Class BetaDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.BetaDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable,BetaDistribution,ContinuousDistribution,Distribution,HasDensity<java.lang.Double>
public class BetaDistributionImpl extends AbstractContinuousDistribution implements BetaDistribution
Implements the Beta distribution.References:
- Since:
- 2.0
- Version:
- $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description BetaDistributionImpl(double alpha, double beta)Build a new instance.BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)Build a new instance.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description doublecumulativeProbability(double x)For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).doublecumulativeProbability(double x0, double x1)For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).doubledensity(double x)Return the probability density for a particular point.doubledensity(java.lang.Double x)Deprecated.doublegetAlpha()Access the shape parameter, alphadoublegetBeta()Access the shape parameter, betaprotected doublegetDomainLowerBound(double p)Access the domain value lower bound, based onp, used to bracket a CDF root.protected doublegetDomainUpperBound(double p)Access the domain value upper bound, based onp, used to bracket a CDF root.protected doublegetInitialDomain(double p)Access the initial domain value, based onp, used to bracket a CDF root.doublegetNumericalMean()Returns the mean.doublegetNumericalVariance()Returns the variance.protected doublegetSolverAbsoluteAccuracy()Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.doublegetSupportLowerBound()Returns the lower bound of the support for this distribution.doublegetSupportUpperBound()Returns the upper bound of the support for this distribution.doubleinverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.voidsetAlpha(double alpha)Deprecated.as of 2.1 (class will become immutable in 3.0)voidsetBeta(double beta)Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
BetaDistributionImpl
public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)Build a new instance.- Parameters:
alpha- first shape parameter (must be positive)beta- second shape parameter (must be positive)inverseCumAccuracy- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY)- Since:
- 2.1
-
BetaDistributionImpl
public BetaDistributionImpl(double alpha, double beta)Build a new instance.- Parameters:
alpha- first shape parameter (must be positive)beta- second shape parameter (must be positive)
-
-
Method Detail
-
setAlpha
@Deprecated public void setAlpha(double alpha)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the shape parameter, alpha.- Specified by:
setAlphain interfaceBetaDistribution- Parameters:
alpha- the new shape parameter.
-
getAlpha
public double getAlpha()
Access the shape parameter, alpha- Specified by:
getAlphain interfaceBetaDistribution- Returns:
- alpha.
-
setBeta
@Deprecated public void setBeta(double beta)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the shape parameter, beta.- Specified by:
setBetain interfaceBetaDistribution- Parameters:
beta- the new scale parameter.
-
getBeta
public double getBeta()
Access the shape parameter, beta- Specified by:
getBetain interfaceBetaDistribution- Returns:
- beta.
-
density
@Deprecated public double density(java.lang.Double x)
Deprecated.Return the probability density for a particular point.- Specified by:
densityin interfaceBetaDistribution- Specified by:
densityin interfaceHasDensity<java.lang.Double>- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
public double density(double x)
Return the probability density for a particular point.- Overrides:
densityin classAbstractContinuousDistribution- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathExceptionFor this distribution, X, this method returns the critical point x, such that P(X < x) =p.- Specified by:
inverseCumulativeProbabilityin interfaceContinuousDistribution- Overrides:
inverseCumulativeProbabilityin classAbstractContinuousDistribution- Parameters:
p- the desired probability- Returns:
- x, such that P(X < x) =
p - Throws:
MathException- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp, used to bracket a CDF root. This method is used byAbstractContinuousDistribution.inverseCumulativeProbability(double)to find critical values.- Specified by:
getInitialDomainin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- initial domain value
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp, used to bracket a CDF root. This method is used byAbstractContinuousDistribution.inverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainLowerBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp, used to bracket a CDF root. This method is used byAbstractContinuousDistribution.inverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainUpperBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathExceptionFor a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x). In other words, this method represents the (cumulative) distribution function, or CDF, for this distribution.- Specified by:
cumulativeProbabilityin interfaceDistribution- Parameters:
x- the value at which the distribution function is evaluated.- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x - Throws:
MathException- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
cumulativeProbability
public double cumulativeProbability(double x0, double x1) throws MathExceptionFor a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).The default implementation uses the identity
P(x0 ≤ X ≤ x1) = P(X ≤ x1) - P(X ≤ x0)
- Specified by:
cumulativeProbabilityin interfaceDistribution- Overrides:
cumulativeProbabilityin classAbstractDistribution- Parameters:
x0- the (inclusive) lower boundx1- the (inclusive) upper bound- Returns:
- the probability that a random variable with this distribution
will take a value between
x0andx1, including the endpoints. - Throws:
MathException- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracyin classAbstractContinuousDistribution- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for this distribution. The support of the Beta distribution is always [0, 1], regardless of the parameters, so this method always returns 0.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for this distribution. The support of the Beta distribution is always [0, 1], regardless of the parameters, so this method always returns 1.- Returns:
- lower bound of the support (always 1)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean. For first shape parameters1and second shape parameters2, the mean iss1 / (s1 + s2)- Returns:
- the mean
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For first shape parameters1and second shape parameters2, the variance is[ s1 * s2 ] / [ (s1 + s2)^2 * (s1 + s2 + 1) ]- Returns:
- the variance
- Since:
- 2.2
-
-