Class FeatureInitializerFactory
java.lang.Object
org.apache.commons.math3.ml.neuralnet.FeatureInitializerFactory
Creates functions that will select the initial values of a neuron's
features.
- Since:
- 3.3
-
Method Summary
Modifier and TypeMethodDescriptionstatic FeatureInitializerfunction(UnivariateFunction f, double init, double inc) Creates an initializer from a univariate functionf(x).static FeatureInitializerrandomize(RealDistribution random, FeatureInitializer orig) Adds some amount of random data to the given initializer.static FeatureInitializeruniform(double min, double max) Uniform sampling of the given range.static FeatureInitializeruniform(RandomGenerator rng, double min, double max) Uniform sampling of the given range.
-
Method Details
-
uniform
Uniform sampling of the given range.- Parameters:
rng- Random number generator used to draw samples from a uniform distribution.min- Lower bound of the range.max- Upper bound of the range.- Returns:
- an initializer such that the features will be initialized with values within the given range.
- Throws:
NumberIsTooLargeException- ifmin >= max.
-
uniform
Uniform sampling of the given range.- Parameters:
min- Lower bound of the range.max- Upper bound of the range.- Returns:
- an initializer such that the features will be initialized with values within the given range.
- Throws:
NumberIsTooLargeException- ifmin >= max.
-
function
Creates an initializer from a univariate functionf(x). The argumentxis set toinitat the first call and will be incremented at each call.- Parameters:
f- Function.init- Initial value.inc- Increment- Returns:
- the initializer.
-
randomize
Adds some amount of random data to the given initializer.- Parameters:
random- Random variable distribution.orig- Original initializer.- Returns:
- an initializer whose
valuemethod will returnorig.value() + random.sample().
-