| 
Colt 1.2.0 | ||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||
java.lang.Objectcern.jet.math.Constants
cern.jet.math.Arithmetic
Arithmetic functions.
| Method Summary | |
static double | 
binomial(double n,
         long k)
Efficiently returns the binomial coefficient, often also referred to as "n over k" or "n choose k".  | 
static double | 
binomial(long n,
         long k)
Efficiently returns the binomial coefficient, often also referred to as "n over k" or "n choose k".  | 
static long | 
ceil(double value)
Returns the smallest long >= value. | 
static double | 
chbevl(double x,
       double[] coef,
       int N)
Evaluates the series of Chebyshev polynomials Ti at argument x/2.  | 
static double | 
factorial(int k)
Instantly returns the factorial k!.  | 
static long | 
floor(double value)
Returns the largest long <= value. | 
static double | 
log(double base,
    double value)
Returns logbasevalue.  | 
static double | 
log10(double value)
Returns log10value.  | 
static double | 
log2(double value)
Returns log2value.  | 
static double | 
logFactorial(int k)
Returns log(k!).  | 
static long | 
longFactorial(int k)
Instantly returns the factorial k!.  | 
static double | 
stirlingCorrection(int k)
Returns the StirlingCorrection.  | 
| Methods inherited from class java.lang.Object | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait | 
| Method Detail | 
public static double binomial(double n,
                              long k)
public static double binomial(long n,
                              long k)
public static long ceil(double value)
long >= value.
 1.0 -> 1, 1.2 -> 2, 1.9 -> 2.
 This method is safer than using (long) Math.ceil(value), because of possible rounding error.
public static double chbevl(double x,
                            double[] coef,
                            int N)
                     throws ArithmeticException
        N-1
         - '
  y  =   >   coef[i] T (x/2)
         -            i
        i=0
 
 Coefficients are stored in reverse order, i.e. the zero
 order term is last in the array.  Note N is the number of
 coefficients, not the order.
 If coefficients are for the interval a to b, x must have been transformed to x -> 2(2x - b - a)/(b-a) before entering the routine. This maps x from (a, b) to (-1, 1), over which the Chebyshev polynomials are defined.
If the coefficients are for the inverted interval, in which (a, b) is mapped to (1/b, 1/a), the transformation required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, this becomes x -> 4a/x - 1.
SPEED:
Taking advantage of the recurrence properties of the Chebyshev polynomials, the routine requires one more addition per loop than evaluating a nested polynomial of the same degree.
x - argument to the polynomial.coef - the coefficients of the polynomial.N - the number of coefficients.
ArithmeticExceptionpublic static double factorial(int k)
k - must hold k >= 0.public static long floor(double value)
long <= value.
 
 1.0 -> 1, 1.2 -> 1, 1.9 -> 1 - 
 2.0 -> 2, 2.2 -> 2, 2.9 -> 2 
 
public static double log(double base,
                         double value)
public static double log10(double value)
public static double log2(double value)
public static double logFactorial(int k)
k - must hold k >= 0.
public static long longFactorial(int k)
                          throws IllegalArgumentException
k - must hold k >= 0 && k < 21.
IllegalArgumentExceptionpublic static double stirlingCorrection(int k)
Correction term of the Stirling approximation for log(k!) (series in 1/k, or table values for small k) with int parameter k.
log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) + stirlingCorrection(k + 1)
log k! = (k + 1/2)log(k) - k + (1/2)log(2Pi) + stirlingCorrection(k)
  | 
Colt 1.2.0 | ||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||