Debian Live Manual

Debian Live Project jdebian-live@lists.debian.org;,

2015-08-23



Debian Live Manual

Debian Live Project jdebian-live@lists.debian.org;,

Copyright (© 2006-2015 Live Systems Project,Copyright © 2016-
2025 The Debian Live team

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public Li-
cense along with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in
/usr/share/common-licenses/ GPL-3 file.


http://www.gnu.org/licenses/

Contents

Contents

Debian Live Manual

ber Live Systeme

ber dieses Handbuch

1. ber dieses Handbuch
1.1 Fr die Ungeduldigen
1.2 Begriffe
1.3 Autoren
1.4 Contributing to this document
1.4.1 Applying changes
1.4.2 Translation

About the Debian Live Project

2. About the Debian Live Project
2.1 Motivation
2.1.1 What is wrong with current live systems

2.1.2 Why create our own live system?

2.2 Philosophy
2.2.1 Only unchanged packages from Debian main and non-
free-firmware

2.2.2 No package configuration of the live system

2.3 Contact

i

S OO T

oo Co Co 0o o (0]

© oo

Benutzer

Installation

3. Installation
3.1 Requirements
3.2 Installing live-build
3.2.1 From the Debian repository
3.2.2 From source
3.3 Installing live-boot and live-config
3.3.1 From the Debian repository
3.3.2 From source

The basics

4. The basics
4.1 What is a live system?
4.2 Downloading prebuilt images
4.3 First steps: building an ISO hybrid image
4.4 Using an ISO hybrid live image
4.4.1 Burning an ISO image to a physical medium
4.4.2 Copying an ISO hybrid image to a USB stick
4.4.3 Using the space left on a USB stick
4.4.4 Booting the live medium
4.5 Using a virtual machine for testing
4.5.1 Testing an ISO image with QEMU
4.5.2 Testing an ISO image with VirtualBox
4.6 Building and using an HDD image
4.7 Building a netboot image
4.7.1 DHCP server

10

11

11
11
11
11
11
12
12
12

14

14
14
14
15
15
15
16
16
16
17
17
17
18
18
19



Contents

4.7.2 TFTP server
4.7.3 NFS server
4.7.4 Netboot testing How'To
4.7.5 Qemu
4.8 Webbooting
4.8.1 Getting the webboot files
4.8.2 Booting webboot images

Overview of tools

5. Overview of tools
5.1 The live-build package
5.1.1 The 1Ib config command
5.1.2 The Ib build command
5.1.3 The Ib clean command
5.2 The live-boot package
5.3 The live-config package

Managing a configuration

6. Managing a configuration
6.1 Dealing with configuration changes
6.1.1 Why use auto scripts? What do they do?
6.1.2 Use example auto scripts
6.2 Clone a configuration published via Git

20 Customizing contents

20

7. Customization overview

20
20
21
21
21

7.1 Build time vs. boot time configuration
7.2 Stages of the build
7.3 Supplement Ib config with files
7.4 Customization tasks

Customizing package installation

22 8. Customizing package installation

22
22
22
23
23
23
23

24

8.1 Package sources

8.2 Choosing packages to install
8.2.1 Package lists . . . .. .. ... ... L.

8.3 Installing modified or third-party packages

8.1.1 Distribution, archive areas and mode
8.1.2 Distribution mirrors
8.1.3 Distribution mirrors used at build time
8.1.4 Distribution mirrors used at run time

8.1.5 Additional repositories

8.2.2 Using metapackages
8.2.3 Local package lists
8.2.4 Local binary package lists
8.2.5 Generated package lists
8.2.6 Using conditionals inside package lists
8.2.7 Removing packages at install time
8.2.8 Summary
8.2.9 Desktop and language tasks
8.2.10 Kernel flavour and version
8.2.11 Custom kernels

8.3.1 Using packages.chroot to install custom packages

26

26
26
26
26
27

28

28
28
28
29
29
29
29
30
30
30
31
31
31
31
32
32
32
33
33
34
34

ii



Contents

8.3.2 Using an APT repository to install custom packages
8.3.3 Custom packages and APT
8.4 Configuring APT at build time
8.4.1 Choosing apt or aptitude
8.4.2 Using a proxy with APT
8.4.3 Tweaking APT to save space
8.4.4 Passing options to apt or aptitude
8.4.5 APT pinning

Customizing contents

9. Customizing contents
9.1 Includes
9.1.1 Live/chroot local includes
9.1.2 Binary local includes
9.2 Hooks . . ...
9.2.1 Chroot local hooks
9.2.2 Binary local hooks

9.2.3 Boot-time hooks
9.3 Preseeding Debconf questions

Customizing run time behaviours

10. Customizing run time behaviours
10.1 Customizing the live user
10.2 Customizing locale and language
10.3 Persistence . . . .. .. Lo o

10.3.1 The persistence.conf file

10.3.2 Using more than one persistence store
10.3.3 Using persistence with encryption

34
35
35
35
35
36
36
37

38

38
38
38
38
39
39
39
39
39

40

40

Customizing the binary image

11. Customizing the binary image
11.1 Bootloaders
11.2 ISO metadata

Customizing Debian Installer

12. Customizing Debian Installer
12.1 Types of Debian Installer
12.2 Customizing Debian Installer by preseeding
12.3 Customizing Debian Installer content

Projekt

Contributing to the project

13. Contributing to the project
13.1 Translation of man pages

Reporting bugs

14. Reporting bugs
14.1 Known issues
14.2 Do the research
14.3 Rebuild from scratch
14.4 Use up-to-date packages
14.5 Collect information

46

46
46
46

47

47
47
47
48

49

20

50
50

51

51
51
51
51
52
52

iii



Contents

14.6 Isolate the failing case if possible . . . . ... ... ...
14.7 Use the correct package to report the bug against . . . .
14.7.1 At build time while bootstrapping . . . .. .. ..
14.7.2 At build time while installing packages . . . . ..
14.7.3 At boot time . . . . . ... ... ... L.
14.74 At run time . . . . . ...
14.8 Where to report bugs . . . . .. .. ... ...

Coding Style

15. Coding Style
15.1 Compatibility . . . . ... .. oo
15.2 Indenting . . . . ..o Lo L
15.3 Wrapping . . . . . . ...
15.4 Variables . . . . . . . ..
15.5 Miscellaneous . . . . . . . . ... oo

Beispiele

Beispiele

16. Examples

16.1 Using the examples . . . .. .. ... ... ... ... ..
16.2 Tutorial 1: A default image . . . .. ... ... ... ..
16.3 Tutorial 2: A web browser utility . . .. ... ... ...
16.4 Tutorial 3: A personalized image . . ... ... ... ..

16.4.1 First revision . . . . . ... ... ... .. ... ..

16.4.2 Second revision . . . . .. ... ...
16.5 A VNC Kiosk Client . . . . ... ... ... .. .....

52
53
53
53
53
53
53

54

54
54
54
54
95
56

57

o8

58

16.6 A minimal image for a 512MB USB key . . . . . .. ..
16.7 A localized GNOME desktop and installer . . . .. ...

Anhang

Style guide

17. Style guide
17.1 Guidelines for authors . . . . . ... ... ... .....
17.1.1 Linguistic features . . . . . ... .. .. ... ...
17.1.2 Procedures . . . . . . . . ... ... ... ... ..
17.2 Guidelines for translators . . . ... .. ... ... ...
17.2.1 Translation hints . . . . . . . ... ... ... ..

SiSU Metadata, document information

64

65

65
65
65
66
68
68

70

v



Debian Live Manual



ber Live Systeme



ber dieses Handbuch

1. ber dieses Handbuch

This manual serves as a single access point to all documentation related to
the Debian Live Project and in particular applies to the software produced
by the project for the Debian bookworm release. An up-to-date version
can always be found at nttps://live-team.pages.debian.net/live-manual/

While live-manual is primarily focused on helping you build a live system
and not on end-user topics, an end user may find some useful information
in these sections: The Basics covers downloading prebuilt images and
preparing images to be booted from media or the network, either using the
web builder or running live-build directly on your system. Customizing
run time behaviours describes some options that may be specified at the
boot prompt, such as selecting a keyboard layout and locale, and using
persistence.

Einige der erwhnten Befehle im Text mssen als Superuser ausgefhrt wer-
den. Dies kann entweder dadurch erreicht werden, indem zuerst auf den
root Benutzer gewechselt wird mittels su oder durch die Benutzung von
sudo. Um die Befehle welche als unprivilegierter Benutzer ausgefhrt wer-
den knnen und diesen welche Superuser Rechte bentigen, sind den Be-
fehlen $ respektive # vorangestellt. Dieses Symbol ist nicht Teil des
Befehls.

1.1 Fr die Ungeduldigen

Obowhl wir denken dass alles in diesem Handbuch mehr oder weniger fr
die einen oder anderen Benutzer wichtig ist, sind wir uns bewusst, dass
es sich um viel Material handelt. Fr ein schnelles Erfolgserlebnis in der

Anwendung dieser Software schlagen wir die folgende Reihenfolge vor,
bevor sie sich mit den Details befassen:

First, read this chapter, About this manual, from the beginning and
ending with the Terms section. Next, skip to the three tutorials at the
front of the Examples section designed to teach you image building and
customization basics. Read Using the examples first, followed by Tutorial
1: A default image, Tutorial 2: A web browser utility and finally Tutorial
3: A personalized image. By the end of these tutorials, you will have a
taste of what can be done with live systems.

We encourage you to return to more in-depth study of the manual, per-
haps next reading The basics, skimming or skipping Building a netboot
image, and finishing by reading the Customization overview and the chap-
ters that follow it. By this point, we hope you are thoroughly excited by
what can be done with live systems and motivated to read the rest of the
manual, cover-to-cover.

1.2 Begriffe

Live system : An operating system that can boot without installation
to a hard drive. Live systems do not alter local operating system(s) or
file(s) already installed on the computer hard drive unless instructed
to do so. Live systems are typically booted from media such as CDs,
DVDs or USB sticks. Some may also boot over the network (via net-
boot images, see Building a netboot image), and over the Internet (via
the boot parameter fetch=URL, see Webbooting).

Live medium : As distinct from live system, the live medium refers to
the CD, DVD or USB stick where the binary produced by live-build
and used to boot the live system is written. More broadly, the term
also refers to any place where this binary resides for the purposes of
booting the live system, such as the location for the network boot files.

10

11

12

13

14


https://live-team.pages.debian.net/live-manual/

16

17

18

19

20

21

22

23

24

25

26

27

28

Debian Live Manual

Debian Live Project : The project which maintains, among others, the
live-boot, live-build, live-config, live-tools and live-manual packages.

Host system : The environment used to create the live system.
Target system : The environment used to run the live system.
live-boot : A collection of scripts used to boot live systems.

live-build : A collection of scripts used to build customized live systems.

live-config : A collection of scripts used to configure a live system
during the boot process.

live-tools : A collection of additional scripts used to perform useful
tasks within a running live system.

live-manual : This document is maintained in a package called live-
manual.

Debian Installer (d-i) : The official installation system for the Debian
distribution.

Boot parameters : Parameters that can be entered at the bootloader
prompt to influence the kernel or live-config.

chroot : The chroot program, chroot(8), enables us to run different
instances of the GNU/Linux environment on a single system simulta-
neously without rebooting.

Binary image : A file containing the live system, such as live-image-
amd64.hybrid.iso or live-image-amd64.img.

Target distribution : The distribution upon which your live system will
be based. This can differ from the distribution of your host system.

stable/testing/unstable : The stable distribution, currently code-
named bookworm , contains the latest officially released distribution
of Debian. The testing distribution, temporarily codenamed trixie ,
is the staging area for the next stable release. A major advantage of

using this distribution is that it has more recent versions of software
relative to the stable release. The unstable distribution, permanently
codenamed sid , is where active development of Debian occurs. Gen-
erally, this distribution is run by developers and those who like to live
on the edge. Throughout the manual, we tend to use codenames for
the releases, such as trixie or sid , as that is what is supported by the
tools themselves.

1.3 Autoren

Liste der Autoren (in alphabetischer Reihenfolge):

Ben Armstrong
Brendan Sleight
Carlos Zuferri
Chris Lamb
Daniel Baumann
Franklin Piat
Jonas Stein

Kai Hendry
Marco Amadori
Mathieu Geli
Matthias Kirschner
Richard Nelson
Roland Clobus
Trent W. Buck

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



47

48

49

50

51

52

Debian Live Manual

1.4 Contributing to this document

This manual is intended as a community project and all proposals for
improvements and contributions are extremely welcome. Please see the
section Contributing to the project for detailed information on how to
fetch the commit key and make good commits.

1.4.1 Applying changes

In order to make changes to the English manual you have to edit the
right files in manual/en/ but prior to the submission of your contribu-

$ make build PROOF=1

When proofing one of the translations it is possible to build only one
language by executing, e.g:

$ make build LANGUAGES=de

It is also possible to build by document type, e.g:

tion, please preview your work. To preview the live-manual, ensure the ‘ $ make build FORMATS=pdf

packages needed for building it are installed by executing:

# apt-get install make poda ruby ruby-nokogiri sisu-complete

Or combine both, e.g:

You may build the live-manual from the top level directory of your Git
checkout by executing;:

$ make build LANGUAGES=de FORMATS=html

$ make build

Since it takes a while to build the manual in all supported languages,
authors may find it convenient to use one of the fast proofing shortcuts
when reviewing the new documentation they have added to the English
manual. Using PROOF=1 builds live-manual in html format, but without
the segmented html files, and using PROOF=2 builds live-manual in pdf
format, but only the A4 and letter portraits. That is why using either
of the PROOF= possibilities can save up a considerable amount of time,

e.g:

After revising your work and making sure that everything is fine, do not
use make commit unless you are updating translations in the commit, and
in that case, do not mix changes to the English manual and translations in
the same commit, but use separate commits for each. See the Translation
section for more details.

1.4.2 Translation

Note:
pages
In order to translate live-manual, follow these steps depending on whether

you are starting a translation from scratch or continue working on an
already existing one:

For the translation of the man pages see Translation of man

Start a new translation from scratch

54

55

56

57

58

59

60

61

62

63

64



66

67

68

69

71

Debian Live Manual

Translate the about'manual.ssi.pot , about project.ssi.pot and
index.html.in.pot files in manual/pot/ to your language with your
favourite editor (such as poedit) and send the translated .po files
to the mailing list to check their integrity. live-manual’s integrity
check not only ensures that the .po files are 100% translated but
it also detects possible errors.

Once checked, to enable a new language in the autobuild
it is enough to add the initial translated files to manual/po/-
$-LANGUAGE"/ and edit manual/ sisu/home/index.html adding
the name of the language and its name in English between brack-
ets. And then, add the folder manual/$-LANGUAGE"/ to the
file .gitignore. Finally, run make commit.

Continue with an already started translation

If your target language has already been added, you can ran-
domly continue translating the remaining .po files in manual/po/-
$-LANGUAGE"/ using your favourite editor (such as poedit) .

Do not forget that you need to run make commit to ensure that
the translated manuals are updated from the .po files and then
you can review your changes launching make build before git add
., git commit -m Translating... and git push. Remember that
since make build can take a considerable amount of time, you can
proofread languages individually as explained in Applying changes

After running make commit you will see some text scroll by. These
are basically informative messages about the processing status and also
some hints about what can be done in order to improve live-manual.
Unless you see a fatal error, you usually can proceed and submit your
contribution.

live-manual comes with two utilities that can greatly help translators to
find untranslated and changed strings. The first one is make translate. It

kaunches an script that tells you in detail how many untranslated strings
there are in each .po file. The second one, the make fixfuzzy target, only
acts upon changed strings but it helps you to find and fix them one by
one.

Keep in mind that even though these utilities might be really helpful to
do translation work on the command line, the use of an specialized tool
like poedit is the recommended way to do the task. It is also a good idea
to read the Debian localization (110n) documentation and, specifically to
live-manual, the Guidelines for translators.

Note:
This step is not compulsory thanks to the .gitignore file but it is a good
practice to avoid committing files involuntarily.

You can use make clean to clean your git tree before pushing.

72

73



74

75

76

77

78

79

80

81

82

83

84

85

86

About the Debian Live Project ~

2. About the Debian Live Project

2.1 Motivation
2.1.1 What is wrong with current live systems

When Debian Live Project was initiated (around 2006), there were al-
ready several Debian based live systems available and they are doing a
great job. From the Debian perspective most of them have one or more
of the following disadvantages:

They are not Debian projects and therefore lack support from within
Debian.

They mix different distributions, e.g. testing and unstable .
They support 1386 only.

They modify the behaviour and/or appearance of packages by stripping
them down to save space.

They include packages from outside of the Debian archive.

They ship custom kernels with additional patches that are not part of
Debian.

They are large and slow due to their sheer size and thus not suitable
for rescue issues.

They are not available in different flavours, e.g. CDs, DVDs, USB-stick
and netboot images.

2.1.2 Why create our own live system?

Debian is the Universal Operating System: Debian has a live system
to show around and to accurately represent the Debian system with the
following main advantages:

It is a subproject of Debian.

It reflects the (current) state of one distribution.

It runs on as many architectures as possible.

It comnsists of unchanged Debian packages only.

It does not contain any packages that are not in the Debian archive.

It uses an unaltered Debian kernel with no additional patches.

2.2 Philosophy

2.2.1 Only unchanged packages from Debian main and
non-free-firmware

We will only use packages from the Debian repository in the main section.
The non-free section is not part of Debian and therefore cannot be used
for official live system images.

Starting with Debian 12 bookworm we added the non-free-firmware
section for better support of modern hardware.

We will not change any packages. Whenever we need to change some-
thing, we will do that in coordination with its package maintainer in
Debian.

As an exception, our own packages such as live-boot, live-build or live-
config may temporarily be used from our own repository for development
reasons (e.g. to create development snapshots). They will be uploaded
to Debian on a regular basis.

89

90

91

92

93

94

95

96

97

98

99

100


https://wiki.debian.org/Firmware

Debian Live Manual

101 2.2.2 No package configuration of the live system

102 In this phase we will not ship or install sample or alternative configu-
rations. All packages are used in their default configuration as they are
after a regular installation of Debian.

103 Whenever we need a different default configuration, we will do that in
coordination with its package maintainer in Debian.

104 A system for configuring packages is provided using debconf allowing
custom configured packages to be installed in your custom produced live
system images, but for the prebuilt live images we choose to leave pack-
ages in their default configuration, unless absolutely necessary in order
to work in the live environment. Wherever possible, we prefer to adapt
packages within the Debian archive to work better in a live system ver-
sus making changes to the live toolchain or prebuilt image configurations.
For more information, please see Customization overview.

105 2.3 Contact

106 Mailing list : The primary contact for the project is the mailing
list at https://lists.debian.org/debian-live/. You can email the list directly by
addressing your mail to debian-live@lists.debian.org. The list archives are
available at https://lists.debian.org/debian-live/.

107 IRC : A number of users and developers are present in the #debian-
live channel on irc.debian.org (OFTC). When asking a question on IRC,
please be patient for an answer. If no answer is forthcoming, please
email the mailing list.

108 BTS : The Reporting bugs.


https://lists.debian.org/debian-live/
debian-live@lists.debian.org
https://lists.debian.org/debian-live/

109

Benutzer

10



110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Installation

3. Installation

3.1 Requirements

Building live system images has very few system requirements for the
host system:

Superuser (root) access

An up-to-date version of live-build

A POSIX-compliant shell, such as bash or dash
debootstrap

Linux 2.6 or newer

A mount point with dev and exec rights.

If you are using Debian, the recommended way is to install live-build via

the Debian repository.

3.2.1 From the Debian repository
Simply install live-build like any other package:

# apt-get install live -build

3.2.2 From source

live-build is developed using the Git version control system. On Debian
based systems, this is provided by the git package. To check out the latest

code, execute:

‘$ git clone https://salsa.debian.org/live -team/live - build . git

# mount jyour mount point; -odev,exec,remount

‘ You can build and install your own Debian package by executing:

Note that using Debian or a Debian-derived distribution is not required
- live-build will run on almost any distribution with the above require-
ments.

3.2 Installing live-build

You can install live-build in a number of different ways:
From the Debian repository
From source

From snapshots

$ cd live -build
$ dpkg-buildpackage -b -uc -us
$ cd ..

Now install whichever of the freshly built .deb files you were interested

in, e.g.

# dpkg -i live -build'4.0-1"all .deb

You can also install live-build directly to your system by executing:

11

127

128

129

130

131

132

133

134

135

136

137

138



140

141

142

143

144

145

146

147

148

149

150

Debian Live Manual

‘# make install

and uninstall it with:

‘# make uninstall

3.3 Installing live-boot and live-config

Note: You do not need to install live-boot or live-config on your system
to create customized live systems. However, doing so will do no harm
and is useful for reference purposes. If you only want the documenta-
tion, you may now install the live-boot-doc and live-config-doc packages
separately.

3.3.1 From the Debian repository

Both live-boot and live-config are available from the Debian repository
as per Installing live-build.

3.3.2 From source

To use the latest source from git, you can follow the process below. Please
ensure you are familiar with the terms mentioned in Terms.

Checkout the live-boot and live-config sources

$ git clone https://salsa.debian.org/live -team/live -boot. git
$ git clone https://salsa.debian.org/live -team/live - config. git

Consult the live-boot and live-config man pages for details on customizing
if that is your reason for building these packages from source.

Build live-boot and live-config .deb files

You must build either on your target distribution or in a chroot containing
your target platform: this means if your target is trixie then you should
build against trixie .

Use a personal builder such as pbuilder or sbuild if you need to build live-
boot for a target distribution that differs from your build system. For
example, for trixie live images, build live-boot in a trixie chroot. If your
target distribution happens to match your build system distribution, you
may build directly on the build system using dpkg-buildpackage (provided
by the dpkg-dev package):

cd live -boot
dpkg-buildpackage -b -uc -us
cd ../live -config

dpkg- buildpackage -b -uc -us

&P L L P

Use applicable generated .deb files

As live-boot and live-config are installed by live-build system, installing
the packages in the host system is not sufficient: you should treat the gen-
erated .deb files like any other custom packages. Since your purpose for
building from source is likely to test new things over the short term before
the official release, follow Installing modified or third-party packages to
temporarily include the relevant files in your configuration. In particular,
notice that both packages are divided into a generic part, a documen-
tation part and one or more back-ends. Include the generic part, only
one back-end matching your configuration, and optionally the documen-
tation. Assuming you are building a live image in the current directory
and have generated all .deb files for a single version of both packages in
the directory above, these bash commands would copy all of the relevant
packages including default back-ends:

12

154

155

156



Debian Live Manual

$ cp ../live -boot—",-initramfs -tools,-doc”*.deb config/packages.<+>
chroot/
$ cp ../live -config—",-sysvinit ,-doc”*.deb config/packages.chroot<+

13



158

159

160

161

162

163

164

The basics

4. The basics

This chapter contains a brief overview of the build process and instruc-
tions for using the three most commonly used image types. The most
versatile image type, iso-hybrid, may be used on a virtual machine, opti-
cal medium or USB portable storage device. In certain special cases, as
explained later, the hdd type may be more suitable. The chapter includes
detailed instructions for building and using a netboot type image, which
is a bit more involved due to the setup required on the server. This is
an slightly advanced topic for anyone who is not already familiar with
netbooting, but it is included here because once the setup is done, it is
a very convenient way to test and deploy images for booting on the local
network without the hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which
is, perhaps, the easiest way of using different images for different pur-
poses, switching from one to the other as needed using the internet as a
means.

Throughout the chapter, we will often refer to the default filenames
produced by live-build. If you are downloading a prebuilt image instead,
the actual filenames may vary.

4.1 What is a live system?

A live system usually means an operating system booted on a computer
from a removable medium, such as a CD-ROM or USB stick, or from a
network, ready to use without any installation on the usual drive(s), with
auto-configuration done at run time (see Terms).

With live systems, it’s an operating system, built for one of the supported
architectures (currently amd64 and arm64). It is made from the following
parts:

Linux kernel image , usually named vmlinuz*

Initial RAM disk image (initrd) : a RAM disk set up for the Linux
boot, containing modules possibly needed to mount the System image
and some scripts to do it.

System image : The operating system’s filesystem image. Usually, a
SquashF'S compressed filesystem is used to minimize the live system
image size. Note that it is read-only. So, during boot the live system
will use a RAM disk and ‘union’ mechanism to enable writing files
within the running system. However, all modifications will be lost
upon shutdown unless optional persistence is used (see Persistence).

Bootloader : A small piece of code crafted to boot from the chosen
medium, possibly presenting a prompt or menu to allow selection of op-
tions/configuration. It loads the Linux kernel and its initrd to run with
an associated system filesystem. Different solutions can be used, de-
pending on the target medium and format of the filesystem containing
the previously mentioned components: isolinux to boot from a CD or
DVD in ISO9660 format, syslinux for HDD or USB drive booting from
a VFAT partition, extlinux for ext2/3/4 and btrfs partitions, pxelinux
for PXE netboot, GRUB for ext2/3/4 partitions, etc.

You can use live-build to build the system image from your specifications,
set up a Linux kernel, its initrd, and a bootloader to run them, all in one
medium-dependent format (ISO9660 image, disk image, etc.).

4.2 Downloading prebuilt images

You can download one of the prebuilt images from https://www.debian.org/

14

165

166

167

168

170

171

172


https://www.debian.org/CD/live/
https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

173

174

175

176

177

178

179

Debian Live Manual

CD/live/. For many of the popular desktop environments (GNOME, Xfce,
KDE, etc.) a specific live image is prepared.

If you are unsure which file to download, use the ‘Live GNOME’ image
from the ‘stable’ release. You can then skip reading the next sections and
run the image in a virtual machine.

4.3 First steps: building an ISO hybrid image

Regardless of the image type, you will need to perform the same basic
steps to build an image each time. As a first example, create a build di-
rectory, change to that directory and then execute the following sequence
of live-build commands to create a basic ISO hybrid image containing a
default live system without X.org. It is suitable for burning to CD or
DVD media, and also to copy onto a USB stick.

The name of the working directory is absolutely up to you, but if you
take a look at the examples used throughout live-manual, it is a good
idea to use a name that helps you identify the image you are working
with in each directory, especially if you are working or experimenting
with different image types. In this case you are going to build a default
system so let’s call it, for example, live-default.

various options will be used. See The lb config command for more de-
tails.

Now that the config/ hierarchy exists, build the image with the 1b build
command:

# 1b build

$ mkdir live -default && cd live -default

Then, run the 1b config command. This will create a config/ hierarchy
in the current directory for use by other commands:

This process can take a while, depending on the speed of your computer
and your network connection. When it is complete, there should be
a live-image-amd64.hybrid.iso image file, ready to use, in the current
directory.

Note: If you are building on an amd64 system the name of the resulting
image will be live-image-amd64.hybrid.iso. Keep in mind this naming
convention throughout the manual.

4.4 Using an ISO hybrid live image

After either building or downloading an ISO hybrid image the usual next
step is to prepare your medium for booting, either CD-R(W) or DVD-
R(W) optical media or a USB stick.

4.4.1 Burning an ISO image to a physical medium

Burning an ISO image is easy. Just install xorriso and use it from the
command-line to burn the image. For instance:

$ 1b config

No parameters are passed to these commands, so defaults for all of their

# apt-get install xorriso
$ xorriso -as cdrecord -v dev=/dev/sr0 blank=as'needed live -image-+>
amd64 . hybrid . iso

15

181

182

183

184

185

186

187

188

189


https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

190

191

192

193

194

195

196

197

198

Debian Live Manual

4.4.2 Copying an ISO hybrid image to a USB stick

ISO images prepared with xorriso, can be simply copied to a USB stick
with the cp program or an equivalent. Plug in a USB stick with a size
large enough for your image file and determine which device it is, which
we hereafter refer to as $~USBSTICK". This is the device file of your
key, such as /dev/sdb, not a partition, such as /dev/sdbl! You can find
the right device name by looking in dmesg’s output after plugging in the
stick, or better yet, Is -1 /dev/disk/by-id.

Once you are certain you have the correct device name, use the cp com-
mand to copy the image to the stick. This will definitely overwrite any
previous contents on your stick!

partition, such as /dev/sdb2, you have to create a filesystem on it. One
possible choice would be ext4.

# mkfs.ext4 $—PARTITION”

$ cp live -image-amd64. hybrid.iso $-USBSTICK”
$ sync

Note: The sync command is useful to ensure that all the data, which

is stored in memory by the kernel while copying the image, is written to
the USB stick.

4.4.3 Using the space left on a USB stick

After copying the live-image-amd64.hybrid.iso to a USB stick, the first
partition on the device will be filled up by the live system. To use the
remaining free space, use a partitioning tool such as gparted or parted to
create a new partition on the stick.

# gparted $-USBSTICK”

After the partition is created, where $~PARTITION" is the name of the

Note: If you want to use the extra space with Windows, apparently that
OS cannot normally access any partitions but the first. Some solutions to
this problem have been discussed on our mailing list, but it seems there
are no easy answers.

Remember: Every time you install a new live-image-amd64.hybrid.iso on
the stick, all data on the stick will be lost because the partition table is
overwritten by the contents of the image, so back up your extra partition
first to restore again after updating the live image.

4.4.4 Booting the live medium

The first time you boot your live medium, whether CD, DVD, USB key,
or PXE boot, some setup in your computer’s BIOS may be needed first.
Since BIOSes vary greatly in features and key bindings, we cannot get into
the topic in depth here. Some BIOSes provide a key to bring up a menu
of boot devices at boot time, which is the easiest way if it is available on
your system. Otherwise, you need to enter the BIOS configuration menu
and change the boot order to place the boot device for the live system
before your normal boot device.

Once you’ve booted the medium, you are presented with a boot menu.
If you just press enter here, the system will boot using the default entry,
Live and default options. For more information about boot options, see
the help entry in the menu and also the live-boot and live-config man
pages found within the live system.

Assuming you’ve selected Live and booted a default desktop live image,

16

199

200

201

202

203

204

205



206

207

208

209

210

211

212

213

214

215

Debian Live Manual

after the boot messages scroll by, you should be automatically logged into
the user account and see a desktop, ready to use. If you have booted a
console-only image, you should be automatically logged in on the console
to the user account and see a shell prompt, ready to use.

4.5 Using a virtual machine for testing

It can be a great time-saver for the development of live images to run
them in a virtual machine (VM). This is not without its caveats:

Running a VM requires enough RAM for both the guest OS and the
host and a CPU with hardware support for virtualization is recom-
mended.

There are some inherent limitations to running on a VM, e.g. poor
video performance, limited choice of emulated hardware.

When developing for specific hardware, there is no substitute for
running on the hardware itself.

Occasionally there are bugs that relate only to running in a VM. When
in doubt, test your image directly on the hardware.

Provided you can work within these constraints, survey the available VM
software and choose one that is suitable for your needs.

4.5.1 Testing an ISO image with QEMU

The most versatile VM in Debian is QEMU. If your processor has hard-
ware support for virtualization, use the gemu-kvm package; the gemu-
kvm package description briefly lists the requirements.

First, install gemu-kvm if your processor supports it. If not, install gemu,
in which case the program name is qemu instead of kvm in the following

examples. The gemu-utils package is also valuable for creating virtual
disk images with qemu-img.

# apt-get install gemu-kvm gemu-utils

Booting an ISO image is simple:

$ kvin -cdrom live -image-amd64.hybrid.iso -m 4G

See the man pages for more details.

Note: For live systems containing a desktop environment that you want
to test with gemu, you may wish to include the spice-vdagent package
in your live-build configuration. This will automatically adjust the res-
olution and enable the clipboard between the virtual machine and the
host.

$ echo ”spice -vdagent” ;; config/package-lists/spice.list.chroot

4.5.2 Testing an ISO image with VirtualBox

In order to test the ISO with virtualbox:

# apt-get install virtualbox virtualbox -qt virtualbox -dkms
$ virtualbox

Create a new virtual machine, change the storage settings to use
live-image-amd64.hybrid.iso as the CD/DVD device, and start the ma-
chine.

17

216

217

218

219

220

221

222

223

224

225



227

228

229

230

231

232

Debian Live Manual

Note:  For live systems containing X.org that you want to test with
virtualbox, you may wish to include the VirtualBox X.org driver pack-
age, virtualbox-guest-dkms and virtualbox-guest-x11, in your live-build
configuration. Otherwise, the resolution is limited to 800x600.

# 1b clean --binary

$ echo ”virtualbox - guest -dkms virtualbox - guest -x11” ;; config/«
package-lists /my. list .chroot

Run the 1b config command as before, except this time specifying the
HDD image type:

$ Ib config -b hdd

In order to make the dkms package work, also the kernel headers for the
kernel flavour used in your image need to be installed. Instead of manually
listing the correct linux-headers package in above created package list,
the selection of the right package can be done automatically by live-
build.

Now build the image with the 1b build command:

‘# b build

$ 1b config --linux-packages ”linux-image linux -headers”

4.6 Building and using an HDD image

Building an HDD image is similar to an ISO hybrid one in all re-
spects except you specify -b hdd and the resulting filename is live-image-
amd64.img which cannot be burnt to optical media. It is suitable for
booting from USB sticks, USB hard drives, and various other portable
storage devices. Normally, an ISO hybrid image can be used for this
purpose instead, but if you have a BIOS which does not handle hybrid
images properly, you need an HDD image.

Note: if you created an ISO hybrid image with the previous example, you
will need to clean up your working directory with the 1b clean command
(see The Ib clean command):

When the build finishes, a live-image-amd64.img file should be present
in the current directory.

The generated binary image contains a VFAT partition and the syslinux
bootloader, ready to be directly written on a USB device. Once again,
using an HDD image is just like using an ISO hybrid one on USB. Follow
the instructions in Using an ISO hybrid live image, except use the filename
live-image-amd64.img instead of live-image-amd64.hybrid.iso.

Likewise, to test an HDD image with Qemu, install gemu as described
above in Testing an ISO image with QEMU. Then run kvm or gemu,
depending on which version your host system needs, specifying live-image-
amd64.img as the first hard drive.

$ kvin -hda live -image-amd64.img

4.7 Building a netboot image

The following sequence of commands will create a basic netboot image

18

235

236

237

238

239

240

241

242



244

245

246

247

248

249

Debian Live Manual

containing a default live system without X.org. It is suitable for booting
over the network.

Note: if you performed any previous examples, you will need to clean
up your working directory with the Ib clean command:

# 1b build

# 1b clean

In this specific case, a Ib clean —binary would not be enough to clean
up the necessary stages. The cause for this is that in netboot setups, a
different initramfs configuration needs to be used which live-build per-
forms automatically when building netboot images. Since the initramfs
creation belongs to the chroot stage, switching to netboot in an existing
build directory means to rebuild the chroot stage too. Therefore, 1b clean
(which will remove the chroot stage, too) needs to be used.

Run the 1b config command as follows to configure your image for net-
booting:

$ lb config -b netboot --net-root-path ”/srv/debian-live” --net-<

”7192.168.0.2”

root - server

In contrast with the ISO and HDD images, netbooting does not, itself,
serve the filesystem image to the client, so the files must be served via
NFS. Different network filesystems can be chosen through Ib config. The —
net-root-path and —net-root-server options specify the location and server,
respectively, of the NF'S server where the filesystem image will be located
at boot time. Make sure these are set to suitable values for your network
and server.

Now build the image with the 1b build command:

In a network boot, the client runs a small piece of software which usually
resides on the EPROM of the Ethernet card. This program sends a
DHCP request to get an IP address and information about what to do
next. Typically, the next step is getting a higher level bootloader via the
TFTP protocol. That could be pxelinux, GRUB, or even boot directly
to an operating system like Linux.

For example, if you unpack the generated live-image-amd64.netboot.tar
archive in the /srv/debian-live directory, you’ll find the filesystem image
in live/filesystem.squashfs and the kernel, initrd and pxelinux bootloader
in tftpboot/.

We must now configure three services on the server to enable netbooting:
the DHCP server, the TF'TP server and the NFS server.

4.7.1 DHCP server

We must configure our network’s DHCP server to be sure to give an IP
address to the netbooting client system, and to advertise the location of
the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP server
isc-dhep-server in the /etc/dhep/dhepd.conf configuration file:

# /etc/dhcp/dhepd. conf - configuration file for isc-dhcp-server
ddns-update-style none;

option domain-name ”example.org”;

option domain-name-servers nsl.example.org, ns2.example.org;

default -lease -time 600;
max- lease -time 7200;

19

252

253

254

255

257

258



259

260

261

262

263

264

265

266

267

Debian Live Manual

log - facility localT7;

subnet 192.168.0.0 netmask 255.255.255.0 —
range 192.168.0.1 192.168.0.254;
filename ”pxelinux.0”;
next-server 192.168.0.2;
option subnet-mask 255.255.255.0;
option broadcast -address 192.168.0.255;
option routers 192.168.0.1;

/srv/debian-live *(ro,async,no’root squash ,no’'subtree’check)

and tell the NFS server about this new export with the following com-
mand:

# exportfs -rv

4.7.2 TFTP server

This serves the kernel and initial ramdisk to the system at run time.

You should install the tftpd-hpa package. It can serve all files contained
inside a root directory, usually /srv/tftp. To let it serve files inside /srv/-
debian-live/tftpboot, run as root the following command:

# dpkg-reconfigure -plow tftpd -hpa

and fill in the new tftp server directory when being asked about it.

4.7.3 NF'S server

Once the guest computer has downloaded and booted a Linux kernel and
loaded its initrd, it will try to mount the Live filesystem image through
a NF'S server.

You need to install the nfs-kernel-server package.

Then, make the filesystem image available through NFS by adding a line
like the following to /etc/exports:

Setting up these three services can be a little tricky. You might need
some patience to get all of them working together. For more information,
see the syslinux wiki at https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
or the Debian Installer Manual’s TFTP Net Booting section at https://
www.debian.org/releases/stable/amd64/ch04s05.en.html. They might help, as their
processes are very similar.

4.7.4 Netboot testing HowTo

Netboot image creation is made easy with live-build, but testing the
images on physical machines can be really time consuming.

To make our life easier, we can use virtualization.

4.7.5 Qemu

Install gemu, bridge-utils, sudo.

Edit /etc/qemu-ifup:

#!/bin /sh

sudo -p ”Password for $0:” /sbin/ifconfig $1 172.20.0.1
echo ”Executing /etc/gemu-ifup”

echo ”Bringing up $1 for bridged mode...”

sudo /sbin/ifconfig $1 0.0.0.0 promisc up

20

270

271

272

273

274

275

276

277

278


https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://www.debian.org/releases/stable/amd64/ch04s05.en.html
https://www.debian.org/releases/stable/amd64/ch04s05.en.html

280

281

282

284

285

286

287

Debian Live Manual

echo ”Adding $1 to br0...”
sudo /usr/sbin/brctl addif br0 $1
sleep 2

Get, or build a grub-floppy-netboot.

Launch gemu with -net nic,vlan=0 -net tap,vlan=0,ifname=tun0

4.8 Webbooting

Webbooting is a convenient way of retrieving and booting live systems
using the internet as a means. The requirements for webbooting are very
few. On the one hand, you need a medium with a bootloader, an initial
ramdisk and a kernel. On the other hand, a web server to store the
squashfs files which contain the filesystem.

4.8.1 Getting the webboot files

As usual, you can build the images yourself or use the prebuilt files. Using
prebuilt images would be handy for doing initial testing until one can fine
tune their own needs. If you have built a live image you will find the files
needed for webbooting in the build directory under binary/live/. The
files are called vmlinuz, initrd.img and filesystem.squashfs.

It is also possible to extract those files from an already existing iso image.
In order to achieve that, loopback mount the image as follows:

But undoubtedly, the easiest way of extracting the files from an iso image
and uploading it to the web server at the same time, is using the midnight
commander or mc. If you have the genisoimage package installed, the two-
pane file manager allows you to browse the contents of an iso file in one
pane and upload the files via ftp in the other pane. Even though this
method requires manual work, it does not require root privileges.

4.8.2 Booting webboot images

While some users will prefer virtualization to test webbooting, we refer to
real hardware here to match the following possible use case which should
only be considered as an example.

In order to boot a webboot image it is enough to have the components
mentioned above, i.e. vmlinuz and initrd.img in a usb stick inside a
directory named live/ and install syslinux as bootloader. Then boot from
the usb stick and type fetch=URL/PATH/TO/FILE at the boot options.
live-boot will retrieve the squashfs file and store it into ram. This way, it
is possible to use the downloaded compressed filesystem as a regular live
system. For example:

append boot=live components fetch=http://192.168.2.50/images/<+>
webboot /filesystem . squashfs

# mount -o loop image.iso /mnt

The files are to be found under the live/ directory. In this specific case,
it would be /mnt/live/. This method has the disadvantage that you need
to be root to be able to mount the image. However, it has the advantage
that it is easily scriptable and thus, easily automated.

Use case: You have a web server in which you have stored two squashfs
files, one which contains a full desktop, like for example gnome, and a
standard one. If you need a graphical environment for one machine, you
can plug your usb stick in and webboot the gnome image. If you need
one of the tools included in the second type of image, perhaps for another
machine, you can webboot the standard one.

21

288

289

290

291

292

293



294

295

296

298

299

300

301

302

303

Overview of tools

5. Overview of tools

This chapter contains an overview of the three main tools used in building
live systems: live-build, live-boot and live-config.

5.1 The live-build package

live-build is a collection of scripts to build live systems. These scripts are
also referred to as commands.

The idea behind live-build is to be a framework that uses a configuration
directory to completely automate and customize all aspects of building a
Live image.

Many concepts are similar to those used to build Debian packages with
debhelper:

The scripts have a central location for configuring their operation. In
debhelper, this is the debian/ subdirectory of a package tree. For ex-
ample, dh'install will look, among others, for a file called debian/install
to determine which files should exist in a particular binary package. In
much the same way, live-build stores its configuration entirely under a
config/ subdirectory.

The scripts are independent - that is to say, it is always safe to run
each command.

Unlike debhelper, live-build provides the tools to generate a skeleton con-
figuration directory. This could be considered to be similar to tools such
as dh-make. For more information about these tools, read on, since the re-

mainder of this section discuses the four most important commands. Note
that the preceding b is a generic wrapper for live-build commands.

Ib config : Responsible for initializing a Live system configuration
directory. See The 1b config command for more information.

Ib build : Responsible for starting a Live system build. See The lb
build command for more information.

Ib clean : Responsible for removing parts of a Live system build. See
The Ib clean command for more information.

5.1.1 The Ib config command

As discussed in live-build, the scripts that make up live-build read their
configuration with the source command from a single directory named
config/. As constructing this directory by hand would be time-consuming
and error-prone, the 1b config command can be used to create the initial
skeleton configuration tree.

Issuing Ib config without any arguments creates the config/ subdirectory
which is populated with some default settings in configuration files, and
two skeleton trees named auto/ and local/.

$ 1b config

[2025-02-15 12:34:56] 1b config

P: Using http proxy: http://127.0.0.1:3142

P: Creating config tree for a debian/testing/amd64 system
P: Symlinking hooks...

Using lb config without any arguments would be suitable for users who
need a very basic image, or who intend to provide a more complete con-
figuration via auto/config later (see Managing a configuration for de-
tails).

22

304

305

306

307

308

309

310

311



313

314

315

316

317

318

319

320

Debian Live Manual

Normally, you will want to specify some options. For example, to specify
which package manager to use while building the image:

$ Ib config --apt aptitude

It is possible to specify many options, such as:

$ 1b config --binary-images netboot --bootappend-live ”boot=live <
components hostname=live - host username=live - user”

A full list of options is available in the lb’config man page.

5.1.2 The 1b build command

The 1b build command reads in your configuration from the config/ di-
rectory. It then runs the lower level commands needed to build your Live
system.

5.1.3 The 1b clean command

It is the job of the Ib clean command to remove various parts of a build
so subsequent builds can start from a clean state. By default, chroot,
binary and source stages are cleaned, but the cache is left intact. Also,
individual stages can be cleaned. For example, if you have made changes
that only affect the binary stage, use lb clean —binary prior to building
a new binary. If your changes invalidate the bootstrap and/or package
caches, e.g. changes to —-mode, —architecture, or —bootstrap, you must use
Ib clean —purge. See the Ib'clean man page for a full list of options.

3.2 The live-boot package

live-boot is a collection of scripts providing hooks for the initramfs-tools,
used to generate an initramfs capable of booting live systems, such as
those created by live-build. This includes the live system ISOs, netboot
tarballs, and USB stick images.

At boot time it will look for read-only media containing a /live/ directory
where a root filesystem (often a compressed filesystem image like squashfs)
is stored. If found, it will create a writable environment, using OverlayF'S,
for Debian like systems to boot from.

More information on initial ramfs in Debian can be found in the Debian
Linux Kernel Handbook at https://kernel-team.pages.debian.net/kernel-handbook/
in the chapter on initramfs.

5.3 The live-config package

live-config consists of the scripts that run at boot time after live-boot to
configure the live system automatically. It handles such tasks as setting
the hostname, locales and timezone, creating the live user, inhibiting cron
jobs and performing autologin of the live user.

23

322

323

324

325

326


https://kernel-team.pages.debian.net/kernel-handbook/

327

328

329

330

331

332

333

Managing a configuration

6. Managing a configuration

This chapter explains how to manage a live configuration from initial
creation, through successive revisions and successive releases of both the
live-build software and the live image itself.

6.1 Dealing with configuration changes

Live configurations rarely are perfect on the first try. It may be fine to
pass lb config options from the command-line to perform a single build,
but it is more typical to revise those options and build again until you
are satisfied. To support these changes, you will need auto scripts which
ensure your configuration is kept in a consistent state.

6.1.1 Why use auto scripts? What do they do?

The 1b config command stores the options you pass to it in config/*
files along with many other options set to default values. If you run lb
config again, it will not reset any option that was defaulted based on
your initial options. So, for example, if you run lb config again with a
new value for —binary-images, any dependent options that were defaulted
for the old image type may no longer work with the new ones. Nor
are these files intended to be read or edited. They store values for over a
hundred options, so nobody, let alone yourself, will be able to see in these
which options you actually specified. And finally, if you run Ib config,
then upgrade live-build and it happens to rename an option, config/*
would still contain variables named after the old option that are no longer
valid.

For all these reasons, auto/* scripts will make your life easier. They are
simple wrappers to the Ib config, Ib build and Ib clean commands that are
designed to help you manage your configuration. The auto/config script
stores your lb config command with all desired options, the auto/clean
script removes the files containing configuration variable values, and the
auto/build script keeps a build.log of each build. Each of these scripts

is run automatically every time you run the corresponding Ib command.

By using these scripts, your configuration is easier to read and is kept
internally consistent from one revision to the next. Also, it will be much
easier for you identify and fix options which need to change when you
upgrade live-build after reading the updated documentation.

6.1.2 Use example auto scripts

For your convenience, live-build comes with example auto shell scripts to
copy and edit. Start a new, default configuration, then copy the examples
into it:

$ mkdir mylive && cd mylive && 1b config
$ mkdir auto
$ cp /usr/share/doc/live - build /examples/auto/* auto/

Edit auto/config, adding any options as you see fit. For instance:

#!/bin /sh

Ib config noauto
--distribution stable “
--binary -images hdd
--mirror - bootstrap http://ftp.ch.debian.org/debian/ ¢
--mirror - binary http://ftp.ch.debian.org/debian/ ¢
77$7@N77

“

Now, each time you use b config, auto/config will reset the configuration

24

334

335

336

337

338

339

340



341

342

343

344

345

346

Debian Live Manual

based on these options. When you want to make changes to them, edit
the options in this file instead of passing them to 1b config. When you
use b clean, auto/clean will clean up the config/* files along with any
other build products. And finally, when you use lb build, a log of the
build will be written by auto/build in build.log.

Note: A special noauto parameter is used here to suppress another
call to auto/config, thereby preventing infinite recursion. Make sure you
don’t accidentally remove it when making edits. Also, take care to ensure
when you split the 1b config command across multiple lines for readability,
as shown in the example above, that you don’t forget the backslash ( at
the end of each line that continues to the next.

6.2 Clone a configuration published via Git

Use the lb config —config option to clone a Git repository that contains a
live system configuration. If you would like to base your configuration on
one maintained by the Debian Live Project, look at https://salsa.debian.org/
live-team/ for the repository named live-images in the category Subgroups
and projects. This repository contains the configurations for the live
systems prebuilt images.

For example, to build a standard image, use the live-images repository
as follows:

$ mkdir live -images && cd live -images

$ 1b config --config https://salsa.debian.org/live -team/live -«
images. git :: debian

$ cd images/standard

Edit auto/config and any other things you need in the config tree to suit
your needs. For example, the unofficial non-free prebuilt images are made
by simply adding —archive-areas main contrib non-free.

You may optionally define a shortcut in your Git configuration by adding
the following to your $-HOME"/.gitconfig:

[url ”https://salsa.debian.org/live -team /”]
insteadOf = lso:

This enables you to use lso: anywhere you need to specify the address of
a salsa.debian.org git repository. If you also drop the optional .git suffix,
starting a new image using this configuration is as easy as:

‘$ lb config --config lso:live -images::debian

Cloning the entire live-images repository pulls the configurations used
for several images. If you feel like building a different image after you
have finished with the first one, change to another directory and again
and optionally, make any changes to suit your needs.

In any case, remember that every time you will have to build the image
as superuser: 1b build

25

348

349

350

351

352


https://salsa.debian.org/live-team/
https://salsa.debian.org/live-team/

353

354

355

356

357

358

Customizing contents

7. Customization overview

This chapter gives an overview of the various ways in which you may
customize a live system.

7.1 Build time vs. boot time configuration

Live system configuration options are divided into build-time options
which are options that are applied at build time and boot-time options
which are applied at boot time. Boot-time options are further divided
into those occurring early in the boot, applied by the live-boot package,
and those that happen later in the boot, applied by live-config. Any
boot-time option may be modified by the user by specifying it at the
boot prompt. The image may also be built with default boot parameters
so users can normally just boot directly to the live system without speci-
fying any options when all of the defaults are suitable. In particular, the
argument to 1b —bootappend-live consists of any default kernel command
line options for the Live system, such as persistence, keyboard layouts,
or timezone. See Customizing locale and language, for example.

Build-time configuration options are described in the 1b config man
page. Boot-time options are described in the man pages for live-boot
and live-config. Although the live-boot and live-config packages are in-
stalled within the live system you are building, it is recommended that
you also install them on your build system for easy reference when you are
working on your configuration. It is safe to do so, as none of the scripts
contained within them are executed unless the system is configured as a
live system.

7.2 Stages of the build

The build process is divided into stages, with various customizations
applied in sequence in each. The first stage to run is the bootstrap stage.
This is the initial phase of populating the chroot directory with packages
to make a barebones Debian system. This is followed by the chroot
stage, which completes the construction of chroot directory, populating
it with all of the packages listed in the configuration, along with any
other materials. Most customization of content occurs in this stage. The
final stage of preparing the live image is the binary stage, which builds
a bootable image, using the contents of the chroot directory to construct
the root filesystem for the Live system, and including the installer and
any other additional material on the target medium outside of the Live
system’s filesystem. After the live image is built, if enabled, the source
tarball is built in the source stage.

Within each of these stages, there is a particular sequence in which com-
mands are applied. These are arranged in such a way as to ensure cus-
tomizations can be layered in a reasonable fashion. For example, within
the chroot stage, preseeds are applied before any packages are installed,
packages are installed before any locally included files are copied, and
hooks are run later, after all of the materials are in place.

7.3 Supplement 1b config with files

Although 1b config creates a skeletal configuration in the config/ directory,
to accomplish your goals, you may need to provide additional files in
subdirectories of config/. Depending on where the files are stored in the
configuration, they may be copied into the live system’s filesystem or into
the binary image filesystem, or may provide build-time configurations of
the system that would be cumbersome to pass as command-line options.
You may include things such as custom lists of packages, custom artwork,

26

361

362

363



364

365

Debian Live Manual

or hook scripts to run either at build time or at boot time, boosting the
already considerable flexibility of debian-live with code of your own.

7.4 Customization tasks

The following chapters are organized by the kinds of customization task
users typically perform: Customizing package installation, Customizing
contents and Customizing locale and language cover just a few of the
things you might want to do.

27



366

367

368

369

370

371

Customizing package installation

8. Customizing package installation

Perhaps the most basic customization of a live system is the selection of
packages to be included in the image. This chapter guides you through
the various build-time options to customize live-build’s installation of
packages. The broadest choices influencing which packages are available
to install in the image are the distribution and archive areas. To ensure
decent download speeds, you should choose a nearby distribution mirror.
You can also add your own repositories for backports, experimental or
custom packages, or include packages directly as files. You can define
lists of packages, including metapackages which will install many related

packages at once, such as packages for a particular desktop or language.

Finally, a number of options give some control over apt, or if you prefer,
aptitude, at build time when packages are installed. You may find these
handy if you use a proxy, want to disable installation of recommended
packages to save space, or need to control which versions of packages are
installed via APT pinning, to name a few possibilities.

8.1 Package sources
8.1.1 Distribution, archive areas and mode

The distribution you choose has the broadest impact on which packages
are available to include in your live image. Specify the codename, which
defaults to testing . Any current distribution carried in the archive may
be specified by its codename here. (See Terms for more details.) The
—distribution option not only influences the source of packages within the
archive, but also instructs live-build to enable other sources.

For example, to build against the stable release, with security, updates
(enabled per default) and additionally proposed-updates and backports,
specify:

$ 1b config --distribution stable --proposed-updates true --<+
backports true

Similarly, for the unstable release, sid , which has neither security nor
updates, specify:

$ 1b config --distribution sid

Within the distribution archive, archive areas are major divisions of the
archive. In Debian, these are main, contrib and non-free. Only main
contains software that is part of the Debian distribution, hence that is
the default. One or more values may be specified, e.g.

$ Ib config --archive-areas ”"main contrib non-free”

Experimental support is available for some Debian derivatives through
a —mode option. By default, this option is set to debian only if you are
building on a Debian or on an unknown system. If Ib config is invoked
on any of the supported derivatives, it will default to create an image of
that derivative. If 1b config is run in e.g. ubuntu mode, the distribution
names and archive areas for the specified derivative are supported instead
of the ones for Debian. The mode also modifies live-build behaviour to
suit the derivatives.

Note: The projects for whom these modes were added are primarily re-
sponsible for supporting users of these options. The Debian Live Project,
in turn, provides development support on a best-effort basis only, based

28

373

374

375

376

377

379



380

381

382

383

384

385

386

387

Debian Live Manual

on feedback from the derivative projects as we do not develop or support
these derivatives ourselves.

8.1.2 Distribution mirrors

The Debian archive is replicated across a large network of mirrors around
the world so that people in each region can choose a nearby mirror for best
download speed. Each of the —~mirror-* options governs which distribution
mirror is used at various stages of the build. Recall from Stages of the
build that the bootstrap stage is when the chroot is initially populated
by debootstrap with a minimal system, and the chroot stage is when the
chroot used to construct the live system’s filesystem is built. Thus, the
corresponding mirror switches are used for those stages, and later, in the
binary stage, the —mirror-binary and —mirror-binary-security values are
used, superseding any mirrors used in an earlier stage.

8.1.3 Distribution mirrors used at build time

To set the distribution mirrors used at build time to point at a local mir-
ror, it is sufficient to set —mirror-bootstrap and —mirror-chroot-security
as follows.

the binary image. These may be used to install additional packages while
running the live system. The defaults employ deb.debian.org, a service
that chooses a geographically close mirror based, among other things, on
the user’s IP family and the availability of the mirrors. This is a suitable
choice when you cannot predict which mirror will be best for all of your
users. Or you may specify your own values as shown in the example
below. An image built from this configuration would only be suitable for
users on a network where mirror is reachable.

$ 1b config --mirror-binary http://mirror/debian/
--mirror - binary - security http://mirror/debian-security/ <

3

--mirror - binary - backports http://mirror/debian-backports«+

/

$ 1b config --mirror-bootstrap http://localhost/debian/ “
--mirror - chroot - security http://localhost/debian -+
security /

The chroot mirror, specified by —mirror-chroot, defaults to the —mirror-
bootstrap value.

8.1.4 Distribution mirrors used at run time

The —mirror-binary* options govern the distribution mirrors placed in

8.1.5 Additional repositories

You may add more repositories, broadening your package choices be-
yond what is available in your target distribution. These may be, for
example, for backports, experimental or custom packages. To configure
additional repositories, create config/archives/your-repository.list.chroot,
and/or config/archives/your-repository.list.binary files. As with the —
mirror-* options, these govern the repositories used in the chroot stage
when building the image, and in the binary stage, i.e. for use when
running the live system.

For example, config/archives/live.list.chroot allows you to install pack-
ages from the debian-live snapshot repository at live system build
time.

deb http://debian-live.alioth.debian.org/ sid-snapshots main <
contrib non- free

29

388

389

390

391

392



393

394

395

396

397

398

399

400

401

Debian Live Manual

If you add the same line to config/archives/live.list.binary, the reposi-
tory will be added to your live system’s /etc/apt/sources.list.d/ direc-
tory.

If such files exist, they will be picked up automatically.

You should also put the ASCII-armored GPG key used to sign the reposi-
tory into config/archives/your-repository.key.—binary,chroot” files.

Should you need custom APT pinning, such APT preferences snip-
pets can be placed in config/archives/your-repository.pref.—binary,chroot ”
files and will be automatically added to your live system’s /etc/apt/-
preferences.d/ directory.

Similarly, if you need custom APT'AUTH.CONF(5) authentication con-
figuration, this can be placed in config/archives/your-repository.auth.-
—binary,chroot” files and will be automatically added to your live system’s
/etc/apt/auth.conf.d/ directory

8.2 Choosing packages to install

There are a number of ways to choose which packages live-build will
install in your image, covering a variety of different needs. You can
simply name individual packages to install in a package list. You can also
use metapackages in those lists, or select them using package control file
fields. And finally, you may place package files in your config/ tree, which
is well suited to testing of new or experimental packages before they are
available from a repository.

8.2.1 Package lists

Package lists are a powerful way of expressing which packages should
be installed. The list syntax supports conditional sections which makes

it easy to build lists and adapt them for use in multiple configurations.

Package names may also be injected into the list using shell helpers at
build time.

Note: The behaviour of live-build when specifying a package that does
not exist is determined by your choice of APT utility. See Choosing apt
or aptitude for more details.

8.2.2 Using metapackages

The simplest way to populate your package list is to use a task metapack-
age maintained by your distribution. For example:

$ 1b config
$ echo task-gnome-desktop ; config/package-lists/desktop.list .«
chroot

This supersedes the older predefined list method supported in live-build
2.x. Unlike predefined lists, task metapackages are not specific to the
Live System project. Instead, they are maintained by specialist working
groups within the distribution and therefore reflect the consensus of each
group about which packages best serve the needs of the intended users.
They also cover a much broader range of use cases than the predefined
lists they replace.

All task metapackages are prefixed task-, so a quick way to determine
which are available (though it may contain a handful of false hits that
match the name but aren’t metapackages) is to match on the package
name with:

$ apt-cache search --names-only “task-

In addition to these, you will find other metapackages with various pur-

30

402

403

404

405

406

407

408



410

411

412

413

414

415

Debian Live Manual

poses. Some are subsets of broader task packages, like gnome-core, while
others are individual specialized parts of a Debian Pure Blend, such as
the education-* metapackages. To list all metapackages in the archive, in-
stall the debtags package and list all packages with the role::metapackage
tag as follows:

$ debtags search role:: metapackage

8.2.3 Local package lists

Whether you list metapackages, individual packages, or a combination
of both, all local package lists are stored in config/package-lists/. Since
more than one list can be used, this lends itself well to modular designs.
For example, you may decide to devote one list to a particular choice of
desktop, another to a collection of related packages that might as easily
be used on top of a different desktop. This allows you to experiment
with different combinations of sets of packages with a minimum of fuss,
sharing common lists between different live image projects.

Package lists that exist in this directory need to have a .list suffix in order
to be processed, and then an additional stage suffix, .chroot or .binary to
indicate which stage the list is for.

The packages in the .list.chroot'install list are present both in the live
system and in the installed system.

Note: If you don’t specify the stage suffix, the list will be used for both
stages. Normally, you want to specify .list.chroot so that the packages
will only be installed in the live filesystem and not have an extra copy of
the .deb placed on the medium.

8.2.4 Local binary package lists

To make a binary stage list, place a file suffixed with .list.binary in config/-
package-lists/. These packages are not installed in the live filesystem, but
are included on the live medium under pool/. You would typically use
such a list with one of the non-live installer variants. As mentioned above,
if you want this list to be the same as your chroot stage list, simply use
the .list suffix by itself.

8.2.5 Generated package lists

It sometimes happens that the best way to compose a list is to generate
it with a script. Any line starting with an exclamation point indicates
a command to be executed within the chroot when the image is built.
For example, one might include the line ! grep-aptavail -n -sPackage -
FPriority standard —sort in a package list to produce a sorted list of
available packages with Priority: standard.

In fact, selecting packages with the grep-aptavail command (from the
dctrl-tools package) is so useful that live-build provides a Packages helper
script as a convenience. This script takes two arguments: field and pat-
tern. Thus, you can create a list with the following contents:

$ 1b config
$ echo '! Packages Priority standard'
standard . list .chroot

{ config/package-lists/«

8.2.6 Using conditionals inside package lists

Any of the live-build configuration variables stored in config/* (minus the
LB’ prefix) may be used in conditional statements in package lists. Gener-
ally, this means any 1b config option uppercased and with dashes changed

31

417

418

419

420

421

422

423



424

425

426

427

428

429

431

432

Debian Live Manual

to underscores. But in practice, it is only the ones that influence package
selection that make sense, such as DISTRIBUTION, ARCHITECTURES
or ARCHIVE AREAS.

For example, to install ia32-libs if the —architectures amd64 is speci-
fied:

#if ARCHITECTURES amd64
ia32 -1libs
#endif

You may test for any one of a number of values, e.g. to install memtest86+
if either —architectures i386 or —architectures amd64 is specified:

#if ARCHITECTURES 1386 amd64
memtest86+
#endif

You may also test against variables that may contain more than one
value, e.g. to install vrms if either contrib or non-free is specified via
—archive-areas:

install list exist, the packages in the .list.chroot live list are removed with
a hook after the installation (if the user uses the installer). The packages
in the .list.chroot’install list are present both in the live system and in
the installed system. This is a special tweak for the installer and may be
useful if you have —debian-installer live set in your config, and wish to
remove live system-specific packages at install time.

8.2.8 Summary

The table below shows which configuration files are required to achieve
the desired availability of the package.

X.chroot X.chroot'- X X.binary
live

Package is Yes Yes Yes No
installed

in the live

system

Package is No Yes No N/A
removed

after in-

stalling the

live system

Package can N/A N/A Yes *1 Yes

be installed
from the live
system with-
out network

#if ARCHIVE' AREAS contrib non- free
vrms

#endif

The nesting of conditionals is not supported.

8.2.7 Removing packages at install time

You can list packages in files with .list.chroot'live and .list.chroot install
suffixes inside the config/package-lists directory. If both a live and an

*1: Because the installer needs this package

X = config/package-lists/custom name.list
8.2.9 Desktop and language tasks

Desktop and language tasks are special cases that need some extra plan-
ning and configuration. Live images are different from Debian Installer

32

433

434

435

436

437

438

439



440

441

442

443

444

Debian Live Manual

images in this respect. In the Debian Installer, if the medium was pre-
pared for a particular desktop environment flavour, the corresponding
task will be automatically installed. Thus, there are internal gnome-
desktop, kde-desktop, Ixde-desktop and xfce-desktop tasks, none of which
are offered in tasksel’s menu. Likewise, there are no menu entries for tasks
for languages, but the user’s language choice during the install influences
the selection of corresponding language tasks.

When developing a desktop live image, the image typically boots directly
to a working desktop, the choices of both desktop and default language
having been made at build time, not at run time as in the case of the
Debian Installer. That’s not to say that a live image couldn’t be built
to support multiple desktops or multiple languages and offer the user a
choice, but that is not live-build’s default behaviour.

Because there is no provision made automatically for language tasks,
which include such things as language-specific fonts and input-method
packages, if you want them, you need to specify them in your configu-
ration. For example, a GNOME desktop image containing support for
German might include these task metapackages:

image to form each metapackage name which in turn depends on an exact
kernel package to be included in your image.

Thus by default, an amd64 architecture image will include the linux-
image-amd64 flavour metapackage, and an 1386 architecture image will
include the linux-image-586 metapackage.

When more than one kernel package version is available in your configured
archives, you can specify a different kernel package name stub with the —
linux-packages option. For example, supposing you are building an amd64
architecture image and add the experimental archive for testing purposes
so you can install the linux-image-3.18.0-trunk-amd64 kernel. You would
configure that image as follows:

$ Ib config --linux -packages linux -image-3.18.0-trunk
$ echo ”deb http://deb.debian.org/debian/ experimental main” ; <
config /archives/experimental.list .chroot

$ 1b config

$ echo ”task -gnome-desktop task-laptop” ;; config/package-lists /my«
.list .chroot

$ echo ”task-german task -german-desktop task -german-gnome-desktop”+
.. config/package-lists /my. list.chroot

8.2.10 Kernel flavour and version

One or more kernel flavours will be included in your image by default,
depending on the architecture. You can choose different flavours via the
—linux-flavours option. Each flavour is suffixed to the default stub linux-

8.2.11 Custom kernels

You can build and include your own custom kernels, so long as they are
integrated within the Debian package management system. The live-build
system does not support kernels not built as .deb packages.

The proper and recommended way to deploy your own kernel packages is
to follow the instructions in the kernel-handbook. Remember to modify
the ABI and flavour suffixes appropriately, then include a complete build
of the linux and matching linux-latest packages in your repository.

If you opt to build the kernel packages without the matching metapack-
ages, you need to specify an appropriate —linux-packages stub as discussed
in Kernel flavour and version. As we explain in Installing modified or

33

445

446

447

448

449

450

451



452

456

457

458

459

461

Debian Live Manual

third-party packages, it is best if you include your custom kernel pack-
ages in your own repository, though the alternatives discussed in that
section work as well.

It is beyond the scope of this document to give advice on how to customize
your kernel. However, you must at least ensure your configuration satisfies
these minimum requirements:

Use an initial ramdisk.
Include the union filesystem module (i.e. usually OverlayFs).

Include any other filesystem modules required by your configuration
(i.e. usually squashfs).

8.3 Installing modified or third-party packages

While it is against the philosophy of a live system, it may sometimes
be necessary to build a live system with modified versions of packages
that are in the Debian repository. This may be to modify or support
additional features, languages and branding, or even to remove elements
of existing packages that are undesirable. Similarly, third-party packages
may be used to add bespoke and/or proprietary functionality.

This section does not cover advice regarding building or maintaining
modified packages. Joachim Breitner’s ‘How to fork privately’ method
from http://www.joachim-breitner.de/blog/archives/282- How- to- fork- privately.html may
be of interest, however. The creation of bespoke packages is covered
in the Debian New Maintainers’ Guide at https://www.debian.org/doc/manuals/
maint-guide/ and elsewhere.

There are two ways of installing modified custom packages:
packages.chroot

Using a custom APT repository

Using packages.chroot is simpler to achieve and useful for one-off cus-
tomizations but has a number of drawbacks, while using a custom APT
repository is more time-consuming to set up.

8.3.1 Using packages.chroot to install custom packages

To install a custom package, simply copy it to the config/packages.-
chroot/ directory. Packages that are inside this directory will be auto-
matically installed into the live system during build - you do not need to
specify them elsewhere.

Packages must be named in the prescribed way. One simple way to do
this is to use dpkg-name.

Using packages.chroot for installation of custom packages has disadvan-
tages:

It is not possible to use secure APT.

You must install all appropriate packages in the config/packages.-
chroot/ directory.

It does not lend itself to storing live system configurations in revision
control.

8.3.2 Using an APT repository to install custom packages

Unlike using packages.chroot, when using a custom APT repository you
must ensure that you specify the packages elsewhere. See Choosing pack-
ages to install for details.

While it may seem unnecessary effort to create an APT repository to
install custom packages, the infrastructure can be easily re-used at a
later date to offer updates of the modified packages.

The APT repository does not necessarily need to be online, you can use

34

463

464

465

466

467

468

469

470

471

472

473


http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
https://www.debian.org/doc/manuals/maint-guide/
https://www.debian.org/doc/manuals/maint-guide/

474

476

477

478

480

481

482

484

Debian Live Manual

a local repository instead. However, in both cases the repository needs
to be signed.

Example:

$ gpg --armor --output config/archives/custom'repo.gpg.key$—<«
EXTENSION” --export-options export-minimal --export $—<
SIGNING'KEY ”

$ cat jj EOF ; config/archives/custom 'repo.list$-EXTENSION”

deb [signed -by=/etc/apt/trusted.gpg.d/custom repo.gpg.key$—<«—
EXTENSION . asc| $-URI” $-SUITE” $-COMPONENTS”

EOF

$ echo ”$-PACKAGESFROM REPOSITORY ””
custom'repo . list$ —EXTENSION”

{ config/package-lists /<

Where:
$-EXTENSION": the optional stage suffix, see the summary
$-SIGNING KEY ": the keyID of the signature of the repository

$—URI": the URI to the repository, e.g. http://deb.debian.org/debian/
or file://$(pwd) /my local repository

$—SUITE": the suite within the repository, e.g. my-debian-based-distro
$-COMPONENTS": the components within the repository, e.g. main

$-PACKAGES FROM REPOSITORY “: the names of the packages to
install (dependencies will automatically be installed as well)

8.3.3 Custom packages and APT

live-build uses APT to install all packages into the live system so will
therefore inherit behaviours from this program. One relevant example is
that (assuming a default configuration) given a package available in two
different repositories with different version numbers, APT will elect to
install the package with the higher version number.

Because of this, you may wish to increment the version number in your
custom packages’ debian/changelog files to ensure that your modified

version is installed over one in the official Debian repositories. This may

also be achieved by altering the live system’s APT pinning preferences -
see APT pinning for more information.

8.4 Configuring APT at build time

You can configure APT through a number of options applied only at
build time. (APT configuration used in the running live system may
be configured in the normal way for live system contents, that is, by
including the appropriate configurations through config/includes.chroot /-
.) For a complete list, look for options starting with apt in the 1b’config
man page.

8.4.1 Choosing apt or aptitude

You can elect to use either apt or aptitude when installing packages at
build time. Which utility is used is governed by the —apt argument to
Ib config. Choose the method implementing the preferred behaviour for
package installation, the notable difference being how missing packages
are handled.

apt: With this method, if a missing package is specified, the package
installation will fail. This is the default setting.

aptitude: With this method, if a missing package is specified, the
package installation will succeed.

8.4.2 Using a proxy with APT

One commonly required APT configuration is to deal with building an

35

485

486

487

488

489

490

491

492

493



494

495

496

497

498

500

501

502

Debian Live Manual

image behind a proxy. You may specify your APT proxy with the —apt-
http-proxy option as needed, e.g.

$ Ib config --apt-http-proxy http://proxy/

8.4.3 Tweaking APT to save space

You may find yourself needing to save some space on the image medium,
in which case one or the other or both of the following options may be of
interest.

If you don’t want to include APT indices in the image, you can omit
those with:

Two packages which you most probably will want to add again are:
user-setup which live-config recommends is used to create the live user.

sudo which live-config recommends is used to obtain root access in the
live-image, which is needed to shutdown the computer.

$ 1b config --apt-recommends false
$ echo ”user-setup sudo” ; config/package-lists /recommends. list .<>
chroot

‘$ Ib config --apt-indices false

This will not influence the entries in /etc/apt/sources.list, but merely
whether /var/lib/apt contains the indices files or not. The tradeoff is
that APT needs those indices in order to operate in the live system, so
before performing apt-cache search or apt-get install, for instance, the
user must apt-get update first to create those indices.

If you find the installation of recommended packages bloats your image
too much, provided you are prepared to deal with the consequences dis-
cussed below, you may disable that default option of APT with:

$ Ib config --apt-recommends false

The most important consequence of turning off recommends is that live-
boot and live-config themselves recommend some packages that provide
important functionality used by most Live configurations.

In all but the most exceptional circumstances you need to add back at
least some of these recommends to your package lists or else your image
will not work as expected, if at all. Look at the recommended packages
for each of the live-* packages included in your build and if you are not
certain you can omit them, add them back into your package lists.

The more general consequence is that if you don’t install recommended
packages for any given package, that is, packages that would be found to-
gether with this one in all but unusual installations (APT pinning.

8.4.4 Passing options to apt or aptitude

If there is not a 1b config option to alter APT’s behaviour in the way you
need, use —apt-options or —aptitude-options to pass any options through
to your configured APT tool. See the man pages for apt and aptitude
for details. Note that both options have default values that you will
need to retain in addition to any overrides you may provide. So, for
example, suppose you have included something from snapshot.debian.org
for testing purposes and want to specify Acquire::Check-Valid-Until=false
to make APT happy with the stale Release file, you would do so as per
the following example, appending the new option after the default value

—yes:

36

506

507



512

513

514

515

516

Debian Live Manual

$ 1b config --apt-options ”--yes -oAcquire:: Check-Valid- Until=¢+

false”

Please check the man pages to fully understand these options and when to
use them. This is an example only and should not be construed as advice
to configure your image this way. This option would not be appropriate
for, say, a final release of a live image.

For more complicated APT configurations involving apt.conf options you
might want to create a config/apt/apt.conf file instead. See also the
other apt-* options for a few convenient shortcuts for frequently needed
options.

8.4.5 APT pinning

For background, please first read the aptpreferences(5) man page.
APT pinning can be configured either for build time, or else for run
time. For the former, create config/archives/*.pref, config/archives/*.-
pref.chroot, and config/apt/preferences. For the latter, create config/-
includes.chroot/etc/apt/preferences.

Let’s say you are building a trixie live system but need all the live
packages that end up in the binary image to be installed from sid at
build time. You need to add sid to your APT sources and pin the live
packages from it higher, but all other packages from it lower, than the
default priority. Thus, only the packages you want are installed from sid
at build time and all others are taken from the target system distribution,
trixie . The following will accomplish this:

Package: live -*
Pin: release n=sid
Pin- Priority: 600
Package: *

Pin: release n=sid
Pin- Priority: 1
EOF

Negative pin priorities will prevent a package from being installed, as
in the case where you do not want a package that is recommended by
another package. Suppose you are building an LXDE image using task-
Ixde-desktop in config/package-lists/desktop.list.chroot, but don’t want
the user prompted to store wifi passwords in the keyring. This metapack-
age depends on Ixde-core, which recommends gksu, which in turn recom-
mends gnome-keyring. So you want to omit the recommended gnome-
keyring package. This can be done by adding the following stanza to
config/apt/preferences:

Package :
Pin: version
Pin- Priority: -1

gnome- keyring
*

$ echo ”deb http://mirror/debian/ sid main” ; config/archives/sid.«+
list . chroot

$ cat j;, config/archives/sid.pref.chroot jj EOF

37

518

519



520

521

522

523

524

525

526

527

Customizing contents

9. Customizing contents

This chapter discusses fine-tuning customization of the live system con-
tents beyond merely choosing which packages to include. Includes allow
you to add or replace arbitrary files in your live system image, hooks
allow you to execute arbitrary commands at different stages of the build
and at boot time, and preseeding allows you to configure packages when
they are installed by supplying answers to debconf questions.

9.1 Includes

While ideally a live system would include files entirely provided by un-
modified packages, it is sometimes convenient to provide or modify some
content by means of files. Using includes, it is possible to add (or re-
place) arbitrary files in your live system image. live-build provides two
mechanisms for using them:

Chroot local includes: These allow you to add or replace files to the
chroot/Live filesystem. Please see Live/chroot local includes for more
information.

Binary local includes: These allow you to add or replace files in the
binary image. Please see Binary local includes for more information.

Please see Terms for more information about the distinction between the
Live and binary images.

9.1.1 Live/chroot local includes

Chroot local includes can be used to add or replace files in the chroot /Live

filesystem so that they may be used in the Live system. A typical use
is to populate the skeleton user directory (/etc/skel) used by the Live
system to create the live user’s home directory. Another is to supply
configuration files that can be simply added or replaced in the image
without processing; see Chroot local hooks if processing is needed.

To include files, simply add them to your config/includes.chroot directory.
This directory corresponds to the root directory / of the live system. For
example, to add a file /var/www /index.html in the live system, use:

$ mkdir -p config/includes.chroot/var/www
$ cp /path/to/my/index.html config/includes.chroot/var/www

Your configuration will then have the following layout:

-- config
[...]
—-- includes.chroot
‘-- var
— Y- www
— ‘-- index.html

[..]

Chroot local includes are installed after package installation so that files
installed by packages are overwritten.

9.1.2 Binary local includes

To include material such as documentation or videos on the medium
filesystem so that it is accessible immediately upon insertion of the
medium without booting the Live system, you can use binary local in-
cludes. This works in a similar fashion to chroot local includes. For
example, suppose the files ~/video'demo.* are demo videos of the live

38

530

531

532

533

535

536



537

538

539

540

541

542

543

Debian Live Manual

system described by and linked to by an HTML index page. Simply mepy
the material to config/includes.binary/ as follows:

$ c¢cp “/video'demo.* config/includes.binary/

These files will now appear in the root directory of the live medium.

9.2 Hooks

Hooks allow commands to be run in the chroot and binary stages of the
build in order to customize the image. Depending on whether you are
building a live image or a regular system image you have to place your
hooks in config/hooks/live or config/hooks/normal respectively. These
are frequently referred to as local hooks because they are executed inside
the build environment.

There are also boot-time hooks that allow you to run commands once
the image has already been built, during the boot process.

9.2.1 Chroot local hooks

To run commands in the chroot stage, create a hook script with a
.hook.chroot suffix containing the commands either in the config/hooks/-
live or config/hooks/normal directories. The hook will run in the chroot
after the rest of your chroot configuration has been applied, so remem-
ber to ensure your configuration includes all packages and files your hook
needs in order to run. See the example chroot hook scripts for vari-
ous common chroot customization tasks provided in /usr/share/doc/live-
build /examples/hooks which you can copy or symlink to use them in your
own configuration.

9.2.2 Binary local hooks

To run commands in the binary stage, create a hook script with a
.hook.binary suffix containing the commands either in the config/hooks/-
live or config/hooks/normal directories. The hook will run after all other
binary commands are run, but before binary'checksums, the very last bi-
nary command. The commands in your hook do not run in the chroot,
so take care not to modify any files outside of the build tree, or you
may damage your build system! See the example binary hook scripts for
various common binary customization tasks provided in /usr/share/doc/-
live-build /examples/hooks which you can copy or symlink to use them in
your own configuration.

9.2.3 Boot-time hooks

To execute commands at boot time, you can supply live-config hooks
as explained in the Customization section of its man page. FExamine
live-config’s own hooks provided in /lib/live/config/, noting the sequence
numbers. Then provide your own hook prefixed with an appropriate se-
quence number, either as a chroot local include in config/includes.chroot /-
lib/live/config/, or as a custom package as discussed in Installing modified
or third-party packages.

9.3 Preseeding Debconf questions

Files in the config/preseed/ directory suffixed with .cfg followed by the
stage (.chroot or .binary) are considered to be debconf preseed files and
are installed by live-build using debconf-set-selections during the corre-
sponding stage.

For more information about debconf, please see debconf(7) in the debconf
package.

39

545

546

547

548

549

550



551

552

553

o
@
IS

555

ot
o
(=)

557

559

Customizing run time behaviours

10. Customizing run time behaviours

All configuration that is done during run time is done by live-config.
Here are some of the most common options of live-config that users are
interested in. A full list of all possibilities can be found in the man page
of live-config.

10.1 Customizing the live user

One important consideration is that the live user is created by live-boot
at boot time, not by live-build at build time. This not only influences
where materials relating to the live user are introduced in your build, as
discussed in Live/chroot local includes, but also any groups and permis-
sions associated with the live user.

You can specify additional groups that the live user will belong to by
using any of the possibilities to configure live-config. For example, to add
the live user to the fuse group, you can either add the following file in
config/includes.chroot /etc/live/config.conf.d /10-user-setup.conf:

LIVE'USER DEFAULT'GROUPS="audio cdrom dip floppy video plugdev <«
netdev powerdev scanner bluetooth fuse”

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,plugde
as a boot parameter.

It is also possible to change the default username user and the default
password live. If you want to do that for any reason, you can easily
achieve it as follows:

To change the default username you can simply specify it in your con-
fig:

$ Ib config --bootappend-live ”boot=live components username=live -+
user”

One possible way of changing the default password is by means of a hook
as described in Boot-time hooks. In order to do that you can use the
passwd hook from /usr/share/doc/live-config/examples/hooks, prefix it
accordingly (e.g. 2000-passwd) and add it to config/includes.chroot /lib/-
live/config/

10.2 Customizing locale and language
When the live system boots, language is involved in two steps:
the locale generation
setting the keyboard configuration

The default locale when building a Live system is locales=en"US.UTF-8.
To define the locale that should be generated, use the locales parameter
in the —bootappend-live option of 1b config, e.g.

$ 1b config --bootappend-live ”boot=live components locales=de CH.<+>
UTF-8”

T

Multiple locales may be specified as a comma-delimited list.

This parameter, as well as the keyboard configuration parameters in-
dicated below, can also be used at the kernel command line. You can

40

561

562

563

564

568

569

570



571

572

573

574

ot

ot

Debian Live Manual

specify a locale by language’country (in which case the default emeod-
ing is used) or the full language country.encoding word. A list of sup-
ported locales and the encoding for each can be found in /usr/share/-

i18n/SUPPORTED.

Both the console and X keyboard configuration are performed by live-
config using the console-setup package. To configure them, use the
keyboard-layouts, keyboard-variants, keyboard-options and keyboard-
model boot parameters via the —bootappend-live option. Valid options
for these can be found in /usr/share/X11/xkb/rules/base.lst. To find
layouts and variants for a given language, try searching for the English
name of the language and/or the country where the language is spoken,

e.g:

However, for very specific use cases, you may wish to include other pa-
rameters. For example, to set up a French system with a French-Dvorak
layout (called Bepo) on a TypeMatrix EZ-Reach 2030 USB keyboard,

use:

«

$ Ib config --bootappend-live
”boot=live components locales=fr'FR .UTF-8 keyboard-layouts=fr«
keyboard - variants=bepo keyboard-model=tm2030usb”

$ egrep -i '("!—german.*switzerland)' /usr/share/X11/xkb/rules /<«
base.lst

! model

! layout
ch German (Switzerland)

! variant
legacy ch: German (Switzerland , legacy)
de'nodeadkeys ch: German (Switzerland, eliminate dead keys)

de'sundeadkeys ch: German (Switzerland, Sun dead keys)
de'mac ch: German (Switzerland , Macintosh)
I option

Multiple values may be specified as comma-delimited lists for each of the
keyboard-* options, with the exception of keyboard-model, which accepts
only one value. Please see the keyboard(5) man page for details and ex-
amples of XKBMODEL, XKBLAYOUT, XKBVARIANT and XKBOP-
TIONS variables. If multiple keyboard-variants values are given, they will
be matched one-to-one with keyboard-layouts values (see setxkbmap(1)
-variant option). Empty values are allowed; e.g. to define two layouts, the
default being US QWERTY and the other being US Dvorak, use:

«

$ 1b config --bootappend-live
”boot=live components keyboard-layouts=us,us keyboard-<+
variants=,dvorak”

Note that each variant lists the layout to which it applies in the descrip-
tion.

Often, only the layout needs to be configured. For example, to get the
locale files for German and Swiss German keyboard layout in X use:

$ 1b config --bootappend-live ”boot=live components locales=de CH.+
UTF-8 keyboard-layouts=ch”

10.3 Persistence

A live cd paradigm is a pre-installed system which runs from read-only
media, like a cdrom, where writes and modifications do not survive re-
boots of the host hardware which runs it.

A live system is a generalization of this paradigm and thus supports other
media in addition to CDs; but still, in its default behaviour, it should be
considered read-only and all the run-time evolutions of the system are
lost at shutdown.

41

577

578

579

580

581

582



584

585

586

587

588

589

590

Debian Live Manual

‘Persistence’ is a common name for different kinds of solutions for saving
across reboots some, or all, of this run-time evolution of the system. To
understand how it works it would be handy to know that even if the
system is booted and run from read-only media, modifications to the
files and directories are written on writable media, typically a ram disk
(tmpfs) and ram disks’ data do not survive reboots.

The data stored on this ramdisk should be saved on a writable persistent
medium like local storage media, a network share or even a session of a
multisession (re)writable CD/DVD. All these media are supported in live
systems in different ways, and all but the last one require a special boot
parameter to be specified at boot time: persistence.

If the boot parameter persistence is set (and nopersistence is not set),
local storage media (e.g. hard disks, USB drives) will be probed for
persistence volumes during boot. It is possible to restrict which types
of persistence volumes to use by specifying certain boot parameters de-
scribed in the live-boot(7) man page. A persistence volume is any of the
following;:

a partition, identified by its GPT name.
a filesystem, identified by its filesystem label.

an image file located on the root of any readable filesystem (even an
NTFS partition of a foreign OS), identified by its filename.

The volume label for overlays must be persistence but it will be ignored
unless it contains in its root a file named persistence.conf which is used
to fully customize the volume’s persistence, this is to say, specifying the
directories that you want to save in your persistence volume after a reboot.
See The persistence.conf file for more details.

Here are some examples of how to prepare a volume to be used for
persistence. It can be, for instance, an ext4 partition on a hard disk or
on a usb key created with, e.g.:

# mkfs.ext4d -L persistence /dev/sdbl

See also Using the space left on a USB stick.

If you already have a partition on your device, you could just change the
label with one of the following;:

‘# tune2fs -L persistence /dev/sdbl # for ext2,3,4 filesystems

Here’s an example of how to create an ext4-based image file to be used
for persistence:

$ dd if=/dev/null of=persistence bs=1 count=0 seek=1G # for a 1GB +
sized image file
$ /sbin/mkfs.ext4 -F persistence

Once the image file is created, as an example, to make /usr persistent
but only saving the changes you make to that directory and not all the
contents of /usr, you can use the union option. If the image file is located
in your home directory, copy it to the root of your hard drive’s filesystem
and mount it in /mnt as follows:

# cp persistence /
# mount -t ext4 /persistence /mnt

Then, create the persistence.conf file adding content and unmount the
image file.

# echo ”/usr union”
# umount /mnt

i /mnt/persistence.conf

42

595

596

597

598

599

600



601

602

603

604

605

606

607

608

Debian Live Manual

Now, reboot into your live medium with the boot parameter persis-
tence.

10.3.1 The persistence.conf file

A volume with the label persistence must be configured by means of
the persistence.conf file to make arbitrary directories persistent. That
file, located on the volume’s filesystem root, controls which directories it
makes persistent, and in which way.

How custom overlay mounts are configured is described in full detail in the
persistence.conf(5) man page, but a simple example should be sufficient
for most uses. Let’s say we want to make our home directory and APT
cache persistent in an ext4 filesystem on the /dev/sdbl partition:

mkfs.ext4d -L persistence /dev/sdbl

mount -t ext4 /dev/sdbl /mnt

echo ”/home” ;; /mnt/persistence.conf

echo ”/var/cache/apt” ;; /mnt/persistence.conf
umount /mnt

I

Then we reboot. During the first boot the contents of /home and /var/-
cache/apt will be copied into the persistence volume, and from then on
all changes to these directories will live in the persistence volume. Please
note that any paths listed in the persistence.conf file cannot contain white
spaces or the special . and .. path components. Also, neither /lib, /lib/-
live (or any of their sub-directories) nor / can be made persistent using
custom mounts. As a workaround for this limitation you can add / union
to your persistence.conf file to achieve full persistence.

10.3.2 Using more than one persistence store

There are different methods of using multiple persistence store for differ-

ent use cases. For instance, using several volumes at the same time or
selecting only one, among various, for very specific purposes.

Several different custom overlay volumes (with their own persistence.conf
files) can be used at the same time, but if several volumes make the same
directory persistent, only one of them will be used. If any two mounts are
nested (i.e. one is a sub-directory of the other) the parent will be mounted
before the child so no mount will be hidden by the other. Nested custom
mounts are problematic if they are listed in the same persistence.conf file.
See the persistence.conf(5) man page for how to handle that case if you
really need it (hint: you usually don’t).

One possible use case: If you wish to store the user data i.e. /home and
the superuser data i.e. /root in different partitions, create two partitions
with the persistence label and add a persistence.conf file in each one like
this, # echo /home ; persistence.conf for the first partition that will
save the user’s files and # echo /root ; persistence.conf for the second
partition which will store the superuser’s files. Finally, use the persistence
boot parameter.

If a user would need multiple persistence store of the same type for dif-
ferent locations or testing, such as private and work, the boot parameter
persistence-label used in conjunction with the boot parameter persistence
will allow for multiple but unique persistence media. An example would
be if a user wanted to use a persistence partition labeled private for per-
sonal data like browser bookmarks or other types, they would use the boot
parameters: persistence persistence-label=private. And to store work re-
lated data, like documents, research projects or other types, they would
use the boot parameters: persistence persistence-label=work.

It is important to remember that each of these volumes, private and
work, also needs a persistence.conf file in its root. The live-boot man
page contains more information about how to use these labels with legacy
names.

43

609

610

611

612



613

614

615

616

617

618

619

620

Debian Live Manual

10.3.3 Using persistence with encryption

Using the persistence feature means that some sensible data might get
exposed to risk. Especially if the persistent data is stored on a portable
device such as a usb stick or an external hard drive. That is when en-
cryption comes in handy. Even if the entire procedure might seem com-
plicated because of the number of steps to be taken, it is really easy to
handle encrypted partitions with live-boot. In order to use luks , which
is the supported encryption type, you need to install cryptsetup both on
the machine you are creating the encrypted partition with and also in
the live system you are going to use the encrypted persistent partition
with.

To install cryptsetup on your machine:

# apt-get install cryptsetup

To install cryptsetup in your live system, add it to your package-
lists:

$ 1b config
$ echo ”cryptsetup cryptsetup-initramfs” ; config/package-lists /<
encryption.list .chroot

Once you have your live system with cryptsetup, you basically only need
to create a new partition, encrypt it and boot with the persistence and
persistence-encryption=Iluks parameters. We could have already antici-
pated this step and added the boot parameters following the usual pro-
cedure:

$ 1b config --bootappend-live ”boot=live components persistence <>
persistence -encryption=luks”

Let’s go into the details for all of those who are not familiar with encryp-
tion. In the following example we are going to use a partition on a usb
stick which corresponds to /dev/sdc2. Please be warned that you need to
determine which partition is the one you are going to use in your specific
case.

The first step is plugging in your usb stick and determine which device it
is. The recommended method of listing devices in live-manual is using Is
-1 /dev/disk/by-id. After that, create a new partition and then, encrypt
it with a passphrase as follows:

‘# cryptsetup --verify -passphrase luksFormat /dev/sdc2

Then open the luks partition in the virtual device mapper. Use any name

‘ you like. We use live here as an example:

‘# cryptsetup luksOpen /dev/sdc2 live

The next step is filling the device with zeros before creating the filesys-
tem:

# dd if=/dev/zero of=/dev/mapper/live

Now, we are ready to create the filesystem. Notice that we are adding
the label persistence so that the device is mounted as persistence store
at boot time.

# mkfs.ext4d -L persistence /dev/mapper/live

44

621

622

623

625

627

629



631

633

634

635

636

637

638

Debian Live Manual

To continue with our setup, we need to mount the device, for example in 630
/mnt.

‘# mount /dev/mapper/live /mnt

And create the persistence.conf file in the root of the partition. This is, as
explained before, strictly necessary. See The persistence.conf file.

# echo ”/ union” ; /mnt/persistence.conf

Then unmount the mount point:

# umount /mnt

And optionally, although it might be a good way of securing the data we
have just added to the partition, we can close the device:

# cryptsetup luksClose live

Let’s summarize the process. So far, we have created an encryption
capable live system, which can be copied to a usb stick as explained in
Copying an ISO hybrid image to a USB stick. We have also created an
encrypted partition, which can be located in the same usb stick to carry
it around and we have configured the encrypted partition to be used as
persistence store. So now, we only need to boot the live system. At
boot time, live-boot will prompt us for the passphrase and will mount
the encrypted partition to be used for persistence.

45



639

640

641

642

643

644

645

646

647

Customizing the binary image

11. Customizing the binary image

11.1 Bootloaders

live-build uses syslinux and some of its derivatives (depending on the
image type) as bootloaders by default. They can be easily customized to
suit your needs.

In order to use a full theme, copy /usr/share/live/build/bootloaders into
config/bootloaders and edit the files in there. If you do not want to
bother modifying all supported bootloader configurations, only providing
a local customized copy of one of the bootloaders, e.g. isolinux in config/-
bootloaders/isolinux is enough too, depending on your use case.

When modifying one of the default themes, if you want to use a person-
alized background image that will be displayed together with the boot
menu, add a splash.png picture of 640x480 pixels. Then, remove the
splash.svg file.

There are many possibilities when it comes to making changes. For
instance, syslinux derivatives are configured by default with a timeout
of 0 (zero) which means that they will pause indefinitely at their splash
screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just edit a
default isolinux.cfg file specifying the timeout in units of 1/10 seconds.
A modified isolinux.cfg to boot after five seconds would be similar to
this:

prompt O
timeout 50

include menu. cfg
default vesamenu.c32

11.2 ISO metadata

When creating an ISO9660 binary image, you can use the following op-
tions to add various textual metadata for your image. This can help you
easily identify the version or configuration of an image without booting
it.
LB ISO'APPLICATION /-iso-application NAME: This should describe
the application that will be on the image. The maximum length for
this field is 128 characters.

LB ISO'PREPARER /—iso-preparer NAME: This should describe the
preparer of the image, usually with some contact details. The default
for this option is the live-build version you are using, which may help
with debugging later. The maximum length for this field is 128 char-
acters.

LB ISO'PUBLISHER /-iso-publisher NAME: This should describe the
publisher of the image, usually with some contact details. The maxi-
mum length for this field is 128 characters.

LB ISO'VOLUME /-iso-volume NAME: This should specify the volume
ID of the image. This is used as a user-visible label on some platforms
such as Windows and Apple Mac OS. The maximum length for this
field is 32 characters.

46

648

649

650

651

652

653



654

(=2}
ot
o

656

657

658

659

660

661

662

Customizing Debian Installer

12. Customizing Debian Installer

Live system images can be integrated with Debian Installer. There are a
number of different types of installation, varying in what is included and
how the installer operates.

Please note the careful use of capital letters when referring to the Debian
Installer in this section - when used like this we refer explicitly to the
official installer for the Debian system, not anything else. It is often seen
abbreviated to d-i.

12.1 Types of Debian Installer

The three main types of installer are:

Normal Debian Installer : This is a normal live system image with a
separate kernel and initrd which (when selected from the appropriate
bootloader) launches into a standard Debian Installer instance, just as
if you had downloaded a CD image of Debian and booted it. Images
containing a live system and such an otherwise independent installer are
often referred to as combined images.

On such images, Debian is installed by fetching and installing .deb pack-
ages using debootstrap, from local media or some network-based net-
work, resulting in a default Debian system being installed to the hard
disk.

This whole process can be preseeded and customized in a number of ways;
see the relevant pages in the Debian Installer manual for more information.
Once you have a working preseeding file, live-build can automatically put
it in the image and enable it for you.

Live Debian Installer : This is a live system image with a separate ker-
nel and initrd which (when selected from the appropriate bootloader)
launches into an instance of the Debian Installer.

Installation will proceed in an identical fashion to the normal installation
described above, but at the actual package installation stage, instead of
using debootstrap to fetch and install packages, the live filesystem image
is copied to the target. This is achieved with a special udeb called live-
installer.

After this stage, the Debian Installer continues as normal, installing and
configuring items such as bootloaders and local users, etc.

Note: to support both normal and live installer entries in the bootloader
of the same live medium, you must disable live-installer by preseeding
live-installer /enable=false.

Desktop Debian Installer : Regardless of the type of Debian Installer
included, d-i can be launched from the Desktop by clicking on an icon.
This is user friendlier in some situations. In order to make use of this,
the debian-installer-launcher package needs to be included.

Note that by default, live-build does not include Debian Installer images
in the images, it needs to be specifically enabled with 1b config. Also,
please note that for the Desktop installer to work, the kernel of the live
system must match the kernel d-i uses for the specified architecture. For
example:

$ Ib config --debian-installer live
$ echo debian-installer -launcher ;; config/package-lists /my.list .«
chroot

12.2 Customizing Debian Installer by preseeding
As described in the Debian Installer Manual, Appendix B at https:

47

663

664

665

666

667

668

669

670

671


https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

672

673

674

Debian Live Manual

/ /www.debian.org/releases/stable/amd64/apb.en.html, Preseeding provides a way to
set answers to questions asked during the installation process, without
having to manually enter the answers while the installation is running.
This makes it possible to fully automate most types of installation and
even offers some features not available during normal installations. This
kind of customization is best accomplished with live-build by placing the
configuration in a preseed.cfg file included in config/includes.installer/.
For example, to preseed setting the locale to en"US:

$ echo 7d-i debian-installer/locale string en US” “
;i config/includes.installer /preseed.cfg

12.3 Customizing Debian Installer content

For experimental or debugging purposes, you might want to include lo-
cally built d-i component udeb packages. Place these in config/packages.-
binary/ to include them in the image. Additional or replacement files
and directories may be included in the installer initrd as well, in a similar
fashion to Live/chroot local includes, by placing the material in config/-
includes.installer//.

48


https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Projekt

49



676

677

678

679

680

681

682

683

684

Contributing to the project

13. Contributing to the project

When submitting a contribution, please clearly identify its copyright
holder and include any applicable licensing statement. Note that to be
accepted, the contribution must be licensed under the same license as the
rest of the documents, namely, GPL version 3 or later.

Contributions to the project, such as translations and patches, are greatly
welcome. Anyone can send merge requests. The projects are hosted
on Salsa: https://salsa.debian.org/live-team follow Salsa’s documentation for in-
structions on how to contribute.

Even though all commits might be revised, we ask you to use your com-
mon sense and make good commits with good commit messages.

Write commit messages that consist of complete, meaningful sen-
tences in English, starting with a capital letter and ending with a
full stop. Usually, these will start with the form Fixing/Adding/-
Removing/Correcting/Translating/....

Write good commit messages. The first line must be an accurate
summary of the contents of the commit which will be included in the
changelog. If you need to make some further explanations, write them
below leaving a blank line after the first one and then another blank
line after each paragraph. Lines of paragraphs should not exceed 80
characters in length.

Commit atomically, this is to say, do not mix unrelated things in the
same commit. Make one different commit for each change you make.

13.1 Translation of man pages

You can also contribute to the project working on the translation of the
man pages for the different live-* packages that the project maintains.
The procedure is different depending on whether you are starting a trans-
lation from scratch or continue working on an already existing one:

Working on an already existing translation

If you want to maintain the translation of an already existing language
you have to make your changes to your manpages/po/$-LANGUAGE" /-
*po file or files and then run make rebuild from inside the man-
pages/ directory. This will update the actual man pages in manpages/-
$-LANGUAGE" /*

Starting a new translation from scratch
In order to add a new translation of any of the project’s man pages
you have to follow a similar procedure. It could be summarized as fol-
lows:
Open the manpages/pot/ file or files in your favourite edi-
tor, such as poedit, and save it as a .po file in manpages/-

po/$-LANGUAGE”/. (You will have to create your $-LAN-
GUAGE"/ directory).

Run make rebuild from inside the manpages/ directory to create
the manpages/$-LANGUAGE"/ files which will contain the actual
man pages.

Remember that you will have to add all the directories and files, then
make the commit and finally push to the git server.

50

685

686

687

688

689

690

691

692


https://salsa.debian.org/live-team

693

694

695

696

697

698

699

700

701

702

703

Reporting bugs

14. Reporting bugs

Live systems are far from being perfect, but we want to make it as close
as possible to perfect - with your help. Do not hesitate to report a bug. It
is better to fill a report twice than never. However, this chapter includes
recommendations on how to file good bug reports.

For the impatient:

First check whether the bugs has been reported already. You can see
the full list of bugs that are assigned to the live-team at https://bugs.
debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Before submitting a bug report always try to reproduce the bug with
the most recent versions of the packages of live-build, live-boot, live-
config and live-tools that you're using.

Try to give as specific information as possible about the bug. This
includes (at least) the version of live-build, live-boot, live-config, and
live-tools used and the distribution of the live system you are building.

14.1 Known issues

Currently known issues are listed in the BT'S at https://bugs.debian.org/cgi-bin/
pkgreport.cgi?maint=debian-live%40lists.debian.org.

Note: Since Debian testing and Debian unstable distributions are mov-
ing targets, when you specify either of them as the target system distri-
bution, a successful build may not always be possible.

If this causes too much difficulty for you, do not build a system based on

testing or unstable , but rather, use stable . live-build always defaults

to the stable release.

It is out of the scope of this manual to train you to correctly identify and
fix problems in packages of the development distributions, however, you
can always try the following: If a build fails when the target distribution
is testing , try unstable . If unstable does work, revert to testing and pin
the newer version of the failing package from unstable (see APT pinning
for details).

14.2 Do the research

Before filing the bug, please search the web for the particular error mes-
sage or symptom you are getting. As it is highly unlikely that you are the
only person experiencing a particular problem. There is always a chance
that it has been discussed elsewhere and a possible solution, patch, or
workaround has been proposed.

You should pay particular attention to the live systems mailing list, as
well as the homepage, as these are likely to contain the most up-to-date
information. If such information exists, always include the references to
it in your bug report.

In addition, you should check the current bug lists for live-build, live-boot,
live-config and live-tools to see whether something similar has already
been reported.

14.3 Rebuild from scratch

To ensure that a particular bug is not caused by an uncleanly built system,
please always rebuild the whole live system from scratch to see if the bug
is reproducible.

o1

704

705

706

707

708

709

710


https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

Debian Live Manual

14.4 Use up-to-date packages

Using outdated packages can cause significant problems when trying to
reproduce (and ultimately fix) your problem. Make sure your build sys-
tem is up-to-date and any packages included in your image are up-to-date
as well. If possible, try to reproduce the bug with the newest code from
source, see Installation for details.

14.5 Collect information

Please provide enough information with your report. Include, at least,
the exact version of live-build where the bug is encountered and the
steps to reproduce it. Please use your common sense and provide any
other relevant information if you think that it might help in solving the
problem.

To make the most out of your bug report, we require at least the following
information:

Architecture of the host system
Distribution of the host system

Version of live-build on the host system
Version of debootstrap on the host system
Architecture of the live system
Distribution of the live system

Version of live-boot on the live system
Version of live-config on the live system
Version of live-tools on the live system

You can generate a log of the build process by using the tee command.

We recommend doing this automatically with an auto/build script (see
Managing a configuration for details).

‘# b build 2;&1 — tee build.log

At boot time, live-boot and live-config store their logfiles in /var/log/-
live/. Check them for error messages.

Additionally, to rule out other errors, it is always a good idea to tar
up your config/ directory and upload it somewhere (do not send it as
an attachment to the mailing list), so that we can try to reproduce the
errors you encountered. If this is difficult (e.g. due to size) you can
use the output of 1b config —dump which produces a summary of your
config tree (i.e. lists files in subdirectories of config/ but does not include
them).

Remember to send in any logs that were produced with English locale
settings, e.g. run your live-build commands with a leading LC'ALL=C
or LC'ALL=en"US.

14.6 Isolate the failing case if possible

If possible, isolate the failing case to the smallest possible change that
breaks. It is not always easy to do this so if you cannot manage it for
your report, do not worry. However, if you plan your development cycle
well, using small enough change sets per iteration, you may be able to
isolate the problem by constructing a simpler ‘base’ configuration that
closely matches your actual configuration plus just the broken change set
added to it. If you have a hard time sorting out which of your changes
broke, it may be that you are including too much in each change set and
should develop in smaller increments.

52

726

727

728

729

730

731



732

733

734

735

736

737

738

739

740

741

Debian Live Manual

14.7 Use the correct package to report the bug against

In general, you should report build time errors against the live-build
package, boot time errors against live-boot, and run time errors against
live-config. If you are unsure of which package is appropriate or need
more help before submitting a bug report, please report it against the
debian-live pseudo-package. We will then take care about it and reassign
it where appropriate.

However, we would appreciate it if you try to narrow it down according
to where the bug appears.

14.7.1 At build time while bootstrapping

live-build first bootstraps a basic Debian system with debootstrap. If a
bug appears here, check if the error is related to a specific Debian package
(most likely), or if it is related to the bootstrapping tool itself.

In both cases, this is not a bug in the live system, but rather in Debian
itself and probably we cannot fix it directly. Please report such a bug
against the bootstrapping tool or the failing package.

14.7.2 At build time while installing packages

live-build installs additional packages from the Debian archive and de-
pending on the Debian distribution used and the daily archive state, it
can fail. If a bug appears here, check if the error is also reproducible on
a normal system.

If this is the case, this is not a bug in the live system, but rather in De-
bian - please report it against the failing package. Running debootstrap
separately from the Live system build or running Ib bootstrap —debug
will give you more information.

Also, if you are using a local mirror and/or any sort of proxy and you are

experiencing a problem, please always reproduce it first by bootstrapping
from an official mirror.

14.7.3 At boot time

If your image does not boot, please report it to the mailing list together
with the information requested in Collect information. Do not forget to
mention, how/when the image failed exactly, whether using virtualization
or real hardware. If you are using a virtualization technology of any kind,
please always run it on real hardware before reporting a bug. Providing
a screenshot of the failure is also very helpful.

14.7.4 At run time

If a package was successfully installed, but fails while actually running
the Live system, this is probably a bug in live-config.

14.8 Where to report bugs

The Debian Live Project keeps track of all bugs in the Bug Tracking
System (BTS). For information on how to use the system, please see
https://bugs.debian.org/. You can also submit the bugs by using the reportbug
command from the package with the same name.

Please note that bugs found in distributions derived from Debian (such
as Ubuntu and others) should not be reported to the Debian BTS unless
they can be also reproduced on a Debian system using official Debian
packages.

53

742

743

744

745

746

747

748


https://bugs.debian.org/

749

750

752

753

754

755

756

757

758

759

760

761

Coding Style

15. Coding Style

This chapter documents the coding style used in live systems.

15.1 Compatibility

Avoid bashisms, the codebase must be POSIX compliant and thus
universally compatible.

Furthermore it must comply with the version of the POSIX specifica-
tion chosen by the current Debian Policy.

You can check your scripts with ‘sh -n” and ‘checkbashisms’.

Make sure all shell code runs with ‘set -e’.

15.2 Indenting

Always use tabs over spaces.

Keep case branch terminators (;;) aligned with the content of the
branch, rather than the branch entry.

Good:
case 7$-1"" in
foo)
foobar
bar)
foobar

IR

‘cs

ac

15.3 Wrapping

Generally, lines should be 80 chars at maximum.

Placement of keywords like then and do should be chosen with good
judgement with respect to clutter and readability. For small bits of
code in particular it should be preferred to have them on the same line
as the prior keyword they relate to (if; for; etc). Only place on the next
line where it makes good sense to do so; typically this might only be
to comply with maximum line length restrictions. One situation where
they should always be placed on the next line is where what they follow
is broken up onto multiple lines, and thus it being on a new line creates
clear separation between that and the body of code following it. I.e. :

Preferred:
if foo; then
bar
fi
for FOO in S$ITEMS; do
bar
done
if [ ?7$-MYLOCATION'VARIABLE”” = ”something” | && [ -e "$—<«
MY OUTPUTFILE”” ]
then
MY OTHER VARIABLE="$ (some bin $-FOOBAR” — awk -F° '—- <«
print $1 "')”
fi
if [ "$-MYFOO"” = ”something” | & [ -e ”path/$-FILE'1"” | —
[ ”$-MYBAR"”” = ”something’else” | && [ $-ALLOW” = ”true” |
then
foobar

o4

762

763

764

765

766



767

768

769

770

771

772

773

774

775

Debian Live Manual

‘fi ‘ Awful:
Less ideal:
Foo ()
if [ 7?$-MYLOCATION'VARIABLE"” = ”something” | && [ -e ”?$—< bar
MY OUTPUTFILE”? ]; then
MY OTHER VARIABLE="$ (some bin $-FOOBAR" — awk -F' '- ¢
print $1 “')”
fi
15.4 Variables
Horrible: . . .
Variables are always in capital letters.
Config variables used in live-build should start with an LB’ prefix.
if [ 7$-MYLOCATION'VARIABLE"” = ”something” | && [ -e 7§«
MY OUTPUTFILE”” ] — [ ”$-MY'LOCATION'VARIABLE"” = ”something <> Local function variables should be restricted to local scope.
-else” | & [ -e ?$-MY OUTPUTFILE2"”” |; then
MY'OTHER'VARIABLE="$ (some’bin $-FOOBAR” — awk -F' '— ¢« Variables in connection to a boot parameter in live-config start with
print $1 "')” LIVE
fi :

Prefer placing the opening brace of a function on a new line (for
consistency with established style), and keep the braces aligned with
the function name:

All other variables in live-config start with * prefix.
Use braces around variables; e.g. write $-FOO” instead of $FOO.

Always protect variables with quotes to respect potential whites-
paces (except where necessary to achieve correct word splitting): write

Good: ; ”
$-FOO” not $-FOO".
Foo () For consistency reasons, always use quotes when assigning values to
, variables:
bar

Bad:
Bad (inconsistent with existing style):

FOO=bar
e () = Good:

bar

55

776

T

778

779

780

781

782

783

784

786

787

788

789



791

792

793

794

795

796

797

798

799

800

Debian Live Manual

FOO="bar”

If multiple variables are used, prefer quoting the full expression:

Typically bad:

if [ -f ”$-FOO"”/foo/”$-BAR"” /bar |; then
foobar

fi

Good:

if [ -f 7$-FOO"/foo/$-BAR"/bar” ]; then
foobar

fi

15.5 Miscellaneous

Prefer — (without the surround quotes) as a separator in calls to sed,
e.g. sed -e ‘s—' (without 7).

Don’t use the test command for comparisons or tests, use [ and |
(without ”); e.g. if [ -x /bin/foo |; ... and not if test -x /bin/foo; ....

Use case wherever it makes code more readable than conditional checks
(if foo; ... and tests without the actual if keyword, e.g. [ -e $-FILE" |
exit 0).

Use Foo'bar style names for functions, i.e. a capital first letter, then
all lowercase, with sensible use of underscores for better readability.

56



801

Beispiele

o7



802

803

804

805

806

807

808

809

Beispiele

16. Examples

This chapter covers example builds for specific use cases with live systems.
If you are new to building your own live system images, we recommend
you first look at the three tutorials in sequence, as each one teaches
new techniques that will help you use and understand the remaining
examples.

16.1 Using the examples

To use these examples you need a system to build them on that meets
the requirements listed in Requirements and has live-build installed as
described in Installing live-build.

Note that, for the sake of brevity, in these examples we do not specify
a local mirror to use for the build. You can speed up downloads con-
siderably if you use a local mirror. You may specify the options when
you use lb config, as described in Distribution mirrors used at build time,
or for more convenience, set the default for your build system in /etc/-
live/build.conf. Simply create this file and in it, set the corresponding
LB'MIRROR * variables to your preferred mirror. All other mirrors used
in the build will be defaulted from these values. For example:

LB'MIRROR'BOOTSTRAP="http:// mirror/debian /”
LB'MIRROR'CHROOT SECURITY="http:// mirror /debian - security /”
LBMIRROR' CHROOT'BACKPORTS="http:// mirror/debian - backports /”

16.2 Tutorial 1: A default image

Use case:
build.

In this tutorial, we will build a default ISO hybrid live system image
containing only base packages (no Xorg) and some live system support
packages, as a first exercise in using live-build.

Create a simple first image, learning the basics of live-

You can’t get much simpler than this:

$ mkdir tutoriall ; cd tutoriall ; lb config

Examine the contents of the config/ directory if you wish. You will see
stored here a skeletal configuration, ready to customize or, in this case,
use immediately to build a default image.

Now, as superuser, build the image, saving a log as you build with
tee.

‘# b build 2;&1 — tee build.log

Assuming all goes well, after a while, the current directory will contain
live-image-amd64.hybrid.iso. This ISO hybrid image can be booted di-
rectly in a virtual machine as described in Testing an ISO image with
Qemu and Testing an ISO image with VirtualBox, or else imaged onto
optical media or a USB flash device as described in Burning an ISO image
to a physical medium and Copying an ISO hybrid image to a USB stick,
respectively.

16.3 Tutorial 2: A web browser utility

Use case: Create a web browser utility image, learning how to apply

o8

810

812

813

814

815

816

817

818

819



820

821

822

823

824

825

826

827

828

Debian Live Manual

customizations.

In this tutorial, we will create an image suitable for use as a web
browser utility, serving as an introduction to customizing live system
images.

mkdir tutorial2

cd tutorial2

Ib config

echo ”task -1xde -desktop firefox -esr”
list .chroot

h P PP

(i config/package-lists /my.<

Our choice of LXDE for this example reflects our desire to provide a
minimal desktop environment, since the focus of the image is the single
use we have in mind, the web browser. We could go even further and
provide a default configuration for the web browser in config/includes.-
chroot/etc/iceweasel /profile/, or additional support packages for viewing
various kinds of web content, but we leave this as an exercise for the
reader.

Build the image, again as superuser, keeping a log as in Tutorial 1:

# 1b build 2;&1 — tee build.log

Again, verify the image is OK and test, as in Tutorial 1.

16.4 Tutorial 3: A personalized image

Use case: Create a project to build a personalized image, containing
your favourite software to take with you on a USB stick wherever you
go, and evolving in successive revisions as your needs and preferences
change.

Since we will be changing our personalized image over a number of revi-

sions, and we want to track those changes, trying things experimentally
and possibly reverting them if things don’t work out, we will keep our
configuration in the popular git version control system. We will also use
the best practice of autoconfiguration via auto scripts as described in
Managing a configuration.

16.4.1 First revision

$ mkdir -p tutorial3/auto
$ c¢p /usr/share/doc/live - build /examples/auto/*
$ cd tutorial3

tutorial3 /auto/

Edit auto/config to read as follows:

#!/bin /sh
Ib config noauto “
--distribution

” $7@ ”9)

stable “

Perform b config to generate the config tree, using the auto/config script
you just created:

‘ $ 1b config

Now populate your local package list:

$ echo ”task-lxde-desktop spice-vdagent hexchat”
-lists /my. list .chroot

.. config/package<+

99

829

830

831

832

834

835

836



838

839

840

841

842

843

844

845

846

Debian Live Manual

First, —distribution stable ensures that stable” is used instead of the de-

fault —testing. Second, we have added spice-vdagent for easier testing the smplayer, vlc and mplayer-gui in our local package list in config/package-

image in gemu. And finally, we have added an initial favourite package:
hexchat.

Now, build the image:

How install the vle package before the Ixde package chooses between

lists /my.list.chroot:

$ echo ”vlc task-lxde-desktop spice-vdagent hexchat” ;; config/«
package-lists /my. list . chroot

# 1b build

Note that unlike in the first two tutorials, we no longer have to type 2;&1
—tee build.log as that is now included in auto/build.

Once you've tested the image (as in Tutorial 1) and are satisfied it works,
it’s time to initialize our git repository, adding only the auto scripts we
just created, and then make the first commit:

‘ Build again:

‘# iy il

Test, and when you're satisfied, commit the next revision:

‘$ git commit -a -m ”Replacing smplayer with vlc.”

git init

cp /usr/share/doc/live - build /examples/gitignore
git add .gitignore auto config

git commit -m ”Initial import.”

.gitignore

&hH PP

16.4.2 Second revision

In this revision, we’re going to clean up from the first build, replace the
smplayer package with vlc package, rebuild, test and commit.

The Ib clean command will clean up all generated files from the previous
build except for the cache, which saves having to re-download packages.
This ensures that the subsequent Ib build will re-run all stages to regen-
erate the files from our new configuration.

# 1b clean

Of course, more complicated changes to the configuration are possible,
perhaps adding files in subdirectories of config/. When you commit new
revisions, just take care not to hand edit or commit the top-level files in
config containing LB* variables, as these are build products, too, and
are always cleaned up by 1b clean and re-created with lb config via their
respective auto scripts.

We’ve come to the end of our tutorial series. While many more kinds of
customization are possible, even just using the few features explored in
these simple examples, an almost infinite variety of different images can
be created. The remaining examples in this section cover several other use
cases drawn from the collected experiences of users of live systems.

16.5 A VNC Kiosk Client

Use case: Create an image with live-build to boot directly to a VNC

60

847

848

849

850

851

852

854



858

860

861

862

863

864

Debian Live Manual

server.

Make a build directory and create an skeletal configuration inside it,
disabling recommends to make a minimal system. And then create two
initial package lists: the first one generated with a script provided by
live-build named Packages (see Generated package lists), and the second
one including xorg, gdm3, metacity and xvnc4viewer.

$ mkdir vnc-kiosk-client

$ cd vnc-kiosk-client

$ Ib config --apt-recommends false

$ echo '! Packages Priority standard' ; config/package-lists /<

standard . list . chroot
$ echo ”xorg gdm3 metacity xtightvncviewer” ; config/package-lists<+
/my. list .chroot

As explained in Tweaking APT to save space you may need to re-add
some recommended packages to make your image work properly.

An easy way to list recommends is using apt-cache. For example:

$ apt-cache depends live -config live -boot

In this example we found out that we had to re-include several packages
recommended by live-config and live-boot: user-setup to make autologin
work and sudo as an essential program to shutdown the system. Besides,
it could be handy to add live-tools to be able to copy the image to RAM
and eject to eventually eject the live medium. So:

$ echo 7live -tools user-setup sudo eject” ; config/package-lists /<
recommends. list . chroot

After that, create the directory /etc/skel in config/includes.chroot and

put a custom .xsession in it for the default user that will launch
metacity and start xvncviewer, connecting to port 5901 on a server at
192.168.1.2:

$ mkdir -p config/includes.chroot/etc/skel
$ cat ; config/includes.chroot/etc/skel/.xsession

#!/bin /sh

ii EOF
/usr/bin/metacity &
/usr/bin/xvncviewer 192.168.1.2:1

exit

EOF

Build the image:

‘# 5 Gole

Enjoy.

16.6 A minimal image for a 512MB USB key

Use case: Create a default image with some components removed in
order to fit on a 512MB USB key with a little space left over to use as
you see fit.

When optimizing an image to fit a certain media size, you need to under-
stand the tradeoffs you are making between size and functionality. In this
example, we trim only so much as to make room for additional material
within a 512MB media size, but without doing anything to destroy the
integrity of the packages contained within, such as the purging of locale
data via the localepurge package, or other such intrusive optimizations.

61

865

866

867

868

869

870

871



872

873

874

875

876

877

878

879

880

Debian Live Manual

Of particular note, we use —debootstrap-options to create a minimal sys-
tem from scratch and —binary image hdd to create an image that can be
copied to a USB key.

$ lb config --binary-image hdd --apt-indices false --apt-+
recommends false --debootstrap-options ”--variant=minbase”
firmware - chroot false --memtest none

-

To make the image work properly, we must re-add, at least, two recom-
mended packages which are left out by the —apt-recommends false option.
See Tweaking APT to save space

$ echo ”user -setup sudo” ; config/package-lists /recommends. list .«
chroot

Additionally, you’ll want to have network access, so another two recom-
mended packages need to be re-added:

$ echo ”ifupdown isc-dhep-client” ;i config/package-lists/«
recommends. list . chroot

Now, build the image in the usual way:

# 1b build 2;&1 — tee build.log

On the author’s system at the time of writing this, the above configuration
produced a 298MiB image. This compares favourably with the 380MiB
image produced by the default configuration in Tutorial 1, when —binary-
image hdd is added.

Leaving off APT’s indices with —apt-indices false saves a fair amount of

space, the tradeoff being that you need to do an apt-get update before
using apt in the live system. Dropping recommended packages with —apt-
recommends false saves some additional space, at the expense of omitting
some packages you might otherwise expect to be there. —debootstrap-
options —variant=minbase bootstraps a minimal system from the start.
Not automatically including firmware packages with —firmware-chroot
false saves some space too. And finally, -memtest none prevents the
installation of a memory tester.

Note: A minimal system can also be achieved using hooks, like for exam-
ple the stripped.hook.chroot hook found in /usr/share/doc/live-build/-
examples/hooks. It may shave off additional small amounts of space and
produce an image of 277MiB. However, it does so by removal of docu-
mentation and other files from packages installed on the system. This
violates the integrity of those packages and that, as the comment header
warns, may have unforeseen consequences. That is why using a minimal
debootstrap is the recommended way of achieving this goal.

16.7 A localized GNOME desktop and installer

Use case: Create a GNOME desktop image, localized for Switzerland
and including an installer.

We want to make an iso-hybrid image using our preferred desktop, in
this case GNOME, containing all of the same packages that would be
installed by the standard Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropriate
language tasks. Currently, live-build cannot help with this. While we
might get lucky and find this by trial-and-error, there is a tool, grep-dctrl,
which can be used to dig it out of the task descriptions in tasksel-data,
so to prepare, make sure you have both of those things:

62

881

882

883

884

885

886



887

888

889

890

891

Debian Live Manual

install dctrl -tools tasksel -data

# apt-get

Now we can search for the appropriate tasks, first with:

$ grep-dctrl -FTest-lang de /usr/share/tasksel/descs/debian-tasks.<+
desc -sTask
Task: german

By this command, we discover the task is called, plainly enough, german.

Now to find the related tasks:

$ grep-dctrl -FEnhances german /usr/share/tasksel/descs/debian-+
tasks.desc -sTask

Task: german-desktop

Task: german-kde-desktop

At boot time we will generate the de’CH.UTF-8 locale and select the ch
keyboard layout. Now let’s put the pieces together. Recalling from Using
metapackages that task metapackages are prefixed task-, we just specify
these language boot parameters, then add standard priority packages and
all our discovered task metapackages to our package list as follows:

mkdir live -gnome-ch

cd live -gnome-ch

Ib config “
--bootappend-live

keyboard - layouts=ch”

--debian-installer live

$ echo '! Packages Priority standard'
standard . list .chroot

$ echo task-gnome-desktop task-german task-german-desktop j; <
config /package-lists /desktop.list.chroot

$ echo debian-installer -launcher ;; config/package-lists/installer«

.list .chroot

&h h P

”boot=live components locales=de'CH.UTF-8 <+

«

. config/package-lists/«

Note that we have included the debian-installer-launcher package to
launch the installer from the live desktop.

63

893



Anhang

64



895

896

897

898

899

900

901

902

903

904

905

906

Style guide

17. Style guide

17.1 Guidelines for authors

This section deals with some general considerations to be taken into
account when writing technical documentation for live-manual. They are
divided into linguistic features and recommended procedures.

Note: Authors should first read Contributing to this document

17.1.1 Linguistic features
Use plain English

Keep in mind that a high percentage of your readers are not native
speakers of English. So as a general rule try to use short, meaningful
sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive style. It is a
suggestion to try to avoid, as much as possible, complex subordinate sen-
tences that make the text difficult to understand for non-native speakers
of English.

Variety of English

The most widely spread varieties of English are British and American
so it is very likely that most authors will use either one or the other.
In a collaborative environment, the ideal variety would be International
English but it is very difficult, not to say impossible, to decide on which
variety among all the existing ones, is the best to use.

We expect that different varieties may mix without creating misunder-

standings but in general terms you should try to be coherent and before
deciding on using British, American or any other English flavour at your
discretion, please take a look at how other people write and try to imitate
them.

Be balanced

Do not be biased. Avoid including references to ideologies completely un-
related to live-manual. Technical writing should be as neutral as possible.
It is in the very nature of scientific writing.

Be politically correct

Try to avoid sexist language as much as possible. If you need to make
references to the third person singular preferably use they rather than he
or she or awkward inventions such as s/he, s(he) and the like.

Be concise

Go straight to the point and do not wander around aimlessly. Give as
much information as necessary but do not give more information than
necessary, this is to say, do not explain unnecessary details. Your readers
are intelligent. Presume some previous knowledge on their part.

Minimize translation work

Keep in mind that whatever you write will have to be translated into
several other languages. This implies that a number of people will have
to do an extra work if you add useless or redundant information.

Be coherent

As suggested before, it is almost impossible to standardize a collabora-
tive document into a perfectly unified whole. However, every effort on
your side to write in a coherent way with the rest of the authors will be
appreciated.

Be cohesive

65

907

908

909

910

911

912

913

914

915

916

917



919

920

921

922

923

924

925

926

Debian Live Manual

Use as many text-forming devices as necessary to make your text cohesive
and unambiguous. (Text-forming devices are linguistic markers such as
connectors).

Be descriptive

It is preferable to describe the point in one or several paragraphs than
merely using a number of sentences in a typical changelog style. Describe
it! Your readers will appreciate it.

Dictionary

Look up the meaning of words in a dictionary or encyclopedia if you do
not know how to express certain concepts in English. But keep in mind
that a dictionary can either be your best friend or can turn into your
worst enemy if you do not know how to use it correctly.

English has the largest vocabulary that exists (with over one million
words). Many of these words are borrowings from other languages. When
looking up the meaning of words in a bilingual dictionary the tendency
of a non-native speaker of English is to choose the one that sounds more
similar in their mother tongue. This often turns into an excessively formal
discourse which does not sound quite natural in English.

As a general rule, if a concept can be expressed using different synonyms,

it is a good advice to choose the first word proposed by the dictionary.

If in doubt, choosing words of Germanic origin (Usually monosyllabic
words) is often the right thing to do. Be warned that these two techniques
might produce a rather informal discourse but at least your choice of
words will be of wide use and generally accepted.

Using a dictionary of collocations is recommended. They are extremely
helpful when it comes to know which words usually occur together.

Again it is a good practice to learn from the work of others. Using a
search engine to check how other authors use certain expressions may
help a lot.

o1s False friends, idioms and other idiomatic expressions

Watch out for false friends. No matter how proficient you are in a foreign
language you cannot help falling from time to time in the trap of the so
called false friends, words that look similar in two languages but whose
meanings or uses might be completely different.

Try to avoid idioms as much as possible. Idioms are expressions that may
convey a completely different meaning from what their individual words
seem to mean. Sometimes, idioms might be difficult to understand even
for native speakers of English!

Avoid slang, abbreviations, contractions...

Even though you are encouraged to use plain, everyday English, technical
writing belongs to the formal register of the language.

Try to avoid slang, unusual abbreviations that are difficult to understand
and above all contractions that try to imitate the spoken language. Not
to mention typical irc and family friendly expressions.

17.1.2 Procedures

Test before write

It is important that authors test their examples before adding them to
live-manual to ensure that everything works as described. Testing on a
clean chroot or VM can be a good starting point. Besides, it would be
ideal if the tests were then carried out on different machines with different
hardware to spot possible problems that may arise.

Examples

When providing an example try to be as specific as you can. An example
is, after all, just an example.

It is often better to use a line that only applies to a specific case than

66

927

928

929

930

931

932

933

934

935

936

937

938



939

940

941

942

943

944

945

946

947

948

Debian Live Manual

using abstractions that may confuse your readers. In this case you can
provide a brief explanation of the effects of the proposed example.

There may be some exceptions when the example suggests using some
potentially dangerous commands that, if misused, may cause data loss
or other similar undesirable effects. In this case you should provide a
thorough explanation of the possible side effects.

External links

Links to external sites should only be used when the information on those
sites is crucial when it comes to understanding a special point. Even so,
try to use links to external sites as sparsely as possible. Internet links are
likely to change from time to time resulting in broken links and leaving
your arguments in an incomplete state.

Besides, people who read the manual offline will not have the chance to
follow those links.

Avoid branding and things that violate the license under which the
manual is published

Try to avoid branding as much as possible. Keep in mind that other
downstream projects might make use of the documentation you write.
So you are complicating things for them if you add certain specific mate-
rial.

live-manual is licensed under the GNU GPL. This has a number of im-
plications that apply to the distribution of the material (of any kind,
including copyrighted graphics or logos) that is published with it.

Write a first draft, revise, edit, improve, redo if necessary

- Brainstorm!. You need to organize your ideas first in a logical sequence
of events.

- Once you have somehow organized those ideas in your mind write a
first draft.

- Revise grammar, syntax and spelling. Keep in mind that the proper
names of the releases, such as trixie or sid , should not be capitalized
when referred to as code names. In order to check the spelling you can
run the spell target. i.e. make spell

- Improve your statements and redo any part if necessary.

Chapters

Use the conventional numbering system for chapters and subtitles. e.g.

1,1.1,1.1.1,1.1.2 ... 1.2,1.2.1,1.2.2 ... 2, 2.1 ... and so on. See markup
below.

If you have to enumerate a series of steps or stages in your description,
you can also use ordinal numbers: First, second, third ... or First, Then,
After that, Finally ... Alternatively you can use bulleted items.

Markup

And last but not least, live-manual uses SiSU to process the text files
and produce a multiple format output. It is recommended to take a look
at SiSU’s manual to get familiar with its markup, or else type:

$ sisu --help markup

Here are some markup examples that may prove useful:

- For emphasis/bold text:

*~foo”* or !-—foo”!

produces: foo or foo . Use it to emphasize certain key words.

- For italics:

67

949

950

951

952

953

954

955

956

957

958

959

960

961

962


http://www.sisudoc.org/
http://www.sisudoc.org/manual/en/html/sisu_manual/markup.html

963

964

965

966

967

968

969

970

971

972

973

Debian Live Manual

Ird

/—foo”/

produces: foo. Use them e.g. for the names of Debian packages.

- For monospace:

#—foo"#

produces: foo. Use it e.g. for the names of commands. And also to
highlight some key words or things like paths.

- For code blocks:

code—

$ foo
# bar

“code

produces:

$ foo
# bar

Use code— to open and “code to close the tags. It is important to remem-
ber to leave a space at the beginning of each line of code.

17.2 Guidelines for translators

This section deals with some general considerations to be taken into
account when translating the contents of live-manual.

As a general recommendation, translators should have read and under-
stood the translation rules that apply to their specific languages. Usually,
translation groups and mailing lists provide information on how to pro-
duce translated work that complies with Debian quality standards.

Note: Translators should also read Contributing to this document. In
particular the section Translation

17.2.1 Translation hints

Comments

The role of the translator is to convey as faithfully as possible the mean-
ing of words, sentences, paragraphs and texts as written by the original
authors into their target language.

So they should refrain from adding personal comments or extra bits
of information of their own. If they want to add a comment for other
translators working on the same documents, they can leave it in the
space reserved for that. That is, the header of the strings in the po files
preceded by a number sign # . Most graphical translation programs can
automatically handle those types of comments.

TN, Translator’s Note

It is perfectly acceptable however, to include a word or an expression in
brackets in the translated text if, and only if, that makes the meaning of
a difficult word or expression clearer to the reader. Inside the brackets
the translator should make evident that the addition was theirs using the
abbreviation TN or Translator’s Note.

Impersonal sentences

Documents written in English make an extensive use of the impersonal
form you. In some other languages that do not share this characteristic,
this might give the false impression that the original texts are directly

68

975

976

977

978

979

980

981

982

983



984

985

986

987

988

989

990

991

992

993

Debian Live Manual

addressing the reader when they are actually not doing so. Translators
must be aware of that fact and reflect it in their language as accurately
as possible.

False friends

The trap of false friends explained before especially applies to translators.
Double check the meaning of suspicious false friends if in doubt.

Markup

Translators working initially with pot files and later on with po files will
find many markup features in the strings. They can translate the text
anyway, as long as it is translatable, but it is extremely important that
they use exactly the same markup as the original English version.

Code blocks

Even though the code blocks are usually untranslatable, including them
in the translation is the only way to score a 100% complete translation.
And even though it means more work at first because it might require
the intervention of the translators if the code changes, it is the best way,
in the long run, to identify what has already been translated and what
has not when checking the integrity of the .po files.

Newlines

The translated texts need to have the exact same newlines as the original
texts. Be careful to press the Enter key or type if they appear in the
original files. These newlines often appear, for instance, in the code
blocks.

Make no mistake, this does not mean that the translated text needs to

have the same length as the English version. That is nearly impossi-
ble.

Untranslatable strings

Translators should never translate:

- The code names of releases (which should be written in lowercase)
- The names of programs

- The commands given as examples

- Metadata (often between colons :metadata: )

- Links

- Paths

69

995

996

997

998

999

1000



Debian Live Manual

SiSU Metadata, document information Ruby Version: ruby 3.3.7 (2025-01-15 revision be31f993d7) [x86 64-linux-gnu]

Titel: Debian Live Manual

Autor: Debian Live Project jdebian-live@lists.debian.org;,

Rechte: Copyright: Copyright (C) 2006-2015 Live Systems Project, Copyright (C) 2016-2025
The Debian Live team

License: This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in /usr/share/-
common-licenses/ GPL-3 file.
Herausgeber: Debian Live Project jdebian-live@lists.debian.org;,

Datum: 2025-02-26

Version Information

Quelldatei: live-manual.ssm.sst

Filetype: SiSU text 2.0, Unicode text, UTF-8 text, with very long lines (745)

Source  Digest: SHA2-256(live-manual.ssm.sst)=f9805a6174df7fdbe82aede56b3bad3f-
5bab22d9c¢d3279a668d7256a5c2871bd

Generated

Letzte Erstellung (metaverse): 2025-02-26 23:56:39 40000
erstellt bei: SiSU 7.3.0 of 2023w44/1 (2023-10-30)

70


http://www.gnu.org/licenses/

	Debian Live Manual
	Über Live Systeme
	Über dieses Handbuch
	1. Über dieses Handbuch
	1.1 Für die Ungeduldigen  
	1.2 Begriffe  
	1.3 Autoren  
	1.4 Contributing to this document  
	1.4.1 Applying changes  
	1.4.2 Translation  



	About the Debian Live Project
	2. About the Debian Live Project
	2.1 Motivation  
	2.1.1 What is wrong with current live systems  
	2.1.2 Why create our own live system?  

	2.2 Philosophy  
	2.2.1 Only unchanged packages from Debian “main” and “non-free-firmware”  
	2.2.2 No package configuration of the live system  

	2.3 Contact  


	Benutzer
	Installation
	3. Installation
	3.1 Requirements  
	3.2 Installing live-build  
	3.2.1 From the Debian repository  
	3.2.2 From source  

	3.3 Installing live-boot and live-config  
	3.3.1 From the Debian repository  
	3.3.2 From source  



	The basics
	4. The basics
	4.1 What is a live system?  
	4.2 Downloading prebuilt images  
	4.3 First steps: building an ISO hybrid image  
	4.4 Using an ISO hybrid live image  
	4.4.1 Burning an ISO image to a physical medium  
	4.4.2 Copying an ISO hybrid image to a USB stick  
	4.4.3 Using the space left on a USB stick  
	4.4.4 Booting the live medium  

	4.5 Using a virtual machine for testing  
	4.5.1 Testing an ISO image with QEMU  
	4.5.2 Testing an ISO image with VirtualBox  

	4.6 Building and using an HDD image  
	4.7 Building a netboot image  
	4.7.1 DHCP server  
	4.7.2 TFTP server  
	4.7.3 NFS server  
	4.7.4 Netboot testing HowTo  
	4.7.5 Qemu  

	4.8 Webbooting  
	4.8.1 Getting the webboot files  
	4.8.2 Booting webboot images  



	Overview of tools
	5. Overview of tools
	5.1 The live-build package  
	5.1.1 The lb config command  
	5.1.2 The lb build command  
	5.1.3 The lb clean command  

	5.2 The live-boot package  
	5.3 The live-config package  


	Managing a configuration
	6. Managing a configuration
	6.1 Dealing with configuration changes  
	6.1.1 Why use auto scripts? What do they do?  
	6.1.2 Use example auto scripts  

	6.2 Clone a configuration published via Git  


	Customizing contents
	7. Customization overview
	7.1 Build time vs. boot time configuration  
	7.2 Stages of the build  
	7.3 Supplement lb config with files  
	7.4 Customization tasks  


	Customizing package installation
	8. Customizing package installation
	8.1 Package sources  
	8.1.1 Distribution, archive areas and mode  
	8.1.2 Distribution mirrors  
	8.1.3 Distribution mirrors used at build time  
	8.1.4 Distribution mirrors used at run time  
	8.1.5 Additional repositories  

	8.2 Choosing packages to install  
	8.2.1 Package lists  
	8.2.2 Using metapackages  
	8.2.3 Local package lists  
	8.2.4 Local binary package lists  
	8.2.5 Generated package lists  
	8.2.6 Using conditionals inside package lists  
	8.2.7 Removing packages at install time  
	8.2.8 Summary  
	8.2.9 Desktop and language tasks  
	8.2.10 Kernel flavour and version  
	8.2.11 Custom kernels  

	8.3 Installing modified or third-party packages  
	8.3.1 Using packages.chroot to install custom packages  
	8.3.2 Using an APT repository to install custom packages  
	8.3.3 Custom packages and APT  

	8.4 Configuring APT at build time  
	8.4.1 Choosing apt or aptitude  
	8.4.2 Using a proxy with APT  
	8.4.3 Tweaking APT to save space  
	8.4.4 Passing options to apt or aptitude  
	8.4.5 APT pinning  



	Customizing contents
	9. Customizing contents
	9.1 Includes  
	9.1.1 Live/chroot local includes  
	9.1.2 Binary local includes  

	9.2 Hooks  
	9.2.1 Chroot local hooks  
	9.2.2 Binary local hooks  
	9.2.3 Boot-time hooks  

	9.3 Preseeding Debconf questions  


	Customizing run time behaviours
	10. Customizing run time behaviours
	10.1 Customizing the live user  
	10.2 Customizing locale and language  
	10.3 Persistence  
	10.3.1 The persistence.conf file  
	10.3.2 Using more than one persistence store  
	10.3.3 Using persistence with encryption  



	Customizing the binary image
	11. Customizing the binary image
	11.1 Bootloaders  
	11.2 ISO metadata  


	Customizing Debian Installer
	12. Customizing Debian Installer
	12.1 Types of Debian Installer  
	12.2 Customizing Debian Installer by preseeding  
	12.3 Customizing Debian Installer content  


	Projekt
	Contributing to the project
	13. Contributing to the project
	13.1 Translation of man pages  


	Reporting bugs
	14. Reporting bugs
	14.1 Known issues  
	14.2 Do the research  
	14.3 Rebuild from scratch  
	14.4 Use up-to-date packages  
	14.5 Collect information  
	14.6 Isolate the failing case if possible  
	14.7 Use the correct package to report the bug against  
	14.7.1 At build time while bootstrapping  
	14.7.2 At build time while installing packages  
	14.7.3 At boot time  
	14.7.4 At run time  

	14.8 Where to report bugs  


	Coding Style
	15. Coding Style
	15.1 Compatibility  
	15.2 Indenting  
	15.3 Wrapping  
	15.4 Variables  
	15.5 Miscellaneous  


	Beispiele
	Beispiele
	16. Examples
	16.1 Using the examples  
	16.2 Tutorial 1: A default image  
	16.3 Tutorial 2: A web browser utility  
	16.4 Tutorial 3: A personalized image  
	16.4.1 First revision  
	16.4.2 Second revision  

	16.5 A VNC Kiosk Client  
	16.6 A minimal image for a 512MB USB key  
	16.7 A localized GNOME desktop and installer  


	Anhang
	Style guide
	17. Style guide
	17.1 Guidelines for authors  
	17.1.1 Linguistic features  
	17.1.2 Procedures  

	17.2 Guidelines for translators  
	17.2.1 Translation hints  


	SiSU Metadata, document information


