Class AbstractScalarDifferentiableOptimizer
- java.lang.Object
-
- org.apache.commons.math.optimization.general.AbstractScalarDifferentiableOptimizer
-
- All Implemented Interfaces:
DifferentiableMultivariateRealOptimizer
- Direct Known Subclasses:
NonLinearConjugateGradientOptimizer,PowellOptimizer
public abstract class AbstractScalarDifferentiableOptimizer extends java.lang.Object implements DifferentiableMultivariateRealOptimizer
Base class for implementing optimizers for multivariate scalar functions.This base class handles the boilerplate methods associated to thresholds settings, iterations and evaluations counting.
- Since:
- 2.0
- Version:
- $Revision: 1069567 $ $Date: 2011-02-10 22:07:26 +0100 (jeu. 10 févr. 2011) $
-
-
Field Summary
Fields Modifier and Type Field Description protected RealConvergenceCheckercheckerDeprecated.static intDEFAULT_MAX_ITERATIONSDefault maximal number of iterations allowed.protected GoalTypegoalDeprecated.protected double[]pointDeprecated.
-
Constructor Summary
Constructors Modifier Constructor Description protectedAbstractScalarDifferentiableOptimizer()Simple constructor with default settings.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected double[]computeObjectiveGradient(double[] evaluationPoint)Compute the gradient vector.protected doublecomputeObjectiveValue(double[] evaluationPoint)Compute the objective function value.protected abstract RealPointValuePairdoOptimize()Perform the bulk of optimization algorithm.RealConvergenceCheckergetConvergenceChecker()Get the convergence checker.intgetEvaluations()Get the number of evaluations of the objective function.intgetGradientEvaluations()Get the number of evaluations of the objective function gradient.intgetIterations()Get the number of iterations realized by the algorithm.intgetMaxEvaluations()Get the maximal number of functions evaluations.intgetMaxIterations()Get the maximal number of iterations of the algorithm.protected voidincrementIterationsCounter()Increment the iterations counter by 1.RealPointValuePairoptimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint)Optimizes an objective function.voidsetConvergenceChecker(RealConvergenceChecker convergenceChecker)Set the convergence checker.voidsetMaxEvaluations(int maxEvaluations)Set the maximal number of functions evaluations.voidsetMaxIterations(int maxIterations)Set the maximal number of iterations of the algorithm.
-
-
-
Field Detail
-
DEFAULT_MAX_ITERATIONS
public static final int DEFAULT_MAX_ITERATIONS
Default maximal number of iterations allowed.- See Also:
- Constant Field Values
-
checker
@Deprecated protected RealConvergenceChecker checker
Deprecated.Convergence checker.
-
goal
@Deprecated protected GoalType goal
Deprecated.Type of optimization.- Since:
- 2.1
-
point
@Deprecated protected double[] point
Deprecated.Current point set.
-
-
Constructor Detail
-
AbstractScalarDifferentiableOptimizer
protected AbstractScalarDifferentiableOptimizer()
Simple constructor with default settings.The convergence check is set to a
SimpleScalarValueCheckerand the maximal number of evaluation is set to its default value.
-
-
Method Detail
-
setMaxIterations
public void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.- Specified by:
setMaxIterationsin interfaceDifferentiableMultivariateRealOptimizer- Parameters:
maxIterations- maximal number of function calls
-
getMaxIterations
public int getMaxIterations()
Get the maximal number of iterations of the algorithm.- Specified by:
getMaxIterationsin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- maximal number of iterations
-
getIterations
public int getIterations()
Get the number of iterations realized by the algorithm.The number of evaluations corresponds to the last call to the
optimizemethod. It is 0 if the method has not been called yet.- Specified by:
getIterationsin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- number of iterations
-
setMaxEvaluations
public void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.- Specified by:
setMaxEvaluationsin interfaceDifferentiableMultivariateRealOptimizer- Parameters:
maxEvaluations- maximal number of function evaluations
-
getMaxEvaluations
public int getMaxEvaluations()
Get the maximal number of functions evaluations.- Specified by:
getMaxEvaluationsin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- maximal number of functions evaluations
-
getEvaluations
public int getEvaluations()
Get the number of evaluations of the objective function.The number of evaluations corresponds to the last call to the
optimizemethod. It is 0 if the method has not been called yet.- Specified by:
getEvaluationsin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- number of evaluations of the objective function
-
getGradientEvaluations
public int getGradientEvaluations()
Get the number of evaluations of the objective function gradient.The number of evaluations corresponds to the last call to the
optimizemethod. It is 0 if the method has not been called yet.- Specified by:
getGradientEvaluationsin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- number of evaluations of the objective function gradient
-
setConvergenceChecker
public void setConvergenceChecker(RealConvergenceChecker convergenceChecker)
Set the convergence checker.- Specified by:
setConvergenceCheckerin interfaceDifferentiableMultivariateRealOptimizer- Parameters:
convergenceChecker- object to use to check for convergence
-
getConvergenceChecker
public RealConvergenceChecker getConvergenceChecker()
Get the convergence checker.- Specified by:
getConvergenceCheckerin interfaceDifferentiableMultivariateRealOptimizer- Returns:
- object used to check for convergence
-
incrementIterationsCounter
protected void incrementIterationsCounter() throws OptimizationExceptionIncrement the iterations counter by 1.- Throws:
OptimizationException- if the maximal number of iterations is exceeded
-
computeObjectiveGradient
protected double[] computeObjectiveGradient(double[] evaluationPoint) throws FunctionEvaluationExceptionCompute the gradient vector.- Parameters:
evaluationPoint- point at which the gradient must be evaluated- Returns:
- gradient at the specified point
- Throws:
FunctionEvaluationException- if the function gradient
-
computeObjectiveValue
protected double computeObjectiveValue(double[] evaluationPoint) throws FunctionEvaluationExceptionCompute the objective function value.- Parameters:
evaluationPoint- point at which the objective function must be evaluated- Returns:
- objective function value at specified point
- Throws:
FunctionEvaluationException- if the function cannot be evaluated or its dimension doesn't match problem dimension or the maximal number of iterations is exceeded
-
optimize
public RealPointValuePair optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint) throws FunctionEvaluationException, OptimizationException, java.lang.IllegalArgumentException
Optimizes an objective function.- Specified by:
optimizein interfaceDifferentiableMultivariateRealOptimizer- Parameters:
f- objective functiongoalType- type of optimization goal: eitherGoalType.MAXIMIZEorGoalType.MINIMIZEstartPoint- the start point for optimization- Returns:
- the point/value pair giving the optimal value for objective function
- Throws:
FunctionEvaluationException- if the objective function throws one during the searchOptimizationException- if the algorithm failed to convergejava.lang.IllegalArgumentException- if the start point dimension is wrong
-
doOptimize
protected abstract RealPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, java.lang.IllegalArgumentException
Perform the bulk of optimization algorithm.- Returns:
- the point/value pair giving the optimal value for objective function
- Throws:
FunctionEvaluationException- if the objective function throws one during the searchOptimizationException- if the algorithm failed to convergejava.lang.IllegalArgumentException- if the start point dimension is wrong
-
-