
Tutorial Documentation
Release 2018

AdaCore

Dec 11, 2018

CONTENTS

1 Introduction 1

2 Quick overview of the GPS areas 3

3 Editing sources 5

4 Building applications 7

5 Source Navigation 9

6 Project View (entities) 11

7 Back to Source Navigation 13

8 Code Completion 15

9 Run 17

10 Debug 19

11 Call Graph 21

12 Locations View 23

13 Projects 25
13.1 Project Wizard . 25
13.2 Project properties . 25
13.3 Variable editor . 25
13.4 Switch editor . 25
13.5 Source dependencies . 26
13.6 Project dependencies . 26

14 Epilogue 27

i

ii

CHAPTER

ONE

INTRODUCTION

This document provides a guide through the major capabilities of the GNAT Programming Studio by working on a
code example: sdc, a simple desktop calculator.

It is important to realize that the features that you are about to experiment with are available on multiple platforms,
using the same user interface and capabilities, providing a user-friendly environment with a tight integration between
the tools.

Start GPS in the directory containing the tutorial files, or if the directory is read-only, copy the tutorial directory
and its subdirectories in a local (writable) area, and start GPS from the tutorial directory, so that GPS will load
the right context.

By default, the tutorial sources can be found under <prefix>/share/doc/gnat-gps/examples/tutorial, where <prefix> is
the prefix directory of the GPS installation.

Alternatively, if you have already started GPS in another directory, you can load the project sdc.gpr by using the menu
File->Open Project. . .

1

Tutorial Documentation, Release 2018

2 Chapter 1. Introduction

CHAPTER

TWO

QUICK OVERVIEW OF THE GPS AREAS

Having launched GPS, you should now have access to a main window composed of several areas:

• a menu bar at the top

• a tool bar under the menu bar

• on the left, a notebook allowing you to switch between Project, Outline and Scenario views

• the working area in the center

• the Messages window at the bottom

3

Tutorial Documentation, Release 2018

4 Chapter 2. Quick overview of the GPS areas

CHAPTER

THREE

EDITING SOURCES

In the project view, open the common directory by clicking on the triangle on the left of common. This will open the
directory and display a list of source files located in this directory.

Now, double click on sdc.adb: this will open a source editor on this file. The source code is syntax-highlighted:
keywords, comments, strings and characters have different colors.

As with many other properties, colors are configurable in GPS:

Select the menu Edit->Preferences. . . . This will open a preferences dialog window.

Select the Editor->Fonts & Colors page by clicking on the triangle next to the item Editor and then selecting the Fonts
& Colors item.

As you go over the various lines and labels, you will notice that by holding the mouse over a label, a tool tip pops up
displaying on-line help about the selected item.

Change the background color of the Keywords by clicking on the last button, at the right of the Keywords line.

Choose a color, e.g a light green. When you’re done with the color selection, click on Select in the color selection
dialog.

After selecting a color, look at the effects in the source editor. If you like the new display, click on Close to close
dialog, otherwise select another color.

5

Tutorial Documentation, Release 2018

6 Chapter 3. Editing sources

CHAPTER

FOUR

BUILDING APPLICATIONS

Select the icon Build Main: sdc.adb on the toolbar (fourth icon from the right): this will launch a complete build of
the sdc application. Note also that you can use a key binding directly instead of this tool bar button (F4), or use the
corresponding menu item Build->Project->Sdc->sdc.adb. If you use the menu item, an extra intermediate dialog is
displayed showing the actual command line that will be used by GPS. Pressing Execute will launch the build as
well.

The build has generated a number of errors in a new window: the Locations tree, displayed in the bottom area. The
errors are also highlighted in the corresponding source editor.

GPS has automatically jumped to the first error message (sdc.adb, 28:6 : (style) bad indentation), at the line (28) and
column (6) of the error.

Fix the error by hand by inserting a space.

Now you can fix the next error by moving the cursor to the line 30 (press the down arrow twice), and by using Tab:
this key shortcut asks the source editor to automatically re-indent the current line.

Note that you can change this shortcut from the key shortcuts section of the Preferences dialog (menu Edit-
>Preferences, General/Key shortcuts section, Format Selection item).

You can then fix all the remaining errors by selecting the whole block (from line 28 to line 40) and pressing Tab. To
select a block, you can either click on the left mouse button and select the area while holding the button, or using the
keyboard by pressing the Shift key and moving the cursor using the Up or Down keys.

Press the F4 key to build again. GPS will automatically save the modified files, and start a build. This behavior
(automatic saving of files before building) can be configured in the preferences dialog.

If you look to the right of the toolbar in the GPS window, next to the omni-search entry, you will notice that a progress
bar has appeared, displaying the current number of files compiled, and the number of remaining files. This progress
bar disappears when the build is finished.

This should now report a successful build.

7

Tutorial Documentation, Release 2018

8 Chapter 4. Building applications

CHAPTER

FIVE

SOURCE NAVIGATION

Now let’s try to understand a little bit about how the program is working by looking at the sdc.adb editor: there’s a
loop, the main processing is done by the functions Process and Next (at line 30).

Click around line 30, move the mouse over Process and let a tool tip appear (Tokens.Process global procedure declared
at tokens.ads:19): this gives information about the kind of entity and the location (file and line) of the declaration of
this procedure, the profile of the parameters, and documentation for this function, as extracted from the comments
surrounding the procedure declaration.

Do the same for Next (Tokens.Next global function declared at tokens.ads:15).

Keeping the mouse over Next, display the contextual menu by clicking on the right mouse button, then click on Goto
declaration of Next: we’re now in the package Tokens, in file tokens.ads; but where is this file in the project?

A simple way to locate a file in the Project view is to use the contextual menu from the source editor: Locate in Project
View: tokens.ads.

You can also use the filter entry located at the top of the Project view.

9

Tutorial Documentation, Release 2018

10 Chapter 5. Source Navigation

CHAPTER

SIX

PROJECT VIEW (ENTITIES)

Click on the triangle to open tokens.ads entities. When you click on a file in the project view, you see language
sensitive information about the file, such as packages, subprograms, and tasks for Ada.

Open the subprogram category, then click on Process: this will open tokens.ads and move the cursor to the first line
of the procedure Process.

Similarly, click on Next and move your mouse to Next in the source editor.

11

Tutorial Documentation, Release 2018

12 Chapter 6. Project View (entities)

CHAPTER

SEVEN

BACK TO SOURCE NAVIGATION

Move the mouse over the Next identifier in tokens.ads editor, and then hold the Control key: while you’re
holding the key, move the mouse over entities: these entities now become clickable hyperlinks. Clicking on the first
mouse button will go to the declaration of the entity highlighted (or the body if you are already on the declaration), and
clicking on the middle mouse button will go to the body directly: move the mouse back to Next and click. Alternatively,
you can use the contextual menu and select Goto body of Next; then scroll through the procedure Next, move the mouse
on Instructions.Read at line 46, hold control again and click with the middle mouse button (or from the contextual
menu, select Goto body of Read).

We’ve now navigated quite a bit through the application source code, which you can verify by clicking on the left
arrow in the tool bar, to go back to the previous locations visited.

Repeat the operation until you’re back in sdc.adb. As with the undo/redo capability in the source editor, the goto
previous/next location is infinite.

13

Tutorial Documentation, Release 2018

14 Chapter 7. Back to Source Navigation

CHAPTER

EIGHT

CODE COMPLETION

Go to line 38 of sdc.adb. You can see there is a null instruction for the case of Stack.Overflow. We are going to add
some code there, using the code assist capabilities.

Type Enter to create a new line, then type Scr. A completion popup is displayed, showing all the entities of the project
begining with Scr. Double click on Screen_Output: the code is automatically completed in the editor. Then add a dot
in your code. The completion popup is triggered automatically and will offer you the option of completing your code
with the entities contained in the Screen_Output package. Select Msg, add a space, and then add an open parenthesis.
Once again, the completion windows pops up and shows the possible parameters for msg. If you choose the first entry
of the completion list (“params of Msg”), the call is automatically completed by a list of named parameters. Complete
the list by giving e.g. “The stack is full.” for S1, “” for S2, and True for End_Line.

Don’t forget to add a semicolon at the end of the statement. Then hit F4 to rebuild the application.

15

Tutorial Documentation, Release 2018

16 Chapter 8. Code Completion

CHAPTER

NINE

RUN

It is now time to run the application: select the menu Build->Run->Sdc->sdc, which will open a dialog window. In
the text input field (selected by default), press the right arrow key and then insert input.txt: this is the name of a text
file that will be passed as argument to the sdc program.

The text input should now read: %E input.txt and the full command that will be executed is displayed underneath:
. . . /gps/tutorial/obj/sdc input.txt

Now click on Execute: a new window titled Run: sdc is created at the bottom of the main window where the sdc
application runs and displays an unexpected internal error: this is a good opportunity to use the integrated debugger.

Place the mouse cursor over the tab titled Run: sdc: a cross will appear on the right of the label: click on it to close
the window.

17

Tutorial Documentation, Release 2018

18 Chapter 9. Run

CHAPTER

TEN

DEBUG

Open the preferences dialog (menu Edit->Preferences. . .) and click on the Debugger item on the left; set the button
Break on exceptions to Enabled: this will enable by default a special breakpoint every time an exception is raised.
Click on Close to close dialog.

Now select the menu Debug->Initialize->Sdc->sdc: GPS automatically switches to the Debug perspective as shown
in the menu Window->Perspectives, and new windows have appeared: the debugger variables window, the breakpoints
view and the debugger console at the bottom, and the call stack window on the right.

You can also look at the various debug menu item and tool bar buttons which are now activated.

On the call stack window (you can use the menu Debug->Data->Call Stack to open it if you do not have it displayed),
select the local configuration menu: various pieces of information can be displayed or removed in the call stack. From
this local configuration menu, add the Frame Number info by clicking on it.

Now select the menu Debug->Run. . . and type input.txt in the text input field. Check that ‘Stop at beginning of main
subprogram’ and ‘Use exec dir instead of current dir’ are not selected. Click on OK: the debugger should stop on an
exception (Constraint_Error in the file stack.adb, at line 49).

Go up in the call stack by clicking on the tokens.process frame (frame number will vary, depending on your GNAT
version and platform).

If you move the mouse over the parameter T at line 64, a tool tip is displayed showing the value of T. You have
probably noticed that tool tips, like menus, are contextual: depending on the current session and on the entity selected,
different information is displayed.

Select the contextual menu Debug->Display T: this will highlight the data window, with a new box displaying graph-
ically the contents of the different fields of T, each clearly separated.

Move your mouse over the 1:T box, select the contextual menu Display->Show Value + Type: this displays for all
fields both their type and value.

Special colors are used in the data display: blue for pointers that can be dereferenced by a double-click (double click
on T.val); red for fields that have been modified since last step.

From the T box, right-click to display the contextual menu and select View memory at address of T: a memory view is
opened on top of the source editors. Use the up and down arrows on the right to visit memory.

Click in the memory dump, and modify it by typing numbers. Notice the red color for modified values; click on
Undo Changes to cancel the modifications; then close the memory window by e.g. clicking on the x icon in the tab or
pressing Ctrl-W.

In the call stack, go back to the stack.push frame. Move the mouse over Last and let the debugger display its value: 0.
From the contextual menu, select Goto declaration of Last: this will jump to the line 16 of stack.adb, where you
can see that Last is a Natural. Now click on the Goto Previous Location button in the tool bar: we’re now back at line
49 where we can see that for a Push procedure, Last should be incremented, and not decremented.

Fix the line to Last := Last + 1;

19

Tutorial Documentation, Release 2018

Save the file (Ctrl-S); End the debug session: menu Debug->Terminate; Rebuild (press F4 key); Rerun (menu
Build->Run->sdc, click on Execute): the program now completes as expected. Close the execution window.

20 Chapter 10. Debug

CHAPTER

ELEVEN

CALL GRAPH

Now go back to the file sdc.adb, move the mouse over the procedure sdc at line 8, select the contextual menu
Browsers->Sdc calls: this will open a new window titled Call graph browser.

Note that there is also a top level contextual menu (Sdc calls) which provides a tree view of the callers/callees.

In the call graph, click on the right arrow of Process (one of the first items on the top). Also click on the right arrow
of Error_Msg.

The call graph contains a tool bar; the button on the right of this tool bar brings up the options menu.

You may want to play with the zoom (= and - keys).

Click on right arrow of Process ((Decl) instructions.ads:12).

The items can also be moved: move e.g Msg item around.

You can also recompute the layout of all the current items by using the Refresh layout button (the sixth button from
the left on the local tool bar).

Click on left arrow of Msg to display who is calling Msg. Notice that View calls Msg.

Click on left arrow of View: the arrow disappears, and no new items are created, which means that View isn’t called by
anyone, so we’re now going to remove this procedure.

21

Tutorial Documentation, Release 2018

22 Chapter 11. Call Graph

CHAPTER

TWELVE

LOCATIONS VIEW

From Call Graph Browser, select the contextual menu Goto declaration of View, this will open the file stack.ads at
line 32. Then from the source editor (file stack.ads), select the contextual menu References->Find all references to
View: this highlights the Locations tree which now contains all the references for View, grouped by files (stack.ads
and stack.adb).

The first location is highlighted automatically: this is the spec of the procedure View. Now click in the tree on the
triangle at the left of stack.adb: two locations are listed, at line 90 and 97. Click on each of these locations: they
correspond to the procedure body.

The Find all references capability is another way to list all the uses of an entity, and it confirms that View isn’t called
in our project.

Remove View body by e.g selecting it, and pressing the Delete key, then save the file (Ctrl-S).

Do the same for the spec, save the file.

Close the stack.ads and stack.adb files (menu File->Close, or using the shortcut Ctrl-W). Rebuild by pressing
the F4 key.

Let’s now see how to create a project corresponding to the sdc project we’ve used in this tutorial.

23

Tutorial Documentation, Release 2018

24 Chapter 12. Locations View

CHAPTER

THIRTEEN

PROJECTS

13.1 Project Wizard

Go to the menu File->New Project. . . : this opens up the GPS project creation wizard.

The first page of the wizard allows you to select a pre-defined project template in the left-hand pane. These project
templates are organized according to the technology they use (e.g: AWS) or the platform that is targeted (e.g: STM32F4
compatible). The description of the currently selected project is displayed on the right-hand side pane.

Select a project template and click on Next: a page asking you the name and the location of your project will appear.
This page may also list project template-specific options.

Once completed, click on Apply to actually create the project. Note that you can still can customize your newly created
project after is creation using the Project properties editor.

13.2 Project properties

In the project view, on the project sdc, use the contextual menu Project->Properties. All the properties set in the
project wizard can be found here as well. You can switch between pages by clicking on the tabs located along the left
side of the window.

Once you’re done exploring the property pages, click on the Cancel button to close the properties window.

13.3 Variable editor

Select the window titled “Scenario”. If not available, you can open it using the menu View->Scenario. This window
contains a Build label.

This is a configuration variable. With GPS and the GNAT project facility, you can define as many configuration
variables as you want, and modify any project settings (e.g. switches, sources, . . .) based on the values of configuration
variables. These variables can also take any number of different values.

The Build variable demonstrates a typical Debug/Production configuration where we’ve set different switches for the
two modes.

Right click on the Build label and select Edit properties of Build. . . : this opens the variable editor, where values can
be added or renamed. Close the variable editor by clicking on the Cancel button.

Now, let’s take a look at the switches set in the project.

13.4 Switch editor

Select the menu item View->File Switches: a global switch editor is displayed in the working area, showing the
switches associated with each file in the sdc project.

25

Tutorial Documentation, Release 2018

The editor lists the switches associated with each file in the project. Gray entries indicate default (global) switches.
Notice that screen_output.adb has specific switches, which are highlighted using a different font.

Switch between Debug and Production mode in the Build combo box: the switches are updated automatically.

Back to our project, let’s now examine the dependencies between sources.

13.5 Source dependencies

Select sdc.adb in the Project View and then the contextual menu item Show dependencies for sdc.adb: this will open
a new graph showing the dependencies between sources of the project.

Click on the right arrow of tokens.ads to display the files that tokens.ads depends on. Similarly, click on the
right arrow of stack.ads.

13.6 Project dependencies

Back in the project view, on the Sdc project, select the contextual menu Project->Dependencies, then on the Add From
File, then open the tutorial directory and click on the projects subdirectory. Select the file prj1.gpr, click on OK. Click
on Apply to validate the change.

You can see the new dependency added in the project view, as a list (or tree, if ‘Show flat view’ is enabled in local
configuration menu) of projects. In particular, project dependencies are duplicated when tree view is used: if you open
the prj1 icon by clicking on the triangle, and then similarly open the prj2 icon, you will notice that the project prj4 is
displayed twice: once as a dependency of prj2, and once as a dependency of prj1.

GPS can also display the graph of dependencies between projects: on Sdc project, use the contextual menu Show
projects imported by Sdc: this will open a project hierarchy browser.

On the Sdc project, select the contextual menu Show projects imported by Sdc recursively.

In the browser, you can move the project items, and select them to highlight the dependencies.

26 Chapter 13. Projects

CHAPTER

FOURTEEN

EPILOGUE

This completes our tour of GPS, the GNAT Programming Studio. We hope this tutorial gave you a good overview of
the general capabilities of GPS. A non-exhaustive list of the features not mentioned in this document includes:

• Documentation generation

• Automatic generation of body files

• Pretty printing

• Visual comparison of files

• Version control

• Flexible multiple document interface

• Code coverage

• Coding standard verification

• Extensive customization through Python

For more information, please see the User’s Guide (‘gps.html <gps.html‘_) or look at the menus, which give access
to most of these capabilities.

27

	Introduction
	Quick overview of the GPS areas
	Editing sources
	Building applications
	Source Navigation
	Project View (entities)
	Back to Source Navigation
	Code Completion
	Run
	Debug
	Call Graph
	Locations View
	Projects
	Project Wizard
	Project properties
	Variable editor
	Switch editor
	Source dependencies
	Project dependencies

	Epilogue

