casacore
Loading...
Searching...
No Matches
Functionals.h
Go to the documentation of this file.
1//# Functionals.h: A module that represents various function-like classes.
2//# Copyright (C) 1995,1996,1998,1999,2001,2002
3//# Associated Universities, Inc. Washington DC, USA.
4//#
5//# This library is free software; you can redistribute it and/or modify it
6//# under the terms of the GNU Library General Public License as published by
7//# the Free Software Foundation; either version 2 of the License, or (at your
8//# option) any later version.
9//#
10//# This library is distributed in the hope that it will be useful, but WITHOUT
11//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13//# License for more details.
14//#
15//# You should have received a copy of the GNU Library General Public License
16//# along with this library; if not, write to the Free Software Foundation,
17//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18//#
19//# Correspondence concerning AIPS++ should be addressed as follows:
20//# Internet email: casa-feedback@nrao.edu.
21//# Postal address: AIPS++ Project Office
22//# National Radio Astronomy Observatory
23//# 520 Edgemont Road
24//# Charlottesville, VA 22903-2475 USA
25
26
27#ifndef SCIMATH_FUNCTIONALS_H
28#define SCIMATH_FUNCTIONALS_H
29
30//# Base classes
31#include <casacore/casa/aips.h>
32#include <casacore/casa/BasicMath/Functional.h>
33#include <casacore/scimath/Functionals/FunctionTraits.h>
34#include <casacore/scimath/Functionals/FunctionParam.h>
35#include <casacore/scimath/Functionals/Function.h>
36#include <casacore/scimath/Functionals/Function1D.h>
37
38//# Combination methods
39#include <casacore/scimath/Functionals/FunctionWrapper.h>
40#include <casacore/scimath/Functionals/CombiFunction.h>
41#include <casacore/scimath/Functionals/CompoundFunction.h>
42
43//# remainder will be removed
44#include <casacore/scimath/Functionals/SampledFunctional.h>
45
46//# 1-D Functions
47#include <casacore/scimath/Functionals/Interpolate1D.h>
48#include <casacore/scimath/Functionals/ArraySampledFunctional.h>
49#include <casacore/scimath/Functionals/ScalarSampledFunctional.h>
50
51namespace casacore { //# NAMESPACE CASACORE - BEGIN
52
53// <module>
54//
55// <summary>A module that represents various function-like classes.</summary>
56
57// <reviewed reviewer="tcornwel" date="1996/02/13" demos=""></reviewed>
58
59// <etymology>
60// The term <src>Functional</src> was chosen to roughly follow the usage in
61// Barton and Nackman's <em>Scientific and Engineering C++</em>.
62// Functional classes map a Domain object into a Range object, rather like a
63// mathematical <src>function</src>. They use <src>operator()</src>,
64// so they look much like single argument C++ <src>functions</src>.
65// </etymology>
66//
67// <synopsis>
68// <src>Functionals</src> and their derived classes map an input
69// <src>Domain</src> object into an output <src>Range</src> object using the
70// <src>operator()</src>.
71// Often the input and output types are numeric, but it can be of any type.
72// <srcblock>
73// class Offspring : public Functional<List<Parents>, List<Children> > {
74// public:
75// List<Children> operator()(List<Parents>);
76// };
77// </srcblock>
78// would be a legal Functional.
79//
80// The <src>Functions</src> and their derived classes map, again using the
81// <src>operator()</src>, numeric value(s) into a numeric value. Since they are
82// numeric, the <src>Domain</src> and <src>Range</src> base type can be of type
83// <src>AutoDiff<T></src> (where <src>T</src> is numeric base type) or one
84// of its derivations, in which case the value and its derivatives will be
85// calculated.
86//
87// <note role=warning> In the current version the <src>Domain</src> and
88// <src>Range</src> are the same for Functions </note>
89//
90// The basic classes are:
91// <dl>
92// <dt> <linkto class=Functional><src>Functional<Domain, Range></src></linkto>
93// <dd>
94// A base class that maps a <src>Domain</src> object into a <src>Range</src>
95// object using the <src>Range operator(const Domain &)</src>. All
96// information necessary to convert the <src>Domain</src> into a
97// <src>Range</src> will be available in the class
98// or in the input information. No variable class state (<em>parameters</em>)
99// are available.
100//
101// <dt> <linkto class=FunctionParam><src>FunctionParam<T></src></linkto>
102// <dd> A helper base class that acts as a container for <em>parameters</em>
103// (<em>state</em>) used in <src>Function</src> classes. The class contains
104// a list of parameters, and a list of flags associated with the parameters.
105// Methods to set and obtain the parameters (using <src>operator[]</src>)
106// and their flags (using methods <src>mask()</src>) are available. The flags
107// can e.g. be used to indicate to <src>Fitting</src> routines if a certain
108// parameter has to be updated ('fitted') or not.
109// <note role=tip>
110// The FunctionParam class does not assume anything about the uses of the
111// class, but leaves that to the final users. This means that a lot of
112// copying between intermediate and final users is not necessary
113// (like between a Gaussian fitter with fixed parameters
114// and the Fitting routines: the Gaussian fitter just sets a flag to False, and
115// let the Fitting worry about what to do internally).
116// </note>
117//
118// <dt> <linkto class=Function><src>Function<T></src></linkto>
119// <dd> Base class for function objects with zero or more parameters (i.e.
120// Functionals with state).
121// All parameters should be of the same type <em>T</em> as the <src>
122// Function<T></src>. <src>Function</src> objects are specifically geared
123// towards use in the <linkto module=Fitting>Fitting</linkto> classes, but
124// can be used anywhere where the value (and/or derivatives) of functions
125// are needed.
126//
127// The <src>Function<T></src> class is derived from <src>Functional</src>
128// and contains a <src>FunctionParam<T></src> object.
129// The parameters act as state for the function
130// (e.g. a width for a Gaussian). A function object is called using the
131// <src>T operator(const T&)</src> (<em>ndim=1</em>), or the
132// <src>T operator(const Vector<T>&)</src> (all values of <em>ndim</em>), or
133// <src>T operator(const T&, const T&)</src> (for <em>ndim=2</em> only).
134// If the template argument is <src>AutoDiff<T></src>, the parameters and the
135// returned value will be <src>AutoDiff<T></src>; the arguments of the
136// <src>operator()</src> will be of type <src>T</src>. The returned value
137// of the function will be the function value at <em>x</em> (and the
138// derivatives w.r.t. the non-masked parameters) Using <src>AutoDiffA<T></src>
139// the derivatives can be calculated w.r.t. parameters and/or arguments, see
140// <linkto class=AutoDiff>AutoDiff</linkto> and <linkto class=FunctionTraits>
141// FunctionTraits</linkto> for details.
142//
143// <note role=tip>
144// A <src>Function1D</src> is provided for 1-dimensional function objects
145// </note>
146// </dl>
147//
148// Actual functional classes:
149// <dl>
150// <dt> e.g. <linkto
151// class=Gaussian1D><src>Gaussian1D<T></src></linkto>
152// <dd> An actual function object will be derived from
153// <src>Function<T></src>. The minimum functionality of a Function
154// object will be support for the <src>operator()</src> methods (through a
155// single, hidden, <src>eval()</src> method); for the manipulation of the
156// associated parameters (using <src>operator[index]</src> and
157// <src>mask(index)</src>) and some administrative aids (<src>ndim()</src>,
158// <src>nparameters()</src> and the like.
159//
160// In most cases it is advantageous to have a special parameter handling
161// class (e.g. <src>Gaussian1DParam</src>), to separate the (template
162// independent) parameter handling from the possible specialization of
163// the <src>eval()</src> method, and to more easily incorporate
164// special parameter handling (e.g. using <em>flux</em> rather than amplitude
165// of a Gaussian). All of this is transparent to the end-user.
166// </dl>
167// Combinatory Function objects are provided to easily combine and create
168// function objects:
169// <dl>
170// <dt> <linkto class=CompoundFunction>CompoundFunction</linkto>
171// <dd> creates
172// a new, compound, function object from one or more other function objects
173// (including compounds...). The new function will have the sum of the
174// parameters of the input functions as the new parameters (i.e. the compound
175// function created from a 1-dimensional Gaussian (with 3 parameters) and a
176// third-order polynomial (with 4 parameters) will have 7 parameters).
177// <dt> <linkto class=CombiFunction>CombiFunction</linkto>
178// <dd> creates
179// a (linear) combination of a number of input functions. The number of
180// parameters of the newly created function will be equal to the number of
181// input functions (i.e. the combi
182// function created from a 1-dimensional Gaussian (with 3 parameters) and a
183// third-order polynomial (with 4 parameters) will have 2 parameters). The
184// function will be <src>param0*gauss(x) + param1*poly(x)</src>
185// <dt> <linkto class=FunctionWrapper>FunctionWrapper</linkto>
186// <dd> will take
187// a global function (or by the use of the <em>STL</em> function adapters
188// <src>mem_fun*</src> also member functions) of any dimension, and with
189// any number of parameters. The function is assumed to be called as
190// <src>f(x, p)</src>, and is wrapped like
191// <src>FunctionWrapper(&func, param&, ndim)</src> (see example).
192//
193// </dl>
194//
195// </synopsis>
196
197// <example>
198// A function to find a bracketed root by bisection could be written
199// as follows:
200// <srcblock>
201// template <class Domain, class Range>
202// Domain findRoot(const Functional<Domain,Range> &func, Domain left,
203// Domain right, Domain tol) {
204// Range fr = func(right);
205// Range fl = func(left);
206// Range sign = fr > 0 ? 1 : -1 ;
207// AlwaysAssertExit(fl*fr < 0.0 && right > left);
208// while (right - left > tol) {
209// Domain mid = (left + right) / 2;
210// Range fmid = func(mid);
211// if (sign*fmid > 0.0) right = mid;
212// else left = mid;
213// };
214// return (left + right)/2;
215// }
216// </srcblock>
217// Since Function1D is derived from Functional, the
218// above function will also work with classes derived from Function1D. To
219// behave sensibly, the Domain and Range types should be real, <em>i.e.</em>,
220// Float or Double.
221//
222// To calculate the value of a polynomial
223// <srcblock>2 + 4x<sup>2</sup> + 6x<sup>4</sup></srcblock>
224// at <src>x=5.1</src>:
225// <srcblock>
226// Polynomial<Double> pol(4);
227// pol[0] = 2; pol[2] = 4; pol[4] = 6;
228// cout << "Polynomial value at 5.1: " << pol(5.1) << endl;
229// </srcblock>
230//
231// Create a simple function (1-dimensional) with 2 parameters (A and B):
232// <srcblock>
233// Double myf(const Double x, const Vector<Double> p) {
234// return p[0]*sin(p[1]*x); }
235// </srcblock>
236// make it into a function object for initial parameters 2 and pi:
237// <srcblock>
238// Vector<Double> p(2);
239// p[0] = 2; p[1] = C::pi;
240// FunctionWrapper<Double> f0(myf, p, 2);
241// </srcblock>
242// Make the first parameter 3:
243// <srcblock>
244// f0[0] = 3;
245// </srcblock>
246// (for the global function you have to change <src>p[0]</src>).
247// Calculate the value of the function:
248// <srcblock>
249// cout << "The value " << f0(3) << " should be 1.5 times the value " <<
250// myf(3) << endl;
251// </srcblock>
252// A function object could be created as:
253// <srcblock>
254// template<class T> class objf : public Function<T> {
255// public:
256// objf() : Function<T>(2) {}; // 2 parameters
257// objf(const objf<T> &other) : Function<T>(other) {};
258// virtual ~objf() {};
259// // The actual method called for the evaluation operator():
260// virtual T eval(typename Function<T>::FunctionArg x) const {
261// return param_p[0] * sin(param_p[1] * x[0]); };
262// // Return a copy of function (used for combination e.g.)
263// virtual Function<T> *clone() const {
264// return new objf<T>(*this); };
265// };
266// </srcblock>
267// Which can be called as:
268// <srcblock>
269// objf<Double> f1;
270// f1[0] = 2; f1[1] = C::pi;
271// cout << "The value " << myf(3) << " should be equal to the value " <<
272// f1(3) << endl;
273// </srcblock>
274// </example>
275
276// <motivation>
277// The immediate motivations for this module were:
278// <ol>
279// <li> To represent functions which are used in linear and non-linear least
280// squares fitting
281// </ol>
282// </motivation>
283
284// <todo asof="2001/12/30">
285// <li> It could be convenient to have a letter/envelope class, and to
286// define ``function arithmetic.''
287// </todo>
288
289// </module>
290
291
292} //# NAMESPACE CASACORE - END
293
294#endif
295
this file contains all the compiler specific defines
Definition mainpage.dox:28