Interface GraphAttributes

  • All Superinterfaces:
    Attributes, java.lang.Comparable<Attributes>

    public interface GraphAttributes
    extends Attributes
    Attributes of a graph. The following properties can be accessed with this interface:
    Girth:
    The length of the shortest cycle.
    Eccentricities:
    The eccentricity for each vertex of the graph. The eccentricity of a vertex is the largest distance to other vertices of the graph. The distance between vertex A and B is defined as the shortest path from A to B. The distance is infinite if there is no path from A to B.
    Diameter:
    The largest eccentricity.
    Radius:
    The smallest eccentricity.
    Center:
    The set of vertices of the graph with the smallest eccentricities.
    Maximum fragment sizes:
    The maximum fragment sizes for each vertex of the graph. The maximum fragment size of a vertex is defined as the size of the largest strong component of the graph after the vertex has been removed.
    Best fragment size:
    The smallest maximum fragment size.
    Best fragmenters:
    The set of vertices of the graph with smallest maximum fragment size.
    Author:
    Franz-Josef Elmer
    • Method Detail

      • getGirth

        int getGirth()
        Returns the girth.
      • getRadius

        int getRadius()
        Returns the radius.
      • getDiameter

        int getDiameter()
        Returns the diameter.
      • getCenterVertices

        Vertex[] getCenterVertices()
        Returns the vertices of the center.
      • getEccentricities

        int[] getEccentricities()
        Returns the eccentricies of all vertices of a StrongComponent.
      • getMaximumFragmentSizes

        int[] getMaximumFragmentSizes()
        Returns the maximum fragment sizes of all vertices of a StrongComponent.
      • getBestFragmentSize

        int getBestFragmentSize()
        Returns the best fragment size.
      • getBestFragmenters

        Vertex[] getBestFragmenters()
        Returns those vertices of a StrongComponent where the maximum fragment size is equal to the best fragment size.