Uses of Class
org.apache.commons.math3.exception.NullArgumentException
Packages that use NullArgumentException
Package
Description
Common classes used throughout the commons-math library.
The
function package contains function objects that wrap the
methods contained in Math, as well as common
mathematical functions such as the gaussian and sinc functions.Numerical integration (quadrature) algorithms for univariate real functions.
Univariate real functions interpolation algorithms.
Univariate real polynomials implementations, seen as differentiable
univariate real functions.
Root finding algorithms, for univariate real functions.
Complex number type and implementations of complex transcendental
functions.
Decimal floating point library for Java
Implementations of common discrete-time linear filters.
Fraction number type and fraction number formatting.
This package provides Genetic Algorithms components and implementations.
This package provides algorithms to generate the convex hull
for a set of points in an two-dimensional euclidean space.
This package provides interfaces and classes related to the convex hull problem.
Linear algebra support.
Clustering algorithms.
Algorithms for optimizing a scalar function.
Algorithms for optimizing a vector function.
Random number and random data generators.
Data storage, manipulation and summary routines.
All classes and sub-packages of this package are deprecated.
Generic univariate summary statistic objects.
Summary statistics based on moments.
Summary statistics based on ranks.
Other summary statistics.
Classes providing hypothesis testing.
Convenience routines and common data structures used throughout the commons-math library.
-
Uses of NullArgumentException in org.apache.commons.math3
Methods in org.apache.commons.math3 that throw NullArgumentException -
Uses of NullArgumentException in org.apache.commons.math3.analysis.function
Methods in org.apache.commons.math3.analysis.function that throw NullArgumentExceptionModifier and TypeMethodDescriptiondouble[]Gaussian.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.double[]HarmonicOscillator.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.double[]Logistic.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.double[]Logit.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.double[]Sigmoid.Parametric.gradient(double x, double... param) Computes the value of the gradient atx.doubleGaussian.Parametric.value(double x, double... param) Computes the value of the Gaussian atx.doubleHarmonicOscillator.Parametric.value(double x, double... param) Computes the value of the harmonic oscillator atx.doubleLogistic.Parametric.value(double x, double... param) Computes the value of the sigmoid atx.doubleLogit.Parametric.value(double x, double... param) Computes the value of the logit atx.doubleSigmoid.Parametric.value(double x, double... param) Computes the value of the sigmoid atx.Constructors in org.apache.commons.math3.analysis.function that throw NullArgumentExceptionModifierConstructorDescriptionStepFunction(double[] x, double[] y) Builds a step function from a list of arguments and the corresponding values. -
Uses of NullArgumentException in org.apache.commons.math3.analysis.integration
Methods in org.apache.commons.math3.analysis.integration that throw NullArgumentExceptionModifier and TypeMethodDescriptiondoubleBaseAbstractUnivariateIntegrator.integrate(int maxEval, UnivariateFunction f, double lower, double upper) Integrate the function in the given interval.doubleUnivariateIntegrator.integrate(int maxEval, UnivariateFunction f, double min, double max) Integrate the function in the given interval.protected voidBaseAbstractUnivariateIntegrator.setup(int maxEval, UnivariateFunction f, double lower, double upper) Prepare for computation. -
Uses of NullArgumentException in org.apache.commons.math3.analysis.interpolation
Methods in org.apache.commons.math3.analysis.interpolation that throw NullArgumentExceptionModifier and TypeMethodDescriptionvoidFieldHermiteInterpolator.addSamplePoint(T x, T[]... value) Add a sample point.T[][]FieldHermiteInterpolator.derivatives(T x, int order) Interpolate value and first derivatives at a specified abscissa.MicrosphereInterpolator.interpolate(double[][] xval, double[] yval) Deprecated.Computes an interpolating function for the data set.MicrosphereProjectionInterpolator.interpolate(double[][] xval, double[] yval) Computes an interpolating function for the data set.MultivariateInterpolator.interpolate(double[][] xval, double[] yval) Computes an interpolating function for the data set.PiecewiseBicubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[][] fval) Compute an interpolating function for the dataset.SmoothingPolynomialBicubicSplineInterpolator.interpolate(double[] xval, double[] yval, double[][] fval) Deprecated.Compute an interpolating function for the dataset.T[]Interpolate value at a specified abscissa.Constructors in org.apache.commons.math3.analysis.interpolation that throw NullArgumentExceptionModifierConstructorDescriptionMicrosphereInterpolatingFunction(double[][] xval, double[] yval, int brightnessExponent, int microsphereElements, UnitSphereRandomVectorGenerator rand) Deprecated.PiecewiseBicubicSplineInterpolatingFunction(double[] x, double[] y, double[][] f) -
Uses of NullArgumentException in org.apache.commons.math3.analysis.polynomials
Methods in org.apache.commons.math3.analysis.polynomials that throw NullArgumentExceptionModifier and TypeMethodDescriptionprotected static double[]PolynomialFunction.differentiate(double[] coefficients) Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static doublePolynomialFunction.evaluate(double[] coefficients, double argument) Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static doublePolynomialFunctionNewtonForm.evaluate(double[] a, double[] c, double z) Evaluate the Newton polynomial using nested multiplication.PolynomialFunction.value(DerivativeStructure t) Simple mathematical function.protected static voidPolynomialFunctionNewtonForm.verifyInputArray(double[] a, double[] c) Verifies that the input arrays are valid.Constructors in org.apache.commons.math3.analysis.polynomials that throw NullArgumentExceptionModifierConstructorDescriptionPolynomialFunction(double[] c) Construct a polynomial with the given coefficients.PolynomialFunctionNewtonForm(double[] a, double[] c) Construct a Newton polynomial with the given a[] and c[].PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials) Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of NullArgumentException in org.apache.commons.math3.analysis.solvers
Methods in org.apache.commons.math3.analysis.solvers that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic double[]UnivariateSolverUtils.bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static double[]UnivariateSolverUtils.bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations) This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static booleanUnivariateSolverUtils.isBracketing(UnivariateFunction function, double lower, double upper) Check whether the interval bounds bracket a root.protected voidPrepare for computation.FieldBracketingNthOrderBrentSolver.solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, AllowedSolution allowedSolution) Solve for a zero in the given interval.FieldBracketingNthOrderBrentSolver.solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, T startValue, AllowedSolution allowedSolution) Solve for a zero in the given interval, start atstartValue.static doubleUnivariateSolverUtils.solve(UnivariateFunction function, double x0, double x1) Convenience method to find a zero of a univariate real function.static doubleUnivariateSolverUtils.solve(UnivariateFunction function, double x0, double x1, double absoluteAccuracy) Convenience method to find a zero of a univariate real function.Complex[]LaguerreSolver.solveAllComplex(double[] coefficients, double initial) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.Complex[]LaguerreSolver.solveAllComplex(double[] coefficients, double initial, int maxEval) Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.LaguerreSolver.solveComplex(double[] coefficients, double initial) Find a complex root for the polynomial with the given coefficients, starting from the given initial value.LaguerreSolver.solveComplex(double[] coefficients, double initial, int maxEval) Find a complex root for the polynomial with the given coefficients, starting from the given initial value.protected voidBaseAbstractUnivariateSolver.verifyBracketing(double lower, double upper) Check that the endpoints specify an interval and the function takes opposite signs at the endpoints.static voidUnivariateSolverUtils.verifyBracketing(UnivariateFunction function, double lower, double upper) Check that the endpoints specify an interval and the end points bracket a root. -
Uses of NullArgumentException in org.apache.commons.math3.complex
Methods in org.apache.commons.math3.complex that throw NullArgumentExceptionModifier and TypeMethodDescriptionReturns aComplexwhose value is(this + addend).Returns aComplexwhose value is(this / divisor).static ComplexFormatComplexFormat.getInstance(String imaginaryCharacter, Locale locale) Returns the default complex format for the given locale.Returns aComplexwhose value isthis * factor.Returns of value of this complex number raised to the power ofx.Returns aComplexwhose value is(this - subtrahend).Constructors in org.apache.commons.math3.complex that throw NullArgumentExceptionModifierConstructorDescriptionComplexFormat(String imaginaryCharacter) Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat format) Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat realFormat, NumberFormat imaginaryFormat) Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.ComplexFormat(NumberFormat format) Create an instance with a custom number format for both real and imaginary parts.ComplexFormat(NumberFormat realFormat, NumberFormat imaginaryFormat) Create an instance with a custom number format for the real part and a custom number format for the imaginary part. -
Uses of NullArgumentException in org.apache.commons.math3.dfp
Methods in org.apache.commons.math3.dfp that throw NullArgumentExceptionModifier and TypeMethodDescriptionBracketingNthOrderBrentSolverDFP.solve(int maxEval, UnivariateDfpFunction f, Dfp min, Dfp max, AllowedSolution allowedSolution) Deprecated.Solve for a zero in the given interval.BracketingNthOrderBrentSolverDFP.solve(int maxEval, UnivariateDfpFunction f, Dfp min, Dfp max, Dfp startValue, AllowedSolution allowedSolution) Deprecated.Solve for a zero in the given interval, start atstartValue. -
Uses of NullArgumentException in org.apache.commons.math3.filter
Methods in org.apache.commons.math3.filter that throw NullArgumentExceptionModifier and TypeMethodDescriptionvoidKalmanFilter.correct(double[] z) Correct the current state estimate with an actual measurement.voidKalmanFilter.correct(RealVector z) Correct the current state estimate with an actual measurement.Constructors in org.apache.commons.math3.filter that throw NullArgumentExceptionModifierConstructorDescriptionDefaultMeasurementModel(double[][] measMatrix, double[][] measNoise) Create a newMeasurementModel, taking double arrays as input parameters for the respective measurement matrix and noise.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise) Create a newProcessModel, taking double arrays as input parameters.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise, double[] initialStateEstimate, double[][] initialErrorCovariance) Create a newProcessModel, taking double arrays as input parameters.KalmanFilter(ProcessModel process, MeasurementModel measurement) Creates a new Kalman filter with the given process and measurement models. -
Uses of NullArgumentException in org.apache.commons.math3.fraction
Methods in org.apache.commons.math3.fraction that throw NullArgumentExceptionModifier and TypeMethodDescriptionBigFraction.add(BigInteger bg) Adds the value of this fraction to the passedBigInteger, returning the result in reduced form. -
Uses of NullArgumentException in org.apache.commons.math3.genetics
Methods in org.apache.commons.math3.genetics that throw NullArgumentExceptionModifier and TypeMethodDescriptionvoidListPopulation.setChromosomes(List<Chromosome> chromosomes) Deprecated.Constructors in org.apache.commons.math3.genetics that throw NullArgumentExceptionModifierConstructorDescriptionElitisticListPopulation(List<Chromosome> chromosomes, int populationLimit, double elitismRate) Creates a newElitisticListPopulationinstance.ListPopulation(List<Chromosome> chromosomes, int populationLimit) Creates a new ListPopulation instance. -
Uses of NullArgumentException in org.apache.commons.math3.geometry.euclidean.twod.hull
Methods in org.apache.commons.math3.geometry.euclidean.twod.hull that throw NullArgumentExceptionModifier and TypeMethodDescriptionConvexHullGenerator2D.generate(Collection<Vector2D> points) Builds the convex hull from the set of input points. -
Uses of NullArgumentException in org.apache.commons.math3.geometry.hull
Methods in org.apache.commons.math3.geometry.hull that throw NullArgumentExceptionModifier and TypeMethodDescriptionConvexHull<S, P> ConvexHullGenerator.generate(Collection<P> points) Builds the convex hull from the set of input points. -
Uses of NullArgumentException in org.apache.commons.math3.linear
Methods in org.apache.commons.math3.linear that throw NullArgumentExceptionModifier and TypeMethodDescriptionConstruct a vector by appending a T to this vector.protected static voidIterativeLinearSolver.checkParameters(RealLinearOperator a, RealVector b, RealVector x0) Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected static voidPreconditionedIterativeLinearSolver.checkParameters(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected voidAbstractFieldMatrix.checkSubMatrixIndex(int[] selectedRows, int[] selectedColumns) Check if submatrix ranges indices are valid.static voidMatrixUtils.checkSubMatrixIndex(AnyMatrix m, int[] selectedRows, int[] selectedColumns) Check if submatrix ranges indices are valid.voidAbstractFieldMatrix.copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination) Copy a submatrix.voidAbstractRealMatrix.copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination) Copy a submatrix.voidFieldMatrix.copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination) Copy a submatrix.voidRealMatrix.copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination) Copy a submatrix.static <T extends FieldElement<T>>
FieldMatrix<T> MatrixUtils.createColumnFieldMatrix(T[] columnData) Creates a columnFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils.createColumnRealMatrix(double[] columnData) Creates a columnRealMatrixusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T> MatrixUtils.createFieldMatrix(T[][] data) Returns aFieldMatrixwhose entries are the the values in the the input array.static <T extends FieldElement<T>>
FieldVector<T> MatrixUtils.createFieldVector(T[] data) Creates aFieldVectorusing the data from the input array.static RealMatrixMatrixUtils.createRealMatrix(double[][] data) Returns aRealMatrixwhose entries are the the values in the the input array.static RealVectorMatrixUtils.createRealVector(double[] data) Creates aRealVectorusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T> MatrixUtils.createRowFieldMatrix(T[] rowData) Create a rowFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils.createRowRealMatrix(double[] rowData) Create a rowRealMatrixusing the data from the input array.protected static <T extends FieldElement<T>>
Field<T> AbstractFieldMatrix.extractField(T[][] d) Get the elements type from an array.AbstractFieldMatrix.getSubMatrix(int[] selectedRows, int[] selectedColumns) Get a submatrix.AbstractRealMatrix.getSubMatrix(int[] selectedRows, int[] selectedColumns) Gets a submatrix.FieldMatrix.getSubMatrix(int[] selectedRows, int[] selectedColumns) Get a submatrix.RealMatrix.getSubMatrix(int[] selectedRows, int[] selectedColumns) Gets a submatrix.static RealMatrixMatrixUtils.inverse(RealMatrix matrix) Computes the inverse of the given matrix.static RealMatrixMatrixUtils.inverse(RealMatrix matrix, double threshold) Computes the inverse of the given matrix.Map an addition operation to each entry.Map an addition operation to each entry.Map an addition operation to each entry.ArrayFieldVector.mapAddToSelf(T d) Map an addition operation to each entry.FieldVector.mapAddToSelf(T d) Map an addition operation to each entry.SparseFieldVector.mapAddToSelf(T d) Map an addition operation to each entry.Map a division operation to each entry.Map a division operation to each entry.Map a division operation to each entry.ArrayFieldVector.mapDivideToSelf(T d) Map a division operation to each entry.FieldVector.mapDivideToSelf(T d) Map a division operation to each entry.SparseFieldVector.mapDivideToSelf(T d) Map a division operation to each entry.ArrayFieldVector.mapMultiply(T d) Map a multiplication operation to each entry.FieldVector.mapMultiply(T d) Map a multiplication operation to each entry.SparseFieldVector.mapMultiply(T d) Map a multiplication operation to each entry.ArrayFieldVector.mapMultiplyToSelf(T d) Map a multiplication operation to each entry.FieldVector.mapMultiplyToSelf(T d) Map a multiplication operation to each entry.SparseFieldVector.mapMultiplyToSelf(T d) Map a multiplication operation to each entry.ArrayFieldVector.mapSubtract(T d) Map a subtraction operation to each entry.FieldVector.mapSubtract(T d) Map a subtraction operation to each entry.SparseFieldVector.mapSubtract(T d) Map a subtraction operation to each entry.ArrayFieldVector.mapSubtractToSelf(T d) Map a subtraction operation to each entry.FieldVector.mapSubtractToSelf(T d) Map a subtraction operation to each entry.SparseFieldVector.mapSubtractToSelf(T d) Map a subtraction operation to each entry.voidSet a single element.voidAbstractFieldMatrix.setSubMatrix(T[][] subMatrix, int row, int column) Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidAbstractRealMatrix.setSubMatrix(double[][] subMatrix, int row, int column) Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidArray2DRowFieldMatrix.setSubMatrix(T[][] subMatrix, int row, int column) Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidArray2DRowRealMatrix.setSubMatrix(double[][] subMatrix, int row, int column) Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidBlockFieldMatrix.setSubMatrix(T[][] subMatrix, int row, int column) Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidBlockRealMatrix.setSubMatrix(double[][] subMatrix, int row, int column) Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidFieldMatrix.setSubMatrix(T[][] subMatrix, int row, int column) Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidRealMatrix.setSubMatrix(double[][] subMatrix, int row, int column) Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.IterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solve(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, boolean goodb, double shift) Returns the solution to the system (A - shift · I) · x = b.SymmLQ.solve(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.ConjugateGradient.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.PreconditionedIterativeLinearSolver.solveInPlace(RealLinearOperator a, RealVector b, RealVector x0) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift) Returns an estimate of the solution to the linear system (A - shift · I) · x = b.SymmLQ.solveInPlace(RealLinearOperator a, RealVector b, RealVector x) Returns an estimate of the solution to the linear system A · x = b.Constructors in org.apache.commons.math3.linear that throw NullArgumentExceptionModifierConstructorDescriptionArray2DRowFieldMatrix(Field<T> field, T[][] d) Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(Field<T> field, T[][] d, boolean copyArray) Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d) Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d, boolean copyArray) Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowRealMatrix(double[][] d) Create a newRealMatrixusing the input array as the underlying data array.Array2DRowRealMatrix(double[][] d, boolean copyArray) Create a new RealMatrix using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d) Construct a vector from an array, copying the input array.ArrayFieldVector(Field<T> field, T[] d, boolean copyArray) Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d, int pos, int size) Construct a vector from part of a array.ArrayFieldVector(Field<T> field, T[] v1, T[] v2) Construct a vector by appending one vector to another vector.Construct a vector from another vector, using a deep copy.ArrayFieldVector(ArrayFieldVector<T> v, boolean deep) Construct a vector from another vector.ArrayFieldVector(ArrayFieldVector<T> v1, ArrayFieldVector<T> v2) Deprecated.as of 3.2, replaced byArrayFieldVector(FieldVector, FieldVector)ArrayFieldVector(ArrayFieldVector<T> v1, T[] v2) Deprecated.as of 3.2, replaced byArrayFieldVector(FieldVector, FieldElement[])Construct a vector from another vector, using a deep copy.ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2) Construct a vector by appending one vector to another vector.ArrayFieldVector(FieldVector<T> v1, T[] v2) Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] d) Construct a vector from an array, copying the input array.ArrayFieldVector(T[] d, boolean copyArray) Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(T[] d, int pos, int size) Construct a vector from part of a array.ArrayFieldVector(T[] v1, ArrayFieldVector<T> v2) Deprecated.as of 3.2, replaced byArrayFieldVector(FieldElement[], FieldVector)ArrayFieldVector(T[] v1, FieldVector<T> v2) Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] v1, T[] v2) Construct a vector by appending one vector to another vector.ArrayRealVector(double[] d, boolean copyArray) Create a new ArrayRealVector using the input array as the underlying data array.ArrayRealVector(double[] d, int pos, int size) Construct a vector from part of a array.ArrayRealVector(Double[] d, int pos, int size) Construct a vector from part of an array.Construct a vector from another vector, using a deep copy.Construct a vector from another vector, using a deep copy.ConjugateGradient(IterationManager manager, double delta, boolean check) Creates a new instance of this class, with default stopping criterion and custom iteration manager.DiagonalMatrix(double[] d, boolean copyArray) Creates a matrix using the input array as the underlying data.IterativeLinearSolver(IterationManager manager) Creates a new instance of this class, with custom iteration manager.Creates a new instance of this class, with custom iteration manager.SparseFieldVector(Field<T> field, T[] values) Create from a Field array. -
Uses of NullArgumentException in org.apache.commons.math3.ml.clustering
Methods in org.apache.commons.math3.ml.clustering that throw NullArgumentException -
Uses of NullArgumentException in org.apache.commons.math3.optim.nonlinear.scalar
Constructors in org.apache.commons.math3.optim.nonlinear.scalar that throw NullArgumentExceptionModifierConstructorDescriptionMultiStartMultivariateOptimizer(MultivariateOptimizer optimizer, int starts, RandomVectorGenerator generator) Create a multi-start optimizer from a single-start optimizer. -
Uses of NullArgumentException in org.apache.commons.math3.optim.nonlinear.vector
Constructors in org.apache.commons.math3.optim.nonlinear.vector that throw NullArgumentExceptionModifierConstructorDescriptionMultiStartMultivariateVectorOptimizer(MultivariateVectorOptimizer optimizer, int starts, RandomVectorGenerator generator) Deprecated.Create a multi-start optimizer from a single-start optimizer. -
Uses of NullArgumentException in org.apache.commons.math3.random
Methods in org.apache.commons.math3.random that throw NullArgumentExceptionModifier and TypeMethodDescriptionvoidValueServer.computeDistribution()Computes the empirical distribution using values from the file invaluesFileURL, using the default number of bins.voidValueServer.computeDistribution(int binCount) Computes the empirical distribution using values from the file invaluesFileURLandbinCountbins.voidEmpiricalDistribution.load(double[] in) Computes the empirical distribution from the provided array of numbers.voidComputes the empirical distribution from the input file.voidComputes the empirical distribution using data read from a URL.Constructors in org.apache.commons.math3.random that throw NullArgumentExceptionModifierConstructorDescriptionHaltonSequenceGenerator(int dimension, int[] bases, int[] weights) Construct a new Halton sequence generator with the given base numbers and weights for each dimension.StableRandomGenerator(RandomGenerator generator, double alpha, double beta) Create a new generator. -
Uses of NullArgumentException in org.apache.commons.math3.stat
Methods in org.apache.commons.math3.stat that throw NullArgumentExceptionModifier and TypeMethodDescriptionvoidFrequency.merge(Collection<Frequency> others) Merge aCollectionofFrequencyobjects into this instance.voidMerge another Frequency object's counts into this instance. -
Uses of NullArgumentException in org.apache.commons.math3.stat.clustering
Methods in org.apache.commons.math3.stat.clustering that throw NullArgumentException -
Uses of NullArgumentException in org.apache.commons.math3.stat.descriptive
Methods in org.apache.commons.math3.stat.descriptive that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic voidDescriptiveStatistics.copy(DescriptiveStatistics source, DescriptiveStatistics dest) Copies source to dest.static voidSummaryStatistics.copy(SummaryStatistics source, SummaryStatistics dest) Copies source to dest.static voidSynchronizedDescriptiveStatistics.copy(SynchronizedDescriptiveStatistics source, SynchronizedDescriptiveStatistics dest) Copies source to dest.static voidSynchronizedSummaryStatistics.copy(SynchronizedSummaryStatistics source, SynchronizedSummaryStatistics dest) Copies source to dest.Constructors in org.apache.commons.math3.stat.descriptive that throw NullArgumentExceptionModifierConstructorDescriptionAggregateSummaryStatistics(SummaryStatistics prototypeStatistics) Initializes a new AggregateSummaryStatistics with the specified statistics object as a prototype for contributing statistics and for the internal aggregate statistics.DescriptiveStatistics(DescriptiveStatistics original) Copy constructor.SummaryStatistics(SummaryStatistics original) A copy constructor.A copy constructor.A copy constructor. -
Uses of NullArgumentException in org.apache.commons.math3.stat.descriptive.moment
Methods in org.apache.commons.math3.stat.descriptive.moment that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic voidGeometricMean.copy(GeometricMean source, GeometricMean dest) Copies source to dest.static voidCopies source to dest.static voidCopies source to dest.static voidSecondMoment.copy(SecondMoment source, SecondMoment dest) Copies source to dest.static voidSemiVariance.copy(SemiVariance source, SemiVariance dest) Copies source to dest.static voidCopies source to dest.static voidStandardDeviation.copy(StandardDeviation source, StandardDeviation dest) Copies source to dest.static voidCopies source to dest.Constructors in org.apache.commons.math3.stat.descriptive.moment that throw NullArgumentExceptionModifierConstructorDescriptionGeometricMean(GeometricMean original) Copy constructor, creates a newGeometricMeanidentical to theoriginalCopy constructor, creates a newKurtosisidentical to theoriginalCopy constructor, creates a newMeanidentical to theoriginalSecondMoment(SecondMoment original) Copy constructor, creates a newSecondMomentidentical to theoriginalSemiVariance(SemiVariance original) Copy constructor, creates a newSemiVarianceidentical to theoriginalCopy constructor, creates a newSkewnessidentical to theoriginalStandardDeviation(StandardDeviation original) Copy constructor, creates a newStandardDeviationidentical to theoriginalCopy constructor, creates a newVarianceidentical to theoriginal -
Uses of NullArgumentException in org.apache.commons.math3.stat.descriptive.rank
Methods in org.apache.commons.math3.stat.descriptive.rank that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic voidCopies source to dest.static voidCopies source to dest.Constructors in org.apache.commons.math3.stat.descriptive.rank that throw NullArgumentExceptionModifierConstructorDescriptionCopy constructor, creates a newMaxidentical to theoriginalCopy constructor, creates a newMedianidentical to theoriginalCopy constructor, creates a newMinidentical to theoriginalPercentile(Percentile original) Copy constructor, creates a newPercentileidentical to theoriginal -
Uses of NullArgumentException in org.apache.commons.math3.stat.descriptive.summary
Methods in org.apache.commons.math3.stat.descriptive.summary that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic voidCopies source to dest.static voidCopies source to dest.static voidCopies source to dest.static voidSumOfSquares.copy(SumOfSquares source, SumOfSquares dest) Copies source to dest.Constructors in org.apache.commons.math3.stat.descriptive.summary that throw NullArgumentExceptionModifierConstructorDescriptionCopy constructor, creates a newProductidentical to theoriginalCopy constructor, creates a newSumidentical to theoriginalCopy constructor, creates a newSumOfLogsidentical to theoriginalSumOfSquares(SumOfSquares original) Copy constructor, creates a newSumOfSquaresidentical to theoriginal -
Uses of NullArgumentException in org.apache.commons.math3.stat.inference
Methods in org.apache.commons.math3.stat.inference that throw NullArgumentExceptionModifier and TypeMethodDescriptiondoubleOneWayAnova.anovaFValue(Collection<double[]> categoryData) Computes the ANOVA F-value for a collection ofdouble[]arrays.doubleOneWayAnova.anovaPValue(Collection<double[]> categoryData) Computes the ANOVA P-value for a collection ofdouble[]arrays.doubleOneWayAnova.anovaPValue(Collection<SummaryStatistics> categoryData, boolean allowOneElementData) Computes the ANOVA P-value for a collection ofSummaryStatistics.booleanOneWayAnova.anovaTest(Collection<double[]> categoryData, double alpha) Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.doubleChiSquareTest.chiSquare(long[][] counts) Computes the Chi-Square statistic associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.static doubleTestUtils.chiSquare(long[][] counts) doubleChiSquareTest.chiSquareTest(long[][] counts) Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.booleanChiSquareTest.chiSquareTest(long[][] counts, double alpha) Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.static doubleTestUtils.chiSquareTest(long[][] counts) static booleanTestUtils.chiSquareTest(long[][] counts, double alpha) static doubleTestUtils.homoscedasticT(double[] sample1, double[] sample2) static doubleTestUtils.homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) doubleTTest.homoscedasticT(double[] sample1, double[] sample2) Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.doubleTTest.homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummaryinstances, under the assumption of equal subpopulation variances.static doubleTestUtils.homoscedasticTTest(double[] sample1, double[] sample2) static booleanTestUtils.homoscedasticTTest(double[] sample1, double[] sample2, double alpha) static doubleTestUtils.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) doubleTTest.homoscedasticTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.booleanTTest.homoscedasticTTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.doubleTTest.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static doubleTestUtils.kolmogorovSmirnovStatistic(double[] x, double[] y) static doubleTestUtils.kolmogorovSmirnovStatistic(RealDistribution dist, double[] data) static doubleTestUtils.kolmogorovSmirnovTest(double[] x, double[] y) static doubleTestUtils.kolmogorovSmirnovTest(double[] x, double[] y, boolean strict) static doubleTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data) static doubleTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data, boolean strict) static booleanTestUtils.kolmogorovSmirnovTest(RealDistribution dist, double[] data, double alpha) doubleMannWhitneyUTest.mannWhitneyU(double[] x, double[] y) Computes the Mann-Whitney U statistic comparing mean for two independent samples possibly of different length.doubleMannWhitneyUTest.mannWhitneyUTest(double[] x, double[] y) Returns the asymptotic observed significance level, or p-value, associated with a Mann-Whitney U statistic comparing mean for two independent samples.static doubleTestUtils.oneWayAnovaFValue(Collection<double[]> categoryData) static doubleTestUtils.oneWayAnovaPValue(Collection<double[]> categoryData) static booleanTestUtils.oneWayAnovaTest(Collection<double[]> categoryData, double alpha) static doubleTestUtils.pairedT(double[] sample1, double[] sample2) doubleTTest.pairedT(double[] sample1, double[] sample2) Computes a paired, 2-sample t-statistic based on the data in the input arrays.static doubleTestUtils.pairedTTest(double[] sample1, double[] sample2) static booleanTestUtils.pairedTTest(double[] sample1, double[] sample2, double alpha) doubleTTest.pairedTTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.booleanTTest.pairedTTest(double[] sample1, double[] sample2, double alpha) Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.static doubleTestUtils.t(double[] sample1, double[] sample2) static doubleTestUtils.t(double mu, double[] observed) static doubleTestUtils.t(double mu, StatisticalSummary sampleStats) static doubleTestUtils.t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) doubleTTest.t(double[] sample1, double[] sample2) Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.doubleTTest.t(double mu, double[] observed) Computes a t statistic given observed values and a comparison constant.doubleTTest.t(double mu, StatisticalSummary sampleStats) doubleTTest.t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Computes a 2-sample t statistic , comparing the means of the datasets described by twoStatisticalSummaryinstances, without the assumption of equal subpopulation variances.static doubleTestUtils.tTest(double[] sample1, double[] sample2) static booleanTestUtils.tTest(double[] sample1, double[] sample2, double alpha) static doubleTestUtils.tTest(double mu, double[] sample) static booleanTestUtils.tTest(double mu, double[] sample, double alpha) static doubleTestUtils.tTest(double mu, StatisticalSummary sampleStats) static booleanTestUtils.tTest(double mu, StatisticalSummary sampleStats, double alpha) static doubleTestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) static booleanTestUtils.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha) doubleTTest.tTest(double[] sample1, double[] sample2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.booleanTTest.tTest(double[] sample1, double[] sample2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.doubleTTest.tTest(double mu, double[] sample) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.booleanTTest.tTest(double mu, double[] sample, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.doubleTTest.tTest(double mu, StatisticalSummary sampleStats) Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.booleanTTest.tTest(double mu, StatisticalSummary sampleStats, double alpha) Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.doubleTTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2) Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.booleanTTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha) Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha.doubleWilcoxonSignedRankTest.wilcoxonSignedRank(double[] x, double[] y) Computes the Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.doubleWilcoxonSignedRankTest.wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue) Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample. -
Uses of NullArgumentException in org.apache.commons.math3.util
Methods in org.apache.commons.math3.util that throw NullArgumentExceptionModifier and TypeMethodDescriptionstatic voidMathUtils.checkNotNull(Object o) Checks that an object is not null.static voidMathUtils.checkNotNull(Object o, Localizable pattern, Object... args) Checks that an object is not null.static voidMathArrays.checkRectangular(long[][] in) Throws DimensionMismatchException if the input array is not rectangular.static double[]MathArrays.convolve(double[] x, double[] h) Calculates the convolution between two sequences.static voidResizableDoubleArray.copy(ResizableDoubleArray source, ResizableDoubleArray dest) Copies source to dest, copying the underlying data, so dest is a new, independent copy of source.static voidMathArrays.sortInPlace(double[] x, double[]... yList) Sort an array in ascending order in place and perform the same reordering of entries on other arrays.static voidMathArrays.sortInPlace(double[] x, MathArrays.OrderDirection dir, double[]... yList) Sort an array in place and perform the same reordering of entries on other arrays.doubleConstructors in org.apache.commons.math3.util that throw NullArgumentExceptionModifierConstructorDescriptionIncrementor(int max, Incrementor.MaxCountExceededCallback cb) Deprecated.Defines a maximal count and a callback method to be triggered at counter exhaustion.KthSelector(PivotingStrategyInterface pivotingStrategy) Constructor with specified pivoting strategyResizableDoubleArray(ResizableDoubleArray original) Copy constructor.
ListPopulation.addChromosomes(Collection)instead