Uses of Class
org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D
Packages that use FieldVector3D
Package
Description
This package provides basic 3D geometry components.
-
Uses of FieldVector3D in org.apache.commons.math3.geometry.euclidean.threed
Methods in org.apache.commons.math3.geometry.euclidean.threed that return FieldVector3DModifier and TypeMethodDescriptionFieldVector3D.add(double factor, FieldVector3D<T> v) Add a scaled vector to the instance.Add a scaled vector to the instance.FieldVector3D.add(FieldVector3D<T> v) Add a vector to the instance.Add a vector to the instance.FieldVector3D.add(T factor, FieldVector3D<T> v) Add a scaled vector to the instance.Add a scaled vector to the instance.FieldRotation.applyInverseTo(FieldVector3D<T> u) Apply the inverse of the rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldRotation.applyInverseTo(Rotation r, FieldVector3D<T> u) Apply the inverse of a rotation to a vector.FieldRotation.applyInverseTo(Vector3D u) Apply the inverse of the rotation to a vector.FieldRotation.applyTo(FieldVector3D<T> u) Apply the rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldRotation.applyTo(Rotation r, FieldVector3D<T> u) Apply a rotation to a vector.Apply the rotation to a vector.FieldVector3D.crossProduct(FieldVector3D<T> v) Compute the cross-product of the instance with another vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, Vector3D v2) Compute the cross-product of two vectors.FieldVector3D.crossProduct(Vector3D v) Compute the cross-product of the instance with another vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(Vector3D v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.FieldRotation.getAxis()Deprecated.FieldRotation.getAxis(RotationConvention convention) Get the normalized axis of the rotation.FieldVector3D.negate()Get the opposite of the instance.FieldVector3D.normalize()Get a normalized vector aligned with the instance.FieldVector3D.orthogonal()Get a vector orthogonal to the instance.FieldVector3D.scalarMultiply(double a) Multiply the instance by a scalar.FieldVector3D.scalarMultiply(T a) Multiply the instance by a scalar.FieldVector3D.subtract(double factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Subtract a scaled vector from the instance.FieldVector3D.subtract(FieldVector3D<T> v) Subtract a vector from the instance.Subtract a vector from the instance.FieldVector3D.subtract(T factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Subtract a scaled vector from the instance.Methods in org.apache.commons.math3.geometry.euclidean.threed with parameters of type FieldVector3DModifier and TypeMethodDescriptionFieldVector3D.add(double factor, FieldVector3D<T> v) Add a scaled vector to the instance.FieldVector3D.add(FieldVector3D<T> v) Add a vector to the instance.FieldVector3D.add(T factor, FieldVector3D<T> v) Add a scaled vector to the instance.static <T extends RealFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.angle(FieldVector3D<T> v1, Vector3D v2) Compute the angular separation between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.angle(Vector3D v1, FieldVector3D<T> v2) Compute the angular separation between two vectors.FieldRotation.applyInverseTo(FieldVector3D<T> u) Apply the inverse of the rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldRotation.applyInverseTo(Rotation r, FieldVector3D<T> u) Apply the inverse of a rotation to a vector.FieldRotation.applyTo(FieldVector3D<T> u) Apply the rotation to a vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldRotation.applyTo(Rotation r, FieldVector3D<T> u) Apply a rotation to a vector.FieldVector3D.crossProduct(FieldVector3D<T> v) Compute the cross-product of the instance with another vector.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(FieldVector3D<T> v1, Vector3D v2) Compute the cross-product of two vectors.static <T extends RealFieldElement<T>>
FieldVector3D<T> FieldVector3D.crossProduct(Vector3D v1, FieldVector3D<T> v2) Compute the cross-product of two vectors.FieldVector3D.distance(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L2 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L2 norm.FieldVector3D.distance1(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance1(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance1(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L1 norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distance1(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L1 norm.FieldVector3D.distanceInf(FieldVector3D<T> v) Compute the distance between the instance and another vector according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceInf(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceInf(FieldVector3D<T> v1, Vector3D v2) Compute the distance between two vectors according to the L∞ norm.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceInf(Vector3D v1, FieldVector3D<T> v2) Compute the distance between two vectors according to the L∞ norm.FieldVector3D.distanceSq(FieldVector3D<T> v) Compute the square of the distance between the instance and another vector.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceSq(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceSq(FieldVector3D<T> v1, Vector3D v2) Compute the square of the distance between two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.distanceSq(Vector3D v1, FieldVector3D<T> v2) Compute the square of the distance between two vectors.FieldVector3D.dotProduct(FieldVector3D<T> v) Compute the dot-product of the instance and another vector.static <T extends RealFieldElement<T>>
TFieldVector3D.dotProduct(FieldVector3D<T> v1, FieldVector3D<T> v2) Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.dotProduct(FieldVector3D<T> v1, Vector3D v2) Compute the dot-product of two vectors.static <T extends RealFieldElement<T>>
TFieldVector3D.dotProduct(Vector3D v1, FieldVector3D<T> v2) Compute the dot-product of two vectors.FieldVector3D.subtract(double factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.FieldVector3D.subtract(FieldVector3D<T> v) Subtract a vector from the instance.FieldVector3D.subtract(T factor, FieldVector3D<T> v) Subtract a scaled vector from the instance.Constructors in org.apache.commons.math3.geometry.euclidean.threed with parameters of type FieldVector3DModifierConstructorDescriptionFieldRotation(FieldVector3D<T> u, FieldVector3D<T> v) Build one of the rotations that transform one vector into another one.FieldRotation(FieldVector3D<T> u1, FieldVector3D<T> u2, FieldVector3D<T> v1, FieldVector3D<T> v2) Build the rotation that transforms a pair of vectors into another pair.FieldRotation(FieldVector3D<T> axis, T angle) Deprecated.as of 3.6, replaced withFieldRotation(FieldVector3D, RealFieldElement, RotationConvention)FieldRotation(FieldVector3D<T> axis, T angle, RotationConvention convention) Build a rotation from an axis and an angle.FieldVector3D(double a, FieldVector3D<T> u) Multiplicative constructor Build a vector from another one and a scale factor.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2) Linear constructor Build a vector from two other ones and corresponding scale factors.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2, double a3, FieldVector3D<T> u3) Linear constructor Build a vector from three other ones and corresponding scale factors.FieldVector3D(double a1, FieldVector3D<T> u1, double a2, FieldVector3D<T> u2, double a3, FieldVector3D<T> u3, double a4, FieldVector3D<T> u4) Linear constructor Build a vector from four other ones and corresponding scale factors.FieldVector3D(T a, FieldVector3D<T> u) Multiplicative constructor Build a vector from another one and a scale factor.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2) Linear constructor Build a vector from two other ones and corresponding scale factors.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2, T a3, FieldVector3D<T> u3) Linear constructor Build a vector from three other ones and corresponding scale factors.FieldVector3D(T a1, FieldVector3D<T> u1, T a2, FieldVector3D<T> u2, T a3, FieldVector3D<T> u3, T a4, FieldVector3D<T> u4) Linear constructor Build a vector from four other ones and corresponding scale factors.
FieldRotation.getAxis(RotationConvention)