Uses of Class
org.apache.commons.math3.geometry.euclidean.threed.Euclidean3D
Packages that use Euclidean3D
Package
Description
This package provides basic 3D geometry components.
-
Uses of Euclidean3D in org.apache.commons.math3.geometry.euclidean.threed
Methods in org.apache.commons.math3.geometry.euclidean.threed that return Euclidean3DModifier and TypeMethodDescriptionstatic Euclidean3DEuclidean3D.getInstance()Get the unique instance.Methods in org.apache.commons.math3.geometry.euclidean.threed that return types with arguments of type Euclidean3DModifier and TypeMethodDescriptionSphereGenerator.ballOnSupport(List<Vector3D> support) Create a ball whose boundary lies on prescribed support points.protected AbstractSubHyperplane<Euclidean3D, Euclidean2D> SubPlane.buildNew(Hyperplane<Euclidean3D> hyperplane, Region<Euclidean2D> remainingRegion) Build a sub-hyperplane from an hyperplane and a region.PolyhedronsSet.firstIntersection(Vector3D point, Line line) Get the first sub-hyperplane crossed by a semi-infinite line.Plane.project(Point<Euclidean3D> point) Project a point to the hyperplane.SubPlane.split(Hyperplane<Euclidean3D> hyperplane) Split the instance in two parts by an hyperplane.Method parameters in org.apache.commons.math3.geometry.euclidean.threed with type arguments of type Euclidean3DModifier and TypeMethodDescriptionVector3D.add(double factor, Vector<Euclidean3D> v) Add a scaled vector to the instance.Vector3D.add(Vector<Euclidean3D> v) Add a vector to the instance.PolyhedronsSet.buildNew(BSPTree<Euclidean3D> tree) Build a region using the instance as a prototype.protected AbstractSubHyperplane<Euclidean3D, Euclidean2D> SubPlane.buildNew(Hyperplane<Euclidean3D> hyperplane, Region<Euclidean2D> remainingRegion) Build a sub-hyperplane from an hyperplane and a region.Vector3D.crossProduct(Vector<Euclidean3D> v) Compute the cross-product of the instance with another vector.doubleVector3D.distance(Point<Euclidean3D> v) Compute the distance between the instance and another point.doubleVector3D.distance(Vector<Euclidean3D> v) Compute the distance between the instance and another vector according to the L2 norm.doubleVector3D.distance1(Vector<Euclidean3D> v) Compute the distance between the instance and another vector according to the L1 norm.doubleVector3D.distanceInf(Vector<Euclidean3D> v) Compute the distance between the instance and another vector according to the L∞ norm.doubleVector3D.distanceSq(Vector<Euclidean3D> v) Compute the square of the distance between the instance and another vector.doubleVector3D.dotProduct(Vector<Euclidean3D> v) Compute the dot-product of the instance and another vector.Vector3DFormat.format(Vector<Euclidean3D> vector, StringBuffer toAppendTo, FieldPosition pos) Formats aVector3Dobject to produce a string.doublePlane.getOffset(Point<Euclidean3D> point) Get the offset (oriented distance) of a point.doublePlane.getOffset(Vector<Euclidean3D> vector) Get the offset (oriented distance) of a vector.Plane.project(Point<Euclidean3D> point) Project a point to the hyperplane.booleanPlane.sameOrientationAs(Hyperplane<Euclidean3D> other) Check if the instance has the same orientation as another hyperplane.SubPlane.split(Hyperplane<Euclidean3D> hyperplane) Split the instance in two parts by an hyperplane.Vector3D.subtract(double factor, Vector<Euclidean3D> v) Subtract a scaled vector from the instance.Vector3D.subtract(Vector<Euclidean3D> v) Subtract a vector from the instance.Line.toSubSpace(Point<Euclidean3D> point) Transform a space point into a sub-space point.Line.toSubSpace(Vector<Euclidean3D> vector) Transform a space point into a sub-space point.Plane.toSubSpace(Point<Euclidean3D> point) Transform a 3D space point into an in-plane point.Plane.toSubSpace(Vector<Euclidean3D> vector) Transform a space point into a sub-space point.Constructor parameters in org.apache.commons.math3.geometry.euclidean.threed with type arguments of type Euclidean3DModifierConstructorDescriptionPolyhedronsSet(Collection<SubHyperplane<Euclidean3D>> boundary) Deprecated.PolyhedronsSet(Collection<SubHyperplane<Euclidean3D>> boundary, double tolerance) Build a polyhedrons set from a Boundary REPresentation (B-rep) specified by sub-hyperplanes.PolyhedronsSet(BSPTree<Euclidean3D> tree) Deprecated.as of 3.3, replaced withPolyhedronsSet(BSPTree, double)PolyhedronsSet(BSPTree<Euclidean3D> tree, double tolerance) Build a polyhedrons set from a BSP tree.SubPlane(Hyperplane<Euclidean3D> hyperplane, Region<Euclidean2D> remainingRegion) Simple constructor.
PolyhedronsSet(Collection, double)