
Debian Live Manual

Debian Live Project ¡debian-live@lists.debian.org¿

2015-08-23

Debian Live Manual

Debian Live Project ¡debian-live@lists.debian.org¿
Copyright © 2006-2015 Live Systems Project,Copyright ©
2016-2025 The Debian Live team
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can
be found in /usr/share/common-licenses/GPL-3 file.

i

http://www.gnu.org/licenses/

Contents

Contents

Debian Live Manual i

ber Live Systeme 3

ber dieses Handbuch 4

1. ber dieses Handbuch 4

1.1 Fr die Ungeduldigen 4

1.2 Begriffe . 4

1.3 Autoren . 5

1.4 Contributing to this document 6

1.4.1 Applying changes 6

1.4.2 Translation 6

About the Debian Live Project 8

2. About the Debian Live Project 8

2.1 Motivation . 8

2.1.1 What is wrong with current live systems . . . 8

2.1.2 Why create our own live system? 8

2.2 Philosophy . 8

2.2.1 Only unchanged packages from Debian main
and non-free-firmware 8

2.2.2 No package configuration of the live system . 9

2.3 Contact . 9

Benutzer 10

Installation 11

3. Installation 11

3.1 Requirements . 11

3.2 Installing live-build 11

3.2.1 From the Debian repository 11

3.2.2 From source 11

3.3 Installing live-boot and live-config 12

3.3.1 From the Debian repository 12

3.3.2 From source 12

The basics 14

4. The basics 14

4.1 What is a live system? 14

4.2 Downloading prebuilt images 15

4.3 First steps: building an ISO hybrid image 15

4.4 Using an ISO hybrid live image 15

4.4.1 Burning an ISO image to a physical medium 15

4.4.2 Copying an ISO hybrid image to a USB stick 16

4.4.3 Using the space left on a USB stick 16

4.4.4 Booting the live medium 16

4.5 Using a virtual machine for testing 17

4.5.1 Testing an ISO image with QEMU 17

4.5.2 Testing an ISO image with VirtualBox 17

4.6 Building and using an HDD image 18

4.7 Building a netboot image 19

4.7.1 DHCP server 19

4.7.2 TFTP server 20

i

Contents

4.7.3 NFS server 20

4.7.4 Netboot testing HowTo 20

4.7.5 Qemu . 20

4.8 Webbooting . 21

4.8.1 Getting the webboot files 21

4.8.2 Booting webboot images 21

Overview of tools 23

5. Overview of tools 23

5.1 The live-build package 23

5.1.1 The lb config command 23

5.1.2 The lb build command 24

5.1.3 The lb clean command 24

5.2 The live-boot package 24

5.3 The live-config package 24

Managing a configuration 25

6. Managing a configuration 25

6.1 Dealing with configuration changes 25

6.1.1 Why use auto scripts? What do they do? . . 25

6.1.2 Use example auto scripts 25

6.2 Clone a configuration published via Git 26

Customizing contents 27

7. Customization overview 27

7.1 Build time vs. boot time configuration 27

7.2 Stages of the build 27

7.3 Supplement lb config with files 27
7.4 Customization tasks 28

Customizing package installation 29

8. Customizing package installation 29
8.1 Package sources . 29

8.1.1 Distribution, archive areas and mode 29
8.1.2 Distribution mirrors 30
8.1.3 Distribution mirrors used at build time 30
8.1.4 Distribution mirrors used at run time 30
8.1.5 Additional repositories 30

8.2 Choosing packages to install 31
8.2.1 Package lists 31
8.2.2 Using metapackages 31
8.2.3 Local package lists 32
8.2.4 Local binary package lists 32
8.2.5 Generated package lists 32
8.2.6 Using conditionals inside package lists 33
8.2.7 Removing packages at install time 33
8.2.8 Summary . 33
8.2.9 Desktop and language tasks 34
8.2.10 Kernel flavour and version 34
8.2.11 Custom kernels 34

8.3 Installing modified or third-party packages 35
8.3.1 Using packages.chroot to install custom pack-

ages . 35
8.3.2 Using an APT repository to install custom pack-

ages . 35
8.3.3 Custom packages and APT 36

8.4 Configuring APT at build time 36
8.4.1 Choosing apt or aptitude 36

ii

Contents

8.4.2 Using a proxy with APT 37

8.4.3 Tweaking APT to save space 37

8.4.4 Passing options to apt or aptitude 38

8.4.5 APT pinning 38

Customizing contents 40

9. Customizing contents 40

9.1 Includes . 40

9.1.1 Live/chroot local includes 40

9.1.2 Binary local includes 40

9.2 Hooks . 41

9.2.1 Chroot local hooks 41

9.2.2 Binary local hooks 41

9.2.3 Boot-time hooks 41

9.3 Preseeding Debconf questions 41

Customizing run time behaviours 43

10. Customizing run time behaviours 43

10.1 Customizing the live user 43

10.2 Customizing locale and language 43

10.3 Persistence . 44

10.3.1 The persistence.conf file 46

10.3.2 Using more than one persistence store 46

10.3.3 Using persistence with encryption 47

Customizing the binary image 49

11. Customizing the binary image 49

11.1 Bootloaders . 49

11.2 ISO metadata . 49

Customizing Debian Installer 50

12. Customizing Debian Installer 50

12.1 Types of Debian Installer 50

12.2 Customizing Debian Installer by preseeding 50

12.3 Customizing Debian Installer content 51

Projekt 52

Contributing to the project 53

13. Contributing to the project 53

13.1 Translation of man pages 53

Reporting bugs 54

14. Reporting bugs 54

14.1 Known issues . 54

14.2 Do the research . 54

14.3 Rebuild from scratch 54

14.4 Use up-to-date packages 55

14.5 Collect information 55

14.6 Isolate the failing case if possible 55

iii

Contents

14.7 Use the correct package to report the bug against . 55

14.7.1 At build time while bootstrapping 56

14.7.2 At build time while installing packages . . . 56

14.7.3 At boot time 56

14.7.4 At run time 56

14.8 Where to report bugs 56

Coding Style 57

15. Coding Style 57

15.1 Compatibility . 57

15.2 Indenting . 57

15.3 Wrapping . 57

15.4 Variables . 58

15.5 Miscellaneous . 59

Beispiele 60

Beispiele 61

16. Examples 61

16.1 Using the examples 61

16.2 Tutorial 1: A default image 61

16.3 Tutorial 2: A web browser utility 61

16.4 Tutorial 3: A personalized image 62

16.4.1 First revision 62

16.4.2 Second revision 63

16.5 A VNC Kiosk Client 63

16.6 A minimal image for a 512MB USB key 64

16.7 A localized GNOME desktop and installer 65

Anhang 67

Style guide 68

17. Style guide 68
17.1 Guidelines for authors 68

17.1.1 Linguistic features 68
17.1.2 Procedures 69

17.2 Guidelines for translators 71
17.2.1 Translation hints 71

SiSU Metadata, document information 73

iv

Debian Live Manual1

2

ber Live Systeme2

3

ber dieses Handbuch3

1. ber dieses Handbuch4

This manual serves as a single access point to all documentation5

related to the Debian Live Project and in particular applies to the
software produced by the project for the Debian bookworm release.
An up-to-date version can always be found at https://live-team.pages.

debian.net/live-manual/

While live-manual is primarily focused on helping you build a live6

system and not on end-user topics, an end user may find some useful
information in these sections: The Basics covers downloading pre-
built images and preparing images to be booted from media or the
network, either using the web builder or running live-build directly
on your system. Customizing run time behaviours describes some
options that may be specified at the boot prompt, such as selecting
a keyboard layout and locale, and using persistence.

Einige der erwhnten Befehle im Text mssen als Superuser ausgefhrt7

werden. Dies kann entweder dadurch erreicht werden, indem zuerst
auf den root Benutzer gewechselt wird mittels su oder durch die
Benutzung von sudo. Um die Befehle welche als unprivilegierter Be-
nutzer ausgefhrt werden knnen und diesen welche Superuser Rechte
bentigen, sind den Befehlen $ respektive # vorangestellt. Dieses
Symbol ist nicht Teil des Befehls.

1.1 Fr die Ungeduldigen8

Obowhl wir denken dass alles in diesem Handbuch mehr oder9

weniger fr die einen oder anderen Benutzer wichtig ist, sind wir uns
bewusst, dass es sich um viel Material handelt. Fr ein schnelles Er-

folgserlebnis in der Anwendung dieser Software schlagen wir die fol-
gende Reihenfolge vor, bevor sie sich mit den Details befassen:

First, read this chapter, About this manual, from the beginning and 10

ending with the Terms section. Next, skip to the three tutorials
at the front of the Examples section designed to teach you image
building and customization basics. Read Using the examples first,
followed by Tutorial 1: A default image, Tutorial 2: A web browser
utility and finally Tutorial 3: A personalized image. By the end of
these tutorials, you will have a taste of what can be done with live
systems.

We encourage you to return to more in-depth study of the manual, 11

perhaps next reading The basics, skimming or skipping Building a
netboot image, and finishing by reading the Customization overview
and the chapters that follow it. By this point, we hope you are thor-
oughly excited by what can be done with live systems and motivated
to read the rest of the manual, cover-to-cover.

1.2 Begriffe 12

Live system : An operating system that can boot without instal- 13

lation to a hard drive. Live systems do not alter local operating
system(s) or file(s) already installed on the computer hard drive
unless instructed to do so. Live systems are typically booted from
media such as CDs, DVDs or USB sticks. Some may also boot
over the network (via netboot images, see Building a netboot im-
age), and over the Internet (via the boot parameter fetch=URL,
see Webbooting).

Live medium : As distinct from live system, the live medium 14

refers to the CD, DVD or USB stick where the binary produced
by live-build and used to boot the live system is written. More
broadly, the term also refers to any place where this binary resides

4

https://live-team.pages.debian.net/live-manual/
https://live-team.pages.debian.net/live-manual/

Debian Live Manual

for the purposes of booting the live system, such as the location
for the network boot files.

Debian Live Project : The project which maintains, among oth-15

ers, the live-boot, live-build, live-config, live-tools and live-manual
packages.

Host system : The environment used to create the live system.16

Target system : The environment used to run the live system.17

live-boot : A collection of scripts used to boot live systems.18

live-build : A collection of scripts used to build customized live19

systems.

live-config : A collection of scripts used to configure a live system20

during the boot process.

live-tools : A collection of additional scripts used to perform21

useful tasks within a running live system.

live-manual : This document is maintained in a package called22

live-manual.

Debian Installer (d-i) : The official installation system for the23

Debian distribution.

Boot parameters : Parameters that can be entered at the boot-24

loader prompt to influence the kernel or live-config.

chroot : The chroot program, chroot(8), enables us to run differ-25

ent instances of the GNU/Linux environment on a single system
simultaneously without rebooting.

Binary image : A file containing the live system, such as live-26

image-amd64.hybrid.iso or live-image-amd64.img.

Target distribution : The distribution upon which your live sys-27

tem will be based. This can differ from the distribution of your
host system.

stable/testing/unstable : The stable distribution, currently code- 28

named bookworm , contains the latest officially released distribu-
tion of Debian. The testing distribution, temporarily codenamed
trixie , is the staging area for the next stable release. A ma-
jor advantage of using this distribution is that it has more recent
versions of software relative to the stable release. The unstable
distribution, permanently codenamed sid , is where active devel-
opment of Debian occurs. Generally, this distribution is run by
developers and those who like to live on the edge. Throughout the
manual, we tend to use codenames for the releases, such as trixie
or sid , as that is what is supported by the tools themselves.

1.3 Autoren 29

Liste der Autoren (in alphabetischer Reihenfolge): 30

Ben Armstrong 31

Brendan Sleight 32

Carlos Zuferri 33

Chris Lamb 34

Daniel Baumann 35

Franklin Piat 36

Jonas Stein 37

Kai Hendry 38

Marco Amadori 39

Mathieu Geli 40

Matthias Kirschner 41

Richard Nelson 42

Roland Clobus 43

Trent W. Buck 44

5

Debian Live Manual

1.4 Contributing to this document45

This manual is intended as a community project and all proposals46

for improvements and contributions are extremely welcome. Please
see the section Contributing to the project for detailed information
on how to fetch the commit key and make good commits.

1.4.1 Applying changes47

In order to make changes to the English manual you have to edit the48

right files in manual/en/ but prior to the submission of your con-
tribution, please preview your work. To preview the live-manual,
ensure the packages needed for building it are installed by execut-
ing:

49

apt - get i n s t a l l make po4a ruby ruby - nokog i r i s i su - complete

You may build the live-manual from the top level directory of your50

Git checkout by executing:

51

$ make bu i ld

Since it takes a while to build the manual in all supported languages,52

authors may find it convenient to use one of the fast proofing short-
cuts when reviewing the new documentation they have added to
the English manual. Using PROOF=1 builds live-manual in html
format, but without the segmented html files, and using PROOF=2
builds live-manual in pdf format, but only the A4 and letter por-
traits. That is why using either of the PROOF= possibilities can
save up a considerable amount of time, e.g:

53

$ make bu i ld PROOF=1

When proofing one of the translations it is possible to build only 54

one language by executing, e.g:

55

$ make bu i ld LANGUAGES=de

It is also possible to build by document type, e.g: 56

57

$ make bu i ld FORMATS=pdf

Or combine both, e.g: 58

59

$ make bu i ld LANGUAGES=de FORMATS=html

After revising your work and making sure that everything is fine, 60

do not use make commit unless you are updating translations in the
commit, and in that case, do not mix changes to the English manual
and translations in the same commit, but use separate commits for
each. See the Translation section for more details.

1.4.2 Translation 61

Note: For the translation of the man pages see Translation of man 62

pages

In order to translate live-manual, follow these steps depending on 63

whether you are starting a translation from scratch or continue work-
ing on an already existing one:

Start a new translation from scratch 64

6

Debian Live Manual

Translate the about˙manual.ssi.pot , about˙project.ssi.pot 65

and index.html.in.pot files in manual/pot/ to your language
with your favourite editor (such as poedit) and send the trans-
lated .po files to the mailing list to check their integrity. live-
manual’s integrity check not only ensures that the .po files
are 100% translated but it also detects possible errors.

Once checked, to enable a new language in the autobuild66

it is enough to add the initial translated files to manual/-
po/$–LANGUAGE˝/ and edit manual/˙sisu/home/index.-
html adding the name of the language and its name in En-
glish between brackets. And then, add the folder manual/-
$–LANGUAGE˝/ to the file .gitignore. Finally, run make
commit.

Continue with an already started translation67

If your target language has already been added, you68

can randomly continue translating the remaining .po files
in manual/po/$–LANGUAGE˝/ using your favourite editor
(such as poedit) .

Do not forget that you need to run make commit to en-69

sure that the translated manuals are updated from the .po
files and then you can review your changes launching make
build before git add ., git commit -m Translating... and git
push. Remember that since make build can take a consider-
able amount of time, you can proofread languages individu-
ally as explained in Applying changes

After running make commit you will see some text scroll by. These70

are basically informative messages about the processing status and
also some hints about what can be done in order to improve live-
manual. Unless you see a fatal error, you usually can proceed and
submit your contribution.

live-manual comes with two utilities that can greatly help translators71

to find untranslated and changed strings. The first one is make
translate. It launches an script that tells you in detail how many
untranslated strings there are in each .po file. The second one, the
make fixfuzzy target, only acts upon changed strings but it helps
you to find and fix them one by one.

Keep in mind that even though these utilities might be really helpful 72

to do translation work on the command line, the use of an specialized
tool like poedit is the recommended way to do the task. It is also a
good idea to read the Debian localization (l10n) documentation and,
specifically to live-manual, the Guidelines for translators.

Note: You can use make clean to clean your git tree before pushing. 73

This step is not compulsory thanks to the .gitignore file but it is a
good practice to avoid committing files involuntarily.

7

About the Debian Live Project74

2. About the Debian Live Project75

2.1 Motivation76

2.1.1 What is wrong with current live systems77

When Debian Live Project was initiated (around 2006), there were78

already several Debian based live systems available and they are
doing a great job. From the Debian perspective most of them have
one or more of the following disadvantages:

They are not Debian projects and therefore lack support from79

within Debian.

They mix different distributions, e.g. testing and unstable .80

They support i386 only.81

They modify the behaviour and/or appearance of packages by82

stripping them down to save space.

They include packages from outside of the Debian archive.83

They ship custom kernels with additional patches that are not84

part of Debian.

They are large and slow due to their sheer size and thus not85

suitable for rescue issues.

They are not available in different flavours, e.g. CDs, DVDs,86

USB-stick and netboot images.

2.1.2 Why create our own live system?87

Debian is the Universal Operating System: Debian has a live system88

to show around and to accurately represent the Debian system with
the following main advantages:

It is a subproject of Debian. 89

It reflects the (current) state of one distribution. 90

It runs on as many architectures as possible. 91

It consists of unchanged Debian packages only. 92

It does not contain any packages that are not in the Debian 93

archive.

It uses an unaltered Debian kernel with no additional patches. 94

2.2 Philosophy 95

2.2.1 Only unchanged packages from Debian main and 96

non-free-firmware

We will only use packages from the Debian repository in the main 97

section. The non-free section is not part of Debian and therefore
cannot be used for official live system images.

Starting with Debian 12 bookworm we added the non-free-firmware 98

section for better support of modern hardware.

We will not change any packages. Whenever we need to change 99

something, we will do that in coordination with its package main-
tainer in Debian.

As an exception, our own packages such as live-boot, live-build or 100

live-config may temporarily be used from our own repository for
development reasons (e.g. to create development snapshots). They
will be uploaded to Debian on a regular basis.

8

https://wiki.debian.org/Firmware

Debian Live Manual

2.2.2 No package configuration of the live system 101

In this phase we will not ship or install sample or alternative con- 102

figurations. All packages are used in their default configuration as
they are after a regular installation of Debian.

Whenever we need a different default configuration, we will do that103

in coordination with its package maintainer in Debian.

A system for configuring packages is provided using debconf allow-104

ing custom configured packages to be installed in your custom pro-
duced live system images, but for the prebuilt live images we choose
to leave packages in their default configuration, unless absolutely
necessary in order to work in the live environment. Wherever possi-
ble, we prefer to adapt packages within the Debian archive to work
better in a live system versus making changes to the live toolchain
or prebuilt image configurations. For more information, please see
Customization overview.

2.3 Contact105

Mailing list : The primary contact for the project is the mail-106

ing list at https://lists.debian.org/debian-live/. You can email the list
directly by addressing your mail to debian-live@lists.debian.org. The
list archives are available at https://lists.debian.org/debian-live/.

IRC : A number of users and developers are present in the107

#debian-live channel on irc.debian.org (OFTC). When asking a
question on IRC, please be patient for an answer. If no answer is
forthcoming, please email the mailing list.

BTS : The Reporting bugs.108

9

https://lists.debian.org/debian-live/
debian-live@lists.debian.org
https://lists.debian.org/debian-live/

Benutzer109

10

Installation110

3. Installation111

3.1 Requirements112

Building live system images has very few system requirements for113

the host system:

Superuser (root) access114

An up-to-date version of live-build115

A POSIX-compliant shell, such as bash or dash116

debootstrap117

Linux 2.6 or newer118

A mount point with dev and exec rights.119

120

mount ¡ your˙mount˙point ¿ - odev , exec , remount

Note that using Debian or a Debian-derived distribution is not re-121

quired - live-build will run on almost any distribution with the above
requirements.

3.2 Installing live-build122

You can install live-build in a number of different ways:123

From the Debian repository124

From source125

From snapshots126

If you are using Debian, the recommended way is to install live-build127

via the Debian repository.

3.2.1 From the Debian repository 128

Simply install live-build like any other package: 129

130

apt - get i n s t a l l l i v e - bu i ld

3.2.2 From source 131

live-build is developed using the Git version control system. On 132

Debian based systems, this is provided by the git package. To check
out the latest code, execute:

133

$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - bu i ld . g i t

You can build and install your own Debian package by execut- 134

ing:

135

$ cd l i v e - bu i ld
$ dpkg - bui ldpackage -b - uc - us
$ cd . .

Now install whichever of the freshly built .deb files you were inter- 136

ested in, e.g.

137

dpkg - i l i v e - bu i l d ˙ 4 . 0 -1 ˙ a l l . deb

You can also install live-build directly to your system by execut- 138

ing:

139

make i n s t a l l

11

Debian Live Manual

and uninstall it with: 140

141

make un i n s t a l l

3.3 Installing live-boot and live-config142

Note: You do not need to install live-boot or live-config on your143

system to create customized live systems. However, doing so will
do no harm and is useful for reference purposes. If you only want
the documentation, you may now install the live-boot-doc and live-
config-doc packages separately.

3.3.1 From the Debian repository144

Both live-boot and live-config are available from the Debian repos-145

itory as per Installing live-build.

3.3.2 From source146

To use the latest source from git, you can follow the process be-147

low. Please ensure you are familiar with the terms mentioned in
Terms.

Checkout the live-boot and live-config sources148

149

$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - boot . g i t
$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - c on f i g .←↩

g i t

Consult the live-boot and live-config man pages for details on cus-150

tomizing if that is your reason for building these packages from
source.

Build live-boot and live-config .deb files151

You must build either on your target distribution or in a chroot 152

containing your target platform: this means if your target is trixie
then you should build against trixie .

Use a personal builder such as pbuilder or sbuild if you need to build 153

live-boot for a target distribution that differs from your build sys-
tem. For example, for trixie live images, build live-boot in a trixie
chroot. If your target distribution happens to match your build sys-
tem distribution, you may build directly on the build system using
dpkg-buildpackage (provided by the dpkg-dev package):

154

$ cd l i v e - boot
$ dpkg - bui ldpackage -b - uc - us
$ cd . . / l i v e - c on f i g
$ dpkg - bui ldpackage -b - uc - us

Use applicable generated .deb files 155

As live-boot and live-config are installed by live-build system, in- 156

stalling the packages in the host system is not sufficient: you should
treat the generated .deb files like any other custom packages. Since
your purpose for building from source is likely to test new things
over the short term before the official release, follow Installing mod-
ified or third-party packages to temporarily include the relevant files
in your configuration. In particular, notice that both packages are
divided into a generic part, a documentation part and one or more
back-ends. Include the generic part, only one back-end matching
your configuration, and optionally the documentation. Assuming
you are building a live image in the current directory and have
generated all .deb files for a single version of both packages in the
directory above, these bash commands would copy all of the relevant
packages including default back-ends:

157

12

Debian Live Manual

$ cp . . / l i v e - boot– ˙ , - i n i t r amf s - t oo l s , - doc ˝* . deb con f i g /←↩
packages . chroot /

$ cp . . / l i v e - c on f i g – ˙ , - s y s v i n i t , - doc ˝* . deb con f i g / packages .←↩
chroot /

13

The basics158

4. The basics159

This chapter contains a brief overview of the build process and160

instructions for using the three most commonly used image types.
The most versatile image type, iso-hybrid, may be used on a virtual
machine, optical medium or USB portable storage device. In certain
special cases, as explained later, the hdd type may be more suitable.
The chapter includes detailed instructions for building and using a
netboot type image, which is a bit more involved due to the setup
required on the server. This is an slightly advanced topic for anyone
who is not already familiar with netbooting, but it is included here
because once the setup is done, it is a very convenient way to test
and deploy images for booting on the local network without the
hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which161

is, perhaps, the easiest way of using different images for different
purposes, switching from one to the other as needed using the inter-
net as a means.

Throughout the chapter, we will often refer to the default filenames162

produced by live-build. If you are downloading a prebuilt image
instead, the actual filenames may vary.

4.1 What is a live system?163

A live system usually means an operating system booted on a164

computer from a removable medium, such as a CD-ROM or USB
stick, or from a network, ready to use without any installation on
the usual drive(s), with auto-configuration done at run time (see
Terms).

With live systems, it’s an operating system, built for one of the 165

supported architectures (currently amd64 and arm64). It is made
from the following parts:

Linux kernel image , usually named vmlinuz* 166

Initial RAM disk image (initrd) : a RAM disk set up for the Linux 167

boot, containing modules possibly needed to mount the System
image and some scripts to do it.

System image : The operating system’s filesystem image. Usu- 168

ally, a SquashFS compressed filesystem is used to minimize the
live system image size. Note that it is read-only. So, during boot
the live system will use a RAM disk and ‘union’ mechanism to
enable writing files within the running system. However, all mod-
ifications will be lost upon shutdown unless optional persistence
is used (see Persistence).

Bootloader : A small piece of code crafted to boot from the 169

chosen medium, possibly presenting a prompt or menu to allow
selection of options/configuration. It loads the Linux kernel and
its initrd to run with an associated system filesystem. Differ-
ent solutions can be used, depending on the target medium and
format of the filesystem containing the previously mentioned com-
ponents: isolinux to boot from a CD or DVD in ISO9660 format,
syslinux for HDD or USB drive booting from a VFAT partition,
extlinux for ext2/3/4 and btrfs partitions, pxelinux for PXE net-
boot, GRUB for ext2/3/4 partitions, etc.

You can use live-build to build the system image from your speci- 170

fications, set up a Linux kernel, its initrd, and a bootloader to run
them, all in one medium-dependent format (ISO9660 image, disk
image, etc.).

14

Debian Live Manual

4.2 Downloading prebuilt images 171

You can download one of the prebuilt images from https://www.172

debian.org/CD/live/. For many of the popular desktop environments
(GNOME, Xfce, KDE, etc.) a specific live image is prepared.

If you are unsure which file to download, use the ‘Live GNOME’173

image from the ‘stable’ release. You can then skip reading the next
sections and run the image in a virtual machine.

4.3 First steps: building an ISO hybrid image174

Regardless of the image type, you will need to perform the same175

basic steps to build an image each time. As a first example, create
a build directory, change to that directory and then execute the
following sequence of live-build commands to create a basic ISO
hybrid image containing a default live system without X.org. It is
suitable for burning to CD or DVD media, and also to copy onto a
USB stick.

The name of the working directory is absolutely up to you, but if176

you take a look at the examples used throughout live-manual, it is
a good idea to use a name that helps you identify the image you
are working with in each directory, especially if you are working
or experimenting with different image types. In this case you are
going to build a default system so let’s call it, for example, live-
default.

177

$ mkdir l i v e - d e f au l t && cd l i v e - d e f au l t

Then, run the lb config command. This will create a config/ hier-178

archy in the current directory for use by other commands:

179

$ lb c on f i g

No parameters are passed to these commands, so defaults for all of 180

their various options will be used. See The lb config command for
more details.

Now that the config/ hierarchy exists, build the image with the lb 181

build command:

182

lb bu i ld

This process can take a while, depending on the speed of your 183

computer and your network connection. When it is complete, there
should be a live-image-amd64.hybrid.iso image file, ready to use, in
the current directory.

Note: If you are building on an amd64 system the name of the 184

resulting image will be live-image-amd64.hybrid.iso. Keep in mind
this naming convention throughout the manual.

4.4 Using an ISO hybrid live image 185

After either building or downloading an ISO hybrid image the usual 186

next step is to prepare your medium for booting, either CD-R(W)
or DVD-R(W) optical media or a USB stick.

4.4.1 Burning an ISO image to a physical medium 187

Burning an ISO image is easy. Just install xorriso and use it from 188

the command-line to burn the image. For instance:

189

15

https://www.debian.org/CD/live/
https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

Debian Live Manual

apt - get i n s t a l l x o r r i s o
$ x o r r i s o - as cdrecord -v dev=/dev/ s r0 blank=as ˙needed l i v e -←↩

image - amd64 . hybrid . i s o

4.4.2 Copying an ISO hybrid image to a USB stick190

ISO images prepared with xorriso, can be simply copied to a USB191

stick with the cp program or an equivalent. Plug in a USB stick
with a size large enough for your image file and determine which
device it is, which we hereafter refer to as $–USBSTICK˝. This is
the device file of your key, such as /dev/sdb, not a partition, such
as /dev/sdb1! You can find the right device name by looking in
dmesg’s output after plugging in the stick, or better yet, ls -l /dev/-
disk/by-id.

Once you are certain you have the correct device name, use the192

cp command to copy the image to the stick. This will definitely
overwrite any previous contents on your stick!

193

$ cp l i v e - image - amd64 . hybrid . i s o $–USBSTICK˝
$ sync

Note: The sync command is useful to ensure that all the data,194

which is stored in memory by the kernel while copying the image, is
written to the USB stick.

4.4.3 Using the space left on a USB stick195

After copying the live-image-amd64.hybrid.iso to a USB stick, the196

first partition on the device will be filled up by the live system. To
use the remaining free space, use a partitioning tool such as gparted
or parted to create a new partition on the stick.

197

gparted $–USBSTICK˝

After the partition is created, where $–PARTITION˝ is the name 198

of the partition, such as /dev/sdb2, you have to create a filesystem
on it. One possible choice would be ext4.

199

mkfs . ext4 $–PARTITION˝

Note: If you want to use the extra space with Windows, apparently 200

that OS cannot normally access any partitions but the first. Some
solutions to this problem have been discussed on our mailing list,
but it seems there are no easy answers.

Remember: Every time you install a new live-image- 201

amd64.hybrid.iso on the stick, all data on the stick will be lost
because the partition table is overwritten by the contents of the
image, so back up your extra partition first to restore again after
updating the live image.

4.4.4 Booting the live medium 202

The first time you boot your live medium, whether CD, DVD, USB 203

key, or PXE boot, some setup in your computer’s BIOS may be
needed first. Since BIOSes vary greatly in features and key bindings,
we cannot get into the topic in depth here. Some BIOSes provide a
key to bring up a menu of boot devices at boot time, which is the
easiest way if it is available on your system. Otherwise, you need
to enter the BIOS configuration menu and change the boot order to
place the boot device for the live system before your normal boot
device.

Once you’ve booted the medium, you are presented with a boot 204

menu. If you just press enter here, the system will boot using the

16

Debian Live Manual

default entry, Live and default options. For more information about
boot options, see the help entry in the menu and also the live-boot
and live-config man pages found within the live system.

Assuming you’ve selected Live and booted a default desktop live205

image, after the boot messages scroll by, you should be automatically
logged into the user account and see a desktop, ready to use. If
you have booted a console-only image, you should be automatically
logged in on the console to the user account and see a shell prompt,
ready to use.

4.5 Using a virtual machine for testing206

It can be a great time-saver for the development of live images207

to run them in a virtual machine (VM). This is not without its
caveats:

Running a VM requires enough RAM for both the guest OS and208

the host and a CPU with hardware support for virtualization is
recommended.

There are some inherent limitations to running on a VM, e.g.209

poor video performance, limited choice of emulated hardware.

When developing for specific hardware, there is no substitute for210

running on the hardware itself.

Occasionally there are bugs that relate only to running in a VM.211

When in doubt, test your image directly on the hardware.

Provided you can work within these constraints, survey the available212

VM software and choose one that is suitable for your needs.

4.5.1 Testing an ISO image with QEMU213

The most versatile VM in Debian is QEMU. If your processor has214

hardware support for virtualization, use the qemu-kvm package; the
qemu-kvm package description briefly lists the requirements.

First, install qemu-kvm if your processor supports it. If not, install 215

qemu, in which case the program name is qemu instead of kvm in
the following examples. The qemu-utils package is also valuable for
creating virtual disk images with qemu-img.

216

apt - get i n s t a l l qemu -kvm qemu - u t i l s

Booting an ISO image is simple: 217

218

$ kvm -cdrom l i v e - image - amd64 . hybrid . i s o -m 4G

See the man pages for more details. 219

Note: For live systems containing a desktop environment that you 220

want to test with qemu, you may wish to include the spice-vdagent
package in your live-build configuration. This will automatically
adjust the resolution and enable the clipboard between the virtual
machine and the host.

221

$ echo ” sp i ce - vdagent” ¿¿ c on f i g /package - l i s t s / s p i c e . l i s t .←↩
chroot

4.5.2 Testing an ISO image with VirtualBox 222

In order to test the ISO with virtualbox: 223

224

apt - get i n s t a l l v i r tua lbox v i r tua lbox - qt v i r tua lbox - dkms
$ v i r tua lbox

17

Debian Live Manual

Create a new virtual machine, change the storage settings to use 225

live-image-amd64.hybrid.iso as the CD/DVD device, and start the
machine.

Note: For live systems containing X.org that you want to test226

with virtualbox, you may wish to include the VirtualBox X.org
driver package, virtualbox-guest-dkms and virtualbox-guest-x11, in
your live-build configuration. Otherwise, the resolution is limited to
800x600.

227

$ echo ” v i r tua lbox - guest - dkms v i r tua lbox - guest - x11” ¿¿ c on f i g←↩
/package - l i s t s /my. l i s t . chroot

In order to make the dkms package work, also the kernel headers228

for the kernel flavour used in your image need to be installed. In-
stead of manually listing the correct linux-headers package in above
created package list, the selection of the right package can be done
automatically by live-build.

229

$ lb c on f i g - - l inux - packages ” l inux - image l inux - headers ”

4.6 Building and using an HDD image230

Building an HDD image is similar to an ISO hybrid one in all231

respects except you specify -b hdd and the resulting filename is live-
image-amd64.img which cannot be burnt to optical media. It is
suitable for booting from USB sticks, USB hard drives, and various
other portable storage devices. Normally, an ISO hybrid image can
be used for this purpose instead, but if you have a BIOS which does
not handle hybrid images properly, you need an HDD image.

Note: if you created an ISO hybrid image with the previous ex-232

ample, you will need to clean up your working directory with the lb
clean command (see The lb clean command):

233

lb c l ean - - b inary

Run the lb config command as before, except this time specifying 234

the HDD image type:

235

$ lb c on f i g -b hdd

Now build the image with the lb build command: 236

237

lb bu i ld

When the build finishes, a live-image-amd64.img file should be 238

present in the current directory.

The generated binary image contains a VFAT partition and the 239

syslinux bootloader, ready to be directly written on a USB device.
Once again, using an HDD image is just like using an ISO hybrid one
on USB. Follow the instructions in Using an ISO hybrid live image,
except use the filename live-image-amd64.img instead of live-image-
amd64.hybrid.iso.

Likewise, to test an HDD image with Qemu, install qemu as de- 240

scribed above in Testing an ISO image with QEMU. Then run kvm
or qemu, depending on which version your host system needs, spec-
ifying live-image-amd64.img as the first hard drive.

241

$ kvm -hda l i v e - image - amd64 . img

18

Debian Live Manual

4.7 Building a netboot image 242

The following sequence of commands will create a basic netboot243

image containing a default live system without X.org. It is suitable
for booting over the network.

Note: if you performed any previous examples, you will need to244

clean up your working directory with the lb clean command:

245

lb c l ean

In this specific case, a lb clean –binary would not be enough to clean246

up the necessary stages. The cause for this is that in netboot setups,
a different initramfs configuration needs to be used which live-build
performs automatically when building netboot images. Since the
initramfs creation belongs to the chroot stage, switching to netboot
in an existing build directory means to rebuild the chroot stage too.
Therefore, lb clean (which will remove the chroot stage, too) needs
to be used.

Run the lb config command as follows to configure your image for247

netbooting:

248

$ lb c on f i g -b netboot - - net - root - path ”/ srv /debian - l i v e ” - -←↩
net - root - s e r v e r ”192 . 168 . 0 . 2 ”

In contrast with the ISO and HDD images, netbooting does not,249

itself, serve the filesystem image to the client, so the files must be
served via NFS. Different network filesystems can be chosen through
lb config. The –net-root-path and –net-root-server options specify
the location and server, respectively, of the NFS server where the
filesystem image will be located at boot time. Make sure these are
set to suitable values for your network and server.

Now build the image with the lb build command:250

251

lb bu i ld

In a network boot, the client runs a small piece of software which 252

usually resides on the EPROM of the Ethernet card. This program
sends a DHCP request to get an IP address and information about
what to do next. Typically, the next step is getting a higher level
bootloader via the TFTP protocol. That could be pxelinux, GRUB,
or even boot directly to an operating system like Linux.

For example, if you unpack the generated live-image- 253

amd64.netboot.tar archive in the /srv/debian-live directory,
you’ll find the filesystem image in live/filesystem.squashfs and the
kernel, initrd and pxelinux bootloader in tftpboot/.

We must now configure three services on the server to enable 254

netbooting: the DHCP server, the TFTP server and the NFS
server.

4.7.1 DHCP server 255

We must configure our network’s DHCP server to be sure to give 256

an IP address to the netbooting client system, and to advertise the
location of the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP 257

server isc-dhcp-server in the /etc/dhcp/dhcpd.conf configuration
file:

258

/ etc /dhcp/dhcpd . conf - c on f i g u r a t i on f i l e f o r i s c - dhcp -←↩
s e r v e r

ddns - update - s t y l e none ;

19

Debian Live Manual

opt ion domain - name ”example . org ” ;
opt ion domain -name - s e r v e r s ns1 . example . org , ns2 . example . org ;

de fau l t - l e a s e - time 600 ;
max- l ea s e - time 7200 ;

log - f a c i l i t y l o c a l 7 ;

subnet 1 9 2 . 1 6 8 . 0 . 0 netmask 255 . 255 . 255 . 0 –
range 192 . 1 6 8 . 0 . 1 1 9 2 . 1 6 8 . 0 . 2 5 4 ;
f i l ename ” pxe l inux . 0 ” ;
next - s e r v e r 1 9 2 . 1 6 8 . 0 . 2 ;
opt ion subnet -mask 2 5 5 . 2 5 5 . 2 5 5 . 0 ;
opt ion broadcast - address 1 9 2 . 1 6 8 . 0 . 2 5 5 ;
opt ion r ou t e r s 1 9 2 . 1 6 8 . 0 . 1 ;

˝

4.7.2 TFTP server259

This serves the kernel and initial ramdisk to the system at run260

time.

You should install the tftpd-hpa package. It can serve all files con-261

tained inside a root directory, usually /srv/tftp. To let it serve
files inside /srv/debian-live/tftpboot, run as root the following com-
mand:

262

dpkg - r e c on f i g u r e - plow tftpd - hpa

and fill in the new tftp server directory when being asked about263

it.

4.7.3 NFS server264

Once the guest computer has downloaded and booted a Linux kernel265

and loaded its initrd, it will try to mount the Live filesystem image
through a NFS server.

You need to install the nfs-kernel-server package. 266

Then, make the filesystem image available through NFS by adding 267

a line like the following to /etc/exports:

268

/ srv /debian - l i v e *(ro , async , no ˙ roo t ˙ squash , no ˙ sub t r e e ˙ ch e ck)

and tell the NFS server about this new export with the following 269

command:

270

expo r t f s - rv

Setting up these three services can be a little tricky. You might need 271

some patience to get all of them working together. For more infor-
mation, see the syslinux wiki at https://wiki.syslinux.org/wiki/index.php?

title=PXELINUX or the Debian Installer Manual’s TFTP Net Booting
section at https://www.debian.org/releases/stable/amd64/ch04s05.en.html. They
might help, as their processes are very similar.

4.7.4 Netboot testing HowTo 272

Netboot image creation is made easy with live-build, but testing the 273

images on physical machines can be really time consuming.

To make our life easier, we can use virtualization. 274

4.7.5 Qemu 275

Install qemu, bridge-utils, sudo. 276

Edit /etc/qemu-ifup: 277

278

20

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://www.debian.org/releases/stable/amd64/ch04s05.en.html

Debian Live Manual

#!/bin / sh
sudo -p ”Password f o r $0 : ” / sb in / i f c o n f i g $1 1 7 2 . 2 0 . 0 . 1
echo ”Executing / e t c /qemu - i f up ”
echo ”Bring ing up $1 f o r br idged mode . . . ”
sudo / sb in / i f c o n f i g $1 0 . 0 . 0 . 0 promisc up
echo ”Adding $1 to br0 . . . ”
sudo / usr / sb in / b r c t l add i f br0 $1
s l e e p 2

Get, or build a grub-floppy-netboot.279

Launch qemu with -net nic,vlan=0 -net280

tap,vlan=0,ifname=tun0

4.8 Webbooting281

Webbooting is a convenient way of retrieving and booting live sys-282

tems using the internet as a means. The requirements for webboot-
ing are very few. On the one hand, you need a medium with a boot-
loader, an initial ramdisk and a kernel. On the other hand, a web
server to store the squashfs files which contain the filesystem.

4.8.1 Getting the webboot files283

As usual, you can build the images yourself or use the prebuilt files.284

Using prebuilt images would be handy for doing initial testing until
one can fine tune their own needs. If you have built a live image
you will find the files needed for webbooting in the build directory
under binary/live/. The files are called vmlinuz, initrd.img and
filesystem.squashfs.

It is also possible to extract those files from an already existing285

iso image. In order to achieve that, loopback mount the image as
follows:

286

mount - o loop image . i s o /mnt

The files are to be found under the live/ directory. In this specific 287

case, it would be /mnt/live/. This method has the disadvantage
that you need to be root to be able to mount the image. However,
it has the advantage that it is easily scriptable and thus, easily
automated.

But undoubtedly, the easiest way of extracting the files from an 288

iso image and uploading it to the web server at the same time, is
using the midnight commander or mc. If you have the genisoimage
package installed, the two-pane file manager allows you to browse
the contents of an iso file in one pane and upload the files via ftp in
the other pane. Even though this method requires manual work, it
does not require root privileges.

4.8.2 Booting webboot images 289

While some users will prefer virtualization to test webbooting, we 290

refer to real hardware here to match the following possible use case
which should only be considered as an example.

In order to boot a webboot image it is enough to have the compo- 291

nents mentioned above, i.e. vmlinuz and initrd.img in a usb stick
inside a directory named live/ and install syslinux as bootloader.
Then boot from the usb stick and type fetch=URL/PATH/TO/-
FILE at the boot options. live-boot will retrieve the squashfs file
and store it into ram. This way, it is possible to use the downloaded
compressed filesystem as a regular live system. For example:

292

append boot=l i v e components f e t ch=http : / / 192 . 1 6 8 . 2 . 5 0 / images /←↩
webboot/ f i l e s y s t em . squash f s

21

Debian Live Manual

Use case: You have a web server in which you have stored two 293

squashfs files, one which contains a full desktop, like for example
gnome, and a standard one. If you need a graphical environment
for one machine, you can plug your usb stick in and webboot the
gnome image. If you need one of the tools included in the second
type of image, perhaps for another machine, you can webboot the
standard one.

22

Overview of tools294

5. Overview of tools295

This chapter contains an overview of the three main tools used in296

building live systems: live-build, live-boot and live-config.

5.1 The live-build package297

live-build is a collection of scripts to build live systems. These298

scripts are also referred to as commands.

The idea behind live-build is to be a framework that uses a config-299

uration directory to completely automate and customize all aspects
of building a Live image.

Many concepts are similar to those used to build Debian packages300

with debhelper:

The scripts have a central location for configuring their operation.301

In debhelper, this is the debian/ subdirectory of a package tree.
For example, dh˙install will look, among others, for a file called
debian/install to determine which files should exist in a particu-
lar binary package. In much the same way, live-build stores its
configuration entirely under a config/ subdirectory.

The scripts are independent - that is to say, it is always safe to302

run each command.

Unlike debhelper, live-build provides the tools to generate a skeleton303

configuration directory. This could be considered to be similar to
tools such as dh-make. For more information about these tools, read
on, since the remainder of this section discuses the four most impor-
tant commands. Note that the preceding lb is a generic wrapper for
live-build commands.

lb config : Responsible for initializing a Live system configuration 304

directory. See The lb config command for more information.

lb build : Responsible for starting a Live system build. See The 305

lb build command for more information.

lb clean : Responsible for removing parts of a Live system build. 306

See The lb clean command for more information.

5.1.1 The lb config command 307

As discussed in live-build, the scripts that make up live-build read 308

their configuration with the source command from a single directory
named config/. As constructing this directory by hand would be
time-consuming and error-prone, the lb config command can be used
to create the initial skeleton configuration tree.

Issuing lb config without any arguments creates the config/ subdirec- 309

tory which is populated with some default settings in configuration
files, and two skeleton trees named auto/ and local/.

310

$ lb c on f i g
[2025 -02 -15 1 2 : 3 4 : 5 6] lb c on f i g
P: Using http proxy : http : / / 1 2 7 . 0 . 0 . 1 : 3 1 4 2
P: Creat ing c on f i g t r e e f o r a debian / t e s t i n g /amd64 system
P: Symlinking hooks . . .

Using lb config without any arguments would be suitable for users 311

who need a very basic image, or who intend to provide a more
complete configuration via auto/config later (see Managing a con-
figuration for details).

Normally, you will want to specify some options. For example, 312

to specify which package manager to use while building the im-
age:

313

23

Debian Live Manual

$ lb c on f i g - - apt apt i tude

It is possible to specify many options, such as:314

315

$ lb c on f i g - - binary - images netboot - - bootappend - l i v e ”boot=←↩
l i v e components hostname=l i v e - host username=l i v e - user ” ←↩
. . .

A full list of options is available in the lb˙config man page.316

5.1.2 The lb build command317

The lb build command reads in your configuration from the config/318

directory. It then runs the lower level commands needed to build
your Live system.

5.1.3 The lb clean command319

It is the job of the lb clean command to remove various parts of a320

build so subsequent builds can start from a clean state. By default,
chroot, binary and source stages are cleaned, but the cache is left
intact. Also, individual stages can be cleaned. For example, if you
have made changes that only affect the binary stage, use lb clean
–binary prior to building a new binary. If your changes invalidate
the bootstrap and/or package caches, e.g. changes to –mode, –
architecture, or –bootstrap, you must use lb clean –purge. See the
lb˙clean man page for a full list of options.

5.2 The live-boot package321

live-boot is a collection of scripts providing hooks for the initramfs-322

tools, used to generate an initramfs capable of booting live systems,

such as those created by live-build. This includes the live system
ISOs, netboot tarballs, and USB stick images.

At boot time it will look for read-only media containing a /live/ di- 323

rectory where a root filesystem (often a compressed filesystem image
like squashfs) is stored. If found, it will create a writable environ-
ment, using OverlayFS, for Debian like systems to boot from.

More information on initial ramfs in Debian can be found in the 324

Debian Linux Kernel Handbook at https://kernel-team.pages.debian.net/

kernel-handbook/ in the chapter on initramfs.

5.3 The live-config package 325

live-config consists of the scripts that run at boot time after live- 326

boot to configure the live system automatically. It handles such
tasks as setting the hostname, locales and timezone, creating the
live user, inhibiting cron jobs and performing autologin of the live
user.

24

https://kernel-team.pages.debian.net/kernel-handbook/
https://kernel-team.pages.debian.net/kernel-handbook/

Managing a configuration327

6. Managing a configuration328

This chapter explains how to manage a live configuration from initial329

creation, through successive revisions and successive releases of both
the live-build software and the live image itself.

6.1 Dealing with configuration changes330

Live configurations rarely are perfect on the first try. It may be fine331

to pass lb config options from the command-line to perform a single
build, but it is more typical to revise those options and build again
until you are satisfied. To support these changes, you will need
auto scripts which ensure your configuration is kept in a consistent
state.

6.1.1 Why use auto scripts? What do they do?332

The lb config command stores the options you pass to it in config/*333

files along with many other options set to default values. If you run
lb config again, it will not reset any option that was defaulted based
on your initial options. So, for example, if you run lb config again
with a new value for –binary-images, any dependent options that
were defaulted for the old image type may no longer work with the
new ones. Nor are these files intended to be read or edited. They
store values for over a hundred options, so nobody, let alone yourself,
will be able to see in these which options you actually specified. And
finally, if you run lb config, then upgrade live-build and it happens
to rename an option, config/* would still contain variables named
after the old option that are no longer valid.

For all these reasons, auto/* scripts will make your life easier. They 334

are simple wrappers to the lb config, lb build and lb clean commands
that are designed to help you manage your configuration. The auto/-
config script stores your lb config command with all desired options,
the auto/clean script removes the files containing configuration vari-
able values, and the auto/build script keeps a build.log of each build.
Each of these scripts is run automatically every time you run the
corresponding lb command. By using these scripts, your configu-
ration is easier to read and is kept internally consistent from one
revision to the next. Also, it will be much easier for you identify
and fix options which need to change when you upgrade live-build
after reading the updated documentation.

6.1.2 Use example auto scripts 335

For your convenience, live-build comes with example auto shell 336

scripts to copy and edit. Start a new, default configuration, then
copy the examples into it:

337

$ mkdir mylive && cd mylive && lb con f i g
$ mkdir auto
$ cp / usr / share /doc/ l i v e - bu i ld / examples /auto /* auto/

Edit auto/config, adding any options as you see fit. For in- 338

stance:

339

#!/bin / sh
lb c on f i g noauto “

- - d i s t r i b u t i o n s t ab l e “
- - binary - images hdd “
- - mirror - boots t rap http :// f tp . ch . debian . org /debian / “
- - mirror - b inary http :// f tp . ch . debian . org /debian / “
”$–@˝”

25

Debian Live Manual

Now, each time you use lb config, auto/config will reset the config- 340

uration based on these options. When you want to make changes
to them, edit the options in this file instead of passing them to lb
config. When you use lb clean, auto/clean will clean up the con-
fig/* files along with any other build products. And finally, when
you use lb build, a log of the build will be written by auto/build in
build.log.

Note: A special noauto parameter is used here to suppress another341

call to auto/config, thereby preventing infinite recursion. Make sure
you don’t accidentally remove it when making edits. Also, take care
to ensure when you split the lb config command across multiple
lines for readability, as shown in the example above, that you don’t
forget the backslash (at the end of each line that continues to the
next.

6.2 Clone a configuration published via Git342

Use the lb config –config option to clone a Git repository that con-343

tains a live system configuration. If you would like to base your
configuration on one maintained by the Debian Live Project, look
at https://salsa.debian.org/live-team/ for the repository named live-images
in the category Subgroups and projects. This repository contains
the configurations for the live systems prebuilt images.

For example, to build a standard image, use the live-images reposi-344

tory as follows:

345

$ mkdir l i v e - images && cd l i v e - images
$ lb c on f i g - - c on f i g https : // s a l s a . debian . org / l i v e - team/ l i v e -←↩

images . g i t : : debian
$ cd images / standard

Edit auto/config and any other things you need in the config tree346

to suit your needs. For example, the unofficial non-free prebuilt
images are made by simply adding –archive-areas main contrib non-
free.

You may optionally define a shortcut in your Git configuration by 347

adding the following to your $–HOME˝/.gitconfig:

348

[u r l ” https : // s a l s a . debian . org / l i v e - team /”]
insteadOf = l s o :

This enables you to use lso: anywhere you need to specify the 349

address of a salsa.debian.org git repository. If you also drop the
optional .git suffix, starting a new image using this configuration is
as easy as:

350

$ lb c on f i g - - c on f i g l s o : l i v e - images : : debian

Cloning the entire live-images repository pulls the configurations 351

used for several images. If you feel like building a different image
after you have finished with the first one, change to another di-
rectory and again and optionally, make any changes to suit your
needs.

In any case, remember that every time you will have to build the 352

image as superuser: lb build

26

https://salsa.debian.org/live-team/

Customizing contents353

7. Customization overview354

This chapter gives an overview of the various ways in which you355

may customize a live system.

7.1 Build time vs. boot time configuration356

Live system configuration options are divided into build-time op-357

tions which are options that are applied at build time and boot-time
options which are applied at boot time. Boot-time options are fur-
ther divided into those occurring early in the boot, applied by the
live-boot package, and those that happen later in the boot, applied
by live-config. Any boot-time option may be modified by the user by
specifying it at the boot prompt. The image may also be built with
default boot parameters so users can normally just boot directly to
the live system without specifying any options when all of the de-
faults are suitable. In particular, the argument to lb –bootappend-
live consists of any default kernel command line options for the Live
system, such as persistence, keyboard layouts, or timezone. See
Customizing locale and language, for example.

Build-time configuration options are described in the lb config man358

page. Boot-time options are described in the man pages for live-boot
and live-config. Although the live-boot and live-config packages are
installed within the live system you are building, it is recommended
that you also install them on your build system for easy reference
when you are working on your configuration. It is safe to do so, as
none of the scripts contained within them are executed unless the
system is configured as a live system.

7.2 Stages of the build 359

The build process is divided into stages, with various customizations 360

applied in sequence in each. The first stage to run is the bootstrap
stage. This is the initial phase of populating the chroot directory
with packages to make a barebones Debian system. This is followed
by the chroot stage, which completes the construction of chroot
directory, populating it with all of the packages listed in the con-
figuration, along with any other materials. Most customization of
content occurs in this stage. The final stage of preparing the live
image is the binary stage, which builds a bootable image, using the
contents of the chroot directory to construct the root filesystem for
the Live system, and including the installer and any other additional
material on the target medium outside of the Live system’s filesys-
tem. After the live image is built, if enabled, the source tarball is
built in the source stage.

Within each of these stages, there is a particular sequence in which 361

commands are applied. These are arranged in such a way as to
ensure customizations can be layered in a reasonable fashion. For
example, within the chroot stage, preseeds are applied before any
packages are installed, packages are installed before any locally in-
cluded files are copied, and hooks are run later, after all of the
materials are in place.

7.3 Supplement lb config with files 362

Although lb config creates a skeletal configuration in the config/ 363

directory, to accomplish your goals, you may need to provide ad-
ditional files in subdirectories of config/. Depending on where the
files are stored in the configuration, they may be copied into the
live system’s filesystem or into the binary image filesystem, or may
provide build-time configurations of the system that would be cum-
bersome to pass as command-line options. You may include things

27

Debian Live Manual

such as custom lists of packages, custom artwork, or hook scripts
to run either at build time or at boot time, boosting the already
considerable flexibility of debian-live with code of your own.

7.4 Customization tasks364

The following chapters are organized by the kinds of customization365

task users typically perform: Customizing package installation, Cus-
tomizing contents and Customizing locale and language cover just
a few of the things you might want to do.

28

Customizing package366

installation

8. Customizing package installation367

Perhaps the most basic customization of a live system is the selec-368

tion of packages to be included in the image. This chapter guides
you through the various build-time options to customize live-build’s
installation of packages. The broadest choices influencing which
packages are available to install in the image are the distribution
and archive areas. To ensure decent download speeds, you should
choose a nearby distribution mirror. You can also add your own
repositories for backports, experimental or custom packages, or in-
clude packages directly as files. You can define lists of packages,
including metapackages which will install many related packages at
once, such as packages for a particular desktop or language. Finally,
a number of options give some control over apt, or if you prefer,
aptitude, at build time when packages are installed. You may find
these handy if you use a proxy, want to disable installation of rec-
ommended packages to save space, or need to control which versions
of packages are installed via APT pinning, to name a few possibili-
ties.

8.1 Package sources369

8.1.1 Distribution, archive areas and mode370

The distribution you choose has the broadest impact on which pack-371

ages are available to include in your live image. Specify the code-
name, which defaults to testing . Any current distribution carried
in the archive may be specified by its codename here. (See Terms

for more details.) The –distribution option not only influences the
source of packages within the archive, but also instructs live-build
to enable other sources.

For example, to build against the stable release, with security, 372

updates (enabled per default) and additionally proposed-updates
and backports, specify:

373

$ lb c on f i g - - d i s t r i b u t i o n s t ab l e - - proposed - updates t rue - -←↩
backports t rue

Similarly, for the unstable release, sid , which has neither security 374

nor updates, specify:

375

$ lb c on f i g - - d i s t r i b u t i o n s i d

Within the distribution archive, archive areas are major divisions of 376

the archive. In Debian, these are main, contrib and non-free. Only
main contains software that is part of the Debian distribution, hence
that is the default. One or more values may be specified, e.g.

377

$ lb c on f i g - - arch ive - a reas ”main con t r ib non - f r e e ”

Experimental support is available for some Debian derivatives 378

through a –mode option. By default, this option is set to debian only
if you are building on a Debian or on an unknown system. If lb con-
fig is invoked on any of the supported derivatives, it will default to
create an image of that derivative. If lb config is run in e.g. ubuntu
mode, the distribution names and archive areas for the specified
derivative are supported instead of the ones for Debian. The mode
also modifies live-build behaviour to suit the derivatives.

Note: The projects for whom these modes were added are primarily 379

29

Debian Live Manual

responsible for supporting users of these options. The Debian Live
Project, in turn, provides development support on a best-effort basis
only, based on feedback from the derivative projects as we do not
develop or support these derivatives ourselves.

8.1.2 Distribution mirrors380

The Debian archive is replicated across a large network of mirrors381

around the world so that people in each region can choose a nearby
mirror for best download speed. Each of the –mirror-* options gov-
erns which distribution mirror is used at various stages of the build.
Recall from Stages of the build that the bootstrap stage is when the
chroot is initially populated by debootstrap with a minimal system,
and the chroot stage is when the chroot used to construct the live
system’s filesystem is built. Thus, the corresponding mirror switches
are used for those stages, and later, in the binary stage, the –mirror-
binary and –mirror-binary-security values are used, superseding any
mirrors used in an earlier stage.

8.1.3 Distribution mirrors used at build time382

To set the distribution mirrors used at build time to point at a local383

mirror, it is sufficient to set –mirror-bootstrap and –mirror-chroot-
security as follows.

384

$ lb c on f i g - - mirror - boots t rap http :// l o c a l h o s t /debian / “
- - mirror - chroot - s e c u r i t y http :// l o c a l h o s t /debian -←↩

s e c u r i t y /

The chroot mirror, specified by –mirror-chroot, defaults to the –385

mirror-bootstrap value.

8.1.4 Distribution mirrors used at run time386

The –mirror-binary* options govern the distribution mirrors placed 387

in the binary image. These may be used to install additional
packages while running the live system. The defaults employ
deb.debian.org, a service that chooses a geographically close mirror
based, among other things, on the user’s IP family and the avail-
ability of the mirrors. This is a suitable choice when you cannot
predict which mirror will be best for all of your users. Or you may
specify your own values as shown in the example below. An image
built from this configuration would only be suitable for users on a
network where mirror is reachable.

388

$ lb c on f i g - - mirror - b inary http :// mirror /debian / “
- - mirror - binary - s e c u r i t y http :// mirror /debian -←↩

s e c u r i t y / “
- - mirror - binary - backports http :// mirror /debian -←↩

backports /

8.1.5 Additional repositories 389

You may add more repositories, broadening your package choices be- 390

yond what is available in your target distribution. These may be, for
example, for backports, experimental or custom packages. To config-
ure additional repositories, create config/archives/your-repository.-
list.chroot, and/or config/archives/your-repository.list.binary files.
As with the –mirror-* options, these govern the repositories used
in the chroot stage when building the image, and in the binary
stage, i.e. for use when running the live system.

For example, config/archives/live.list.chroot allows you to install 391

packages from the debian-live snapshot repository at live system
build time.

392

30

Debian Live Manual

deb http :// debian - l i v e . a l i o t h . debian . org / s id - snapshots main ←↩
con t r i b non - f r e e

If you add the same line to config/archives/live.list.binary, the repos-393

itory will be added to your live system’s /etc/apt/sources.list.d/
directory.

If such files exist, they will be picked up automatically.394

You should also put the ASCII-armored GPG key used to sign the395

repository into config/archives/your-repository.key.–binary,chroot˝
files.

Should you need custom APT pinning, such APT preferences396

snippets can be placed in config/archives/your-repository.pref.-
–binary,chroot˝ files and will be automatically added to your live
system’s /etc/apt/preferences.d/ directory.

Similarly, if you need custom APT˙AUTH.CONF(5) authentication397

configuration, this can be placed in config/archives/your-repository.-
auth.–binary,chroot˝ files and will be automatically added to your
live system’s /etc/apt/auth.conf.d/ directory

8.2 Choosing packages to install398

There are a number of ways to choose which packages live-build will399

install in your image, covering a variety of different needs. You can
simply name individual packages to install in a package list. You can
also use metapackages in those lists, or select them using package
control file fields. And finally, you may place package files in your
config/ tree, which is well suited to testing of new or experimental
packages before they are available from a repository.

8.2.1 Package lists400

Package lists are a powerful way of expressing which packages should 401

be installed. The list syntax supports conditional sections which
makes it easy to build lists and adapt them for use in multiple
configurations. Package names may also be injected into the list
using shell helpers at build time.

Note: The behaviour of live-build when specifying a package that 402

does not exist is determined by your choice of APT utility. See
Choosing apt or aptitude for more details.

8.2.2 Using metapackages 403

The simplest way to populate your package list is to use a task 404

metapackage maintained by your distribution. For example:

405

$ lb c on f i g
$ echo task - gnome - desktop ¿ con f i g /package - l i s t s / desktop . l i s t←↩

. chroot

This supersedes the older predefined list method supported in live- 406

build 2.x. Unlike predefined lists, task metapackages are not specific
to the Live System project. Instead, they are maintained by special-
ist working groups within the distribution and therefore reflect the
consensus of each group about which packages best serve the needs
of the intended users. They also cover a much broader range of use
cases than the predefined lists they replace.

All task metapackages are prefixed task-, so a quick way to deter- 407

mine which are available (though it may contain a handful of false
hits that match the name but aren’t metapackages) is to match on
the package name with:

408

31

Debian Live Manual

$ apt - cache search - - names - only ˆ task -

In addition to these, you will find other metapackages with various409

purposes. Some are subsets of broader task packages, like gnome-
core, while others are individual specialized parts of a Debian Pure
Blend, such as the education-* metapackages. To list all metapack-
ages in the archive, install the debtags package and list all packages
with the role::metapackage tag as follows:

410

$ debtags search r o l e : : metapackage

8.2.3 Local package lists411

Whether you list metapackages, individual packages, or a combi-412

nation of both, all local package lists are stored in config/package-
lists/. Since more than one list can be used, this lends itself well to
modular designs. For example, you may decide to devote one list
to a particular choice of desktop, another to a collection of related
packages that might as easily be used on top of a different desktop.
This allows you to experiment with different combinations of sets
of packages with a minimum of fuss, sharing common lists between
different live image projects.

Package lists that exist in this directory need to have a .list suffix in413

order to be processed, and then an additional stage suffix, .chroot
or .binary to indicate which stage the list is for.

The packages in the .list.chroot˙install list are present both in the414

live system and in the installed system.

Note: If you don’t specify the stage suffix, the list will be used for415

both stages. Normally, you want to specify .list.chroot so that the

packages will only be installed in the live filesystem and not have
an extra copy of the .deb placed on the medium.

8.2.4 Local binary package lists 416

To make a binary stage list, place a file suffixed with .list.binary 417

in config/package-lists/. These packages are not installed in the
live filesystem, but are included on the live medium under pool/.
You would typically use such a list with one of the non-live installer
variants. As mentioned above, if you want this list to be the same
as your chroot stage list, simply use the .list suffix by itself.

8.2.5 Generated package lists 418

It sometimes happens that the best way to compose a list is to gen- 419

erate it with a script. Any line starting with an exclamation point
indicates a command to be executed within the chroot when the im-
age is built. For example, one might include the line ! grep-aptavail
-n -sPackage -FPriority standard —sort in a package list to produce
a sorted list of available packages with Priority: standard.

In fact, selecting packages with the grep-aptavail command (from 420

the dctrl-tools package) is so useful that live-build provides a Pack-
ages helper script as a convenience. This script takes two arguments:
field and pattern. Thus, you can create a list with the following con-
tents:

421

$ lb c on f i g
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot

32

Debian Live Manual

8.2.6 Using conditionals inside package lists 422

Any of the live-build configuration variables stored in config/* (mi-423

nus the LB˙ prefix) may be used in conditional statements in pack-
age lists. Generally, this means any lb config option uppercased and
with dashes changed to underscores. But in practice, it is only the
ones that influence package selection that make sense, such as DIS-
TRIBUTION, ARCHITECTURES or ARCHIVE˙AREAS.

For example, to install ia32-libs if the –architectures amd64 is spec-424

ified:

425

#i f ARCHITECTURES amd64
ia32 - l i b s
#end i f

You may test for any one of a number of values, e.g. to install426

memtest86+ if either –architectures i386 or –architectures amd64 is
specified:

427

#i f ARCHITECTURES i386 amd64
memtest86+
#end i f

You may also test against variables that may contain more than one428

value, e.g. to install vrms if either contrib or non-free is specified
via –archive-areas:

429

#i f ARCHIVE˙AREAS cont r ib non - f r e e
vrms
#end i f

The nesting of conditionals is not supported.430

8.2.7 Removing packages at install time 431

You can list packages in files with .list.chroot˙live and .list.chroot˙in- 432

stall suffixes inside the config/package-lists directory. If both a live
and an install list exist, the packages in the .list.chroot˙live list are
removed with a hook after the installation (if the user uses the in-
staller). The packages in the .list.chroot˙install list are present both
in the live system and in the installed system. This is a special tweak
for the installer and may be useful if you have –debian-installer live
set in your config, and wish to remove live system-specific packages
at install time.

8.2.8 Summary 433

The table below shows which configuration files are required to 434

achieve the desired availability of the package.
435

X.chroot X.chroot˙-
live

X X.binary

Package is
installed in
the live sys-
tem

Yes Yes Yes No

Package is
removed
after in-
stalling the
live system

No Yes No N/A

Package
can be
installed
from the
live system
without
network

N/A N/A Yes *1 Yes

*1: Because the installer needs this package 436

X = config/package-lists/custom˙name.list 437

33

Debian Live Manual

8.2.9 Desktop and language tasks438

Desktop and language tasks are special cases that need some ex-439

tra planning and configuration. Live images are different from De-
bian Installer images in this respect. In the Debian Installer, if the
medium was prepared for a particular desktop environment flavour,
the corresponding task will be automatically installed. Thus, there
are internal gnome-desktop, kde-desktop, lxde-desktop and xfce-
desktop tasks, none of which are offered in tasksel’s menu. Likewise,
there are no menu entries for tasks for languages, but the user’s
language choice during the install influences the selection of corre-
sponding language tasks.

When developing a desktop live image, the image typically boots440

directly to a working desktop, the choices of both desktop and de-
fault language having been made at build time, not at run time as
in the case of the Debian Installer. That’s not to say that a live
image couldn’t be built to support multiple desktops or multiple
languages and offer the user a choice, but that is not live-build’s
default behaviour.

Because there is no provision made automatically for language441

tasks, which include such things as language-specific fonts and input-
method packages, if you want them, you need to specify them in your
configuration. For example, a GNOME desktop image containing
support for German might include these task metapackages:

442

$ lb c on f i g
$ echo ” task - gnome - desktop task - laptop ” ¿¿ c on f i g /package -←↩

l i s t s /my. l i s t . chroot
$ echo ” task - german task - german - desktop task - german - gnome -←↩

desktop ” ¿¿ c on f i g /package - l i s t s /my. l i s t . chroot

8.2.10 Kernel flavour and version443

One or more kernel flavours will be included in your image by 444

default, depending on the architecture. You can choose different
flavours via the –linux-flavours option. Each flavour is suffixed to
the default stub linux-image to form each metapackage name which
in turn depends on an exact kernel package to be included in your
image.

Thus by default, an amd64 architecture image will include the linux- 445

image-amd64 flavour metapackage, and an i386 architecture image
will include the linux-image-586 metapackage.

When more than one kernel package version is available in your 446

configured archives, you can specify a different kernel package name
stub with the –linux-packages option. For example, supposing you
are building an amd64 architecture image and add the experimen-
tal archive for testing purposes so you can install the linux-image-
3.18.0-trunk-amd64 kernel. You would configure that image as fol-
lows:

447

$ lb c on f i g - - l inux - packages l inux - image - 3 . 1 8 . 0 - trunk
$ echo ”deb http :// deb . debian . org /debian / exper imenta l main” ←↩

¿ c on f i g / a r ch i v e s / exper imenta l . l i s t . chroot

8.2.11 Custom kernels 448

You can build and include your own custom kernels, so long as 449

they are integrated within the Debian package management system.
The live-build system does not support kernels not built as .deb
packages.

The proper and recommended way to deploy your own kernel pack- 450

ages is to follow the instructions in the kernel-handbook. Remember

34

Debian Live Manual

to modify the ABI and flavour suffixes appropriately, then include
a complete build of the linux and matching linux-latest packages in
your repository.

If you opt to build the kernel packages without the matching meta-451

packages, you need to specify an appropriate –linux-packages stub as
discussed in Kernel flavour and version. As we explain in Installing
modified or third-party packages, it is best if you include your cus-
tom kernel packages in your own repository, though the alternatives
discussed in that section work as well.

It is beyond the scope of this document to give advice on how452

to customize your kernel. However, you must at least ensure your
configuration satisfies these minimum requirements:

Use an initial ramdisk.453

Include the union filesystem module (i.e. usually OverlayFS).454

Include any other filesystem modules required by your configura-455

tion (i.e. usually squashfs).

8.3 Installing modified or third-party packages456

While it is against the philosophy of a live system, it may some-457

times be necessary to build a live system with modified versions of
packages that are in the Debian repository. This may be to modify
or support additional features, languages and branding, or even to
remove elements of existing packages that are undesirable. Similarly,
third-party packages may be used to add bespoke and/or proprietary
functionality.

This section does not cover advice regarding building or458

maintaining modified packages. Joachim Breitner’s ‘How to
fork privately’ method from http://www.joachim-breitner.de/blog/archives/

282-How-to-fork-privately.html may be of interest, however. The cre-
ation of bespoke packages is covered in the Debian New Main-
tainers’ Guide at https://www.debian.org/doc/manuals/maint-guide/ and else-
where.

There are two ways of installing modified custom packages: 459

packages.chroot 460

Using a custom APT repository 461

Using packages.chroot is simpler to achieve and useful for one-off 462

customizations but has a number of drawbacks, while using a custom
APT repository is more time-consuming to set up.

8.3.1 Using packages.chroot to install custom packages 463

To install a custom package, simply copy it to the config/packages.- 464

chroot/ directory. Packages that are inside this directory will be
automatically installed into the live system during build - you do
not need to specify them elsewhere.

Packages must be named in the prescribed way. One simple way 465

to do this is to use dpkg-name.

Using packages.chroot for installation of custom packages has dis- 466

advantages:

It is not possible to use secure APT. 467

You must install all appropriate packages in the config/packages.- 468

chroot/ directory.

It does not lend itself to storing live system configurations in 469

revision control.

8.3.2 Using an APT repository to install custom packages 470

Unlike using packages.chroot, when using a custom APT reposi- 471

35

http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
https://www.debian.org/doc/manuals/maint-guide/

Debian Live Manual

tory you must ensure that you specify the packages elsewhere. See
Choosing packages to install for details.

While it may seem unnecessary effort to create an APT repository472

to install custom packages, the infrastructure can be easily re-used
at a later date to offer updates of the modified packages.

The APT repository does not necessarily need to be online, you can473

use a local repository instead. However, in both cases the repository
needs to be signed.

Example:474

475

$ gpg - - armor - - output c on f i g / a r ch i v e s / custom˙repo . gpg . key$–←↩
EXTENSION˝ - - export - opt ions export - minimal - - export $–←↩
SIGNING˙KEY˝

$ cat ¡ ¡ EOF ¿ con f i g / a r ch i v e s / custom˙repo . l i s t $ –EXTENSION˝
deb [s igned - by=/etc /apt/ t ru s t ed . gpg . d/ custom˙repo . gpg . key$–←↩

EXTENSION˝ . asc] $–URI˝ $–SUITE˝ $–COMPONENTS˝
EOF
$ echo ”$–PACKAGES˙FROM˙REPOSITORY˝” ¿ con f i g /package - l i s t s /←↩

custom˙repo . l i s t $ –EXTENSION˝

Where:476

$–EXTENSION˝: the optional stage suffix, see the summary477

$–SIGNING˙KEY˝: the keyID of the signature of the repository478

$–URI˝: the URI to the repository, e.g.479

http://deb.debian.org/debian/ or file://$(pwd)/my˙local˙-
repository

$–SUITE˝: the suite within the repository, e.g. my-debian-based-480

distro

$–COMPONENTS˝: the components within the repository, e.g.481

main

$–PACKAGES˙FROM˙REPOSITORY˝: the names of the pack-482

ages to install (dependencies will automatically be installed as
well)

8.3.3 Custom packages and APT 483

live-build uses APT to install all packages into the live system so 484

will therefore inherit behaviours from this program. One relevant
example is that (assuming a default configuration) given a package
available in two different repositories with different version numbers,
APT will elect to install the package with the higher version num-
ber.

Because of this, you may wish to increment the version number in 485

your custom packages’ debian/changelog files to ensure that your
modified version is installed over one in the official Debian reposito-
ries. This may also be achieved by altering the live system’s APT
pinning preferences - see APT pinning for more information.

8.4 Configuring APT at build time 486

You can configure APT through a number of options applied only at 487

build time. (APT configuration used in the running live system may
be configured in the normal way for live system contents, that is, by
including the appropriate configurations through config/includes.-
chroot/.) For a complete list, look for options starting with apt in
the lb˙config man page.

8.4.1 Choosing apt or aptitude 488

You can elect to use either apt or aptitude when installing packages 489

at build time. Which utility is used is governed by the –apt argu-
ment to lb config. Choose the method implementing the preferred

36

Debian Live Manual

behaviour for package installation, the notable difference being how
missing packages are handled.

apt: With this method, if a missing package is specified, the490

package installation will fail. This is the default setting.

aptitude: With this method, if a missing package is specified, the491

package installation will succeed.

8.4.2 Using a proxy with APT492

One commonly required APT configuration is to deal with building493

an image behind a proxy. You may specify your APT proxy with
the –apt-http-proxy option as needed, e.g.

494

$ lb c on f i g - - apt - http - proxy http :// proxy/

8.4.3 Tweaking APT to save space495

You may find yourself needing to save some space on the image496

medium, in which case one or the other or both of the following
options may be of interest.

If you don’t want to include APT indices in the image, you can omit497

those with:

498

$ lb c on f i g - - apt - i n d i c e s f a l s e

This will not influence the entries in /etc/apt/sources.list, but499

merely whether /var/lib/apt contains the indices files or not. The
tradeoff is that APT needs those indices in order to operate in the
live system, so before performing apt-cache search or apt-get install,

for instance, the user must apt-get update first to create those in-
dices.

If you find the installation of recommended packages bloats your 500

image too much, provided you are prepared to deal with the con-
sequences discussed below, you may disable that default option of
APT with:

501

$ lb c on f i g - - apt - recommends f a l s e

The most important consequence of turning off recommends is 502

that live-boot and live-config themselves recommend some packages
that provide important functionality used by most Live configura-
tions.

Two packages which you most probably will want to add again 503

are:

user-setup which live-config recommends is used to create the live 504

user.

sudo which live-config recommends is used to obtain root access 505

in the live-image, which is needed to shutdown the computer.

506

$ lb c on f i g - - apt - recommends f a l s e
$ echo ”user - setup sudo” ¿ c on f i g /package - l i s t s /recommends .←↩

l i s t . chroot

In all but the most exceptional circumstances you need to add back 507

at least some of these recommends to your package lists or else your
image will not work as expected, if at all. Look at the recommended
packages for each of the live-* packages included in your build and
if you are not certain you can omit them, add them back into your
package lists.

37

Debian Live Manual

The more general consequence is that if you don’t install recom- 508

mended packages for any given package, that is, packages that would
be found together with this one in all but unusual installations (APT
pinning.

8.4.4 Passing options to apt or aptitude509

If there is not a lb config option to alter APT’s behaviour in the510

way you need, use –apt-options or –aptitude-options to pass any
options through to your configured APT tool. See the man pages
for apt and aptitude for details. Note that both options have de-
fault values that you will need to retain in addition to any overrides
you may provide. So, for example, suppose you have included some-
thing from snapshot.debian.org for testing purposes and want to
specify Acquire::Check-Valid-Until=false to make APT happy with
the stale Release file, you would do so as per the following example,
appending the new option after the default value –yes:

511

$ lb c on f i g - - apt - opt ions ” - - yes - oAcquire : : Check - Valid - Unt i l←↩
=f a l s e ”

Please check the man pages to fully understand these options and512

when to use them. This is an example only and should not be con-
strued as advice to configure your image this way. This option would
not be appropriate for, say, a final release of a live image.

For more complicated APT configurations involving apt.conf options513

you might want to create a config/apt/apt.conf file instead. See also
the other apt-* options for a few convenient shortcuts for frequently
needed options.

8.4.5 APT pinning514

For background, please first read the apt˙preferences(5) man page. 515

APT pinning can be configured either for build time, or else for
run time. For the former, create config/archives/*.pref, config/-
archives/*.pref.chroot, and config/apt/preferences. For the latter,
create config/includes.chroot/etc/apt/preferences.

Let’s say you are building a trixie live system but need all the live 516

packages that end up in the binary image to be installed from sid at
build time. You need to add sid to your APT sources and pin the
live packages from it higher, but all other packages from it lower,
than the default priority. Thus, only the packages you want are
installed from sid at build time and all others are taken from the
target system distribution, trixie . The following will accomplish
this:

517

$ echo ”deb http :// mirror /debian / s i d main” ¿ c on f i g / a r ch i v e s←↩
/ s i d . l i s t . chroot

$ cat ¿¿ c on f i g / a r ch i v e s / s i d . p r e f . chroot ¡ ¡ EOF
Package : l i v e -*
Pin : r e l e a s e n=s i d
Pin - P r i o r i t y : 600

Package : *
Pin : r e l e a s e n=s i d
Pin - P r i o r i t y : 1
EOF

Negative pin priorities will prevent a package from being installed, 518

as in the case where you do not want a package that is recom-
mended by another package. Suppose you are building an LXDE
image using task-lxde-desktop in config/package-lists/desktop.list.-
chroot, but don’t want the user prompted to store wifi passwords in
the keyring. This metapackage depends on lxde-core, which recom-
mends gksu, which in turn recommends gnome-keyring. So you want

38

Debian Live Manual

to omit the recommended gnome-keyring package. This can be done
by adding the following stanza to config/apt/preferences:

519

Package : gnome - keyr ing
Pin : v e r s i on *
Pin - P r i o r i t y : -1

39

Customizing contents520

9. Customizing contents521

This chapter discusses fine-tuning customization of the live system522

contents beyond merely choosing which packages to include. In-
cludes allow you to add or replace arbitrary files in your live system
image, hooks allow you to execute arbitrary commands at different
stages of the build and at boot time, and preseeding allows you to
configure packages when they are installed by supplying answers to
debconf questions.

9.1 Includes523

While ideally a live system would include files entirely provided524

by unmodified packages, it is sometimes convenient to provide or
modify some content by means of files. Using includes, it is possible
to add (or replace) arbitrary files in your live system image. live-
build provides two mechanisms for using them:

Chroot local includes: These allow you to add or replace files to525

the chroot/Live filesystem. Please see Live/chroot local includes
for more information.

Binary local includes: These allow you to add or replace files526

in the binary image. Please see Binary local includes for more
information.

Please see Terms for more information about the distinction between527

the Live and binary images.

9.1.1 Live/chroot local includes528

Chroot local includes can be used to add or replace files in the 529

chroot/Live filesystem so that they may be used in the Live system.
A typical use is to populate the skeleton user directory (/etc/skel)
used by the Live system to create the live user’s home directory.
Another is to supply configuration files that can be simply added or
replaced in the image without processing; see Chroot local hooks if
processing is needed.

To include files, simply add them to your config/includes.chroot 530

directory. This directory corresponds to the root directory / of the
live system. For example, to add a file /var/www/index.html in the
live system, use:

531

$ mkdir -p c on f i g / i n c l ud e s . chroot /var /www
$ cp /path/ to /my/ index . html c on f i g / i n c l ud e s . chroot /var /www

Your configuration will then have the following layout: 532

533

- - c on f i g
[. . .]
—-- i n c l ud e s . chroot
— ` - - var
— ` - - www
— ` - - index . html
[. . .]

Chroot local includes are installed after package installation so that 534

files installed by packages are overwritten.

9.1.2 Binary local includes 535

To include material such as documentation or videos on the medium 536

filesystem so that it is accessible immediately upon insertion of the

40

Debian Live Manual

medium without booting the Live system, you can use binary local
includes. This works in a similar fashion to chroot local includes.
For example, suppose the files ˜/video˙demo.* are demo videos of the
live system described by and linked to by an HTML index page. Sim-
ply copy the material to config/includes.binary/ as follows:

537

$ cp ˜/ video˙demo . * c on f i g / i n c l ud e s . b inary /

These files will now appear in the root directory of the live538

medium.

9.2 Hooks539

Hooks allow commands to be run in the chroot and binary stages of540

the build in order to customize the image. Depending on whether
you are building a live image or a regular system image you have
to place your hooks in config/hooks/live or config/hooks/normal
respectively. These are frequently referred to as local hooks because
they are executed inside the build environment.

There are also boot-time hooks that allow you to run commands541

once the image has already been built, during the boot pro-
cess.

9.2.1 Chroot local hooks542

To run commands in the chroot stage, create a hook script with a543

.hook.chroot suffix containing the commands either in the config/-
hooks/live or config/hooks/normal directories. The hook will run
in the chroot after the rest of your chroot configuration has been
applied, so remember to ensure your configuration includes all pack-
ages and files your hook needs in order to run. See the example
chroot hook scripts for various common chroot customization tasks

provided in /usr/share/doc/live-build/examples/hooks which you
can copy or symlink to use them in your own configuration.

9.2.2 Binary local hooks 544

To run commands in the binary stage, create a hook script with a 545

.hook.binary suffix containing the commands either in the config/-
hooks/live or config/hooks/normal directories. The hook will run af-
ter all other binary commands are run, but before binary˙checksums,
the very last binary command. The commands in your hook do not
run in the chroot, so take care not to modify any files outside of the
build tree, or you may damage your build system! See the example
binary hook scripts for various common binary customization tasks
provided in /usr/share/doc/live-build/examples/hooks which you
can copy or symlink to use them in your own configuration.

9.2.3 Boot-time hooks 546

To execute commands at boot time, you can supply live-config hooks 547

as explained in the Customization section of its man page. Exam-
ine live-config’s own hooks provided in /lib/live/config/, noting the
sequence numbers. Then provide your own hook prefixed with an
appropriate sequence number, either as a chroot local include in
config/includes.chroot/lib/live/config/, or as a custom package as
discussed in Installing modified or third-party packages.

9.3 Preseeding Debconf questions 548

Files in the config/preseed/ directory suffixed with .cfg followed by 549

the stage (.chroot or .binary) are considered to be debconf preseed
files and are installed by live-build using debconf-set-selections dur-
ing the corresponding stage.

41

Debian Live Manual

For more information about debconf, please see debconf(7) in the550

debconf package.

42

Customizing run time551

behaviours

10. Customizing run time behaviours552

All configuration that is done during run time is done by live-config.553

Here are some of the most common options of live-config that users
are interested in. A full list of all possibilities can be found in the
man page of live-config.

10.1 Customizing the live user554

One important consideration is that the live user is created by live-555

boot at boot time, not by live-build at build time. This not only
influences where materials relating to the live user are introduced in
your build, as discussed in Live/chroot local includes, but also any
groups and permissions associated with the live user.

You can specify additional groups that the live user will belong556

to by using any of the possibilities to configure live-config. For
example, to add the live user to the fuse group, you can either add
the following file in config/includes.chroot/etc/live/config.conf.d/-
10-user-setup.conf:

557

LIVE˙USER˙DEFAULT˙GROUPS=”audio cdrom dip f loppy video ←↩
plugdev netdev powerdev scanner b luetooth fu s e ”

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,plugdev,netdev,powerdev,scanner,bluetooth,fuse558

as a boot parameter.

It is also possible to change the default username user and the559

default password live. If you want to do that for any reason, you
can easily achieve it as follows:

To change the default username you can simply specify it in your 560

config:

561

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components username=←↩
l i v e - user ”

One possible way of changing the default password is by means of a 562

hook as described in Boot-time hooks. In order to do that you can
use the passwd hook from /usr/share/doc/live-config/examples/-
hooks, prefix it accordingly (e.g. 2000-passwd) and add it to config/-
includes.chroot/lib/live/config/

10.2 Customizing locale and language 563

When the live system boots, language is involved in two steps: 564

the locale generation 565

setting the keyboard configuration 566

The default locale when building a Live system is locales=en˙- 567

US.UTF-8. To define the locale that should be generated, use
the locales parameter in the –bootappend-live option of lb config,
e.g.

568

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components l o c a l e s=←↩
de˙CH .UTF-8”

Multiple locales may be specified as a comma-delimited list. 569

This parameter, as well as the keyboard configuration parameters 570

indicated below, can also be used at the kernel command line. You

43

Debian Live Manual

can specify a locale by language˙country (in which case the default
encoding is used) or the full language˙country.encoding word. A
list of supported locales and the encoding for each can be found in
/usr/share/i18n/SUPPORTED.

Both the console and X keyboard configuration are performed by571

live-config using the console-setup package. To configure them,
use the keyboard-layouts, keyboard-variants, keyboard-options and
keyboard-model boot parameters via the –bootappend-live option.
Valid options for these can be found in /usr/share/X11/xkb/rules/-
base.lst. To find layouts and variants for a given language, try
searching for the English name of the language and/or the coun-
try where the language is spoken, e.g:

572

$ egrep - i '(ˆ!—german . * sw i t z e r l and) ' / usr / share /X11/xkb/←↩
r u l e s / base . l s t

! model
! l ayout

ch German (Switze r land)
! va r i an t

l egacy ch : German (Switzer land , l egacy)
de˙nodeadkeys ch : German (Switzer land , e l im ina t e dead ←↩

keys)
de˙sundeadkeys ch : German (Switzer land , Sun dead keys)
de˙mac ch : German (Switzer land , Macintosh)

! opt ion

Note that each variant lists the layout to which it applies in the573

description.

Often, only the layout needs to be configured. For example, to get574

the locale files for German and Swiss German keyboard layout in X
use:

575

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components l o c a l e s=←↩
de˙CH .UTF-8 keyboard - l ayout s=ch”

However, for very specific use cases, you may wish to include other 576

parameters. For example, to set up a French system with a French-
Dvorak layout (called Bepo) on a TypeMatrix EZ-Reach 2030 USB
keyboard, use:

577

$ lb c on f i g - - bootappend - l i v e “
”boot=l i v e components l o c a l e s=fr ˙FR .UTF-8 keyboard -←↩

l ayout s=f r keyboard - va r i an t s=bepo keyboard - model=←↩
tm2030usb”

Multiple values may be specified as comma-delimited lists for each 578

of the keyboard-* options, with the exception of keyboard-model,
which accepts only one value. Please see the keyboard(5) man page
for details and examples of XKBMODEL, XKBLAYOUT, XKB-
VARIANT and XKBOPTIONS variables. If multiple keyboard-
variants values are given, they will be matched one-to-one with
keyboard-layouts values (see setxkbmap(1) -variant option). Empty
values are allowed; e.g. to define two layouts, the default being US
QWERTY and the other being US Dvorak, use:

579

$ lb c on f i g - - bootappend - l i v e “
”boot=l i v e components keyboard - l ayout s=us , us keyboard -←↩

va r i an t s=,dvorak”

10.3 Persistence 580

A live cd paradigm is a pre-installed system which runs from read- 581

only media, like a cdrom, where writes and modifications do not
survive reboots of the host hardware which runs it.

A live system is a generalization of this paradigm and thus supports 582

other media in addition to CDs; but still, in its default behaviour,

44

Debian Live Manual

it should be considered read-only and all the run-time evolutions of
the system are lost at shutdown.

‘Persistence’ is a common name for different kinds of solutions for583

saving across reboots some, or all, of this run-time evolution of the
system. To understand how it works it would be handy to know
that even if the system is booted and run from read-only media,
modifications to the files and directories are written on writable
media, typically a ram disk (tmpfs) and ram disks’ data do not
survive reboots.

The data stored on this ramdisk should be saved on a writable584

persistent medium like local storage media, a network share or even
a session of a multisession (re)writable CD/DVD. All these media
are supported in live systems in different ways, and all but the last
one require a special boot parameter to be specified at boot time:
persistence.

If the boot parameter persistence is set (and nopersistence is not585

set), local storage media (e.g. hard disks, USB drives) will be probed
for persistence volumes during boot. It is possible to restrict which
types of persistence volumes to use by specifying certain boot param-
eters described in the live-boot(7) man page. A persistence volume
is any of the following:

a partition, identified by its GPT name.586

a filesystem, identified by its filesystem label.587

an image file located on the root of any readable filesystem (even588

an NTFS partition of a foreign OS), identified by its filename.

The volume label for overlays must be persistence but it will be589

ignored unless it contains in its root a file named persistence.conf
which is used to fully customize the volume’s persistence, this is to
say, specifying the directories that you want to save in your persis-
tence volume after a reboot. See The persistence.conf file for more

details.

Here are some examples of how to prepare a volume to be used for 590

persistence. It can be, for instance, an ext4 partition on a hard disk
or on a usb key created with, e.g.:

591

mkfs . ext4 -L p e r s i s t e n c e /dev/sdb1

See also Using the space left on a USB stick. 592

If you already have a partition on your device, you could just change 593

the label with one of the following:

594

tune2 f s -L p e r s i s t e n c e /dev/sdb1 # f o r ext2 , 3 , 4 f i l e s y s t em s

Here’s an example of how to create an ext4-based image file to be 595

used for persistence:

596

$ dd i f =/dev/ nu l l o f=p e r s i s t e n c e bs=1 count=0 seek=1G # fo r a←↩
1GB s i z ed image f i l e

$ / sb in /mkfs . ext4 -F p e r s i s t e n c e

Once the image file is created, as an example, to make /usr persistent 597

but only saving the changes you make to that directory and not all
the contents of /usr, you can use the union option. If the image file
is located in your home directory, copy it to the root of your hard
drive’s filesystem and mount it in /mnt as follows:

598

cp p e r s i s t e n c e /
mount - t ext4 / p e r s i s t e n c e /mnt

Then, create the persistence.conf file adding content and unmount 599

the image file.

45

Debian Live Manual

600

echo ”/ usr union” ¿¿ /mnt/ p e r s i s t e n c e . conf
umount /mnt

Now, reboot into your live medium with the boot parameter persis-601

tence.

10.3.1 The persistence.conf file602

A volume with the label persistence must be configured by means603

of the persistence.conf file to make arbitrary directories persistent.
That file, located on the volume’s filesystem root, controls which
directories it makes persistent, and in which way.

How custom overlay mounts are configured is described in full detail604

in the persistence.conf(5) man page, but a simple example should
be sufficient for most uses. Let’s say we want to make our home
directory and APT cache persistent in an ext4 filesystem on the
/dev/sdb1 partition:

605

mkfs . ext4 -L p e r s i s t e n c e /dev/sdb1
mount - t ext4 /dev/sdb1 /mnt
echo ”/home” ¿¿ /mnt/ p e r s i s t e n c e . conf
echo ”/ var / cache /apt” ¿¿ /mnt/ p e r s i s t e n c e . conf
umount /mnt

Then we reboot. During the first boot the contents of /home and606

/var/cache/apt will be copied into the persistence volume, and from
then on all changes to these directories will live in the persistence
volume. Please note that any paths listed in the persistence.conf file
cannot contain white spaces or the special . and .. path components.
Also, neither /lib, /lib/live (or any of their sub-directories) nor /
can be made persistent using custom mounts. As a workaround for
this limitation you can add / union to your persistence.conf file to
achieve full persistence.

10.3.2 Using more than one persistence store 607

There are different methods of using multiple persistence store for 608

different use cases. For instance, using several volumes at the same
time or selecting only one, among various, for very specific pur-
poses.

Several different custom overlay volumes (with their own persis- 609

tence.conf files) can be used at the same time, but if several volumes
make the same directory persistent, only one of them will be used. If
any two mounts are nested (i.e. one is a sub-directory of the other)
the parent will be mounted before the child so no mount will be hid-
den by the other. Nested custom mounts are problematic if they are
listed in the same persistence.conf file. See the persistence.conf(5)
man page for how to handle that case if you really need it (hint: you
usually don’t).

One possible use case: If you wish to store the user data i.e. /home 610

and the superuser data i.e. /root in different partitions, create two
partitions with the persistence label and add a persistence.conf file
in each one like this, # echo /home ¿ persistence.conf for the first
partition that will save the user’s files and # echo /root ¿ persis-
tence.conf for the second partition which will store the superuser’s
files. Finally, use the persistence boot parameter.

If a user would need multiple persistence store of the same type 611

for different locations or testing, such as private and work, the boot
parameter persistence-label used in conjunction with the boot pa-
rameter persistence will allow for multiple but unique persistence
media. An example would be if a user wanted to use a persistence
partition labeled private for personal data like browser bookmarks
or other types, they would use the boot parameters: persistence
persistence-label=private. And to store work related data, like doc-
uments, research projects or other types, they would use the boot
parameters: persistence persistence-label=work.

46

Debian Live Manual

It is important to remember that each of these volumes, private and612

work, also needs a persistence.conf file in its root. The live-boot man
page contains more information about how to use these labels with
legacy names.

10.3.3 Using persistence with encryption613

Using the persistence feature means that some sensible data might614

get exposed to risk. Especially if the persistent data is stored on a
portable device such as a usb stick or an external hard drive. That
is when encryption comes in handy. Even if the entire procedure
might seem complicated because of the number of steps to be taken,
it is really easy to handle encrypted partitions with live-boot. In
order to use luks , which is the supported encryption type, you
need to install cryptsetup both on the machine you are creating the
encrypted partition with and also in the live system you are going
to use the encrypted persistent partition with.

To install cryptsetup on your machine:615

616

apt - get i n s t a l l c ryptsetup

To install cryptsetup in your live system, add it to your package-617

lists:

618

$ lb c on f i g
$ echo ” cryptsetup cryptsetup - i n i t r am f s ” ¿ c on f i g /package -←↩

l i s t s / encrypt ion . l i s t . chroot

Once you have your live system with cryptsetup, you basically only619

need to create a new partition, encrypt it and boot with the persis-
tence and persistence-encryption=luks parameters. We could have

already anticipated this step and added the boot parameters follow-
ing the usual procedure:

620

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components ←↩
p e r s i s t e n c e p e r s i s t en c e - encrypt ion=luks ”

Let’s go into the details for all of those who are not familiar with 621

encryption. In the following example we are going to use a partition
on a usb stick which corresponds to /dev/sdc2. Please be warned
that you need to determine which partition is the one you are going
to use in your specific case.

The first step is plugging in your usb stick and determine which 622

device it is. The recommended method of listing devices in live-
manual is using ls -l /dev/disk/by-id. After that, create a new
partition and then, encrypt it with a passphrase as follows:

623

cryptsetup - - v e r i f y - passphrase luksFormat /dev/ sdc2

Then open the luks partition in the virtual device mapper. Use any 624

name you like. We use live here as an example:

625

cryptsetup luksOpen /dev/ sdc2 l i v e

The next step is filling the device with zeros before creating the 626

filesystem:

627

dd i f =/dev/ zero o f=/dev/mapper/ l i v e

Now, we are ready to create the filesystem. Notice that we are 628

adding the label persistence so that the device is mounted as persis-
tence store at boot time.

47

Debian Live Manual

629

mkfs . ext4 -L p e r s i s t e n c e /dev/mapper/ l i v e

To continue with our setup, we need to mount the device, for exam-630

ple in /mnt.

631

mount /dev/mapper/ l i v e /mnt

And create the persistence.conf file in the root of the partition. This632

is, as explained before, strictly necessary. See The persistence.conf
file.

633

echo ”/ union” ¿ /mnt/ p e r s i s t e n c e . conf

Then unmount the mount point:634

635

umount /mnt

And optionally, although it might be a good way of securing the data636

we have just added to the partition, we can close the device:

637

cryptsetup luksC lo se l i v e

Let’s summarize the process. So far, we have created an encryption638

capable live system, which can be copied to a usb stick as explained
in Copying an ISO hybrid image to a USB stick. We have also
created an encrypted partition, which can be located in the same
usb stick to carry it around and we have configured the encrypted
partition to be used as persistence store. So now, we only need to
boot the live system. At boot time, live-boot will prompt us for the
passphrase and will mount the encrypted partition to be used for
persistence.

48

Customizing the binary image639

11. Customizing the binary image640

11.1 Bootloaders641

live-build uses syslinux and some of its derivatives (depending on642

the image type) as bootloaders by default. They can be easily cus-
tomized to suit your needs.

In order to use a full theme, copy /usr/share/live/build/bootloaders643

into config/bootloaders and edit the files in there. If you do not want
to bother modifying all supported bootloader configurations, only
providing a local customized copy of one of the bootloaders, e.g.
isolinux in config/bootloaders/isolinux is enough too, depending
on your use case.

When modifying one of the default themes, if you want to use a644

personalized background image that will be displayed together with
the boot menu, add a splash.png picture of 640x480 pixels. Then,
remove the splash.svg file.

There are many possibilities when it comes to making changes. For645

instance, syslinux derivatives are configured by default with a time-
out of 0 (zero) which means that they will pause indefinitely at their
splash screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just edit646

a default isolinux.cfg file specifying the timeout in units of 1/10
seconds. A modified isolinux.cfg to boot after five seconds would
be similar to this:

647

i n c l ude menu . c f g
d e f au l t vesamenu . c32

prompt 0
timeout 50

11.2 ISO metadata 648

When creating an ISO9660 binary image, you can use the following 649

options to add various textual metadata for your image. This can
help you easily identify the version or configuration of an image
without booting it.

LB˙ISO˙APPLICATION/–iso-application NAME: This should 650

describe the application that will be on the image. The maximum
length for this field is 128 characters.

LB˙ISO˙PREPARER/–iso-preparer NAME: This should describe 651

the preparer of the image, usually with some contact details. The
default for this option is the live-build version you are using, which
may help with debugging later. The maximum length for this field
is 128 characters.

LB˙ISO˙PUBLISHER/–iso-publisher NAME: This should de- 652

scribe the publisher of the image, usually with some contact de-
tails. The maximum length for this field is 128 characters.

LB˙ISO˙VOLUME/–iso-volume NAME: This should specify the 653

volume ID of the image. This is used as a user-visible label on
some platforms such as Windows and Apple Mac OS. The maxi-
mum length for this field is 32 characters.

49

Customizing Debian Installer654

12. Customizing Debian Installer655

Live system images can be integrated with Debian Installer. There656

are a number of different types of installation, varying in what is
included and how the installer operates.

Please note the careful use of capital letters when referring to the657

Debian Installer in this section - when used like this we refer explic-
itly to the official installer for the Debian system, not anything else.
It is often seen abbreviated to d-i.

12.1 Types of Debian Installer658

The three main types of installer are:659

Normal Debian Installer : This is a normal live system image with a660

separate kernel and initrd which (when selected from the appropri-
ate bootloader) launches into a standard Debian Installer instance,
just as if you had downloaded a CD image of Debian and booted it.
Images containing a live system and such an otherwise independent
installer are often referred to as combined images.

On such images, Debian is installed by fetching and installing .deb661

packages using debootstrap, from local media or some network-
based network, resulting in a default Debian system being installed
to the hard disk.

This whole process can be preseeded and customized in a number of662

ways; see the relevant pages in the Debian Installer manual for more
information. Once you have a working preseeding file, live-build can
automatically put it in the image and enable it for you.

Live Debian Installer : This is a live system image with a sepa-663

rate kernel and initrd which (when selected from the appropriate
bootloader) launches into an instance of the Debian Installer.

Installation will proceed in an identical fashion to the normal instal- 664

lation described above, but at the actual package installation stage,
instead of using debootstrap to fetch and install packages, the live
filesystem image is copied to the target. This is achieved with a
special udeb called live-installer.

After this stage, the Debian Installer continues as normal, installing 665

and configuring items such as bootloaders and local users, etc.

Note: to support both normal and live installer entries in the 666

bootloader of the same live medium, you must disable live-installer
by preseeding live-installer/enable=false.

Desktop Debian Installer : Regardless of the type of Debian In- 667

staller included, d-i can be launched from the Desktop by clicking
on an icon. This is user friendlier in some situations. In order to
make use of this, the debian-installer-launcher package needs to be
included.

Note that by default, live-build does not include Debian Installer 668

images in the images, it needs to be specifically enabled with lb
config. Also, please note that for the Desktop installer to work, the
kernel of the live system must match the kernel d-i uses for the
specified architecture. For example:

669

$ lb c on f i g - - debian - i n s t a l l e r l i v e
$ echo debian - i n s t a l l e r - launcher ¿¿ c on f i g /package - l i s t s /my.←↩

l i s t . chroot

12.2 Customizing Debian Installer by preseeding 670

As described in the Debian Installer Manual, Appendix B at https: 671

50

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Debian Live Manual

//www.debian.org/releases/stable/amd64/apb.en.html, Preseeding provides a
way to set answers to questions asked during the installation process,
without having to manually enter the answers while the installation
is running. This makes it possible to fully automate most types of
installation and even offers some features not available during nor-
mal installations. This kind of customization is best accomplished
with live-build by placing the configuration in a preseed.cfg file in-
cluded in config/includes.installer/. For example, to preseed setting
the locale to en˙US:

672

$ echo ”d - i debian - i n s t a l l e r / l o c a l e s t r i n g en˙US” “
¿¿ c on f i g / i n c l ud e s . i n s t a l l e r / preseed . c f g

12.3 Customizing Debian Installer content673

For experimental or debugging purposes, you might want to in-674

clude locally built d-i component udeb packages. Place these in
config/packages.binary/ to include them in the image. Additional
or replacement files and directories may be included in the installer
initrd as well, in a similar fashion to Live/chroot local includes, by
placing the material in config/includes.installer/.

51

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Projekt675

52

Contributing to the project676

13. Contributing to the project677

When submitting a contribution, please clearly identify its copy-678

right holder and include any applicable licensing statement. Note
that to be accepted, the contribution must be licensed under the
same license as the rest of the documents, namely, GPL version 3
or later.

Contributions to the project, such as translations and patches, are679

greatly welcome. Anyone can send merge requests. The projects
are hosted on Salsa: https://salsa.debian.org/live-team follow Salsa’s docu-
mentation for instructions on how to contribute.

Even though all commits might be revised, we ask you to use your680

common sense and make good commits with good commit mes-
sages.

Write commit messages that consist of complete, meaningful681

sentences in English, starting with a capital letter and ending
with a full stop. Usually, these will start with the form Fixing/-
Adding/Removing/Correcting/Translating/....

Write good commit messages. The first line must be an accurate682

summary of the contents of the commit which will be included
in the changelog. If you need to make some further explanations,
write them below leaving a blank line after the first one and then
another blank line after each paragraph. Lines of paragraphs
should not exceed 80 characters in length.

Commit atomically, this is to say, do not mix unrelated things683

in the same commit. Make one different commit for each change
you make.

13.1 Translation of man pages 684

You can also contribute to the project working on the translation 685

of the man pages for the different live-* packages that the project
maintains. The procedure is different depending on whether you
are starting a translation from scratch or continue working on an
already existing one:

Working on an already existing translation 686

If you want to maintain the translation of an already existing 687

language you have to make your changes to your manpages/po/-
$–LANGUAGE˝/*.po file or files and then run make rebuild from
inside the manpages/ directory. This will update the actual man
pages in manpages/$–LANGUAGE˝/*

Starting a new translation from scratch 688

In order to add a new translation of any of the project’s man pages 689

you have to follow a similar procedure. It could be summarized as
follows:

Open the manpages/pot/ file or files in your favourite editor, 690

such as poedit, and save it as a .po file in manpages/po/-
$–LANGUAGE˝/. (You will have to create your $–LAN-
GUAGE˝/ directory).

Run make rebuild from inside the manpages/ directory to cre- 691

ate the manpages/$–LANGUAGE˝/ files which will contain
the actual man pages.

Remember that you will have to add all the directories and files, 692

then make the commit and finally push to the git server.

53

https://salsa.debian.org/live-team

Reporting bugs693

14. Reporting bugs694

Live systems are far from being perfect, but we want to make it695

as close as possible to perfect - with your help. Do not hesitate
to report a bug. It is better to fill a report twice than never. How-
ever, this chapter includes recommendations on how to file good bug
reports.

For the impatient:696

First check whether the bugs has been reported already. You can697

see the full list of bugs that are assigned to the live-team at https:

//bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Before submitting a bug report always try to reproduce the bug698

with the most recent versions of the packages of live-build, live-
boot, live-config and live-tools that you’re using.

Try to give as specific information as possible about the bug.699

This includes (at least) the version of live-build, live-boot, live-
config, and live-tools used and the distribution of the live system
you are building.

14.1 Known issues700

Currently known issues are listed in the BTS at https://bugs.debian.org/701

cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Note: Since Debian testing and Debian unstable distributions are702

moving targets, when you specify either of them as the target system
distribution, a successful build may not always be possible.

If this causes too much difficulty for you, do not build a system703

based on testing or unstable , but rather, use stable . live-build
always defaults to the stable release.

It is out of the scope of this manual to train you to correctly iden- 704

tify and fix problems in packages of the development distributions,
however, you can always try the following: If a build fails when the
target distribution is testing , try unstable . If unstable does work,
revert to testing and pin the newer version of the failing package
from unstable (see APT pinning for details).

14.2 Do the research 705

Before filing the bug, please search the web for the particular error 706

message or symptom you are getting. As it is highly unlikely that
you are the only person experiencing a particular problem. There is
always a chance that it has been discussed elsewhere and a possible
solution, patch, or workaround has been proposed.

You should pay particular attention to the live systems mailing list, 707

as well as the homepage, as these are likely to contain the most up-
to-date information. If such information exists, always include the
references to it in your bug report.

In addition, you should check the current bug lists for live-build, 708

live-boot, live-config and live-tools to see whether something similar
has already been reported.

14.3 Rebuild from scratch 709

To ensure that a particular bug is not caused by an uncleanly built 710

system, please always rebuild the whole live system from scratch to
see if the bug is reproducible.

54

https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org

Debian Live Manual

14.4 Use up-to-date packages 711

Using outdated packages can cause significant problems when trying712

to reproduce (and ultimately fix) your problem. Make sure your
build system is up-to-date and any packages included in your image
are up-to-date as well. If possible, try to reproduce the bug with
the newest code from source, see Installation for details.

14.5 Collect information713

Please provide enough information with your report. Include, at714

least, the exact version of live-build where the bug is encountered
and the steps to reproduce it. Please use your common sense and
provide any other relevant information if you think that it might
help in solving the problem.

To make the most out of your bug report, we require at least the715

following information:

Architecture of the host system716

Distribution of the host system717

Version of live-build on the host system718

Version of debootstrap on the host system719

Architecture of the live system720

Distribution of the live system721

Version of live-boot on the live system722

Version of live-config on the live system723

Version of live-tools on the live system724

You can generate a log of the build process by using the tee com-725

mand. We recommend doing this automatically with an auto/build
script (see Managing a configuration for details).

726

lb bu i ld 2¿&1 — tee bu i ld . l og

At boot time, live-boot and live-config store their logfiles in /var/- 727

log/live/. Check them for error messages.

Additionally, to rule out other errors, it is always a good idea to tar 728

up your config/ directory and upload it somewhere (do not send it
as an attachment to the mailing list), so that we can try to reproduce
the errors you encountered. If this is difficult (e.g. due to size) you
can use the output of lb config –dump which produces a summary
of your config tree (i.e. lists files in subdirectories of config/ but
does not include them).

Remember to send in any logs that were produced with English 729

locale settings, e.g. run your live-build commands with a leading
LC˙ALL=C or LC˙ALL=en˙US.

14.6 Isolate the failing case if possible 730

If possible, isolate the failing case to the smallest possible change 731

that breaks. It is not always easy to do this so if you cannot manage
it for your report, do not worry. However, if you plan your develop-
ment cycle well, using small enough change sets per iteration, you
may be able to isolate the problem by constructing a simpler ‘base’
configuration that closely matches your actual configuration plus
just the broken change set added to it. If you have a hard time
sorting out which of your changes broke, it may be that you are in-
cluding too much in each change set and should develop in smaller
increments.

14.7 Use the correct package to report the bug against 732

In general, you should report build time errors against the live-build 733

55

Debian Live Manual

package, boot time errors against live-boot, and run time errors
against live-config. If you are unsure of which package is appropriate
or need more help before submitting a bug report, please report
it against the debian-live pseudo-package. We will then take care
about it and reassign it where appropriate.

However, we would appreciate it if you try to narrow it down ac-734

cording to where the bug appears.

14.7.1 At build time while bootstrapping735

live-build first bootstraps a basic Debian system with debootstrap.736

If a bug appears here, check if the error is related to a specific Debian
package (most likely), or if it is related to the bootstrapping tool
itself.

In both cases, this is not a bug in the live system, but rather in De-737

bian itself and probably we cannot fix it directly. Please report such
a bug against the bootstrapping tool or the failing package.

14.7.2 At build time while installing packages738

live-build installs additional packages from the Debian archive and739

depending on the Debian distribution used and the daily archive
state, it can fail. If a bug appears here, check if the error is also
reproducible on a normal system.

If this is the case, this is not a bug in the live system, but rather740

in Debian - please report it against the failing package. Running
debootstrap separately from the Live system build or running lb
bootstrap –debug will give you more information.

Also, if you are using a local mirror and/or any sort of proxy and741

you are experiencing a problem, please always reproduce it first by
bootstrapping from an official mirror.

14.7.3 At boot time 742

If your image does not boot, please report it to the mailing list 743

together with the information requested in Collect information. Do
not forget to mention, how/when the image failed exactly, whether
using virtualization or real hardware. If you are using a virtualiza-
tion technology of any kind, please always run it on real hardware
before reporting a bug. Providing a screenshot of the failure is also
very helpful.

14.7.4 At run time 744

If a package was successfully installed, but fails while actually run- 745

ning the Live system, this is probably a bug in live-config.

14.8 Where to report bugs 746

The Debian Live Project keeps track of all bugs in the Bug Tracking 747

System (BTS). For information on how to use the system, please
see https://bugs.debian.org/. You can also submit the bugs by using the
reportbug command from the package with the same name.

Please note that bugs found in distributions derived from Debian 748

(such as Ubuntu and others) should not be reported to the Debian
BTS unless they can be also reproduced on a Debian system using
official Debian packages.

56

https://bugs.debian.org/

Coding Style749

15. Coding Style750

This chapter documents the coding style used in live systems.751

15.1 Compatibility752

Avoid bashisms, the codebase must be POSIX compliant and753

thus universally compatible.

Furthermore it must comply with the version of the POSIX754

specification chosen by the current Debian Policy.

You can check your scripts with ‘sh -n’ and ‘checkbashisms’.755

Make sure all shell code runs with ‘set -e’.756

15.2 Indenting757

Always use tabs over spaces.758

Keep case branch terminators (;;) aligned with the content of the759

branch, rather than the branch entry.

Good:760

761

case ”$–1˝” in
foo)

foobar
; ;

bar)
foobar
; ;

e sac

15.3 Wrapping 762

Generally, lines should be 80 chars at maximum. 763

Placement of keywords like then and do should be chosen with 764

good judgement with respect to clutter and readability. For small
bits of code in particular it should be preferred to have them on
the same line as the prior keyword they relate to (if; for; etc).
Only place on the next line where it makes good sense to do so;
typically this might only be to comply with maximum line length
restrictions. One situation where they should always be placed on
the next line is where what they follow is broken up onto multiple
lines, and thus it being on a new line creates clear separation
between that and the body of code following it. I.e. :

Preferred: 765

766

i f f oo ; then
bar

f i

f o r FOO in $ITEMS; do
bar

done

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”]

then
MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '–←↩

pr in t $1 ˝ ') ”
f i

i f [”$–MY˙FOO˝” = ”something”] && [- e ”path/$–FILE˙1˝”] ←↩
——
[”$–MY˙BAR˝” = ” someth ing ˙ e l s e ”] && [$–ALLOW˝ = ” true ” ←↩

]
then

foobar
f i

57

Debian Live Manual

Less ideal:767

768

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”] ; then

MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '–←↩
pr in t $1 ˝ ') ”

f i

Horrible:769

770

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”] —— [”$–MY˙LOCATION˙VARIABLE˝” = ”←↩
something - e l s e ”] && [- e ”$–MY˙OUTPUT˙FILE˙2˝”] ; then

MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '–←↩
pr in t $1 ˝ ') ”

f i

Prefer placing the opening brace of a function on a new line (for771

consistency with established style), and keep the braces aligned
with the function name:

Good:772

773

Foo ()
–

bar
˝

Bad (inconsistent with existing style):774

775

Foo () –
bar

˝

Awful:776

777

Foo ()
–
bar
˝

15.4 Variables 778

Variables are always in capital letters. 779

Config variables used in live-build should start with an LB˙ prefix. 780

Local function variables should be restricted to local scope. 781

Variables in connection to a boot parameter in live-config start 782

with LIVE˙.

All other variables in live-config start with ˙ prefix. 783

Use braces around variables; e.g. write $–FOO˝ instead of $FOO. 784

Always protect variables with quotes to respect potential whites- 785

paces (except where necessary to achieve correct word splitting):
write $–FOO˝ not $–FOO˝.

For consistency reasons, always use quotes when assigning values 786

to variables:

Bad: 787

788

FOO=bar

Good: 789

790

FOO=”bar”

If multiple variables are used, prefer quoting the full expression: 791

58

Debian Live Manual

Typically bad: 792

793

i f [- f ”$–FOO˝”/ foo /”$–BAR˝”/ bar] ; then
foobar

f i

Good:794

795

i f [- f ”$–FOO˝/ foo /$–BAR˝/bar”] ; then
foobar

f i

15.5 Miscellaneous796

Prefer — (without the surround quotes) as a separator in calls797

to sed, e.g. sed -e ‘s—’ (without ”).

Don’t use the test command for comparisons or tests, use [and]798

(without ”); e.g. if [-x /bin/foo]; ... and not if test -x /bin/foo;
....

Use case wherever it makes code more readable than conditional799

checks (if foo; ... and tests without the actual if keyword, e.g. [
-e $–FILE˝] ——exit 0).

Use Foo˙bar style names for functions, i.e. a capital first let-800

ter, then all lowercase, with sensible use of underscores for better
readability.

59

Beispiele801

60

Beispiele802

16. Examples803

This chapter covers example builds for specific use cases with live804

systems. If you are new to building your own live system images, we
recommend you first look at the three tutorials in sequence, as each
one teaches new techniques that will help you use and understand
the remaining examples.

16.1 Using the examples805

To use these examples you need a system to build them on that806

meets the requirements listed in Requirements and has live-build
installed as described in Installing live-build.

Note that, for the sake of brevity, in these examples we do not specify807

a local mirror to use for the build. You can speed up downloads
considerably if you use a local mirror. You may specify the options
when you use lb config, as described in Distribution mirrors used
at build time, or for more convenience, set the default for your
build system in /etc/live/build.conf. Simply create this file and in
it, set the corresponding LB˙MIRROR˙* variables to your preferred
mirror. All other mirrors used in the build will be defaulted from
these values. For example:

808

LB˙MIRROR˙BOOTSTRAP=”http :// mirror /debian /”
LB˙MIRROR˙CHROOT˙SECURITY=”http :// mirror /debian - s e c u r i t y /”
LB˙MIRROR˙CHROOT˙BACKPORTS=”http :// mirror /debian - backports /”

16.2 Tutorial 1: A default image809

Use case: Create a simple first image, learning the basics of live- 810

build.

In this tutorial, we will build a default ISO hybrid live system 811

image containing only base packages (no Xorg) and some live system
support packages, as a first exercise in using live-build.

You can’t get much simpler than this: 812

813

$ mkdir t u t o r i a l 1 ; cd t u t o r i a l 1 ; lb c on f i g

Examine the contents of the config/ directory if you wish. You will 814

see stored here a skeletal configuration, ready to customize or, in
this case, use immediately to build a default image.

Now, as superuser, build the image, saving a log as you build with 815

tee.

816

lb bu i ld 2¿&1 — tee bu i ld . l og

Assuming all goes well, after a while, the current directory will 817

contain live-image-amd64.hybrid.iso. This ISO hybrid image can be
booted directly in a virtual machine as described in Testing an ISO
image with Qemu and Testing an ISO image with VirtualBox, or
else imaged onto optical media or a USB flash device as described
in Burning an ISO image to a physical medium and Copying an ISO
hybrid image to a USB stick, respectively.

16.3 Tutorial 2: A web browser utility 818

Use case: Create a web browser utility image, learning how to 819

apply customizations.

61

Debian Live Manual

In this tutorial, we will create an image suitable for use as a web820

browser utility, serving as an introduction to customizing live system
images.

821

$ mkdir t u t o r i a l 2
$ cd t u t o r i a l 2
$ lb c on f i g
$ echo ” task - lxde - desktop f i r e f o x - e s r ” ¿¿ c on f i g /package -←↩

l i s t s /my. l i s t . chroot

Our choice of LXDE for this example reflects our desire to provide822

a minimal desktop environment, since the focus of the image is the
single use we have in mind, the web browser. We could go even
further and provide a default configuration for the web browser in
config/includes.chroot/etc/iceweasel/profile/, or additional support
packages for viewing various kinds of web content, but we leave this
as an exercise for the reader.

Build the image, again as superuser, keeping a log as in Tutorial823

1:

824

lb bu i ld 2¿&1 — tee bu i ld . l og

Again, verify the image is OK and test, as in Tutorial 1.825

16.4 Tutorial 3: A personalized image826

Use case: Create a project to build a personalized image, containing827

your favourite software to take with you on a USB stick wherever you
go, and evolving in successive revisions as your needs and preferences
change.

Since we will be changing our personalized image over a number828

of revisions, and we want to track those changes, trying things ex-
perimentally and possibly reverting them if things don’t work out,
we will keep our configuration in the popular git version control sys-
tem. We will also use the best practice of autoconfiguration via auto
scripts as described in Managing a configuration.

16.4.1 First revision 829

830

$ mkdir -p t u t o r i a l 3 /auto
$ cp / usr / share /doc/ l i v e - bu i ld / examples /auto /* t u t o r i a l 3 /auto←↩

/
$ cd t u t o r i a l 3

Edit auto/config to read as follows: 831

832

#!/bin / sh

lb c on f i g noauto “
- - d i s t r i b u t i o n s t ab l e “
”$–@˝”

Perform lb config to generate the config tree, using the auto/config 833

script you just created:

834

$ lb c on f i g

Now populate your local package list: 835

836

$ echo ” task - lxde - desktop sp i ce - vdagent hexchat ” ¿¿ c on f i g /←↩
package - l i s t s /my. l i s t . chroot

62

Debian Live Manual

First, –distribution stable ensures that stable˝ is used instead of the 837

default –testing. Second, we have added spice-vdagent for easier
testing the image in qemu. And finally, we have added an initial
favourite package: hexchat.

Now, build the image:838

839

lb bu i ld

Note that unlike in the first two tutorials, we no longer have to type840

2¿&1 —tee build.log as that is now included in auto/build.

Once you’ve tested the image (as in Tutorial 1) and are satisfied it841

works, it’s time to initialize our git repository, adding only the auto
scripts we just created, and then make the first commit:

842

$ g i t i n i t
$ cp / usr / share /doc/ l i v e - bu i ld / examples / g i t i g n o r e . g i t i g n o r e
$ g i t add . g i t i g n o r e auto c on f i g
$ g i t commit -m ” I n i t i a l import . ”

16.4.2 Second revision843

In this revision, we’re going to clean up from the first build, re-844

place the smplayer package with vlc package, rebuild, test and com-
mit.

The lb clean command will clean up all generated files from the pre-845

vious build except for the cache, which saves having to re-download
packages. This ensures that the subsequent lb build will re-run all
stages to regenerate the files from our new configuration.

846

lb c l ean

Now install the vlc package before the lxde package chooses between 847

smplayer, vlc and mplayer-gui in our local package list in config/-
package-lists/my.list.chroot:

848

$ echo ” v l c task - lxde - desktop sp i ce - vdagent hexchat ” ¿¿ ←↩
c on f i g /package - l i s t s /my. l i s t . chroot

Build again: 849

850

lb bu i ld

Test, and when you’re satisfied, commit the next revision: 851

852

$ g i t commit - a -m ”Replac ing smplayer with v l c . ”

Of course, more complicated changes to the configuration are pos- 853

sible, perhaps adding files in subdirectories of config/. When you
commit new revisions, just take care not to hand edit or commit the
top-level files in config containing LB˙* variables, as these are build
products, too, and are always cleaned up by lb clean and re-created
with lb config via their respective auto scripts.

We’ve come to the end of our tutorial series. While many more 854

kinds of customization are possible, even just using the few features
explored in these simple examples, an almost infinite variety of differ-
ent images can be created. The remaining examples in this section
cover several other use cases drawn from the collected experiences
of users of live systems.

16.5 A VNC Kiosk Client 855

Use case: Create an image with live-build to boot directly to a 856

63

Debian Live Manual

VNC server.

Make a build directory and create an skeletal configuration in-857

side it, disabling recommends to make a minimal system. And
then create two initial package lists: the first one generated with a
script provided by live-build named Packages (see Generated pack-
age lists), and the second one including xorg, gdm3, metacity and
xvnc4viewer.

858

$ mkdir vnc - kiosk - c l i e n t
$ cd vnc - kiosk - c l i e n t
$ lb c on f i g - - apt - recommends f a l s e
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot
$ echo ”xorg gdm3 metacity xt ightvncv i ewer ” ¿ c on f i g /package -←↩

l i s t s /my. l i s t . chroot

As explained in Tweaking APT to save space you may need to859

re-add some recommended packages to make your image work prop-
erly.

An easy way to list recommends is using apt-cache. For exam-860

ple:

861

$ apt - cache depends l i v e - c on f i g l i v e - boot

In this example we found out that we had to re-include several862

packages recommended by live-config and live-boot: user-setup to
make autologin work and sudo as an essential program to shutdown
the system. Besides, it could be handy to add live-tools to be able
to copy the image to RAM and eject to eventually eject the live
medium. So:

863

$ echo ” l i v e - t o o l s user - setup sudo e j e c t ” ¿ c on f i g /package -←↩
l i s t s /recommends . l i s t . chroot

After that, create the directory /etc/skel in config/includes.chroot 864

and put a custom .xsession in it for the default user that will launch
metacity and start xvncviewer, connecting to port 5901 on a server
at 192.168.1.2:

865

$ mkdir -p c on f i g / i n c l ud e s . chroot / e t c / s k e l
$ cat ¿ c on f i g / i n c l ud e s . chroot / e tc / s k e l / . x s e s s i on ¡ ¡ EOF
#!/bin / sh

/ usr /bin /metacity &
/usr /bin / xvncviewer 1 9 2 . 1 6 8 . 1 . 2 : 1

e x i t
EOF

Build the image: 866

867

lb bu i ld

Enjoy. 868

16.6 A minimal image for a 512MB USB key 869

Use case: Create a default image with some components removed 870

in order to fit on a 512MB USB key with a little space left over to
use as you see fit.

When optimizing an image to fit a certain media size, you need to 871

understand the tradeoffs you are making between size and function-
ality. In this example, we trim only so much as to make room for
additional material within a 512MB media size, but without doing
anything to destroy the integrity of the packages contained within,
such as the purging of locale data via the localepurge package, or
other such intrusive optimizations. Of particular note, we use –
debootstrap-options to create a minimal system from scratch and

64

Debian Live Manual

–binary image hdd to create an image that can be copied to a USB
key.

872

$ lb c on f i g - - binary - image hdd - - apt - i n d i c e s f a l s e - - apt -←↩
recommends f a l s e - - debootstrap - opt ions ” - - va r i an t=minbase←↩
” - - f irmware - chroot f a l s e - -memtest none

To make the image work properly, we must re-add, at least, two873

recommended packages which are left out by the –apt-recommends
false option. See Tweaking APT to save space

874

$ echo ”user - setup sudo” ¿ con f i g /package - l i s t s /recommends .←↩
l i s t . chroot

Additionally, you’ll want to have network access, so another two875

recommended packages need to be re-added:

876

$ echo ” ifupdown i s c - dhcp - c l i e n t ” ¿¿ c on f i g /package - l i s t s /←↩
recommends . l i s t . chroot

Now, build the image in the usual way:877

878

lb bu i ld 2¿&1 — tee bu i ld . l og

On the author’s system at the time of writing this, the above config-879

uration produced a 298MiB image. This compares favourably with
the 380MiB image produced by the default configuration in Tutorial
1, when –binary-image hdd is added.

Leaving off APT’s indices with –apt-indices false saves a fair amount880

of space, the tradeoff being that you need to do an apt-get update
before using apt in the live system. Dropping recommended pack-
ages with –apt-recommends false saves some additional space, at

the expense of omitting some packages you might otherwise ex-
pect to be there. –debootstrap-options –variant=minbase boot-
straps a minimal system from the start. Not automatically including
firmware packages with –firmware-chroot false saves some space too.
And finally, –memtest none prevents the installation of a memory
tester.

Note: A minimal system can also be achieved using hooks, like 881

for example the stripped.hook.chroot hook found in /usr/share/-
doc/live-build/examples/hooks. It may shave off additional small
amounts of space and produce an image of 277MiB. However, it
does so by removal of documentation and other files from packages
installed on the system. This violates the integrity of those pack-
ages and that, as the comment header warns, may have unforeseen
consequences. That is why using a minimal debootstrap is the rec-
ommended way of achieving this goal.

16.7 A localized GNOME desktop and installer 882

Use case: Create a GNOME desktop image, localized for Switzer- 883

land and including an installer.

We want to make an iso-hybrid image using our preferred desktop, 884

in this case GNOME, containing all of the same packages that would
be installed by the standard Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropriate 885

language tasks. Currently, live-build cannot help with this. While
we might get lucky and find this by trial-and-error, there is a tool,
grep-dctrl, which can be used to dig it out of the task descriptions
in tasksel-data, so to prepare, make sure you have both of those
things:

886

apt - get i n s t a l l d c t r l - t o o l s t a sk s e l - data

65

Debian Live Manual

Now we can search for the appropriate tasks, first with:887

888

$ grep - d c t r l -FTest - lang de / usr / share / t a s k s e l / desc s /debian -←↩
ta sk s . desc - sTask

Task : german

By this command, we discover the task is called, plainly enough,889

german. Now to find the related tasks:

890

$ grep - d c t r l - FEnhances german / usr / share / t a s k s e l / desc s /←↩
debian - ta sk s . desc - sTask

Task : german - desktop
Task : german - kde - desktop

At boot time we will generate the de˙CH.UTF-8 locale and select891

the ch keyboard layout. Now let’s put the pieces together. Recalling
from Using metapackages that task metapackages are prefixed task-,
we just specify these language boot parameters, then add standard
priority packages and all our discovered task metapackages to our
package list as follows:

892

$ mkdir l i v e - gnome - ch
$ cd l i v e - gnome - ch
$ lb c on f i g “

- - bootappend - l i v e ”boot=l i v e components l o c a l e s=de˙CH .←↩
UTF-8 keyboard - l ayout s=ch” “

- - debian - i n s t a l l e r l i v e
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot
$ echo task - gnome - desktop task - german task - german - desktop ¿¿ ←↩

c on f i g /package - l i s t s / desktop . l i s t . chroot
$ echo debian - i n s t a l l e r - launcher ¿¿ c on f i g /package - l i s t s /←↩

i n s t a l l e r . l i s t . chroot

Note that we have included the debian-installer-launcher package893

to launch the installer from the live desktop.

66

Anhang894

67

Style guide895

17. Style guide896

17.1 Guidelines for authors897

This section deals with some general considerations to be taken898

into account when writing technical documentation for live-manual.
They are divided into linguistic features and recommended proce-
dures.

Note: Authors should first read Contributing to this docu-899

ment

17.1.1 Linguistic features900

Use plain English901

Keep in mind that a high percentage of your readers are not native902

speakers of English. So as a general rule try to use short, meaningful
sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive style.903

It is a suggestion to try to avoid, as much as possible, complex
subordinate sentences that make the text difficult to understand for
non-native speakers of English.

Variety of English904

The most widely spread varieties of English are British and Ameri-905

can so it is very likely that most authors will use either one or the
other. In a collaborative environment, the ideal variety would be
International English but it is very difficult, not to say impossible,
to decide on which variety among all the existing ones, is the best
to use.

We expect that different varieties may mix without creating mis- 906

understandings but in general terms you should try to be coherent
and before deciding on using British, American or any other En-
glish flavour at your discretion, please take a look at how other
people write and try to imitate them.

Be balanced 907

Do not be biased. Avoid including references to ideologies com- 908

pletely unrelated to live-manual. Technical writing should be as neu-
tral as possible. It is in the very nature of scientific writing.

Be politically correct 909

Try to avoid sexist language as much as possible. If you need to 910

make references to the third person singular preferably use they
rather than he or she or awkward inventions such as s/he, s(he) and
the like.

Be concise 911

Go straight to the point and do not wander around aimlessly. Give 912

as much information as necessary but do not give more information
than necessary, this is to say, do not explain unnecessary details.
Your readers are intelligent. Presume some previous knowledge on
their part.

Minimize translation work 913

Keep in mind that whatever you write will have to be translated 914

into several other languages. This implies that a number of peo-
ple will have to do an extra work if you add useless or redundant
information.

Be coherent 915

As suggested before, it is almost impossible to standardize a col- 916

laborative document into a perfectly unified whole. However, every

68

Debian Live Manual

effort on your side to write in a coherent way with the rest of the
authors will be appreciated.

Be cohesive917

Use as many text-forming devices as necessary to make your text co-918

hesive and unambiguous. (Text-forming devices are linguistic mark-
ers such as connectors).

Be descriptive919

It is preferable to describe the point in one or several paragraphs920

than merely using a number of sentences in a typical changelog style.
Describe it! Your readers will appreciate it.

Dictionary921

Look up the meaning of words in a dictionary or encyclopedia if922

you do not know how to express certain concepts in English. But
keep in mind that a dictionary can either be your best friend or
can turn into your worst enemy if you do not know how to use it
correctly.

English has the largest vocabulary that exists (with over one million923

words). Many of these words are borrowings from other languages.
When looking up the meaning of words in a bilingual dictionary the
tendency of a non-native speaker of English is to choose the one that
sounds more similar in their mother tongue. This often turns into
an excessively formal discourse which does not sound quite natural
in English.

As a general rule, if a concept can be expressed using different924

synonyms, it is a good advice to choose the first word proposed
by the dictionary. If in doubt, choosing words of Germanic origin
(Usually monosyllabic words) is often the right thing to do. Be
warned that these two techniques might produce a rather informal
discourse but at least your choice of words will be of wide use and
generally accepted.

Using a dictionary of collocations is recommended. They are ex- 925

tremely helpful when it comes to know which words usually occur
together.

Again it is a good practice to learn from the work of others. Using 926

a search engine to check how other authors use certain expressions
may help a lot.

False friends, idioms and other idiomatic expressions 927

Watch out for false friends. No matter how proficient you are in 928

a foreign language you cannot help falling from time to time in
the trap of the so called false friends, words that look similar in
two languages but whose meanings or uses might be completely
different.

Try to avoid idioms as much as possible. Idioms are expressions 929

that may convey a completely different meaning from what their in-
dividual words seem to mean. Sometimes, idioms might be difficult
to understand even for native speakers of English!

Avoid slang, abbreviations, contractions... 930

Even though you are encouraged to use plain, everyday En- 931

glish, technical writing belongs to the formal register of the lan-
guage.

Try to avoid slang, unusual abbreviations that are difficult to un- 932

derstand and above all contractions that try to imitate the spoken
language. Not to mention typical irc and family friendly expres-
sions.

17.1.2 Procedures 933

Test before write 934

It is important that authors test their examples before adding them 935

69

Debian Live Manual

to live-manual to ensure that everything works as described. Test-
ing on a clean chroot or VM can be a good starting point. Besides,
it would be ideal if the tests were then carried out on different ma-
chines with different hardware to spot possible problems that may
arise.

Examples936

When providing an example try to be as specific as you can. An937

example is, after all, just an example.

It is often better to use a line that only applies to a specific case938

than using abstractions that may confuse your readers. In this case
you can provide a brief explanation of the effects of the proposed
example.

There may be some exceptions when the example suggests using939

some potentially dangerous commands that, if misused, may cause
data loss or other similar undesirable effects. In this case you should
provide a thorough explanation of the possible side effects.

External links940

Links to external sites should only be used when the information on941

those sites is crucial when it comes to understanding a special point.
Even so, try to use links to external sites as sparsely as possible. In-
ternet links are likely to change from time to time resulting in broken
links and leaving your arguments in an incomplete state.

Besides, people who read the manual offline will not have the chance942

to follow those links.

Avoid branding and things that violate the license under which943

the manual is published

Try to avoid branding as much as possible. Keep in mind that944

other downstream projects might make use of the documentation
you write. So you are complicating things for them if you add certain
specific material.

live-manual is licensed under the GNU GPL. This has a number of 945

implications that apply to the distribution of the material (of any
kind, including copyrighted graphics or logos) that is published with
it.

Write a first draft, revise, edit, improve, redo if necessary 946

- Brainstorm!. You need to organize your ideas first in a logical 947

sequence of events.

- Once you have somehow organized those ideas in your mind write 948

a first draft.

- Revise grammar, syntax and spelling. Keep in mind that the 949

proper names of the releases, such as trixie or sid , should not be
capitalized when referred to as code names. In order to check the
spelling you can run the spell target. i.e. make spell

- Improve your statements and redo any part if necessary. 950

Chapters 951

Use the conventional numbering system for chapters and subtitles. 952

e.g. 1, 1.1, 1.1.1, 1.1.2 ... 1.2, 1.2.1, 1.2.2 ... 2, 2.1 ... and so on.
See markup below.

If you have to enumerate a series of steps or stages in your de- 953

scription, you can also use ordinal numbers: First, second, third
... or First, Then, After that, Finally ... Alternatively you can use
bulleted items.

Markup 954

And last but not least, live-manual uses SiSU to process the text 955

files and produce a multiple format output. It is recommended to
take a look at SiSU’s manual to get familiar with its markup, or else
type:

956

70

http://www.sisudoc.org/
http://www.sisudoc.org/manual/en/html/sisu_manual/markup.html

Debian Live Manual

$ s i s u - - he lp markup

Here are some markup examples that may prove useful:957

- For emphasis/bold text:958

959

– foo ˝ or ! – foo ˝ !

produces: foo or foo . Use it to emphasize certain key words.960

- For italics:961

962

/– foo ˝/

produces: foo. Use them e.g. for the names of Debian pack-963

ages.

- For monospace:964

965

#–foo˝#

produces: foo. Use it e.g. for the names of commands. And also to966

highlight some key words or things like paths.

- For code blocks:967

968

code–

$ foo
bar

˝ code

produces:969

970

$ foo
bar

Use code– to open and ˝code to close the tags. It is important to re- 971

member to leave a space at the beginning of each line of code.

17.2 Guidelines for translators 972

This section deals with some general considerations to be taken into 973

account when translating the contents of live-manual.

As a general recommendation, translators should have read and un- 974

derstood the translation rules that apply to their specific languages.
Usually, translation groups and mailing lists provide information on
how to produce translated work that complies with Debian quality
standards.

Note: Translators should also read Contributing to this document. 975

In particular the section Translation

17.2.1 Translation hints 976

Comments 977

The role of the translator is to convey as faithfully as possible the 978

meaning of words, sentences, paragraphs and texts as written by the
original authors into their target language.

So they should refrain from adding personal comments or extra bits 979

of information of their own. If they want to add a comment for other
translators working on the same documents, they can leave it in the
space reserved for that. That is, the header of the strings in the
po files preceded by a number sign # . Most graphical translation
programs can automatically handle those types of comments.

TN, Translator’s Note 980

71

Debian Live Manual

It is perfectly acceptable however, to include a word or an expression981

in brackets in the translated text if, and only if, that makes the
meaning of a difficult word or expression clearer to the reader. Inside
the brackets the translator should make evident that the addition
was theirs using the abbreviation TN or Translator’s Note.

Impersonal sentences982

Documents written in English make an extensive use of the imper-983

sonal form you. In some other languages that do not share this
characteristic, this might give the false impression that the original
texts are directly addressing the reader when they are actually not
doing so. Translators must be aware of that fact and reflect it in
their language as accurately as possible.

False friends984

The trap of false friends explained before especially applies to trans-985

lators. Double check the meaning of suspicious false friends if in
doubt.

Markup986

Translators working initially with pot files and later on with po files987

will find many markup features in the strings. They can translate
the text anyway, as long as it is translatable, but it is extremely
important that they use exactly the same markup as the original
English version.

Code blocks988

Even though the code blocks are usually untranslatable, including989

them in the translation is the only way to score a 100% complete
translation. And even though it means more work at first because it
might require the intervention of the translators if the code changes,
it is the best way, in the long run, to identify what has already been
translated and what has not when checking the integrity of the .po
files.

Newlines 990

The translated texts need to have the exact same newlines as the 991

original texts. Be careful to press the Enter key or type if they ap-
pear in the original files. These newlines often appear, for instance,
in the code blocks.

Make no mistake, this does not mean that the translated text needs 992

to have the same length as the English version. That is nearly
impossible.

Untranslatable strings 993

Translators should never translate: 994

- The code names of releases (which should be written in lower- 995

case)

- The names of programs 996

- The commands given as examples 997

- Metadata (often between colons :metadata:) 998

- Links 999

- Paths 1000

72

Debian Live Manual

SiSU Metadata, document information

Titel: Debian Live Manual

Autor: Debian Live Project ¡debian-live@lists.debian.org¿

Rechte: Copyright: Copyright (C) 2006-2015 Live Systems Project, Copyright (C)

2016-2025 The Debian Live team

License: This program is free software: you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in /usr/-

share/common-licenses/GPL-3 file.

Herausgeber: Debian Live Project ¡debian-live@lists.debian.org¿

Datum: 2025-02-26

Version Information

Quelldatei: live-manual.ssm.sst

Filetype: SiSU text 2.0, Unicode text, UTF-8 text, with very long lines (745)

Source Digest: SHA2-256(live-manual.ssm.sst)=f9805a6174df7fdbe82ae4e56b3bad3f-

5bab22d9cd3279a668d7256a5c2871bd

Generated

Letzte Erstellung (metaverse): 2025-02-26 23:56:39 +0000

erstellt bei: SiSU 7.3.0 of 2023w44/1 (2023-10-30)

Ruby Version: ruby 3.3.7 (2025-01-15 revision be31f993d7) [x86˙64-linux-gnu]

73

http://www.gnu.org/licenses/

	Debian Live Manual
	Über Live Systeme
	Über dieses Handbuch
	1. Über dieses Handbuch
	1.1 Für die Ungeduldigen
	1.2 Begriffe
	1.3 Autoren
	1.4 Contributing to this document
	1.4.1 Applying changes
	1.4.2 Translation

	About the Debian Live Project
	2. About the Debian Live Project
	2.1 Motivation
	2.1.1 What is wrong with current live systems
	2.1.2 Why create our own live system?

	2.2 Philosophy
	2.2.1 Only unchanged packages from Debian “main” and “non-free-firmware”
	2.2.2 No package configuration of the live system

	2.3 Contact

	Benutzer
	Installation
	3. Installation
	3.1 Requirements
	3.2 Installing live-build
	3.2.1 From the Debian repository
	3.2.2 From source

	3.3 Installing live-boot and live-config
	3.3.1 From the Debian repository
	3.3.2 From source

	The basics
	4. The basics
	4.1 What is a live system?
	4.2 Downloading prebuilt images
	4.3 First steps: building an ISO hybrid image
	4.4 Using an ISO hybrid live image
	4.4.1 Burning an ISO image to a physical medium
	4.4.2 Copying an ISO hybrid image to a USB stick
	4.4.3 Using the space left on a USB stick
	4.4.4 Booting the live medium

	4.5 Using a virtual machine for testing
	4.5.1 Testing an ISO image with QEMU
	4.5.2 Testing an ISO image with VirtualBox

	4.6 Building and using an HDD image
	4.7 Building a netboot image
	4.7.1 DHCP server
	4.7.2 TFTP server
	4.7.3 NFS server
	4.7.4 Netboot testing HowTo
	4.7.5 Qemu

	4.8 Webbooting
	4.8.1 Getting the webboot files
	4.8.2 Booting webboot images

	Overview of tools
	5. Overview of tools
	5.1 The live-build package
	5.1.1 The lb config command
	5.1.2 The lb build command
	5.1.3 The lb clean command

	5.2 The live-boot package
	5.3 The live-config package

	Managing a configuration
	6. Managing a configuration
	6.1 Dealing with configuration changes
	6.1.1 Why use auto scripts? What do they do?
	6.1.2 Use example auto scripts

	6.2 Clone a configuration published via Git

	Customizing contents
	7. Customization overview
	7.1 Build time vs. boot time configuration
	7.2 Stages of the build
	7.3 Supplement lb config with files
	7.4 Customization tasks

	Customizing package installation
	8. Customizing package installation
	8.1 Package sources
	8.1.1 Distribution, archive areas and mode
	8.1.2 Distribution mirrors
	8.1.3 Distribution mirrors used at build time
	8.1.4 Distribution mirrors used at run time
	8.1.5 Additional repositories

	8.2 Choosing packages to install
	8.2.1 Package lists
	8.2.2 Using metapackages
	8.2.3 Local package lists
	8.2.4 Local binary package lists
	8.2.5 Generated package lists
	8.2.6 Using conditionals inside package lists
	8.2.7 Removing packages at install time
	8.2.8 Summary
	8.2.9 Desktop and language tasks
	8.2.10 Kernel flavour and version
	8.2.11 Custom kernels

	8.3 Installing modified or third-party packages
	8.3.1 Using packages.chroot to install custom packages
	8.3.2 Using an APT repository to install custom packages
	8.3.3 Custom packages and APT

	8.4 Configuring APT at build time
	8.4.1 Choosing apt or aptitude
	8.4.2 Using a proxy with APT
	8.4.3 Tweaking APT to save space
	8.4.4 Passing options to apt or aptitude
	8.4.5 APT pinning

	Customizing contents
	9. Customizing contents
	9.1 Includes
	9.1.1 Live/chroot local includes
	9.1.2 Binary local includes

	9.2 Hooks
	9.2.1 Chroot local hooks
	9.2.2 Binary local hooks
	9.2.3 Boot-time hooks

	9.3 Preseeding Debconf questions

	Customizing run time behaviours
	10. Customizing run time behaviours
	10.1 Customizing the live user
	10.2 Customizing locale and language
	10.3 Persistence
	10.3.1 The persistence.conf file
	10.3.2 Using more than one persistence store
	10.3.3 Using persistence with encryption

	Customizing the binary image
	11. Customizing the binary image
	11.1 Bootloaders
	11.2 ISO metadata

	Customizing Debian Installer
	12. Customizing Debian Installer
	12.1 Types of Debian Installer
	12.2 Customizing Debian Installer by preseeding
	12.3 Customizing Debian Installer content

	Projekt
	Contributing to the project
	13. Contributing to the project
	13.1 Translation of man pages

	Reporting bugs
	14. Reporting bugs
	14.1 Known issues
	14.2 Do the research
	14.3 Rebuild from scratch
	14.4 Use up-to-date packages
	14.5 Collect information
	14.6 Isolate the failing case if possible
	14.7 Use the correct package to report the bug against
	14.7.1 At build time while bootstrapping
	14.7.2 At build time while installing packages
	14.7.3 At boot time
	14.7.4 At run time

	14.8 Where to report bugs

	Coding Style
	15. Coding Style
	15.1 Compatibility
	15.2 Indenting
	15.3 Wrapping
	15.4 Variables
	15.5 Miscellaneous

	Beispiele
	Beispiele
	16. Examples
	16.1 Using the examples
	16.2 Tutorial 1: A default image
	16.3 Tutorial 2: A web browser utility
	16.4 Tutorial 3: A personalized image
	16.4.1 First revision
	16.4.2 Second revision

	16.5 A VNC Kiosk Client
	16.6 A minimal image for a 512MB USB key
	16.7 A localized GNOME desktop and installer

	Anhang
	Style guide
	17. Style guide
	17.1 Guidelines for authors
	17.1.1 Linguistic features
	17.1.2 Procedures

	17.2 Guidelines for translators
	17.2.1 Translation hints

	SiSU Metadata, document information

