Class NormalDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.NormalDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable,ContinuousDistribution,Distribution,HasDensity<java.lang.Double>,NormalDistribution
public class NormalDistributionImpl extends AbstractContinuousDistribution implements NormalDistribution, java.io.Serializable
Default implementation ofNormalDistribution.- Version:
- $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description NormalDistributionImpl()Creates normal distribution with the mean equal to zero and standard deviation equal to one.NormalDistributionImpl(double mean, double sd)Create a normal distribution using the given mean and standard deviation.NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy)Create a normal distribution using the given mean, standard deviation and inverse cumulative distribution accuracy.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description doublecumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doubledensity(double x)Returns the probability density for a particular point.doubledensity(java.lang.Double x)Deprecated.protected doublegetDomainLowerBound(double p)Access the domain value lower bound, based onp, used to bracket a CDF root.protected doublegetDomainUpperBound(double p)Access the domain value upper bound, based onp, used to bracket a CDF root.protected doublegetInitialDomain(double p)Access the initial domain value, based onp, used to bracket a CDF root.doublegetMean()Access the mean.doublegetNumericalVariance()Returns the variance.protected doublegetSolverAbsoluteAccuracy()Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.doublegetStandardDeviation()Access the standard deviation.doublegetSupportLowerBound()Returns the lower bound of the support for the distribution.doublegetSupportUpperBound()Returns the upper bound of the support for the distribution.doubleinverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.doublesample()Generates a random value sampled from this distribution.voidsetMean(double mean)Deprecated.as of 2.1 (class will become immutable in 3.0)voidsetStandardDeviation(double sd)Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
NormalDistributionImpl
public NormalDistributionImpl(double mean, double sd)Create a normal distribution using the given mean and standard deviation.- Parameters:
mean- mean for this distributionsd- standard deviation for this distribution
-
NormalDistributionImpl
public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy)Create a normal distribution using the given mean, standard deviation and inverse cumulative distribution accuracy.- Parameters:
mean- mean for this distributionsd- standard deviation for this distributioninverseCumAccuracy- inverse cumulative probability accuracy- Since:
- 2.1
-
NormalDistributionImpl
public NormalDistributionImpl()
Creates normal distribution with the mean equal to zero and standard deviation equal to one.
-
-
Method Detail
-
getMean
public double getMean()
Access the mean.- Specified by:
getMeanin interfaceNormalDistribution- Returns:
- mean for this distribution
-
setMean
@Deprecated public void setMean(double mean)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the mean.- Specified by:
setMeanin interfaceNormalDistribution- Parameters:
mean- for this distribution
-
getStandardDeviation
public double getStandardDeviation()
Access the standard deviation.- Specified by:
getStandardDeviationin interfaceNormalDistribution- Returns:
- standard deviation for this distribution
-
setStandardDeviation
@Deprecated public void setStandardDeviation(double sd)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the standard deviation.- Specified by:
setStandardDeviationin interfaceNormalDistribution- Parameters:
sd- standard deviation for this distribution- Throws:
java.lang.IllegalArgumentException- ifsdis not positive.
-
density
@Deprecated public double density(java.lang.Double x)
Deprecated.Return the probability density for a particular point.- Specified by:
densityin interfaceHasDensity<java.lang.Double>- Specified by:
densityin interfaceNormalDistribution- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
densityin classAbstractContinuousDistribution- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathExceptionFor this distribution, X, this method returns P(X <x). Ifxis more than 40 standard deviations from the mean, 0 or 1 is returned, as in these cases the actual value is withinDouble.MIN_VALUEof 0 or 1.- Specified by:
cumulativeProbabilityin interfaceDistribution- Parameters:
x- the value at which the CDF is evaluated.- Returns:
- CDF evaluated at
x. - Throws:
MathException- if the algorithm fails to converge
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracyin classAbstractContinuousDistribution- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathExceptionFor this distribution, X, this method returns the critical point x, such that P(X < x) =p.Returns
Double.NEGATIVE_INFINITYfor p=0 andDouble.POSITIVE_INFINITYfor p=1.- Specified by:
inverseCumulativeProbabilityin interfaceContinuousDistribution- Overrides:
inverseCumulativeProbabilityin classAbstractContinuousDistribution- Parameters:
p- the desired probability- Returns:
- x, such that P(X < x) =
p - Throws:
MathException- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException- ifpis not a valid probability.
-
sample
public double sample() throws MathExceptionGenerates a random value sampled from this distribution.- Overrides:
samplein classAbstractContinuousDistribution- Returns:
- random value
- Throws:
MathException- if an error occurs generating the random value- Since:
- 2.2
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainLowerBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainUpperBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getInitialDomainin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- initial domain value
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always negative infinity no matter the parameters.- Returns:
- lower bound of the support (always Double.NEGATIVE_INFINITY)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For standard deviation parameters, the variance iss^2- Returns:
- the variance
- Since:
- 2.2
-
-