Interface MultipleLinearRegression
- All Known Implementing Classes:
AbstractMultipleLinearRegression,GLSMultipleLinearRegression,OLSMultipleLinearRegression
public interface MultipleLinearRegression
The multiple linear regression can be represented in matrix-notation.
y=X*b+uwhere y is an
n-vector regressand, X is a [n,k] matrix whose k columns are called
regressors, b is k-vector of regression parameters and u is an n-vector
of error terms or residuals.
The notation is quite standard in literature,
cf eg Davidson and MacKinnon, Econometrics Theory and Methods, 2004.- Since:
- 2.0
-
Method Summary
Modifier and TypeMethodDescriptiondoubleReturns the variance of the regressand, ie Var(y).double[]Estimates the regression parameters b.double[]Returns the standard errors of the regression parameters.double[][]Estimates the variance of the regression parameters, ie Var(b).double[]Estimates the residuals, ie u = y - X*b.
-
Method Details
-
estimateRegressionParameters
double[] estimateRegressionParameters()Estimates the regression parameters b.- Returns:
- The [k,1] array representing b
-
estimateRegressionParametersVariance
double[][] estimateRegressionParametersVariance()Estimates the variance of the regression parameters, ie Var(b).- Returns:
- The [k,k] array representing the variance of b
-
estimateResiduals
double[] estimateResiduals()Estimates the residuals, ie u = y - X*b.- Returns:
- The [n,1] array representing the residuals
-
estimateRegressandVariance
double estimateRegressandVariance()Returns the variance of the regressand, ie Var(y).- Returns:
- The double representing the variance of y
-
estimateRegressionParametersStandardErrors
double[] estimateRegressionParametersStandardErrors()Returns the standard errors of the regression parameters.- Returns:
- standard errors of estimated regression parameters
-