14#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING) 
   15void LUC_TestInstantiations()
 
   27    s = (k + x*(r+e)) % q;
 
 
   37    return (Vsg*Vsg + Vry*Vry + r*r) % p == (Vsg * Vry * r + 4) % p;
 
 
   45void DL_GroupParameters_LUC::SimultaneousExponentiate(Element *results, 
const Element &base, 
const Integer *exponents, 
unsigned int exponentsCount)
 const 
   47    for (
unsigned int i=0; i<exponentsCount; i++)
 
   70    return Lucas(m_e, x, m_n);
 
 
   75    CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level);
 
 
   86    return GetValueHelper(
this, name, valueType, pValue).Assignable()
 
   87        CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
 
   88        CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
 
 
   94    AssignFromHelper(
this, source)
 
   95        CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
 
   96        CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
 
 
  107    bool IsAcceptable(
const Integer &candidate)
 const 
 
  116    int modulusSize = 2048;
 
  119    if (modulusSize < 16)
 
  120        throw InvalidArgument(
"InvertibleLUCFunction: specified modulus size is too small");
 
  124    if (m_e < 5 || m_e.IsEven())
 
  125        throw InvalidArgument(
"InvertibleLUCFunction: invalid public exponent");
 
  129        (
"PointerToPrimeSelector", selector.GetSelectorPointer());
 
 
  162    const byte version[] = {
INTEGER, 1, 0};
 
  163    seq.Put(version, 
sizeof(version));
 
  175    CRYPTOPP_UNUSED(rng);
 
 
  192        pass = pass && m_p * m_q == m_n;
 
  202        pass = pass && m_u * m_q % m_p == 1;
 
 
  215    return GetValueHelper<LUCFunction>(
this, name, valueType, pValue).Assignable()
 
  216        CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
 
  217        CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
 
  218        CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
 
 
  224    AssignFromHelper<LUCFunction>(
this, source)
 
  225        CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
 
  226        CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
 
  227        CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
 
 
Classes for working with NameValuePairs.
 
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
 
Classes and functions for working with ANS.1 objects.
 
void BERDecodeError()
Raises a BERDecodeErr.
 
An object that implements NameValuePairs.
 
void DoQuickSanityCheck() const
Perform a quick sanity check.
 
bool Verify(const DL_GroupParameters< Integer > ¶ms, const DL_PublicKey< Integer > &publicKey, const Integer &e, const Integer &r, const Integer &s) const
Verify a message using a public key.
 
void Sign(const DL_GroupParameters< Integer > ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
Sign a message using a private key.
 
Integer Exponentiate(const DL_GroupPrecomputation< Element > &group, const Integer &exponent) const
Exponentiates an element.
 
const Integer & GetModulus() const
Retrieve the modulus for the group.
 
Interface for Discrete Log (DL) group parameters.
 
virtual Integer GetGroupOrder() const
Retrieves the order of the group.
 
virtual const Integer & GetSubgroupOrder() const =0
Retrieves the subgroup order.
 
virtual Element ExponentiateBase(const Integer &exponent) const
Exponentiates the base.
 
LUC GroupParameters precomputation.
 
DL_GroupPrecomputation interface.
 
Interface for Discrete Log (DL) public keys.
 
virtual Element ExponentiatePublicElement(const Integer &exponent) const
Exponentiates this element.
 
Multiple precision integer with arithmetic operations.
 
void DEREncode(BufferedTransformation &bt) const
Encode in DER format.
 
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms=g_nullNameValuePairs)
Generate a random number.
 
bool IsPositive() const
Determines if the Integer is positive.
 
void BERDecode(const byte *input, size_t inputLen)
Decode from BER format.
 
bool IsOdd() const
Determines if the Integer is odd parity.
 
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
 
static const Integer & One()
Integer representing 1.
 
An invalid argument was detected.
 
The LUC inverse function.
 
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
 
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
 
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
Check this object for errors.
 
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
Calculates the inverse of an element.
 
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits, const Integer &eStart=17)
Create a LUC private key.
 
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
 
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
 
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
Check this object for errors.
 
Integer ApplyFunction(const Integer &x) const
Applies the trapdoor.
 
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
 
Interface for retrieving values given their names.
 
T GetValueWithDefault(const char *name, T defaultValue) const
Get a named value.
 
CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
Get a named value with type int.
 
Template implementing constructors for public key algorithm classes.
 
Application callback to signal suitability of a cabdidate prime.
 
Interface for random number generators.
 
Multiple precision integer with arithmetic operations.
 
Classes for the LUC cryptosystem.
 
Crypto++ library namespace.
 
Classes and functions for number theoretic operations.
 
bool RelativelyPrime(const Integer &a, const Integer &b)
Determine relative primality.
 
CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n)
Calculate the Lucas value.
 
CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
Calculate the inverse Lucas value.
 
CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
 
Classes for PKCS padding schemes.
 
Classes for SHA-1 and SHA-2 family of message digests.
 
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.