Uses of Class
org.apache.commons.math.MathException
-
Packages that use MathException Package Description org.apache.commons.math Common classes used throughout the commons-math library.org.apache.commons.math.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math.distribution Implementations of common discrete and continuous distributions.org.apache.commons.math.estimation This package provided classes to solve estimation problems, it is deprecated since 2.0.org.apache.commons.math.fraction Fraction number type and fraction number formatting.org.apache.commons.math.geometry This package provides basic 3D geometry components.org.apache.commons.math.linear Linear algebra support.org.apache.commons.math.ode This package provides classes to solve Ordinary Differential Equations problems.org.apache.commons.math.ode.events This package provides classes to handle discrete events occurring during Ordinary Differential Equations integration.org.apache.commons.math.optimization This package provides common interfaces for the optimization algorithms provided in sub-packages.org.apache.commons.math.optimization.linear This package provides optimization algorithms for linear constrained problems.org.apache.commons.math.random Random number and random data generators.org.apache.commons.math.special Implementations of special functions such as Beta and Gamma.org.apache.commons.math.stat.correlation Correlations/Covariance computations.org.apache.commons.math.stat.inference Classes providing hypothesis testing and confidence interval construction.org.apache.commons.math.stat.regression Statistical routines involving multivariate data.org.apache.commons.math.util Convenience routines and common data structures used throughout the commons-math library. -
-
Uses of MathException in org.apache.commons.math
Subclasses of MathException in org.apache.commons.math Modifier and Type Class Description classArgumentOutsideDomainExceptionError thrown when a method is called with an out of bounds argument.classConvergenceExceptionError thrown when a numerical computation can not be performed because the numerical result failed to converge to a finite value.classDimensionMismatchExceptionDeprecated.in 2.2 (to be removed in 3.0).classDuplicateSampleAbscissaExceptionException thrown when a sample contains several entries at the same abscissa.classFunctionEvaluationExceptionException thrown when an error occurs evaluating a function.classMathConfigurationExceptionSignals a configuration problem with any of the factory methods.classMaxEvaluationsExceededExceptionError thrown when a numerical computation exceeds its allowed number of functions evaluations.classMaxIterationsExceededExceptionError thrown when a numerical computation exceeds its allowed number of iterations. -
Uses of MathException in org.apache.commons.math.analysis.interpolation
Methods in org.apache.commons.math.analysis.interpolation that throw MathException Modifier and Type Method Description BicubicSplineInterpolatingFunctionBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)Computes an interpolating function for the data set.BivariateRealFunctionBivariateRealGridInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)Computes an interpolating function for the data set.PolynomialSplineFunctionLoessInterpolator. interpolate(double[] xval, double[] yval)Compute an interpolating function by performing a loess fit on the data at the original abscissae and then building a cubic spline with aSplineInterpolatoron the resulting fit.MultivariateRealFunctionMicrosphereInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.MultivariateRealFunctionMultivariateRealInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.PolynomialFunctionLagrangeFormNevilleInterpolator. interpolate(double[] x, double[] y)Computes an interpolating function for the data set.BivariateRealFunctionSmoothingBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] zval)Deprecated.Computes an interpolating function for the data set.BicubicSplineInterpolatingFunctionSmoothingPolynomialBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)Computes an interpolating function for the data set.TricubicSplineInterpolatingFunctionTricubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)Computes an interpolating function for the data set.TrivariateRealFunctionTrivariateRealGridInterpolator. interpolate(double[] xval, double[] yval, double[] zval, double[][][] fval)Computes an interpolating function for the data set.UnivariateRealFunctionUnivariateRealInterpolator. interpolate(double[] xval, double[] yval)Computes an interpolating function for the data set.double[]LoessInterpolator. smooth(double[] xval, double[] yval)Compute a loess fit on the data at the original abscissae.double[]LoessInterpolator. smooth(double[] xval, double[] yval, double[] weights)Compute a weighted loess fit on the data at the original abscissae.Constructors in org.apache.commons.math.analysis.interpolation that throw MathException Constructor Description LoessInterpolator(double bandwidth, int robustnessIters)Constructs a newLoessInterpolatorwith given bandwidth and number of robustness iterations.LoessInterpolator(double bandwidth, int robustnessIters, double accuracy)Constructs a newLoessInterpolatorwith given bandwidth, number of robustness iterations and accuracy. -
Uses of MathException in org.apache.commons.math.distribution
Methods in org.apache.commons.math.distribution that throw MathException Modifier and Type Method Description doubleAbstractDistribution. cumulativeProbability(double x0, double x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).doubleAbstractIntegerDistribution. cumulativeProbability(double x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doubleAbstractIntegerDistribution. cumulativeProbability(double x0, double x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).abstract doubleAbstractIntegerDistribution. cumulativeProbability(int x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doubleAbstractIntegerDistribution. cumulativeProbability(int x0, int x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).doubleBetaDistributionImpl. cumulativeProbability(double x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doubleBetaDistributionImpl. cumulativeProbability(double x0, double x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).doubleBinomialDistributionImpl. cumulativeProbability(int x)For this distribution, X, this method returns P(X ≤ x).doubleChiSquaredDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X < x).doubleDistribution. cumulativeProbability(double x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doubleDistribution. cumulativeProbability(double x0, double x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).doubleExponentialDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X < x).doubleFDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X < x).doubleGammaDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X < x).doubleIntegerDistribution. cumulativeProbability(int x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doubleIntegerDistribution. cumulativeProbability(int x0, int x1)For this distribution, X, this method returns P(x0 ≤ X ≤ x1).doubleNormalDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doublePascalDistributionImpl. cumulativeProbability(int x)For this distribution, X, this method returns P(X ≤ x).doublePoissonDistributionImpl. cumulativeProbability(int x)The probability distribution function P(X <= x) for a Poisson distribution.doubleTDistributionImpl. cumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doubleBetaDistribution. density(java.lang.Double x)Return the probability density for a particular point.doubleHasDensity. density(P x)Deprecated.Compute the probability density function.doubleAbstractContinuousDistribution. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.intAbstractIntegerDistribution. inverseCumulativeProbability(double p)For a random variable X whose values are distributed according to this distribution, this method returns the largest x, such that P(X ≤ x) ≤p.doubleBetaDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.intBinomialDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤p.doubleChiSquaredDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.doubleContinuousDistribution. inverseCumulativeProbability(double p)For this distribution, X, this method returns x such that P(X < x) = p.doubleExponentialDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.doubleFDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.doubleGammaDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.intIntegerDistribution. inverseCumulativeProbability(double p)For this distribution, X, this method returns the largest x such that P(X ≤ x) <= p.doubleNormalDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.intPascalDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤p.doubleTDistributionImpl. inverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.doublePoissonDistribution. normalApproximateProbability(int x)Calculates the Poisson distribution function using a normal approximation.doublePoissonDistributionImpl. normalApproximateProbability(int x)Calculates the Poisson distribution function using a normal approximation.doubleAbstractContinuousDistribution. sample()Generates a random value sampled from this distribution.double[]AbstractContinuousDistribution. sample(int sampleSize)Generates a random sample from the distribution.intAbstractIntegerDistribution. sample()Generates a random value sampled from this distribution.int[]AbstractIntegerDistribution. sample(int sampleSize)Generates a random sample from the distribution.doubleExponentialDistributionImpl. sample()Generates a random value sampled from this distribution.doubleNormalDistributionImpl. sample()Generates a random value sampled from this distribution.intPoissonDistributionImpl. sample()Generates a random value sampled from this distribution. -
Uses of MathException in org.apache.commons.math.estimation
Subclasses of MathException in org.apache.commons.math.estimation Modifier and Type Class Description classEstimationExceptionDeprecated.as of 2.0, everything in package org.apache.commons.math.estimation has been deprecated and replaced by package org.apache.commons.math.optimization.general -
Uses of MathException in org.apache.commons.math.fraction
Subclasses of MathException in org.apache.commons.math.fraction Modifier and Type Class Description classFractionConversionExceptionError thrown when a double value cannot be converted to a fraction in the allowed number of iterations. -
Uses of MathException in org.apache.commons.math.geometry
Subclasses of MathException in org.apache.commons.math.geometry Modifier and Type Class Description classCardanEulerSingularityExceptionThis class represents exceptions thrown while extractiong Cardan or Euler angles from a rotation.classNotARotationMatrixExceptionThis class represents exceptions thrown while building rotations from matrices. -
Uses of MathException in org.apache.commons.math.linear
Subclasses of MathException in org.apache.commons.math.linear Modifier and Type Class Description classNotPositiveDefiniteMatrixExceptionThis class represents exceptions thrown when a matrix expected to be positive definite is not.classNotSymmetricMatrixExceptionThis class represents exceptions thrown when a matrix expected to be symmetric is not -
Uses of MathException in org.apache.commons.math.ode
Subclasses of MathException in org.apache.commons.math.ode Modifier and Type Class Description classDerivativeExceptionThis exception is made available to users to report the error conditions that are triggered while computing the differential equations.classIntegratorExceptionThis exception is made available to users to report the error conditions that are triggered during integration -
Uses of MathException in org.apache.commons.math.ode.events
Subclasses of MathException in org.apache.commons.math.ode.events Modifier and Type Class Description classEventExceptionThis exception is made available to users to report the error conditions that are triggered byEventHandler -
Uses of MathException in org.apache.commons.math.optimization
Subclasses of MathException in org.apache.commons.math.optimization Modifier and Type Class Description classOptimizationExceptionDeprecated.in 2.2 (to be removed in 3.0). -
Uses of MathException in org.apache.commons.math.optimization.linear
Subclasses of MathException in org.apache.commons.math.optimization.linear Modifier and Type Class Description classNoFeasibleSolutionExceptionThis class represents exceptions thrown by optimizers when no solution fulfills the constraints.classUnboundedSolutionExceptionThis class represents exceptions thrown by optimizers when a solution escapes to infinity. -
Uses of MathException in org.apache.commons.math.random
Methods in org.apache.commons.math.random that throw MathException Modifier and Type Method Description doubleRandomDataImpl. nextBeta(double alpha, double beta)Generates a random value from theBeta Distribution.intRandomDataImpl. nextBinomial(int numberOfTrials, double probabilityOfSuccess)Generates a random value from theBinomial Distribution.doubleRandomDataImpl. nextCauchy(double median, double scale)Generates a random value from theCauchy Distribution.doubleRandomDataImpl. nextChiSquare(double df)Generates a random value from theChiSquare Distribution.doubleRandomDataImpl. nextF(double numeratorDf, double denominatorDf)Generates a random value from theF Distribution.doubleRandomDataImpl. nextGamma(double shape, double scale)Generates a random value from theGamma Distribution.intRandomDataImpl. nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)Generates a random value from theHypergeometric Distribution.doubleRandomDataImpl. nextInversionDeviate(ContinuousDistribution distribution)Generate a random deviate from the given distribution using the inversion method.intRandomDataImpl. nextInversionDeviate(IntegerDistribution distribution)Generate a random deviate from the given distribution using the inversion method.intRandomDataImpl. nextPascal(int r, double p)Generates a random value from thePascal Distribution.doubleRandomDataImpl. nextT(double df)Generates a random value from theT Distribution.doubleRandomDataImpl. nextWeibull(double shape, double scale)Generates a random value from theWeibull Distribution.intRandomDataImpl. nextZipf(int numberOfElements, double exponent)Generates a random value from theZipf Distribution. -
Uses of MathException in org.apache.commons.math.special
Methods in org.apache.commons.math.special that throw MathException Modifier and Type Method Description static doubleErf. erf(double x)Returns the error functionstatic doubleErf. erfc(double x)Returns the complementary error functionstatic doubleBeta. regularizedBeta(double x, double a, double b)Returns the regularized beta function I(x, a, b).static doubleBeta. regularizedBeta(double x, double a, double b, double epsilon)Returns the regularized beta function I(x, a, b).static doubleBeta. regularizedBeta(double x, double a, double b, double epsilon, int maxIterations)Returns the regularized beta function I(x, a, b).static doubleBeta. regularizedBeta(double x, double a, double b, int maxIterations)Returns the regularized beta function I(x, a, b).static doubleGamma. regularizedGammaP(double a, double x)Returns the regularized gamma function P(a, x).static doubleGamma. regularizedGammaP(double a, double x, double epsilon, int maxIterations)Returns the regularized gamma function P(a, x).static doubleGamma. regularizedGammaQ(double a, double x)Returns the regularized gamma function Q(a, x) = 1 - P(a, x).static doubleGamma. regularizedGammaQ(double a, double x, double epsilon, int maxIterations)Returns the regularized gamma function Q(a, x) = 1 - P(a, x). -
Uses of MathException in org.apache.commons.math.stat.correlation
Methods in org.apache.commons.math.stat.correlation that throw MathException Modifier and Type Method Description RealMatrixPearsonsCorrelation. getCorrelationPValues()Returns a matrix of p-values associated with the (two-sided) null hypothesis that the corresponding correlation coefficient is zero. -
Uses of MathException in org.apache.commons.math.stat.inference
Methods in org.apache.commons.math.stat.inference that throw MathException Modifier and Type Method Description doubleOneWayAnova. anovaFValue(java.util.Collection<double[]> categoryData)Computes the ANOVA F-value for a collection ofdouble[]arrays.doubleOneWayAnovaImpl. anovaFValue(java.util.Collection<double[]> categoryData)Computes the ANOVA F-value for a collection ofdouble[]arrays.doubleOneWayAnova. anovaPValue(java.util.Collection<double[]> categoryData)Computes the ANOVA P-value for a collection ofdouble[]arrays.doubleOneWayAnovaImpl. anovaPValue(java.util.Collection<double[]> categoryData)Computes the ANOVA P-value for a collection ofdouble[]arrays.booleanOneWayAnova. anovaTest(java.util.Collection<double[]> categoryData, double alpha)Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.booleanOneWayAnovaImpl. anovaTest(java.util.Collection<double[]> categoryData, double alpha)Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.doubleChiSquareTest. chiSquareTest(double[] expected, long[] observed)Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.booleanChiSquareTest. chiSquareTest(double[] expected, long[] observed, double alpha)Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.doubleChiSquareTest. chiSquareTest(long[][] counts)Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.booleanChiSquareTest. chiSquareTest(long[][] counts, double alpha)Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.doubleChiSquareTestImpl. chiSquareTest(double[] expected, long[] observed)Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.booleanChiSquareTestImpl. chiSquareTest(double[] expected, long[] observed, double alpha)Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.doubleChiSquareTestImpl. chiSquareTest(long[][] counts)booleanChiSquareTestImpl. chiSquareTest(long[][] counts, double alpha)static doubleTestUtils. chiSquareTest(double[] expected, long[] observed)static booleanTestUtils. chiSquareTest(double[] expected, long[] observed, double alpha)static doubleTestUtils. chiSquareTest(long[][] counts)static booleanTestUtils. chiSquareTest(long[][] counts, double alpha)doubleChiSquareTestImpl. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)booleanChiSquareTestImpl. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)static doubleTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)static booleanTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)doubleUnknownDistributionChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1andobserved2.booleanUnknownDistributionChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)Performs a Chi-Square two sample test comparing two binned data sets.static doubleTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)static booleanTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)static doubleTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)doubleTTest. homoscedasticTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.booleanTTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.doubleTTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.doubleTTestImpl. homoscedasticTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.booleanTTestImpl. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.protected doubleTTestImpl. homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.doubleTTestImpl. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static doubleTestUtils. oneWayAnovaFValue(java.util.Collection<double[]> categoryData)static doubleTestUtils. oneWayAnovaPValue(java.util.Collection<double[]> categoryData)static booleanTestUtils. oneWayAnovaTest(java.util.Collection<double[]> categoryData, double alpha)static doubleTestUtils. pairedT(double[] sample1, double[] sample2)doubleTTest. pairedT(double[] sample1, double[] sample2)Computes a paired, 2-sample t-statistic based on the data in the input arrays.doubleTTestImpl. pairedT(double[] sample1, double[] sample2)Computes a paired, 2-sample t-statistic based on the data in the input arrays.static doubleTestUtils. pairedTTest(double[] sample1, double[] sample2)static booleanTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)doubleTTest. pairedTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.booleanTTest. pairedTTest(double[] sample1, double[] sample2, double alpha)Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.doubleTTestImpl. pairedTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.booleanTTestImpl. pairedTTest(double[] sample1, double[] sample2, double alpha)Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.static doubleTestUtils. tTest(double[] sample1, double[] sample2)static booleanTestUtils. tTest(double[] sample1, double[] sample2, double alpha)static doubleTestUtils. tTest(double mu, double[] sample)static booleanTestUtils. tTest(double mu, double[] sample, double alpha)static doubleTestUtils. tTest(double mu, StatisticalSummary sampleStats)static booleanTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)static doubleTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)static booleanTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)doubleTTest. tTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.booleanTTest. tTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.doubleTTest. tTest(double mu, double[] sample)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.booleanTTest. tTest(double mu, double[] sample, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.doubleTTest. tTest(double mu, StatisticalSummary sampleStats)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.booleanTTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.doubleTTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.booleanTTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha.doubleTTestImpl. tTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.booleanTTestImpl. tTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.doubleTTestImpl. tTest(double mu, double[] sample)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.booleanTTestImpl. tTest(double mu, double[] sample, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.protected doubleTTestImpl. tTest(double m, double mu, double v, double n)Computes p-value for 2-sided, 1-sample t-test.protected doubleTTestImpl. tTest(double m1, double m2, double v1, double v2, double n1, double n2)Computes p-value for 2-sided, 2-sample t-test.doubleTTestImpl. tTest(double mu, StatisticalSummary sampleStats)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.booleanTTestImpl. tTest(double mu, StatisticalSummary sampleStats, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.doubleTTestImpl. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.booleanTTestImpl. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha. -
Uses of MathException in org.apache.commons.math.stat.regression
Methods in org.apache.commons.math.stat.regression that throw MathException Modifier and Type Method Description doubleSimpleRegression. getSignificance()Returns the significance level of the slope (equiv) correlation.doubleSimpleRegression. getSlopeConfidenceInterval()Returns the half-width of a 95% confidence interval for the slope estimate.doubleSimpleRegression. getSlopeConfidenceInterval(double alpha)Returns the half-width of a (100-100*alpha)% confidence interval for the slope estimate. -
Uses of MathException in org.apache.commons.math.util
Methods in org.apache.commons.math.util that throw MathException Modifier and Type Method Description doubleContinuedFraction. evaluate(double x)Evaluates the continued fraction at the value x.doubleContinuedFraction. evaluate(double x, double epsilon)Evaluates the continued fraction at the value x.doubleContinuedFraction. evaluate(double x, double epsilon, int maxIterations)Evaluates the continued fraction at the value x.doubleContinuedFraction. evaluate(double x, int maxIterations)Evaluates the continued fraction at the value x.doubleDefaultTransformer. transform(java.lang.Object o)doubleNumberTransformer. transform(java.lang.Object o)Implementing this interface provides a facility to transform from Object to Double.doubleTransformerMap. transform(java.lang.Object o)Attempts to transform the Object against the map of NumberTransformers.
-