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Abstract 
 

Performance analysis of the Linux firewall in a host  

 

Firewalls are one of the most commonly used security systems to protect 

networks and hosts.  Most researchers have focused on analyzing the latency and 

throughput of router firewalls.  Different from this approach, this research focuses on 

studying the performance impact and the sensitivity of the Linux firewall 

(iptables) for a single host.   

In order to be able to measure the performance and the sensitivity of the 

firewall, we designed and instrumented each layer of the Linux TCP/IP stack.  This 

instrumentation was used to test the host’s firewall under two scenarios:  In the first 

scenario, we captured the path and the latency of one single packet; in the second 

scenario, we captured the latency of multiple packets sent to the host at various 

transmission rates.   

Our measurement results indicate that the firewall is sensitive to the number 

of rules, the type of filtering, and the transmission rate.  The results of our first 

scenario demonstrate that for each type of filtering, latency increases linearly as the 

number of rules increase.  Furthermore, the second test scenario shows that latency 

decreases as the packet transmission rate increases.   

Our results show that the percentage overhead generated by a firewall when a 

single packet of 64 bytes of payload travels the TCP/IP stack, for a rule-set of zero 

and 100 rules, ranges from 6% to up to 75%, respectively. 
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Chapter 1 Introduction 

Network Security is one of the most important fields dealing with the Internet.  The 

ability to access and transfer information in a few seconds allows the government, 

companies, educational institutions, and individuals to accelerate the decision process 

or simply be “informed.”  However, information can be very valuable and there is a 

need for better and faster security systems to protect information and networks. 

Attacks are prevalent on the Internet, and for that reason Firewalls, Intrusion 

Detection Systems, Virus Scanners, File Protection and Integrity checks software, 

Buffer overflow protection techniques, and Encryption tools have been developed as 

security services to protect systems and information.  The CiNIC is an independent 

network device designed to control all of the networking services for the host.  

Thereby, it can serve as the front line defense mechanism against attacks.  The vision 

for it is to run security services such as the firewall, encryption, authentication, 

intrusion detection, and other services to secure the host.   

Firewalls are the first front line defense mechanism against intruders.  There 

are two different goals for testing them.  The first goal is to analyze and test the 

firewall policies, in other words, to model and test how secure a firewall is in a “real-

world” environment.  The second goal is to test the performance impact generated by 

the firewall.  Given that our first step to increase the security functions of the CiNIC 

is to port the firewall to it, we decided to analyze the performance cost of having a 

firewall in the host.  After searching for conference papers that addressed the firewall 
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performance on single hosts, we found that very little research had been done on the 

topic.  In our end-of-the-year meeting with 3Com in December 2001, we were told 

that a third party vendor discovered that the firewall would degrade the performance 

of a system tremendously after 30 rules.  In view of the lack of research and the 

uncertainty on what the firewall performance cost might be, we decided to study the 

performance of the Linux firewall iptables.  This thesis presents a study of the 

sensitivity and the performance impact produced by the Linux firewall iptables in 

a host.   

We decided to test the performance of the firewall under two scenarios 

changing various parameters.  The first scenario included tracing one single packet in 

order to measure the sensitivity of the firewall to: 

(1) The INPUT policy 

(2) The number of rules 

(3) The type of filtering 

(4) The payload size 

(5) The transmission protocol.   

The second scenario included a series of tests varying the throughput by 

sending a stream of packets at 5 and 10 Mbps.  The first test results documented in 

this thesis will show that the performance is only sensitive to the number of rules and 

the type of filtering.  The measurement results obtained in the throughput tests will 

confirm that the single-packet test measurements are valid, and that may serve as 

conservative estimates for finding the performance impact generated by the firewall.   
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The remainder of this document is organized as follows:  Chapter 2 gives an 

overview on the most recent types of security attacks (e.g. denial of service attacks, 

buffer overflows, operating systems protection) as well as an overview on some 

security mechanisms (e.g. Intrusion Detection, Authentication, Firewalls).  It also 

explains Firewalls in more detail.  Chapter 3 covers the receiving operation of the 

Linux TCP/IP stack, the iptables algorithm, the instrumentation technique used to 

measure a packet’s process throughout the stack, and presents the parameters under 

test that will be used to determine the sensitivity of the firewall performance.  Chapter 

4 presents the analysis of the performance of a single packet to determine the 

sensitivity of the firewall to the parameters mentioned earlier.  It also presents the 

performance of the firewall as a function of the rate of incoming packets.  The results 

are compared in terms of the performance of the host when it runs with and without 

the firewall.  Finally, the summary of the results and future work are presented in 

Chapter 5. 
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Chapter 2 Overview of Security 

For individuals and enterprises the main purpose of security on a network system is 

the protection of information.  We all use a network system one way or the other, 

either for sending e-mails, reading the news, making traveling plans, or shopping.  In 

most of our transactions we wish to have one thing – protection of our information.  

But, what type of protection?  Protection from whom?  For large firms security 

includes not only the protection of the company’s information from outsiders but also 

the protection of their entire internal network.  For example, top executives do not 

want their competitors to know their marketing or acquisitions strategies.  Nor does a 

manager want intruders to read, delete, or acquire budgeting information or 

consumer’s information.  Thus, the goal of security is to protect information and 

systems from “malicious intruders.” 

This chapter’s intent is to organize and summarize the area of Security, and 

explain firewalls in more detail.  The chapter is laid out as follows:  First, the most 

relevant vulnerabilities for a host are explained briefly.  Following, some of the 

techniques and tools used to prevent and detect attacks are presented.  Finally, the 

idea of porting a firewall to the CiNIC architecture is presented. 

2.1 Network Vulnerabilities – an OSI perspective 

Security can be implemented throughout each layer of the network.  Using the 

TCP/IP model we can show how every layer is vulnerable to security breaches and 

what software is used to protect the systems.  The reader should be aware, however, 

that in spite of the number of security software he may buy for your system it does 
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not make it immune or does not take away the chance of getting a virus, a Trojan 

horse, or just “get hacked.”  So, the more knowledgeable the reader is about how 

someone can break into his system, the more cautious he will be, and the harder it 

will be to break in. 

Figure 2-1 shows the end system’s TCP/IP stack model and some of the tools 

created to provide security for each layer.  The figure can be explained as follows.  

Secure services are available at the Operating System level (OS) and at User space 

level.  The transport layer is the point where the OS and user space separate.  At the 

OS level we have a firewall (e.g. iptables), intrusion detection systems (e.g. Linux 

Intrusion Detection System a.k.a. LIDS), IP Security or IpSec, and Denial of 

Service prevention.  One of the goals of the CiNIC project is to offload these security 

services from the host to the co-host.  For that reason, this research will focus on the 

firewall for the Linux Operating System.   

At the user level we have secure standard protocols that use cryptography to 

secure the transmission of data, such as Secure Socket Layer (SSL) and Transport 

Secure Layer (TLS) [1][2], which are discussed later in this chapter.  Another service 

used to provide encryption of data is the Pretty Good Privacy (PGP) protocol; this 

protocol uses keys to encrypt the data sent through e-mails [3].  In addition, virus 

scanners (e.g. Norton and McAffee) and file integrity software [4] (e.g. Tripwire) are 

tools commonly used to protect end systems from viruses, worms, and Trojan horses. 

 



 6

 

Figure 2-1 Relationship between the TCP/IP Reference Model and various Operating 
System and User level Security Services 

 

A security issue implied in the network stack is that a weakness or “hole” in 

one layer could lead to the exploitation of a lower layer, and vice-versa.  For example, 

through a simple telnet session anyone can find out the type of operating system 

running on a particular machine.  In Figure 2-2 the host fornax has requested a telnet 
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session with the host orion.  When the session starts, we observe that the host orion is 

running Red- Hat Linux 7.1 with a kernel version 2.4.2-2.  This may lead the attacker 

to look for software tools designed to attack the specific vulnerabilities found in the 

kernel 2.4.2-2. 

 

Figure 2-2 Acquiring the server’s Operating System type and version through a Telnet 
Session 

 

On their search for vulnerable systems, attackers use a technique called 

footprinting.  Footprinting is defined as the fine art of gathering information! [5] 

Information can be gathered through scanning or enumeration.  Scanning is a tool 

used to find open ports and services running on a system, enumeration is the “ability 

to extract valid accounts or exported resource names from systems [5].”  Some of the 

information to be gathered include Domain Names, specific IP addresses of systems 

reachable through the Internet, TCP and UDP services running on each system, 

system architecture, routing tables, access control mechanisms, related access control 

lists, etc.  The list of tools available to extract this type of information is large, but 

some of the most common ones are nmap, the ping of death, tcpdump, 

rpcinfo, Cheops [5]. 
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The network protocol by nature has its pitfalls.  For example, an ICMP 

(Internet Control Message Protocol) packet, which is normally used to communicate 

control messages on the Internet between hosts and routers, contains diagnostics 

about your system.  For example, a ping contains error detection information (e.g. 

network/host/port), control messages (e.g. source quench, redirect) or some general 

information (e.g. timestamp, address mask request.)  

Computers inside a local area network (LAN) are usually sitting behind a 

router and firewall but, even then, the network is not secure.  A report from the FBI 

Computer Crime Unit says that approximately 80% of network security breaches for 

an Enterprise happen internal to the network [6].   

An intruder can have access to an entire network for days and even weeks 

without being noticed, because the larger the network, the more complicated it is to 

design policies to secure that network and the more security holes.  Subsequently, 

responsibility to protect a system (e.g. entire network, server, hosts) cannot be left to 

the network administrator alone.  Therefore, there is indeed a need to make better 

software and hardware tools to provide greater security for the end systems/hosts. 

 

2.1.1 Operating Systems attacks 

Our first security checkpoint is the operating system.  The operating system controls 

every single process, entire network operation, and all the hardware and the software; 

thus, it is the most delicate and the highest priority point of protection for a system.   

Operating systems are vulnerable to buffer overflows, worms, and viruses. 
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2.1.1.1 Buffer overflows 

At a recent software engineering conference, Richard Pethia from the Carnegie 

Mellon Software Engineering Institute (CERT), identified buffer overflow attacks as 

the single most important security problem [7].   

In her research, Nicole Decker [8], explains buffer overflows and how they 

are used to break into systems.  Let’s look at the following example:  Consider a 

program that reserves a buffer of 1024 bytes.  In such a case, the program’s maximum 

allowable input to that buffer is 1024 bytes.  If the size of the input data typed in by 

the user exceeds the size allocated, and if the input is not checked to reject anything 

larger than 1024 bytes, it is said that the buffer has been overflowed.   

Now, recall the function of the instruction pointer.   The function pointer 

stores the memory address of the next command to be executed by a program.  It is 

through the instruction pointer that the computer knows what should and should not 

be executed - the computer cannot differentiate between data and instructions.  

Assume that the next statement, after reading the user’s input just mentioned 

in the example above, is a printf statement.  The instruction pointer holds the 

memory address to the printf statement.  Let’s walk through the process:  the 

computer will read the input from the user, store it into the buffer, check the 

instruction pointer to find what function should execute next (i.e. the printf 

statement), find the memory address of the printf statement, retrieve the contents 

into a input buffer, and finally, print the data input to the screen.   

If the program’s buffer is overflowed, those extra bytes (usually allocated on a 

neighboring region to the original buffer) could overwrite the address of the 
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instruction pointer.  If we overwrite this address, instead of pointing to the printf 

statement, we can give to the instruction pointer an address to malicious code. 

How does that relate to networks?  Well, the most simple buffer overflow 

attack is called stack smashing [8].  Here, the attacker sends a stream of modified 

packets to overflow the buffers so that the return address of the instruction pointer 

points to their code - in most cases the function to execute is /bin/sh.  If a program 

is running with root privileges and the buffer is overflowed, the attacker will gain 

root access and have complete control of your system.  Programs written in C are 

particularly susceptible to buffer overflow attacks because most C code allows direct 

pointer manipulations without any bound checking [9].   

Some solutions to buffer overflows have been proposed.  Some of them are:  

StackGuard [10], Software fault isolation (SFI) [11], LCLint [12], an extension of 

LCLint [13], among others. 

2.1.1.2 Worms and Trojan horses 

A Trojan horse is an executable program that “contains hidden functions that can 

exploit the privileges of a user [running the program], with a resulting security threat.   

A Trojan horse does things that the user’s program did not intend [14].”  In other 

words, a Trojan horse is an executable program that modifies an original file by 

adding extra functions - malicious code - that the original program was not intended 

to execute.   

A worm is a self-propagating malicious code [15].  In other words, it is a 

malicious code that does not require the user to do something to continue its 

propagation.  “Highly automated nature of worms coupled with the relatively 
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widespread nature of the vulnerabilities they exploit, allows a large number of 

systems to be compromised within a matter of hours.  Code Red infected more than 

250,000 systems in 9 hours on July 2001 [15].”  Trojan horses and worms can have 

file extensions like “exe”, “vbs”, “com”, “bat”, “pif”, “scr”, “lnk”, or “js.”    

 

2.1.2 Denial of Service Attacks 

Denial of Service (DoS) attacks, which are one of the most prevalent attacks on the 

Internet, will force a machine to stop providing services to a legitimate user.  “DoS 

attacks use multiple systems to attack one or more victim systems with the intent of 

denying services to the victims [15].”  The University of California - San Diego, 

observed 12,805 denial-of-service attacks on over 5,000 distinct Internet hosts 

belonging to more than 2,000 distinct organizations during a three-week period [16].   

There are two types of Denial of Service (DoS) attacks: Operating Systems attacks, 

which exploit the bugs of a specific operating system (e.g. Windows 98/NT/2000, 

Linux, Solaris); and networking attacks, which exploit inherent limitations of 

networks. 

To protect from operating system attacks it is important to continuously check 

on the patches and updates available for your specific operating system.  Network 

attacks, however, are more complicated.  These attacks include ping flood (a.k.a. 

ICMP flood) and smurf which are outright floods of data to overwhelm the finite 

capacity of your connection; and also spoofed unreach/redirect a.k.a. “click” which 

trick your computer into thinking there is a network failure and voluntarily breaking 

the connection [17].  The latest type of network attack is the distributed denial of 
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service attack in which the attacker controls one or more “masters” which then 

control several more “zombies” (compromised systems) to attack one victim [18].  

2.2     Network Protection Techniques 

Most known protection techniques are used to provide authentication, encryption, 

identify attacks, and block and filter packets.  

2.2.1 Authentication and Encryption 

2.2.1.1 Kerberos 

Designed in the mid-‘80s at the Massachusetts Institute of Technology (MIT), the 

Kerberos network protocol is designed to provide secure Authentication between one 

or several parties.  Kerberos [19] uses a cryptographic distributed service system.  In 

Figure 2-3 we show the simplest scenario, which involves three parties: a client or 

user, an application server or verifier, and an Authentication Server (AS).  In order to 

establish a connection between the client and the server/verifier, the client needs to 

prove to the verifier its identity by means of an encrypted key.  Neither the verifier 

nor the client hold any encrypted keys.  Only the AS provides the keys.  So the 

process is the following: (1) the client connects to the AS to obtain a key.  (2) The 

verifier obtains a key (server key) from the AS which will serve to verify the 

authenticity of the client.  (3) After the client and the server have obtained the keys, 

the client will forward its key to the verifier.  The latter will decrypt the key and allow 

the connection to be established.  
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Figure 2-3 Authentication process to establish an encrypted communication between a 
client and a server using Kerberos 

2.2.1.2 SSL/TLS 

The Secure Socket Layer [1] (SSL) and Transport Layer Security [2] (TLS) Protocols 

are security protocols that use cryptography to provide privacy.  These protocols 

provide “integrity between two communicating applications” by means of (1) a 

private connection – “using data encryption and transaction of keys” and (2) a reliable 

connection – “the message includes a message integrity check using a keyed MAC.”  

More information, libraries, and software toolkits can be found in the OpenSSL 

Project [20] website.  

The difference between SSL/TLS protocols and the Kerberos protocol is that the 

latter needs an Authentication Server to transfer keys while the first two do not.  
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Therefore, the communication and transaction of keys is only performed between a 

client and a server, there is no need of a third party to hold keys. 

 

2.2.2 Intrusion Detection  

The purpose of Intrusion-Detection Expert Systems (IDES) is to detect suspicious or 

abnormal use of a system.  An IDES works as a system monitor of all the activities 

performed in the targeted system.   

There are two types of detection techniques:  anomaly detection and misuse 

detection.  The former “uses models of the intended behavior or users and 

applications, interpreting deviations from this ‘normal’ behavior as a problem [21].”  

In other words, it keeps an activity log of either the users or the applications used of a 

system.  When it finds an activity different than what is normally used for, it will flag 

the activity as suspicious.    

Misuse detection systems “contain attack descriptions (or ‘signatures’) and match 

them against the audit data stream, looking for evidence of known attacks [21].”  The 

intrusion is detected by a “rule-based pattern matching [22].”  When a given action is 

generated, the action is matched against the profiles or the rule-set and the IDES fires 

an alarm. 
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2.2.3 Firewalls 

Our research focuses on the free available Linux firewall iptables.  In this section 

we describe what a firewall is, the ways to implement it, the types, and the 

architectures.   

A firewall is the front line defense mechanism against intruders.  “It is a 

system designed to prevent unauthorized access to or from a private network.  

Firewalls can be implemented in both hardware and software, or a combination of 

both  [23].”   

Firewalls can be applied in different ways [24]:  Packet filtering firewalls are 

those designed to filter IP addresses, MAC addresses, TCP or UDP ports, and 

subnets, among others.  Proxy firewall is a proxy that separates internal networks 

from the external networks (e.g. the Internet), so that, for outsiders the proxy operates 

as a server, and for the insiders the proxy operates as the client.  A stateful-inspection 

firewall has the capability of tracking connections and to make decisions based on the 

dynamic connection state of packets [25].  For example, if an internal client 

establishes a connection to the Internet through a specific port, the firewall will 

maintain state information about the connection pertaining to that specific port.  Thus, 

an ICMP packet is checked if it is related to that TCP/UDP connection.  Any 

TCP/UDP packets are checked against the state table to find if the packet matches 

with the established port of that connection.  An application firewall is a software-

based firewall (e.g. McAffee personal firewall) in which a user can control (in real-

time) to allow or deny connections to it [26].  These different firewall 

implementations can be used alone or as a combination of several of them. 
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Firewalls can be implemented in two different architectures [24]: single box 

(Figure 2-4) and as stand-alone edge device (Figure 2-5).  Our research focuses on 

firewalls in a single-box.  The firewall in a single box is designed to protect only that 

single machine.  Usually, only outgoing connections are allowed and all incoming 

connection requests are rejected.  On the other hand, a stand-alone edge device can be 

a router or a dual-homed host.  A router is a device that forwards packets between 

different subnets.  A router firewall is a router that can filter packets, block ports, 

maintain stateful-inspection, or do some other type of filtering.  A dual-home host is a 

single computer, with at least two network interface cards, serving the function of a 

firewall router.  

 

 

Internet 

 

Figure 2-4 A Single-host Firewall protects only one computer 

 

In general, firewalls can be of two types:  packet filtering gateways and 

application proxys.  Packet filtering gateways look at each packet header entering or 

leaving the network and accept or reject a particular packet based on specific rules 

defined by the user/network administrator.  Packet filtering is fairly effective and 

transparent to users.  They, however, are difficult to configure and are also 
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susceptible to IP spoofing – a technique used to gain unauthorized access to 

computers, whereby the intruder sends messages to a computer with an IP address 

indicating that the message is coming from a trusted host.  Proxy servers, on the other 

hand, intercept all the messages entering and leaving the network but it differs in that 

the proxy hides IP addresses of the clients in the internal network. 

 

 

Figure 2-5 Example of a Router Firewall protecting multiple computers inside a network 

 

Firewalls can be commercial or freely available (i.e. open-source such as 

iptables).  But which one is more secure?  An expert comments, “Open source 

follows the ‘many eyes’ principle – the more developers work on the code the fewer 

secrets and the harder to compromise.  Security-by-obscurity argues for hiding the 

code as a deterrent to breaking the code.  Which approach is better is not a simple 

question [27].”  The fact is that a firewall is an extremely important tool that can 

protect systems from malicious traffic; not having one only means that you want 

other people to have fun with your systems! 



 18

2.2.3.1 Future of firewalls 

In 1997, Scuba and Spafford from COAST Labs submitted a paper describing a 

model or framework for the design of firewalls [28].  According to them, firewalls 

should provide authentication –provide assurance of the integrity of the connecting 

host or server, integrity – “shielding communication traffic from unnoticed and 

unauthorized modifications such as insertion, replacement or deletion of data,” access 

control – to provide a dynamic mechanism that generates questions about a particular 

traffic (e.g. IP x.x.x.x wants to establish connection on port 21, do you want to allow 

this connection?) Audit –keeping track of connections/traffic flowing through the 

firewall, also referred as “log files.”   

Some of these functions (e.g. authentication and audit) are built in CISCO’s 

IOS [27].  However, personal firewalls do not provide authentication but some of 

them, such as McAffee’s personal firewall [26], provide dynamic access control 

where the user is notified “on the fly” if a certain IP address desiring to establish a 

connection should be allowed or not.  So, personal or end-client firewalls are still 

under development. 

Orman said, “We should look to a future in which every machine is its own 

firewall [1].”  The CiNIC [29] is an independent network device that provides control 

of all networking services for the host.  Thereby, it can serve as the front line defense 

mechanism against attacks.  The vision is that it may not only run a firewall but also 

provide encryption, authentication, intrusion detection, and other services to secure 

the host.  The Cal Poly Network Performance Research Group is working towards 

making this future a reality. 
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Chapter 3 Firewall Performance Study 

A firewall is “a device that enforces an access control policy between networks [30].”  

Firewalls can be used in two ways, as a stand-alone edge device that protects and 

forwards packets to a local area network or as an operating system component for 

protecting a single host.  As we will see, researchers have focused on studying the 

latency, throughput, and total transaction time of a firewall as a stand-alone edge 

device, but we were unable to find peer-reviewed research papers that specifically 

addressed the performance of the firewall on a single host.  For this reason, our 

investigation focuses on studying the performance of single-host firewalls, and 

specifically on the Linux firewall iptables.   

By the time our research began, we were unable to find documentation that 

depicted the exact path that a packet follows as it traverses the network stack.  Thus, 

our first efforts focused on capturing this path.  Once the path was captured, we 

performed our first tests.  The purpose of the first tests was to understand the firewall 

sensitivities and the performance impact on the host by varying the transmission 

speed, payload size, INPUT policy, number of rules, and packet transmission 

protocol.   

For our second test analysis, we sent multiple frames at various transmission 

rates to a single host.  Here, we tried to overload the host using the SmartBits network 

testing system and measure the host’s latency depending on the packet transmission 

rate, or throughput.  The results obtained from these measurements will confirm if the 

single-packet test measurements are valid.    



 20

3.1 Previous Research 

There are two different goals for testing firewalls. The first goal is to analyze and test 

the firewall policies, in other words, modeling and testing how secure a firewall is in 

a “real-world” environment.  The second goal to test the firewall performance. 

 

3.1.1 Analyzing and Testing Firewall Policies 

Most experts would agree that the most difficult part in the design of a firewall is the 

process of defining the security policy and the configuration of the firewall [31].  The 

configuration is the process of deploying the policy.  To define the policy means to 

understand the network topology of the LAN, decide what services will be allowed, 

and who will have access to what information.   

Various research papers have presented methods that could serve as a basis for 

testing firewalls that protect internal networks.  Vigna proposes a mathematical model 

for firewall “field-testing” taking into account the topology and operational 

environment and not the internal architecture of the firewall [32].  Another method 

presented is the Firewall ANalysis enGine (Fang) [33].  Fang is a tool that “reads 

relevant configuration files, and builds an internal representation of the implied policy 

and network topology” to simulate spoofing attacks and the behavior of the firewall 

in response to those attacks.  Hazelhurs, Attar, and Sinnapan [34] present a “binary 

decision diagram” to test the rules of firewalls.  All of the above are similar in that 

they all target to model LANs and not personal firewalls. 

Experts may use the mathematical models above or some hacking tools in 

order to test firewalls.  But in reality, there are no standard procedures to test 
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firewalls.  Vigna says that the current methodologies to test firewalls are mainly 

based on expertise and individual skill [35].  The reason behind this is because, in 

business terms, every customer wants a different specification for the network and for 

its security (e.g. topology, services running).  So, experts use hacking tools such as 

SATAN, Neus, COPS, Internet Security Scanner (ISS), and BSD Monitor to test if 

the firewall is secure enough to protect a LAN and satisfy the customer’s need.  

 

3.1.2 Testing the Performance of the Firewall 

3.1.2.1 Router firewalls 

A firewall router reads header information of a packet, checks the header with a 

number of rules, and decides to forward the packet or not.  Various studies have been 

made on router firewalls.  In [27], Patton, Doss, and Yurcik compared the 

performance of open source versus commercial firewalls.  So, they compared the old 

Linux ipchains included in RedHat version 6.0 against CISCO’s IOS firewall, the 

latter consisting of hardware and software.  At the time, the older Linux netfilter 

(ipchains) had the disadvantage of lacking functionality; it was not a stateful 

firewall while IOS was.   

“The results show that the Linux firewall has consistently higher transaction 

throughput rates than the Cisco’s stateful firewall for rule sets varying from 0 to 200 

rules and for packet sizes of 1 and 128 bytes [27].”  No specifics were given on the 

rule set used.    

Other studies measured and compared the latency and total transaction time to 

download small and large HTTP and FTP files [35].  The tests setup included several 
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clients inside a LAN connecting to a server outside the LAN and a router firewall 

sitting in between the networks.  The firewall would be configured to 7 different 

policies, one for each HTTP and FTP test.  The clients would run a script to establish 

the connections.  The tests for HTTP and FTP were performed independent from one 

another.  For HTTP tests, the clients made connections to download small sizes of 

data.  On the other hand, for FTP tests the client would make small or large number 

of connections and download files of either 1MB files during one test or 5MB files in 

another.  Those tests were also independent from one another. 

The results implied that “the performance difference among security levels 

due to the overhead of packet filtering for more security is negligible when compared 

with the outside traffic interface [35].”  In other words, performance decreases as the 

number of connections increase, and is not affected by the security policy.  

Unfortunately, no specifics were given on the rule-set.  

Other tests, such as [36] [37] and [38], have been performed to compare 

commercial router firewalls, but the results are not presented in this document 

because they are out of the scope of our research. 

3.1.2.2 Single-host firewalls 

Different from edge firewall routers, there has not been much research done to 

analyze the performance or the processing overhead produced by single-host 

firewalls.  One paper presented the results on the throughput and CPU utilization of 

two machines connected through a 10Mb hub [39].  The purpose of the tests was to 

measure iptables on a single-host.   The CPU utilization was measured using 

“vmstat 3.”  The sending box sent a byte stream of 187,000,000 bytes.  The payload 
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size per packet was 3,700 bytes.  The throughput was measured by dividing the size 

of the bit stream by the time (in seconds) to receive the stream.  Finally, the input 

policies (i.e. INPUT/ OUTPUT/ FORWARD) were set to ACCEPT.  The results of 

the four tests are described below. 

On the first test, without a firewall and with one single connection, the 

throughput was 9.09 Mbits/sec.  The CPU utilization was not provided.  Another test 

running “real-world” iptables rules and one single connection showed a 9.10 

Mbps and a CPU utilization of 19-23% on the sender and 16-20% on the receiver.  

Another test included establishing five TCP connections and no rules, in order to 

measure the CPU impact by TCP/IP traffic.  The sum of the throughput was 9.13 

Mbps, and the CPU utilization varied from 19-20% on the sender and 15-18% in the 

receiver.   

For the last test, the intention was to “measure real-world stress on the iptables 

rule-set.  Five connections were used:  two open TCP ports, a TCP port rejected with 

a TCP reset, a closed TCP port, and an open UDP port.”  The CPU utilization on the 

receiver was 15-20% and 23-30% on the sender.  For the UDP component the 

throughput yielded 10.57 Mbps.  For the two non-blocked TCP connections the 

throughput yielded 8.14 Mbps.  For TCP in the latter test, it is understandable that as 

the amount of filtering and connections increase the throughput might decrease.  

However, for UDP, having a 10.57Mbps throughput on a 10 Mbps hub is suspect. 
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3.2 Terminology 

As we have seen, firewall performance has been studied in terms of the latency, 

throughput, and total transaction time.  In those tests the parameters used have been 

the number of rules, the number of connections, and the number of bytes per packet 

or per file, the type of download (e.g. HTTP and FTP).   

Some of the researchers have used the firewall-benchmarking terminology 

defined in the RFC 2647 [30].  However, we had to redefine some terms to make 

them applicable to our investigation.  

Earlier studies made by the Cal Poly Network Project Research Group 

(CPNPRG) on the performance of the Linux and Windows [29] have been made on 

the sending operation, that is, a study of the latency and throughput when a packet is 

sent from the application layer until the data is sent out to the wire.  Our study focuses 

on the receiving operation, and specifically, in studying of the performance impact 

produced by a firewall when a packet is traveling up the stack.   

 

3.2.1 Performance Metrics 

The first portion of our study focuses on finding the start latency.  Now, latency is the 

period of time that a packet takes to be transmitted from one end (e.g. a host) to 

another.  Protocol latency as the period of time that a network sub-layer holds a 

payload before it forwards it to the next sub-layer [40] and is divided into:  start and 

stop latency.  See Figure 3-1 shows a picture of a latency model. 



 25

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DATA LINK 

TCP/UDP 

IP LAYER 

 
DATA 

 
STREAM 

End of the 
payload -  d2 

Beginning of the 
payload -  d1 

BOTTOM  - T1

TOP – T5

SOCKET 

 

Figure 3-1 Example of a packet in order to measure its latency to traverse the stack  

Start latency = T5 – T1 of each packet [seconds] 
Stop latency  = T5 of the last packet – T1 of the first packet  [seconds] 

Payload throughput = (payload size) / (stop latency) [bps] 

 

From Figure 3-1 the start latency can be defined as the period of time the 

beginning of the packet’s payload (d1) to reach the bottom of the stack (T1) until the 

beginning of the payload (d1) reaches the top of the stack (T5).  Start latency can be 

used to determine the efficiency of the Device Under Test (DUT) because it provides 

“per payload” processing information.  Stop latency is the amount of time that it takes 

for the beginning of the payload to pass from the bottom of the stack until the last-bit 
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of the payload reaches the top of the stack.  The stop latency can be affected by 

packets that are dropped by either the network or by the host’s TCP/IP stack because, 

if a packet is dropped, the stop latency will include the start latency plus the time that 

it takes for TCP to ask for retransmission and the packet to be retransmitted.   

Start and stop latency are equal to each other when the payload is less than or 

equal to the maximum transfer unit (MTU) minus the Ethernet headers.  Firewall 

overhead in the protocol latency, or just overhead, is the impact in the processing 

time caused by the firewall as it processes every packet header. 

The following terms will also be used in this document: Packet, used 

interchangeably with Ethernet frame, includes all the headers plus the payload.  

Payload is the information data encapsulated inside the Ethernet frame excluding all 

headers.  The throughput is the “measure of the rate at which data can be sent through 

the network, and is usually specified in bits per second [40]”.  The protocol 

throughput is the amount of data that a protocol stack can process per unit of time 

(Kbps or Mbps).  The payload throughput is the amount of payload that the DUT can 

process per unit time.  It is calculated as follows1: 

 

Payload throughput = (size of the payload) / (stop latency) 

 

                                                 

1 More in depth explanation about latency, throughput, and CPU utilization can be found in Peter Xie’s master’s thesis [37]  
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3.2.2 Parameters to determine the firewall sensitivity 

As mentioned earlier, firewalls have been tested by modifying a set of parameters 

such as the number of rules, the number of connections, the number of bytes and the 

transmission rate.    

Our investigation focuses on analyzing and testing the sensitivity of the 

firewall, and the performance impact generated by it, by varying a set of external and 

internal parameters presented in Figure 3-2.  External parameters are those that 

cannot be controlled by the firewall such as transmission protocol, transmission 

speed, and payload size.  Internal parameters are those that can be controlled by the 

firewall such as Input policy, filtering type, and number of rules.   
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Figure 3-2 Parameters to determine the sensitivity of the firewall  

 

A series of tests will involve varying the parameters presented above in two 

different scenarios. The first scenario will consist on capturing a single packet and 
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analyzing the performance impact as it traverses the stack.  The second test consists 

on tracing a stream of packets at various transmission rates.  We explain the two 

scenarios below. 

3.3 Tests definitions 

There are two main issues to resolve in the two scenarios just mentioned above, and 

they can be summarized in two questions: (1) Does a single packet carry enough 

information to explain the sensitivities of the firewall? (2) Will the measurements 

obtained for single-packet tests be sufficient enough to measure the performance on 

the host?   

The data collected from tracing a single packet in the stack should provide 

enough information to find a time approximation of the sensitivities of the firewall 

and the total processing time to the parameters already presented.  On the other hand, 

multiple packets will provide more “accurate” results.  This can be explained with the 

following example:  think of the operating system to be analog to the plumbing 

system of a kitchen sink.  Imagine that you desire to know how long would 100 liters 

of water take to pass through the plumbing.  There are two ways to measure the time: 

the first way is by pouring one liter of water and multiplying it by 100; the second 

way is to drain the 100 liters.   

In the first scenario, you pour 1 liter of water, let it go down the drain, and 

measure how long it took for that liter to enter and exit the system.  An average can 

be calculated after doing this several times. The average can be multiplied by 100 

times to find an approximate to pouring the 100 liters.  In the second scenario, you 

can open up the faucet and measure the time that it takes to drain the 100 liters.  The 
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former is a clean and fast way to find an approximation of the total time to complete 

the system because, whether we pour 1 or 100 liters, the water will flow through the 

same path.  On the other hand, the latter will provide more “accurate” results because 

they include the rate at which the water was expelled from the faucet and the pressure 

exerted by the mass of water pushing down the pipe.   

Just as the water flows through the same path, in the same way, packets follow 

the same path when they traverse the TCP/IP stack.  Consequently, single-packet tests 

are analogous to pouring only one liter at a time.  These tests will provide an 

approximation of the time that a packet is held at each point in the stack.  

Furthermore, throughput or multiple packets tests at various rates are analogous to 

pouring 100 liters at one time because they take into account the queuing of packets 

by the OS, the processor speed, and the rate of transmission.  

In this thesis, only single packet tests are performed to understand and 

measure the sensitivities of the firewall.  They also provide a conservative 

approximation to the actual latency for multiple packet tests. 

 

3.3.1 Single-packet tests  

Single-packet tests are performed using two PCs.  Volans, our Device Under Test 

(DUT), is a dual 450MHz Intel Pentium processor with a modified 2.4.7 kernel 

running the server application.  One of the CPUs is turned off in the SMP option of 

the kernel configuration – the kernel configuration file is included in the CD attached 

with this document.  The iptables-1.2.4 version was installed to the kernel. 

The modified kernel has 5 different points to store timing measurements as the packet 
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traverses throughout the stack.  The files modified are: dev.c, ip_input.c, tcp_input.c, 

udp.c, and socket.c.  At boot time, both machines will start in run-level 3.  During the 

tests, no services will run in the background, see Appendix B and C for details on 

how to run the tests and to see the scripts.  Libra, the client, is a 233MHz Pentium II 

processor.  Both machines are isolated from any outside traffic and connected through 

a 100 Mbps 3Com switch.   Refer to Figure 3-3 to see the test bed. 

 

 
 
 
 
 
 
 
 

DUT:  Volans 
CLIENT: Libra 

3Com switch  

Figure 3-3 Test setup to measure the latency when a single packet is sent every 4 seconds 

 

Single packet tests procedures are included in Chapter 4.  See Appendix C for 

the source code used to generate the rules. 

 

3.3.2 Throughput tests 

Throughput tests are performed using the Spirent’s Network Tester “SmartBits”.  

These tests will show the latency of the network stack when multiple packets are sent 

at different transmission rates.   

The tests are performed in the Cal Poly Cisco lab.  A Windows 95 PC is 

connected via a Patch panel to control the SmartBits 2000.  The SmartBits cards, 



 31

model ML-7710, are connected via the patch panel to a Cisco 2900 XL switch to 

communicate with our DUT, which is Volans.  The test bed is shown in Figure 3-4. 
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Figure 3-4 Test setup using the Spirent’s network tester to vary the throughput 

 

 Two SmartBit cards were connected to the switch, one is to send the stream of 

test packets at different rates, and the other is used to send 2 packets to port 6789 

which serves to reset the memory buffers where the measurements are stored.  During 

the tests, the Smartbits would run for one minute before the timestamp measurements 

were taken.  This is because we considered that one-minute would be enough to reach 

steady-state for the transmission rate performance testing. 

 Given that the number of packets increase as the transmission rate increases, 

the timestamping instrumentation inside the kernel was modified for each test.  A new 
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counter was added to the code so that the timestamps would be taken after one 

minute.  The number of packets sent in a minute is automatically obtained with the 

SmartWindows application.  The second modification was to increase the memory 

buffers in order to store 4000 timestamps instead of 50 as it was before.  A third 

modification was to match incoming packets on the port number instead of reading 

the payload.  One last change had to be made to the instrumentation code inside the 

netif_rx function.  Since netif_rx executes with interrupts disabled and I/O 

operations are costly, we removed the only memcpy from our instrumentation code.  

 

3.3.3 Packet specifications 

The test’s packets must be less than the MTU because of fragmentation.  If the 

payload is larger than the MTU, by nature, the protocol stack will fragment the 

payload into packets, one(s) that will have the size of an Ethernet frame with the last 

one possibly having a payload less than an Ethernet frame.  Having to deal with 

different payload sizes in a test may cause a discrepancy and could ruin the results, or 

at least make the results difficult to interpret.   

 

3.4 The Linux TCP/IP stack 

3.4.1 Understanding the packet data flow 

It is critical to understand the packet data flow in order to be able to add the 

timestamps and perform the measurements.  Unfortunately, by the time this analysis 

was made, there was no detailed documentation on the receiving operation or the 
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netfilter/firewall hooks specific to the Linux kernel 2.4 other than the source code.  

Thus, our first efforts focused on capturing the data flow from the data link layer to 

the application layer and finding the netfilter hooks.  On the other hand, by the time 

this document was written we found documentation (sections 3.6.2 and 3.6.3) that 

confirmed our findings. 

3.4.1.1 The receiving operation 

From the basics of networking we understand that in order to establish a TCP 

connection a server must be listening to an open port.  A client wanting to establish a 

connection sends a SYN packet to the server.  The server responds by sending a 

SYN/ACK to finish the handshake and the client sends an ACK plus the PACKET.  

Followed by the handshake only PACKETS are sent to the server until a FIN packet 

is received in order to close the connection [41].  Refer to Figure 3-5. 
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Figure 3-5 Basic  TCP client-server connection 

 

The Linux operating system separates the receiving operation in two parts.  

The first is when the server holds listening to a port, which is from the application 

layer down to the Linux socket layer [42].  The other happens when a packet is 

coming in from the network, or from the physical layer up.  These two operations are 

explained in detail in the next sections. 
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3.4.1.2 Analysis from the application down 

When a server application opens a connection and is ready to receive a packet, it will 

make a call to read( ) or recv( ) on a socket.  Then, read( ) makes a system call to 

sock_read( ).  The latter will call sock_recvmsg( ), which will then call sock->ops-

>recvmsg( ).  For a TCP connection the “ops” corresponds to a pointer to inet, where 

inet calls the recvmsg( ) function.  Finally, the inet_recvmsg( ) calls sk-

>proto[tcp|udp]->recvmsg( ) and the application sleeps.  The latter is put into the run 

queue or is woken up after the TCP layer has processed any incoming packets.  

Figure 3-6 shows this process.   

 
read( ) 

sock_read( ) 

sock_recvmsg( ) 

sock->ops[inet]->recvmsg( ) 

recvmsg( ) 

inet_recvmsg( ) 

sk-proto[tcp/udp]->recvmsg 

SLEEP 

Application 
Layer 

Socket 
Layer 

 

Figure 3-6  Receiving operation from Application to Socket layer  
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3.4.1.3 Analysis from Datalink layer to Socket layer 

Initially, as a packet comes in from the physical layer it causes the Ethernet device to 

“fire up” an interrupt.  Interrupts are handled by top-halves and bottom-halves [43].  

The top-half is handled by the network adapter’s device driver (e.g. 3c59x.c).  The 

device driver calls the eth_type_trans() function located in the eth.c file.  This 

function organizes the first part of the packet header (i.e. MAC header) inside an 

sk_buff structure.   

All the information contained inside a packet is carried out through the stack 

in the form of an skbuff structure until we get to the socket layer.  In the Linux 

source code we always find a structure skb of type skbuff.  So, for example, 

when a packet enters from the network, skb->data points to beginning of the 

entire information of that incoming packet.  The data is not organized in the skbuff 

structure all at once but, as the packet passes through the stack, each layer will 

reorganize the packet’s information inside that skb structure.  After the TCP/UDP 

layer has been processed, it will pass the pointer to skb structure to the socket layer.  

The socket layer will extract information inside the skb structure and create a new 

structure of type sock.  Thus, the sock structure will contain information such as 

source and destination port, the pointer to the payload, and more.  More details on the 

information inside these structures can be found in the sock.h and skbuff.h 

files of the Linux source code. 

Going back to the execution of the top-half, when the eth_type_trans 

function returns the device driver calls the device controller (i.e. netif_rx) located 

inside the dev.c file.  This file controls all the network device drivers and it is located 
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in the usr/src/linux/net/core/ directory.  Two main functions separate the 

top-half from the bottom-half:  netif_rx() and net_rx_action(), respectively.  

After the top-half executes, the swapper will be in charge of running the 

bottom-half.  Note that it is the swapper and not the scheduler who handles this 

operation.  The difference between the swapper and the scheduler is that the swapper 

is in charge of completing the execution of the pending bottom-halves [43] and the 

latter is in charge of handling processes. 

The netif_rx() function takes a timestamp by calling the  

get_fast_time(&skb->stamp) function.  This timestamp serves as a unique ID 

for each packet.  This packet ID is transferred throughout the entire stack inside the 

skb structure, serving as a mean to match/differentiate the measurements for a 

specific packet at each layer.  After the top-half executes, the swapper schedules to 

execute the bottom-half which starts with net_rx_action(). 

Figure 3-7 presents the example of a single packet traversing the TCP/IP stack 

with a firewall of two rules, matching a MAC address and a TCP port.  The packet is 

traced through all the layers of the stack until the socket layer hands the data to the 

application.  The symbols in Figure 3-7 represent the following:  

<  >  enter and exit function ( ) 
>>>  enter function ( ) 
<<< exit function ( ) 
. . .       several functions 

 

Figure 3-7 will serve as the basis for the instrumentation and analysis because 

every TCP and UDP packet destined for the host will follow the path outlined in this 

figure.  Notice that the IP layer and the firewall are inside the Data Link layer.  This is 
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because the MAC header is “stripped off” along with the IP header right before the 

net_rx_action() function exits.     

 

<<< net_rx_action 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
>>> net_rx_action 
< > netif_rx <---- TIMESTAMP 1 @ the beginning of the function 
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K  
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R  

< > ip_local_deliver_finish 
         <--- TIMESTAMP 3 @ beginning of ip_local_deliver_finish 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

<<< ip_local deliver [NF_IP_LOCAL_IN] 
<----  TIMESTAMP 2 / before fnc returns  ---> 

>>> ip_local_deliver  [called by above fnc ] 
< > ip_rcv_finish 

< > ip_rcv [NF_IP_PRE_ROUTING] 

 
 
 
 
 
 
 
 
I 
P  
 
L 
A 
Y 
E 
R  

<<< tcp_rcv_established 
<--- TIMESTAMP 4 ---> 
... 

>>> tcp_rcv_established 

T 
C 
P 
 

<<< sock_recvmsg 
<---- TIMESTAMP 5 -----> 
… 

>>> sock_recvmsg 

S
O 
C 
K 

<<< ipt_do_table 
< > ip_packet_match 
<<< do_match 

< > match - for MAC address 
>>> do_match [didn't match] 
< >ip_packet_match 
<<< do_match 

< > port_match  
< > port_match 
< > tcp_match 

>>> do_match didn't match 
< > ip_packet_match 

>>> ipt_do_table 

 
 
 
F 
I 
R
E 
W 
A 
L
L 

<<< udp_recvmsg 
<--- TIMESTAMP 4 --> 
... 

>>> udp_recvmsg 

U
D
P 
 

 

 

Figure 3-7 Traversing the Network Stack – from bottom up 
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Notice the timestamps placed throughout the stack in Figure 3-7; these are 

placed at critical points in order to take timing measurements in the stack.  

Timestamp 1 is our reference point (“T1” in Figure 3-1).  Timestamp 2 is placed 

before the firewall starts its execution.  Note that this is not the point where the IP 

layer begins, but the point where the netfilter/firewall begins.  Timestamp 3 is placed 

after the firewall has processed the packet and has finished its execution.  The 

difference between the measured values of Timestamp 3 and Timestamp 2 tell us the 

cost of having a firewall. 

Timestamp 4 is placed after the TCP or UDP layers have been processed.  At 

first, we speculated that if we block on TCP ports or MAC addresses, filtering should 

happen at the TCP layer or at the Data Link layer respectively, but Figure 3-7 proved 

us wrong.  Finally, Timestamp 5 (point “T5”of Figure 3-1) is placed before the socket 

layer passes the payload to the application. 

Once the path followed by a packet in the stack was studied, we performed 

various tests.  To understand the results we found it necessary to study the source 

code and the iptables algorithm, which is explained in the last section of this 

chapter. 

3.5 Software instrumentation 

3.5.1 Software design and issues 

The design and implementation of the timestamps involved some challenges.  When 

tracing a packet through the stack, an important factor to take into consideration was 

the uniqueness of a packet.  For example, after performing our first tests the 
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MAC header | IP header | TCP header | AAAAA*****************************EEEEE 

measurement results showed that some of the packets were missing at the TCP and 

socket layers.  It was not until we ran the network sniffer that we found the problem 

to be in the client application and in the timestamps implementation.  Timestamps 

were taken for every single packet coming in from the network.  For the client 

application, every time that the client would send a packet it would close the 

connection, re-negotiate with the server, and send the packet.  So, when packets were 

“lost” it was because our instrumentation was taking measurements for ARPs, SYN, 

ACKs and other packets which do not traverse all the way up to the socket layer!   

Another problem encountered was running other services, such as Xwindows, 

system logger, and NIS.  Since we had a timestamp at this layer, the timestamp code 

would be called constantly, thus, taking measurements that did not belong to our test 

packets.  NIS was the worst of them because both PCs would constantly send ARPs 

to find the NIS server and undesired packets kept coming in.  The best solution was to 

shut down all the services (which we did later in our tests) but, if we wanted to have 

different traffic coming in, how do we identify our test packets?  Well, we marked the 

payload.  So we changed the hub for a switch and marked the payload with A’s at the 

beginning of the data and E’s at the end, just like this: 

 

 

Marking the packet lead to finding out a way to read the payload as it 

traversed the stack.  Well, recall the skb structure of type skbuff discussed in 

previous sections.  This structure is modified in every layer of the stack.  For an 

incoming packet, the data element inside the structure points to the beginning of the 
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entire packet.  So, when a packet comes in through the network, skb->data[0] 

points to the beginning of the MAC header.  Then, in order to read the A’s and E’s of 

the payload, we have to offset skb->data to the beginning of the payload.   For 

example, for a TCP packet the first A is at offset 52, (i.e. skb->data[52] – see 

Figure 3-8) and for a UDP packet the offset is  at 29 (i.e. skb->data[29]).   As 

the packet traverses the stack, the offset decreases because the layers modify the 

structure and strip off some parts of the header. 

 

3.5.2 Instrumentation of the Timestamps 

The performance measurement timestamps are taken by using the rtdscl macro.  

This macro reads the lower 32 bits of the Time Stamp Counter (TSC) using assembly 

instructions thus, giving a more precise time [43].  

3.5.2.1 Timing measurements at the Data Link layer 

As it has been explained, we place the first timing measurement inside the 

netif_rx() because this is the starting point of the stack.  Only the packets 

marked with A’s and E’s will be measured.   The skb->data is the pointer to the 

beginning of all the data.  At this point in the stack skb->data[0] points to the 

beginning of the IP header.  The payload starts at skb->data[52] for TCP and for 

UDP is at skb->data[29]. The packet information (i.e. timestamp, ID, count, and 

TCP header) is stored in arrays declared as global in order to reserve the memory 

space at boot time.  The pointer to the data structure where the information is stored is 

passed to the /proc file system using __TSCtimestamp function. 
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Figure 3-8 Timestamp hack for the device driver (Timestamp 1) 
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3.5.2.2 IP Layer 

Theoretically, when a packet traverses throughout the stack the operating system 

should strip-off the header of each layer as it moves up.  As mentioned earlier, in the 

Linux kernel, the MAC and the IP headers are not stripped-off until the firewall has 

processed the packet. 

Timestamps 2 and 3 are taken at this layer to measure the firewall.   Timestamp 2 is 

located right before the ip_local_deliver() returns.  This is because when this 

function returns it makes a call to NF_IP_LOCAL_IN.  Timestamp 3 is placed at the 

beginning of ip_local_deliver_finish.  Notice in the Figures 3-9 and 3-10 

that the calls to __TABLES_IP_IN and  __TABLES_IP_OUT are the entry points 

to take the timestamps.  When our instrumentation is not loaded, the addresses of 

__TABLES_IP_IN and  __TABLES_IP_OUT point to NULL.  Again, the 

timestamp is taken using the rdtscl macro.  In order to reset the memory buffers, 

we send a packet marked with C’s at the beginning and at the end of the payload.  

Thus the ‘if’ statement: 

  if ((skb->data[52] == 0xCC) && (skb->data[57] == 0xCC) &&  
(skb->data[skb->len-1] == 0xCC) &&  
(skb->data[skb->len-5] == 0xCC) ) 

 

reads the C’s inside the payload and resets the buffers using and the counters.  At the 

bottom of Figure 3-9 we observe the call to the NF_HOOK (i.e. netfilter hook), which 

is the entry point to the firewall. 
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Figure 3-9 IP layer – Beginning of the firewall (Timestamp 2) 
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Figure 3-10 IP layer – End of the firewall (Timestamp 3) 
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3.5.2.3 TCP and UDP layers 

The timestamp is taken at the top of the TCP and UDP layers.  For TCP the pointer to 

the payload is skb->data[0], but for UDP the pointer to the payload is at         

skb->data[8],  See Figure 3-11 and 3-12. 

 

Figure 3-11 TCP layer – Timing the end of the TCP/IP stack 
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Figure 3-12 UDP layer – Timestamp 4 
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3.5.2.4 SOCKET layer 

The socket layer is the portion of the stack that forwards the data to the application 

layer.  At this point we can no longer match the A’s and E’s of the payload, so we 

trace the packet using the port that it is destined for (i.e. 12345).  See Figure 3-13. 

 

Figure 3-13 SOCKET layer – Before data is sent to the application (Timestamp 5) 
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3.6 The Linux Firewall – IPTABLES 

3.6.1 Iptables Application 

The Linux iptables was introduced with the 2.4.0 kernel to replace ipchains.  

With iptables the user can create and delete chains and matching rules to filter 

packets.  There are 3 default policies: INPUT – to check the headers of incoming 

packets, OUTPUT – for outgoing packets/connections, and FORWARD – if the 

machine is used as a router (e.g. as a Network Address Translator.)  Each policy has 

its own set of rules.  

Basically, rules are instructions with pre-defined characteristics to match on a 

packet.  When a match is found the firewall makes a decision to handle that packet.  

Each rule is executed in order until a match is found.  A rule can be set like this: 

iptables [table] <command> <match> <target/jump> 

See the example below: 

#iptables –P INPUT ACCEPT 
#iptables –A INPUT –p tcp –dport 23 –j DROP 
#iptables –A INPUT –p udp –dport 80 –j DROP 
#iptables –A INPUT –p icmp –j DROP 

Where:  –P: policy; –A: append; –p: protocol; –dport: destination port; –j: jump 
 

In the example, the first rule says that we accept any incoming connections 

from anywhere from the network.  The next rule checks if the packet is a TCP, UDP 

or ICMP packet, respectively.  If the incoming packet is TCP and if it is trying to 

establish a connection to port 23 (i.e. telnet), the packet is DROPed.  The next rule 

drops any UDP packets trying to connect to port 80.  The last rule drops all ICMP 

packets. 
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Iptables and ipchains, ironically enough, have the benefit of  “chains”!!  

Chains are basically a sublayer of rules so that, if we want to capture a packet with 

specific characteristics, it is efficient not to make it go through the rest of rules that 

might never match that specific packet.   

 

 

Figure 3-14  Iptables configuration Process 

 

In Figure 3-14 we see how, under each POLICY, we can create chains.  For 

example, imagine that the user wants to accept only those packets coming from the 
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subnet 192.168.X.X.  Also, for those specific packets belonging to that subnet, the 

user wants to accept TCP packets destined to ports 21 and 80, and UDP packets 

destined for ports 81 and 12345.  In that case, the configuration of the firewall looks 

like this: 

#iptables –P INPUT DROP 
#iptables –A INPUT –s 192.168.0.0/16 ACCEPT 
#iptables –N tcp_packets 
#iptables –N udp_packets 
#iptables –A INPUT –p tcp –j tcp_packets 
#iptables –A INPUT –p udp –j udp_packets 
#iptables –A tcp_packets –dport 21 –j ACCEPT 
#iptables –A tcp_packets –dport 80 –j ACCEPT 
#iptables –A udp_packets –dport 81 –j ACCEPT 
#iptables –A udp_packets –dport 12345 –j ACCEPT 

 

In the example, we have specified to drop every packet except those packets 

coming from the subnet 192.168.X.X, and they should be checked under the rule set.  

We create two chains, tcp_packets and udp_packets.  Under each chain we 

create a set of rules to match the packet and with the rule we specify a target (e.g. 

ACCEPT / DROP / REJECT / QUEUE / RETURN).  A TCP packet coming from the 

trusted IP will be checked under the tcp_packets chain.  Inside that chain we 

check if the packet is destined for ports 21 or 80.  If it is not destined for any of the 

two ports the packet is dropped.  Only TCP packets will be checked under the 

tcp_packets chain.  The same happens for UDP, anything destined for port 81 

and 12345 is accepted, otherwise the packets will be dropped. 
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3.6.2 Architecture of the Netfilter2 

The Linux Netfilter consists in a series of “hooks” placed in several points in the 

network stack – so far IPv4, IPv6 and DECnet.   

 

 

Figure 3-15 Packet traverses the netfilter 

 

 In Figure 3-15 a packet comes in from the left hand side of the picture.  The 

first check point to the netfilter’s framework is the NF_IP_PRE_ROUTING [A] 

hook; this is after the packet has passed simple sanity checks, such as not truncated, 

IP checksum OK, not a promiscuous receive.  The routing code will decide whether 

the packet is destined for another interface, or for a local process.  Packets that are 

unroutable may be dropped. 

  

                                                 

2The information provided in sections 3.6.2 and 3.6..3 have been taken, and some parts even copi ed, “as is” from the “Netfilter 

Hacking HOWTO:  Netfilter Architecture” Document [22].  I want to take no credit for the information presented in these two 

sections because the document is short, simple to understand, and to the point.  Some things have be en reworded but the author, 

and maintainer of iptables Rusty Russell, did an excellent job presenting this in a very simple way.   
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If the packet is destined for the box itself, the netfilter’s framework 

NF_IP_LOCAL_IN [B] hook is called.  The analysis of the performance of the 

firewall starts at this point.   

However, if the packet is destined to another interface, the netfilter framework 

is called for the NF_IP_FORWARD [C] hook.  Finally, the packet is passed to the 

NF_IP_POST_ROUTING [D] hook it goes out to the outside. 

 When packets are created locally and the netfilter has been configured to filter 

outgoing traffic, the NF_IP_LOCAL_OUT [E] hook is called.  Here, “routing occurs 

after this hook is called - in fact, the routing code is called first (to figure out the 

source IP address and some IP options) - if you want to alter the routing, you must 

alter the ‘skb->dst’ field yourself, as is done in the NAT code.”  

 

3.6.3 Netfilter Base 

The firewall is modular; this means that the network hooks will only be called when a 

rule has registered that hook.  Rusty Russell explains, “Kernel modules can be 

registered to listen at any of these hooks.  A module that registers a function must 

specify the priority of the function within the hook.” In other words, when creating a 

module, the module should specify what netfilter hook(s) will be used so that “when a 

netfilter hook is called from the networking code, each module registered at that point 

is called in the order of priorities, and is free to manipulate the packet.”  The module 

can then tell netfilter to do one of five things: 

1. NF_ACCEPT: continue traversal as normal 

2. NF_DROP: drop the packet; don’t continue traversal 
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3. NF_STOLEN: I’ve taken over the packet; don’t continue traversal 

4. NF_QUEUE: queue the packet (usually for userspace handling) 

5. NF_REPEAT: call this hook again 

 

For example, when using Network Address Translation (NAT), “for non-local 

packets, the NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING hooks are 

perfect for destination and source alterations respectively;” this is because pre-routing 

checks on the destination address of the packet and makes a decision to forward it or 

pass it to the host itself.  Post-routing checks if the packet is allowed to be forwarded 

or not.  More detailed information can be found in [22]. 

 

3.6.4 Iptables Algorithm 

The iptables algorithm will explain the results in Chapter 4.  Notice what happens 

when the netfilter’s framework NF_IP_LOCAL_IN hook is called in Figure 3-16.  

Iptables executes ipt_do_table, which then executes ipt_packet_match, 

Figure 3-17.  

 



 55

 

Figure 3-16 IPTABLES Algorithm – ipt_do_table( ) checks for matches in the rule-set 

 

Observe in Figure 3-17 that the firewall checks the source and destination IP 

address first.  If no match is found, it tries to find a match for the input device, then 

check for the output interface device, then the protocol, and finally it checks if the 

packet is a fragment.   If a match is not found, ip_packet_match will return 0, 

continue to the next rule, or break out of the loop.  
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Figure 3-17 ip_packet_match function–IP address are always checked regardless of the type 
of filtering in the rule-set 

 

After passing through the ip_packet_match and finding no matches, the 

next step is to execute the IP_MATCH_ITERATE, in Figure 3-16.  Here, the 

firewall calls the do_match function pertaining to the specific rule.  Every module 

has a specific do match function.  In other words, if we are filtering/matching a MAC 

address the iptables algorithm will call the do_match function specific to MAC 

addresses.  If a match is found, the chain breaks to perform a TARGET check.  

Targets can be ACCEPT, DROP, QUEUE, STOLEN, REPEAT or “JUMP” to 

another chain when a chain has been added to the rule-set.  If IP_MATCH_ITERATE 

does not find a match it will either continue to the next rule or exit the loop. 
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Iptables breaks out of the loop when it finds a match, when the packet is a 

fragment, or when all the rules have been checked.  Hotdrop is a variable initialized 

to zero; when a packet is a fragment the hotdrop variable is changed to a 1, which 

indicates that the packet should be dropped.  A fragment is a malicious packet (e.g. a 

packet with a TCP header larger or smaller than the standard) and will always be 

dropped.  The VERDICT is a variable that tells the algorithm what to do with the 

packet (e.g. NF_ACCEPT, NF_DROP). 

In summary, the firewall will always go through the ip_packet_match 

function regardless of the type of matching.  For example, every rule that filters TCP 

ports includes checking for IPs, interfaces, protocol, fragments, and at last matching 

the TCP port. 
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Chapter 4 Firewall Performance Results 

In this chapter we will compare the host’s performance with and without the firewall.  

We will analyze the data in terms of the host’s latency for a single packet and also for 

a stream of packets when they traverse the stack.  The analysis of the latency for a 

single packet will show us the firewall sensitivity to the number of rules, the type of 

filtering (also referred as the type of matching), and the payload size.  For both 

scenarios, single packets and throughput tests, the latency will show how the total 

processing time is impacted by the transmission rate.  The chapter is divided in two 

parts: 

(1) Results from single packet tests 

(2) Results from throughput tests 

4.1 Back-to-back timing for the single-packet tests instrumentation 

The back-to-back timestamps were placed at the beginning and at the end of the 

timestamping instrumentation in order to measure the overhead created by it.  The 

back-to-back timestamps were taken using the rdtscl() macro. Two tests were 

performed in which 40 UDP packets were sent to the host, for a total of 80 samples.   

The difference between the end time and the beginning time is the 

instrumentation overhead.  This overhead is subtracted from the test results to obtain 

better estimates.  In other words, for example, the total time to process one TCP 

packet of 64 bytes of payload (i.e. T5-T1) with the instrumentation is 31.86 µs as 

shown in Table 4-1.  This time included the overhead generated by T1, T2, T3, T4, 

and T5.  Subtracting the overhead from the measurements will give a better estimate. 
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Table 4-1 Packet’s latency (including the instrumentation overhead) as it travels the 
TCP/IP stack  

  NOFIREWALL [units: µs]   
          
TCP T2 – T1 T3 - T1 T4 - T1 T5 - T1 
64 bytes 11.89 14.04 28.35 31.86
1400 bytes 13.49 15.61 39.71 42.92
       
UDP T2 – T1 T3 - T1 T4 - T1 T5 - T1 
64 bytes 12.11 14.46 24.44 27.74
1400 bytes 13.97 16.35 36.38 40.18

 

Table 4-1 shows the time that it takes for a packet to travel from the bottom of 

the stack to any other point in the stack, for example T2-T1 is the time that it takes for 

a packet to travel from the device driver to the beginning of the firewall.  These times 

include the instrumentation overhead.  Now, Table 4-2 shows the results of the back-

to-back tests.  Here, the Datalink layer’s overhead is about 1 µs and the rest of them 

add a little more than half of a microsecond each.  The reason why the overhead of 

the Datalink is greater than the rest of them is because of a memcpy().  This 

memcpy() served to copy the header of the packet into an array that was passed to 

the /proc file system in order compare the headers of each packet and the sequence 

number.  Later, for the throughput tests, we found the memcpy() to be unnecessary 

and it was removed from the instrumentation code. 

Table 4-2 Overhead of the single-packet tests instrumentation 

 Test 1 Test 2 Average  
Overhead of T1 (OT1) [us] 1.0725 1.0775 1.075  µs 
Overhead of T2 (OT2) [us] 0.555 0.555 0.555  µs 
Overhead of T3 (OT3) [us] 0.515 0.515 0.515  µs 
Overhead of T4 (OT4) [us] 0.5675 0.5675 0.5675  µs 
Overhead of T5 (OT5) [us] --- --- 0.5675  µs 
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Notice that in the Table 4-2, T5 was not included in the back-to-back tests 

because of an error in our back-to-back instrumentation.  This error was found and 

fixed for the throughput back-to-back tests.  However, given that the code for T5 is 

very similar to that of T2, T3, and T4, we inferred the back-to-back time for T5 is 

approximately the same as the others.  For the purpose of our analysis, we selected 

0.5675 (the same value as T4) as a conservative estimate for T5.   

 The results in Table 4-2 were subtracted from the results in Table 4-1.  So, 

T2-T1 without the instrumentation overhead is equal to: T2-T1 with overhead minus 

the overhead of T1 (OT1) + the overhead of T2 (OT2).  Then, T3-T1 without the 

overhead is equal to: T3-T1 with overhead minus OT1 + OT2 + OT3, and so on.  

Thus, the time to process the stack without the instrumentation overhead is shown in 

Table 4-3. 

Table 4-3 Packet’s latency (excluding the instrumentation overhead) as it travels the 
TCP/IP stack  

  NOFIREWALL [µs]   
          
TCP T2 – T1 T3 - T1 T4 - T1 T5 - T1 
64 bytes 10.26 11.90 25.63 28.58
1400 bytes 11.86 13.46 37.00 39.64
       
UDP T2 - T1 T3 - T1 T4 - T1 T5 - T1 
64 bytes 10.48 12.32 21.73 24.46
1400 bytes 12.34 14.21 33.67 36.90

 

 From this point on, all the results shown in the tables exclude the 

instrumentation overhead. 
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4.2 Procedures for single-packet tests 

The parameters under test, shown in Table 4-4, included the transmission protocol, 

connection speed, payload size, number of rules, type of filtering, and the INPUT 

policy.   

Table 4-4 Parameters under test 

Generic Test Setup  
   
Transmission Protocol TCP UDP 
Type of filtering/matching TCP, IP, MAC UDP, IP, MAC 
INPUT policy ACCEPT & DROP DROP 
Connection speed 100Mbps 
Payload size 64 &1400 bytes 
Number of rules No firewall,10, 40, 100 

 

 Table 4-4 shows a generic table for the test setup.  During the tests neither the 

server nor the client ran any services.  Both machines used a 10/100 Mbps 3Com 

NIC, model 3C905C.  The connection speed was 100 Mbps in an isolated system, 

sending one packet every 4 seconds.  The payload size varied between 64 and 1400 

bytes.  The type of filtering was IP and MAC addresses for both protocols, and TCP 

and UDP for each respective transmission protocol.  The number of rules under each 

type of filtering was zero (or No Firewall), 10, 40, and 100 rules.  Both INPUT 

policies ACCEPT and DROP were tested for TCP, but only the INPUT policy DROP 

was tested for UDP.  A total of 40 packets or samples on one single test were sent to 

the host.  The results were accessed via the /proc/ file system.  Three tests were 

performed for each type of filtering, from which we took the median of the total 

samples to exclude any outliers.  The medians were averaged for a final result. 
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4.3 Single-packet test results 

The results obtained from single-packet tests provided the following information: (a) 

that the payload size impacts the performance before and after the firewall but not the 

firewall itself, (b) that the INPUT policy does not affect the performance of the 

firewall, (c) that the firewall (T3 – T2) is affected only by type of filtering/matching 

and the number of rules, and (d) that the time to process a packet from T1 to T5 is 

affected by the parameters in (c) and also by the payload size. 

 

4.3.1 Timing the network stack 

The first analysis involved plotting all the measurement data obtained at each layer.   

Figure 4-1 shows the timestamps of T2 to T5 with respect to T1.  The line connecting 

T2-T1 and T3-T1 represents the time that it takes for the firewall to execute.  
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Figure 4-1 Latency increases as the payload size increases 
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From Figure 4-1 and 3-7 we have:  

• Start time = T2 – T1 

• Firewall = (T3 – T1) – (T2 – T1) = T3 – T2 

• TCP layer = (T4 – T1) – (T3 – T1) = T4 – T3 

• Socket layer = (T5 – T1) – (T4 – T1) = T5 – T4 

• Total processing time = T5 - T1 

 

4.3.2 T2 – T1 

The results for TCP and UDP in Table 4-5 show that the difference between T2 – T1 

increases as the payload size increases.  For example, compare the averages for 64 

bytes with the averages for 1400 bytes.  The reason for this is because the packet is 

copied from the network into kernel space. 

Table 4-5 Payload impact in T2-T1 – time increases as the payload size increases 

      T2 - T1   [units:   us]    
   TCP     UDP   
  IP MAC TCP   IP MAC UDP 
64 bytes T2 - T1 T2 - T1 T2 - T1 64 bytes T2 - T1 T2 - T1 T2 - T1 
No firewall 10.26 10.26 10.26 No firewall 10.48 10.48 10.48
10 rules 10.46 10.23 10.54 10 rules 10.45 10.50 10.45
40 rules 10.58 10.59 10.26 40 rules 10.51 10.60 10.61
100 rules 10.72 10.64 10.56 100 rules 10.66 10.55 10.68

Average 10.51 10.43 10.40 Average 10.52 10.53 10.55
             
1400 bytes    1400 bytes       
No firewall 11.86 11.86 11.86 No firewall 12.34 12.34 12.34
10 rules 12.02 11.90 11.94 10 rules 12.38 12.27 12.36
40 rules 12.05 12.10 11.92 40 rules 12.39 12.43 12.52
100 rules 12.31 12.15 12.30 100 rules 12.42 12.48 12.54

Average 12.06 12.00 12.00 Average 12.38 12.38 12.44
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4.3.3 T4 – T3 

At the TCP and UDP layers, the latter is processed faster than the TCP layer because 

of the nature of the complexity of their algorithm.  However, the time to process the 

layers is influenced by the payload size because the data is copied from kernel space 

to user space.  For example, the results in Table 4-6 demonstrate that the average time 

to process 64 bytes of payload is shorter than 1400 bytes of payload. 

Table 4-6 Impact of the payload size in T4 – T3 – time increases as the payload size 
increases 

      T4 - T3  [units:  µs] 
    TCP       UDP   
64 bytes IP MAC UDP 64 bytes IP MAC UDP 
No firewall 13.74 13.74 13.74No firewall 9.42 9.42 9.42

10 13.89 14.14 14.20 10 9.48 9.40 9.42
40 14.32 14.68 14.72 40 9.63 9.95 9.89

100 14.57 15.02 14.81 100 10.09 10.25 10.18
Average 14.13 14.39 14.37Average 9.65 9.75 9.72
              
    TCP       UDP   
1400 bytes IP MAC UDP 1400 bytes IP MAC UDP 
No firewall 23.54 23.54 23.54No firewall 19.46 19.46 19.46

10 23.65 24.07 24.22 10 19.46 19.35 19.23
40 24.00 24.86 24.67 40 19.48 19.83 19.75

100 24.38 25.07 24.62 100 19.90 20.02 20.03
Average 23.89 24.38 24.26Average 19.57 19.66 19.62
 

4.3.4 T5 – T4 

Different from T2 – T1 and T4 – T3, the socket layer is processed at random times.  

Two tests were performed in order to study the time to process the socket layer with 

respect to the size of the payload.  The tests did not include a firewall.  Figure 4-2 

shows that the time to process this layer is not dependent on the payload size but 

given that it is a process controlled by the scheduler, it is executed at a random time. 
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Randomness of the time from TCP to socket(test 2)
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Figure 4-2 Randomness at the socket layer –socket layer is called randomly regardless of 
the number of rules 

 

4.4 INPUT policy ACCEPT vs. DROP 

After having analyzed the other layers, we study the sensitivities of the firewall.  The 

analysis of the INPUT policies is done first.  Table 4-7 shows the time difference 

between T5 - T1 for each policy using various types of matching, number of rules and 
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payload size.   It becomes evident that the time differences between the T5 – T1 for 

both policies (i.e. Accept – Drop) are insignificant.  Consequently, we believe that the 

policy has no effect in the performance.  

 

Table 4-7 Difference between INPUT policy ACCEPT and DROP – firewall is not 
sensitive to the INPUT policy 

Number of rules  –  (payload size)  [units:  µs] 
  INPUT policy -  [T5 – T1]   

IP matching Accept Drop Acc - Drop 
10 rules -  (64 bytes) 29.94 29.92 0.02
10 rules  - (1400) 41.14 40.77 0.38
    
40 rules - (64) 34.12 34.00 0.12
40 rules - (1400) 45.00 44.90 0.10

  INPUT policy -  [T5 – T1]   

MAC matching Accept Drop Acc - Drop 
10 rules -  (64 ) 35.66 35.23 0.43
10 rules - (1400) 47.00 46.57 0.43
    
40 rules - (64 ) 57.13 55.41 1.72
40 rules - (1400) 68.67 66.84 1.83

  INPUT policy -  [T5 – T1]   

TCP matching Accept Drop Acc - Drop 
10 rules - (64 ) 35.93 36.00 0.07
10 rules - (1400) 47.02 47.30 0.28
    
40 rules - (64 ) 54.48 54.73 0.25
40 rules - (1400) 65.66 65.92 0.26

 

4.5 TCP and UDP Firewall Performance [T3 – T2] 

As mentioned at the beginning of the chapter, the type of filtering and the number of 

rules have a performance impact in the firewall (T3 - T2) but the payload size does 

not.  The tables presented in this section show our findings. 
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The results are organized as follows:   

1.  Study of the impact generated by the payload size 

2.  Study of the impact generated by the number of rules 

Note:  The results in the tables are from tests that used INPUT policy DROP.   

 

4.5.1 Payload size effect 

The tables below (Table 4-8 through Table 4-10) present the results for different 

types of matching.  Inside each table and under N rules, there are two different 

payload sizes, 64 and 1400 bytes.  It is clear that the time difference [T3 – T2] 

between the payload sizes belonging to a specific number of rules is very small.  This 

demonstrates that the payload size does not affect the performance between T2 and 

T3.  Also notice that, as expected, IP matching took less processing time than any 

other type of matching – refer to the iptables algorithm in Chapter 3. 

 

Table 4-8 IP matching for TCP and UDP packets – firewall is not sensitive to the payload 
size  

TCP    IP     UDP   IP   
PACKETS   [units: µs]     PACKETS   [units: µs]   
10 RULES T2 - T1 T3 - T1 T3 - T2   10 RULES T2 - T1 T3 - T1 T3 - T2 
64 bytes 10.46 13.10 2.64  64 bytes 10.45 13.59 3.13
1400 bytes 12.02 14.66 2.63  1400 bytes 12.38 15.57 3.18
            
40 RULES   T3 - T2   40 RULES   T3 - T2 
64 bytes 10.58 16.81 6.22  64 bytes 10.51 17.01 6.50
1400 bytes 12.05 18.44 6.38  1400 bytes 12.39 19.12 6.73
            
100 RULES   T3 - T2   100 RULES   T3 - T2 
64 bytes 10.72 24.66 13.94  64 bytes 10.66 24.72 14.06
1400 bytes 12.31 26.27 13.96  1400 bytes 12.42 27.10 14.68
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Table 4-9 MAC matching for TCP and UDP packets – firewall is not sensitive to the 
payload size 

TCP    MAC     UDP   MAC   
PACKETS   [units: µs]     PACKETS   [units: µs]   
10 RULES T2 - T1 T3 - T1 T3 - T2   10 RULES T2 - T1 T3 - T1 T3 - T2 
64 bytes 10.23 18.19 7.96  64 bytes 10.50 19.59 9.09
1400 bytes 11.90 19.95 8.06  1400 bytes 12.27 21.65 9.38
              
40 RULES   T3 - T2   40 RULES   T3 - T2 
64 bytes 10.59 37.94 27.35  64 bytes 10.60 39.41 28.81
1400 bytes 12.10 39.49 27.40  1400 bytes 12.43 41.75 29.32
              
100 RULES   T3 - T2   100 RULES   T3 - T2 
64 bytes 10.64 80.56 69.92  64 bytes 10.55 80.65 70.09
1400 bytes 12.15 82.08 69.93  1400 bytes 12.48 82.86 70.38

 

Table 4-10 TCP/UDP ports matching for TCP and UDP packets – firewall is not sensitive 
to the payload size 

TCP    TCP     UDP   UDP   
PACKETS    [units: µs]     PACKETS   [units: µs]    
10 RULES T2 - T1 T3 - T1 T3 - T2   10 RULES T2 - T1 T3 - T1 T3 - T2 
64 bytes 10.54 19.04 8.51   64 bytes 10.45 19.16 8.71
1400 bytes 11.94 20.53 8.59   1400 bytes 12.36 21.33 8.97
            
40 RULES   T3 - T2   40 RULES   T3 - T2 
64 bytes 10.26 37.19 26.93   64 bytes 10.61 38.67 28.06
1400 bytes 11.92 38.81 26.89   1400 bytes 12.52 41.30 28.78
            
100 RULES      100 RULES   T3 - T2 
64 bytes 10.56 78.46 67.90   64 bytes 10.68 78.56 67.89
1400 bytes 12.30 80.28 67.98   1400 bytes 12.54 80.69 68.16

 

Tables 4-8 through 4-10 show matching for 10, 40, and 100 rules for TCP and 

UDP packets.  It is evident that the payload size can be considered negligible for the 

performance given by T3 – T2.    
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4.5.2 Number of rules effect 

To demonstrate that the number of rules and the type of matching have an effect in 

the performance of the firewall, the tables presented above are reorganized.  Notice, 

in the Tables 4-11 through 4-13, that as the number of rules increase the difference 

between T3 – T2 also increases.  Subsequently, the number of rules impacts the 

performance of the firewall.   

 Notice in the tables that for “No firewall,” the results for T3 – T2 is non-zero.  

This can be explained with the iptables algorithm because, as depicted in Figure 

3-16, when the ip_local_deliver function returns it makes a call to the netfilter 

hook NF_IP_LOCAL_IN.  When a netfilter hook is called, the function 

ipt_hook() is executed.  This latter returns a call to ipt_do_table. This latter 

will check the iptables rule-set and if no rules are found, the function will exit 

ipt_do_table and ipt_hook and finally make a call to 

ip_local_deliver_finish.  This process will take between 1.60 to 1.90 µs. 

Table 4-11 Matching IP – time increases as the rules increase 

TCP packets   
IP  

matching     UDP packets   
IP 

matching   
     [units: µs]          [units: µs]    
64 bytes T2 - T1 T3 – T1 T3 - T2  64 bytes T2 - T1 T3 - T1 T3 – T2 
No firewall 10.26 11.90 1.64  No firewall 10.48 12.32 1.84
10 rules 10.46 13.10 2.64  10 rules 10.45 13.59 3.13
40 rules 10.58 16.81 6.22  40 rules 10.51 17.01 6.50
100 rules 10.72 24.66 13.94  100 rules 10.66 24.72 14.06

            
1400 bytes T2 - T1 T3 – T1 T3 - T2   1400 bytes T2 - T1 T3 - T1 T3 - T2 
No firewall 11.86 13.46 1.60  No firewall 12.34 14.21 1.87
10 rules 12.02 14.66 2.63  10 rules 12.38 15.57 3.18
40 rules 12.05 18.44 6.38  40 rules 12.39 19.12 6.73
100 rules 12.31 26.27 13.96  100 rules 12.42 27.10 14.68
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Table 4-12 Matching MAC addresses – time increases as rules increase 

TCP packets   
MAC 

matching     UDP packets   
MAC 

matching   
      [units: µs]           [units: µs]   
64 bytes T2 - T1 T3 – T1 T3 - T2  64 bytes T2 - T1 T3 - T1 T3 - T2 
No firewall 10.26 11.90 1.64 No firewall 10.48 12.32 1.84
10 rules 10.23 18.19 7.96  10 rules 10.50 19.59 9.09
40 rules 10.59 37.94 27.35  40 rules 10.60 39.41 28.81
100 rules 10.64 80.56 69.92  100 rules 10.55 80.65 70.09
            
1400 bytes T2 - T1 T3 – T1 T3 - T2   1400 bytes T2 - T1 T3 - T1 T3 - T2 
No firewall 11.86 13.46 1.60 No firewall 12.34 14.21 1.87
10 rules 11.90 19.95 8.06 10 rules 12.27 21.65 9.38
40 rules 12.10 39.49 27.40  40 rules 12.43 41.75 29.32
100 rules 12.15 82.08 69.93  100 rules 12.48 82.86 70.38
 

Table 4-13 Matching TCP ports – time increases as the rules increase 

TCP packets   
TCP  

matching     UDP packets   
UDP 

matching   
      [units: µs]            [units: µs]    
64 bytes T2 - T1 T3 - T1 T3 - T2  64 bytes T2 - T1 T3 - T1 T3 - T2 
No firewall 10.26 11.90 1.64  No firewall 10.48 12.32 1.84
10 rules 10.54 19.04 8.51  10 rules 10.45 19.16 8.71
40 rules 10.26 37.19 26.93  40 rules 10.61 38.67 28.06
100 rules 10.56 78.46 67.90  100 rules 10.68 78.56 67.89
            
1400 bytes T2 - T1 T3 - T1 T3 - T2  1400 bytes T2 - T1 T3 - T1 T3 - T2 
No firewall 11.86 13.46 1.60  No firewall 12.34 14.21 1.87
10 rules 11.94 20.53 8.59  10 rules 12.36 21.33 8.97
40 rules 11.92 38.81 26.89  40 rules 12.52 41.30 28.78
100 rules 12.30 80.28 67.98  100 rules 12.54 80.69 68.16
 

4.5.3 Linear relationship of [T3 – T2] 

The plot of the data just presented shows a linear relationship between the 

performance impact and the number of rules.  Figures 4-3 and 4-4 present the T3 – T2 

trendlines for TCP and UDP using the data obtained for packets of 64 bytes of 

payload.   They also present a set of equations that may serve to estimate the time to 

process T3 – T2 up to 100 rules. 
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Graph of [T3 - T2] for TCP packets of 64 bytes of payload
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Figure 4-3 TCP connection – [T3 – T2] – linear relationship between the number of rules 
and the time to process the firewall 

 

Graph of [T3 - T2] for UDP packets of 64 bytes of payload
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Figure 4-4 UDP connection – [T3 – T2]  - linear relationship between the number of rules 
and the time to process the firewall 

 

 Evidently, there is a linear relationship between the number of rules and time 

to process T3 –T2.   
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4.6 Total processing time [T5 – T1] with respect to [T3 – T2] 

The total processing time (T5 –T1) is expected to be slower for TCP packets than for 

UDP packets; refer to the T4 – T3 section presented earlier.  The results in the Table 

4-14 confirm that the number of rules directly affects the total processing time.  In 

addition, it shows that the payload size also impacts the total processing time (e.g. 

compare “No firewall” for 64 and 1400 bytes.)  

Table 4-14 TCP and UDP – Difference in Total processing time [T5 – T1]  for three types of 
filtering rules 

      T5-T1    [units: µs]  
TCP PACKETS         UDP PACKETS       
  IP MAC TCP     IP MAC UDP 
64 bytes T5 - T1 T5 - T1 T5 - T1   64 bytes T5 - T1 T5 - T1 T5 - T1 
No firewall 28.58 28.58 28.58  No firewall 24.46 24.46 24.46
10 rules 29.92 35.23 36.00  10 rules 25.81 31.81 31.42
40 rules 34.00 55.41 54.73  40 rules 29.46 52.25 51.48
100 rules 41.99 98.28 95.90  100 rules 37.64 93.87 91.75
            
1400 bytes      1400 bytes     
No firewall 39.64 39.64 39.64  No firewall 36.90 36.90 36.90
10 rules 40.77 46.57 47.30  10 rules 38.37 44.17 43.78
40 rules 44.90 66.84 65.92  40 rules 41.91 64.97 64.45
100 rules 53.09 109.47 107.18  100 rules 50.37 106.32 103.99

 

4.6.1 Firewall % overhead with respect to T5 – T1 

The impact of T3 – T2 can be expressed in terms of a percentage overhead generated 

by the firewall over the total processing time (T5 – T1).   The results in Tables 4-15 

through 4-17 show that: (1) as the number of rules increases the percentage overhead 

increases up to a 75% for UDP and up to 71% for TCP; on the other hand, (2) as the 

payload size increases for a specific number of rules, the percentage overhead 

decreases – this is because the firewall is not sensitive to the payload size, 
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consequently, an increase in payload will increase T5 – T1 while T3 – T2 will remain 

the same.  The percentage overhead was calculated as follows: 

Firewall’s % overhead = (T3 - T2)/(T5 – T1) * 100 
 

Table 4-15 Percentage overhead of IP matching over the T5 – T1 – overhead increases as 
the number of rules increase 

  TCP PACKETS       UDP PACKETS   
IP matching         IP matching       
64 bytes T5 - T1 T3 - T2 % overhead   64 bytes T5 - T1 T3 – T2 % overhead 
No firewall 28.58 1.64 6%  No firewall 24.46 1.84 8%
10 rules 29.92 2.64 9%  10 rules 25.81 3.13 12%
40 rules 34.00 6.22 18%  40 rules 29.46 6.50 22%
100 rules 41.99 13.94 33%  100 rules 37.64 14.06 37%
              
1400 bytes       1400 bytes     
No firewall 39.64 1.60 4%  No firewall 36.90 1.87 5%
10 rules 40.77 2.63 6%  10 rules 38.37 3.18 8%
40 rules 44.90 6.38 14%  40 rules 41.91 6.73 16%
100 rules 53.09 13.96 26%  100 rules 50.37 14.68 29%

 

Table 4-16 Percentage overhead of MAC matching over the T5 – T1 - overhead increases 
as the number of rules increase 

  TCP PACKETS       UDP PACKETS   
MAC matching         MAC matching       
64 bytes T5 - T1 T3 - T2 % overhead   64 bytes T5 - T1 T3 - T2 % overhead 
No firewall 28.58 1.64 6%  No firewall 24.46 1.84 8%
10 rules 35.23 7.96 23%  10 rules 31.81 9.09 29%
40 rules 55.41 27.35 49%  40 rules 52.25 28.81 55%
100 rules 98.28 69.92 71%  100 rules 93.87 70.09 75%
              
1400 bytes   % overhead   1400 bytes   % overhead 
No firewall 39.64 1.60 4%  No firewall 36.90 1.87 5%
10 rules 46.57 8.06 17%  10 rules 44.17 9.38 21%
40 rules 66.84 27.40 41%  40 rules 64.97 29.32 45%
100 rules 109.47 69.93 64%  100 rules 106.32 70.38 66%
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Table 4-17 Percentage overhead of TCP matching over T5 – T1 - overhead increases as the 
number of rules increase 

  TCP PACKETS       UDP PACKETS   
TCP matching         UDP matching       
64 bytes T5 - T1 T3 - T2 % overhead   64 bytes T5 - T1 T3 - T2 % overhead 
No firewall 28.58 1.64 6%  No firewall 24.46 1.84 8%
10 rules 36.00 8.51 24%  10 rules 31.81 8.71 27%
40 rules 54.73 26.93 49%  40 rules 52.25 28.06 54%
100 rules 95.90 67.90 71%  100 rules 93.87 67.89 72%
              
1400 bytes   % overhead   1400 bytes   % overhead
No firewall 39.64 1.60 4%  No firewall 36.90 1.87 5%
10 rules 47.30 8.59 18%  10 rules 44.17 8.97 20%
40 rules 65.92 26.89 41%  40 rules 64.97 28.78 44%
100 rules 107.18 67.98 63%  100 rules 106.32 68.16 64%
 

4.7 Latency results for various throughputs 

4.7.1 Test procedures 

The tests were performed using the SmartBits network tester.  Because of the 

limitation of the system, we only tested UDP packets.  The SmartBits was configured 

to transmit packets to the DUT for one minute before the timestamps were taken.  The 

SmartBits’ “Smart Window” application automatically showed how many packets 

would be transmitted in one minute.  The DUT kept the count of the number of 

incoming packets until a minute had elapsed.  A total of 4000 timestamps were stored 

in the memory buffers.  The median of 3 tests with 4000 measurements each was 

calculated for a final result.  The parameters for each test are shown in the Table 4-18. 

Table 4-18 Parameters under test  

Generic Test Setup  
Transmission Protocol UDP 
Type of filtering/matching IP, MAC 
INPUT policy DROP 
Throughput / transmission rates 5 & 10 Mbps 
Payload size 64 bytes 
Number of rules No firewall & 100 
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 The tests were performed only for two types of filtering, IP addresses and 

MAC addresses.  The number of rules used was zero (or No firewall) and 100.  Even 

though the hardware supported a 100 Mbps throughput, only tests for 5 and 10 Mbps 

were performed because the timestamping instrumentation made the DUT loose 

interrupts.  When our instrumentation was loaded and 100 rules filtering MAC 

addresses were added to the rule-set, a link utilization higher than 12% (i.e. 12 Mbps) 

would cause loss of interrupts.  Tests were performed without the instrumentation and 

100% link utilization (i.e. 100 Mbps) could be reached without any loss of interrupts 

even when filtering 100 MAC addresses.  This latter test is very important because it 

eliminates the possibility that the firewall is the cause of the interrupt loss but that the 

problem is caused by the instrumentation. 

 

4.7.2 Back-to-back timing measurements for throughput tests  

As described in detail in Chapter 3 some changes were made to the instrumentation. 

So, as it was done for the single-packet tests, new back-to-back measurements were 

taken and subtracted from the measurement results to obtain better estimates.  Notice 

in the results in the Table 4-19 that the overhead produced by T1 is 0.36 µs compared 

to the 1 µs overhead obtained for the single-packet back-to-back tests shown in the 

Table 4-2; this is because of the changes made to the dev.c file. 

Table 4-19 Instrumentation overhead 

  Test 1 Test 2 Average 
Overhead of T1 (OT1) [us] 0.37 0.3625 0.3625 
Overhead of T2 (OT2) [us] 0.4625 0.4625 0.4625 
Overhead of T3 (OT3) [us] 0.4675 0.4775 0.4775 
Overhead of T4 (OT4) [us] 0.6075 0.6025 0.6025 
Overhead of T5 (OT5) [us] 0.545 0.545 0.545 
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Notice that this time we were able to measure the overhead of T5.  As 

mentioned earlier, the error found for the single-packet back-to-back tests for T5 was 

fixed; this allowed us to measure the overhead of T5 for the instrumentation used in 

the throughput tests.   

 

4.7.3 Test results 

The results obtained using the SmartBits tool show in the Table 4-20 that as 

the throughput increases, the latency decreases.  In other words, the faster the 

transmission rate, the faster the packet is processed in the stack.   

Table 4-20 Difference in the latency for various throughput – latency decreases as the 
throughput increases 

SINGLE-PACKET every 4 seconds  [units: us]   
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1 

No firewall 10.48 12.32 21.73 24.46
100 rules IP 10.66 24.72 34.81 37.64

100  rules MAC 10.55 80.65 90.90 93.87
       
MULTIPLE PACKETS – 5 Mbps     
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1 

No firewall 11.26 12.46 18.52 20.40
100 rules IP 11.61 20.27 27.07 29.15

100  rules MAC 12.35 77.08 84.76 87.14
       
MULTIPLE PACKETS – 10 Mbps     
64 BYTES T2 – T1 T3 - T1 T4 - T1 T5 - T1 

No firewall 11.06 12.15 17.67 19.51
100 rules IP 11.84 20.03 26.27 28.29

100  rules MAC 12.03 76.30 82.66 84.95
 

Notice in the Figure 4-5 that the single-packet tests show the highest latency 

between T5-T1.  On the other hand, the smallest latency (i.e. faster processing time) 

is when the throughput is 10 Mbps.  Consequently, this data shows that the single-
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packet measurement results may serve as a conservative upper bound to estimate the 

time to process the packets by the stack.  

Comparison between T5 - T1 as the throughput increases

0.00

20.00

40.00

60.00

80.00

100.00

Percent utilization on the link

us
ec

No firew all 24.46 20.40 19.51

100 rules IP 37.64 29.15 28.29

100  rules MAC 93.87 87.14 84.95

1 pkt every 4 sec 5 Mbps 10 Mbps

 

Figure 4-5 Comparison between T5-T1 for different transmission rates – latency decreases 
as the throughput increases 

 

By breaking up the stack into layers, the results in Table 4-21 show the time 

that a packet is held by the firewall, the UDP layer, and the Socket layer.  Notice in 

the table that between T3-T2 (i.e. the firewall) and T4-T3 (i.e. the UDP layer) the 

packet is processed faster as the throughput increases.  On the other hand, this is not 

the case for T5-T4 (i.e. the socket layer) where the time to process this layer is 

random, lying between 2 and 3 µs regardless of the throughput. 
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Table 4-21 Time that a packet is held on each layer  

SINGLE-PACKET every 4 seconds  [units: us]   
64 BYTES T3 – T2 T4 - T3 T5 - T4 

No firewall 1.84 9.42 2.73
100 rules IP 14.06 10.09 2.83

100 rules MAC 70.09 10.25 2.97
      
MULTIPLE PACKETS  5 Mbps     
64 BYTES T3 - T2 T4 - T3 T5 - T4 

No firewall 1.20 6.06 1.88
100 rules IP 8.67 6.80 2.08

100 rules MAC 64.73 7.69 2.37
      
MULTIPLE PACKETS   10 Mbps     
64 BYTES T3 - T2 T4 - T3 T5 - T4 

No firewall 1.09 5.52 1.85
100 rules IP 8.19 6.24 2.02

100 rules MAC 64.28 6.35 2.30
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Chapter 5 Conclusion and Future Work 

5.1 Summary  

The goal of this research was to study the sensitivities and the performance impact of 

the Linux firewall iptables in a host.  We placed timestamps throughout the 

TCP/IP stack of a host PC running Linux version 2.4.7.  With each timestamp, we 

looked at the latency of a packet as it traversed the entire network stack.  To collect 

accurate data from our instrumentation, we analyzed the path that an incoming packet 

follows in the stack.   

The purpose of the single-packet tests was to find the sensitivities of the 

firewall.  The results obtained showed the following:  

(1) That the firewall is not sensitive to the transmission protocol (i.e. TCP or 

UDP), the INPUT policy, or the payload size.  However, we found that the 

transmission protocol and the payload size impact the host’s network stack. 

(2) We found the firewall to be sensitive to the type of filtering and the number of 

rules.  When filtering IP addresses, TCP/UDP ports, and MAC addresses the 

cost per rule increases linearly and its cost is approximately 0.12, 0.66, and 

0.68 µs/rule, respectively.  We were able to explain the difference in the 

performance cost between IP and the other types of filtering through the 

iptables algorithm.  Also, our results showed that the percentage overhead 

generated by a firewall when a single packet of 64 bytes of payload travels the 

TCP/IP stack, and for a rule-set of zero and 100 rules, ranges from 6% to up to 

75%, respectively.   
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We performed throughput tests for 5 and 10 Mbps with the instrumentation, and 

for 100 Mbps without the instrumentation.  The results were surprising because we 

did not expect to see a decrease in the latency for higher throughput, neither did we 

expected to be able to perform a 100% link utilization (i.e. 100 Mbps throughput) 

without any interrupt loss.  The performance measurements obtained in the 5 and 10 

Mbps tests demonstrated that the single-packet test results hold to be valid 

conservative estimates, and that they can serve as an upper bound to estimate the 

overhead generated by the firewall.  The 100 Mbps tests showed that there is no 

interrupt loss for a firewall with 100 rules filtering MAC addresses.  From this, we 

infer that the firewall does not affect the protocol throughput.   

Finally, as mentioned in the Introduction, according to 3Com, a third party 

vendor discovered that after 30 rules a firewall degraded the performance of a system 

tremendously.  Our results have proved a steady increase in performance overhead as 

the number of rules increase, proving that their data does not pertain to the 

iptables netfilter.  

5.2 Possible future work 

• Our studies have focused only on 4 types of iptables matches (i.e. IP, 

MAC, TCP and UDP.)  Future work could expand on this by testing the 

performance of other types of matches. Also, it would be interesting to 

compare the performance of commercial firewalls versus the open source 

firewall iptables. 
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• Some problems were found in the instrumentation.  When loaded, as the 

throughput and number of rules in the iptables rule-set increased, the 

timestamp instrumentation caused the kernel network device driver to lose 

interrupts.  On the other hand, without the timestamp instrumentation and with 

100 rules filtering MAC addresses a 100% utilization in the link (i.e. 100 

Mbps) could be reached without any packet loss.  Therefore, the 

instrumentation must be debugged to support higher throughputs. 

• Test the performance of TCP packets. We were not able to perform this tests 

because of our timestamp instrumentation and the SmartBits tester only allows 

us to control the flow of UDP packets. 

• Analyze and compare the performance of the netfilter when it is used as a 

firewall router. 

• The iptables netfilter has been ported to the CiNIC architecture for the 

kernel 2.4.3.  In order to be able to compare the results presented in this 

document, the CiNIC should be upgraded to the 2.4.7 version of the Linux 

kernel, and then compare the tests results.   

• A feature not yet supported by firewalls but mentioned by some experts [31], 

is to design a firewall that filters the payload data inside packets.  Filtering the 

data inside the packet could serve to prevent packets carrying worms or 

viruses.  Future research can be done to study this matter. 
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Appendix A Performing tests in the co-host 

Testing the firewall on the EBSA285 board will serve to find out how the 

performance in a co-host scales in comparison to the host.  We were unable to 

benchmark the co-host, however, we build the software platform to perform the tests.  

Bellow we describe the hardware and software implementation on the host.   

A.1 Hardware 

Our DUT is Sextans, an EBSA285 board with a StrongArm (SA-110) Intel 

chip, see Figure A-2.  The board is connected via a serial port to Hydra, the client.  

We connect Sextans to Hydra via the same 3Com switch used to make the tests for 

the host, see Figure A-1.   

 

 

Figure A-1 Co-host test setup 
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Figure A-2 CiNIC Architecture [22] 

 

A.2 Software in the co-host 

After having problems compiling a 2.4.7 version of the kernel for the co-host, we 

decided to use a 2.4.3-rmk2-bpa-jdf version of the kernel.  To install iptables to the 

co-host’s sources we first took the original sources for the 2.4.3 kernel and applied 

the iptables patch.  Then, we applied Russell King’s patch (i.e. rmk2), then the Big 

Physical Area (i.e. pgh) patch, and finally Jim Fisher’s patch.   

 Usually we log-in to Sextans using a Telnet session, however, in order to 

avoid any traffic in the connection (just as we did for single-packet tests) we connect 

the serial port to a different PC and use a console to maintain communication with the 

CiNIC [29].  We tested the firewall only with the INPUT policy set to ACCEPT 

because otherwise, if the firewall’s INPUT policy is DROP, the firewall will block all 
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the ports (even the serial port) and we will not be able to log in.  You may ask if the 

INPUT policy make a difference to the sensitivity of the firewall?  As we saw earlier 

in the first section of Chapter 4, the INPUT policy does not make any difference.  The 

test procedures are the same as the one explained in Appendix C. 

A.3 Timestamp implementation on the EBSA21285 

A.3.1 Clocks 

The StrongArm SA-110 microprocessor does not have an internal clock fulfilling the 

same functionality that Time Stamp Counter of the x86 processor architecture.  It, 

however, operates at any one of 16 core clock frequencies but its maximum frequency 

of operation is limited by the speed of the core clock of the EBSA-285 [33].  Thus, 

the maximum frequency of the EBSA-285 core clock is 233 MHz.   

 

A.3.2 Timers 

Since the SA-110 does not have an internal clock we use a timer Control register.  

The timer register should be able to provide us with accuracy in the microseconds.  

We found that the EBSA-285 has four 24-bit timers “that can be preloaded and either 

free-run, or decremented to zero and then reloaded [34].”  In other words, we can use 

one of the EBSA’s timers to perform our measurements since we can control the start 

and stop times. 

The timer block diagram for the EBSA-285 is shown in Figure A-3 [34]:  
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Figure A-3 EBSA-21285 Timer Block Diagram 

 

The 21285 Core Logic Data Sheet [34] says that the four timers can be clocked in 

four different ways:   

• fclk_in: 50 MHz 

• fclk_in divided by 16 

• fclk_in divided by 256 

• External input: 3.6874 MHz 

In order to obtain precise measurements we need at least microseconds 

resolution.  Then, we must calculate the precision that a 24-bit register can provide as 

well as the roll-over time for we do not want the timer to roll over while the packet in 

passing through the stack. 

The resolution can be calculated as follows: 

CLOCKING 1: Inverse of ( Input Frequency ) = 1/( 50 MHz ) = 0.02 μs 

CLOCKING 2: Inverse of ( Input Frequency div 16 ) = 1/( 50 MHz / 16 ) = 0.32 μs 

CLOCKING 3: Inverse of ( Input Frequency div 16 ) = 1/( 50 MHz / 256 ) = 5.12 μs 
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The rollover time is obtained by: 

CLOCKING 1: Resolution * 224 = 0.02 μs * 224 = 0.34 seconds 

CLOCKING 2: Resolution * 224 = 0.32 μs * 224 = 5.36 seconds 

CLOCKING 3: Resolution * 224 = 5.12 μs * 224 = 85.9 seconds 

 We timed to a microsecond resolution by dividing the input frequency by 16, 

and as a matter of fact, that is what the kernel uses to control the number of jiffies for 

the EBSA.  See Figure A-4. 

 

Figure A-4 ARM Linux use to control of timers 

 

A.3.3 Controlling the time registers 

The ARM Linux kernel provides a very simple way to access the Timer Control and 

Status registers.  Figure A-5 shows how to control the third timer (i.e. TIMER3) to 

take timing measurements in the dev.c file.   
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Figure A-5 Using Timer Control Registers in the EBSA285 

 

First of all we clear/reset the register using the *CSR_TIMER3_CLR=0.  Timers 

usually decrement, therefore, we have to load the 24 bit timer 

*CSR_TIMER3_LOAD=0xFFFFFF.  The *CSR_TIMER3_CNTL controls the timer, sets 

the bits to autoreload, and set the bits that divide the clock by 16 in order to give us a 

microsecond resolution.  The timers are read by using the readl() macro. 

 Given that the timer will reset after 5.32 seconds, it is best to reset the timer at 

the socket layer.  Figure A-6 shows how at the socket layer we read the timer and 

after all the data has been stored we reset and stop it. 
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Figure A-6 Reseting TIMER3 at the socket layer 
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Appendix B Setup for testing a firewall for a single host 

B.1 Single packet tests 

 
 
 
 
 
 
 
 

DUT:  Volans 
CLIENT: Libra 

3Com switch  

Switch: 

3Com Office Connect 
10/100 Dual Speed Switch 8 
Serial: 7L5V016E08 
 
DUT characteristics: 
Name:  Volans 

Dell PowerEdge 2300 – Dual Pentium II 
 
Operating System: Windows 2000 
   RedHat 7.1 
   Kernel 2.4.7 
Lilo: 
 To perform TCP tests choose: 
 Lilo: tcptest 
 Image: /boot/ame/2002/02/06/2.4.7-tcp/1/vmlinyz-2.4.7-tcp 
 

Lilo: printks > to watch the printk statements choose 
Image: /boot/printks/2001/12/13/2.4.7-printks/2/vmlinuz-2.4.7-printks 

 
 To perform UDP tests choose: 
 Lilo: udperf   > to perform the tests 
 Image: /boot/ame/udp/2002/03/10/2.4.7-udperf/1/vmlinuz-2.4.7-udperf 
 
 Lilo:  udprint > to watch the printk statements choose 
 Image: /boot/ame/2002/ 
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TCP server application: 
 /root/ametest/performance-PC/server 
 from C file: server.cc 
 
UDP server application: 
Directory:  /root/ametest/performance/udp_client_server 
Execulable file: server_udp 
C file:   udp_server.cc 
 
Loadable module – critical load to perform tests:    

Binary file:  asm32_sys.o 
 C file:  asm32_sys.c 
 
 The reason behind naming this module “asm32_sys” is the following.  The 

“sys” is because the module is “triggered” via a system call.  You cannot load the 

functions in the kernel unless you trigger the module via the driver (see Driver 

below).  The “asm32” is because at first I was going to use an assembly macro that 

read the entire 64 bits of the RTSC – I named that file asm64_sys.c.  Later I decided 

that it would be better to read the lower 32 bits of the RTSC.  So, I made a new file 

asm32_sys.c and never changed the name after that. 

 
Driver:   

Executable: a32 [ START | STOP ] 
C file:  driver.c 
The asm32_sys loadable module is “triggered” via a system call.   

     
 
Random generators: /root/ametest/iptables.tests/generators/ 
 IP: ip-random-generator 
 MAC: mac-random-generator 
 TCP: tcp-random-generator 
 
List of scripts: 

To run before tests are performed for both TCP and UDP: 
 /root/ametest/performance-PC/install.sh 
 
 
 
Firewall rules: 
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 /root/ametest/iptables.tests/  
MAC: iptables.mac.accept_but_drop 

iptables.mac.drop_but_accept 
TCP: iptables.tcp.accept_but_drop 

iptables.tcp drop_but_accept 
 IP: iptables.ip.accept_but_drop 

    iptables. ip. drop_but_accept 
UDP: iptables.udp.accept_but_drop 

iptables.udp drop_but_accept 
 
 
 Run to perform TCP tests: 
  /root/ametest/performance-PC/./autotest.sh 
 
 Run to perform UDP tests: 
  /root/ametest/performance-PC/udp_client_server/./autotest1.sh 
  /root/ametest/performance-PC/udp_client_server/./autotest2.sh 
  /root/ametest/performance-PC/udp_client_server/./autotest3.sh 
 
 
How to run TCP tests 
 
1. At BOOT time:  choose the label ‘tcptest’ 
 
The kernel must be set to boot to run level 3, that means that no X window should 
run.  You can do the above either by typing ‘tcptest 3’ when you get to ‘boot:’ option 
as the kernel starts of if you want to set it up automatically change the /etc/inittab file 
to the following: 
 
Find the line: id:5:initdefault and 
Change it to:  id:3:initdefault. 
Save and exit. 
 
2. Login as root and go to the /root/ametest/performance-PC directory.  Run  the 

“install.sh” script.  This script STOPS a list of processes and also loads the 
asm32_sys.o module and triggers it to START.  This means that the test is ready 
to run. 

 
3.  Check the running processes.  In the prompt shell call the ‘uptime’ command. 

DO NOT perform any tests until the load average is 0.00 0.00 0.00. 
 
4. Make sure no other processes are running.  Use the command ‘ps ax’ to check that 

the ‘install.sh’ stopped all the processes.  Also make sure that the PCs are not 
transferring any data.  You can run a network sniffer  (e.g. tcpdump) to test it.   
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5. Once uptime shows 0.00 0.00 0.00 load average, go to the 
/root/ametest/iptables_tests/ directory and choose the rules that you want to add.  
Inside every script (e.g. iptables.[FILTERTYPE].accept_but_drop or 
iptables.[FILTERTYPE].drop_but_accept) you may change the number of rules 
that you want to have. 

 
Go to ‘increment_rule={xxxx}’ variable and make the change.  For example, in 
the iptables.ip.accept_but_drop script  the INPUT policy is ACCEPT which 
means to ACCEPT everything but drop the following rules or matches to the rule.  
The ‘increment_rule={ip_10_addr}’ variable means to add only 10 rules to the 
table.  When the variable ‘increment_rule={ip_40_addr}’ means to filter 40 rules.  
If ‘increment_rule={ip_10_addr ip_40_addr}’ the ip_10_addr rules will be called 
twice because ip_40_addr already contain the ip_10_addr rules.  Take a close 
look to the script and you will understand what I mean! 

 
To add the rules to the firewall run the script, for example: 
./iptables.ip.accept_but_drop 
 

6. Check the ‘uptime’ to be 0.00 0.00 0.00 – yes, again! 
 
7. To run the test run the script: 

./autotest.tcp.sh 
 
The script creates a path to store the results in the /proc/TCPresults file 

 
Client side 
At boot time, Libra is also run in level 3. 
 
8. Run /ametest/pktgen/./install script to shut down all other services 
 
9. Run ./auto_pktgen on the client 
 
10. Wait until everything is done and change the rule-set, change the variables in 

autotest.tcp.sh and perform the tests again. 
 
 
How to run UDP tests 
 
Running UDP tests is not much different than TCP 
 
1.  BOOT: udptest 
 
2.  Login as root 
 cd /root/ametest/performance-PC/./install 
 
3.  Check ‘uptime’ to be 0.00 0.00 0.00 
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4.  No processes should be running.  Use the ‘ps ax’ command 
 
5, 6, 7 are the same as TCP 
 
8. cd /udp_client_n_server 
 
9. ./autotest1.udp.sh à for test 1 

./autotest2.udp.sh à for test 2 

./autotest3.udp.sh à for test 3 
 
These are the same as autotest.tcp.sh,  the only difference is the variable ‘TEST’  I 
made a copy of each one to save time. 
 
 
Client 
In Libra: 
10.  Do the ‘install.sh’ script to shutdown all other services 
 
11.  /root/ametest/udp_client_n_server/./auto_pktgen 
 

The script will automatically save the results in a directory specified in the 
variables in the script.  You have to change the variables in the ‘autotest.tcp/udp.sh 
scripts to match the type of test that you’re going to do.  Take a look a the scripts and 
will become clear. 
 
For example, if you want to perform a test with the following parameters:    
UDP PACKETS 
FILTER 10 IP addresses 
INPUT ACCEPT 
 
Server 

1. cd /root/ametest/performance-PC/./install 
2. uptime – wait until it is 0.00 0.00 0.00 
3. in the mean time run 
4. cd ../iptables.tests/./iptables.ip.accept_but_drop 
5. iptables –L à to see the list of rules 
6. cd ../performance-PC/udp_client_n_server/ 
7. vi autotests1.udp.sh 

a. PROTO= “UDP” 
b. INPUT_POLICY = “ACCEPT” 
c. SPEED = “100Mbps” 
d. FILTER_TYPE = “ip” 
e. TEST_NO = “test1” 
f. RULES = “10” 

8. ./autotest1.udp.sh 
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Client 

9. cd /udp_client_n_server/./install 
10. uptime 
11. ./auto_pktgen  
12. repeat for autotest2.udp.sh in server…and so on! 

 
 
 
 

B.2 Multiple packets 

 
Client 

1. Load the module:  insmod –f asm32_sys.o 
2. Change to the UDP directory:  cd udp_client_n_server 
3. run the ./init.sh script 
4. Set up the packet information in the Smartbits 

a. MAC DST 
b. SRC IP 
c. PORT NUMBER 
d. PAYLOAD LENGTH (for a 64 bytes payload you must add 42 bits for 

the CRC) 
e. Set the RATE per packet 

5. Run the ./flushser script to clear all the counters 
6. Run the ./server_udp 
7. Run Smartbits 
8. After all the packets have been sent run ./readproc to read the /proc file system 

to read all the 4000 timestamps 
9. Check if the file “filename” had data in it 
10. Backup “filename” 
11. Redo from step 3 
 
Smartbits 
1. Connect the Windows 95 PC to port 12 in the patch panel  
2. Connect 2 SmartBits cards Model ML-7710 to the patch panel and from the 

patch panel to the Cisco 2900 series XL switch 
3. Connect “Volans” to the Cisco 2900 series XL switch  
4. Set the Smartbit cards to the same subnet as the client 
5.  
6. Set the Smartbits cards to “Smart Metrics mode” and ping the cards from 

Volans 
7. Turn off the “Smart Metrics Mode” to perform the tests 
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8. Transmit Setup Window for Card 1: 
i. Mode: Timed 

ii. Time: 60  
iii. Length: 106 
iv. Background: UDP 
v. Rate: 5%   -  Units:  % utilization 

b. Frame Editor: UDP EDIT 
i. MAC DEST: 00 50 da 26 b0 55 

ii. MAC SRC:   00 00 00 00 00 0a 
iii. SRC IP: 192.168.50.20 
iv. DST IP: 192.168.50.10 
v. dst:  12345 

 
9. Transmit Setup Window for Card 2: 

i. Mode: single burst 
ii. Count: 4 

iii. Length – Fixed 106 
iv. Background: UDP 
v. Rate: 0.96% - util 

b. Frame Editor: UDP edit 
i. MAC DEST: 00 50 da 26 b0 55 

ii. MAC SRC:   00 00 00 00 00 02 
iii. SRC IP: 192.168.50.30 
iv. DST IP: 192.168.50.10 
v. dst:  6789 
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Appendix C IPTABLES rules random generators and scripts 

File name: random-ip-generator.c 

/* 
* Random IP address generator 
* Max Roth <modified by Americo Melara> 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
int main(int argc, char *argv[]){ 
 
 int ret; 
 int c; 
 
 if(argv[1] == NULL) { 
  printf("usage: ./ip-random-generator [missing 
number]\n"); 
  return 0; 
 } 
  
 srand(time(0)); 
 
 for(c = 0; c < atoi(argv[1]); c++){ 
 
  printf("%d.%d.%d.%d\n", (rand() % 255),(rand() % 
255),(rand() % 255),(rand() % 255)); 
 } 
  
 return 0; 
} 
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File name: random-mac-generator.c 
 
/*  
* Random MAC address generator 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
int main(int argc, char *argv[]){ 
 
 int ret; 
 int c; 
 char hex[]="0123456789ABCDEF"; 
 
 if(argv[1] == NULL) { 
  printf("usage: ./mac-random-generator [missing 
number]\n"); 
  return 0; 
 } 
  
 srand(time(0)); 
 
 for(c = 0; c < atoi(argv[1]); c++){ 
 
  printf("00:%C%C:%C%C:%C%C:%C%C:%C%C\n",  
    (hex[rand() % 16]),(hex[rand() % 16]), 
    (hex[rand() % 16]),(hex[rand() % 16]), 
    (hex[rand() % 16]),(hex[rand() % 16]), 
    (hex[rand() % 16]),(hex[rand() % 16]), 
    (hex[rand() % 16]),(hex[rand() % 16])); 
 } 
  
 return 0; 
} 
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File name: random-tcp-generator.c  <also used for udp> 

/* 
* Random TCP address generator 
* Americo Melara 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
 
int main(int argc, char *argv[]){ 
 
 int ret; 
 int c; 
 
  
 if(argv[1] == NULL) { 
  printf("usage: ./tcp-random-generator [missing 
number]\n"); 
  return 0; 
 } 
  
 srand(time(0)); 
 
 for(c = 0; c < atoi(argv[1]); c++){ 
 
  printf("%d\n", (rand() % 6555)); 
 } 
  
 return 0; 
} 
 
  

 


