ekg2  GIT master
gg-keygen-sha1.h
Idź do dokumentacji tego pliku.
1 /* orginal version of SHA-1 in C by Steve Reid <steve@edmweb.com> */
2 
3 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
4 
5 /* blk0() and blk() perform the initial expand. */
6 /* I got the idea of expanding during the round function from SSLeay */
7 #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
8  |(rol(block->l[i],8)&0x00FF00FF))
9 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
10  ^block->l[(i+2)&15]^block->l[i&15],1))
11 
12 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
13 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
14 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
15 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
16 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
17 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
18 
19 /* S* is like R* but it don't get block values (we assume there're 00's) */
20 #define S0(v,w,x,y,z,i) z+=((w&(x^y))^y)+0x5A827999+rol(v,5);w=rol(w,30);
21 #define S1(v,w,x,y,z,i) z+=((w&(x^y))^y)+0x5A827999+rol(v,5);w=rol(w,30);
22 #define S2(v,w,x,y,z,i) z+=(w^x^y)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
23 #define S3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+0x8F1BBCDC+rol(v,5);w=rol(w,30);
24 #define S4(v,w,x,y,z,i) z+=(w^x^y)+0xCA62C1D6+rol(v,5);w=rol(w,30);
25 
26 /* XXX, ?SHA-1 Broken?, XXX */
27 static inline int gg_login_sha1hash(const unsigned char *password, const size_t passlen, const guint32 seed, const guint32 *dig) {
28 #define SHA_STATE0 0x67452301
29 #define SHA_STATE1 0xEFCDAB89
30 #define SHA_STATE2 0x98BADCFE
31 #define SHA_STATE3 0x10325476
32 #define SHA_STATE4 0xC3D2E1F0
33  int i;
34 
35  unsigned char buffer[64];
36 
37 /* SHA1Init() */
38  /* SHA1 initialization constants */
39  guint32 a = SHA_STATE0;
40  guint32 b = SHA_STATE1;
41  guint32 c = SHA_STATE2;
42  guint32 d = SHA_STATE3;
43  guint32 e = SHA_STATE4;
44 
45  /* XXX, it's optimized but it'll work only for short passwords, shorter than 63-4-7 */
46  {
47  for (i = 0; i < passlen; i++)
48  buffer[i] = digit[password[i]];
49 
50  memcpy(&buffer[passlen], &seed, 4);
51  }
52 
53 /* SHA1Final() */
54  /* Add padding and return the message digest. */
55  {
56  /* pad */
57  buffer[passlen+4] = '\200';
58  for (i = passlen+5; i < 63-7; i++)
59  buffer[i] = '\0';
60 
61  /* finalcount */
62  for (i = 63-7; i < 63; i++)
63  buffer[i] = '\0';
64 
65  buffer[63] = (unsigned char) (((passlen+4) << 3) & 0xff);
66  }
67 /* SHA1Transform() */
68  /* Hash a single 512-bit block. This is the core of the algorithm. */
69  {
70  typedef union {
71  unsigned char c[64];
72  guint32 l[16];
73  } CHAR64LONG16;
74 
75  CHAR64LONG16* block = (CHAR64LONG16*) buffer;
76  /* We assume here you don't need more than 2 blocks for password (2*4=8 chars) + 1 block for seed */
77  /* if you need more replace S0()'s with R0()'s */
78 
79  /* 4 rounds of 20 operations each. Loop unrolled. */
80  R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); S0(c,d,e,a,b, 3);
81  S0(b,c,d,e,a, 4); S0(a,b,c,d,e, 5); S0(e,a,b,c,d, 6); S0(d,e,a,b,c, 7);
82  S0(c,d,e,a,b, 8); S0(b,c,d,e,a, 9); S0(a,b,c,d,e,10); S0(e,a,b,c,d,11);
83  S0(d,e,a,b,c,12); S0(c,d,e,a,b,13); S0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
84 
85  R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
86 
87  R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
88  R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
89  R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
90  R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
91  R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
92 
93  R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
94  R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
95  R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
96  R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
97  R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
98 
99  R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
100  R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
101  R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
102  R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
103  R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
104  }
105 
106 #if ULTRA_DEBUG
107  printf("%s -> %.8x%.8x%.8x%.8x%.8x\n", realpass, a, b, c, d, e);
108 #endif
109 
110 /* it returns 0 if digest match, 1 if not */
111  if (dig[0] != a) return 1;
112  if (dig[1] != b) return 1;
113  if (dig[2] != c) return 1;
114  if (dig[3] != d) return 1;
115  if (dig[4] != e) return 1;
116 
117  return 0;
118 }
119 
#define R1(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:14
#define R2(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:15
static unsigned char realpass[15+1]
Definition: gg-keygen.c:100
static int gg_login_sha1hash(const unsigned char *password, const size_t passlen, const guint32 seed, const guint32 *dig)
Definition: gg-keygen-sha1.h:27
#define SHA_STATE4
#define SHA_STATE0
int i
Definition: ekg_hash_benchmark.c:110
#define S0(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:20
#define SHA_STATE1
#define R3(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:16
Definition: stuff.h:93
#define R0(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:13
#define R4(v, w, x, y, z, i)
Definition: gg-keygen-sha1.h:17
#define SHA_STATE2
#define SHA_STATE3
static const char digit[]
Definition: gg-keygen.c:26