Class LoessInterpolator
- java.lang.Object
-
- org.apache.commons.math.analysis.interpolation.LoessInterpolator
-
- All Implemented Interfaces:
java.io.Serializable,UnivariateRealInterpolator
public class LoessInterpolator extends java.lang.Object implements UnivariateRealInterpolator, java.io.Serializable
Implements the Local Regression Algorithm (also Loess, Lowess) for interpolation of real univariate functions. For reference, see William S. Cleveland - Robust Locally Weighted Regression and Smoothing Scatterplots This class implements both the loess method and serves as an interpolation adapter to it, allowing to build a spline on the obtained loess fit.- Since:
- 2.0
- Version:
- $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 août 2010) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_ACCURACYDefault value for accuracy.static doubleDEFAULT_BANDWIDTHDefault value of the bandwidth parameter.static intDEFAULT_ROBUSTNESS_ITERSDefault value of the number of robustness iterations.
-
Constructor Summary
Constructors Constructor Description LoessInterpolator()Constructs a newLoessInterpolatorwith a bandwidth ofDEFAULT_BANDWIDTH,DEFAULT_ROBUSTNESS_ITERSrobustness iterations and an accuracy of {#link #DEFAULT_ACCURACY}.LoessInterpolator(double bandwidth, int robustnessIters)Constructs a newLoessInterpolatorwith given bandwidth and number of robustness iterations.LoessInterpolator(double bandwidth, int robustnessIters, double accuracy)Constructs a newLoessInterpolatorwith given bandwidth, number of robustness iterations and accuracy.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialSplineFunctioninterpolate(double[] xval, double[] yval)Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolatoron the resulting fit.double[]smooth(double[] xval, double[] yval)Compute a loess fit on the data at the original abscissae.double[]smooth(double[] xval, double[] yval, double[] weights)Compute a weighted loess fit on the data at the original abscissae.
-
-
-
Field Detail
-
DEFAULT_BANDWIDTH
public static final double DEFAULT_BANDWIDTH
Default value of the bandwidth parameter.- See Also:
- Constant Field Values
-
DEFAULT_ROBUSTNESS_ITERS
public static final int DEFAULT_ROBUSTNESS_ITERS
Default value of the number of robustness iterations.- See Also:
- Constant Field Values
-
DEFAULT_ACCURACY
public static final double DEFAULT_ACCURACY
Default value for accuracy.- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
LoessInterpolator
public LoessInterpolator()
Constructs a newLoessInterpolatorwith a bandwidth ofDEFAULT_BANDWIDTH,DEFAULT_ROBUSTNESS_ITERSrobustness iterations and an accuracy of {#link #DEFAULT_ACCURACY}. SeeLoessInterpolator(double, int, double)for an explanation of the parameters.
-
LoessInterpolator
public LoessInterpolator(double bandwidth, int robustnessIters) throws MathExceptionConstructs a newLoessInterpolatorwith given bandwidth and number of robustness iterations.Calling this constructor is equivalent to calling {link
LoessInterpolator(bandwidth, robustnessIters, LoessInterpolator.DEFAULT_ACCURACY)- Parameters:
bandwidth- when computing the loess fit at a particular point, this fraction of source points closest to the current point is taken into account for computing a least-squares regression. A sensible value is usually 0.25 to 0.5, the default value isDEFAULT_BANDWIDTH.robustnessIters- This many robustness iterations are done. A sensible value is usually 0 (just the initial fit without any robustness iterations) to 4, the default value isDEFAULT_ROBUSTNESS_ITERS.- Throws:
MathException- if bandwidth does not lie in the interval [0,1] or if robustnessIters is negative.- See Also:
LoessInterpolator(double, int, double)
-
LoessInterpolator
public LoessInterpolator(double bandwidth, int robustnessIters, double accuracy) throws MathExceptionConstructs a newLoessInterpolatorwith given bandwidth, number of robustness iterations and accuracy.- Parameters:
bandwidth- when computing the loess fit at a particular point, this fraction of source points closest to the current point is taken into account for computing a least-squares regression. A sensible value is usually 0.25 to 0.5, the default value isDEFAULT_BANDWIDTH.robustnessIters- This many robustness iterations are done. A sensible value is usually 0 (just the initial fit without any robustness iterations) to 4, the default value isDEFAULT_ROBUSTNESS_ITERS.accuracy- If the median residual at a certain robustness iteration is less than this amount, no more iterations are done.- Throws:
MathException- if bandwidth does not lie in the interval [0,1] or if robustnessIters is negative.- Since:
- 2.1
- See Also:
LoessInterpolator(double, int)
-
-
Method Detail
-
interpolate
public final PolynomialSplineFunction interpolate(double[] xval, double[] yval) throws MathException
Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolatoron the resulting fit.- Specified by:
interpolatein interfaceUnivariateRealInterpolator- Parameters:
xval- the arguments for the interpolation pointsyval- the values for the interpolation points- Returns:
- A cubic spline built upon a loess fit to the data at the original abscissae
- Throws:
MathException- if some of the following conditions are false:- Arguments and values are of the same size that is greater than zero
- The arguments are in a strictly increasing order
- All arguments and values are finite real numbers
-
smooth
public final double[] smooth(double[] xval, double[] yval, double[] weights) throws MathExceptionCompute a weighted loess fit on the data at the original abscissae.- Parameters:
xval- the arguments for the interpolation pointsyval- the values for the interpolation pointsweights- point weights: coefficients by which the robustness weight of a point is multiplied- Returns:
- values of the loess fit at corresponding original abscissae
- Throws:
MathException- if some of the following conditions are false:- Arguments and values are of the same size that is greater than zero
- The arguments are in a strictly increasing order
- All arguments and values are finite real numbers
- Since:
- 2.1
-
smooth
public final double[] smooth(double[] xval, double[] yval) throws MathExceptionCompute a loess fit on the data at the original abscissae.- Parameters:
xval- the arguments for the interpolation pointsyval- the values for the interpolation points- Returns:
- values of the loess fit at corresponding original abscissae
- Throws:
MathException- if some of the following conditions are false:- Arguments and values are of the same size that is greater than zero
- The arguments are in a strictly increasing order
- All arguments and values are finite real numbers
-
-