Class Covariance
- Direct Known Subclasses:
StorelessCovariance
The constructors that take RealMatrix or
double[][] arguments generate covariance matrices. The
columns of the input matrices are assumed to represent variable values.
The constructor argument biasCorrected determines whether or
not computed covariances are bias-corrected.
Unbiased covariances are given by the formula
cov(X, Y) = Σ[(xi - E(X))(yi - E(Y))] / (n - 1)
where E(X) is the mean of X and E(Y)
is the mean of the Y values.
Non-bias-corrected estimates use n in place of n - 1
- Since:
- 2.0
-
Constructor Summary
ConstructorsConstructorDescriptionCreate a Covariance with no dataCovariance(double[][] data) Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(double[][] data, boolean biasCorrected) Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(RealMatrix matrix) Create a covariance matrix from a matrix whose columns represent covariates.Covariance(RealMatrix matrix, boolean biasCorrected) Create a covariance matrix from a matrix whose columns represent covariates. -
Method Summary
Modifier and TypeMethodDescriptionprotected RealMatrixcomputeCovarianceMatrix(double[][] data) Create a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(double[][] data, boolean biasCorrected) Compute a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(RealMatrix matrix) Create a covariance matrix from a matrix whose columns represent covariates.protected RealMatrixcomputeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) Compute a covariance matrix from a matrix whose columns represent covariates.doublecovariance(double[] xArray, double[] yArray) Computes the covariance between the two arrays, using the bias-corrected formula.doublecovariance(double[] xArray, double[] yArray, boolean biasCorrected) Computes the covariance between the two arrays.Returns the covariance matrixintgetN()Returns the number of observations (length of covariate vectors)
-
Constructor Details
-
Covariance
public Covariance()Create a Covariance with no data -
Covariance
public Covariance(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException, NotStrictlyPositiveException Create a Covariance matrix from a rectangular array whose columns represent covariates.The
biasCorrectedparameter determines whether or not covariance estimates are bias-corrected.The input array must be rectangular with at least one column and two rows.
- Parameters:
data- rectangular array with columns representing covariatesbiasCorrected- true means covariances are bias-corrected- Throws:
MathIllegalArgumentException- if the input data array is not rectangular with at least two rows and one column.NotStrictlyPositiveException- if the input data array is not rectangular with at least one row and one column.
-
Covariance
public Covariance(double[][] data) throws MathIllegalArgumentException, NotStrictlyPositiveException Create a Covariance matrix from a rectangular array whose columns represent covariates.The input array must be rectangular with at least one column and two rows
- Parameters:
data- rectangular array with columns representing covariates- Throws:
MathIllegalArgumentException- if the input data array is not rectangular with at least two rows and one column.NotStrictlyPositiveException- if the input data array is not rectangular with at least one row and one column.
-
Covariance
Create a covariance matrix from a matrix whose columns represent covariates.The
biasCorrectedparameter determines whether or not covariance estimates are bias-corrected.The matrix must have at least one column and two rows
- Parameters:
matrix- matrix with columns representing covariatesbiasCorrected- true means covariances are bias-corrected- Throws:
MathIllegalArgumentException- if the input matrix does not have at least two rows and one column
-
Covariance
Create a covariance matrix from a matrix whose columns represent covariates.The matrix must have at least one column and two rows
- Parameters:
matrix- matrix with columns representing covariates- Throws:
MathIllegalArgumentException- if the input matrix does not have at least two rows and one column
-
-
Method Details
-
getCovarianceMatrix
Returns the covariance matrix- Returns:
- covariance matrix
-
getN
public int getN()Returns the number of observations (length of covariate vectors)- Returns:
- number of observations
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected) throws MathIllegalArgumentException Compute a covariance matrix from a matrix whose columns represent covariates.- Parameters:
matrix- input matrix (must have at least one column and two rows)biasCorrected- determines whether or not covariance estimates are bias-corrected- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the matrix does not contain sufficient data
-
computeCovarianceMatrix
Create a covariance matrix from a matrix whose columns represent covariates. Covariances are computed using the bias-corrected formula.- Parameters:
matrix- input matrix (must have at least one column and two rows)- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if matrix does not contain sufficient data- See Also:
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected) throws MathIllegalArgumentException, NotStrictlyPositiveException Compute a covariance matrix from a rectangular array whose columns represent covariates.- Parameters:
data- input array (must have at least one column and two rows)biasCorrected- determines whether or not covariance estimates are bias-corrected- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the data array does not contain sufficient dataNotStrictlyPositiveException- if the input data array is not rectangular with at least one row and one column.
-
computeCovarianceMatrix
protected RealMatrix computeCovarianceMatrix(double[][] data) throws MathIllegalArgumentException, NotStrictlyPositiveException Create a covariance matrix from a rectangular array whose columns represent covariates. Covariances are computed using the bias-corrected formula.- Parameters:
data- input array (must have at least one column and two rows)- Returns:
- covariance matrix
- Throws:
MathIllegalArgumentException- if the data array does not contain sufficient dataNotStrictlyPositiveException- if the input data array is not rectangular with at least one row and one column.- See Also:
-
covariance
public double covariance(double[] xArray, double[] yArray, boolean biasCorrected) throws MathIllegalArgumentException Computes the covariance between the two arrays.Array lengths must match and the common length must be at least 2.
- Parameters:
xArray- first data arrayyArray- second data arraybiasCorrected- if true, returned value will be bias-corrected- Returns:
- returns the covariance for the two arrays
- Throws:
MathIllegalArgumentException- if the arrays lengths do not match or there is insufficient data
-
covariance
Computes the covariance between the two arrays, using the bias-corrected formula.Array lengths must match and the common length must be at least 2.
- Parameters:
xArray- first data arrayyArray- second data array- Returns:
- returns the covariance for the two arrays
- Throws:
MathIllegalArgumentException- if the arrays lengths do not match or there is insufficient data
-