17#if CRYPTOPP_MSC_VERSION 
   19# pragma warning(disable: 4231 4275) 
   38        typedef unsigned int RandomizationParameter;
 
   56            {Decode(encodedPoly, byteCount);}
 
 
   60            {Decode(encodedPoly, byteCount);}
 
 
   65            {Randomize(rng, bitcount);}
 
 
   99        void Encode(
byte *output, 
size_t outputLen) 
const;
 
  104        void Decode(
const byte *input, 
size_t inputLen);
 
  125        bool GetBit(
size_t n)
 const {
return GetCoefficient(n)!=0;}
 
  130        signed int Degree()
 const {
return (
signed int)(BitCount()-1U);}
 
  137        int operator[](
unsigned int i)
 const {
return GetCoefficient(i);}
 
  140        bool IsZero()
 const {
return !*
this;}
 
  172        void SetBit(
size_t i, 
int value = 1);
 
  177        void SetCoefficient(
size_t i, 
int value) {SetBit(i, value);}
 
  186        bool            operator!() 
const;
 
  230        bool IsUnit()
 const {
return Equals(One());}
 
 
  257inline bool operator==(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  260inline bool operator!=(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  263inline bool operator> (
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  264{
return a.Degree() > b.Degree();}
 
 
  266inline bool operator>=(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  267{
return a.Degree() >= b.Degree();}
 
 
  269inline bool operator< (
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  270{
return a.Degree() < b.Degree();}
 
 
  272inline bool operator<=(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b)
 
  273{
return a.Degree() <= b.Degree();}
 
 
  275inline CryptoPP::PolynomialMod2 operator&(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.And(b);}
 
  277inline CryptoPP::PolynomialMod2 operator^(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.Xor(b);}
 
  279inline CryptoPP::PolynomialMod2 
operator+(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.Plus(b);}
 
  281inline CryptoPP::PolynomialMod2 operator-(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.Minus(b);}
 
  283inline CryptoPP::PolynomialMod2 operator*(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.Times(b);}
 
  285inline CryptoPP::PolynomialMod2 operator/(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.DividedBy(b);}
 
  287inline CryptoPP::PolynomialMod2 operator%(
const CryptoPP::PolynomialMod2 &a, 
const CryptoPP::PolynomialMod2 &b) {
return a.Modulo(b);}
 
  303    virtual GF2NP * Clone()
 const {
return new GF2NP(*
this);}
 
  310    bool Equal(
const Element &a, 
const Element &b)
 const 
  311        {
CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); 
return a.Equals(b);}
 
  313    bool IsUnit(
const Element &a)
 const 
  316    unsigned int MaxElementBitLength()
 const 
  319    unsigned int MaxElementByteLength()
 const 
  320        {
return (
unsigned int)
BitsToBytes(MaxElementBitLength());}
 
  322    Element SquareRoot(
const Element &a) 
const;
 
  324    Element HalfTrace(
const Element &a) 
const;
 
  327    Element SolveQuadraticEquation(
const Element &a) 
const;
 
 
  338    GF2NT(
unsigned int t0, 
unsigned int t1, 
unsigned int t2);
 
  340    GF2NP * Clone()
 const {
return new GF2NT(*
this);}
 
  343    const Element& Multiply(
const Element &a, 
const Element &b) 
const;
 
  345    const Element& 
Square(
const Element &a)
 const 
  346        {
return Reduced(a.Squared());}
 
  348    const Element& MultiplicativeInverse(
const Element &a) 
const;
 
  351    const Element& Reduced(
const Element &a) 
const;
 
 
  364    GF2NT233(
unsigned int t0, 
unsigned int t1, 
unsigned int t2);
 
  368    const Element& Multiply(
const Element &a, 
const Element &b) 
const;
 
  370    const Element& 
Square(
const Element &a) 
const;
 
 
  378    GF2NPP(
unsigned int t0, 
unsigned int t1, 
unsigned int t2, 
unsigned int t3, 
unsigned int t4)
 
  385    unsigned int t1, t2, t3;
 
 
  395template<> 
inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
 
  402#if CRYPTOPP_MSC_VERSION 
Classes for performing mathematics over different fields.
 
Classes and functions for working with ANS.1 objects.
 
std::ostream & operator<<(std::ostream &out, const OID &oid)
Print a OID value.
 
OID operator+(const OID &lhs, unsigned long rhs)
Append a value to an OID.
 
bool operator==(const OID &lhs, const OID &rhs)
Compare two OIDs for equality.
 
bool operator!=(const OID &lhs, const OID &rhs)
Compare two OIDs for inequality.
 
Abstract Euclidean domain.
 
Base class for all exceptions thrown by the library.
 
GF(2^n) with Polynomial Basis.
 
GF(2^n) with Pentanomial Basis.
 
GF(2^n) for b233 and k233.
 
GF(2^n) with Trinomial Basis.
 
Exception thrown when divide by zero is encountered.
 
Polynomial with Coefficients in GF(2)
 
unsigned int MinEncodedSize() const
minimum number of bytes to encode this polynomial
 
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
encode value as big-endian octet string
 
PolynomialMod2 MultiplicativeInverse() const
return inverse if *this is a unit, otherwise return 0
 
void Encode(byte *output, size_t outputLen) const
encode in big-endian format
 
static PolynomialMod2 Monomial(size_t i)
Provides x^i.
 
signed int Degree() const
the zero polynomial will return a degree of -1
 
static const PolynomialMod2 & One()
The One polinomial.
 
bool IsIrreducible() const
check for irreducibility
 
PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)
Create a uniformly distributed random polynomial.
 
static PolynomialMod2 Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4)
Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4.
 
bool IsUnit() const
only 1 is a unit
 
PolynomialMod2(word value, size_t bitLength=WORD_BITS)
Construct a PolynomialMod2 from a word.
 
PolynomialMod2 Doubled() const
is always zero since we're working modulo 2
 
PolynomialMod2(const PolynomialMod2 &t)
Copy construct a PolynomialMod2.
 
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
decode value as big-endian octet string
 
byte GetByte(size_t n) const
return the n-th byte
 
unsigned int BitCount() const
number of significant bits = Degree() + 1
 
unsigned int WordCount() const
number of significant words = ceiling(ByteCount()/sizeof(word))
 
static PolynomialMod2 AllOnes(size_t n)
Provides x^(n-1) + ... + x + 1.
 
static PolynomialMod2 Trinomial(size_t t0, size_t t1, size_t t2)
Provides x^t0 + x^t1 + x^t2.
 
unsigned int CoefficientCount() const
degree + 1
 
PolynomialMod2 InverseMod(const PolynomialMod2 &) const
calculate multiplicative inverse of *this mod n
 
PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)
Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation.
 
int operator[](unsigned int i) const
return coefficient for x^i
 
unsigned int Parity() const
sum modulo 2 of all coefficients
 
PolynomialMod2()
Construct the zero polynomial.
 
static const PolynomialMod2 & Zero()
The Zero polinomial.
 
unsigned int ByteCount() const
number of significant bytes = ceiling(BitCount()/8)
 
static void Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d)
calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
 
static PolynomialMod2 Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n)
greatest common divisor
 
PolynomialMod2(const byte *encodedPoly, size_t byteCount)
Construct a PolynomialMod2 from big-endian byte array.
 
void SetByte(size_t n, byte value)
set the n-th byte to value
 
int GetCoefficient(size_t i) const
return coefficient for x^i
 
bool GetBit(size_t n) const
return the n-th bit, n=0 being the least significant bit
 
Interface for random number generators.
 
#define CRYPTOPP_API
Win32 calling convention.
 
#define CRYPTOPP_DLL_TEMPLATE_CLASS
Instantiate templates in a dynamic library.
 
word64 word
Full word used for multiprecision integer arithmetic.
 
const unsigned int WORD_BITS
Size of a platform word in bits.
 
Abstract base classes that provide a uniform interface to this library.
 
bool operator>(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
 
bool operator>=(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
 
bool operator<(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
 
bool operator<=(const ::PolynomialMod2 &a, const ::PolynomialMod2 &b)
compares degree
 
Utility functions for the Crypto++ library.
 
const T & STDMAX(const T &a, const T &b)
Replacement function for std::max.
 
size_t BitsToBytes(size_t bitCount)
Returns the number of 8-bit bytes or octets required for the specified number of bits.
 
Crypto++ library namespace.
 
Classes and functions for secure memory allocations.
 
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.