Class TDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.TDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable,ContinuousDistribution,Distribution,TDistribution
public class TDistributionImpl extends AbstractContinuousDistribution implements TDistribution, java.io.Serializable
Default implementation ofTDistribution.- Version:
- $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description TDistributionImpl(double degreesOfFreedom)Create a t distribution using the given degrees of freedom.TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description doublecumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doubledensity(double x)Returns the probability density for a particular point.doublegetDegreesOfFreedom()Access the degrees of freedom.protected doublegetDomainLowerBound(double p)Access the domain value lower bound, based onp, used to bracket a CDF root.protected doublegetDomainUpperBound(double p)Access the domain value upper bound, based onp, used to bracket a CDF root.protected doublegetInitialDomain(double p)Access the initial domain value, based onp, used to bracket a CDF root.doublegetNumericalMean()Returns the mean.doublegetNumericalVariance()Returns the variance.protected doublegetSolverAbsoluteAccuracy()Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.doublegetSupportLowerBound()Returns the lower bound of the support for the distribution.doublegetSupportUpperBound()Returns the upper bound of the support for the distribution.doubleinverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.voidsetDegreesOfFreedom(double degreesOfFreedom)Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.- Parameters:
degreesOfFreedom- the degrees of freedom.inverseCumAccuracy- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY)- Since:
- 2.1
-
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom)
Create a t distribution using the given degrees of freedom.- Parameters:
degreesOfFreedom- the degrees of freedom.
-
-
Method Detail
-
setDegreesOfFreedom
@Deprecated public void setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the degrees of freedom.- Specified by:
setDegreesOfFreedomin interfaceTDistribution- Parameters:
degreesOfFreedom- the new degrees of freedom.
-
getDegreesOfFreedom
public double getDegreesOfFreedom()
Access the degrees of freedom.- Specified by:
getDegreesOfFreedomin interfaceTDistribution- Returns:
- the degrees of freedom.
-
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
densityin classAbstractContinuousDistribution- Parameters:
x- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathExceptionFor this distribution, X, this method returns P(X <x).- Specified by:
cumulativeProbabilityin interfaceDistribution- Parameters:
x- the value at which the CDF is evaluated.- Returns:
- CDF evaluated at
x. - Throws:
MathException- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathExceptionFor this distribution, X, this method returns the critical point x, such that P(X < x) =p.Returns
Double.NEGATIVE_INFINITYfor p=0 andDouble.POSITIVE_INFINITYfor p=1.- Specified by:
inverseCumulativeProbabilityin interfaceContinuousDistribution- Overrides:
inverseCumulativeProbabilityin classAbstractContinuousDistribution- Parameters:
p- the desired probability- Returns:
- x, such that P(X < x) =
p - Throws:
MathException- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException- ifpis not a valid probability.
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainLowerBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getDomainUpperBoundin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)to find critical values.- Specified by:
getInitialDomainin classAbstractContinuousDistribution- Parameters:
p- the desired probability for the critical value- Returns:
- initial domain value
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracyin classAbstractContinuousDistribution- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always negative infinity no matter the parameters.- Returns:
- lower bound of the support (always Double.NEGATIVE_INFINITY)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean. For degrees of freedom parameter df, the mean is- if
df > 1then0 - else
undefined
- Returns:
- the mean
- Since:
- 2.2
- if
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For degrees of freedom parameter df, the variance is- if
df > 2thendf / (df - 2) - if
1 < df <= 2thenpositive infinity - else
undefined
- Returns:
- the variance
- Since:
- 2.2
- if
-
-