Uses of Class
org.apache.commons.math3.exception.NotStrictlyPositiveException
Packages that use NotStrictlyPositiveException
Package
Description
Parent package for common numerical analysis procedures, including root finding,
function interpolation and integration.
The
function package contains function objects that wrap the
methods contained in Math, as well as common
mathematical functions such as the gaussian and sinc functions.Numerical integration (quadrature) algorithms for univariate real functions.
Gauss family of quadrature schemes.
Univariate real functions interpolation algorithms.
Root finding algorithms, for univariate real functions.
Implementations of common discrete and continuous distributions.
Fitting of parameters against distributions.
This package provides Genetic Algorithms components and implementations.
Linear algebra support.
Algorithms for optimizing a scalar function.
This package provides optimization algorithms that do not require derivatives.
Algorithms for optimizing a vector function.
This package provides optimization algorithms that don't require derivatives.
Random number and random data generators.
Correlations/Covariance computations.
Classes providing hypothesis testing.
Classes providing binomial proportion confidence interval construction.
Implementations of transform methods, including Fast Fourier transforms.
Convenience routines and common data structures used throughout the commons-math library.
-
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis
Methods in org.apache.commons.math3.analysis that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionstatic double[]FunctionUtils.sample(UnivariateFunction f, double min, double max, int n) Samples the specified univariate real function on the specified interval. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis.function
Methods in org.apache.commons.math3.analysis.function that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptiondouble[]Gaussian.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.double[]Logistic.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.doubleGaussian.Parametric.value(double x, double... param) Computes the value of the Gaussian atx.doubleLogistic.Parametric.value(double x, double... param) Computes the value of the sigmoid atx.Constructors in org.apache.commons.math3.analysis.function that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionGaussian(double mean, double sigma) Normalized gaussian with given mean and standard deviation.Gaussian(double norm, double mean, double sigma) Gaussian with given normalization factor, mean and standard deviation.Logistic(double k, double m, double b, double q, double a, double n) -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis.integration
Constructors in org.apache.commons.math3.analysis.integration that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionprotectedBaseAbstractUnivariateIntegrator(double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Construct an integrator with given accuracies and iteration counts.protectedBaseAbstractUnivariateIntegrator(int minimalIterationCount, int maximalIterationCount) Construct an integrator with given iteration counts.IterativeLegendreGaussIntegrator(int n, double relativeAccuracy, double absoluteAccuracy) Builds an integrator with given accuracies.IterativeLegendreGaussIntegrator(int n, double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Builds an integrator with given accuracies and iterations counts.IterativeLegendreGaussIntegrator(int n, int minimalIterationCount, int maximalIterationCount) Builds an integrator with given iteration counts.LegendreGaussIntegrator(int n, double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Deprecated.Build a Legendre-Gauss integrator with given accuracies and iterations counts.MidPointIntegrator(double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Build a midpoint integrator with given accuracies and iterations counts.MidPointIntegrator(int minimalIterationCount, int maximalIterationCount) Build a midpoint integrator with given iteration counts.RombergIntegrator(double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Build a Romberg integrator with given accuracies and iterations counts.RombergIntegrator(int minimalIterationCount, int maximalIterationCount) Build a Romberg integrator with given iteration counts.SimpsonIntegrator(double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Build a Simpson integrator with given accuracies and iterations counts.SimpsonIntegrator(int minimalIterationCount, int maximalIterationCount) Build a Simpson integrator with given iteration counts.TrapezoidIntegrator(double relativeAccuracy, double absoluteAccuracy, int minimalIterationCount, int maximalIterationCount) Build a trapezoid integrator with given accuracies and iterations counts.TrapezoidIntegrator(int minimalIterationCount, int maximalIterationCount) Build a trapezoid integrator with given iteration counts. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis.integration.gauss
Methods in org.apache.commons.math3.analysis.integration.gauss that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionPair<double[], double[]> BaseRuleFactory.getRule(int numberOfPoints) Gets a copy of the quadrature rule with the given number of integration points.GaussIntegratorFactory.legendre(int numberOfPoints, double lowerBound, double upperBound) Creates a Gauss-Legendre integrator of the given order.GaussIntegratorFactory.legendreHighPrecision(int numberOfPoints) Creates a Gauss-Legendre integrator of the given order.GaussIntegratorFactory.legendreHighPrecision(int numberOfPoints, double lowerBound, double upperBound) Creates an integrator of the given order, and whose call to theintegratemethod will perform an integration on the given interval. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis.interpolation
Constructors in org.apache.commons.math3.analysis.interpolation that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionMicrosphereInterpolator(int elements, int exponent) Deprecated.Create a microsphere interpolator. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.analysis.solvers
Methods in org.apache.commons.math3.analysis.solvers that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionstatic double[]UnivariateSolverUtils.bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static double[]UnivariateSolverUtils.bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.distribution
Methods in org.apache.commons.math3.distribution that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionObject[]EnumeratedDistribution.sample(int sampleSize) Generate a random sample from the distribution.T[]Generate a random sample from the distribution.double[][]MultivariateRealDistribution.sample(int sampleSize) Generates a list of a random value vectors from the distribution.Constructors in org.apache.commons.math3.distribution that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionExponentialDistribution(RandomGenerator rng, double mean) Creates an exponential distribution.ExponentialDistribution(RandomGenerator rng, double mean, double inverseCumAccuracy) Creates an exponential distribution.FDistribution(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) Creates an F distribution using the given degrees of freedom.FDistribution(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, double inverseCumAccuracy) Creates an F distribution using the given degrees of freedom and inverse cumulative probability accuracy.FDistribution(RandomGenerator rng, double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) Creates an F distribution.FDistribution(RandomGenerator rng, double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, double inverseCumAccuracy) Creates an F distribution.GammaDistribution(double shape, double scale) Creates a new gamma distribution with specified values of the shape and scale parameters.GammaDistribution(double shape, double scale, double inverseCumAccuracy) Creates a new gamma distribution with specified values of the shape and scale parameters.GammaDistribution(RandomGenerator rng, double shape, double scale) Creates a Gamma distribution.GammaDistribution(RandomGenerator rng, double shape, double scale, double inverseCumAccuracy) Creates a Gamma distribution.HypergeometricDistribution(int populationSize, int numberOfSuccesses, int sampleSize) Construct a new hypergeometric distribution with the specified population size, number of successes in the population, and sample size.HypergeometricDistribution(RandomGenerator rng, int populationSize, int numberOfSuccesses, int sampleSize) Creates a new hypergeometric distribution.Deprecated.LogNormalDistribution(double scale, double shape) Create a log-normal distribution using the specified scale and shape.LogNormalDistribution(double scale, double shape, double inverseCumAccuracy) Create a log-normal distribution using the specified scale, shape and inverse cumulative distribution accuracy.LogNormalDistribution(RandomGenerator rng, double scale, double shape) Creates a log-normal distribution.LogNormalDistribution(RandomGenerator rng, double scale, double shape, double inverseCumAccuracy) Creates a log-normal distribution.NormalDistribution(double mean, double sd) Create a normal distribution using the given mean and standard deviation.NormalDistribution(double mean, double sd, double inverseCumAccuracy) Create a normal distribution using the given mean, standard deviation and inverse cumulative distribution accuracy.NormalDistribution(RandomGenerator rng, double mean, double sd) Creates a normal distribution.NormalDistribution(RandomGenerator rng, double mean, double sd, double inverseCumAccuracy) Creates a normal distribution.ParetoDistribution(double scale, double shape) Create a Pareto distribution using the specified scale and shape.ParetoDistribution(double scale, double shape, double inverseCumAccuracy) Create a Pareto distribution using the specified scale, shape and inverse cumulative distribution accuracy.ParetoDistribution(RandomGenerator rng, double scale, double shape) Creates a Pareto distribution.ParetoDistribution(RandomGenerator rng, double scale, double shape, double inverseCumAccuracy) Creates a Pareto distribution.PascalDistribution(int r, double p) Create a Pascal distribution with the given number of successes and probability of success.PascalDistribution(RandomGenerator rng, int r, double p) Create a Pascal distribution with the given number of successes and probability of success.PoissonDistribution(double p) Creates a new Poisson distribution with specified mean.PoissonDistribution(double p, double epsilon) Creates a new Poisson distribution with the specified mean and convergence criterion.PoissonDistribution(double p, double epsilon, int maxIterations) Creates a new Poisson distribution with specified mean, convergence criterion and maximum number of iterations.PoissonDistribution(RandomGenerator rng, double p, double epsilon, int maxIterations) Creates a new Poisson distribution with specified mean, convergence criterion and maximum number of iterations.TDistribution(double degreesOfFreedom) Create a t distribution using the given degrees of freedom.TDistribution(double degreesOfFreedom, double inverseCumAccuracy) Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.TDistribution(RandomGenerator rng, double degreesOfFreedom) Creates a t distribution.TDistribution(RandomGenerator rng, double degreesOfFreedom, double inverseCumAccuracy) Creates a t distribution.WeibullDistribution(double alpha, double beta) Create a Weibull distribution with the given shape and scale and a location equal to zero.WeibullDistribution(RandomGenerator rng, double alpha, double beta) Creates a Weibull distribution.WeibullDistribution(RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy) Creates a Weibull distribution.ZipfDistribution(RandomGenerator rng, int numberOfElements, double exponent) Creates a Zipf distribution. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.distribution.fitting
Methods in org.apache.commons.math3.distribution.fitting that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionMultivariateNormalMixtureExpectationMaximization.estimate(double[][] data, int numComponents) Helper method to create a multivariate normal mixture model which can be used to initializeMultivariateNormalMixtureExpectationMaximization.fit(MixtureMultivariateNormalDistribution).voidMultivariateNormalMixtureExpectationMaximization.fit(MixtureMultivariateNormalDistribution initialMixture) Fit a mixture model to the data supplied to the constructor.voidMultivariateNormalMixtureExpectationMaximization.fit(MixtureMultivariateNormalDistribution initialMixture, int maxIterations, double threshold) Fit a mixture model to the data supplied to the constructor.Constructors in org.apache.commons.math3.distribution.fitting that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionMultivariateNormalMixtureExpectationMaximization(double[][] data) Creates an object to fit a multivariate normal mixture model to data. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.genetics
Constructors in org.apache.commons.math3.genetics that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionNPointCrossover(int crossoverPoints) Creates a newNPointCrossoverpolicy using the given number of points. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.linear
Methods in org.apache.commons.math3.linear that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionabstract FieldMatrix<T> AbstractFieldMatrix.createMatrix(int rowDimension, int columnDimension) Create a new FieldMatrixof the same type as the instance with the supplied row and column dimensions. abstract RealMatrixAbstractRealMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.Array2DRowFieldMatrix.createMatrix(int rowDimension, int columnDimension) Create a new FieldMatrixof the same type as the instance with the supplied row and column dimensions. Array2DRowRealMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.BlockFieldMatrix.createMatrix(int rowDimension, int columnDimension) Create a new FieldMatrixof the same type as the instance with the supplied row and column dimensions. BlockRealMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.DiagonalMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.FieldMatrix.createMatrix(int rowDimension, int columnDimension) Create a new FieldMatrixof the same type as the instance with the supplied row and column dimensions. OpenMapRealMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.RealMatrix.createMatrix(int rowDimension, int columnDimension) Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.Constructors in org.apache.commons.math3.linear that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionprotectedAbstractFieldMatrix(Field<T> field, int rowDimension, int columnDimension) Create a new FieldMatrixwith the supplied row and column dimensions. protectedAbstractRealMatrix(int rowDimension, int columnDimension) Create a new RealMatrix with the supplied row and column dimensions.Array2DRowFieldMatrix(Field<T> field, int rowDimension, int columnDimension) Create a newFieldMatrix<T>with the supplied row and column dimensions.Array2DRowRealMatrix(int rowDimension, int columnDimension) Create a new RealMatrix with the supplied row and column dimensions.BlockFieldMatrix(int rows, int columns, T[][] blockData, boolean copyArray) Create a new dense matrix copying entries from block layout data.BlockFieldMatrix(Field<T> field, int rows, int columns) Create a new matrix with the supplied row and column dimensions.BlockRealMatrix(double[][] rawData) Create a new dense matrix copying entries from raw layout data.BlockRealMatrix(int rows, int columns) Create a new matrix with the supplied row and column dimensions.BlockRealMatrix(int rows, int columns, double[][] blockData, boolean copyArray) Create a new dense matrix copying entries from block layout data.DiagonalMatrix(int dimension) Creates a matrix with the supplied dimension.OpenMapRealMatrix(int rowDimension, int columnDimension) Build a sparse matrix with the supplied row and column dimensions. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.optim.nonlinear.scalar
Constructors in org.apache.commons.math3.optim.nonlinear.scalar that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionMultiStartMultivariateOptimizer(MultivariateOptimizer optimizer, int starts, RandomVectorGenerator generator) Create a multi-start optimizer from a single-start optimizer. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.optim.nonlinear.scalar.noderiv
Constructors in org.apache.commons.math3.optim.nonlinear.scalar.noderiv that throw NotStrictlyPositiveException -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.optim.nonlinear.vector
Constructors in org.apache.commons.math3.optim.nonlinear.vector that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionMultiStartMultivariateVectorOptimizer(MultivariateVectorOptimizer optimizer, int starts, RandomVectorGenerator generator) Deprecated.Create a multi-start optimizer from a single-start optimizer. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.optimization.direct
Constructors in org.apache.commons.math3.optimization.direct that throw NotStrictlyPositiveException -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.random
Methods in org.apache.commons.math3.random that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptiondoubleRandomData.nextExponential(double mean) Deprecated.Generates a random value from the exponential distribution with specified mean.doubleRandomDataGenerator.nextExponential(double mean) Generates a random value from the exponential distribution with specified mean.doubleRandomDataImpl.nextExponential(double mean) Deprecated.Generates a random value from the exponential distribution with specified mean.doubleRandomDataGenerator.nextF(double numeratorDf, double denominatorDf) Generates a random value from theF Distribution.doubleRandomDataImpl.nextF(double numeratorDf, double denominatorDf) Deprecated.Generates a random value from theF Distribution.doubleRandomDataGenerator.nextGamma(double shape, double scale) Generates a random value from theGamma Distribution.doubleRandomDataImpl.nextGamma(double shape, double scale) Deprecated.Generates a random value from theGamma Distribution.doubleRandomData.nextGaussian(double mu, double sigma) Deprecated.Generates a random value from the Normal (or Gaussian) distribution with specified mean and standard deviation.doubleRandomDataGenerator.nextGaussian(double mu, double sigma) Generates a random value from the Normal (or Gaussian) distribution with specified mean and standard deviation.doubleRandomDataImpl.nextGaussian(double mu, double sigma) Deprecated.Generates a random value from the Normal (or Gaussian) distribution with specified mean and standard deviation.RandomData.nextHexString(int len) Deprecated.Generates a random string of hex characters of lengthlen.RandomDataGenerator.nextHexString(int len) Generates a random string of hex characters of lengthlen.RandomDataImpl.nextHexString(int len) Deprecated.Generates a random string of hex characters of lengthlen.intRandomDataGenerator.nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) Generates a random value from theHypergeometric Distribution.intRandomDataImpl.nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) Deprecated.Generates a random value from theHypergeometric Distribution.intRandomDataGenerator.nextPascal(int r, double p) Generates a random value from thePascal Distribution.intRandomDataImpl.nextPascal(int r, double p) Deprecated.Generates a random value from thePascal Distribution.int[]RandomData.nextPermutation(int n, int k) Deprecated.Generates an integer array of lengthkwhose entries are selected randomly, without repetition, from the integers0, ..., n - 1(inclusive).int[]RandomDataGenerator.nextPermutation(int n, int k) Generates an integer array of lengthkwhose entries are selected randomly, without repetition, from the integers0, ..., n - 1(inclusive).int[]RandomDataImpl.nextPermutation(int n, int k) Deprecated.Generates an integer array of lengthkwhose entries are selected randomly, without repetition, from the integers0, ..., n - 1(inclusive).longRandomData.nextPoisson(double mean) Deprecated.Generates a random value from the Poisson distribution with the given mean.longRandomDataGenerator.nextPoisson(double mean) Generates a random value from the Poisson distribution with the given mean.longRandomDataImpl.nextPoisson(double mean) Deprecated.Generates a random value from the Poisson distribution with the given mean.Object[]RandomData.nextSample(Collection<?> c, int k) Deprecated.Returns an array ofkobjects selected randomly from the Collectionc.Object[]RandomDataGenerator.nextSample(Collection<?> c, int k) Returns an array ofkobjects selected randomly from the Collectionc.Object[]RandomDataImpl.nextSample(Collection<?> c, int k) Deprecated.Returns an array ofkobjects selected randomly from the Collectionc.RandomData.nextSecureHexString(int len) Deprecated.Generates a random string of hex characters from a secure random sequence.RandomDataGenerator.nextSecureHexString(int len) Generates a random string of hex characters from a secure random sequence.RandomDataImpl.nextSecureHexString(int len) Deprecated.Generates a random string of hex characters from a secure random sequence.doubleRandomDataGenerator.nextT(double df) Generates a random value from theT Distribution.doubleRandomDataImpl.nextT(double df) Deprecated.Generates a random value from theT Distribution.doubleRandomDataGenerator.nextWeibull(double shape, double scale) Generates a random value from theWeibull Distribution.doubleRandomDataImpl.nextWeibull(double shape, double scale) Deprecated.Generates a random value from theWeibull Distribution.intRandomDataGenerator.nextZipf(int numberOfElements, double exponent) Generates a random value from theZipf Distribution.intRandomDataImpl.nextZipf(int numberOfElements, double exponent) Deprecated.Generates a random value from theZipf Distribution.Constructors in org.apache.commons.math3.random that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionSobolSequenceGenerator(int dimension, InputStream is) Construct a new Sobol sequence generator for the given space dimension with direction vectors loaded from the given stream. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.stat.correlation
Methods in org.apache.commons.math3.stat.correlation that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionprotected RealMatrixCovariance.computeCovarianceMatrix(double[][] data) Create a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrixCovariance.computeCovarianceMatrix(double[][] data, boolean biasCorrected) Compute a covariance matrix from a rectangular array whose columns represent covariates.Constructors in org.apache.commons.math3.stat.correlation that throw NotStrictlyPositiveExceptionModifierConstructorDescriptionCovariance(double[][] data) Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(double[][] data, boolean biasCorrected) Create a Covariance matrix from a rectangular array whose columns represent covariates. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.stat.inference
Methods in org.apache.commons.math3.stat.inference that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptiondoubleChiSquareTest.chiSquare(double[] expected, long[] observed) static doubleTestUtils.chiSquare(double[] expected, long[] observed) doubleChiSquareTest.chiSquareTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.booleanChiSquareTest.chiSquareTest(double[] expected, long[] observed, double alpha) Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.static doubleTestUtils.chiSquareTest(double[] expected, long[] observed) static booleanTestUtils.chiSquareTest(double[] expected, long[] observed, double alpha) doubleGTest.g(double[] expected, long[] observed) static doubleTestUtils.g(double[] expected, long[] observed) doubleGTest.gTest(double[] expected, long[] observed) Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobservedfrequency counts to those in theexpectedarray.booleanGTest.gTest(double[] expected, long[] observed, double alpha) Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.static doubleTestUtils.gTest(double[] expected, long[] observed) static booleanTestUtils.gTest(double[] expected, long[] observed, double alpha) doubleGTest.gTestIntrinsic(double[] expected, long[] observed) Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H.static doubleTestUtils.gTestIntrinsic(double[] expected, long[] observed) protected doubleTTest.homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2) Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.protected doubleTTest.tTest(double m1, double m2, double v1, double v2, double n1, double n2) Computes p-value for 2-sided, 2-sample t-test. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.stat.interval
Methods in org.apache.commons.math3.stat.interval that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionBinomialConfidenceInterval.createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.transform
Methods in org.apache.commons.math3.transform that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptiondouble[]RealTransformer.transform(UnivariateFunction f, double min, double max, int n, TransformType type) Returns the (forward, inverse) transform of the specified real function, sampled on the specified interval. -
Uses of NotStrictlyPositiveException in org.apache.commons.math3.util
Methods in org.apache.commons.math3.util that throw NotStrictlyPositiveExceptionModifier and TypeMethodDescriptionstatic voidMathArrays.checkPositive(double[] in) Check that all entries of the input array are strictly positive.Constructors in org.apache.commons.math3.util that throw NotStrictlyPositiveException