for

gaining a better understanding of my work, and led to many of the things written in

this document. Thanks to James Fischer (“Jim”) for his willingness and dedication to

helping not only myself but also everyone in the group. To Peter Huang for

encouraging me to join the project and helping me with my programming and

understanding Linux. To Max Roth, for the countless hours of hearing him sing in

the lab; hours that resulted in a huge amount of pain and perturbing me (and

“everyone” I may say) from getting any work done! But many thanks for his

encouragement, support, discussions and comments about the research, theology,

society, and a must add: some “slashdot” useless stuff! Thanks to Jason Hatashita for

the useful discussions and comments. To Heather Heiman, Jared Kwek, and Jenny

Huang for their friendship and encouragement. And finally, thanks to the rest of the

team for their dedication to the project.

 vi

Tables of Contents

CHAPTER 1 INTRODUCTION..1

CHAPTER 2 OVERVIEW OF SECURITY...4

2.1 NETWORK VULNERABILITIES – AN OSI PERSPECTIVE 4
2.1.1 Operating Systems attacks .. 8
2.1.2 Denial of Service Attacks .. 11

2.2 NETWORK PROTECTION TECHNIQUES .. 12
2.2.1 Authentication and Encryption ... 12
2.2.2 Intrusion Detection ... 14
2.2.3 Firewalls ... 15

CHAPTER 3 FIREWALL PERFORMANCE STUDY 19
3.1 PREVIOUS RESEARCH... 20

3.1.1 Analyzing and Testing Firewall Policies .. 20
3.1.2 Testing the Performance of the Firewall .. 21

3.2 TERMINOLOGY... 24
3.2.1 Performance Metrics .. 24
3.2.2 Parameters to determine the firewall sensitivity 27

3.3 TESTS DEFINITIONS .. 28
3.3.1 Single-packet tests... 29
3.3.2 Throughput tests.. 30
3.3.3 Packet specifications... 32

3.4 THE LINUX TCP/IP STACK .. 32
3.4.1 Understanding the packet data flow ... 32

3.5 SOFTWARE INSTRUMENTATION .. 39
3.5.1 Software design and issues ... 39
3.5.2 Instrumentation of the Timestamps... 41

3.6 THE LINUX FIREWALL – IPTABLES... 49
3.6.1 Iptables Application .. 49
3.6.2 Architecture of the Netfilter .. 52
3.6.3 Netfilter Base .. 53
3.6.4 Iptables Algorithm .. 54

 vii

CHAPTER 4 FIREWALL PERFORMANCE RESULTS................................. 58
4.1 BACK-TO-BACK TIMING FOR THE SINGLE-PACKET TESTS INSTRUMENTATION
 58
4.2 PROCEDURES FOR SINGLE-PACKET TESTS... 61
4.3 SINGLE-PACKET TEST RESULTS .. 62

4.3.1 Timing the network stack .. 62
4.3.2 T2 – T1 .. 63
4.3.3 T4 – T3 .. 64
4.3.4 T5 – T4 .. 64

4.4 INPUT POLICY ACCEPT VS. DROP .. 65
4.5 TCP AND UDP FIREWALL PERFORMANCE [T3 – T2] 66

4.5.1 Payload size effect... 67
4.5.2 Number of rules effect... 69
4.5.3 Linear relationship of [T3 – T2] ... 70

4.6 TOTAL PROCESSING TIME [T5 – T1] WITH RESPECT TO [T3 – T2]................ 72
4.6.1 Firewall % overhead with respect to T5 – T1... 72

4.7 LATENCY RESULTS FOR VARIOUS THROUGHPUTS ... 74
4.7.1 Test procedures... 74
4.7.2 Back-to-back timing measurements for throughput tests........................ 75
4.7.3 Test results .. 76

CHAPTER 5 CONCLUSION AND FUTURE WORK 79
5.1 SUMMARY.. 79
5.2 POSSIBLE FUTURE WORK.. 80

BIBLIOGRAPHY .. 82

APPENDIX A PERFORMING TESTS IN THE CO-HOST 86

A.1 HARDWARE.. 86
A.2 SOFTWARE IN THE CO-HOST ... 87
A.3 TIMESTAMP IMPLEMENTATION ON THE EBSA21285 88

A.3.1 Clocks.. 88
A.3.2 Timers ... 88
A.3.3 Controlling the time registers ... 90

APPENDIX B SETUP FOR TESTING A FIREWALL FOR A SINGLE HOST..... 93
B.1 SINGLE PACKET TESTS ... 93
B.2 MULTIPLE PACKETS ... 98

APPENDIX C IPTABLES RULES RANDOM GENERATORS AND SCRIPTS100

 viii

List of Figures

FIGURE 2-1 RELATIONSHIP BETWEEN THE TCP/IP REFERENCE MODEL AND VARIOUS

OPERATING SYSTEM AND USER LEVEL SECURITY SERVICES 6
FIGURE 2-2 ACQUIRING THE SERVER’S OPERATING SYSTEM TYPE AND VERSION

THROUGH A TELNET SESSION... 7
FIGURE 2-3 AUTHENTICATION PROCESS TO ESTABLISH AN ENCRYPTED

COMMUNICATION BETWEEN A CLIENT AND A SERVER USING KERBEROS.............. 13
FIGURE 2-4 A SINGLE-HOST FIREWALL PROTECTS ONLY ONE COMPUTER 16
FIGURE 2-5 EXAMPLE OF A ROUTER FIREWALL PROTECTING MULTIPLE COMPUTERS

INSIDE A NETWORK .. 17
FIGURE 3-1 EXAMPLE OF A PACKET IN ORDER TO MEASURE ITS LATENCY TO

TRAVERSE THE STACK .. 25
FIGURE 3-2 PARAMETERS TO DETERMINE THE SENSITIVITY OF THE FIREWALL 27
FIGURE 3-3 TEST SETUP TO MEASURE THE LATENCY WHEN A SINGLE PACKET IS SENT

EVERY 4 SECONDS.. 30
FIGURE 3-4 TEST SETUP USING THE SPIRENT’S NETWORK TESTER TO VARY THE

THROUGHPUT ... 31
FIGURE 3-5 BASIC TCP CLIENT-SERVER CONNECTION... 34
FIGURE 3-6 RECEIVING OPERATION FROM APPLICATION TO SOCKET LAYER 35
FIGURE 3-7 TRAVERSING THE NETWORK STACK – FROM BOTTOM UP 38
FIGURE 3-8 TIMESTAMP HACK FOR THE DEVICE DRIVER (TIMESTAMP 1) 42
FIGURE 3-9 IP LAYER – BEGINNING OF THE FIREWALL (TIMESTAMP 2).................. 44
FIGURE 3-10 IP LAYER – END OF THE FIREWALL (TIMESTAMP 3) 45
FIGURE 3-11 TCP LAYER – TIMING THE END OF THE TCP/IP STACK.................... 46
FIGURE 3-12 UDP LAYER – TIMESTAMP 4.. 47
FIGURE 3-13 SOCKET LAYER – BEFORE DATA IS SENT TO THE APPLICATION

(TIMESTAMP 5) .. 48
FIGURE 3-14 IPTABLES CONFIGURATION PROCESS.. 50
FIGURE 3-15 PACKET TRAVERSES THE NETFILTER .. 52
FIGURE 3-16 IPTABLES ALGORITHM – IPT_DO_TABLE() CHECKS FOR MATCHES

IN THE RULE-SET .. 55
FIGURE 3-17 IP_PACKET_MATCH FUNCTION–IP ADDRESS ARE ALWAYS CHECKED

REGARDLESS OF THE TYPE OF FILTERING IN THE RULE-SET................................... 56

FIGURE 4-1 LATENCY INCREASES AS THE PAYLOAD SIZE INCREASES 62
FIGURE 4-2 RANDOMNESS AT THE SOCKET LAYER –SOCKET LAYER IS CALLED

RANDOMLY REGARDLESS OF THE NUMBER OF RULES ... 65
FIGURE 4-3 TCP CONNECTION – [T3 – T2] – LINEAR RELATIONSHIP BETWEEN THE

NUMBER OF RULES AND THE TIME TO PROCESS THE FIREWALL 71
FIGURE 4-4 UDP CONNECTION – [T3 – T2] - LINEAR RELATIONSHIP BETWEEN THE

NUMBER OF RULES AND THE TIME TO PROCESS THE FIREWALL 71
FIGURE 4-5 COMPARISON BETWEEN T5-T1 FOR DIFFERENT TRANSMISSION RATES –

LATENCY DECREASES AS THE THROUGHPUT INCREASES....................................... 77
FIGURE A-1 CO-HOST TEST SETUP ... 86

 ix

FIGURE A-2 CINIC ARCHITECTURE [22]... 87
FIGURE A-3 EBSA-21285 TIMER BLOCK DIAGRAM ... 89
FIGURE A-4 ARM LINUX USE TO CONTROL OF TIMERS ... 90
FIGURE A-5 USING TIMER CONTROL REGISTERS IN THE EBSA285 91
FIGURE A-6 RESETING TIMER3 AT THE SOCKET LAYER ... 92

 x

List of Tables

TABLE 4-1 PACKET’S LATENCY (INCLUDING THE INSTRUMENTATION OVERHEAD) AS

IT TRAVELS THE TCP/IP STACK ... 59
TABLE 4-2 OVERHEAD OF THE SINGLE-PACKET TESTS INSTRUMENTATION 59
TABLE 4-3 PACKET’S LATENCY (EXCLUDING THE INSTRUMENTATION OVERHEAD)

AS IT TRAVELS THE TCP/IP STACK... 60
TABLE 4-4 PARAMETERS UNDER TEST ... 61
TABLE 4-5 PAYLOAD IMPACT IN T2-T1 – TIME INCREASES AS THE PAYLOAD SIZE

INCREASES ... 63
TABLE 4-6 IMPACT OF THE PAYLOAD SIZE IN T4 – T3 – TIME INCREASES AS THE

PAYLOAD SIZE INCREASES .. 64
TABLE 4-7 DIFFERENCE BETWEEN INPUT POLICY ACCEPT AND DROP –

FIREWALL IS NOT SENSITIVE TO THE INPUT POLICY.. 66
TABLE 4-8 IP MATCHING FOR TCP AND UDP PACKETS – FIREWALL IS NOT

SENSITIVE TO THE PAYLOAD SIZE ... 67
TABLE 4-9 MAC MATCHING FOR TCP AND UDP PACKETS – FIREWALL IS NOT

SENSITIVE TO THE PAYLOAD SIZE ... 68
TABLE 4-10 TCP/UDP PORTS MATCHING FOR TCP AND UDP PACKETS – FIREWALL

IS NOT SENSITIVE TO THE PAYLOAD SIZE .. 68
TABLE 4-11 MATCHING IP – TIME INCREASES AS THE RULES INCREASE.................. 69
TABLE 4-12 MATCHING MAC ADDRESSES – TIME INCREASES AS RULES INCREASE 70
TABLE 4-13 MATCHING TCP PORTS – TIME INCREASES AS THE RULES INCREASE ... 70
TABLE 4-14 TCP AND UDP TOTAL PROCESSING TIME [T5 – T1]............................ 72
TABLE 4-15 PERCENTAGE OVERHEAD OF IP MATCHING OVER THE T5 – T1 –

OVERHEAD INCREASES AS THE NUMBER OF RULES INCREASE 73
TABLE 4-16 PERCENTAGE OVERHEAD OF MAC MATCHING OVER THE T5 – T1 -

OVERHEAD INCREASES AS THE NUMBER OF RULES INCREASE 73
TABLE 4-17 PERCENTAGE OVERHEAD OF TCP MATCHING OVER T5 – T1 -

OVERHEAD INCREASES AS THE NUMBER OF RULES INCREASE 74
TABLE 4-18 PARAMETERS UNDER TEST ... 74
TABLE 4-19 INSTRUMENTATION OVERHEAD.. 75
TABLE 4-20 DIFFERENCE IN THE LATENCY FOR VARIOUS THROUGHPUT – LATENCY

DECREASES AS THE THROUGHPUT INCREASES .. 76
TABLE 4-21 TIME THAT A PACKET IS HELD ON EACH LAYER 78

 1

Chapter 1 Introduction

Network Security is one of the most important fields dealing with the Internet. The

ability to access and transfer information in a few seconds allows the government,

companies, educational institutions, and individuals to accelerate the decision process

or simply be “informed.” However, information can be very valuable and there is a

need for better and faster security systems to protect information and networks.

Attacks are prevalent on the Internet, and for that reason Firewalls, Intrusion

Detection Systems, Virus Scanners, File Protection and Integrity checks software,

Buffer overflow protection techniques, and Encryption tools have been developed as

security services to protect systems and information. The CiNIC is an independent

network device designed to control all of the networking services for the host.

Thereby, it can serve as the front line defense mechanism against attacks. The vision

for it is to run security services such as the firewall, encryption, authentication,

intrusion detection, and other services to secure the host.

Firewalls are the first front line defense mechanism against intruders. There

are two different goals for testing them. The first goal is to analyze and test the

firewall policies, in other words, to model and test how secure a firewall is in a “real-

world” environment. The second goal is to test the performance impact generated by

the firewall. Given that our first step to increase the security functions of the CiNIC

is to port the firewall to it, we decided to analyze the performance cost of having a

firewall in the host. After searching for conference papers that addressed the firewall

 2

performance on single hosts, we found that very little research had been done on the

topic. In our end-of-the-year meeting with 3Com in December 2001, we were told

that a third party vendor discovered that the firewall would degrade the performance

of a system tremendously after 30 rules. In view of the lack of research and the

uncertainty on what the firewall performance cost might be, we decided to study the

performance of the Linux firewall iptables. This thesis presents a study of the

sensitivity and the performance impact produced by the Linux firewall iptables in

a host.

We decided to test the performance of the firewall under two scenarios

changing various parameters. The first scenario included tracing one single packet in

order to measure the sensitivity of the firewall to:

(1) The INPUT policy

(2) The number of rules

(3) The type of filtering

(4) The payload size

(5) The transmission protocol.

The second scenario included a series of tests varying the throughput by

sending a stream of packets at 5 and 10 Mbps. The first test results documented in

this thesis will show that the performance is only sensitive to the number of rules and

the type of filtering. The measurement results obtained in the throughput tests will

confirm that the single-packet test measurements are valid, and that may serve as

conservative estimates for finding the performance impact generated by the firewall.

 3

The remainder of this document is organized as follows: Chapter 2 gives an

overview on the most recent types of security attacks (e.g. denial of service attacks,

buffer overflows, operating systems protection) as well as an overview on some

security mechanisms (e.g. Intrusion Detection, Authentication, Firewalls). It also

explains Firewalls in more detail. Chapter 3 covers the receiving operation of the

Linux TCP/IP stack, the iptables algorithm, the instrumentation technique used to

measure a packet’s process throughout the stack, and presents the parameters under

test that will be used to determine the sensitivity of the firewall performance. Chapter

4 presents the analysis of the performance of a single packet to determine the

sensitivity of the firewall to the parameters mentioned earlier. It also presents the

performance of the firewall as a function of the rate of incoming packets. The results

are compared in terms of the performance of the host when it runs with and without

the firewall. Finally, the summary of the results and future work are presented in

Chapter 5.

 4

Chapter 2 Overview of Security

For individuals and enterprises the main purpose of security on a network system is

the protection of information. We all use a network system one way or the other,

either for sending e-mails, reading the news, making traveling plans, or shopping. In

most of our transactions we wish to have one thing – protection of our information.

But, what type of protection? Protection from whom? For large firms security

includes not only the protection of the company’s information from outsiders but also

the protection of their entire internal network. For example, top executives do not

want their competitors to know their marketing or acquisitions strategies. Nor does a

manager want intruders to read, delete, or acquire budgeting information or

consumer’s information. Thus, the goal of security is to protect information and

systems from “malicious intruders.”

This chapter’s intent is to organize and summarize the area of Security, and

explain firewalls in more detail. The chapter is laid out as follows: First, the most

relevant vulnerabilities for a host are explained briefly. Following, some of the

techniques and tools used to prevent and detect attacks are presented. Finally, the

idea of porting a firewall to the CiNIC architecture is presented.

2.1 Network Vulnerabilities – an OSI perspective

Security can be implemented throughout each layer of the network. Using the

TCP/IP model we can show how every layer is vulnerable to security breaches and

what software is used to protect the systems. The reader should be aware, however,

that in spite of the number of security software he may buy for your system it does

 5

not make it immune or does not take away the chance of getting a virus, a Trojan

horse, or just “get hacked.” So, the more knowledgeable the reader is about how

someone can break into his system, the more cautious he will be, and the harder it

will be to break in.

Figure 2-1 shows the end system’s TCP/IP stack model and some of the tools

created to provide security for each layer. The figure can be explained as follows.

Secure services are available at the Operating System level (OS) and at User space

level. The transport layer is the point where the OS and user space separate. At the

OS level we have a firewall (e.g. iptables), intrusion detection systems (e.g. Linux

Intrusion Detection System a.k.a. LIDS), IP Security or IpSec, and Denial of

Service prevention. One of the goals of the CiNIC project is to offload these security

services from the host to the co-host. For that reason, this research will focus on the

firewall for the Linux Operating System.

At the user level we have secure standard protocols that use cryptography to

secure the transmission of data, such as Secure Socket Layer (SSL) and Transport

Secure Layer (TLS) [1][2], which are discussed later in this chapter. Another service

used to provide encryption of data is the Pretty Good Privacy (PGP) protocol; this

protocol uses keys to encrypt the data sent through e-mails [3]. In addition, virus

scanners (e.g. Norton and McAffee) and file integrity software [4] (e.g. Tripwire) are

tools commonly used to protect end systems from viruses, worms, and Trojan horses.

 6

Figure 2-1 Relationship between the TCP/IP Reference Model and various Operating
System and User level Security Services

A security issue implied in the network stack is that a weakness or “hole” in

one layer could lead to the exploitation of a lower layer, and vice-versa. For example,

through a simple telnet session anyone can find out the type of operating system

running on a particular machine. In Figure 2-2 the host fornax has requested a telnet

Application Layer (5) Transport Layer (4) Network
Layer (3)

Data
Link (2)

Physical
Layer (1)

E-mail

Newsgroups

Web Applic

File Transfer

Sessions

Web Service

Netwk Mngt

File Services

POP/SMPT

USENET

HTTP

FTP

Telnet/SSH

DNS

SNMP

NFS

POP / 25

532

80

20 / 21

21

53

161 / 162

RPC

Transmission

Control
Protocol

SLIP/PPP

802.2 SNAP

Ethernet

ISDN

ADSL

ATM

FDDI

CAT 1-5

Cable

Security Services

User

Datagram
Protocol

USER SPACE

Key Management

Pretty Good
Privacy
(PGP)

Virus Scanning

File System
Integrity

OPERATING SYSTEM

Firewall

Intrusion Detection

IpSec

Denial of Service Prevention

USER SPACE

Secure Socket Layer (SSL)

Transport Secure Layer (TLS)

Secure Telnet

Secure FTP

OPERATING SYSTEM / FIRWARE / HARDWARE

CiNIC (Future)

Internet
Protocol

Version 6
IPv6

Internet
Protocol

Version 4
IPv4

 7

session with the host orion. When the session starts, we observe that the host orion is

running Red- Hat Linux 7.1 with a kernel version 2.4.2-2. This may lead the attacker

to look for software tools designed to attack the specific vulnerabilities found in the

kernel 2.4.2-2.

Figure 2-2 Acquiring the server’s Operating System type and version through a Telnet
Session

On their search for vulnerable systems, attackers use a technique called

footprinting. Footprinting is defined as the fine art of gathering information! [5]

Information can be gathered through scanning or enumeration. Scanning is a tool

used to find open ports and services running on a system, enumeration is the “ability

to extract valid accounts or exported resource names from systems [5].” Some of the

information to be gathered include Domain Names, specific IP addresses of systems

reachable through the Internet, TCP and UDP services running on each system,

system architecture, routing tables, access control mechanisms, related access control

lists, etc. The list of tools available to extract this type of information is large, but

some of the most common ones are nmap, the ping of death, tcpdump,

rpcinfo, Cheops [5].

 8

The network protocol by nature has its pitfalls. For example, an ICMP

(Internet Control Message Protocol) packet, which is normally used to communicate

control messages on the Internet between hosts and routers, contains diagnostics

about your system. For example, a ping contains error detection information (e.g.

network/host/port), control messages (e.g. source quench, redirect) or some general

information (e.g. timestamp, address mask request.)

Computers inside a local area network (LAN) are usually sitting behind a

router and firewall but, even then, the network is not secure. A report from the FBI

Computer Crime Unit says that approximately 80% of network security breaches for

an Enterprise happen internal to the network [6].

An intruder can have access to an entire network for days and even weeks

without being noticed, because the larger the network, the more complicated it is to

design policies to secure that network and the more security holes. Subsequently,

responsibility to protect a system (e.g. entire network, server, hosts) cannot be left to

the network administrator alone. Therefore, there is indeed a need to make better

software and hardware tools to provide greater security for the end systems/hosts.

2.1.1 Operating Systems attacks

Our first security checkpoint is the operating system. The operating system controls

every single process, entire network operation, and all the hardware and the software;

thus, it is the most delicate and the highest priority point of protection for a system.

Operating systems are vulnerable to buffer overflows, worms, and viruses.

 9

2.1.1.1 Buffer overflows

At a recent software engineering conference, Richard Pethia from the Carnegie

Mellon Software Engineering Institute (CERT), identified buffer overflow attacks as

the single most important security problem [7].

In her research, Nicole Decker [8], explains buffer overflows and how they

are used to break into systems. Let’s look at the following example: Consider a

program that reserves a buffer of 1024 bytes. In such a case, the program’s maximum

allowable input to that buffer is 1024 bytes. If the size of the input data typed in by

the user exceeds the size allocated, and if the input is not checked to reject anything

larger than 1024 bytes, it is said that the buffer has been overflowed.

Now, recall the function of the instruction pointer. The function pointer

stores the memory address of the next command to be executed by a program. It is

through the instruction pointer that the computer knows what should and should not

be executed - the computer cannot differentiate between data and instructions.

Assume that the next statement, after reading the user’s input just mentioned

in the example above, is a printf statement. The instruction pointer holds the

memory address to the printf statement. Let’s walk through the process: the

computer will read the input from the user, store it into the buffer, check the

instruction pointer to find what function should execute next (i.e. the printf

statement), find the memory address of the printf statement, retrieve the contents

into a input buffer, and finally, print the data input to the screen.

If the program’s buffer is overflowed, those extra bytes (usually allocated on a

neighboring region to the original buffer) could overwrite the address of the

 10

instruction pointer. If we overwrite this address, instead of pointing to the printf

statement, we can give to the instruction pointer an address to malicious code.

How does that relate to networks? Well, the most simple buffer overflow

attack is called stack smashing [8]. Here, the attacker sends a stream of modified

packets to overflow the buffers so that the return address of the instruction pointer

points to their code - in most cases the function to execute is /bin/sh. If a program

is running with root privileges and the buffer is overflowed, the attacker will gain

root access and have complete control of your system. Programs written in C are

particularly susceptible to buffer overflow attacks because most C code allows direct

pointer manipulations without any bound checking [9].

Some solutions to buffer overflows have been proposed. Some of them are:

StackGuard [10], Software fault isolation (SFI) [11], LCLint [12], an extension of

LCLint [13], among others.

2.1.1.2 Worms and Trojan horses

A Trojan horse is an executable program that “contains hidden functions that can

exploit the privileges of a user [running the program], with a resulting security threat.

A Trojan horse does things that the user’s program did not intend [14].” In other

words, a Trojan horse is an executable program that modifies an original file by

adding extra functions - malicious code - that the original program was not intended

to execute.

A worm is a self-propagating malicious code [15]. In other words, it is a

malicious code that does not require the user to do something to continue its

propagation. “Highly automated nature of worms coupled with the relatively

 11

widespread nature of the vulnerabilities they exploit, allows a large number of

systems to be compromised within a matter of hours. Code Red infected more than

250,000 systems in 9 hours on July 2001 [15].” Trojan horses and worms can have

file extensions like “exe”, “vbs”, “com”, “bat”, “pif”, “scr”, “lnk”, or “js.”

2.1.2 Denial of Service Attacks

Denial of Service (DoS) attacks, which are one of the most prevalent attacks on the

Internet, will force a machine to stop providing services to a legitimate user. “DoS

attacks use multiple systems to attack one or more victim systems with the intent of

denying services to the victims [15].” The University of California - San Diego,

observed 12,805 denial-of-service attacks on over 5,000 distinct Internet hosts

belonging to more than 2,000 distinct organizations during a three-week period [16].

There are two types of Denial of Service (DoS) attacks: Operating Systems attacks,

which exploit the bugs of a specific operating system (e.g. Windows 98/NT/2000,

Linux, Solaris); and networking attacks, which exploit inherent limitations of

networks.

To protect from operating system attacks it is important to continuously check

on the patches and updates available for your specific operating system. Network

attacks, however, are more complicated. These attacks include ping flood (a.k.a.

ICMP flood) and smurf which are outright floods of data to overwhelm the finite

capacity of your connection; and also spoofed unreach/redirect a.k.a. “click” which

trick your computer into thinking there is a network failure and voluntarily breaking

the connection [17]. The latest type of network attack is the distributed denial of

 12

service attack in which the attacker controls one or more “masters” which then

control several more “zombies” (compromised systems) to attack one victim [18].

2.2 Network Protection Techniques

Most known protection techniques are used to provide authentication, encryption,

identify attacks, and block and filter packets.

2.2.1 Authentication and Encryption

2.2.1.1 Kerberos

Designed in the mid-‘80s at the Massachusetts Institute of Technology (MIT), the

Kerberos network protocol is designed to provide secure Authentication between one

or several parties. Kerberos [19] uses a cryptographic distributed service system. In

Figure 2-3 we show the simplest scenario, which involves three parties: a client or

user, an application server or verifier, and an Authentication Server (AS). In order to

establish a connection between the client and the server/verifier, the client needs to

prove to the verifier its identity by means of an encrypted key. Neither the verifier

nor the client hold any encrypted keys. Only the AS provides the keys. So the

process is the following: (1) the client connects to the AS to obtain a key. (2) The

verifier obtains a key (server key) from the AS which will serve to verify the

authenticity of the client. (3) After the client and the server have obtained the keys,

the client will forward its key to the verifier. The latter will decrypt the key and allow

the connection to be established.

 13

Client
Server

Authentication
Server

Obtain key Obtain key

Request connection

1 2

3

Figure 2-3 Authentication process to establish an encrypted communication between a
client and a server using Kerberos

2.2.1.2 SSL/TLS

The Secure Socket Layer [1] (SSL) and Transport Layer Security [2] (TLS) Protocols

are security protocols that use cryptography to provide privacy. These protocols

provide “integrity between two communicating applications” by means of (1) a

private connection – “using data encryption and transaction of keys” and (2) a reliable

connection – “the message includes a message integrity check using a keyed MAC.”

More information, libraries, and software toolkits can be found in the OpenSSL

Project [20] website.

The difference between SSL/TLS protocols and the Kerberos protocol is that the

latter needs an Authentication Server to transfer keys while the first two do not.

 14

Therefore, the communication and transaction of keys is only performed between a

client and a server, there is no need of a third party to hold keys.

2.2.2 Intrusion Detection

The purpose of Intrusion-Detection Expert Systems (IDES) is to detect suspicious or

abnormal use of a system. An IDES works as a system monitor of all the activities

performed in the targeted system.

There are two types of detection techniques: anomaly detection and misuse

detection. The former “uses models of the intended behavior or users and

applications, interpreting deviations from this ‘normal’ behavior as a problem [21].”

In other words, it keeps an activity log of either the users or the applications used of a

system. When it finds an activity different than what is normally used for, it will flag

the activity as suspicious.

Misuse detection systems “contain attack descriptions (or ‘signatures’) and match

them against the audit data stream, looking for evidence of known attacks [21].” The

intrusion is detected by a “rule-based pattern matching [22].” When a given action is

generated, the action is matched against the profiles or the rule-set and the IDES fires

an alarm.

 15

2.2.3 Firewalls

Our research focuses on the free available Linux firewall iptables. In this section

we describe what a firewall is, the ways to implement it, the types, and the

architectures.

A firewall is the front line defense mechanism against intruders. “It is a

system designed to prevent unauthorized access to or from a private network.

Firewalls can be implemented in both hardware and software, or a combination of

both [23].”

Firewalls can be applied in different ways [24]: Packet filtering firewalls are

those designed to filter IP addresses, MAC addresses, TCP or UDP ports, and

subnets, among others. Proxy firewall is a proxy that separates internal networks

from the external networks (e.g. the Internet), so that, for outsiders the proxy operates

as a server, and for the insiders the proxy operates as the client. A stateful-inspection

firewall has the capability of tracking connections and to make decisions based on the

dynamic connection state of packets [25]. For example, if an internal client

establishes a connection to the Internet through a specific port, the firewall will

maintain state information about the connection pertaining to that specific port. Thus,

an ICMP packet is checked if it is related to that TCP/UDP connection. Any

TCP/UDP packets are checked against the state table to find if the packet matches

with the established port of that connection. An application firewall is a software-

based firewall (e.g. McAffee personal firewall) in which a user can control (in real-

time) to allow or deny connections to it [26]. These different firewall

implementations can be used alone or as a combination of several of them.

 16

Firewalls can be implemented in two different architectures [24]: single box

(Figure 2-4) and as stand-alone edge device (Figure 2-5). Our research focuses on

firewalls in a single-box. The firewall in a single box is designed to protect only that

single machine. Usually, only outgoing connections are allowed and all incoming

connection requests are rejected. On the other hand, a stand-alone edge device can be

a router or a dual-homed host. A router is a device that forwards packets between

different subnets. A router firewall is a router that can filter packets, block ports,

maintain stateful-inspection, or do some other type of filtering. A dual-home host is a

single computer, with at least two network interface cards, serving the function of a

firewall router.

Internet

Figure 2-4 A Single-host Firewall protects only one computer

In general, firewalls can be of two types: packet filtering gateways and

application proxys. Packet filtering gateways look at each packet header entering or

leaving the network and accept or reject a particular packet based on specific rules

defined by the user/network administrator. Packet filtering is fairly effective and

transparent to users. They, however, are difficult to configure and are also

 17

susceptible to IP spoofing – a technique used to gain unauthorized access to

computers, whereby the intruder sends messages to a computer with an IP address

indicating that the message is coming from a trusted host. Proxy servers, on the other

hand, intercept all the messages entering and leaving the network but it differs in that

the proxy hides IP addresses of the clients in the internal network.

Figure 2-5 Example of a Router Firewall protecting multiple computers inside a network

Firewalls can be commercial or freely available (i.e. open-source such as

iptables). But which one is more secure? An expert comments, “Open source

follows the ‘many eyes’ principle – the more developers work on the code the fewer

secrets and the harder to compromise. Security-by-obscurity argues for hiding the

code as a deterrent to breaking the code. Which approach is better is not a simple

question [27].” The fact is that a firewall is an extremely important tool that can

protect systems from malicious traffic; not having one only means that you want

other people to have fun with your systems!

 18

2.2.3.1 Future of firewalls

In 1997, Scuba and Spafford from COAST Labs submitted a paper describing a

model or framework for the design of firewalls [28]. According to them, firewalls

should provide authentication –provide assurance of the integrity of the connecting

host or server, integrity – “shielding communication traffic from unnoticed and

unauthorized modifications such as insertion, replacement or deletion of data,” access

control – to provide a dynamic mechanism that generates questions about a particular

traffic (e.g. IP x.x.x.x wants to establish connection on port 21, do you want to allow

this connection?) Audit –keeping track of connections/traffic flowing through the

firewall, also referred as “log files.”

Some of these functions (e.g. authentication and audit) are built in CISCO’s

IOS [27]. However, personal firewalls do not provide authentication but some of

them, such as McAffee’s personal firewall [26], provide dynamic access control

where the user is notified “on the fly” if a certain IP address desiring to establish a

connection should be allowed or not. So, personal or end-client firewalls are still

under development.

Orman said, “We should look to a future in which every machine is its own

firewall [1].” The CiNIC [29] is an independent network device that provides control

of all networking services for the host. Thereby, it can serve as the front line defense

mechanism against attacks. The vision is that it may not only run a firewall but also

provide encryption, authentication, intrusion detection, and other services to secure

the host. The Cal Poly Network Performance Research Group is working towards

making this future a reality.

 19

Chapter 3 Firewall Performance Study

A firewall is “a device that enforces an access control policy between networks [30].”

Firewalls can be used in two ways, as a stand-alone edge device that protects and

forwards packets to a local area network or as an operating system component for

protecting a single host. As we will see, researchers have focused on studying the

latency, throughput, and total transaction time of a firewall as a stand-alone edge

device, but we were unable to find peer-reviewed research papers that specifically

addressed the performance of the firewall on a single host. For this reason, our

investigation focuses on studying the performance of single-host firewalls, and

specifically on the Linux firewall iptables.

By the time our research began, we were unable to find documentation that

depicted the exact path that a packet follows as it traverses the network stack. Thus,

our first efforts focused on capturing this path. Once the path was captured, we

performed our first tests. The purpose of the first tests was to understand the firewall

sensitivities and the performance impact on the host by varying the transmission

speed, payload size, INPUT policy, number of rules, and packet transmission

protocol.

For our second test analysis, we sent multiple frames at various transmission

rates to a single host. Here, we tried to overload the host using the SmartBits network

testing system and measure the host’s latency depending on the packet transmission

rate, or throughput. The results obtained from these measurements will confirm if the

single-packet test measurements are valid.

 20

3.1 Previous Research

There are two different goals for testing firewalls. The first goal is to analyze and test

the firewall policies, in other words, modeling and testing how secure a firewall is in

a “real-world” environment. The second goal to test the firewall performance.

3.1.1 Analyzing and Testing Firewall Policies

Most experts would agree that the most difficult part in the design of a firewall is the

process of defining the security policy and the configuration of the firewall [31]. The

configuration is the process of deploying the policy. To define the policy means to

understand the network topology of the LAN, decide what services will be allowed,

and who will have access to what information.

Various research papers have presented methods that could serve as a basis for

testing firewalls that protect internal networks. Vigna proposes a mathematical model

for firewall “field-testing” taking into account the topology and operational

environment and not the internal architecture of the firewall [32]. Another method

presented is the Firewall ANalysis enGine (Fang) [33]. Fang is a tool that “reads

relevant configuration files, and builds an internal representation of the implied policy

and network topology” to simulate spoofing attacks and the behavior of the firewall

in response to those attacks. Hazelhurs, Attar, and Sinnapan [34] present a “binary

decision diagram” to test the rules of firewalls. All of the above are similar in that

they all target to model LANs and not personal firewalls.

Experts may use the mathematical models above or some hacking tools in

order to test firewalls. But in reality, there are no standard procedures to test

 21

firewalls. Vigna says that the current methodologies to test firewalls are mainly

based on expertise and individual skill [35]. The reason behind this is because, in

business terms, every customer wants a different specification for the network and for

its security (e.g. topology, services running). So, experts use hacking tools such as

SATAN, Neus, COPS, Internet Security Scanner (ISS), and BSD Monitor to test if

the firewall is secure enough to protect a LAN and satisfy the customer’s need.

3.1.2 Testing the Performance of the Firewall

3.1.2.1 Router firewalls

A firewall router reads header information of a packet, checks the header with a

number of rules, and decides to forward the packet or not. Various studies have been

made on router firewalls. In [27], Patton, Doss, and Yurcik compared the

performance of open source versus commercial firewalls. So, they compared the old

Linux ipchains included in RedHat version 6.0 against CISCO’s IOS firewall, the

latter consisting of hardware and software. At the time, the older Linux netfilter

(ipchains) had the disadvantage of lacking functionality; it was not a stateful

firewall while IOS was.

“The results show that the Linux firewall has consistently higher transaction

throughput rates than the Cisco’s stateful firewall for rule sets varying from 0 to 200

rules and for packet sizes of 1 and 128 bytes [27].” No specifics were given on the

rule set used.

Other studies measured and compared the latency and total transaction time to

download small and large HTTP and FTP files [35]. The tests setup included several

 22

clients inside a LAN connecting to a server outside the LAN and a router firewall

sitting in between the networks. The firewall would be configured to 7 different

policies, one for each HTTP and FTP test. The clients would run a script to establish

the connections. The tests for HTTP and FTP were performed independent from one

another. For HTTP tests, the clients made connections to download small sizes of

data. On the other hand, for FTP tests the client would make small or large number

of connections and download files of either 1MB files during one test or 5MB files in

another. Those tests were also independent from one another.

The results implied that “the performance difference among security levels

due to the overhead of packet filtering for more security is negligible when compared

with the outside traffic interface [35].” In other words, performance decreases as the

number of connections increase, and is not affected by the security policy.

Unfortunately, no specifics were given on the rule-set.

Other tests, such as [36] [37] and [38], have been performed to compare

commercial router firewalls, but the results are not presented in this document

because they are out of the scope of our research.

3.1.2.2 Single-host firewalls

Different from edge firewall routers, there has not been much research done to

analyze the performance or the processing overhead produced by single-host

firewalls. One paper presented the results on the throughput and CPU utilization of

two machines connected through a 10Mb hub [39]. The purpose of the tests was to

measure iptables on a single-host. The CPU utilization was measured using

“vmstat 3.” The sending box sent a byte stream of 187,000,000 bytes. The payload

 23

size per packet was 3,700 bytes. The throughput was measured by dividing the size

of the bit stream by the time (in seconds) to receive the stream. Finally, the input

policies (i.e. INPUT/ OUTPUT/ FORWARD) were set to ACCEPT. The results of

the four tests are described below.

On the first test, without a firewall and with one single connection, the

throughput was 9.09 Mbits/sec. The CPU utilization was not provided. Another test

running “real-world” iptables rules and one single connection showed a 9.10

Mbps and a CPU utilization of 19-23% on the sender and 16-20% on the receiver.

Another test included establishing five TCP connections and no rules, in order to

measure the CPU impact by TCP/IP traffic. The sum of the throughput was 9.13

Mbps, and the CPU utilization varied from 19-20% on the sender and 15-18% in the

receiver.

For the last test, the intention was to “measure real-world stress on the iptables

rule-set. Five connections were used: two open TCP ports, a TCP port rejected with

a TCP reset, a closed TCP port, and an open UDP port.” The CPU utilization on the

receiver was 15-20% and 23-30% on the sender. For the UDP component the

throughput yielded 10.57 Mbps. For the two non-blocked TCP connections the

throughput yielded 8.14 Mbps. For TCP in the latter test, it is understandable that as

the amount of filtering and connections increase the throughput might decrease.

However, for UDP, having a 10.57Mbps throughput on a 10 Mbps hub is suspect.

 24

3.2 Terminology

As we have seen, firewall performance has been studied in terms of the latency,

throughput, and total transaction time. In those tests the parameters used have been

the number of rules, the number of connections, and the number of bytes per packet

or per file, the type of download (e.g. HTTP and FTP).

Some of the researchers have used the firewall-benchmarking terminology

defined in the RFC 2647 [30]. However, we had to redefine some terms to make

them applicable to our investigation.

Earlier studies made by the Cal Poly Network Project Research Group

(CPNPRG) on the performance of the Linux and Windows [29] have been made on

the sending operation, that is, a study of the latency and throughput when a packet is

sent from the application layer until the data is sent out to the wire. Our study focuses

on the receiving operation, and specifically, in studying of the performance impact

produced by a firewall when a packet is traveling up the stack.

3.2.1 Performance Metrics

The first portion of our study focuses on finding the start latency. Now, latency is the

period of time that a packet takes to be transmitted from one end (e.g. a host) to

another. Protocol latency as the period of time that a network sub-layer holds a

payload before it forwards it to the next sub-layer [40] and is divided into: start and

stop latency. See Figure 3-1 shows a picture of a latency model.

 25

DATA LINK

TCP/UDP

IP LAYER

DATA

STREAM

End of the
payload - d2

Beginning of the
payload - d1

BOTTOM - T1

TOP – T5

SOCKET

Figure 3-1 Example of a packet in order to measure its latency to traverse the stack

Start latency = T5 – T1 of each packet [seconds]
Stop latency = T5 of the last packet – T1 of the first packet [seconds]

Payload throughput = (payload size) / (stop latency) [bps]

From Figure 3-1 the start latency can be defined as the period of time the

beginning of the packet’s payload (d1) to reach the bottom of the stack (T1) until the

beginning of the payload (d1) reaches the top of the stack (T5). Start latency can be

used to determine the efficiency of the Device Under Test (DUT) because it provides

“per payload” processing information. Stop latency is the amount of time that it takes

for the beginning of the payload to pass from the bottom of the stack until the last-bit

 26

of the payload reaches the top of the stack. The stop latency can be affected by

packets that are dropped by either the network or by the host’s TCP/IP stack because,

if a packet is dropped, the stop latency will include the start latency plus the time that

it takes for TCP to ask for retransmission and the packet to be retransmitted.

Start and stop latency are equal to each other when the payload is less than or

equal to the maximum transfer unit (MTU) minus the Ethernet headers. Firewall

overhead in the protocol latency, or just overhead, is the impact in the processing

time caused by the firewall as it processes every packet header.

The following terms will also be used in this document: Packet, used

interchangeably with Ethernet frame, includes all the headers plus the payload.

Payload is the information data encapsulated inside the Ethernet frame excluding all

headers. The throughput is the “measure of the rate at which data can be sent through

the network, and is usually specified in bits per second [40]”. The protocol

throughput is the amount of data that a protocol stack can process per unit of time

(Kbps or Mbps). The payload throughput is the amount of payload that the DUT can

process per unit time. It is calculated as follows1:

Payload throughput = (size of the payload) / (stop latency)

1 More in depth explanation about latency, throughput, and CPU utilization can be found in Peter Xie’s master’s thesis [37]

 27

3.2.2 Parameters to determine the firewall sensitivity

As mentioned earlier, firewalls have been tested by modifying a set of parameters

such as the number of rules, the number of connections, the number of bytes and the

transmission rate.

Our investigation focuses on analyzing and testing the sensitivity of the

firewall, and the performance impact generated by it, by varying a set of external and

internal parameters presented in Figure 3-2. External parameters are those that

cannot be controlled by the firewall such as transmission protocol, transmission

speed, and payload size. Internal parameters are those that can be controlled by the

firewall such as Input policy, filtering type, and number of rules.

Protocol Transmission
speed

Filter
Type

Number
of Rules

TCP

UDP

4 sec delay in
between
packets

Bursts:
10 | 20 | 50

75| 100 Mbps

MAC
IP

TCP
UDP
ICMP

10
40
100

Input
Policy

ACCEPT

DROP

Payload
Size

64
128
256
1.4K

…
64 K

External Parameters Internal Parameters

Figure 3-2 Parameters to determine the sensitivity of the firewall

A series of tests will involve varying the parameters presented above in two

different scenarios. The first scenario will consist on capturing a single packet and

 28

analyzing the performance impact as it traverses the stack. The second test consists

on tracing a stream of packets at various transmission rates. We explain the two

scenarios below.

3.3 Tests definitions

There are two main issues to resolve in the two scenarios just mentioned above, and

they can be summarized in two questions: (1) Does a single packet carry enough

information to explain the sensitivities of the firewall? (2) Will the measurements

obtained for single-packet tests be sufficient enough to measure the performance on

the host?

The data collected from tracing a single packet in the stack should provide

enough information to find a time approximation of the sensitivities of the firewall

and the total processing time to the parameters already presented. On the other hand,

multiple packets will provide more “accurate” results. This can be explained with the

following example: think of the operating system to be analog to the plumbing

system of a kitchen sink. Imagine that you desire to know how long would 100 liters

of water take to pass through the plumbing. There are two ways to measure the time:

the first way is by pouring one liter of water and multiplying it by 100; the second

way is to drain the 100 liters.

In the first scenario, you pour 1 liter of water, let it go down the drain, and

measure how long it took for that liter to enter and exit the system. An average can

be calculated after doing this several times. The average can be multiplied by 100

times to find an approximate to pouring the 100 liters. In the second scenario, you

can open up the faucet and measure the time that it takes to drain the 100 liters. The

 29

former is a clean and fast way to find an approximation of the total time to complete

the system because, whether we pour 1 or 100 liters, the water will flow through the

same path. On the other hand, the latter will provide more “accurate” results because

they include the rate at which the water was expelled from the faucet and the pressure

exerted by the mass of water pushing down the pipe.

Just as the water flows through the same path, in the same way, packets follow

the same path when they traverse the TCP/IP stack. Consequently, single-packet tests

are analogous to pouring only one liter at a time. These tests will provide an

approximation of the time that a packet is held at each point in the stack.

Furthermore, throughput or multiple packets tests at various rates are analogous to

pouring 100 liters at one time because they take into account the queuing of packets

by the OS, the processor speed, and the rate of transmission.

In this thesis, only single packet tests are performed to understand and

measure the sensitivities of the firewall. They also provide a conservative

approximation to the actual latency for multiple packet tests.

3.3.1 Single-packet tests

Single-packet tests are performed using two PCs. Volans, our Device Under Test

(DUT), is a dual 450MHz Intel Pentium processor with a modified 2.4.7 kernel

running the server application. One of the CPUs is turned off in the SMP option of

the kernel configuration – the kernel configuration file is included in the CD attached

with this document. The iptables-1.2.4 version was installed to the kernel.

The modified kernel has 5 different points to store timing measurements as the packet

 30

traverses throughout the stack. The files modified are: dev.c, ip_input.c, tcp_input.c,

udp.c, and socket.c. At boot time, both machines will start in run-level 3. During the

tests, no services will run in the background, see Appendix B and C for details on

how to run the tests and to see the scripts. Libra, the client, is a 233MHz Pentium II

processor. Both machines are isolated from any outside traffic and connected through

a 100 Mbps 3Com switch. Refer to Figure 3-3 to see the test bed.

DUT: Volans
CLIENT: Libra

3Com switch

Figure 3-3 Test setup to measure the latency when a single packet is sent every 4 seconds

Single packet tests procedures are included in Chapter 4. See Appendix C for

the source code used to generate the rules.

3.3.2 Throughput tests

Throughput tests are performed using the Spirent’s Network Tester “SmartBits”.

These tests will show the latency of the network stack when multiple packets are sent

at different transmission rates.

The tests are performed in the Cal Poly Cisco lab. A Windows 95 PC is

connected via a Patch panel to control the SmartBits 2000. The SmartBits cards,

 31

model ML-7710, are connected via the patch panel to a Cisco 2900 XL switch to

communicate with our DUT, which is Volans. The test bed is shown in Figure 3-4.

Spirent Tester

PC
Controls the

Spirent Tester

150 Net
Lab Backbone

(via Patch Panel
Por 12)

Patch Panel

Volans

Management
connection
already wired

Cisco switch

Figure 3-4 Test setup using the Spirent’s network tester to vary the throughput

 Two SmartBit cards were connected to the switch, one is to send the stream of

test packets at different rates, and the other is used to send 2 packets to port 6789

which serves to reset the memory buffers where the measurements are stored. During

the tests, the Smartbits would run for one minute before the timestamp measurements

were taken. This is because we considered that one-minute would be enough to reach

steady-state for the transmission rate performance testing.

 Given that the number of packets increase as the transmission rate increases,

the timestamping instrumentation inside the kernel was modified for each test. A new

 32

counter was added to the code so that the timestamps would be taken after one

minute. The number of packets sent in a minute is automatically obtained with the

SmartWindows application. The second modification was to increase the memory

buffers in order to store 4000 timestamps instead of 50 as it was before. A third

modification was to match incoming packets on the port number instead of reading

the payload. One last change had to be made to the instrumentation code inside the

netif_rx function. Since netif_rx executes with interrupts disabled and I/O

operations are costly, we removed the only memcpy from our instrumentation code.

3.3.3 Packet specifications

The test’s packets must be less than the MTU because of fragmentation. If the

payload is larger than the MTU, by nature, the protocol stack will fragment the

payload into packets, one(s) that will have the size of an Ethernet frame with the last

one possibly having a payload less than an Ethernet frame. Having to deal with

different payload sizes in a test may cause a discrepancy and could ruin the results, or

at least make the results difficult to interpret.

3.4 The Linux TCP/IP stack

3.4.1 Understanding the packet data flow

It is critical to understand the packet data flow in order to be able to add the

timestamps and perform the measurements. Unfortunately, by the time this analysis

was made, there was no detailed documentation on the receiving operation or the

 33

netfilter/firewall hooks specific to the Linux kernel 2.4 other than the source code.

Thus, our first efforts focused on capturing the data flow from the data link layer to

the application layer and finding the netfilter hooks. On the other hand, by the time

this document was written we found documentation (sections 3.6.2 and 3.6.3) that

confirmed our findings.

3.4.1.1 The receiving operation

From the basics of networking we understand that in order to establish a TCP

connection a server must be listening to an open port. A client wanting to establish a

connection sends a SYN packet to the server. The server responds by sending a

SYN/ACK to finish the handshake and the client sends an ACK plus the PACKET.

Followed by the handshake only PACKETS are sent to the server until a FIN packet

is received in order to close the connection [41]. Refer to Figure 3-5.

 34

Figure 3-5 Basic TCP client-server connection

The Linux operating system separates the receiving operation in two parts.

The first is when the server holds listening to a port, which is from the application

layer down to the Linux socket layer [42]. The other happens when a packet is

coming in from the network, or from the physical layer up. These two operations are

explained in detail in the next sections.

 35

3.4.1.2 Analysis from the application down

When a server application opens a connection and is ready to receive a packet, it will

make a call to read() or recv() on a socket. Then, read() makes a system call to

sock_read(). The latter will call sock_recvmsg(), which will then call sock->ops-

>recvmsg(). For a TCP connection the “ops” corresponds to a pointer to inet, where

inet calls the recvmsg() function. Finally, the inet_recvmsg() calls sk-

>proto[tcp|udp]->recvmsg() and the application sleeps. The latter is put into the run

queue or is woken up after the TCP layer has processed any incoming packets.

Figure 3-6 shows this process.

read()

sock_read()

sock_recvmsg()

sock->ops[inet]->recvmsg()

recvmsg()

inet_recvmsg()

sk-proto[tcp/udp]->recvmsg

SLEEP

Application
Layer

Socket
Layer

Figure 3-6 Receiving operation from Application to Socket layer

 36

3.4.1.3 Analysis from Datalink layer to Socket layer

Initially, as a packet comes in from the physical layer it causes the Ethernet device to

“fire up” an interrupt. Interrupts are handled by top-halves and bottom-halves [43].

The top-half is handled by the network adapter’s device driver (e.g. 3c59x.c). The

device driver calls the eth_type_trans() function located in the eth.c file. This

function organizes the first part of the packet header (i.e. MAC header) inside an

sk_buff structure.

All the information contained inside a packet is carried out through the stack

in the form of an skbuff structure until we get to the socket layer. In the Linux

source code we always find a structure skb of type skbuff. So, for example,

when a packet enters from the network, skb->data points to beginning of the

entire information of that incoming packet. The data is not organized in the skbuff

structure all at once but, as the packet passes through the stack, each layer will

reorganize the packet’s information inside that skb structure. After the TCP/UDP

layer has been processed, it will pass the pointer to skb structure to the socket layer.

The socket layer will extract information inside the skb structure and create a new

structure of type sock. Thus, the sock structure will contain information such as

source and destination port, the pointer to the payload, and more. More details on the

information inside these structures can be found in the sock.h and skbuff.h

files of the Linux source code.

Going back to the execution of the top-half, when the eth_type_trans

function returns the device driver calls the device controller (i.e. netif_rx) located

inside the dev.c file. This file controls all the network device drivers and it is located

 37

in the usr/src/linux/net/core/ directory. Two main functions separate the

top-half from the bottom-half: netif_rx() and net_rx_action(), respectively.

After the top-half executes, the swapper will be in charge of running the

bottom-half. Note that it is the swapper and not the scheduler who handles this

operation. The difference between the swapper and the scheduler is that the swapper

is in charge of completing the execution of the pending bottom-halves [43] and the

latter is in charge of handling processes.

The netif_rx() function takes a timestamp by calling the

get_fast_time(&skb->stamp) function. This timestamp serves as a unique ID

for each packet. This packet ID is transferred throughout the entire stack inside the

skb structure, serving as a mean to match/differentiate the measurements for a

specific packet at each layer. After the top-half executes, the swapper schedules to

execute the bottom-half which starts with net_rx_action().

Figure 3-7 presents the example of a single packet traversing the TCP/IP stack

with a firewall of two rules, matching a MAC address and a TCP port. The packet is

traced through all the layers of the stack until the socket layer hands the data to the

application. The symbols in Figure 3-7 represent the following:

< > enter and exit function ()
>>> enter function ()
<<< exit function ()
. . . several functions

Figure 3-7 will serve as the basis for the instrumentation and analysis because

every TCP and UDP packet destined for the host will follow the path outlined in this

figure. Notice that the IP layer and the firewall are inside the Data Link layer. This is

 38

because the MAC header is “stripped off” along with the IP header right before the

net_rx_action() function exits.

<<< net_rx_action

>>> net_rx_action
< > netif_rx <---- TIMESTAMP 1 @ the beginning of the function

D
A
T
A
L
I
N
K

L
A
Y
E
R

< > ip_local_deliver_finish
 <--- TIMESTAMP 3 @ beginning of ip_local_deliver_finish

<<< ip_local deliver [NF_IP_LOCAL_IN]
<---- TIMESTAMP 2 / before fnc returns --->

>>> ip_local_deliver [called by above fnc]
< > ip_rcv_finish

< > ip_rcv [NF_IP_PRE_ROUTING]

I
P

L
A
Y
E
R

<<< tcp_rcv_established
<--- TIMESTAMP 4 --->
...

>>> tcp_rcv_established

T
C
P

<<< sock_recvmsg
<---- TIMESTAMP 5 ----->
…

>>> sock_recvmsg

S
O
C
K

<<< ipt_do_table
< > ip_packet_match
<<< do_match

< > match - for MAC address
>>> do_match [didn't match]
< >ip_packet_match
<<< do_match

< > port_match
< > port_match
< > tcp_match

>>> do_match didn't match
< > ip_packet_match

>>> ipt_do_table

F
I
R
E
W
A
L
L

<<< udp_recvmsg
<--- TIMESTAMP 4 -->
...

>>> udp_recvmsg

U
D
P

Figure 3-7 Traversing the Network Stack – from bottom up

 39

Notice the timestamps placed throughout the stack in Figure 3-7; these are

placed at critical points in order to take timing measurements in the stack.

Timestamp 1 is our reference point (“T1” in Figure 3-1). Timestamp 2 is placed

before the firewall starts its execution. Note that this is not the point where the IP

layer begins, but the point where the netfilter/firewall begins. Timestamp 3 is placed

after the firewall has processed the packet and has finished its execution. The

difference between the measured values of Timestamp 3 and Timestamp 2 tell us the

cost of having a firewall.

Timestamp 4 is placed after the TCP or UDP layers have been processed. At

first, we speculated that if we block on TCP ports or MAC addresses, filtering should

happen at the TCP layer or at the Data Link layer respectively, but Figure 3-7 proved

us wrong. Finally, Timestamp 5 (point “T5”of Figure 3-1) is placed before the socket

layer passes the payload to the application.

Once the path followed by a packet in the stack was studied, we performed

various tests. To understand the results we found it necessary to study the source

code and the iptables algorithm, which is explained in the last section of this

chapter.

3.5 Software instrumentation

3.5.1 Software design and issues

The design and implementation of the timestamps involved some challenges. When

tracing a packet through the stack, an important factor to take into consideration was

the uniqueness of a packet. For example, after performing our first tests the

 40

MAC header | IP header | TCP header | AAAAA*****************************EEEEE

measurement results showed that some of the packets were missing at the TCP and

socket layers. It was not until we ran the network sniffer that we found the problem

to be in the client application and in the timestamps implementation. Timestamps

were taken for every single packet coming in from the network. For the client

application, every time that the client would send a packet it would close the

connection, re-negotiate with the server, and send the packet. So, when packets were

“lost” it was because our instrumentation was taking measurements for ARPs, SYN,

ACKs and other packets which do not traverse all the way up to the socket layer!

Another problem encountered was running other services, such as Xwindows,

system logger, and NIS. Since we had a timestamp at this layer, the timestamp code

would be called constantly, thus, taking measurements that did not belong to our test

packets. NIS was the worst of them because both PCs would constantly send ARPs

to find the NIS server and undesired packets kept coming in. The best solution was to

shut down all the services (which we did later in our tests) but, if we wanted to have

different traffic coming in, how do we identify our test packets? Well, we marked the

payload. So we changed the hub for a switch and marked the payload with A’s at the

beginning of the data and E’s at the end, just like this:

Marking the packet lead to finding out a way to read the payload as it

traversed the stack. Well, recall the skb structure of type skbuff discussed in

previous sections. This structure is modified in every layer of the stack. For an

incoming packet, the data element inside the structure points to the beginning of the

 41

entire packet. So, when a packet comes in through the network, skb->data[0]

points to the beginning of the MAC header. Then, in order to read the A’s and E’s of

the payload, we have to offset skb->data to the beginning of the payload. For

example, for a TCP packet the first A is at offset 52, (i.e. skb->data[52] – see

Figure 3-8) and for a UDP packet the offset is at 29 (i.e. skb->data[29]). As

the packet traverses the stack, the offset decreases because the layers modify the

structure and strip off some parts of the header.

3.5.2 Instrumentation of the Timestamps

The performance measurement timestamps are taken by using the rtdscl macro.

This macro reads the lower 32 bits of the Time Stamp Counter (TSC) using assembly

instructions thus, giving a more precise time [43].

3.5.2.1 Timing measurements at the Data Link layer

As it has been explained, we place the first timing measurement inside the

netif_rx() because this is the starting point of the stack. Only the packets

marked with A’s and E’s will be measured. The skb->data is the pointer to the

beginning of all the data. At this point in the stack skb->data[0] points to the

beginning of the IP header. The payload starts at skb->data[52] for TCP and for

UDP is at skb->data[29]. The packet information (i.e. timestamp, ID, count, and

TCP header) is stored in arrays declared as global in order to reserve the memory

space at boot time. The pointer to the data structure where the information is stored is

passed to the /proc file system using __TSCtimestamp function.

 42

Figure 3-8 Timestamp hack for the device driver (Timestamp 1)

 43

3.5.2.2 IP Layer

Theoretically, when a packet traverses throughout the stack the operating system

should strip-off the header of each layer as it moves up. As mentioned earlier, in the

Linux kernel, the MAC and the IP headers are not stripped-off until the firewall has

processed the packet.

Timestamps 2 and 3 are taken at this layer to measure the firewall. Timestamp 2 is

located right before the ip_local_deliver() returns. This is because when this

function returns it makes a call to NF_IP_LOCAL_IN. Timestamp 3 is placed at the

beginning of ip_local_deliver_finish. Notice in the Figures 3-9 and 3-10

that the calls to __TABLES_IP_IN and __TABLES_IP_OUT are the entry points

to take the timestamps. When our instrumentation is not loaded, the addresses of

__TABLES_IP_IN and __TABLES_IP_OUT point to NULL. Again, the

timestamp is taken using the rdtscl macro. In order to reset the memory buffers,

we send a packet marked with C’s at the beginning and at the end of the payload.

Thus the ‘if’ statement:

 if ((skb->data[52] == 0xCC) && (skb->data[57] == 0xCC) &&
(skb->data[skb->len-1] == 0xCC) &&
(skb->data[skb->len-5] == 0xCC))

reads the C’s inside the payload and resets the buffers using and the counters. At the

bottom of Figure 3-9 we observe the call to the NF_HOOK (i.e. netfilter hook), which

is the entry point to the firewall.

 44

Figure 3-9 IP layer – Beginning of the firewall (Timestamp 2)

 45

Figure 3-10 IP layer – End of the firewall (Timestamp 3)

 46

3.5.2.3 TCP and UDP layers

The timestamp is taken at the top of the TCP and UDP layers. For TCP the pointer to

the payload is skb->data[0], but for UDP the pointer to the payload is at

skb->data[8], See Figure 3-11 and 3-12.

Figure 3-11 TCP layer – Timing the end of the TCP/IP stack

 47

Figure 3-12 UDP layer – Timestamp 4

 48

3.5.2.4 SOCKET layer

The socket layer is the portion of the stack that forwards the data to the application

layer. At this point we can no longer match the A’s and E’s of the payload, so we

trace the packet using the port that it is destined for (i.e. 12345). See Figure 3-13.

Figure 3-13 SOCKET layer – Before data is sent to the application (Timestamp 5)

 49

3.6 The Linux Firewall – IPTABLES

3.6.1 Iptables Application

The Linux iptables was introduced with the 2.4.0 kernel to replace ipchains.

With iptables the user can create and delete chains and matching rules to filter

packets. There are 3 default policies: INPUT – to check the headers of incoming

packets, OUTPUT – for outgoing packets/connections, and FORWARD – if the

machine is used as a router (e.g. as a Network Address Translator.) Each policy has

its own set of rules.

Basically, rules are instructions with pre-defined characteristics to match on a

packet. When a match is found the firewall makes a decision to handle that packet.

Each rule is executed in order until a match is found. A rule can be set like this:

iptables [table] <command> <match> <target/jump>

See the example below:

#iptables –P INPUT ACCEPT
#iptables –A INPUT –p tcp –dport 23 –j DROP
#iptables –A INPUT –p udp –dport 80 –j DROP
#iptables –A INPUT –p icmp –j DROP

Where: –P: policy; –A: append; –p: protocol; –dport: destination port; –j: jump

In the example, the first rule says that we accept any incoming connections

from anywhere from the network. The next rule checks if the packet is a TCP, UDP

or ICMP packet, respectively. If the incoming packet is TCP and if it is trying to

establish a connection to port 23 (i.e. telnet), the packet is DROPed. The next rule

drops any UDP packets trying to connect to port 80. The last rule drops all ICMP

packets.

 50

Iptables and ipchains, ironically enough, have the benefit of “chains”!!

Chains are basically a sublayer of rules so that, if we want to capture a packet with

specific characteristics, it is efficient not to make it go through the rest of rules that

might never match that specific packet.

Figure 3-14 Iptables configuration Process

In Figure 3-14 we see how, under each POLICY, we can create chains. For

example, imagine that the user wants to accept only those packets coming from the

 51

subnet 192.168.X.X. Also, for those specific packets belonging to that subnet, the

user wants to accept TCP packets destined to ports 21 and 80, and UDP packets

destined for ports 81 and 12345. In that case, the configuration of the firewall looks

like this:

#iptables –P INPUT DROP
#iptables –A INPUT –s 192.168.0.0/16 ACCEPT
#iptables –N tcp_packets
#iptables –N udp_packets
#iptables –A INPUT –p tcp –j tcp_packets
#iptables –A INPUT –p udp –j udp_packets
#iptables –A tcp_packets –dport 21 –j ACCEPT
#iptables –A tcp_packets –dport 80 –j ACCEPT
#iptables –A udp_packets –dport 81 –j ACCEPT
#iptables –A udp_packets –dport 12345 –j ACCEPT

In the example, we have specified to drop every packet except those packets

coming from the subnet 192.168.X.X, and they should be checked under the rule set.

We create two chains, tcp_packets and udp_packets. Under each chain we

create a set of rules to match the packet and with the rule we specify a target (e.g.

ACCEPT / DROP / REJECT / QUEUE / RETURN). A TCP packet coming from the

trusted IP will be checked under the tcp_packets chain. Inside that chain we

check if the packet is destined for ports 21 or 80. If it is not destined for any of the

two ports the packet is dropped. Only TCP packets will be checked under the

tcp_packets chain. The same happens for UDP, anything destined for port 81

and 12345 is accepted, otherwise the packets will be dropped.

 52

3.6.2 Architecture of the Netfilter2

The Linux Netfilter consists in a series of “hooks” placed in several points in the

network stack – so far IPv4, IPv6 and DECnet.

Figure 3-15 Packet traverses the netfilter

 In Figure 3-15 a packet comes in from the left hand side of the picture. The

first check point to the netfilter’s framework is the NF_IP_PRE_ROUTING [A]

hook; this is after the packet has passed simple sanity checks, such as not truncated,

IP checksum OK, not a promiscuous receive. The routing code will decide whether

the packet is destined for another interface, or for a local process. Packets that are

unroutable may be dropped.

2The information provided in sections 3.6.2 and 3.6..3 have been taken, and some parts even copi ed, “as is” from the “Netfilter

Hacking HOWTO: Netfilter Architecture” Document [22]. I want to take no credit for the information presented in these two

sections because the document is short, simple to understand, and to the point. Some things have be en reworded but the author,

and maintainer of iptables Rusty Russell, did an excellent job presenting this in a very simple way.

 53

If the packet is destined for the box itself, the netfilter’s framework

NF_IP_LOCAL_IN [B] hook is called. The analysis of the performance of the

firewall starts at this point.

However, if the packet is destined to another interface, the netfilter framework

is called for the NF_IP_FORWARD [C] hook. Finally, the packet is passed to the

NF_IP_POST_ROUTING [D] hook it goes out to the outside.

 When packets are created locally and the netfilter has been configured to filter

outgoing traffic, the NF_IP_LOCAL_OUT [E] hook is called. Here, “routing occurs

after this hook is called - in fact, the routing code is called first (to figure out the

source IP address and some IP options) - if you want to alter the routing, you must

alter the ‘skb->dst’ field yourself, as is done in the NAT code.”

3.6.3 Netfilter Base

The firewall is modular; this means that the network hooks will only be called when a

rule has registered that hook. Rusty Russell explains, “Kernel modules can be

registered to listen at any of these hooks. A module that registers a function must

specify the priority of the function within the hook.” In other words, when creating a

module, the module should specify what netfilter hook(s) will be used so that “when a

netfilter hook is called from the networking code, each module registered at that point

is called in the order of priorities, and is free to manipulate the packet.” The module

can then tell netfilter to do one of five things:

1. NF_ACCEPT: continue traversal as normal

2. NF_DROP: drop the packet; don’t continue traversal

 54

3. NF_STOLEN: I’ve taken over the packet; don’t continue traversal

4. NF_QUEUE: queue the packet (usually for userspace handling)

5. NF_REPEAT: call this hook again

For example, when using Network Address Translation (NAT), “for non-local

packets, the NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING hooks are

perfect for destination and source alterations respectively;” this is because pre-routing

checks on the destination address of the packet and makes a decision to forward it or

pass it to the host itself. Post-routing checks if the packet is allowed to be forwarded

or not. More detailed information can be found in [22].

3.6.4 Iptables Algorithm

The iptables algorithm will explain the results in Chapter 4. Notice what happens

when the netfilter’s framework NF_IP_LOCAL_IN hook is called in Figure 3-16.

Iptables executes ipt_do_table, which then executes ipt_packet_match,

Figure 3-17.

 55

Figure 3-16 IPTABLES Algorithm – ipt_do_table() checks for matches in the rule-set

Observe in Figure 3-17 that the firewall checks the source and destination IP

address first. If no match is found, it tries to find a match for the input device, then

check for the output interface device, then the protocol, and finally it checks if the

packet is a fragment. If a match is not found, ip_packet_match will return 0,

continue to the next rule, or break out of the loop.

 56

Figure 3-17 ip_packet_match function–IP address are always checked regardless of the type
of filtering in the rule-set

After passing through the ip_packet_match and finding no matches, the

next step is to execute the IP_MATCH_ITERATE, in Figure 3-16. Here, the

firewall calls the do_match function pertaining to the specific rule. Every module

has a specific do match function. In other words, if we are filtering/matching a MAC

address the iptables algorithm will call the do_match function specific to MAC

addresses. If a match is found, the chain breaks to perform a TARGET check.

Targets can be ACCEPT, DROP, QUEUE, STOLEN, REPEAT or “JUMP” to

another chain when a chain has been added to the rule-set. If IP_MATCH_ITERATE

does not find a match it will either continue to the next rule or exit the loop.

 57

Iptables breaks out of the loop when it finds a match, when the packet is a

fragment, or when all the rules have been checked. Hotdrop is a variable initialized

to zero; when a packet is a fragment the hotdrop variable is changed to a 1, which

indicates that the packet should be dropped. A fragment is a malicious packet (e.g. a

packet with a TCP header larger or smaller than the standard) and will always be

dropped. The VERDICT is a variable that tells the algorithm what to do with the

packet (e.g. NF_ACCEPT, NF_DROP).

In summary, the firewall will always go through the ip_packet_match

function regardless of the type of matching. For example, every rule that filters TCP

ports includes checking for IPs, interfaces, protocol, fragments, and at last matching

the TCP port.

 58

Chapter 4 Firewall Performance Results

In this chapter we will compare the host’s performance with and without the firewall.

We will analyze the data in terms of the host’s latency for a single packet and also for

a stream of packets when they traverse the stack. The analysis of the latency for a

single packet will show us the firewall sensitivity to the number of rules, the type of

filtering (also referred as the type of matching), and the payload size. For both

scenarios, single packets and throughput tests, the latency will show how the total

processing time is impacted by the transmission rate. The chapter is divided in two

parts:

(1) Results from single packet tests

(2) Results from throughput tests

4.1 Back-to-back timing for the single-packet tests instrumentation

The back-to-back timestamps were placed at the beginning and at the end of the

timestamping instrumentation in order to measure the overhead created by it. The

back-to-back timestamps were taken using the rdtscl() macro. Two tests were

performed in which 40 UDP packets were sent to the host, for a total of 80 samples.

The difference between the end time and the beginning time is the

instrumentation overhead. This overhead is subtracted from the test results to obtain

better estimates. In other words, for example, the total time to process one TCP

packet of 64 bytes of payload (i.e. T5-T1) with the instrumentation is 31.86 µs as

shown in Table 4-1. This time included the overhead generated by T1, T2, T3, T4,

and T5. Subtracting the overhead from the measurements will give a better estimate.

 59

Table 4-1 Packet’s latency (including the instrumentation overhead) as it travels the
TCP/IP stack

 NOFIREWALL [units: µs]

TCP T2 – T1 T3 - T1 T4 - T1 T5 - T1
64 bytes 11.89 14.04 28.35 31.86
1400 bytes 13.49 15.61 39.71 42.92

UDP T2 – T1 T3 - T1 T4 - T1 T5 - T1
64 bytes 12.11 14.46 24.44 27.74
1400 bytes 13.97 16.35 36.38 40.18

Table 4-1 shows the time that it takes for a packet to travel from the bottom of

the stack to any other point in the stack, for example T2-T1 is the time that it takes for

a packet to travel from the device driver to the beginning of the firewall. These times

include the instrumentation overhead. Now, Table 4-2 shows the results of the back-

to-back tests. Here, the Datalink layer’s overhead is about 1 µs and the rest of them

add a little more than half of a microsecond each. The reason why the overhead of

the Datalink is greater than the rest of them is because of a memcpy(). This

memcpy() served to copy the header of the packet into an array that was passed to

the /proc file system in order compare the headers of each packet and the sequence

number. Later, for the throughput tests, we found the memcpy() to be unnecessary

and it was removed from the instrumentation code.

Table 4-2 Overhead of the single-packet tests instrumentation

 Test 1 Test 2 Average
Overhead of T1 (OT1) [us] 1.0725 1.0775 1.075 µs
Overhead of T2 (OT2) [us] 0.555 0.555 0.555 µs
Overhead of T3 (OT3) [us] 0.515 0.515 0.515 µs
Overhead of T4 (OT4) [us] 0.5675 0.5675 0.5675 µs
Overhead of T5 (OT5) [us] --- --- 0.5675 µs

 60

Notice that in the Table 4-2, T5 was not included in the back-to-back tests

because of an error in our back-to-back instrumentation. This error was found and

fixed for the throughput back-to-back tests. However, given that the code for T5 is

very similar to that of T2, T3, and T4, we inferred the back-to-back time for T5 is

approximately the same as the others. For the purpose of our analysis, we selected

0.5675 (the same value as T4) as a conservative estimate for T5.

 The results in Table 4-2 were subtracted from the results in Table 4-1. So,

T2-T1 without the instrumentation overhead is equal to: T2-T1 with overhead minus

the overhead of T1 (OT1) + the overhead of T2 (OT2). Then, T3-T1 without the

overhead is equal to: T3-T1 with overhead minus OT1 + OT2 + OT3, and so on.

Thus, the time to process the stack without the instrumentation overhead is shown in

Table 4-3.

Table 4-3 Packet’s latency (excluding the instrumentation overhead) as it travels the
TCP/IP stack

 NOFIREWALL [µs]

TCP T2 – T1 T3 - T1 T4 - T1 T5 - T1
64 bytes 10.26 11.90 25.63 28.58
1400 bytes 11.86 13.46 37.00 39.64

UDP T2 - T1 T3 - T1 T4 - T1 T5 - T1
64 bytes 10.48 12.32 21.73 24.46
1400 bytes 12.34 14.21 33.67 36.90

 From this point on, all the results shown in the tables exclude the

instrumentation overhead.

 61

4.2 Procedures for single-packet tests

The parameters under test, shown in Table 4-4, included the transmission protocol,

connection speed, payload size, number of rules, type of filtering, and the INPUT

policy.

Table 4-4 Parameters under test

Generic Test Setup

Transmission Protocol TCP UDP
Type of filtering/matching TCP, IP, MAC UDP, IP, MAC
INPUT policy ACCEPT & DROP DROP
Connection speed 100Mbps
Payload size 64 &1400 bytes
Number of rules No firewall,10, 40, 100

 Table 4-4 shows a generic table for the test setup. During the tests neither the

server nor the client ran any services. Both machines used a 10/100 Mbps 3Com

NIC, model 3C905C. The connection speed was 100 Mbps in an isolated system,

sending one packet every 4 seconds. The payload size varied between 64 and 1400

bytes. The type of filtering was IP and MAC addresses for both protocols, and TCP

and UDP for each respective transmission protocol. The number of rules under each

type of filtering was zero (or No Firewall), 10, 40, and 100 rules. Both INPUT

policies ACCEPT and DROP were tested for TCP, but only the INPUT policy DROP

was tested for UDP. A total of 40 packets or samples on one single test were sent to

the host. The results were accessed via the /proc/ file system. Three tests were

performed for each type of filtering, from which we took the median of the total

samples to exclude any outliers. The medians were averaged for a final result.

 62

4.3 Single-packet test results

The results obtained from single-packet tests provided the following information: (a)

that the payload size impacts the performance before and after the firewall but not the

firewall itself, (b) that the INPUT policy does not affect the performance of the

firewall, (c) that the firewall (T3 – T2) is affected only by type of filtering/matching

and the number of rules, and (d) that the time to process a packet from T1 to T5 is

affected by the parameters in (c) and also by the payload size.

4.3.1 Timing the network stack

The first analysis involved plotting all the measurement data obtained at each layer.

Figure 4-1 shows the timestamps of T2 to T5 with respect to T1. The line connecting

T2-T1 and T3-T1 represents the time that it takes for the firewall to execute.

No firewall - TCP packet - INPUT policy DROP

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Position of the packet in the TCP/IP stack

us
ec

64 bytes 10.26 11.90 25.63 28.58

1400 bytes 11.86 13.46 37.00 39.64

T2 - T1 T3 - T1 T4 - T1 T5 - T1

Figure 4-1 Latency increases as the payload size increases

 63

From Figure 4-1 and 3-7 we have:

• Start time = T2 – T1

• Firewall = (T3 – T1) – (T2 – T1) = T3 – T2

• TCP layer = (T4 – T1) – (T3 – T1) = T4 – T3

• Socket layer = (T5 – T1) – (T4 – T1) = T5 – T4

• Total processing time = T5 - T1

4.3.2 T2 – T1

The results for TCP and UDP in Table 4-5 show that the difference between T2 – T1

increases as the payload size increases. For example, compare the averages for 64

bytes with the averages for 1400 bytes. The reason for this is because the packet is

copied from the network into kernel space.

Table 4-5 Payload impact in T2-T1 – time increases as the payload size increases

 T2 - T1 [units: us]
 TCP UDP
 IP MAC TCP IP MAC UDP
64 bytes T2 - T1 T2 - T1 T2 - T1 64 bytes T2 - T1 T2 - T1 T2 - T1
No firewall 10.26 10.26 10.26 No firewall 10.48 10.48 10.48
10 rules 10.46 10.23 10.54 10 rules 10.45 10.50 10.45
40 rules 10.58 10.59 10.26 40 rules 10.51 10.60 10.61
100 rules 10.72 10.64 10.56 100 rules 10.66 10.55 10.68

Average 10.51 10.43 10.40 Average 10.52 10.53 10.55

1400 bytes 1400 bytes
No firewall 11.86 11.86 11.86 No firewall 12.34 12.34 12.34
10 rules 12.02 11.90 11.94 10 rules 12.38 12.27 12.36
40 rules 12.05 12.10 11.92 40 rules 12.39 12.43 12.52
100 rules 12.31 12.15 12.30 100 rules 12.42 12.48 12.54

Average 12.06 12.00 12.00 Average 12.38 12.38 12.44

 64

4.3.3 T4 – T3

At the TCP and UDP layers, the latter is processed faster than the TCP layer because

of the nature of the complexity of their algorithm. However, the time to process the

layers is influenced by the payload size because the data is copied from kernel space

to user space. For example, the results in Table 4-6 demonstrate that the average time

to process 64 bytes of payload is shorter than 1400 bytes of payload.

Table 4-6 Impact of the payload size in T4 – T3 – time increases as the payload size
increases

 T4 - T3 [units: µs]
 TCP UDP
64 bytes IP MAC UDP 64 bytes IP MAC UDP
No firewall 13.74 13.74 13.74No firewall 9.42 9.42 9.42

10 13.89 14.14 14.20 10 9.48 9.40 9.42
40 14.32 14.68 14.72 40 9.63 9.95 9.89

100 14.57 15.02 14.81 100 10.09 10.25 10.18
Average 14.13 14.39 14.37Average 9.65 9.75 9.72

 TCP UDP
1400 bytes IP MAC UDP 1400 bytes IP MAC UDP
No firewall 23.54 23.54 23.54No firewall 19.46 19.46 19.46

10 23.65 24.07 24.22 10 19.46 19.35 19.23
40 24.00 24.86 24.67 40 19.48 19.83 19.75

100 24.38 25.07 24.62 100 19.90 20.02 20.03
Average 23.89 24.38 24.26Average 19.57 19.66 19.62

4.3.4 T5 – T4

Different from T2 – T1 and T4 – T3, the socket layer is processed at random times.

Two tests were performed in order to study the time to process the socket layer with

respect to the size of the payload. The tests did not include a firewall. Figure 4-2

shows that the time to process this layer is not dependent on the payload size but

given that it is a process controlled by the scheduler, it is executed at a random time.

 65

Randomness of the time from TCP to socket(test 2)

2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10

0 200 400 600 800 1000 1200 1400 1600

Payload size

us
ec SOCK - TCP

Randomness of the time from TCP to socket(test 1)

2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10

0 200 400 600 800 1000 1200 1400 1600

Payload size

us
ec SOCK - TCP

Figure 4-2 Randomness at the socket layer –socket layer is called randomly regardless of
the number of rules

4.4 INPUT policy ACCEPT vs. DROP

After having analyzed the other layers, we study the sensitivities of the firewall. The

analysis of the INPUT policies is done first. Table 4-7 shows the time difference

between T5 - T1 for each policy using various types of matching, number of rules and

 66

payload size. It becomes evident that the time differences between the T5 – T1 for

both policies (i.e. Accept – Drop) are insignificant. Consequently, we believe that the

policy has no effect in the performance.

Table 4-7 Difference between INPUT policy ACCEPT and DROP – firewall is not
sensitive to the INPUT policy

Number of rules – (payload size) [units: µs]
 INPUT policy - [T5 – T1]

IP matching Accept Drop Acc - Drop
10 rules - (64 bytes) 29.94 29.92 0.02
10 rules - (1400) 41.14 40.77 0.38

40 rules - (64) 34.12 34.00 0.12
40 rules - (1400) 45.00 44.90 0.10

 INPUT policy - [T5 – T1]

MAC matching Accept Drop Acc - Drop
10 rules - (64) 35.66 35.23 0.43
10 rules - (1400) 47.00 46.57 0.43

40 rules - (64) 57.13 55.41 1.72
40 rules - (1400) 68.67 66.84 1.83

 INPUT policy - [T5 – T1]

TCP matching Accept Drop Acc - Drop
10 rules - (64) 35.93 36.00 0.07
10 rules - (1400) 47.02 47.30 0.28

40 rules - (64) 54.48 54.73 0.25
40 rules - (1400) 65.66 65.92 0.26

4.5 TCP and UDP Firewall Performance [T3 – T2]

As mentioned at the beginning of the chapter, the type of filtering and the number of

rules have a performance impact in the firewall (T3 - T2) but the payload size does

not. The tables presented in this section show our findings.

 67

The results are organized as follows:

1. Study of the impact generated by the payload size

2. Study of the impact generated by the number of rules

Note: The results in the tables are from tests that used INPUT policy DROP.

4.5.1 Payload size effect

The tables below (Table 4-8 through Table 4-10) present the results for different

types of matching. Inside each table and under N rules, there are two different

payload sizes, 64 and 1400 bytes. It is clear that the time difference [T3 – T2]

between the payload sizes belonging to a specific number of rules is very small. This

demonstrates that the payload size does not affect the performance between T2 and

T3. Also notice that, as expected, IP matching took less processing time than any

other type of matching – refer to the iptables algorithm in Chapter 3.

Table 4-8 IP matching for TCP and UDP packets – firewall is not sensitive to the payload
size

TCP IP UDP IP
PACKETS [units: µs] PACKETS [units: µs]
10 RULES T2 - T1 T3 - T1 T3 - T2 10 RULES T2 - T1 T3 - T1 T3 - T2
64 bytes 10.46 13.10 2.64 64 bytes 10.45 13.59 3.13
1400 bytes 12.02 14.66 2.63 1400 bytes 12.38 15.57 3.18

40 RULES T3 - T2 40 RULES T3 - T2
64 bytes 10.58 16.81 6.22 64 bytes 10.51 17.01 6.50
1400 bytes 12.05 18.44 6.38 1400 bytes 12.39 19.12 6.73

100 RULES T3 - T2 100 RULES T3 - T2
64 bytes 10.72 24.66 13.94 64 bytes 10.66 24.72 14.06
1400 bytes 12.31 26.27 13.96 1400 bytes 12.42 27.10 14.68

 68

Table 4-9 MAC matching for TCP and UDP packets – firewall is not sensitive to the
payload size

TCP MAC UDP MAC
PACKETS [units: µs] PACKETS [units: µs]
10 RULES T2 - T1 T3 - T1 T3 - T2 10 RULES T2 - T1 T3 - T1 T3 - T2
64 bytes 10.23 18.19 7.96 64 bytes 10.50 19.59 9.09
1400 bytes 11.90 19.95 8.06 1400 bytes 12.27 21.65 9.38

40 RULES T3 - T2 40 RULES T3 - T2
64 bytes 10.59 37.94 27.35 64 bytes 10.60 39.41 28.81
1400 bytes 12.10 39.49 27.40 1400 bytes 12.43 41.75 29.32

100 RULES T3 - T2 100 RULES T3 - T2
64 bytes 10.64 80.56 69.92 64 bytes 10.55 80.65 70.09
1400 bytes 12.15 82.08 69.93 1400 bytes 12.48 82.86 70.38

Table 4-10 TCP/UDP ports matching for TCP and UDP packets – firewall is not sensitive
to the payload size

TCP TCP UDP UDP
PACKETS [units: µs] PACKETS [units: µs]
10 RULES T2 - T1 T3 - T1 T3 - T2 10 RULES T2 - T1 T3 - T1 T3 - T2
64 bytes 10.54 19.04 8.51 64 bytes 10.45 19.16 8.71
1400 bytes 11.94 20.53 8.59 1400 bytes 12.36 21.33 8.97

40 RULES T3 - T2 40 RULES T3 - T2
64 bytes 10.26 37.19 26.93 64 bytes 10.61 38.67 28.06
1400 bytes 11.92 38.81 26.89 1400 bytes 12.52 41.30 28.78

100 RULES 100 RULES T3 - T2
64 bytes 10.56 78.46 67.90 64 bytes 10.68 78.56 67.89
1400 bytes 12.30 80.28 67.98 1400 bytes 12.54 80.69 68.16

Tables 4-8 through 4-10 show matching for 10, 40, and 100 rules for TCP and

UDP packets. It is evident that the payload size can be considered negligible for the

performance given by T3 – T2.

 69

4.5.2 Number of rules effect

To demonstrate that the number of rules and the type of matching have an effect in

the performance of the firewall, the tables presented above are reorganized. Notice,

in the Tables 4-11 through 4-13, that as the number of rules increase the difference

between T3 – T2 also increases. Subsequently, the number of rules impacts the

performance of the firewall.

 Notice in the tables that for “No firewall,” the results for T3 – T2 is non-zero.

This can be explained with the iptables algorithm because, as depicted in Figure

3-16, when the ip_local_deliver function returns it makes a call to the netfilter

hook NF_IP_LOCAL_IN. When a netfilter hook is called, the function

ipt_hook() is executed. This latter returns a call to ipt_do_table. This latter

will check the iptables rule-set and if no rules are found, the function will exit

ipt_do_table and ipt_hook and finally make a call to

ip_local_deliver_finish. This process will take between 1.60 to 1.90 µs.

Table 4-11 Matching IP – time increases as the rules increase

TCP packets
IP

matching UDP packets
IP

matching
 [units: µs] [units: µs]
64 bytes T2 - T1 T3 – T1 T3 - T2 64 bytes T2 - T1 T3 - T1 T3 – T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.46 13.10 2.64 10 rules 10.45 13.59 3.13
40 rules 10.58 16.81 6.22 40 rules 10.51 17.01 6.50
100 rules 10.72 24.66 13.94 100 rules 10.66 24.72 14.06

1400 bytes T2 - T1 T3 – T1 T3 - T2 1400 bytes T2 - T1 T3 - T1 T3 - T2
No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 12.02 14.66 2.63 10 rules 12.38 15.57 3.18
40 rules 12.05 18.44 6.38 40 rules 12.39 19.12 6.73
100 rules 12.31 26.27 13.96 100 rules 12.42 27.10 14.68

 70

Table 4-12 Matching MAC addresses – time increases as rules increase

TCP packets
MAC

matching UDP packets
MAC

matching
 [units: µs] [units: µs]
64 bytes T2 - T1 T3 – T1 T3 - T2 64 bytes T2 - T1 T3 - T1 T3 - T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.23 18.19 7.96 10 rules 10.50 19.59 9.09
40 rules 10.59 37.94 27.35 40 rules 10.60 39.41 28.81
100 rules 10.64 80.56 69.92 100 rules 10.55 80.65 70.09

1400 bytes T2 - T1 T3 – T1 T3 - T2 1400 bytes T2 - T1 T3 - T1 T3 - T2
No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 11.90 19.95 8.06 10 rules 12.27 21.65 9.38
40 rules 12.10 39.49 27.40 40 rules 12.43 41.75 29.32
100 rules 12.15 82.08 69.93 100 rules 12.48 82.86 70.38

Table 4-13 Matching TCP ports – time increases as the rules increase

TCP packets
TCP

matching UDP packets
UDP

matching
 [units: µs] [units: µs]
64 bytes T2 - T1 T3 - T1 T3 - T2 64 bytes T2 - T1 T3 - T1 T3 - T2
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.54 19.04 8.51 10 rules 10.45 19.16 8.71
40 rules 10.26 37.19 26.93 40 rules 10.61 38.67 28.06
100 rules 10.56 78.46 67.90 100 rules 10.68 78.56 67.89

1400 bytes T2 - T1 T3 - T1 T3 - T2 1400 bytes T2 - T1 T3 - T1 T3 - T2
No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 11.94 20.53 8.59 10 rules 12.36 21.33 8.97
40 rules 11.92 38.81 26.89 40 rules 12.52 41.30 28.78
100 rules 12.30 80.28 67.98 100 rules 12.54 80.69 68.16

4.5.3 Linear relationship of [T3 – T2]

The plot of the data just presented shows a linear relationship between the

performance impact and the number of rules. Figures 4-3 and 4-4 present the T3 – T2

trendlines for TCP and UDP using the data obtained for packets of 64 bytes of

payload. They also present a set of equations that may serve to estimate the time to

process T3 – T2 up to 100 rules.

 71

Graph of [T3 - T2] for TCP packets of 64 bytes of payload

y[IP] = 0.12x + 1.46

y[TCP] = 0.66x + 1.46

y[M AC]= 0.68x + 1.05

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 20 40 60 80 100 120

Number of rules

IP
MAC
TCP
Linear (IP)
Linear (TCP)
Linear (MAC)

Figure 4-3 TCP connection – [T3 – T2] – linear relationship between the number of rules
and the time to process the firewall

Graph of [T3 - T2] for UDP packets of 64 bytes of payload

y[IP] = 0.12x + 1.82

y[UDP]= 0.66x + 1.9

y[MAC] = 0.68x + 1.94

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 20 40 60 80 100 120

Number of rules

us
ec

IP

MAC

UDP

Linear (IP)

Linear (UDP)

Linear (MAC)

Figure 4-4 UDP connection – [T3 – T2] - linear relationship between the number of rules
and the time to process the firewall

 Evidently, there is a linear relationship between the number of rules and time

to process T3 –T2.

 72

4.6 Total processing time [T5 – T1] with respect to [T3 – T2]

The total processing time (T5 –T1) is expected to be slower for TCP packets than for

UDP packets; refer to the T4 – T3 section presented earlier. The results in the Table

4-14 confirm that the number of rules directly affects the total processing time. In

addition, it shows that the payload size also impacts the total processing time (e.g.

compare “No firewall” for 64 and 1400 bytes.)

Table 4-14 TCP and UDP – Difference in Total processing time [T5 – T1] for three types of
filtering rules

 T5-T1 [units: µs]
TCP PACKETS UDP PACKETS
 IP MAC TCP IP MAC UDP
64 bytes T5 - T1 T5 - T1 T5 - T1 64 bytes T5 - T1 T5 - T1 T5 - T1
No firewall 28.58 28.58 28.58 No firewall 24.46 24.46 24.46
10 rules 29.92 35.23 36.00 10 rules 25.81 31.81 31.42
40 rules 34.00 55.41 54.73 40 rules 29.46 52.25 51.48
100 rules 41.99 98.28 95.90 100 rules 37.64 93.87 91.75

1400 bytes 1400 bytes
No firewall 39.64 39.64 39.64 No firewall 36.90 36.90 36.90
10 rules 40.77 46.57 47.30 10 rules 38.37 44.17 43.78
40 rules 44.90 66.84 65.92 40 rules 41.91 64.97 64.45
100 rules 53.09 109.47 107.18 100 rules 50.37 106.32 103.99

4.6.1 Firewall % overhead with respect to T5 – T1

The impact of T3 – T2 can be expressed in terms of a percentage overhead generated

by the firewall over the total processing time (T5 – T1). The results in Tables 4-15

through 4-17 show that: (1) as the number of rules increases the percentage overhead

increases up to a 75% for UDP and up to 71% for TCP; on the other hand, (2) as the

payload size increases for a specific number of rules, the percentage overhead

decreases – this is because the firewall is not sensitive to the payload size,

 73

consequently, an increase in payload will increase T5 – T1 while T3 – T2 will remain

the same. The percentage overhead was calculated as follows:

Firewall’s % overhead = (T3 - T2)/(T5 – T1) * 100

Table 4-15 Percentage overhead of IP matching over the T5 – T1 – overhead increases as
the number of rules increase

 TCP PACKETS UDP PACKETS
IP matching IP matching
64 bytes T5 - T1 T3 - T2 % overhead 64 bytes T5 - T1 T3 – T2 % overhead
No firewall 28.58 1.64 6% No firewall 24.46 1.84 8%
10 rules 29.92 2.64 9% 10 rules 25.81 3.13 12%
40 rules 34.00 6.22 18% 40 rules 29.46 6.50 22%
100 rules 41.99 13.94 33% 100 rules 37.64 14.06 37%

1400 bytes 1400 bytes
No firewall 39.64 1.60 4% No firewall 36.90 1.87 5%
10 rules 40.77 2.63 6% 10 rules 38.37 3.18 8%
40 rules 44.90 6.38 14% 40 rules 41.91 6.73 16%
100 rules 53.09 13.96 26% 100 rules 50.37 14.68 29%

Table 4-16 Percentage overhead of MAC matching over the T5 – T1 - overhead increases
as the number of rules increase

 TCP PACKETS UDP PACKETS
MAC matching MAC matching
64 bytes T5 - T1 T3 - T2 % overhead 64 bytes T5 - T1 T3 - T2 % overhead
No firewall 28.58 1.64 6% No firewall 24.46 1.84 8%
10 rules 35.23 7.96 23% 10 rules 31.81 9.09 29%
40 rules 55.41 27.35 49% 40 rules 52.25 28.81 55%
100 rules 98.28 69.92 71% 100 rules 93.87 70.09 75%

1400 bytes % overhead 1400 bytes % overhead
No firewall 39.64 1.60 4% No firewall 36.90 1.87 5%
10 rules 46.57 8.06 17% 10 rules 44.17 9.38 21%
40 rules 66.84 27.40 41% 40 rules 64.97 29.32 45%
100 rules 109.47 69.93 64% 100 rules 106.32 70.38 66%

 74

Table 4-17 Percentage overhead of TCP matching over T5 – T1 - overhead increases as the
number of rules increase

 TCP PACKETS UDP PACKETS
TCP matching UDP matching
64 bytes T5 - T1 T3 - T2 % overhead 64 bytes T5 - T1 T3 - T2 % overhead
No firewall 28.58 1.64 6% No firewall 24.46 1.84 8%
10 rules 36.00 8.51 24% 10 rules 31.81 8.71 27%
40 rules 54.73 26.93 49% 40 rules 52.25 28.06 54%
100 rules 95.90 67.90 71% 100 rules 93.87 67.89 72%

1400 bytes % overhead 1400 bytes % overhead
No firewall 39.64 1.60 4% No firewall 36.90 1.87 5%
10 rules 47.30 8.59 18% 10 rules 44.17 8.97 20%
40 rules 65.92 26.89 41% 40 rules 64.97 28.78 44%
100 rules 107.18 67.98 63% 100 rules 106.32 68.16 64%

4.7 Latency results for various throughputs

4.7.1 Test procedures

The tests were performed using the SmartBits network tester. Because of the

limitation of the system, we only tested UDP packets. The SmartBits was configured

to transmit packets to the DUT for one minute before the timestamps were taken. The

SmartBits’ “Smart Window” application automatically showed how many packets

would be transmitted in one minute. The DUT kept the count of the number of

incoming packets until a minute had elapsed. A total of 4000 timestamps were stored

in the memory buffers. The median of 3 tests with 4000 measurements each was

calculated for a final result. The parameters for each test are shown in the Table 4-18.

Table 4-18 Parameters under test

Generic Test Setup
Transmission Protocol UDP
Type of filtering/matching IP, MAC
INPUT policy DROP
Throughput / transmission rates 5 & 10 Mbps
Payload size 64 bytes
Number of rules No firewall & 100

 75

 The tests were performed only for two types of filtering, IP addresses and

MAC addresses. The number of rules used was zero (or No firewall) and 100. Even

though the hardware supported a 100 Mbps throughput, only tests for 5 and 10 Mbps

were performed because the timestamping instrumentation made the DUT loose

interrupts. When our instrumentation was loaded and 100 rules filtering MAC

addresses were added to the rule-set, a link utilization higher than 12% (i.e. 12 Mbps)

would cause loss of interrupts. Tests were performed without the instrumentation and

100% link utilization (i.e. 100 Mbps) could be reached without any loss of interrupts

even when filtering 100 MAC addresses. This latter test is very important because it

eliminates the possibility that the firewall is the cause of the interrupt loss but that the

problem is caused by the instrumentation.

4.7.2 Back-to-back timing measurements for throughput tests

As described in detail in Chapter 3 some changes were made to the instrumentation.

So, as it was done for the single-packet tests, new back-to-back measurements were

taken and subtracted from the measurement results to obtain better estimates. Notice

in the results in the Table 4-19 that the overhead produced by T1 is 0.36 µs compared

to the 1 µs overhead obtained for the single-packet back-to-back tests shown in the

Table 4-2; this is because of the changes made to the dev.c file.

Table 4-19 Instrumentation overhead

 Test 1 Test 2 Average
Overhead of T1 (OT1) [us] 0.37 0.3625 0.3625
Overhead of T2 (OT2) [us] 0.4625 0.4625 0.4625
Overhead of T3 (OT3) [us] 0.4675 0.4775 0.4775
Overhead of T4 (OT4) [us] 0.6075 0.6025 0.6025
Overhead of T5 (OT5) [us] 0.545 0.545 0.545

 76

Notice that this time we were able to measure the overhead of T5. As

mentioned earlier, the error found for the single-packet back-to-back tests for T5 was

fixed; this allowed us to measure the overhead of T5 for the instrumentation used in

the throughput tests.

4.7.3 Test results

The results obtained using the SmartBits tool show in the Table 4-20 that as

the throughput increases, the latency decreases. In other words, the faster the

transmission rate, the faster the packet is processed in the stack.

Table 4-20 Difference in the latency for various throughput – latency decreases as the
throughput increases

SINGLE-PACKET every 4 seconds [units: us]
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1

No firewall 10.48 12.32 21.73 24.46
100 rules IP 10.66 24.72 34.81 37.64

100 rules MAC 10.55 80.65 90.90 93.87

MULTIPLE PACKETS – 5 Mbps
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1

No firewall 11.26 12.46 18.52 20.40
100 rules IP 11.61 20.27 27.07 29.15

100 rules MAC 12.35 77.08 84.76 87.14

MULTIPLE PACKETS – 10 Mbps
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1

No firewall 11.06 12.15 17.67 19.51
100 rules IP 11.84 20.03 26.27 28.29

100 rules MAC 12.03 76.30 82.66 84.95

Notice in the Figure 4-5 that the single-packet tests show the highest latency

between T5-T1. On the other hand, the smallest latency (i.e. faster processing time)

is when the throughput is 10 Mbps. Consequently, this data shows that the single-

 77

packet measurement results may serve as a conservative upper bound to estimate the

time to process the packets by the stack.

Comparison between T5 - T1 as the throughput increases

0.00

20.00

40.00

60.00

80.00

100.00

Percent utilization on the link

us
ec

No firew all 24.46 20.40 19.51

100 rules IP 37.64 29.15 28.29

100 rules MAC 93.87 87.14 84.95

1 pkt every 4 sec 5 Mbps 10 Mbps

Figure 4-5 Comparison between T5-T1 for different transmission rates – latency decreases
as the throughput increases

By breaking up the stack into layers, the results in Table 4-21 show the time

that a packet is held by the firewall, the UDP layer, and the Socket layer. Notice in

the table that between T3-T2 (i.e. the firewall) and T4-T3 (i.e. the UDP layer) the

packet is processed faster as the throughput increases. On the other hand, this is not

the case for T5-T4 (i.e. the socket layer) where the time to process this layer is

random, lying between 2 and 3 µs regardless of the throughput.

 78

Table 4-21 Time that a packet is held on each layer

SINGLE-PACKET every 4 seconds [units: us]
64 BYTES T3 – T2 T4 - T3 T5 - T4

No firewall 1.84 9.42 2.73
100 rules IP 14.06 10.09 2.83

100 rules MAC 70.09 10.25 2.97

MULTIPLE PACKETS 5 Mbps
64 BYTES T3 - T2 T4 - T3 T5 - T4

No firewall 1.20 6.06 1.88
100 rules IP 8.67 6.80 2.08

100 rules MAC 64.73 7.69 2.37

MULTIPLE PACKETS 10 Mbps
64 BYTES T3 - T2 T4 - T3 T5 - T4

No firewall 1.09 5.52 1.85
100 rules IP 8.19 6.24 2.02

100 rules MAC 64.28 6.35 2.30

 79

Chapter 5 Conclusion and Future Work

5.1 Summary

The goal of this research was to study the sensitivities and the performance impact of

the Linux firewall iptables in a host. We placed timestamps throughout the

TCP/IP stack of a host PC running Linux version 2.4.7. With each timestamp, we

looked at the latency of a packet as it traversed the entire network stack. To collect

accurate data from our instrumentation, we analyzed the path that an incoming packet

follows in the stack.

The purpose of the single-packet tests was to find the sensitivities of the

firewall. The results obtained showed the following:

(1) That the firewall is not sensitive to the transmission protocol (i.e. TCP or

UDP), the INPUT policy, or the payload size. However, we found that the

transmission protocol and the payload size impact the host’s network stack.

(2) We found the firewall to be sensitive to the type of filtering and the number of

rules. When filtering IP addresses, TCP/UDP ports, and MAC addresses the

cost per rule increases linearly and its cost is approximately 0.12, 0.66, and

0.68 µs/rule, respectively. We were able to explain the difference in the

performance cost between IP and the other types of filtering through the

iptables algorithm. Also, our results showed that the percentage overhead

generated by a firewall when a single packet of 64 bytes of payload travels the

TCP/IP stack, and for a rule-set of zero and 100 rules, ranges from 6% to up to

75%, respectively.

 80

We performed throughput tests for 5 and 10 Mbps with the instrumentation, and

for 100 Mbps without the instrumentation. The results were surprising because we

did not expect to see a decrease in the latency for higher throughput, neither did we

expected to be able to perform a 100% link utilization (i.e. 100 Mbps throughput)

without any interrupt loss. The performance measurements obtained in the 5 and 10

Mbps tests demonstrated that the single-packet test results hold to be valid

conservative estimates, and that they can serve as an upper bound to estimate the

overhead generated by the firewall. The 100 Mbps tests showed that there is no

interrupt loss for a firewall with 100 rules filtering MAC addresses. From this, we

infer that the firewall does not affect the protocol throughput.

Finally, as mentioned in the Introduction, according to 3Com, a third party

vendor discovered that after 30 rules a firewall degraded the performance of a system

tremendously. Our results have proved a steady increase in performance overhead as

the number of rules increase, proving that their data does not pertain to the

iptables netfilter.

5.2 Possible future work

• Our studies have focused only on 4 types of iptables matches (i.e. IP,

MAC, TCP and UDP.) Future work could expand on this by testing the

performance of other types of matches. Also, it would be interesting to

compare the performance of commercial firewalls versus the open source

firewall iptables.

 81

• Some problems were found in the instrumentation. When loaded, as the

throughput and number of rules in the iptables rule-set increased, the

timestamp instrumentation caused the kernel network device driver to lose

interrupts. On the other hand, without the timestamp instrumentation and with

100 rules filtering MAC addresses a 100% utilization in the link (i.e. 100

Mbps) could be reached without any packet loss. Therefore, the

instrumentation must be debugged to support higher throughputs.

• Test the performance of TCP packets. We were not able to perform this tests

because of our timestamp instrumentation and the SmartBits tester only allows

us to control the flow of UDP packets.

• Analyze and compare the performance of the netfilter when it is used as a

firewall router.

• The iptables netfilter has been ported to the CiNIC architecture for the

kernel 2.4.3. In order to be able to compare the results presented in this

document, the CiNIC should be upgraded to the 2.4.7 version of the Linux

kernel, and then compare the tests results.

• A feature not yet supported by firewalls but mentioned by some experts [31],

is to design a firewall that filters the payload data inside packets. Filtering the

data inside the packet could serve to prevent packets carrying worms or

viruses. Future research can be done to study this matter.

 82

Bibliography

[1] Alan O. Freir, Philip Karlton, Paul C. Kocher. November 1996. “The SSL
Protocol version 3.0” Internet-draft. <http://wp.netscape.com/eng/ssl3/draft302.txt>.
Accessed February 2002.

[2] T. Dierks, C. Allen. January 1999. RFC 2246: “The TLS Protocol version 1.0.”

[3] M. Elkins. October 1996. RFC 2015: “MIME Security with Pretty Good Privacy
(PGP).”

[4] Charles Kolodgy, Roseann Day, Christian A. Christiansen, and John Daly. May
2001. “Data and Network Integrity (DNI) Technology to Invoke Trust in IT – The
Tripwire Solution.” <http://www.tripwire.com>

[5] Scambray, McClure, Kurtz. 2001. Hacking Exposed 2nd Edition. Berkeley,
California.

[6] Computer Security Institute and Federal Bureau of Investigation. March 2000.
“2000 CSI/FBI Computer Crime and Security Survey.” Computer Security Institute
publication.

[7] Richard D. Pethia. November 2000. “Bugs in Programs.” SIGSOFT
Foundations of Software Engineering.

[8] Nicole LaRock Decker. November 2000. “Buffer Overflows: Why, How and
Prevention.” Information Security Reading Room, SANS Institute.
<http://rr.sans.org/threats/buffer_overflow.php>

[9] David Larochelle and David Evans. August 2001. “Statically Detecting Likely
Buffer Overflow Vulnerabilities.” Proceedings of the 10th USENIX Security
Symposium.

[10] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle and Qian Zhang. January 1998. “Automatic
Detection and Prevention of Buffer-Overflow Attacks.” 7th USENIX Security
Symposium.

 83

[11] Robert Wahbe, Steven Lucco, Thomas E. Anderson and Susan L. Graham.
1993. “Efficient Software-Based Fault Isolation.” 14th ACM Symposium on
Operating Systems Principles.

[12] David Evans. May 1996. “Static Detection of Dynamic Memory Errors.”
SIGPLAN Conference on Programming Language Design and Implementation.

[13] David Larochelle and David Evans. August 2001. “Statically Detecting Likely
Buffer Overflow Vulnerabilities.” Proceedings of the 10th USENIX Security
Symposium.

[14] Rita C. Summers. 1997. “Secure Computing Threats and Safeguards.”
McGraw-Hill.

[15] Allen Householder, Kevin Houle, and Chad Dougherty. January 2002. Security
& Privacy: “Computer Attack Trends Challenge Internet Security.” IEEE Computer
Society.

[16] David Moore, Geoffrey Voelker, Stefan Savage. August 2001. “Inferring
Internet Denial-of-Service Activity,” University of California, San Diego.
Proceedings of 10th USENIX Security Symposium.

[17] Drew Dean, Adam Stubblefield. August 2001. “Using client puzzles to protect
TLS.” Proceedings of the 10th USENIX Security Symposium.

[18] [Anonymous]. (n.d.). “Overview of Scans and DDoS Attacks.”
<http://www.nipc.gov/ddos.pdf>. Accessed 2002.

[19] B. Clifford Neuman and Theodore Ts’o. September 1994. “Kerberos: An
Authentication Service for Computer Networks.” Institute of Electrical and
Electronics Engineers. ISI/RS-94-399.

[20] [Anonymous]. Open Socket Secure Layer. <http://www.openssl.org>. Accessed
2002.

[21] Richard A. Kemmerer and Giovani Vigna. January 2002. Security & Privacy:
“Intrusion Detection: A Brief History and Overview.” IEEE Computer Society.

[22] Rusty Russell. February 2002. “Linux netfilter Hacking HOWTO.”
<http://netfilter.samba.org/documentation/HOWTO//netfilter-hacking-
HOWTO.html>.

[23] [Anonymous]. (n.d.) Encyclopedia dedicated to computer technology.
<http://www.webopedia.com>

 84

[24] Robert Zalenski. February/March 2002. “Firewall Technologies.” IEEE
Potentials p 24-27.

[25] [Anonymous]. (n.d.)
http://www-900.ibm.com/developerWoryks/education/linux/l-fw/tutorial_eng/l-fw-4-
1.shtml. Accessed February 2002.

[26] McAffee Corportatoin. McAffee website. <http://www.mcaffee.com>.
Accessed 2002.

[27] Samuel Patton, David Doss, William Yurcik. 2000. “Open Source versus
Commercial Firewalls: Functional Comparison.” Proceedings of the 25th Annual
IEEE Conference on Local Computer Networks (LCN ’00).

[28] Christoph L. Schuba. 1997. “A Reference Model for Firewall Technology.”
Proceedings of the 13th Annual Computer Security Applications Conference (ACSAC
’97).

[29] James Fischer. “CiNIC – Calpoly Intelligent NIC,” California Polytechnic State
University, Master’s Thesis, San Luis Obispo.

[30] D. Newman. August 1999. RFC 2647: “Benchmarking Terminology for
Firewall Performance.”

[31] James P. Anderson, Sheila Brand, Li Gong, Thomas Haiigh. September/October
1997. “Firewalls: An Expert Roundtable.” September/October 1997. IEEE Software
Magazine Vol 14, No. 5: 60-66.

[32] Giovanni Vigna. (n.d.). “A formal Model for Firewall Testing.” Dipartamento
di Elettronica Politecnico di Milano.

[33] Alian Mayer, Avishai Wool, and Elisha Ziskind. 2000. “Fang: A Firewall
Analysis Engine.” Proceedings of the 2000 IEEE Symposium on Security and
Privacy (S&P 2000).

[34] Scott Hazelhurst, Adi Attar, Raymond Sinnapan. June 25 - 28, 2000.
“Algorithms for improving the Dependability of Firewall and Filter Rule Lists.”
International Conference on Dependable Systems and Networks (DSN 2000).

[35] Michael R. Lyu, Lorrien K.Y. Lau. 2000. “Firewall Security: Policies, Testing
and Performance.” Proceedings of the 24th Annual International Computer Software
and Applications Conference (COMPSAC ’00).

[36] Molitor, Andrew. (n.d.). “Measuring Firewall Performance.” Network Systems
Corporation. <http://web.ranum.com/pubs/fwperf/molitor.htm>.

 85

[37] E Testing Labs. October 2001. “P-Cube SE1000: Layer 4 and Layer 7
Performance Tests.” <http://www.etestinglabs.com/main/reports/pcube10_01.pdf>.
Accessed May 2002.

[38] [Anonymous]. July 1999. Network World Fusion: “Performance tests turn up
big differences.” <http://www.nwfusion.com/reviews/0719fireperf.html>. Accessed
April 2002.

[39] [Anonymous]. (n.d.). “Iptables Performance.” <http://industrial-
linux.org/mlug/2001-10-13/iptables_thruput.txt>. Accessed May 2002.

[40] Peter Xie. June 1999. “Network Protocol Performance Evaluation of IPv6 for
Windows NT.” California Polytechnic State University, San Luis Obispo. 5 p.

[41] W. Richard Stevens. 1998. UNIX Network Programming. Network APIs:

Sockets and XTI, Volume 1. Elementary TCP Sockets. Upper Saddle River, NJ.
86 p.

[42] Glen Herrin. May 2000. “Linux IP Networking. A guide to the Implementation
and Modification of the Linux Protocol Stack.”
<http://www.cs.unh.edu/cnrg/gherrin/linux-net.html>. Accessed May 2002.

[43] D. P. Bovet and M. Cesati. 2001. “Understanding the Linux Kernel.” O’Reilly.
ISBN 0-596-00002-02.

 86

Appendix A Performing tests in the co-host

Testing the firewall on the EBSA285 board will serve to find out how the

performance in a co-host scales in comparison to the host. We were unable to

benchmark the co-host, however, we build the software platform to perform the tests.

Bellow we describe the hardware and software implementation on the host.

A.1 Hardware

Our DUT is Sextans, an EBSA285 board with a StrongArm (SA-110) Intel

chip, see Figure A-2. The board is connected via a serial port to Hydra, the client.

We connect Sextans to Hydra via the same 3Com switch used to make the tests for

the host, see Figure A-1.

Figure A-1 Co-host test setup

 87

Intel EBSA-285 Host PC

3Com

3c905C NIC

Promise Ultra 66 EIDE Card
(not installed as shown)

Intel 21554 &
Secondary PCI

Secondary PCI
host bridge slot

on the 21554

FuturePlus
FS2000 PCI

Probe

Figure A-2 CiNIC Architecture [22]

A.2 Software in the co-host

After having problems compiling a 2.4.7 version of the kernel for the co-host, we

decided to use a 2.4.3-rmk2-bpa-jdf version of the kernel. To install iptables to the

co-host’s sources we first took the original sources for the 2.4.3 kernel and applied

the iptables patch. Then, we applied Russell King’s patch (i.e. rmk2), then the Big

Physical Area (i.e. pgh) patch, and finally Jim Fisher’s patch.

 Usually we log-in to Sextans using a Telnet session, however, in order to

avoid any traffic in the connection (just as we did for single-packet tests) we connect

the serial port to a different PC and use a console to maintain communication with the

CiNIC [29]. We tested the firewall only with the INPUT policy set to ACCEPT

because otherwise, if the firewall’s INPUT policy is DROP, the firewall will block all

 88

the ports (even the serial port) and we will not be able to log in. You may ask if the

INPUT policy make a difference to the sensitivity of the firewall? As we saw earlier

in the first section of Chapter 4, the INPUT policy does not make any difference. The

test procedures are the same as the one explained in Appendix C.

A.3 Timestamp implementation on the EBSA21285

A.3.1 Clocks

The StrongArm SA-110 microprocessor does not have an internal clock fulfilling the

same functionality that Time Stamp Counter of the x86 processor architecture. It,

however, operates at any one of 16 core clock frequencies but its maximum frequency

of operation is limited by the speed of the core clock of the EBSA-285 [33]. Thus,

the maximum frequency of the EBSA-285 core clock is 233 MHz.

A.3.2 Timers

Since the SA-110 does not have an internal clock we use a timer Control register.

The timer register should be able to provide us with accuracy in the microseconds.

We found that the EBSA-285 has four 24-bit timers “that can be preloaded and either

free-run, or decremented to zero and then reloaded [34].” In other words, we can use

one of the EBSA’s timers to perform our measurements since we can control the start

and stop times.

The timer block diagram for the EBSA-285 is shown in Figure A-3 [34]:

 89

Figure A-3 EBSA-21285 Timer Block Diagram

The 21285 Core Logic Data Sheet [34] says that the four timers can be clocked in

four different ways:

• fclk_in: 50 MHz

• fclk_in divided by 16

• fclk_in divided by 256

• External input: 3.6874 MHz

In order to obtain precise measurements we need at least microseconds

resolution. Then, we must calculate the precision that a 24-bit register can provide as

well as the roll-over time for we do not want the timer to roll over while the packet in

passing through the stack.

The resolution can be calculated as follows:

CLOCKING 1: Inverse of (Input Frequency) = 1/(50 MHz) = 0.02 μs

CLOCKING 2: Inverse of (Input Frequency div 16) = 1/(50 MHz / 16) = 0.32 μs

CLOCKING 3: Inverse of (Input Frequency div 16) = 1/(50 MHz / 256) = 5.12 μs

 90

The rollover time is obtained by:

CLOCKING 1: Resolution * 224 = 0.02 μs * 224 = 0.34 seconds

CLOCKING 2: Resolution * 224 = 0.32 μs * 224 = 5.36 seconds

CLOCKING 3: Resolution * 224 = 5.12 μs * 224 = 85.9 seconds

 We timed to a microsecond resolution by dividing the input frequency by 16,

and as a matter of fact, that is what the kernel uses to control the number of jiffies for

the EBSA. See Figure A-4.

Figure A-4 ARM Linux use to control of timers

A.3.3 Controlling the time registers

The ARM Linux kernel provides a very simple way to access the Timer Control and

Status registers. Figure A-5 shows how to control the third timer (i.e. TIMER3) to

take timing measurements in the dev.c file.

 91

Figure A-5 Using Timer Control Registers in the EBSA285

First of all we clear/reset the register using the *CSR_TIMER3_CLR=0. Timers

usually decrement, therefore, we have to load the 24 bit timer

*CSR_TIMER3_LOAD=0xFFFFFF. The *CSR_TIMER3_CNTL controls the timer, sets

the bits to autoreload, and set the bits that divide the clock by 16 in order to give us a

microsecond resolution. The timers are read by using the readl() macro.

 Given that the timer will reset after 5.32 seconds, it is best to reset the timer at

the socket layer. Figure A-6 shows how at the socket layer we read the timer and

after all the data has been stored we reset and stop it.

 92

Figure A-6 Reseting TIMER3 at the socket layer

 93

Appendix B Setup for testing a firewall for a single host

B.1 Single packet tests

DUT: Volans
CLIENT: Libra

3Com switch

Switch:

3Com Office Connect
10/100 Dual Speed Switch 8
Serial: 7L5V016E08

DUT characteristics:
Name: Volans

Dell PowerEdge 2300 – Dual Pentium II

Operating System: Windows 2000
 RedHat 7.1
 Kernel 2.4.7
Lilo:
 To perform TCP tests choose:
 Lilo: tcptest
 Image: /boot/ame/2002/02/06/2.4.7-tcp/1/vmlinyz-2.4.7-tcp

Lilo: printks > to watch the printk statements choose
Image: /boot/printks/2001/12/13/2.4.7-printks/2/vmlinuz-2.4.7-printks

 To perform UDP tests choose:
 Lilo: udperf > to perform the tests
 Image: /boot/ame/udp/2002/03/10/2.4.7-udperf/1/vmlinuz-2.4.7-udperf

 Lilo: udprint > to watch the printk statements choose
 Image: /boot/ame/2002/

 94

TCP server application:
 /root/ametest/performance-PC/server
 from C file: server.cc

UDP server application:
Directory: /root/ametest/performance/udp_client_server
Execulable file: server_udp
C file: udp_server.cc

Loadable module – critical load to perform tests:

Binary file: asm32_sys.o
 C file: asm32_sys.c

 The reason behind naming this module “asm32_sys” is the following. The

“sys” is because the module is “triggered” via a system call. You cannot load the

functions in the kernel unless you trigger the module via the driver (see Driver

below). The “asm32” is because at first I was going to use an assembly macro that

read the entire 64 bits of the RTSC – I named that file asm64_sys.c. Later I decided

that it would be better to read the lower 32 bits of the RTSC. So, I made a new file

asm32_sys.c and never changed the name after that.

Driver:

Executable: a32 [START | STOP]
C file: driver.c
The asm32_sys loadable module is “triggered” via a system call.

Random generators: /root/ametest/iptables.tests/generators/
 IP: ip-random-generator
 MAC: mac-random-generator
 TCP: tcp-random-generator

List of scripts:

To run before tests are performed for both TCP and UDP:
 /root/ametest/performance-PC/install.sh

Firewall rules:

 95

 /root/ametest/iptables.tests/
MAC: iptables.mac.accept_but_drop

iptables.mac.drop_but_accept
TCP: iptables.tcp.accept_but_drop

iptables.tcp drop_but_accept
 IP: iptables.ip.accept_but_drop

 iptables. ip. drop_but_accept
UDP: iptables.udp.accept_but_drop

iptables.udp drop_but_accept

 Run to perform TCP tests:
 /root/ametest/performance-PC/./autotest.sh

 Run to perform UDP tests:
 /root/ametest/performance-PC/udp_client_server/./autotest1.sh
 /root/ametest/performance-PC/udp_client_server/./autotest2.sh
 /root/ametest/performance-PC/udp_client_server/./autotest3.sh

How to run TCP tests

1. At BOOT time: choose the label ‘tcptest’

The kernel must be set to boot to run level 3, that means that no X window should
run. You can do the above either by typing ‘tcptest 3’ when you get to ‘boot:’ option
as the kernel starts of if you want to set it up automatically change the /etc/inittab file
to the following:

Find the line: id:5:initdefault and
Change it to: id:3:initdefault.
Save and exit.

2. Login as root and go to the /root/ametest/performance-PC directory. Run the

“install.sh” script. This script STOPS a list of processes and also loads the
asm32_sys.o module and triggers it to START. This means that the test is ready
to run.

3. Check the running processes. In the prompt shell call the ‘uptime’ command.

DO NOT perform any tests until the load average is 0.00 0.00 0.00.

4. Make sure no other processes are running. Use the command ‘ps ax’ to check that

the ‘install.sh’ stopped all the processes. Also make sure that the PCs are not
transferring any data. You can run a network sniffer (e.g. tcpdump) to test it.

 96

5. Once uptime shows 0.00 0.00 0.00 load average, go to the
/root/ametest/iptables_tests/ directory and choose the rules that you want to add.
Inside every script (e.g. iptables.[FILTERTYPE].accept_but_drop or
iptables.[FILTERTYPE].drop_but_accept) you may change the number of rules
that you want to have.

Go to ‘increment_rule={xxxx}’ variable and make the change. For example, in
the iptables.ip.accept_but_drop script the INPUT policy is ACCEPT which
means to ACCEPT everything but drop the following rules or matches to the rule.
The ‘increment_rule={ip_10_addr}’ variable means to add only 10 rules to the
table. When the variable ‘increment_rule={ip_40_addr}’ means to filter 40 rules.
If ‘increment_rule={ip_10_addr ip_40_addr}’ the ip_10_addr rules will be called
twice because ip_40_addr already contain the ip_10_addr rules. Take a close
look to the script and you will understand what I mean!

To add the rules to the firewall run the script, for example:
./iptables.ip.accept_but_drop

6. Check the ‘uptime’ to be 0.00 0.00 0.00 – yes, again!

7. To run the test run the script:

./autotest.tcp.sh

The script creates a path to store the results in the /proc/TCPresults file

Client side
At boot time, Libra is also run in level 3.

8. Run /ametest/pktgen/./install script to shut down all other services

9. Run ./auto_pktgen on the client

10. Wait until everything is done and change the rule-set, change the variables in

autotest.tcp.sh and perform the tests again.

How to run UDP tests

Running UDP tests is not much different than TCP

1. BOOT: udptest

2. Login as root
 cd /root/ametest/performance-PC/./install

3. Check ‘uptime’ to be 0.00 0.00 0.00

 97

4. No processes should be running. Use the ‘ps ax’ command

5, 6, 7 are the same as TCP

8. cd /udp_client_n_server

9. ./autotest1.udp.sh à for test 1

./autotest2.udp.sh à for test 2

./autotest3.udp.sh à for test 3

These are the same as autotest.tcp.sh, the only difference is the variable ‘TEST’ I
made a copy of each one to save time.

Client
In Libra:
10. Do the ‘install.sh’ script to shutdown all other services

11. /root/ametest/udp_client_n_server/./auto_pktgen

The script will automatically save the results in a directory specified in the
variables in the script. You have to change the variables in the ‘autotest.tcp/udp.sh
scripts to match the type of test that you’re going to do. Take a look a the scripts and
will become clear.

For example, if you want to perform a test with the following parameters:
UDP PACKETS
FILTER 10 IP addresses
INPUT ACCEPT

Server

1. cd /root/ametest/performance-PC/./install
2. uptime – wait until it is 0.00 0.00 0.00
3. in the mean time run
4. cd ../iptables.tests/./iptables.ip.accept_but_drop
5. iptables –L à to see the list of rules
6. cd ../performance-PC/udp_client_n_server/
7. vi autotests1.udp.sh

a. PROTO= “UDP”
b. INPUT_POLICY = “ACCEPT”
c. SPEED = “100Mbps”
d. FILTER_TYPE = “ip”
e. TEST_NO = “test1”
f. RULES = “10”

8. ./autotest1.udp.sh

 98

Client

9. cd /udp_client_n_server/./install
10. uptime
11. ./auto_pktgen
12. repeat for autotest2.udp.sh in server…and so on!

B.2 Multiple packets

Client

1. Load the module: insmod –f asm32_sys.o
2. Change to the UDP directory: cd udp_client_n_server
3. run the ./init.sh script
4. Set up the packet information in the Smartbits

a. MAC DST
b. SRC IP
c. PORT NUMBER
d. PAYLOAD LENGTH (for a 64 bytes payload you must add 42 bits for

the CRC)
e. Set the RATE per packet

5. Run the ./flushser script to clear all the counters
6. Run the ./server_udp
7. Run Smartbits
8. After all the packets have been sent run ./readproc to read the /proc file system

to read all the 4000 timestamps
9. Check if the file “filename” had data in it
10. Backup “filename”
11. Redo from step 3

Smartbits
1. Connect the Windows 95 PC to port 12 in the patch panel
2. Connect 2 SmartBits cards Model ML-7710 to the patch panel and from the

patch panel to the Cisco 2900 series XL switch
3. Connect “Volans” to the Cisco 2900 series XL switch
4. Set the Smartbit cards to the same subnet as the client
5.
6. Set the Smartbits cards to “Smart Metrics mode” and ping the cards from

Volans
7. Turn off the “Smart Metrics Mode” to perform the tests

 99

8. Transmit Setup Window for Card 1:
i. Mode: Timed

ii. Time: 60
iii. Length: 106
iv. Background: UDP
v. Rate: 5% - Units: % utilization

b. Frame Editor: UDP EDIT
i. MAC DEST: 00 50 da 26 b0 55

ii. MAC SRC: 00 00 00 00 00 0a
iii. SRC IP: 192.168.50.20
iv. DST IP: 192.168.50.10
v. dst: 12345

9. Transmit Setup Window for Card 2:

i. Mode: single burst
ii. Count: 4

iii. Length – Fixed 106
iv. Background: UDP
v. Rate: 0.96% - util

b. Frame Editor: UDP edit
i. MAC DEST: 00 50 da 26 b0 55

ii. MAC SRC: 00 00 00 00 00 02
iii. SRC IP: 192.168.50.30
iv. DST IP: 192.168.50.10
v. dst: 6789

 100

Appendix C IPTABLES rules random generators and scripts

File name: random-ip-generator.c

/*
* Random IP address generator
* Max Roth <modified by Americo Melara>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){

 int ret;
 int c;

 if(argv[1] == NULL) {
 printf("usage: ./ip-random-generator [missing
number]\n");
 return 0;
 }

 srand(time(0));

 for(c = 0; c < atoi(argv[1]); c++){

 printf("%d.%d.%d.%d\n", (rand() % 255),(rand() %
255),(rand() % 255),(rand() % 255));
 }

 return 0;
}

 101

File name: random-mac-generator.c

/*
* Random MAC address generator
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){

 int ret;
 int c;
 char hex[]="0123456789ABCDEF";

 if(argv[1] == NULL) {
 printf("usage: ./mac-random-generator [missing
number]\n");
 return 0;
 }

 srand(time(0));

 for(c = 0; c < atoi(argv[1]); c++){

 printf("00:%C%C:%C%C:%C%C:%C%C:%C%C\n",
 (hex[rand() % 16]),(hex[rand() % 16]),
 (hex[rand() % 16]),(hex[rand() % 16]),
 (hex[rand() % 16]),(hex[rand() % 16]),
 (hex[rand() % 16]),(hex[rand() % 16]),
 (hex[rand() % 16]),(hex[rand() % 16]));
 }

 return 0;
}

 102

File name: random-tcp-generator.c <also used for udp>

/*
* Random TCP address generator
* Americo Melara
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){

 int ret;
 int c;

 if(argv[1] == NULL) {
 printf("usage: ./tcp-random-generator [missing
number]\n");
 return 0;
 }

 srand(time(0));

 for(c = 0; c < atoi(argv[1]); c++){

 printf("%d\n", (rand() % 6555));
 }

 return 0;
}

