Debian Live Manual

Debian Live Project jdebian-live@lists.debian.orgy,

2015-08-23

Debian Live Manual

Debian Live Project jdebian-live@lists.debian.org;,

Copyright © 2006-2015 Live Systems Project,Copyright (©
2016-2025 The Debian Live team
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can
be found in /usr/share/common-licenses/GPL-3 file.

http://www.gnu.org/licenses/

Contents

Contents

Debian Live Manual

ber Live Systeme

ber dieses Handbuch

1. ber dieses Handbuch
1.1 Fr die Ungeduldigen
1.2 Begriffe
1.3 Autoren
1.4 Contributing to this document

1.4.1 Applying changes
1.4.2 Translation

About the Debian Live Project

2. About the Debian Live Project
2.1 Motivation
2.1.1 What is wrong with current live systems

2.1.2 Why create our own live system?

2.2 Philosophy
2.2.1 Only unchanged packages from Debian main
and non-free-firmware

2.2.2 No package configuration of the live system
2.3 Contact

i

W

S OO T

co CoO Co o o

© oo

Benutzer

Installation

3. Installation
3.1 Requirements
3.2 Installing live-build
3.2.1 From the Debian repository
3.2.2 From sourceo
3.3 Installing live-boot and live-config

3.3.1 From the Debian repository
3.3.2 From source

The basics

4. The basics
4.1 What is a live system?
4.2 Downloading prebuilt images
4.3 First steps: building an ISO hybrid image
4.4 Using an ISO hybrid live image

4.4.1 Burning an ISO image to a physical medium
4.4.2 Copying an ISO hybrid image to a USB stick
4.4.3 Using the space left on a USB stick
4.4.4 Booting the live medium
4.5 Using a virtual machine for testing
4.5.1 Testing an ISO image with QEMU
4.5.2 Testing an [SO image with VirtualBox
4.6 Building and using an HDD image
4.7 Building a netboot image
4.7.1 DHCP server
4.7.2 TFTP server

10

11

11
11
11
11
11
12
12
12

14

14
14
15
15
15
15
16
16
16
17
17
17
18
19
19
20

Contents

4.7.3 NFS server
4.7.4 Netboot testing How'To
4.7.5 Qemu
4.8 Webbooting
4.8.1 Getting the webboot files
4.8.2 Booting webboot images

Overview of tools

5. Overview of tools
5.1 The live-build package
5.1.1 The Ib config command
5.1.2 The 1b build command
5.1.3 The Ib clean command
5.2 The live-boot package
5.3 The live-config package

Managing a configuration

6. Managing a configuration
6.1 Dealing with configuration changes
6.1.1 Why use auto scripts? What do they do?
6.1.2 Use example auto scripts
6.2 Clone a configuration published via Git

Customizing contents

7. Customization overview
7.1 Build time vs. boot time configuration
7.2 Stages of the build

20
20
20
21
21
21

23

23
23
23
24
24
24
24

25

25
25
25
25
26

27

27

27
27

7.3 Supplement 1b config with files
7.4 Customization tasks

Customizing package installation

8. Customizing package installation
8.1 Package sources
8.1.1 Distribution, archive areas and mode
8.1.2 Distribution mirrors
8.1.3 Distribution mirrors used at build time
8.1.4 Distribution mirrors used at run time
8.1.5 Additional repositories
8.2 Choosing packages to install
8.2.1 Package lists
8.2.2 Using metapackages
8.2.3 Local package lists
8.2.4 Local binary package lists
8.2.5 Generated package lists
8.2.6 Using conditionals inside package lists
8.2.7 Removing packages at install time .
8.2.8 Summary
8.2.9 Desktop and language tasks
8.2.10 Kernel flavour and version
8.2.11 Custom kernels
8.3 Installing modified or third-party packages

8.3.1 Using packages.chroot to install custom pack-

ages

8.3.2 Using an APT repository to install custom pack-

ages
8.3.3 Custom packages and APT

8.4 Configuring APT at build time
8.4.1 Choosing apt or aptitude

ii

Contents

8.4.2 Using a proxy with APT
8.4.3 Tweaking APT to save space
8.4.4 Passing options to apt or aptitude
8.4.5 APT pinning

Customizing contents

9. Customizing contents
9.1 Includes
9.1.1 Live/chroot local includes
9.1.2 Binary local includes
9.2 Hooks
9.2.1 Chroot local hooks
9.2.2 Binary local hooks

9.2.3 Boot-time hooks
9.3 Preseeding Debconf questions

Customizing run time behaviours

10. Customizing run time behaviours
10.1 Customizing the live user
10.2 Customizing locale and language
10.3 Persistence

10.3.1 The persistence.conf file

10.3.2 Using more than one persistence store

10.3.3 Using persistence with encryption

37
37
38
38

40

40
40
40
40
41
41
41
41
41

43

43
43
43
44
46
46
47

Customizing the binary image

11. Customizing the binary image
11.1 Bootloaders
11.2 ISO metadata

Customizing Debian Installer

12. Customizing Debian Installer
12.1 Types of Debian Installer

12.2 Customizing Debian Installer by preseeding

12.3 Customizing Debian Installer content

Projekt

Contributing to the project

13. Contributing to the project
13.1 Translation of man pages

Reporting bugs

14. Reporting bugs
14.1 Known issues
14.2 Do the research
14.3 Rebuild from scratch
14.4 Use up-to-date packages
14.5 Collect information
14.6 Isolate the failing case if possible

49

49
49
49

50

50
50
50
51

52

93

53
53

o4

54
54
54
54
55
55
55

iii

Contents

14.7 Use the correct package to report the bug against .
14.7.1 At build time while bootstrapping
14.7.2 At build time while installing packages ..
14.7.3 At boot time
14.7.4 At run time

14.8 Where to report bugs

Coding Style

15. Coding Style
15.1 Compatibility 0.
15.2 Indentingo oL Lo
15.3 Wrapping
15.4 Variables
15.5 Miscellaneous

Beispiele

Beispiele

16. Examples

16.1 Using the examples
16.2 Tutorial 1: A default image
16.3 Tutorial 2: A web browser utility
16.4 Tutorial 3: A personalized image

16.4.1 First revision

16.4.2 Second revisiono
16.5 A VNC Kiosk Client
16.6 A minimal image for a 512MB USB key
16.7 A localized GNOME desktop and installer

55 Anhang
56

56

56 OStyle guide
51§

56 17. Style guide

17.1 Guidelines for authors

17.1.1 Linguistic features

57 17.1.2 Procedures
17.2 Guidelines for translators

57 17.2.1 Translation hints

o7
57
o7
58
59

SiSU Metadata, document information

60

67

68

68
68
68
69
71
71

73

v

Debian Live Manual

ber Live Systeme

ber dieses Handbuch

1. ber dieses Handbuch

This manual serves as a single access point to all documentation
related to the Debian Live Project and in particular applies to the

software produced by the project for the Debian bookworm release.
An up-to-date version can always be found at https://live-team.pages.

debian.net/live-manual/

While live-manual is primarily focused on helping you build a live
system and not on end-user topics, an end user may find some useful
information in these sections: The Basics covers downloading pre-
built images and preparing images to be booted from media or the
network, either using the web builder or running live-build directly
on your system. Customizing run time behaviours describes some
options that may be specified at the boot prompt, such as selecting
a keyboard layout and locale, and using persistence.

Einige der erwhnten Befehle im Text mssen als Superuser ausgefhrt
werden. Dies kann entweder dadurch erreicht werden, indem zuerst
auf den root Benutzer gewechselt wird mittels su oder durch die
Benutzung von sudo. Um die Befehle welche als unprivilegierter Be-
nutzer ausgefhrt werden knnen und diesen welche Superuser Rechte
bentigen, sind den Befehlen $ respektive # vorangestellt. Dieses
Symbol ist nicht Teil des Befehls.

1.1 Fr die Ungeduldigen

Obowhl wir denken dass alles in diesem Handbuch mehr oder
weniger fr die einen oder anderen Benutzer wichtig ist, sind wir uns
bewusst, dass es sich um viel Material handelt. Fr ein schnelles Er-

folgserlebnis in der Anwendung dieser Software schlagen wir die fol-
gende Reihenfolge vor, bevor sie sich mit den Details befassen:

First, read this chapter, About this manual, from the beginning and
ending with the Terms section. Next, skip to the three tutorials
at the front of the Examples section designed to teach you image
building and customization basics. Read Using the examples first,
followed by Tutorial 1: A default image, Tutorial 2: A web browser
utility and finally Tutorial 3: A personalized image. By the end of
these tutorials, you will have a taste of what can be done with live
systems.

We encourage you to return to more in-depth study of the manual,
perhaps next reading The basics, skimming or skipping Building a
netboot image, and finishing by reading the Customization overview
and the chapters that follow it. By this point, we hope you are thor-
oughly excited by what can be done with live systems and motivated
to read the rest of the manual, cover-to-cover.

1.2 Begriffe

Live system : An operating system that can boot without instal-
lation to a hard drive. Live systems do not alter local operating
system(s) or file(s) already installed on the computer hard drive
unless instructed to do so. Live systems are typically booted from
media such as CDs, DVDs or USB sticks. Some may also boot
over the network (via netboot images, see Building a netboot im-
age), and over the Internet (via the boot parameter fetch=URL,
see Webbooting).

Live medium : As distinct from live system, the live medium
refers to the CD, DVD or USB stick where the binary produced
by live-build and used to boot the live system is written. More
broadly, the term also refers to any place where this binary resides

10

11

12

13

14

https://live-team.pages.debian.net/live-manual/
https://live-team.pages.debian.net/live-manual/

15

16

17

18

19

20

21

22

23

24

25

26

27

Debian Live Manual

for the purposes of booting the live system, such as the location
for the network boot files.

Debian Live Project : The project which maintains, among oth-
ers, the live-boot, live-build, live-config, live-tools and live-manual
packages.

Host system : The environment used to create the live system.
Target system : The environment used to run the live system.
live-boot : A collection of scripts used to boot live systems.

live-build : A collection of scripts used to build customized live
systems.

live-config : A collection of scripts used to configure a live system
during the boot process.

live-tools : A collection of additional scripts used to perform
useful tasks within a running live system.

live-manual : This document is maintained in a package called
live-manual.

Debian Installer (d-i) :
Debian distribution.

The official installation system for the

Boot parameters : Parameters that can be entered at the boot-
loader prompt to influence the kernel or live-config.

chroot : The chroot program, chroot(8), enables us to run differ-
ent instances of the GNU/Linux environment on a single system
simultaneously without rebooting.

Binary image : A file containing the live system, such as live-
image-amd64.hybrid.iso or live-image-amd64.img.

Target distribution : The distribution upon which your live sys-
tem will be based. This can differ from the distribution of your
host system.

stable/testing /unstable : The stable distribution, currently code-
named bookworm , contains the latest officially released distribu-
tion of Debian. The testing distribution, temporarily codenamed
trixie , is the staging area for the next stable release. A ma-
jor advantage of using this distribution is that it has more recent
versions of software relative to the stable release. The unstable
distribution, permanently codenamed sid , is where active devel-
opment of Debian occurs. Generally, this distribution is run by
developers and those who like to live on the edge. Throughout the
manual, we tend to use codenames for the releases, such as trixie
or sid , as that is what is supported by the tools themselves.

1.3 Autoren

Liste der Autoren (in alphabetischer Reihenfolge):

Ben Armstrong
Brendan Sleight
Carlos Zuferri
Chris Lamb
Daniel Baumann
Franklin Piat
Jonas Stein

Kai Hendry
Marco Amadori
Mathieu Geli
Matthias Kirschner
Richard Nelson
Roland Clobus
Trent W. Buck

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

51

52

53

Debian Live Manual

1.4 Contributing to this document

This manual is intended as a community project and all proposals
for improvements and contributions are extremely welcome. Please
see the section Contributing to the project for detailed information
on how to fetch the commit key and make good commits.

1.4.1 Applying changes

In order to make changes to the English manual you have to edit the
right files in manual/en/ but prior to the submission of your con-
tribution, please preview your work. To preview the live-manual,
ensure the packages needed for building it are installed by execut-
ing:

apt-get install make pod4a ruby ruby-nokogiri sisu-complete

You may build the live-manual from the top level directory of your
Git checkout by executing:

$ make build

Since it takes a while to build the manual in all supported languages,
authors may find it convenient to use one of the fast proofing short-
cuts when reviewing the new documentation they have added to
the English manual. Using PROOF=1 builds live-manual in html
format, but without the segmented html files, and using PROOF=2
builds live-manual in pdf format, but only the A4 and letter por-
traits. That is why using either of the PROOF= possibilities can
save up a considerable amount of time, e.g:

$ make build PROOF=1

When proofing one of the translations it is possible to build only
one language by executing, e.g:

$ make build LANGUAGES=de

It is also possible to build by document type, e.g:

‘$ make build FORMATS=pdf

Or combine both, e.g:

H$ make build LANGUAGES=de FORMATS=html

After revising your work and making sure that everything is fine,
do not use make commit unless you are updating translations in the
commit, and in that case, do not mix changes to the English manual
and translations in the same commit, but use separate commits for
each. See the Translation section for more details.

1.4.2 Translation

Note:
pages

For the translation of the man pages see Translation of man

In order to translate live-manual, follow these steps depending on
whether you are starting a translation from scratch or continue work-
ing on an already existing one:

Start a new translation from scratch

54

55

56

57

58

59

60

61

62

63

64

66

67

68

69

70

71

Debian Live Manual

Translate the about 'manual.ssi.pot , about project.ssi.pot
and index.html.in.pot files in manual/pot/ to your language
with your favourite editor (such as poedit) and send the trans-
lated .po files to the mailing list to check their integrity. live-
manual’s integrity check not only ensures that the .po files
are 100% translated but it also detects possible errors.

Once checked, to enable a new language in the autobuild
it is enough to add the initial translated files to manual/-
po/$-LANGUAGE”/ and edit manual/'sisu/home/index.-
html adding the name of the language and its name in En-
glish between brackets. And then, add the folder manual/-
$-LANGUAGE"/ to the file .gitignore. Finally, run make
commit.

Continue with an already started translation

If your target language has already been added, you
can randomly continue translating the remaining .po files
in manual/po/$-LANGUAGE"/ using your favourite editor
(such as poedit) .

Do not forget that you need to run make commit to en-
sure that the translated manuals are updated from the .po
files and then you can review your changes launching make
build before git add ., git commit -m Translating... and git
push. Remember that since make build can take a consider-
able amount of time, you can proofread languages individu-
ally as explained in Applying changes

After running make commit you will see some text scroll by. These
are basically informative messages about the processing status and
also some hints about what can be done in order to improve live-
manual. Unless you see a fatal error, you usually can proceed and
submit your contribution.

live-manual comes with two utilities that can greatly help translators

te find untranslated and changed strings. The first one is make
translate. It launches an script that tells you in detail how many
untranslated strings there are in each .po file. The second one, the
make fixfuzzy target, only acts upon changed strings but it helps
you to find and fix them one by one.

Keep in mind that even though these utilities might be really helpful
to do translation work on the command line, the use of an specialized
tool like poedit is the recommended way to do the task. It is also a
good idea to read the Debian localization (110n) documentation and,
specifically to live-manual, the Guidelines for translators.

Note: You can use make clean to clean your git tree before pushing.
This step is not compulsory thanks to the .gitignore file but it is a
good practice to avoid committing files involuntarily.

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

About the Deblan lee PTOJ eCt to show around and to accurately represent the Debian system with

the following main advantages:

It is a subproject of Debian.
2. About the Debian Live Project

It reflects the (current) state of one distribution.

2.1 Motivation It runs on as many architectures as possible.

2.1.1 What is wrong with current live systems
wrons w Ve It consists of unchanged Debian packages only.

When Debian Live Project was initiated (around 2006), there were
already several Debian based live systems available and they are
doing a great job. From the Debian perspective most of them have
one or more of the following disadvantages:

It does not contain any packages that are not in the Debian
archive.

It uses an unaltered Debian kernel with no additional patches.
They are not Debian projects and therefore lack support from

within Debian.

They mix different distributions, e.g. testing and unstable . 2.2 Philosophy

They support i386 only. 2.2.1 Only unchanged packages from Debian main and

non-free-firmware
They modify the behaviour and/or appearance of packages by

stripping them down to save space. We will only use packages from the Debian repository in the main
section. The non-free section is not part of Debian and therefore

cannot be used for official live system images.
They ship custom kernels with additional patches that are not
part of Debian. Starting with Debian 12 bookworm we added the non-free-firmware

section for better support of modern hardware.

They include packages from outside of the Debian archive.

They are large and slow due to their sheer size and thus not
suitable for rescue issues. We will not change any packages. Whenever we need to change
something, we will do that in coordination with its package main-

They are not available in different flavours, e.g. CDs, DVDs, . .)
tainer in Debian.

USB-stick and netboot images.

As an exception, our own packages such as live-boot, live-build or
live-config may temporarily be used from our own repository for
development reasons (e.g. to create development snapshots). They
Debian is the Universal Operating System: Debian has a live system will be uploaded to Debian on a regular basis.

2.1.2 Why create our own live system?

89

90

91

92

93

94

95

96

97

98

99

100

https://wiki.debian.org/Firmware

Debian Live Manual

2.2.2 No package configuration of the live system 101

In this phase we will not ship or install sample or alternative con- 102
figurations. All packages are used in their default configuration as
they are after a regular installation of Debian.

103 Whenever we need a different default configuration, we will do that
in coordination with its package maintainer in Debian.

104 A system for configuring packages is provided using debconf allow-
ing custom configured packages to be installed in your custom pro-
duced live system images, but for the prebuilt live images we choose
to leave packages in their default configuration, unless absolutely
necessary in order to work in the live environment. Wherever possi-
ble, we prefer to adapt packages within the Debian archive to work
better in a live system versus making changes to the live toolchain
or prebuilt image configurations. For more information, please see
Customization overview.

105 2.3 Contact

106 Mailing list : The primary contact for the project is the mail-
ing list at https://lists.debian.org/debian-live/. You can email the list
directly by addressing your mail to debian-live@lists.debian.org. The
list archives are available at https://lists.debian.org/debian-live/.

107 IRC : A number of users and developers are present in the
#debian-live channel on irc.debian.org (OFTC). When asking a
question on IRC, please be patient for an answer. If no answer is
forthcoming, please email the mailing list.

108 BTS : The Reporting bugs.

https://lists.debian.org/debian-live/
debian-live@lists.debian.org
https://lists.debian.org/debian-live/

109

Benutzer

10

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Installation

3. Installation

3.1 Requirements
Building live system images has very few system requirements for
the host system:
Superuser (root) access
An up-to-date version of live-build
A POSIX-compliant shell, such as bash or dash
debootstrap
Linux 2.6 or newer

A mount point with dev and exec rights.

mount jyour mount point; -odev,exec,remount

|

Note that using Debian or a Debian-derived distribution is not re-
quired - live-build will run on almost any distribution with the above
requirements.

3.2 Installing live-build

You can install live-build in a number of different ways:
From the Debian repository
From source
From snapshots

If you are using Debian, the recommended way is to install live-build
via the Debian repository.

3.2.1 From the Debian repository
Simply install live-build like any other package:

apt-get install live -build

3.2.2 From source

live-build is developed using the Git version control system. On
Debian based systems, this is provided by the git package. To check
out the latest code, execute:

‘ $ git clone https://salsa.debian.org/live -team/live - build . git

You can build and install your own Debian package by execut-
ing:

$ cd live -build
$ dpkg-buildpackage -b -uc -us
$ cd ..

Now install whichever of the freshly built .deb files you were inter-
ested in, e.g.

dpkg -i live -build'4.0-1 all.deb

You can also install live-build directly to your system by execut-
ing:

‘# make install

11

128

129

130

131

132

133

134

135

136

137

138

139

141

142

143

144

145

146

147

148

149

150

Debian Live Manual

and uninstall it with: 151

make uninstall

3.3 Installing live-boot and live-config

Note: You do not need to install live-boot or live-config on your
system to create customized live systems. However, doing so will
do no harm and is useful for reference purposes. If you only want
the documentation, you may now install the live-boot-doc and live-
config-doc packages separately.

3.3.1 From the Debian repository

Both live-boot and live-config are available from the Debian repos-
itory as per Installing live-build.

3.3.2 From source

To use the latest source from git, you can follow the process be-
low. Please ensure you are familiar with the terms mentioned in
Terms.

Checkout the live-boot and live-config sources

140 Build live-boot and live-config .deb files

You must build either on your target distribution or in a chroot
containing your target platform: this means if your target is trixie
then you should build against trixie .

Use a personal builder such as pbuilder or sbuild if you need to build
live-boot for a target distribution that differs from your build sys-
tem. For example, for trixie live images, build live-boot in a trixie
chroot. If your target distribution happens to match your build sys-
tem distribution, you may build directly on the build system using
dpkg-buildpackage (provided by the dpkg-dev package):

cd live -boot
dpkg-buildpackage -b -uc -us
cd ../live - config
dpkg-buildpackage -b -uc -us

9 P L PH

$ git clone https://salsa.debian.org/live -team/live -boot. git
$ git clone https://salsa.debian.org/live -team/live - config.+>
git

Consult the live-boot and live-config man pages for details on cus-
tomizing if that is your reason for building these packages from
source.

Use applicable generated .deb files

As live-boot and live-config are installed by live-build system, in-
stalling the packages in the host system is not sufficient: you should
treat the generated .deb files like any other custom packages. Since
your purpose for building from source is likely to test new things
over the short term before the official release, follow Installing mod-
ified or third-party packages to temporarily include the relevant files
in your configuration. In particular, notice that both packages are
divided into a generic part, a documentation part and one or more
back-ends. Include the generic part, only one back-end matching
your configuration, and optionally the documentation. Assuming
you are building a live image in the current directory and have
generated all .deb files for a single version of both packages in the
directory above, these bash commands would copy all of the relevant
packages including default back-ends:

12

152

153

154

155

156

157

Debian Live Manual

$ cp ../live -boot—",-initramfs -tools,-doc”*.deb config/<+
packages.chroot/

$ cp ../live -config—",-sysvinit ,-doc”*.deb
chroot/

config /packages.<«

13

158

159

160

161

162

163

164

The basics

4. The basics

This chapter contains a brief overview of the build process and
instructions for using the three most commonly used image types.
The most versatile image type, iso-hybrid, may be used on a virtual
machine, optical medium or USB portable storage device. In certain
special cases, as explained later, the hdd type may be more suitable.
The chapter includes detailed instructions for building and using a
netboot type image, which is a bit more involved due to the setup
required on the server. This is an slightly advanced topic for anyone
who is not already familiar with netbooting, but it is included here
because once the setup is done, it is a very convenient way to test
and deploy images for booting on the local network without the
hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which
is, perhaps, the easiest way of using different images for different
purposes, switching from one to the other as needed using the inter-
net as a means.

Throughout the chapter, we will often refer to the default filenames
produced by live-build. If you are downloading a prebuilt image
instead, the actual filenames may vary.

4.1 What is a live system?

A live system usually means an operating system booted on a
computer from a removable medium, such as a CD-ROM or USB
stick, or from a network, ready to use without any installation on
the usual drive(s), with auto-configuration done at run time (see
Terms).

With live systems, it’s an operating system, built for one of the
supported architectures (currently amd64 and arm64). It is made
from the following parts:

Linux kernel image , usually named vmlinuz*

Initial RAM disk image (initrd) : a RAM disk set up for the Linux
boot, containing modules possibly needed to mount the System
image and some scripts to do it.

System image : The operating system’s filesystem image. Usu-
ally, a SquashF'S compressed filesystem is used to minimize the
live system image size. Note that it is read-only. So, during boot
the live system will use a RAM disk and ‘union’ mechanism to
enable writing files within the running system. However, all mod-
ifications will be lost upon shutdown unless optional persistence
is used (see Persistence).

Bootloader : A small piece of code crafted to boot from the
chosen medium, possibly presenting a prompt or menu to allow
selection of options/configuration. It loads the Linux kernel and
its initrd to run with an associated system filesystem. Differ-
ent solutions can be used, depending on the target medium and
format of the filesystem containing the previously mentioned com-
ponents: isolinux to boot from a CD or DVD in ISO9660 format,
syslinux for HDD or USB drive booting from a VFAT partition,
extlinux for ext2/3/4 and btrfs partitions, pxelinux for PXE net-
boot, GRUB for ext2/3/4 partitions, etc.

You can use live-build to build the system image from your speci-
fications, set up a Linux kernel, its initrd, and a bootloader to run
them, all in one medium-dependent format (ISO9660 image, disk
image, etc.).

14

165

166

167

168

169

170

172

173

174

175

176

177

178

179

Debian Live Manual

4.2 Downloading prebuilt images

You can download one of the prebuilt images from https://www.

debian.org/CD/live/. For many of the popular desktop environments
(GNOME, Xfce, KDE, etc.) a specific live image is prepared.

If you are unsure which file to download, use the ‘Live GNOME’
image from the ‘stable’ release. You can then skip reading the next
sections and run the image in a virtual machine.

4.3 First steps: building an ISO hybrid image

Regardless of the image type, you will need to perform the same
basic steps to build an image each time. As a first example, create
a build directory, change to that directory and then execute the
following sequence of live-build commands to create a basic ISO
hybrid image containing a default live system without X.org. It is
suitable for burning to CD or DVD media, and also to copy onto a
USB stick.

The name of the working directory is absolutely up to you, but if
you take a look at the examples used throughout live-manual, it is
a good idea to use a name that helps you identify the image you
are working with in each directory, especially if you are working
or experimenting with different image types. In this case you are
going to build a default system so let’s call it, for example, live-
default.

$ 1b config

No parameters are passed to these commands, so defaults for all of
their various options will be used. See The Ib config command for
more details.

Now that the config/ hierarchy exists, build the image with the 1b
build command:

1b build

$ mkdir live -default && cd live -default

Then, run the Ib config command. This will create a config/ hier-
archy in the current directory for use by other commands:

This process can take a while, depending on the speed of your
computer and your network connection. When it is complete, there
should be a live-image-amd64.hybrid.iso image file, ready to use, in
the current directory.

Note: If you are building on an amd64 system the name of the
resulting image will be live-image-amd64.hybrid.iso. Keep in mind
this naming convention throughout the manual.

4.4 Using an ISO hybrid live image

After either building or downloading an ISO hybrid image the usual
next step is to prepare your medium for booting, either CD-R(W)
or DVD-R(W) optical media or a USB stick.

4.4.1 Burning an ISO image to a physical medium

Burning an ISO image is easy. Just install xorriso and use it from
the command-line to burn the image. For instance:

15

180

181

182

183

184

185

186

187

188

189

https://www.debian.org/CD/live/
https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

190

191

192

193

194

195

196

197

Debian Live Manual

apt-get install xorriso
$ xorriso -as cdrecord -v dev=/dev/sr0 blank=as needed live -+
image -amd64. hybrid . iso

gparted $-USBSTICK”

4.4.2 Copying an ISO hybrid image to a USB stick

ISO images prepared with xorriso, can be simply copied to a USB
stick with the cp program or an equivalent. Plug in a USB stick
with a size large enough for your image file and determine which
device it is, which we hereafter refer to as $~USBSTICK". This is
the device file of your key, such as /dev/sdb, not a partition, such
as /dev/sdbl! You can find the right device name by looking in
dmesg’s output after plugging in the stick, or better yet, Is -1 /dev/-
disk/by-id.

Once you are certain you have the correct device name, use the
c¢p command to copy the image to the stick. This will definitely
overwrite any previous contents on your stick!

After the partition is created, where $~PARTITION” is the name
of the partition, such as /dev/sdb2, you have to create a filesystem
on it. One possible choice would be ext4.

mkfs.ext4 $-PARTITION”

$ cp live -image-amd64. hybrid.iso $-USBSTICK”
$ sync

Note: The sync command is useful to ensure that all the data,
which is stored in memory by the kernel while copying the image, is
written to the USB stick.

4.4.3 Using the space left on a USB stick

After copying the live-image-amd64.hybrid.iso to a USB stick, the
first partition on the device will be filled up by the live system. To
use the remaining free space, use a partitioning tool such as gparted
or parted to create a new partition on the stick.

Note: If you want to use the extra space with Windows, apparently
that OS cannot normally access any partitions but the first. Some
solutions to this problem have been discussed on our mailing list,
but it seems there are no easy answers.

Remember: Every time you install a new live-image-
amd64.hybrid.iso on the stick, all data on the stick will be lost
because the partition table is overwritten by the contents of the
image, so back up your extra partition first to restore again after
updating the live image.

4.4.4 Booting the live medium

The first time you boot your live medium, whether CD, DVD, USB
key, or PXE boot, some setup in your computer’s BIOS may be
needed first. Since BIOSes vary greatly in features and key bindings,
we cannot get into the topic in depth here. Some BIOSes provide a
key to bring up a menu of boot devices at boot time, which is the
easiest way if it is available on your system. Otherwise, you need
to enter the BIOS configuration menu and change the boot order to
place the boot device for the live system before your normal boot
device.

Once you’ve booted the medium, you are presented with a boot
menu. If you just press enter here, the system will boot using the

16

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

Debian Live Manual

default entry, Live and default options. For more information about
boot options, see the help entry in the menu and also the live-boot
and live-config man pages found within the live system.

Assuming you’ve selected Live and booted a default desktop live
image, after the boot messages scroll by, you should be automatically
logged into the user account and see a desktop, ready to use. If
you have booted a console-only image, you should be automatically
logged in on the console to the user account and see a shell prompt,
ready to use.

4.5 Using a virtual machine for testing

It can be a great time-saver for the development of live images
to run them in a virtual machine (VM). This is not without its
caveats:

Running a VM requires enough RAM for both the guest OS and
the host and a CPU with hardware support for virtualization is
recommended.

There are some inherent limitations to running on a VM, e.g.
poor video performance, limited choice of emulated hardware.

When developing for specific hardware, there is no substitute for
running on the hardware itself.

Occasionally there are bugs that relate only to running in a VM.
When in doubt, test your image directly on the hardware.

Provided you can work within these constraints, survey the available
VM software and choose one that is suitable for your needs.

4.5.1 Testing an ISO image with QEMU

The most versatile VM in Debian is QEMU. If your processor has

hardware support for virtualization, use the qemu-kvm package; the
gemu-kvm package description briefly lists the requirements.

First, install gemu-kvm if your processor supports it. If not, install
gemu, in which case the program name is gemu instead of kvm in
the following examples. The gemu-utils package is also valuable for
creating virtual disk images with gemu-img.

apt-get install gemu-kvm gemu- utils

Booting an ISO image is simple:

$ kvin -cdrom live -image-amd64.hybrid.iso -m 4G

See the man pages for more details.

Note: For live systems containing a desktop environment that you
want to test with gemu, you may wish to include the spice-vdagent
package in your live-build configuration. This will automatically
adjust the resolution and enable the clipboard between the virtual
machine and the host.

$ echo ”spice -vdagent”
chroot

.. config/package-lists/spice.list .«

4.5.2 Testing an ISO image with VirtualBox

In order to test the ISO with virtualbox:

apt-get install virtualbox virtualbox -qt virtualbox -dkms
$ virtualbox

17

215

216

217

218

219

220

221

222

223

224

226

227

228

229

230

231

232

Debian Live Manual

Create a new virtual machine, change the storage settings to use
live-image-amd64.hybrid.iso as the CD/DVD device, and start the
machine.

Note: For live systems containing X.org that you want to test
with virtualbox, you may wish to include the VirtualBox X.org
driver package, virtualbox-guest-dkms and virtualbox-guest-x11, in
your live-build configuration. Otherwise, the resolution is limited to
800x600.

ample, you will need to clean up your working directory with the 1b
clean command (see The b clean command):

lb clean --binary

Run the 1b config command as before, except this time specifying
the HDD image type:

$ echo ”virtualbox -guest -dkms virtualbox - guest -x11”
/package-lists /my. list .chroot

;i config<

$ 1b config -b hdd

In order to make the dkms package work, also the kernel headers
for the kernel flavour used in your image need to be installed. In-
stead of manually listing the correct linux-headers package in above
created package list, the selection of the right package can be done
automatically by live-build.

Now build the image with the 1b build command:

1b build

$ Ib config --linux-packages ”linux-image linux -headers”

4.6 Building and using an HDD image

Building an HDD image is similar to an ISO hybrid one in all
respects except you specify -b hdd and the resulting filename is live-
image-amd64.img which cannot be burnt to optical media. It is
suitable for booting from USB sticks, USB hard drives, and various
other portable storage devices. Normally, an ISO hybrid image can
be used for this purpose instead, but if you have a BIOS which does
not handle hybrid images properly, you need an HDD image.

Note: if you created an ISO hybrid image with the previous ex-

When the build finishes, a live-image-amd64.img file should be
present in the current directory.

The generated binary image contains a VFAT partition and the
syslinux bootloader, ready to be directly written on a USB device.
Once again, using an HDD image is just like using an ISO hybrid one
on USB. Follow the instructions in Using an ISO hybrid live image,
except use the filename live-image-amd64.img instead of live-image-
amd64.hybrid.iso.

Likewise, to test an HDD image with Qemu, install gemu as de-
scribed above in Testing an ISO image with QEMU. Then run kvm
or gemu, depending on which version your host system needs, spec-
ifying live-image-amd64.img as the first hard drive.

$ kvm -hda live -image-amd64.img

18

233

234

235

236

237

238

239

240

241

243

244

245

246

247

248

249

Debian Live Manual

4.7 Building a netboot image 250

The following sequence of commands will create a basic netboot
image containing a default live system without X.org. It is suitable
for booting over the network.

Note: if you performed any previous examples, you will need to
clean up your working directory with the 1b clean command:

Now build the image with the 1b build command:

1b build

1b clean

In this specific case, a Ib clean —binary would not be enough to clean
up the necessary stages. The cause for this is that in netboot setups,
a different initramfs configuration needs to be used which live-build
performs automatically when building netboot images. Since the
initramfs creation belongs to the chroot stage, switching to netboot
in an existing build directory means to rebuild the chroot stage too.
Therefore, 1b clean (which will remove the chroot stage, too) needs
to be used.

Run the Ib config command as follows to configure your image for
netbooting:

$ 1b config -b netboot --net-root-path ”/srv/debian-live”
net -root -server 7192.168.0.2”7

-

In contrast with the ISO and HDD images, netbooting does not,
itself, serve the filesystem image to the client, so the files must be
served via NFS. Different network filesystems can be chosen through
Ib config. The —net-root-path and —net-root-server options specify
the location and server, respectively, of the NFS server where the
filesystem image will be located at boot time. Make sure these are
set to suitable values for your network and server.

In a network boot, the client runs a small piece of software which
usually resides on the EPROM of the Ethernet card. This program
sends a DHCP request to get an IP address and information about
what to do next. Typically, the next step is getting a higher level
bootloader via the TFTP protocol. That could be pxelinux, GRUB,
or even boot directly to an operating system like Linux.

For example, if you unpack the generated live-image-
amd64.netboot.tar archive in the /srv/debian-live directory,
youll find the filesystem image in live/filesystem.squashfs and the
kernel, initrd and pxelinux bootloader in tftpboot/.

We must now configure three services on the server to enable
netbooting: the DHCP server, the TFTP server and the NFS
server.

4.7.1 DHCP server

We must configure our network’s DHCP server to be sure to give
an IP address to the netbooting client system, and to advertise the
location of the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP
server isc-dhcp-server in the /etc/dhcp/dhepd.conf configuration
file:

/etc/dhcp/dhepd. conf - configuration file
server

for isc -dhcp-+

ddns-update-style none;

19

251

252

253

254

257

259

260

261

262

263

264

265

Debian Live Manual

option domain-name ”example.org?”;

option domain-name-servers nsl.example.org, ns2.example.org;

default -lease -time 600;

max- lease -time 7200;

log - facility localT7;

subnet 192.168.0.0 netmask 255.255.255.0 —
range 192.168.0.1 192.168.0.254;
filename ”pxelinux.0”;
next-server 192.168.0.2;
option subnet-mask 255.255.255.0;
option broadcast -address 192.168.0.255;
option routers 192.168.0.1;

You need to install the nfs-kernel-server package.

Then, make the filesystem image available through NFS by adding
a line like the following to /etc/exports:

/srv/debian-live *(ro,async,no’root'squash ,no’subtree’check)

and tell the NFS server about this new export with the following
command:

4.7.2 TFTP server

This serves the kernel and initial ramdisk to the system at run
time.

You should install the tftpd-hpa package. It can serve all files con-
tained inside a root directory, usually /srv/tftp. To let it serve
files inside /srv/debian-live/tftpboot, run as root the following com-
mand:

exportfs -rv

dpkg-reconfigure -plow tftpd -hpa

and fill in the new tftp server directory when being asked about
it.

4.7.3 NF'S server

Once the guest computer has downloaded and booted a Linux kernel
and loaded its initrd, it will try to mount the Live filesystem image
through a NF'S server.

Setting up these three services can be a little tricky. You might need
some patience to get all of them working together. For more infor-
mation, see the syslinux wiki at https://wiki.syslinux.org/wiki/index.php?
title=PXELINUX or the Debian Installer Manual’s TFTP Net Booting
section at https://www.debian.org/releases/stable/amd64/ch04s05.en.html. They
might help, as their processes are very similar.

4.7.4 Netboot testing How'To

Netboot image creation is made easy with live-build, but testing the
images on physical machines can be really time consuming.

To make our life easier, we can use virtualization.

4.7.5 Qemu

Install gemu, bridge-utils, sudo.

Edit /etc/qemu-ifup:

20

266

267

268

269

270

271

272

273

274

275

276

277

278

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://www.debian.org/releases/stable/amd64/ch04s05.en.html

279

280

281

282

283

284

285

286

Debian Live Manual

#!/bin /sh

sudo -p ”Password for $0:” /sbin/ifconfig $1 172.20.0.1
echo ”Executing /etc/gemu-ifup”

echo ”Bringing up $1 for bridged mode...”

sudo /sbin/ifconfig $1 0.0.0.0 promisc up

echo ”Adding $1 to br0...”

sudo /usr/sbin/brctl addif br0 $1

sleep 2

mount -o loop image.iso /mnt

Get, or build a grub-floppy-netboot.

Launch qemu with -net nic,vlan=0 -net

tap,vlan=0,ifname=tun0

4.8 Webbooting

Webbooting is a convenient way of retrieving and booting live sys-
tems using the internet as a means. The requirements for webboot-
ing are very few. On the one hand, you need a medium with a boot-
loader, an initial ramdisk and a kernel. On the other hand, a web
server to store the squashfs files which contain the filesystem.

4.8.1 Getting the webboot files

As usual, you can build the images yourself or use the prebuilt files.

Using prebuilt images would be handy for doing initial testing until
one can fine tune their own needs. If you have built a live image
you will find the files needed for webbooting in the build directory
under binary/live/. The files are called vmlinuz, initrd.img and
filesystem.squashfs.

It is also possible to extract those files from an already existing
iso image. In order to achieve that, loopback mount the image as
follows:

The files are to be found under the live/ directory. In this specific
case, it would be /mnt/live/. This method has the disadvantage
that you need to be root to be able to mount the image. However,
it has the advantage that it is easily scriptable and thus, easily
automated.

But undoubtedly, the easiest way of extracting the files from an
iso image and uploading it to the web server at the same time, is
using the midnight commander or mc. If you have the genisoimage
package installed, the two-pane file manager allows you to browse
the contents of an iso file in one pane and upload the files via ftp in
the other pane. Even though this method requires manual work, it
does not require root privileges.

4.8.2 Booting webboot images

While some users will prefer virtualization to test webbooting, we
refer to real hardware here to match the following possible use case
which should only be considered as an example.

In order to boot a webboot image it is enough to have the compo-
nents mentioned above, i.e. vmlinuz and initrd.img in a usb stick
inside a directory named live/ and install syslinux as bootloader.
Then boot from the usb stick and type fetch=URL/PATH/TO/-
FILE at the boot options. live-boot will retrieve the squashfs file
and store it into ram. This way, it is possible to use the downloaded
compressed filesystem as a regular live system. For example:

append boot=live components fetch=http://192.168.2.50/images/<+>
webboot /filesystem . squashfs

21

287

288

290

291

292

Debian Live Manual

Use case: You have a web server in which you have stored two
squashfs files, one which contains a full desktop, like for example
gnome, and a standard one. If you need a graphical environment
for one machine, you can plug your usb stick in and webboot the
gnome image. If you need one of the tools included in the second
type of image, perhaps for another machine, you can webboot the
standard one.

293

22

294

295

296

297

298

299

300

301

302

303

Overview of tools

5. Overview of tools

This chapter contains an overview of the three main tools used in
building live systems: live-build, live-boot and live-config.

5.1 The live-build package

live-build is a collection of scripts to build live systems. These

scripts are also referred to as commands.

The idea behind live-build is to be a framework that uses a config-
uration directory to completely automate and customize all aspects
of building a Live image.

Many concepts are similar to those used to build Debian packages
with debhelper:

The scripts have a central location for configuring their operation.
In debhelper, this is the debian/ subdirectory of a package tree.
For example, dh'install will look, among others, for a file called
debian/install to determine which files should exist in a particu-
lar binary package. In much the same way, live-build stores its
configuration entirely under a config/ subdirectory.

The scripts are independent - that is to say, it is always safe to
run each command.

Unlike debhelper, live-build provides the tools to generate a skeleton
configuration directory. This could be considered to be similar to
tools such as dh-make. For more information about these tools, read
on, since the remainder of this section discuses the four most impor-
tant commands. Note that the preceding Ib is a generic wrapper for
live-build commands.

Ib config : Responsible for initializing a Live system configuration
directory. See The 1b config command for more information.

Ib build : Responsible for starting a Live system build. See The
Ib build command for more information.

Ib clean : Responsible for removing parts of a Live system build.
See The 1b clean command for more information.

5.1.1 The lb config command

As discussed in live-build, the scripts that make up live-build read
their configuration with the source command from a single directory
named config/. As constructing this directory by hand would be
time-consuming and error-prone, the 1b config command can be used
to create the initial skeleton configuration tree.

Issuing 1b config without any arguments creates the config/ subdirec-
tory which is populated with some default settings in configuration
files, and two skeleton trees named auto/ and local/.

$ 1b config

[2025-02-15 12:34:56] lb config

P: Using http proxy: http://127.0.0.1:3142

P: Creating config tree for a debian/testing/amd64 system
P: Symlinking hooks...

Using 1b config without any arguments would be suitable for users
who need a very basic image, or who intend to provide a more
complete configuration via auto/config later (see Managing a con-
figuration for details).

Normally, you will want to specify some options. For example,
to specify which package manager to use while building the im-
age:

23

304

305

306

307

308

309

310

311

313

314

315

316

317

318

319

320

321

322

Debian Live Manual

$ 1b config --apt aptitude

It is possible to specify many options, such as:

$ 1b config --binary-images netboot --bootappend-live ”boot=+
live components hostname=live - host username=live - user” <

A full list of options is available in the lb’config man page.

5.1.2 The 1b build command

The 1b build command reads in your configuration from the config/
directory. It then runs the lower level commands needed to build
your Live system.

5.1.3 The 1b clean command

It is the job of the 1b clean command to remove various parts of a
build so subsequent builds can start from a clean state. By default,
chroot, binary and source stages are cleaned, but the cache is left
intact. Also, individual stages can be cleaned. For example, if you
have made changes that only affect the binary stage, use lb clean
—binary prior to building a new binary. If your changes invalidate
the bootstrap and/or package caches, e.g. changes to —mode, —
architecture, or —bootstrap, you must use lb clean —purge. See the
Ib’clean man page for a full list of options.

5.2 The live-boot package

live-boot is a collection of scripts providing hooks for the initramfs-
tools, used to generate an initramfs capable of booting live systems,

such as those created by live-build. This includes the live system
ISOs, netboot tarballs, and USB stick images.

At boot time it will look for read-only media containing a /live/ di-
rectory where a root filesystem (often a compressed filesystem image
like squashfs) is stored. If found, it will create a writable environ-
ment, using OverlayF'S, for Debian like systems to boot from.

More information on initial ramfs in Debian can be found in the
Debian Linux Kernel Handbook at https://kernel-team.pages.debian.net/
kernel-handbook/ in the chapter on initramfs.

5.3 The live-config package

live-config consists of the scripts that run at boot time after live-
boot to configure the live system automatically. It handles such
tasks as setting the hostname, locales and timezone, creating the
live user, inhibiting cron jobs and performing autologin of the live
user.

24

323

324

325

326

https://kernel-team.pages.debian.net/kernel-handbook/
https://kernel-team.pages.debian.net/kernel-handbook/

327

328

329

330

331

332

333

Managing a configuration

6. Managing a configuration

This chapter explains how to manage a live configuration from initial
creation, through successive revisions and successive releases of both
the live-build software and the live image itself.

6.1 Dealing with configuration changes

Live configurations rarely are perfect on the first try. It may be fine
to pass Ib config options from the command-line to perform a single
build, but it is more typical to revise those options and build again
until you are satisfied. To support these changes, you will need
auto scripts which ensure your configuration is kept in a consistent
state.

6.1.1 Why use auto scripts? What do they do?

The 1b config command stores the options you pass to it in config/*
files along with many other options set to default values. If you run
Ib config again, it will not reset any option that was defaulted based
on your initial options. So, for example, if you run 1b config again
with a new value for —binary-images, any dependent options that
were defaulted for the old image type may no longer work with the
new ones. Nor are these files intended to be read or edited. They
store values for over a hundred options, so nobody, let alone yourself,
will be able to see in these which options you actually specified. And
finally, if you run lb config, then upgrade live-build and it happens
to rename an option, config/* would still contain variables named
after the old option that are no longer valid.

For all these reasons, auto/* scripts will make your life easier. They
are simple wrappers to the 1b config, Ib build and 1b clean commands
that are designed to help you manage your configuration. The auto/-
config script stores your 1b config command with all desired options,
the auto/clean script removes the files containing configuration vari-
able values, and the auto/build script keeps a build.log of each build.
Each of these scripts is run automatically every time you run the
corresponding Ib command. By using these scripts, your configu-
ration is easier to read and is kept internally consistent from one
revision to the next. Also, it will be much easier for you identify
and fix options which need to change when you upgrade live-build
after reading the updated documentation.

6.1.2 Use example auto scripts

For your convenience, live-build comes with example auto shell
scripts to copy and edit. Start a new, default configuration, then
copy the examples into it:

$ mkdir mylive && cd mylive && 1b config
$ mkdir auto
$ cp /usr/share/doc/live - build /examples/auto/* auto/

Edit auto/config, adding any options as you see fit. For in-

stance:

#!/bin /sh

Ib config noauto
--distribution stable
--binary -images hdd
--mirror - bootstrap http://ftp.ch.debian.org/debian/ ¢
--mirror - binary http://ftp.ch.debian.org/debian/ ¢
n$_@”77

«“

«

25

334

335

336

337

338

339

341

342

343

344

345

346

Debian Live Manual

Now, each time you use b config, auto/config will reset the config-
uration based on these options. When you want to make changes
to them, edit the options in this file instead of passing them to Ib
config. When you use 1b clean, auto/clean will clean up the con-
fig/* files along with any other build products. And finally, when
you use lb build, a log of the build will be written by auto/build in
build.log.

Note: A special noauto parameter is used here to suppress another
call to auto/config, thereby preventing infinite recursion. Make sure
you don’t accidentally remove it when making edits. Also, take care
to ensure when you split the lb config command across multiple
lines for readability, as shown in the example above, that you don’t
forget the backslash (at the end of each line that continues to the
next.

6.2 Clone a configuration published via Git

Use the Ib config —config option to clone a Git repository that con-
tains a live system configuration. If you would like to base your
configuration on one maintained by the Debian Live Project, look
at https://salsa.debian.org/live-team,/ for the repository named live-images
in the category Subgroups and projects. This repository contains
the configurations for the live systems prebuilt images.

For example, to build a standard image, use the live-images reposi-
tory as follows:

tao suit your needs. For example, the unofficial non-free prebuilt
images are made by simply adding —archive-areas main contrib non-
free.

You may optionally define a shortcut in your Git configuration by
adding the following to your $~-HOME"/.gitconfig:

[url ”https://salsa.debian.org/live -team /”]
insteadOf = lso:

This enables you to use lso: anywhere you need to specify the
address of a salsa.debian.org git repository. If you also drop the
optional .git suffix, starting a new image using this configuration is
as easy as:

$ Ib config --config lso:live -images::debian

$ mkdir live -images && cd live -images

$ 1b config --config https://salsa.debian.org/live -team/live -+
images. git :: debian

$ cd images/standard

Edit auto/config and any other things you need in the config tree

Cloning the entire live-images repository pulls the configurations
used for several images. If you feel like building a different image
after you have finished with the first one, change to another di-
rectory and again and optionally, make any changes to suit your
needs.

In any case, remember that every time you will have to build the
image as superuser: lb build

26

347

348

349

350

352

https://salsa.debian.org/live-team/

353

354

355

356

357

358

Customizing contents

7. Customization overview

This chapter gives an overview of the various ways in which you
may customize a live system.

7.1 Build time vs. boot time configuration

Live system configuration options are divided into build-time op-
tions which are options that are applied at build time and boot-time
options which are applied at boot time. Boot-time options are fur-
ther divided into those occurring early in the boot, applied by the
live-boot package, and those that happen later in the boot, applied
by live-config. Any boot-time option may be modified by the user by
specifying it at the boot prompt. The image may also be built with
default boot parameters so users can normally just boot directly to
the live system without specifying any options when all of the de-
faults are suitable. In particular, the argument to 1b —bootappend-
live consists of any default kernel command line options for the Live
system, such as persistence, keyboard layouts, or timezone. See
Customizing locale and language, for example.

Build-time configuration options are described in the 1b config man
page. Boot-time options are described in the man pages for live-boot
and live-config. Although the live-boot and live-config packages are
installed within the live system you are building, it is recommended
that you also install them on your build system for easy reference
when you are working on your configuration. It is safe to do so, as
none of the scripts contained within them are executed unless the
system is configured as a live system.

7.2 Stages of the build

The build process is divided into stages, with various customizations
applied in sequence in each. The first stage to run is the bootstrap
stage. This is the initial phase of populating the chroot directory
with packages to make a barebones Debian system. This is followed
by the chroot stage, which completes the construction of chroot
directory, populating it with all of the packages listed in the con-
figuration, along with any other materials. Most customization of
content occurs in this stage. The final stage of preparing the live
image is the binary stage, which builds a bootable image, using the
contents of the chroot directory to construct the root filesystem for
the Live system, and including the installer and any other additional
material on the target medium outside of the Live system’s filesys-
tem. After the live image is built, if enabled, the source tarball is
built in the source stage.

Within each of these stages, there is a particular sequence in which
commands are applied. These are arranged in such a way as to
ensure customizations can be layered in a reasonable fashion. For
example, within the chroot stage, preseeds are applied before any
packages are installed, packages are installed before any locally in-
cluded files are copied, and hooks are run later, after all of the
materials are in place.

7.3 Supplement 1b config with files

Although 1b config creates a skeletal configuration in the config/
directory, to accomplish your goals, you may need to provide ad-
ditional files in subdirectories of config/. Depending on where the
files are stored in the configuration, they may be copied into the
live system’s filesystem or into the binary image filesystem, or may
provide build-time configurations of the system that would be cum-
bersome to pass as command-line options. You may include things

27

361

362

363

364

365

Debian Live Manual

such as custom lists of packages, custom artwork, or hook scripts
to run either at build time or at boot time, boosting the already
considerable flexibility of debian-live with code of your own.

7.4 Customization tasks

The following chapters are organized by the kinds of customization
task users typically perform: Customizing package installation, Cus-
tomizing contents and Customizing locale and language cover just
a few of the things you might want to do.

28

366

367

368

369

370

371

Customizing package
installation

8. Customizing package installation

Perhaps the most basic customization of a live system is the selec-
tion of packages to be included in the image. This chapter guides
you through the various build-time options to customize live-build’s
installation of packages. The broadest choices influencing which
packages are available to install in the image are the distribution
and archive areas. To ensure decent download speeds, you should
choose a nearby distribution mirror. You can also add your own
repositories for backports, experimental or custom packages, or in-
clude packages directly as files. You can define lists of packages,
including metapackages which will install many related packages at
once, such as packages for a particular desktop or language. Finally,
a number of options give some control over apt, or if you prefer,
aptitude, at build time when packages are installed. You may find
these handy if you use a proxy, want to disable installation of rec-
ommended packages to save space, or need to control which versions
of packages are installed via APT pinning, to name a few possibili-
ties.

8.1 Package sources
8.1.1 Distribution, archive areas and mode

The distribution you choose has the broadest impact on which pack-
ages are available to include in your live image. Specify the code-
name, which defaults to testing . Any current distribution carried
in the archive may be specified by its codename here. (See Terms

for more details.) The —distribution option not only influences the
source of packages within the archive, but also instructs live-build
to enable other sources.

For example, to build against the stable release, with security,
updates (enabled per default) and additionally proposed-updates
and backports, specify:

$ 1b config --distribution stable --proposed-updates true --<+
backports true

Similarly, for the unstable release, sid , which has neither security
nor updates, specify:

$ Ib config --distribution sid

Within the distribution archive, archive areas are major divisions of
the archive. In Debian, these are main, contrib and non-free. Only
main contains software that is part of the Debian distribution, hence
that is the default. One or more values may be specified, e.g.

$ Ib config --archive-areas ”"main contrib non-free”

Experimental support is available for some Debian derivatives
through a —mode option. By default, this option is set to debian only
if you are building on a Debian or on an unknown system. If 1b con-
fig is invoked on any of the supported derivatives, it will default to
create an image of that derivative. If 1b config is run in e.g. ubuntu
mode, the distribution names and archive areas for the specified
derivative are supported instead of the ones for Debian. The mode
also modifies live-build behaviour to suit the derivatives.

Note: The projects for whom these modes were added are primarily

29

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Debian Live Manual

responsible for supporting users of these options. The Debiansksive
Project, in turn, provides development support on a best-effort basis
only, based on feedback from the derivative projects as we do not
develop or support these derivatives ourselves.

8.1.2 Distribution mirrors

The Debian archive is replicated across a large network of mirrors
around the world so that people in each region can choose a nearby
mirror for best download speed. Each of the —mirror-* options gov-
erns which distribution mirror is used at various stages of the build.
Recall from Stages of the build that the bootstrap stage is when the
chroot is initially populated by debootstrap with a minimal system,
and the chroot stage is when the chroot used to construct the live
system’s filesystem is built. Thus, the corresponding mirror switches
are used for those stages, and later, in the binary stage, the —mirror-
binary and —mirror-binary-security values are used, superseding any
mirrors used in an earlier stage.

8.1.3 Distribution mirrors used at build time

To set the distribution mirrors used at build time to point at a local
mirror, it is sufficient to set —mirror-bootstrap and —mirror-chroot-
security as follows.

8.1.4 Distribution mirrors used at run time

The —mirror-binary™ options govern the distribution mirrors placed
in the binary image. These may be used to install additional
packages while running the live system. The defaults employ
deb.debian.org, a service that chooses a geographically close mirror
based, among other things, on the user’s IP family and the avail-
ability of the mirrors. This is a suitable choice when you cannot
predict which mirror will be best for all of your users. Or you may
specify your own values as shown in the example below. An image
built from this configuration would only be suitable for users on a
network where mirror is reachable.

$ 1b config --mirror-binary http://mirror/debian/ “
--mirror - binary - security http://mirror/debian -+
security/ *
--mirror - binary - backports http://mirror/debian -+
backports/

$ lb config --mirror-bootstrap http://localhost/debian/ *
--mirror - chroot -security http://localhost/debian -+
security /

The chroot mirror, specified by —mirror-chroot, defaults to the —
mirror-bootstrap value.

8.1.5 Additional repositories

You may add more repositories, broadening your package choices be-
yond what is available in your target distribution. These may be, for
example, for backports, experimental or custom packages. To config-
ure additional repositories, create config/archives/your-repository.-
list.chroot, and/or config/archives/your-repository.list.binary files.
As with the —mirror-* options, these govern the repositories used
in the chroot stage when building the image, and in the binary
stage, i.e. for use when running the live system.

For example, config/archives/live.list.chroot allows you to install
packages from the debian-live snapshot repository at live system
build time.

30

387

388

389

390

391

392

393

394

395

396

397

398

399

Debian Live Manual

400

deb http://debian-live.alioth.debian.org/ sid-snapshots main <
contrib non- free

If you add the same line to config/archives/live.list.binary, the repos-
itory will be added to your live system’s /etc/apt/sources.list.d/
directory.

If such files exist, they will be picked up automatically.

You should also put the ASCII-armored GPG key used to sign the
repository into config/archives/your-repository.key.—binary,chroot”
files.

Should you need custom APT pinning, such APT preferences
snippets can be placed in config/archives/your-repository.pref.-
—binary,chroot” files and will be automatically added to your live
system’s /etc/apt/preferences.d/ directory.

Similarly, if you need custom APT AUTH.CONF(5) authentication
configuration, this can be placed in config/archives/your-repository.-
auth.—binary,chroot” files and will be automatically added to your
live system’s /etc/apt/auth.conf.d/ directory

8.2 Choosing packages to install

There are a number of ways to choose which packages live-build will
install in your image, covering a variety of different needs. You can
simply name individual packages to install in a package list. You can
also use metapackages in those lists, or select them using package
control file fields. And finally, you may place package files in your
config/ tree, which is well suited to testing of new or experimental
packages before they are available from a repository.

8.2.1 Package lists

Package lists are a powerful way of expressing which packages should
be installed. The list syntax supports conditional sections which
makes it easy to build lists and adapt them for use in multiple
configurations. Package names may also be injected into the list
using shell helpers at build time.

Note: The behaviour of live-build when specifying a package that
does not exist is determined by your choice of APT utility. See
Choosing apt or aptitude for more details.

8.2.2 Using metapackages

The simplest way to populate your package list is to use a task
metapackage maintained by your distribution. For example:

$ 1b config
$ echo task-gnome-desktop ; config/package-lists /desktop.list+
.chroot

This supersedes the older predefined list method supported in live-
build 2.x. Unlike predefined lists, task metapackages are not specific
to the Live System project. Instead, they are maintained by special-
ist working groups within the distribution and therefore reflect the
consensus of each group about which packages best serve the needs
of the intended users. They also cover a much broader range of use
cases than the predefined lists they replace.

All task metapackages are prefixed task-, so a quick way to deter-
mine which are available (though it may contain a handful of false
hits that match the name but aren’t metapackages) is to match on
the package name with:

31

401

402

404

405

406

407

408

409

410

411

412

413

414

415

Debian Live Manual

$ apt-cache search --names-only “task-

In addition to these, you will find other metapackages with various
purposes. Some are subsets of broader task packages, like gnome-
core, while others are individual specialized parts of a Debian Pure
Blend, such as the education-* metapackages. To list all metapack-
ages in the archive, install the debtags package and list all packages
with the role::metapackage tag as follows:

$ debtags search role:: metapackage

8.2.3 Local package lists

Whether you list metapackages, individual packages, or a combi-
nation of both, all local package lists are stored in config/package-
lists/. Since more than one list can be used, this lends itself well to
modular designs. For example, you may decide to devote one list
to a particular choice of desktop, another to a collection of related
packages that might as easily be used on top of a different desktop.
This allows you to experiment with different combinations of sets
of packages with a minimum of fuss, sharing common lists between
different live image projects.

Package lists that exist in this directory need to have a .list suffix in
order to be processed, and then an additional stage suffix, .chroot
or .binary to indicate which stage the list is for.

The packages in the .list.chroot’install list are present both in the
live system and in the installed system.

Note: If you don’t specify the stage suffix, the list will be used for
both stages. Normally, you want to specify .list.chroot so that the

packages will only be installed in the live filesystem and not have
an extra copy of the .deb placed on the medium.

8.2.4 Local binary package lists

To make a binary stage list, place a file suffixed with .list.binary
in config/package-lists/. These packages are not installed in the
live filesystem, but are included on the live medium under pool/.
You would typically use such a list with one of the non-live installer
variants. As mentioned above, if you want this list to be the same
as your chroot stage list, simply use the .list suffix by itself.

8.2.5 Generated package lists

It sometimes happens that the best way to compose a list is to gen-
erate it with a script. Any line starting with an exclamation point
indicates a command to be executed within the chroot when the im-
age is built. For example, one might include the line ! grep-aptavail
-n -sPackage -FPriority standard —sort in a package list to produce
a sorted list of available packages with Priority: standard.

In fact, selecting packages with the grep-aptavail command (from
the dctrl-tools package) is so useful that live-build provides a Pack-
ages helper script as a convenience. This script takes two arguments:
field and pattern. Thus, you can create a list with the following con-
tents:

$ 1b config
$ echo '! Packages Priority standard'
standard . list .chroot

;, config/package-lists/«

32

416

417

418

419

420

421

423

424

425

426

427

428

429

430

Debian Live Manual

8.2.6 Using conditionals inside package lists

Any of the live-build configuration variables stored in config/* (mi-
nus the LB prefix) may be used in conditional statements in pack-
age lists. Generally, this means any lb config option uppercased and
with dashes changed to underscores. But in practice, it is only the
ones that influence package selection that make sense, such as DIS-
TRIBUTION, ARCHITECTURES or ARCHIVE'AREAS.

For example, to install ia32-libs if the —architectures amd64 is spec-
ified:

#if ARCHITECTURES amd64
ia32 - libs
#endif

You may test for any one of a number of values, e.g. to install
memtest86+ if either —architectures 1386 or —architectures amd64 is
specified:

#if ARCHITECTURES i386 amd64
memtest86+
#endif

You may also test against variables that may contain more than one
value, e.g. to install vrms if either contrib or non-free is specified
via —archive-areas:

#if ARCHIVE' AREAS contrib non-free
vrms
#endif

The nesting of conditionals is not supported.

4%2.7 Removing packages at install time

You can list packages in files with .list.chroot’live and .list.chroot’in-
stall suffixes inside the config/package-lists directory. If both a live
and an install list exist, the packages in the .list.chroot live list are
removed with a hook after the installation (if the user uses the in-
staller). The packages in the .list.chroot install list are present both
in the live system and in the installed system. This is a special tweak
for the installer and may be useful if you have —debian-installer live
set in your config, and wish to remove live system-specific packages
at install time.

8.2.8 Summary

The table below shows which configuration files are required to
achieve the desired availability of the package.

X.chroot X.chroot'- X
live
Package is Yes Yes Yes No
installed in
the live sys-
tem
Package is No Yes No N/A
removed
after in-
stalling the
live system
Package N/A N/A
can be
installed
from the
live system
without
network

X.binary

Yes *1 Yes

*1: Because the installer needs this package

X = config/package-lists/custom name.list

33

431

432

433

434

436

437

438

439

440

441

442

Debian Live Manual

8.2.9 Desktop and language tasks 443

Desktop and language tasks are special cases that need some ex-
tra planning and configuration. Live images are different from De-
bian Installer images in this respect. In the Debian Installer, if the
medium was prepared for a particular desktop environment flavour,
the corresponding task will be automatically installed. Thus, there
are internal gnome-desktop, kde-desktop, Ixde-desktop and xfce-
desktop tasks, none of which are offered in tasksel’s menu. Likewise,
there are no menu entries for tasks for languages, but the user’s
language choice during the install influences the selection of corre-
sponding language tasks.

When developing a desktop live image, the image typically boots
directly to a working desktop, the choices of both desktop and de-
fault language having been made at build time, not at run time as
in the case of the Debian Installer. That’s not to say that a live
image couldn’t be built to support multiple desktops or multiple
languages and offer the user a choice, but that is not live-build’s
default behaviour.

Because there is no provision made automatically for language
tasks, which include such things as language-specific fonts and input-
method packages, if you want them, you need to specify them in your
configuration. For example, a GNOME desktop image containing
support for German might include these task metapackages:

8.2.10 Kernel flavour and version

One or more kernel flavours will be included in your image by
default, depending on the architecture. You can choose different
flavours via the —linux-flavours option. Each flavour is suffixed to
the default stub linux-image to form each metapackage name which
in turn depends on an exact kernel package to be included in your
image.

Thus by default, an amd64 architecture image will include the linux-
image-amd64 flavour metapackage, and an 1386 architecture image
will include the linux-image-586 metapackage.

When more than one kernel package version is available in your
configured archives, you can specify a different kernel package name
stub with the —linux-packages option. For example, supposing you
are building an amd64 architecture image and add the experimen-
tal archive for testing purposes so you can install the linux-image-
3.18.0-trunk-amd64 kernel. You would configure that image as fol-
lows:

$ Ib config --linux -packages linux -image-3.18.0-trunk
$ echo ”deb http://deb.debian.org/debian/ experimental main” <
., config/archives/experimental.list .chroot

$ 1b config

$ echo ”task -gnome-desktop task-laptop” ;; config/package-+
lists /my. list .chroot

$ echo ”task-german task-german-desktop task -german-gnome-<+>
desktop” ;i config/package-lists /my.list.chroot

8.2.11 Custom kernels

You can build and include your own custom kernels, so long as
they are integrated within the Debian package management system.
The live-build system does not support kernels not built as .deb
packages.

The proper and recommended way to deploy your own kernel pack-
ages is to follow the instructions in the kernel-handbook. Remember

34

444

445

446

447

448

449

450

451

452

458

Debian Live Manual

to modify the ABI and flavour suffixes appropriately, then include
a complete build of the linux and matching linux-latest packages in
your repository.

If you opt to build the kernel packages without the matching meta-
packages, you need to specify an appropriate —linux-packages stub as
discussed in Kernel flavour and version. As we explain in Installing
modified or third-party packages, it is best if you include your cus-
tom kernel packages in your own repository, though the alternatives
discussed in that section work as well.

It is beyond the scope of this document to give advice on how
to customize your kernel. However, you must at least ensure your
configuration satisfies these minimum requirements:

Use an initial ramdisk.
Include the union filesystem module (i.e. usually OverlayFS).

Include any other filesystem modules required by your configura-
tion (i.e. usually squashfs).

8.3 Installing modified or third-party packages

While it is against the philosophy of a live system, it may some-
times be necessary to build a live system with modified versions of
packages that are in the Debian repository. This may be to modify
or support additional features, languages and branding, or even to
remove elements of existing packages that are undesirable. Similarly,
third-party packages may be used to add bespoke and/or proprietary
functionality.

This section does not cover advice regarding building or
maintaining modified packages. Joachim Breitner’s ‘How to
fork privately’ method from http://www.joachim-breitner.de/blog/archives/

282-How-to-fork-privately.html may be of interest, however. The cre-
ation of bespoke packages is covered in the Debian New Main-
tainers’ Guide at https://www.debian.org/doc/manuals/maint-guide/ and else-
where.

There are two ways of installing modified custom packages:
packages.chroot
Using a custom APT repository

Using packages.chroot is simpler to achieve and useful for one-off
customizations but has a number of drawbacks, while using a custom
APT repository is more time-consuming to set up.

8.3.1 Using packages.chroot to install custom packages

To install a custom package, simply copy it to the config/packages.-
chroot/ directory. Packages that are inside this directory will be
automatically installed into the live system during build - you do
not need to specify them elsewhere.

Packages must be named in the prescribed way. One simple way
to do this is to use dpkg-name.

Using packages.chroot for installation of custom packages has dis-
advantages:

It is not possible to use secure APT.

You must install all appropriate packages in the config/packages.-
chroot/ directory.

It does not lend itself to storing live system configurations in
revision control.

8.3.2 Using an APT repository to install custom packages

Unlike using packages.chroot, when using a custom APT reposi-

35

460

461

462

464

466

467

468

470

471

http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
https://www.debian.org/doc/manuals/maint-guide/

472

473

474

475

476

477

478

480

481

Debian Live Manual

tory you must ensure that you specify the packages elsewheressBSee
Choosing packages to install for details.

While it may seem unnecessary effort to create an APT repository
to install custom packages, the infrastructure can be easily re-used
at a later date to offer updates of the modified packages.

The APT repository does not necessarily need to be online, you can
use a local repository instead. However, in both cases the repository
needs to be signed.

Example:

$ gpg --armor --output config/archives/custom'repo.gpg.key$—<«
EXTENSION” --export-options export-minimal --export $—<«
SIGNING'’KEY "

$ cat jj EOF ; config/archives/custom 'repo.list$-EXTENSION”

deb [signed -by=/etc/apt/trusted.gpg.d/custom repo.gpg.key$—<«
EXTENSION ”. asc] $-URI” $-SUITE” $-COMPONENTS”

EOF

$ echo ”$-PACKAGESFROMREPOSITORY "”
custom'repo . list$ —EXTENSION”

{ config/package-lists /<

Where:
$—EXTENSION": the optional stage suffix, see the summary
$-SIGNING KEY": the keyID of the signature of the repository

$-—URI”: the URI to
http://deb.debian.org/debian/ or
repository

the repository, e.g.
file://$(pwd) /my local -

$-SUITE": the suite within the repository, e.g. my-debian-based-
distro

$-COMPONENTS": the components within the repository, e.g.
main

$-PACKAGES FROM REPOSITORY ": the names of the pack-
ages to install (dependencies will automatically be installed as
well)

8.3.3 Custom packages and APT

live-build uses APT to install all packages into the live system so
will therefore inherit behaviours from this program. One relevant
example is that (assuming a default configuration) given a package
available in two different repositories with different version numbers,
APT will elect to install the package with the higher version num-
ber.

Because of this, you may wish to increment the version number in
your custom packages’ debian/changelog files to ensure that your
modified version is installed over one in the official Debian reposito-
ries. This may also be achieved by altering the live system’s APT
pinning preferences - see APT pinning for more information.

8.4 Configuring APT at build time

You can configure APT through a number of options applied only at
build time. (APT configuration used in the running live system may
be configured in the normal way for live system contents, that is, by
including the appropriate configurations through config/includes.-
chroot/.) For a complete list, look for options starting with apt in
the 1b’config man page.

8.4.1 Choosing apt or aptitude

You can elect to use either apt or aptitude when installing packages
at build time. Which utility is used is governed by the —apt argu-
ment to 1b config. Choose the method implementing the preferred

36

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Debian Live Manual

behaviour for package installation, the notable difference being how
missing packages are handled.

apt: With this method, if a missing package is specified, the
package installation will fail. This is the default setting.

aptitude: With this method, if a missing package is specified, the
package installation will succeed.

8.4.2 Using a proxy with APT

One commonly required APT configuration is to deal with building
an image behind a proxy. You may specify your APT proxy with
the —apt-http-proxy option as needed, e.g.

for instance, the user must apt-get update first to create those in-
dices.

If you find the installation of recommended packages bloats your
image too much, provided you are prepared to deal with the con-
sequences discussed below, you may disable that default option of
APT with:

$ 1b config --apt-recommends false

$ lb config --apt-http-proxy http://proxy/

8.4.3 Tweaking APT to save space

You may find yourself needing to save some space on the image
medium, in which case one or the other or both of the following
options may be of interest.

If you don’t want to include APT indices in the image, you can omit
those with:

The most important consequence of turning off recommends is
that live-boot and live-config themselves recommend some packages
that provide important functionality used by most Live configura-
tions.

Two packages which you most probably will want to add again
are:

user-setup which live-config recommends is used to create the live
user.

sudo which live-config recommends is used to obtain root access
in the live-image, which is needed to shutdown the computer.

$ Ib config --apt-recommends false
$ echo ”user-setup sudo” ; config/package-lists /recommends.<>
list .chroot

$ Ib config --apt-indices false

This will not influence the entries in /etc/apt/sources.list, but
merely whether /var/lib/apt contains the indices files or not. The
tradeoff is that APT needs those indices in order to operate in the
live system, so before performing apt-cache search or apt-get install,

In all but the most exceptional circumstances you need to add back
at least some of these recommends to your package lists or else your
image will not work as expected, if at all. Look at the recommended
packages for each of the live-* packages included in your build and
if you are not certain you can omit them, add them back into your
package lists.

37

500

501

502

503

504

505

506

507

509

511

512

513

Debian Live Manual

The more general consequence is that if you don’t install recom-
mended packages for any given package, that is, packages that would
be found together with this one in all but unusual installations (APT
pinning.

8.4.4 Passing options to apt or aptitude

If there is not a 1b config option to alter APT’s behaviour in the
way you need, use —apt-options or —aptitude-options to pass any
options through to your configured APT tool. See the man pages
for apt and aptitude for details. Note that both options have de-
fault values that you will need to retain in addition to any overrides
you may provide. So, for example, suppose you have included some-
thing from snapshot.debian.org for testing purposes and want to
specify Acquire::Check-Valid-Until=false to make APT happy with
the stale Release file, you would do so as per the following example,
appending the new option after the default value —yes:

s8%4.5 APT pinning

For background, please first read the apt preferences(5) man page.
APT pinning can be configured either for build time, or else for
run time. For the former, create config/archives/*.pref, config/-
archives/*.pref.chroot, and config/apt/preferences. For the latter,
create config/includes.chroot/etc/apt/preferences.

Let’s say you are building a trixie live system but need all the live
packages that end up in the binary image to be installed from sid at
build time. You need to add sid to your APT sources and pin the
live packages from it higher, but all other packages from it lower,
than the default priority. Thus, only the packages you want are
installed from sid at build time and all others are taken from the
target system distribution, trixie . The following will accomplish

this:

$ 1b config --apt-options ”--yes -oAcquire::Check-Valid - Until«

=false”

Please check the man pages to fully understand these options and
when to use them. This is an example only and should not be con-
strued as advice to configure your image this way. This option would
not be appropriate for, say, a final release of a live image.

For more complicated APT configurations involving apt.conf options
you might want to create a config/apt/apt.conf file instead. See also
the other apt-* options for a few convenient shortcuts for frequently
needed options.

$ echo ”deb http://mirror/debian/ sid main” ; config/archives<«
/sid.list .chroot

$ cat (; config/archives/sid.pref.chroot jj; EOF
Package: live -*
Pin: release n=sid

Pin- Priority: 600
Package: *

Pin: release n=sid
Pin- Priority: 1
EOF

Negative pin priorities will prevent a package from being installed,
as in the case where you do not want a package that is recom-
mended by another package. Suppose you are building an LXDE
image using task-lxde-desktop in config/package-lists/desktop.list.-
chroot, but don’t want the user prompted to store wifi passwords in
the keyring. This metapackage depends on lxde-core, which recom-
mends gksu, which in turn recommends gnome-keyring. So you want

38

515

516

517

Debian Live Manual

to omit the recommended gnome-keyring package. This can be done
by adding the following stanza to config/apt/preferences:

Package: gnome-keyring
Pin: version *
Pin- Priority: -1

520

521

522

523

525

526

527

Customizing contents

9. Customizing contents

This chapter discusses fine-tuning customization of the live system
contents beyond merely choosing which packages to include. In-
cludes allow you to add or replace arbitrary files in your live system
image, hooks allow you to execute arbitrary commands at different
stages of the build and at boot time, and preseeding allows you to
configure packages when they are installed by supplying answers to
debconf questions.

9.1 Includes

While ideally a live system would include files entirely provided
by unmodified packages, it is sometimes convenient to provide or
modify some content by means of files. Using includes, it is possible
to add (or replace) arbitrary files in your live system image. live-
build provides two mechanisms for using them:

Chroot local includes: These allow you to add or replace files to
the chroot/Live filesystem. Please see Live/chroot local includes
for more information.

Binary local includes: These allow you to add or replace files
in the binary image. Please see Binary local includes for more
information.

Please see Terms for more information about the distinction between
the Live and binary images.

9.1.1 Live/chroot local includes

Chroot local includes can be used to add or replace files in the
chroot /Live filesystem so that they may be used in the Live system.
A typical use is to populate the skeleton user directory (/etc/skel)
used by the Live system to create the live user’s home directory.
Another is to supply configuration files that can be simply added or
replaced in the image without processing; see Chroot local hooks if
processing is needed.

To include files, simply add them to your config/includes.chroot
directory. This directory corresponds to the root directory / of the
live system. For example, to add a file /var/www/index.html in the
live system, use:

$ mkdir -p config/includes.chroot/var/www
$ cp /path/to/my/index.html config/includes.chroot/var/www

Your configuration will then have the following layout:

-- config
[..]
——-- includes.chroot
— ‘-- var
T oo WwwWw
— ‘-- index.html

[...]

Chroot local includes are installed after package installation so that
files installed by packages are overwritten.

9.1.2 Binary local includes

To include material such as documentation or videos on the medium
filesystem so that it is accessible immediately upon insertion of the

40

529

530

532

533

534

535

536

537

538

539

540

541

Debian Live Manual

medium without booting the Live system, you can use binary local provided in /usr/share/doc/live-build/examples/hooks which you

includes. This works in a similar fashion to chroot local includes.
For example, suppose the files ~ /video’demo.* are demo videos of the
live system described by and linked to by an HTML index page. Sim-
ply copy the material to config/includes.binary/ as follows:

$ cp “/video'demo.* config/includes.binary/

These files will now appear in the root directory of the live
medium.

9.2 Hooks

Hooks allow commands to be run in the chroot and binary stages of
the build in order to customize the image. Depending on whether
you are building a live image or a regular system image you have
to place your hooks in config/hooks/live or config/hooks/normal
respectively. These are frequently referred to as local hooks because
they are executed inside the build environment.

There are also boot-time hooks that allow you to run commands
once the image has already been built, during the boot pro-
cess.

9.2.1 Chroot local hooks

To run commands in the chroot stage, create a hook script with a
.hook.chroot suffix containing the commands either in the config/-
hooks/live or config/hooks/normal directories. The hook will run
in the chroot after the rest of your chroot configuration has been
applied, so remember to ensure your configuration includes all pack-
ages and files your hook needs in order to run. See the example
chroot hook scripts for various common chroot customization tasks

can copy or symlink to use them in your own configuration.

9.2.2 Binary local hooks

To run commands in the binary stage, create a hook script with a
.hook.binary suffix containing the commands either in the config/-
hooks/live or config/hooks/normal directories. The hook will run af-
ter all other binary commands are run, but before binary’checksums,
the very last binary command. The commands in your hook do not
run in the chroot, so take care not to modify any files outside of the
build tree, or you may damage your build system! See the example
binary hook scripts for various common binary customization tasks
provided in /usr/share/doc/live-build/examples/hooks which you
can copy or symlink to use them in your own configuration.

9.2.3 Boot-time hooks

To execute commands at boot time, you can supply live-config hooks
as explained in the Customization section of its man page. Exam-
ine live-config’s own hooks provided in /lib/live/config/, noting the
sequence numbers. Then provide your own hook prefixed with an
appropriate sequence number, either as a chroot local include in
config/includes.chroot/lib/live/config/, or as a custom package as
discussed in Installing modified or third-party packages.

9.3 Preseeding Debconf questions

Files in the config/preseed/ directory suffixed with .cfg followed by
the stage (.chroot or .binary) are considered to be debconf preseed
files and are installed by live-build using debconf-set-selections dur-
ing the corresponding stage.

41

544

545

546

547

548

549

Debian Live Manual

550 For more information about debconf, please see debconf(7) in the
debconf package.

ot
a

1

552

554

555

557

558

559

Customizing run time
behaviours

10. Customizing run time behaviours

All configuration that is done during run time is done by live-config.
Here are some of the most common options of live-config that users
are interested in. A full list of all possibilities can be found in the
man page of live-config.

10.1 Customizing the live user

One important consideration is that the live user is created by live-
boot at boot time, not by live-build at build time. This not only
influences where materials relating to the live user are introduced in
your build, as discussed in Live/chroot local includes, but also any
groups and permissions associated with the live user.

You can specify additional groups that the live user will belong
to by using any of the possibilities to configure live-config. For
example, to add the live user to the fuse group, you can either add
the following file in config/includes.chroot/etc/live/config.conf.d/-
10-user-setup.conf:

default password live. If you want to do that for any reason, you
can easily achieve it as follows:

To change the default username you can simply specify it in your
config:

$ 1b config --bootappend-live ”"boot=live components username=<—
live - user”

One possible way of changing the default password is by means of a
hook as described in Boot-time hooks. In order to do that you can
use the passwd hook from /usr/share/doc/live-config/examples/-
hooks, prefix it accordingly (e.g. 2000-passwd) and add it to config/-
includes.chroot /lib/live/config/

10.2 Customizing locale and language

When the live system boots, language is involved in two steps:
the locale generation
setting the keyboard configuration

The default locale when building a Live system is locales=en'-
US.UTF-8. To define the locale that should be generated, use
the locales parameter in the —bootappend-live option of lb config,

e.g.

LIVE'USER' DEFAULT'GROUPS="audio cdrom dip floppy video <+
plugdev netdev powerdev scanner bluetooth fuse”

$ 1b config --bootappend-live ”boot=live components locales=+«

de’CH.UTF-8”

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,pliddédsiplet teoajoswangebs epentidd ast aatdyfnse-delimited list.

as a boot parameter.

It is also possible to change the default username user and the

This parameter, as well as the keyboard configuration parameters
indicated below, can also be used at the kernel command line. You

43

561

562

564

565

566

567

568

569

570

571

572

573

574

575

Debian Live Manual

can specify a locale by language country (in which case the default
encoding is used) or the full language country.encoding word. A
list of supported locales and the encoding for each can be found in

/usr/share/i18n/SUPPORTED.

Both the console and X keyboard configuration are performed by
live-config using the console-setup package. To configure them,
use the keyboard-layouts, keyboard-variants, keyboard-options and
keyboard-model boot parameters via the —bootappend-live option.
Valid options for these can be found in /usr/share/X11/xkb/rules/-
base.lst. To find layouts and variants for a given language, try
searching for the English name of the language and/or the coun-
try where the language is spoken, e.g:

However, for very specific use cases, you may wish to include other
parameters. For example, to set up a French system with a French-
Dvorak layout (called Bepo) on a TypeMatrix EZ-Reach 2030 USB
keyboard, use:

“

$ 1b config --bootappend-live
”boot=live components locales=fr'FR.UTF-8 keyboard -+
layouts=fr keyboard-variants=bepo keyboard-model=
tm2030usb”

$ egrep -i '("!—german.*switzerland)' /usr/share/X11/xkb/<
rules /base. st

! model

! layout
ch German (Switzerland)

! variant
legacy ch: German (Switzerland , legacy)
de'nodeadkeys ch: German (Switzerland, eliminate dead <«

keys)

de'sundeadkeys ch: German (Switzerland, Sun dead keys)
de'mac ch: German (Switzerland , Macintosh)

! option

Multiple values may be specified as comma-delimited lists for each
of the keyboard-* options, with the exception of keyboard-model,
which accepts only one value. Please see the keyboard(5) man page
for details and examples of XKBMODEL, XKBLAYOUT, XKB-
VARIANT and XKBOPTIONS variables. If multiple keyboard-
variants values are given, they will be matched one-to-one with
keyboard-layouts values (see setxkbmap(1) -variant option). Empty
values are allowed; e.g. to define two layouts, the default being US
QWERTY and the other being US Dvorak, use:

Note that each variant lists the layout to which it applies in the
description.

Often, only the layout needs to be configured. For example, to get
the locale files for German and Swiss German keyboard layout in X
use:

«

$ 1b config --bootappend-live
”boot=live components keyboard-layouts=us,us keyboard-<
variants=,dvorak”

$ Ib config --bootappend-live ”boot=live components locales=¢«
de’CH.UTF-8 keyboard-layouts=ch”

10.3 Persistence

A live cd paradigm is a pre-installed system which runs from read-
only media, like a cdrom, where writes and modifications do not
survive reboots of the host hardware which runs it.

A live system is a generalization of this paradigm and thus supports
other media in addition to CDs; but still, in its default behaviour,

44

577

578

580

581

582

583

584

585

586

587

588

589

Debian Live Manual

it should be considered read-only and all the run-time evolutions of
the system are lost at shutdown.

‘Persistence’ is a common name for different kinds of solutions for
saving across reboots some, or all, of this run-time evolution of the
system. To understand how it works it would be handy to know
that even if the system is booted and run from read-only media,
modifications to the files and directories are written on writable
media, typically a ram disk (tmpfs) and ram disks’ data do not
survive reboots.

The data stored on this ramdisk should be saved on a writable
persistent medium like local storage media, a network share or even
a session of a multisession (re)writable CD/DVD. All these media
are supported in live systems in different ways, and all but the last
one require a special boot parameter to be specified at boot time:
persistence.

If the boot parameter persistence is set (and nopersistence is not
set), local storage media (e.g. hard disks, USB drives) will be probed
for persistence volumes during boot. It is possible to restrict which
types of persistence volumes to use by specifying certain boot param-
eters described in the live-boot(7) man page. A persistence volume
is any of the following:

a partition, identified by its GPT name.
a filesystem, identified by its filesystem label.

an image file located on the root of any readable filesystem (even
an NTFS partition of a foreign OS), identified by its filename.

The volume label for overlays must be persistence but it will be
ignored unless it contains in its root a file named persistence.conf
which is used to fully customize the volume’s persistence, this is to
say, specifying the directories that you want to save in your persis-
tence volume after a reboot. See The persistence.conf file for more

details.

Here are some examples of how to prepare a volume to be used for
persistence. It can be, for instance, an ext4 partition on a hard disk
or on a usb key created with, e.g.:

mkfs.ext4 -L persistence /dev/sdbl

See also Using the space left on a USB stick.

If you already have a partition on your device, you could just change
the label with one of the following;:

tune2fs -L persistence /dev/sdbl # for ext2,3,4 filesystems

Here’s an example of how to create an ext4-based image file to be
used for persistence:

$ dd if=/dev/null of=persistence bs=1 count=0 seek=1G # for a<+>
1GB sized image file
$ /sbin/mkfs.ext4d -F persistence

Once the image file is created, as an example, to make /usr persistent
but only saving the changes you make to that directory and not all
the contents of /usr, you can use the union option. If the image file
is located in your home directory, copy it to the root of your hard
drive’s filesystem and mount it in /mnt as follows:

cp persistence /
mount -t ext4 /persistence /mnt

Then, create the persistence.conf file adding content and unmount
the image file.

45

590

591

594

595

597

598

599

601

602

603

604

605

606

Debian Live Manual

echo 7 /usr union”
umount /mnt

(il /mnt/persistence.conf

Now, reboot into your live medium with the boot parameter persis-
tence.

10.3.1 The persistence.conf file

A volume with the label persistence must be configured by means
of the persistence.conf file to make arbitrary directories persistent.
That file, located on the volume’s filesystem root, controls which
directories it makes persistent, and in which way.

How custom overlay mounts are configured is described in full detail
in the persistence.conf(5) man page, but a simple example should
be sufficient for most uses. Let’s say we want to make our home
directory and APT cache persistent in an ext4 filesystem on the
/dev/sdbl partition:

mkfs.ext4d -L persistence /dev/sdbl

mount -t ext4 /dev/sdbl /mnt

echo ”/home” ;; /mnt/persistence.conf

echo ”/var/cache/apt” ;; /mnt/persistence.conf
umount /mnt

Ik

Then we reboot. During the first boot the contents of /home and
/var/cache/apt will be copied into the persistence volume, and from
then on all changes to these directories will live in the persistence
volume. Please note that any paths listed in the persistence.conf file
cannot contain white spaces or the special . and .. path components.
Also, neither /lib, /lib/live (or any of their sub-directories) nor /
can be made persistent using custom mounts. As a workaround for
this limitation you can add / union to your persistence.conf file to
achieve full persistence.

6dd).3.2 Using more than one persistence store

There are different methods of using multiple persistence store for
different use cases. For instance, using several volumes at the same
time or selecting only one, among various, for very specific pur-
poses.

Several different custom overlay volumes (with their own persis-
tence.conf files) can be used at the same time, but if several volumes
make the same directory persistent, only one of them will be used. If
any two mounts are nested (i.e. one is a sub-directory of the other)
the parent will be mounted before the child so no mount will be hid-
den by the other. Nested custom mounts are problematic if they are
listed in the same persistence.conf file. See the persistence.conf(5)
man page for how to handle that case if you really need it (hint: you
usually don’t).

One possible use case: If you wish to store the user data i.e. /home
and the superuser data i.e. /root in different partitions, create two
partitions with the persistence label and add a persistence.conf file
in each one like this, # echo /home | persistence.conf for the first
partition that will save the user’s files and # echo /root j persis-
tence.conf for the second partition which will store the superuser’s
files. Finally, use the persistence boot parameter.

If a user would need multiple persistence store of the same type
for different locations or testing, such as private and work, the boot
parameter persistence-label used in conjunction with the boot pa-
rameter persistence will allow for multiple but unique persistence
media. An example would be if a user wanted to use a persistence
partition labeled private for personal data like browser bookmarks
or other types, they would use the boot parameters: persistence
persistence-label=private. And to store work related data, like doc-
uments, research projects or other types, they would use the boot
parameters: persistence persistence-label=work.

46

607

608

609

610

611

612

613

614

615

616

617

618

619

Debian Live Manual

It is important to remember that each of these volumes, private and
work, also needs a persistence.conf file in its root. The live-boot man
page contains more information about how to use these labels with
legacy names.

10.3.3 Using persistence with encryption

Using the persistence feature means that some sensible data might
get exposed to risk. Especially if the persistent data is stored on a
portable device such as a usb stick or an external hard drive. That
is when encryption comes in handy. Even if the entire procedure
might seem complicated because of the number of steps to be taken,
it is really easy to handle encrypted partitions with live-boot. In
order to use luks , which is the supported encryption type, you
need to install cryptsetup both on the machine you are creating the
encrypted partition with and also in the live system you are going
to use the encrypted persistent partition with.

To install cryptsetup on your machine:

already anticipated this step and added the boot parameters follow-
ing the usual procedure:

$ Ib config --bootappend-live ”boot=live components <«
persistence persistence -encryption=luks”

apt-get install cryptsetup

To install cryptsetup in your live system, add it to your package-
lists:

$ 1b config
$ echo ”cryptsetup cryptsetup-initramfs” ; config/package-+
lists /encryption.list.chroot

Once you have your live system with cryptsetup, you basically only
need to create a new partition, encrypt it and boot with the persis-
tence and persistence-encryption=luks parameters. We could have

Let’s go into the details for all of those who are not familiar with
encryption. In the following example we are going to use a partition
on a usb stick which corresponds to /dev/sdc2. Please be warned
that you need to determine which partition is the one you are going
to use in your specific case.

The first step is plugging in your usb stick and determine which
device it is. The recommended method of listing devices in live-
manual is using Is -1 /dev/disk/by-id. After that, create a new
partition and then, encrypt it with a passphrase as follows:

‘# cryptsetup --verify - passphrase luksFormat /dev/sdc2

Then open the luks partition in the virtual device mapper. Use any

‘ name you like. We use live here as an example:

cryptsetup luksOpen /dev/sdc2 live

The next step is filling the device with zeros before creating the
filesystem:

dd if=/dev/zero of=/dev/mapper/live

Now, we are ready to create the filesystem. Notice that we are
adding the label persistence so that the device is mounted as persis-
tence store at boot time.

47

620

621

622

623

624

625

627

628

629

630

631

632

633

634

635

636

637

638

Debian Live Manual

‘# mkfs.ext4d -L persistence /dev/mapper/live

To continue with our setup, we need to mount the device, for exam-
ple in /mnt.

‘# mount /dev/mapper/live /mnt

And create the persistence.conf file in the root of the partition. This
is, as explained before, strictly necessary. See The persistence.conf
file.

‘# echo ”/ union” ; /mnt/persistence.conf ‘

Then unmount the mount point:

‘# umount /mnt ‘

And optionally, although it might be a good way of securing the data
we have just added to the partition, we can close the device:

cryptsetup luksClose live

Let’s summarize the process. So far, we have created an encryption
capable live system, which can be copied to a usb stick as explained
in Copying an ISO hybrid image to a USB stick. We have also
created an encrypted partition, which can be located in the same
usb stick to carry it around and we have configured the encrypted
partition to be used as persistence store. So now, we only need to
boot the live system. At boot time, live-boot will prompt us for the
passphrase and will mount the encrypted partition to be used for
persistence.

48

639

640

641

642

643

644

645

646

647

Customizing the binary image

11. Customizing the binary image

11.1 Bootloaders

live-build uses syslinux and some of its derivatives (depending on
the image type) as bootloaders by default. They can be easily cus-
tomized to suit your needs.

In order to use a full theme, copy /usr/share/live/build /bootloaders
into config/bootloaders and edit the files in there. If you do not want
to bother modifying all supported bootloader configurations, only
providing a local customized copy of one of the bootloaders, e.g.
isolinux in config/bootloaders/isolinux is enough too, depending
on your use case.

When modifying one of the default themes, if you want to use a
personalized background image that will be displayed together with
the boot menu, add a splash.png picture of 640x480 pixels. Then,
remove the splash.svg file.

There are many possibilities when it comes to making changes. For
instance, syslinux derivatives are configured by default with a time-
out of 0 (zero) which means that they will pause indefinitely at their
splash screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just edit
a default isolinux.cfg file specifying the timeout in units of 1/10
seconds. A modified isolinux.cfg to boot after five seconds would
be similar to this:

prompt 0
timeout 50

include menu. cfg
default vesamenu.c32

11.2 ISO metadata

When creating an ISO9660 binary image, you can use the following
options to add various textual metadata for your image. This can
help you easily identify the version or configuration of an image
without booting it.

LB ISO'APPLICATION /-iso-application NAME: This should
describe the application that will be on the image. The maximum
length for this field is 128 characters.

LB'ISO'PREPARER /—iso-preparer NAME: This should describe
the preparer of the image, usually with some contact details. The
default for this option is the live-build version you are using, which
may help with debugging later. The maximum length for this field
is 128 characters.

LB'ISO'PUBLISHER /-iso-publisher NAME: This should de-
scribe the publisher of the image, usually with some contact de-
tails. The maximum length for this field is 128 characters.

LB ISO'VOLUME/-iso-volume NAME: This should specify the
volume ID of the image. This is used as a user-visible label on
some platforms such as Windows and Apple Mac OS. The maxi-
mum length for this field is 32 characters.

49

648

649

650

651

652

653

654

655

657

658

659

660

661

662

663

Customizing Debian Installer

12. Customizing Debian Installer

Live system images can be integrated with Debian Installer. There
are a number of different types of installation, varying in what is
included and how the installer operates.

Please note the careful use of capital letters when referring to the
Debian Installer in this section - when used like this we refer explic-
itly to the official installer for the Debian system, not anything else.
It is often seen abbreviated to d-i.

12.1 Types of Debian Installer

The three main types of installer are:

Normal Debian Installer : This is a normal live system image with a
separate kernel and initrd which (when selected from the appropri-
ate bootloader) launches into a standard Debian Installer instance,
just as if you had downloaded a CD image of Debian and booted it.
Images containing a live system and such an otherwise independent
installer are often referred to as combined images.

On such images, Debian is installed by fetching and installing .deb
packages using debootstrap, from local media or some network-
based network, resulting in a default Debian system being installed
to the hard disk.

This whole process can be preseeded and customized in a number of
ways; see the relevant pages in the Debian Installer manual for more
information. Once you have a working preseeding file, live-build can
automatically put it in the image and enable it for you.

Live Debian Installer : This is a live system image with a sepa-

rate kernel and initrd which (when selected from the appropriate
bootloader) launches into an instance of the Debian Installer.

Installation will proceed in an identical fashion to the normal instal-
lation described above, but at the actual package installation stage,
instead of using debootstrap to fetch and install packages, the live
filesystem image is copied to the target. This is achieved with a
special udeb called live-installer.

After this stage, the Debian Installer continues as normal, installing
and configuring items such as bootloaders and local users, etc.

Note: to support both normal and live installer entries in the
bootloader of the same live medium, you must disable live-installer
by preseeding live-installer /enable=false.

Desktop Debian Installer : Regardless of the type of Debian In-
staller included, d-i can be launched from the Desktop by clicking
on an icon. This is user friendlier in some situations. In order to
make use of this, the debian-installer-launcher package needs to be
included.

Note that by default, live-build does not include Debian Installer
images in the images, it needs to be specifically enabled with 1b
config. Also, please note that for the Desktop installer to work, the
kernel of the live system must match the kernel d-i uses for the
specified architecture. For example:

$ Ib config --debian-installer live
$ echo debian-installer -launcher ;; config/package-lists/my.<
list .chroot

12.2 Customizing Debian Installer by preseeding

As described in the Debian Installer Manual, Appendix B at https:

50

664

665

666

667

668

669

670

671

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

672

673

674

Debian Live Manual

/ /www.debian.org/releases/stable/amd64/apb.en.html, Preseeding provides a
way to set answers to questions asked during the installation process,
without having to manually enter the answers while the installation
is running. This makes it possible to fully automate most types of
installation and even offers some features not available during nor-
mal installations. This kind of customization is best accomplished
with live-build by placing the configuration in a preseed.cfg file in-
cluded in config/includes.installer/. For example, to preseed setting
the locale to en'US:

$ echo ”d-i debian-installer/locale string en'US” ¢
;i config/includes.installer /preseed.cfg

12.3 Customizing Debian Installer content

For experimental or debugging purposes, you might want to in-
clude locally built d-i component udeb packages. Place these in
config/packages.binary/ to include them in the image. Additional
or replacement files and directories may be included in the installer
initrd as well, in a similar fashion to Live/chroot local includes, by
placing the material in config/includes.installer/.

o1

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Projekt

02

676

677

678

679

680

681

682

683

Contributing to the project

13. Contributing to the project

When submitting a contribution, please clearly identify its copy-
right holder and include any applicable licensing statement. Note
that to be accepted, the contribution must be licensed under the
same license as the rest of the documents, namely, GPL version 3
or later.

Contributions to the project, such as translations and patches, are
greatly welcome. Anyone can send merge requests. The projects
are hosted on Salsa: https://salsa.debian.org/live-team follow Salsa’s docu-
mentation for instructions on how to contribute.

Even though all commits might be revised, we ask you to use your
common sense and make good commits with good commit mes-
sages.

Write commit messages that consist of complete, meaningful
sentences in English, starting with a capital letter and ending
with a full stop. Usually, these will start with the form Fixing/-
Adding/Removing/Correcting/Translating)/ ...

Write good commit messages. The first line must be an accurate
summary of the contents of the commit which will be included
in the changelog. If you need to make some further explanations,
write them below leaving a blank line after the first one and then
another blank line after each paragraph. Lines of paragraphs
should not exceed 80 characters in length.

Commit atomically, this is to say, do not mix unrelated things
in the same commit. Make one different commit for each change
you make.

13.1 Translation of man pages

You can also contribute to the project working on the translation
of the man pages for the different live-* packages that the project
maintains. The procedure is different depending on whether you
are starting a translation from scratch or continue working on an
already existing one:

Working on an already existing translation

If you want to maintain the translation of an already existing
language you have to make your changes to your manpages/po/-
$-LANGUAGE"/*.po file or files and then run make rebuild from
inside the manpages/ directory. This will update the actual man
pages in manpages/$-LANGUAGE"/*

Starting a new translation from scratch

In order to add a new translation of any of the project’s man pages
you have to follow a similar procedure. It could be summarized as
follows:

Open the manpages/pot/ file or files in your favourite editor,
such as poedit, and save it as a .po file in manpages/po/-
$-LANGUAGE"”/. (You will have to create your $-LAN-
GUAGE"/ directory).

Run make rebuild from inside the manpages/ directory to cre-
ate the manpages/$-LANGUAGE"/ files which will contain
the actual man pages.

Remember that you will have to add all the directories and files,
then make the commit and finally push to the git server.

93

684

685

686

687

688

689

690

691

692

https://salsa.debian.org/live-team

693

694

695

696

697

698

699

700

701

702

703

Reporting bugs

14. Reporting bugs

Live systems are far from being perfect, but we want to make it
as close as possible to perfect - with your help. Do not hesitate
to report a bug. It is better to fill a report twice than never. How-
ever, this chapter includes recommendations on how to file good bug
reports.

For the impatient:

First check whether the bugs has been reported already. You can
see the full list of bugs that are assigned to the live-team at https:
//bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Before submitting a bug report always try to reproduce the bug
with the most recent versions of the packages of live-build, live-
boot, live-config and live-tools that you’re using.

Try to give as specific information as possible about the bug.
This includes (at least) the version of live-build, live-boot, live-
config, and live-tools used and the distribution of the live system
you are building.

14.1 Known issues
Currently known issues are listed in the BTS at https://bugs.debian.org/
cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Note: Since Debian testing and Debian unstable distributions are
moving targets, when you specify either of them as the target system
distribution, a successful build may not always be possible.

If this causes too much difficulty for you, do not build a system

based on testing or unstable , but rather, use stable . live-build

always defaults to the stable release.

It is out of the scope of this manual to train you to correctly iden-
tify and fix problems in packages of the development distributions,
however, you can always try the following: If a build fails when the
target distribution is testing , try unstable . If unstable does work,
revert to testing and pin the newer version of the failing package
from unstable (see APT pinning for details).

14.2 Do the research

Before filing the bug, please search the web for the particular error
message or symptom you are getting. As it is highly unlikely that
you are the only person experiencing a particular problem. There is
always a chance that it has been discussed elsewhere and a possible
solution, patch, or workaround has been proposed.

You should pay particular attention to the live systems mailing list,
as well as the homepage, as these are likely to contain the most up-
to-date information. If such information exists, always include the
references to it in your bug report.

In addition, you should check the current bug lists for live-build,
live-boot, live-config and live-tools to see whether something similar
has already been reported.

14.3 Rebuild from scratch

To ensure that a particular bug is not caused by an uncleanly built
system, please always rebuild the whole live system from scratch to
see if the bug is reproducible.

54

704

705

706

707

708

709

710

https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org

712

713

714

715

716

717

718

719

720

721

722

723

724

725

Debian Live Manual

14.4 Use up-to-date packages 726

Using outdated packages can cause significant problems when trying
to reproduce (and ultimately fix) your problem. Make sure your
build system is up-to-date and any packages included in your image
are up-to-date as well. If possible, try to reproduce the bug with
the newest code from source, see Installation for details.

14.5 Collect information

Please provide enough information with your report. Include, at
least, the exact version of live-build where the bug is encountered
and the steps to reproduce it. Please use your common sense and
provide any other relevant information if you think that it might
help in solving the problem.

To make the most out of your bug report, we require at least the
following information:

Architecture of the host system
Distribution of the host system

Version of live-build on the host system
Version of debootstrap on the host system
Architecture of the live system
Distribution of the live system

Version of live-boot on the live system
Version of live-config on the live system
Version of live-tools on the live system

You can generate a log of the build process by using the tee com-
mand. We recommend doing this automatically with an auto/build
script (see Managing a configuration for details).

711

‘# b build 2;&1 — tee build.log

At boot time, live-boot and live-config store their logfiles in /var/-
log/live/. Check them for error messages.

Additionally, to rule out other errors, it is always a good idea to tar
up your config/ directory and upload it somewhere (do not send it
as an attachment to the mailing list), so that we can try to reproduce
the errors you encountered. If this is difficult (e.g. due to size) you
can use the output of 1b config —dump which produces a summary
of your config tree (i.e. lists files in subdirectories of config/ but
does not include them).

Remember to send in any logs that were produced with English
locale settings, e.g. run your live-build commands with a leading
LC'ALL=C or LC'ALL=en"US.

14.6 Isolate the failing case if possible

If possible, isolate the failing case to the smallest possible change
that breaks. It is not always easy to do this so if you cannot manage
it for your report, do not worry. However, if you plan your develop-
ment cycle well, using small enough change sets per iteration, you
may be able to isolate the problem by constructing a simpler ‘base’
configuration that closely matches your actual configuration plus
just the broken change set added to it. If you have a hard time
sorting out which of your changes broke, it may be that you are in-
cluding too much in each change set and should develop in smaller
increments.

14.7 Use the correct package to report the bug against

In general, you should report build time errors against the live-build

95

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Debian Live Manual

package, boot time errors against live-boot, and run time errors
against live-config. If you are unsure of which package is appropriate
or need more help before submitting a bug report, please report
it against the debian-live pseudo-package. We will then take care
about it and reassign it where appropriate.

However, we would appreciate it if you try to narrow it down ac-
cording to where the bug appears.

14.7.1 At build time while bootstrapping

live-build first bootstraps a basic Debian system with debootstrap.
If a bug appears here, check if the error is related to a specific Debian
package (most likely), or if it is related to the bootstrapping tool
itself.

In both cases, this is not a bug in the live system, but rather in De-
bian itself and probably we cannot fix it directly. Please report such
a bug against the bootstrapping tool or the failing package.

14.7.2 At build time while installing packages

live-build installs additional packages from the Debian archive and
depending on the Debian distribution used and the daily archive
state, it can fail. If a bug appears here, check if the error is also
reproducible on a normal system.

If this is the case, this is not a bug in the live system, but rather
in Debian - please report it against the failing package. Running
debootstrap separately from the Live system build or running lb
bootstrap —debug will give you more information.

Also, if you are using a local mirror and/or any sort of proxy and
you are experiencing a problem, please always reproduce it first by
bootstrapping from an official mirror.

14.7.3 At boot time

If your image does not boot, please report it to the mailing list
together with the information requested in Collect information. Do
not forget to mention, how/when the image failed exactly, whether
using virtualization or real hardware. If you are using a virtualiza-
tion technology of any kind, please always run it on real hardware
before reporting a bug. Providing a screenshot of the failure is also
very helpful.

14.7.4 At run time

If a package was successfully installed, but fails while actually run-
ning the Live system, this is probably a bug in live-config.

14.8 Where to report bugs

The Debian Live Project keeps track of all bugs in the Bug Tracking
System (BTS). For information on how to use the system, please
see https://bugs.debian.org/. You can also submit the bugs by using the
reportbug command from the package with the same name.

Please note that bugs found in distributions derived from Debian
(such as Ubuntu and others) should not be reported to the Debian
BTS unless they can be also reproduced on a Debian system using
official Debian packages.

56

742

743

744

745

746

747

748

https://bugs.debian.org/

749

750

752

753

754

757

758

759

760

761

Coding Style

15. Coding Style

This chapter documents the coding style used in live systems.

15.1 Compatibility

Avoid bashisms, the codebase must be POSIX compliant and
thus universally compatible.

Furthermore it must comply with the version of the POSIX
specification chosen by the current Debian Policy.

You can check your scripts with ‘sh -n’ and ‘checkbashisms’.

Make sure all shell code runs with ‘set -e’.

15.2 Indenting

Always use tabs over spaces.

Keep case branch terminators (;;) aligned with the content of the
branch, rather than the branch entry.

15.3 Wrapping
Generally, lines should be 80 chars at maximum.

Placement of keywords like then and do should be chosen with
good judgement with respect to clutter and readability. For small
bits of code in particular it should be preferred to have them on

the same line as the prior keyword they relate to (if; for; etc).

Only place on the next line where it makes good sense to do so;
typically this might only be to comply with maximum line length
restrictions. One situation where they should always be placed on
the next line is where what they follow is broken up onto multiple
lines, and thus it being on a new line creates clear separation
between that and the body of code following it. L.e. :

Good:
case 7$-1"" in
foo)
foobar
bar)
foobar
esac

Preferred:
if foo; then
bar
fi
for FOO in S$ITEMS; do
bar
done
if [7$-MYLOCATIONVARIABLE”” = ”something” | && [-e "$—<«
MY OUTPUTFILE””]
then
MY OTHER VARIABLE="$ (some 'bin $-FOOBAR" — awk -F° '«
print $1 ”')”
fi
if [”$-MYFOO"” = ”something” | && | -e ”path/$-FILE'1"” | «
[7$-MYBAR"” = ”"something'else” | && [$-ALLOW” = 7true” <+
]
then
foobar
fi

57

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

Debian Live Manual

Less ideal:
if [?$-MYLOCATIONVARIABLE”” = ”something” | && [-e 7$-—<«
MY OUTPUTFILE”” |; then
MY OTHER'VARIABLE="$ (some 'bin $-FOOBAR” — awk -F' '—«
print $1 "')”
fi
Horrible:
if [”$-MYLOCATIONVARIABLE”” = ”something” | && [-e "$—+
MY OUTPUTFILE”” | — [?$-MYLOCATION VARIABLE"” = "+
something - else” | && [-e ?$-MY OUTPUTFILE2”” |; then
MY OTHER'VARIABLE="$ (some 'bin $-FOOBAR” — awk -F' '—«
print $1 "')”
fi

Prefer placing the opening brace of a function on a new line (for
consistency with established style), and keep the braces aligned
with the function name:

Foo ()

bar

15.4 Variables

Variables are always in capital letters.
Config variables used in live-build should start with an LB’ prefix.
Local function variables should be restricted to local scope.

Variables in connection to a boot parameter in live-config start

with LIVE".
All other variables in live-config start with * prefix.
Use braces around variables; e.g. write $~FOO" instead of $FOO.

Always protect variables with quotes to respect potential whites-
paces (except where necessary to achieve correct word splitting):

Good: write $-FOO" not $-FOO".
For consistency reasons, always use quotes when assigning values

foo 0 to variables:

bar Bad:
Bad (inconsistent with existing style): FOO—bar
Foo () — Good:

bar

FOO="bar”

Awful:

If multiple variables are used, prefer quoting the full expression:

o8

778

779

780

781

782

783

784

785

786

787

788

789

790

791

793

794

795

796

797

798

799

800

Debian Live Manual

Typically bad:

if [-f 7$-FOO"”/foo/”$-BAR"” /bar]; then

foobar

fi

Good:

if [-f ”$-FOO"/foo/$-BAR"/bar”]; then
foobar

fi

15.5 Miscellaneous

Prefer — (without the surround quotes) as a separator in calls
to sed, e.g. sed -e ‘s— (without 7).

Don’t use the test command for comparisons or tests, use [and |
(without ”); e.g. if [-x /bin/foo |; ... and not if test -x /bin/foo;

Use case wherever it makes code more readable than conditional
checks (if foo; ... and tests without the actual if keyword, e.g. |
-e $-FILE" | exit 0).

Use Foo'bar style names for functions, i.e. a capital first let-
ter, then all lowercase, with sensible use of underscores for better
readability.

792

99

801

Beispiele

60

802

803

804

805

806

807

808

809

Beispiele

16. Examples

This chapter covers example builds for specific use cases with live
systems. If you are new to building your own live system images, we
recommend you first look at the three tutorials in sequence, as each
one teaches new techniques that will help you use and understand
the remaining examples.

16.1 Using the examples

To use these examples you need a system to build them on that
meets the requirements listed in Requirements and has live-build
installed as described in Installing live-build.

Note that, for the sake of brevity, in these examples we do not specify
a local mirror to use for the build. You can speed up downloads
considerably if you use a local mirror. You may specify the options
when you use 1b config, as described in Distribution mirrors used
at build time, or for more convenience, set the default for your
build system in /etc/live/build.conf. Simply create this file and in
it, set the corresponding LB'MIRROR * variables to your preferred
mirror. All other mirrors used in the build will be defaulted from
these values. For example:

16.2 Tutorial 1: A default image
Use case:
build.

In this tutorial, we will build a default ISO hybrid live system
image containing only base packages (no Xorg) and some live system
support packages, as a first exercise in using live-build.

Create a simple first image, learning the basics of live-

You can’t get much simpler than this:

$ mkdir tutoriall ; cd tutoriall ; lb config

Examine the contents of the config/ directory if you wish. You will
see stored here a skeletal configuration, ready to customize or, in
this case, use immediately to build a default image.

Now, as superuser, build the image, saving a log as you build with
tee.

lb build 2;&1 — tee build.log

LBMIRROR BOOTSTRAP="http:// mirror/debian /”
LB'MIRROR CHROOT'SECURITY="http:// mirror /debian - security /”
LBMIRROR' CHROOT' BACKPORTS="http:// mirror /debian - backports/”

Assuming all goes well, after a while, the current directory will
contain live-image-amd64.hybrid.iso. This ISO hybrid image can be
booted directly in a virtual machine as described in Testing an ISO
image with Qemu and Testing an ISO image with VirtualBox, or
else imaged onto optical media or a USB flash device as described
in Burning an ISO image to a physical medium and Copying an ISO
hybrid image to a USB stick, respectively.

16.3 Tutorial 2: A web browser utility

Use case: Create a web browser utility image, learning how to
apply customizations.

61

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

Debian Live Manual

In this tutorial, we will create an image suitable for use as a web
browser utility, serving as an introduction to customizing live system
images.

mkdir tutorial2

cd tutorial2

Ib config

echo ”task -lxde-desktop firefox -esr”
lists /my. list . chroot

&h H PP

.. config/package-+

Our choice of LXDE for this example reflects our desire to provide
a minimal desktop environment, since the focus of the image is the
single use we have in mind, the web browser. We could go even
further and provide a default configuration for the web browser in
config/includes.chroot /etc/iceweasel /profile/, or additional support
packages for viewing various kinds of web content, but we leave this
as an exercise for the reader.

Build the image, again as superuser, keeping a log as in Tutorial
1:

of revisions, and we want to track those changes, trying things ex-
perimentally and possibly reverting them if things don’t work out,
we will keep our configuration in the popular git version control sys-
tem. We will also use the best practice of autoconfiguration via auto
scripts as described in Managing a configuration.

16.4.1 First revision

$ mkdir -p tutorial3/auto

$ cp /usr/share/doc/live - build /examples/auto/* tutorial3/auto<+

$ cd tutorial3

Edit auto/config to read as follows:

#!/bin/sh
Ib config noauto *
--distribution

) $7@"79

stable “

1b build 2;&1 — tee build.log

Again, verify the image is OK and test, as in Tutorial 1.

16.4 Tutorial 3: A personalized image

Use case: Create a project to build a personalized image, containing
your favourite software to take with you on a USB stick wherever you
go, and evolving in successive revisions as your needs and preferences
change.

Since we will be changing our personalized image over a number

Perform 1b config to generate the config tree, using the auto/config
script you just created:

$ 1b config

Now populate your local package list:

$ echo ”task-lxde-desktop spice-vdagent hexchat”
package-lists /my. list . chroot

i config/<

62

829

830

831

832

833

834

835

836

838

839

840

841

842

843

844

845

846

Debian Live Manual

First, —distribution stable ensures that stable” is used instead of the

Now install the vlc package before the Ixde package chooses between

default —testing. Second, we have added spice-vdagent for easier smplayer, vlc and mplayer-gui in our local package list in config/-
testing the image in gemu. And finally, we have added an initial package-lists/my.list.chroot:

favourite package: hexchat.

Now, build the image:

1b build

Note that unlike in the first two tutorials, we no longer have to type
2;&1 —tee build.log as that is now included in auto/build.

Once you've tested the image (as in Tutorial 1) and are satisfied it
works, it’s time to initialize our git repository, adding only the auto
scripts we just created, and then make the first commit:

git init

cp /usr/share/doc/live -build /examples/gitignore
git add .gitignore auto config

git commit -m ”Initial import.”

.gitignore

&h P PP

16.4.2 Second revision

In this revision, we’re going to clean up from the first build, re-
place the smplayer package with vlc package, rebuild, test and com-
mit.

The Ib clean command will clean up all generated files from the pre-
vious build except for the cache, which saves having to re-download
packages. This ensures that the subsequent 1b build will re-run all
stages to regenerate the files from our new configuration.

1b clean

$ echo ”vlc task-lxde-desktop spice-vdagent hexchat” ;; <
config /package-lists /my.list .chroot

Build again:

‘# b build

Test, and when you're satisfied, commit the next revision:

$ git commit -a -m ”Replacing smplayer with vlc.”

Of course, more complicated changes to the configuration are pos-
sible, perhaps adding files in subdirectories of config/. When you
commit new revisions, just take care not to hand edit or commit the
top-level files in config containing LB™* variables, as these are build
products, too, and are always cleaned up by lb clean and re-created
with 1b config via their respective auto scripts.

We’ve come to the end of our tutorial series. While many more
kinds of customization are possible, even just using the few features
explored in these simple examples, an almost infinite variety of differ-
ent images can be created. The remaining examples in this section
cover several other use cases drawn from the collected experiences
of users of live systems.

16.5 A VNC Kiosk Client

Use case: Create an image with live-build to boot directly to a

63

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Debian Live Manual

VNC server.

Make a build directory and create an skeletal configuration in-
side it, disabling recommends to make a minimal system. And
then create two initial package lists: the first one generated with a
script provided by live-build named Packages (see Generated pack-
age lists), and the second one including xorg, gdm3, metacity and

After that, create the directory /etc/skel in config/includes.chroot
and put a custom .xsession in it for the default user that will launch
metacity and start xvncviewer, connecting to port 5901 on a server
at 192.168.1.2:

xvncdviewer.

$ mkdir vnc-kiosk-client

$ cd vnc-kiosk-client

$ Ib config --apt-recommends false

$ echo 'l Packages Priority standard' ; config/package-lists /<«

standard . list .chroot
$ echo ”xorg gdm3 metacity xtightvncviewer” ; config/package-<+
lists /my. list .chroot

$ mkdir -p config/includes.chroot/etc/skel
$ cat ; config/includes.chroot/etc/skel/.xsession

#!/bin /sh

ii EOF
/usr/bin/metacity &
/usr/bin/xvncviewer 192.168.1.2:1

exit
EOF

As explained in Tweaking APT to save space you may need to
re-add some recommended packages to make your image work prop-
erly.

An easy way to list recommends is using apt-cache. For exam-

ple:

Build the image:

1b build

$ apt-cache depends live -config live -boot

In this example we found out that we had to re-include several
packages recommended by live-config and live-boot: user-setup to
make autologin work and sudo as an essential program to shutdown
the system. Besides, it could be handy to add live-tools to be able
to copy the image to RAM and eject to eventually eject the live
medium. So:

$ echo ”live -tools user-setup sudo eject” ; config/package-<+

lists /recommends. list . chroot

Enjoy.

16.6 A minimal image for a 512MB USB key

Use case: Create a default image with some components removed
in order to fit on a 512MB USB key with a little space left over to
use as you see fit.

When optimizing an image to fit a certain media size, you need to
understand the tradeoffs you are making between size and function-
ality. In this example, we trim only so much as to make room for
additional material within a 512MB media size, but without doing
anything to destroy the integrity of the packages contained within,
such as the purging of locale data via the localepurge package, or
other such intrusive optimizations. Of particular note, we use —
debootstrap-options to create a minimal system from scratch and

64

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Debian Live Manual

—binary image hdd to create an image that can be copied to a USB
key:.

$ 1b config --binary-image hdd --apt-indices false --apt-+<+
recommends false --debootstrap-options ”--variant=minbase<>
? --firmware-chroot false --memtest none

To make the image work properly, we must re-add, at least, two
recommended packages which are left out by the —apt-recommends
false option. See Tweaking APT to save space

$ echo ”user -setup sudo” ; config/package-lists /recommends. <>
list . chroot

Additionally, you’ll want to have network access, so another two
recommended packages need to be re-added:

$ echo ”ifupdown isc-dhep-client” ;; config/package-lists/«
recommends. list . chroot

Now, build the image in the usual way:

1b build 2;&1 — tee build.log

On the author’s system at the time of writing this, the above config-
uration produced a 298MiB image. This compares favourably with
the 380MiB image produced by the default configuration in Tutorial
1, when —binary-image hdd is added.

Leaving off APT’s indices with —apt-indices false saves a fair amount
of space, the tradeoff being that you need to do an apt-get update
before using apt in the live system. Dropping recommended pack-
ages with —apt-recommends false saves some additional space, at

the expense of omitting some packages you might otherwise ex-
pect to be there. —debootstrap-options —variant=minbase boot-
straps a minimal system from the start. Not automatically including
firmware packages with —firmware-chroot false saves some space too.
And finally, -memtest none prevents the installation of a memory
tester.

Note: A minimal system can also be achieved using hooks, like
for example the stripped.hook.chroot hook found in /usr/share/-
doc/live-build /examples/hooks. It may shave off additional small
amounts of space and produce an image of 277MiB. However, it
does so by removal of documentation and other files from packages
installed on the system. This violates the integrity of those pack-
ages and that, as the comment header warns, may have unforeseen
consequences. That is why using a minimal debootstrap is the rec-
ommended way of achieving this goal.

16.7 A localized GNOME desktop and installer

Use case: Create a GNOME desktop image, localized for Switzer-
land and including an installer.

We want to make an iso-hybrid image using our preferred desktop,
in this case GNOME, containing all of the same packages that would
be installed by the standard Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropriate
language tasks. Currently, live-build cannot help with this. While
we might get lucky and find this by trial-and-error, there is a tool,
grep-dctrl, which can be used to dig it out of the task descriptions
in tasksel-data, so to prepare, make sure you have both of those
things:

apt-get install dctrl-tools tasksel -data

65

881

882

883

884

885

886

887

888

889

890

891

892

893

Debian Live Manual

Now we can search for the appropriate tasks, first with:

$ grep-dctrl -FTest-lang de /usr/share/tasksel/descs/debian-+
tasks.desc -sTask
Task: german

By this command, we discover the task is called, plainly enough,
german. Now to find the related tasks:

$ grep-dctrl -FEnhances german /usr/share/tasksel/descs/<+
debian - tasks .desc -sTask

Task: german-desktop

Task: german -kde-desktop

At boot time we will generate the de'CH.UTF-8 locale and select
the ch keyboard layout. Now let’s put the pieces together. Recalling
from Using metapackages that task metapackages are prefixed task-,
we just specify these language boot parameters, then add standard
priority packages and all our discovered task metapackages to our
package list as follows:

mkdir live -gnome-ch

cd live -gnome-ch

Ib config “
--bootappend-live ”boot=live components locales=de CH.<+

UTF-8 keyboard-layouts=ch” ¢

--debian-installer live

$ echo '! Packages Priority standard' ; config/package-lists /<
standard. list .chroot

$ echo task-gnome-desktop task-german task-german-desktop j;, <
config/package-lists /desktop.list.chroot

$ echo debian-installer -launcher ;; config/package-lists/«

installer .list .chroot

&*h H Ph

Note that we have included the debian-installer-launcher package
to launch the installer from the live desktop.

66

Anhang

67

895

896

897

898

899

900

901

902

903

904

905

Style guide

17. Style guide

17.1 Guidelines for authors

This section deals with some general considerations to be taken
into account when writing technical documentation for live-manual.
They are divided into linguistic features and recommended proce-
dures.

Note:
ment

Authors should first read Contributing to this docu-

17.1.1 Linguistic features

Use plain English

Keep in mind that a high percentage of your readers are not native
speakers of English. So as a general rule try to use short, meaningful
sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive style.
It is a suggestion to try to avoid, as much as possible, complex
subordinate sentences that make the text difficult to understand for
non-native speakers of English.

Variety of English

The most widely spread varieties of English are British and Ameri-
can so it is very likely that most authors will use either one or the
other. In a collaborative environment, the ideal variety would be
International English but it is very difficult, not to say impossible,
to decide on which variety among all the existing ones, is the best
to use.

We expect that different varieties may mix without creating mis-
understandings but in general terms you should try to be coherent
and before deciding on using British, American or any other En-
glish flavour at your discretion, please take a look at how other
people write and try to imitate them.

Be balanced

Do not be biased. Avoid including references to ideologies com-
pletely unrelated to live-manual. Technical writing should be as neu-
tral as possible. It is in the very nature of scientific writing.

Be politically correct

Try to avoid sexist language as much as possible. If you need to
make references to the third person singular preferably use they
rather than he or she or awkward inventions such as s/he, s(he) and
the like.

Be concise

Go straight to the point and do not wander around aimlessly. Give
as much information as necessary but do not give more information
than necessary, this is to say, do not explain unnecessary details.
Your readers are intelligent. Presume some previous knowledge on
their part.

Minimize translation work

Keep in mind that whatever you write will have to be translated
into several other languages. This implies that a number of peo-
ple will have to do an extra work if you add useless or redundant
information.

Be coherent

As suggested before, it is almost impossible to standardize a col-
laborative document into a perfectly unified whole. However, every

68

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

Debian Live Manual

effort on your side to write in a coherent way with the rest of the
authors will be appreciated.

Be cohesive

Use as many text-forming devices as necessary to make your text co-
hesive and unambiguous. (Text-forming devices are linguistic mark-
ers such as connectors).

Be descriptive

It is preferable to describe the point in one or several paragraphs
than merely using a number of sentences in a typical changelog style.
Describe it! Your readers will appreciate it.

Dictionary

Look up the meaning of words in a dictionary or encyclopedia if
you do not know how to express certain concepts in English. But
keep in mind that a dictionary can either be your best friend or
can turn into your worst enemy if you do not know how to use it
correctly.

English has the largest vocabulary that exists (with over one million
words). Many of these words are borrowings from other languages.
When looking up the meaning of words in a bilingual dictionary the
tendency of a non-native speaker of English is to choose the one that
sounds more similar in their mother tongue. This often turns into
an excessively formal discourse which does not sound quite natural
in English.

As a general rule, if a concept can be expressed using different
synonyms, it is a good advice to choose the first word proposed
by the dictionary. If in doubt, choosing words of Germanic origin
(Usually monosyllabic words) is often the right thing to do. Be
warned that these two techniques might produce a rather informal
discourse but at least your choice of words will be of wide use and
generally accepted.

Using a dictionary of collocations is recommended. They are ex-
tremely helpful when it comes to know which words usually occur
together.

Again it is a good practice to learn from the work of others. Using
a search engine to check how other authors use certain expressions
may help a lot.

False friends, idioms and other idiomatic expressions

Watch out for false friends. No matter how proficient you are in
a foreign language you cannot help falling from time to time in
the trap of the so called false friends, words that look similar in
two languages but whose meanings or uses might be completely
different.

Try to avoid idioms as much as possible. Idioms are expressions
that may convey a completely different meaning from what their in-
dividual words seem to mean. Sometimes, idioms might be difficult
to understand even for native speakers of English!

Avoid slang, abbreviations, contractions...

Even though you are encouraged to use plain, everyday En-
glish, technical writing belongs to the formal register of the lan-

guage.

Try to avoid slang, unusual abbreviations that are difficult to un-
derstand and above all contractions that try to imitate the spoken
language. Not to mention typical irc and family friendly expres-
sions.

17.1.2 Procedures

Test before write

It is important that authors test their examples before adding them

69

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

Debian Live Manual

to live-manual to ensure that everything works as described. Test-
ing on a clean chroot or VM can be a good starting point. Besides,
it would be ideal if the tests were then carried out on different ma-
chines with different hardware to spot possible problems that may
arise.

Examples

When providing an example try to be as specific as you can. An
example is, after all, just an example.

It is often better to use a line that only applies to a specific case
than using abstractions that may confuse your readers. In this case
you can provide a brief explanation of the effects of the proposed
example.

There may be some exceptions when the example suggests using
some potentially dangerous commands that, if misused, may cause
data loss or other similar undesirable effects. In this case you should
provide a thorough explanation of the possible side effects.

External links

Links to external sites should only be used when the information on
those sites is crucial when it comes to understanding a special point.
Even so, try to use links to external sites as sparsely as possible. In-
ternet links are likely to change from time to time resulting in broken
links and leaving your arguments in an incomplete state.

Besides, people who read the manual offline will not have the chance
to follow those links.

Avoid branding and things that violate the license under which
the manual is published

Try to avoid branding as much as possible. Keep in mind that
other downstream projects might make use of the documentation
you write. So you are complicating things for them if you add certain
specific material.

live-manual is licensed under the GNU GPL. This has a number of
implications that apply to the distribution of the material (of any
kind, including copyrighted graphics or logos) that is published with
it.

Write a first draft, revise, edit, improve, redo if necessary

- Brainstorm!. You need to organize your ideas first in a logical
sequence of events.

- Once you have somehow organized those ideas in your mind write
a first draft.

- Revise grammar, syntax and spelling. Keep in mind that the
proper names of the releases, such as trixie or sid , should not be
capitalized when referred to as code names. In order to check the
spelling you can run the spell target. i.e. make spell

- Improve your statements and redo any part if necessary.
Chapters

Use the conventional numbering system for chapters and subtitles.
eg. 1,1.1,1.1.1, 1.1.2 ... 1.2, 1.2.1, 1.2.2 ... 2, 2.1 ... and so on.
See markup below.

If you have to enumerate a series of steps or stages in your de-
scription, you can also use ordinal numbers: First, second, third
. or First, Then, After that, Finally ... Alternatively you can use
bulleted items.

Markup

And last but not least, live-manual uses SiSU to process the text
files and produce a multiple format output. It is recommended to
take a look at SiSU’s manual to get familiar with its markup, or else

type:

70

945

946

947

948

949

950

951

952

953

954

955

956

http://www.sisudoc.org/
http://www.sisudoc.org/manual/en/html/sisu_manual/markup.html

957

958

959

960

961

962

963

964

965

966

967

968

969

970

Debian Live Manual

$ sisu --help markup

Here are some markup examples that may prove useful:

- For emphasis/bold text:

$ foo
bar

—foo” or !-foo”!

produces: foo or foo . Use it to emphasize certain key words.

- For italics:

/—foo”/

produces: foo. Use them e.g. for the names of Debian pack-

ages.

- For monospace:

#—foo"#

produces: foo. Use it e.g. for the names of commands. And also to
highlight some key words or things like paths.

- For code blocks:

code—

$ foo
bar

“code

produces:

Use code—- to open and “code to close the tags. It is important to re-
member to leave a space at the beginning of each line of code.

17.2 Guidelines for translators

This section deals with some general considerations to be taken into
account when translating the contents of live-manual.

As a general recommendation, translators should have read and un-
derstood the translation rules that apply to their specific languages.
Usually, translation groups and mailing lists provide information on
how to produce translated work that complies with Debian quality
standards.

Note:
In particular the section Translation

17.2.1 Translation hints

Comments

The role of the translator is to convey as faithfully as possible the
meaning of words, sentences, paragraphs and texts as written by the
original authors into their target language.

So they should refrain from adding personal comments or extra bits
of information of their own. If they want to add a comment for other
translators working on the same documents, they can leave it in the
space reserved for that. That is, the header of the strings in the
po files preceded by a number sign # . Most graphical translation
programs can automatically handle those types of comments.

TN, Translator’s Note

71

Translators should also read Contributing to this document.

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

Debian Live Manual

It is perfectly acceptable however, to include a word or an expression
in brackets in the translated text if, and only if, that makes the
meaning of a difficult word or expression clearer to the reader. Inside
the brackets the translator should make evident that the addition
was theirs using the abbreviation TN or Translator’s Note.

Impersonal sentences

Documents written in English make an extensive use of the imper-
sonal form you. In some other languages that do not share this
characteristic, this might give the false impression that the original
texts are directly addressing the reader when they are actually not
doing so. Translators must be aware of that fact and reflect it in
their language as accurately as possible.

False friends

The trap of false friends explained before especially applies to trans-
lators. Double check the meaning of suspicious false friends if in
doubt.

Markup

Translators working initially with pot files and later on with po files
will find many markup features in the strings. They can translate
the text anyway, as long as it is translatable, but it is extremely
important that they use exactly the same markup as the original
English version.

Code blocks

Even though the code blocks are usually untranslatable, including
them in the translation is the only way to score a 100% complete
translation. And even though it means more work at first because it
might require the intervention of the translators if the code changes,
it is the best way, in the long run, to identify what has already been
translated and what has not when checking the integrity of the .po
files.

Newlines

The translated texts need to have the exact same newlines as the
original texts. Be careful to press the Enter key or type if they ap-
pear in the original files. These newlines often appear, for instance,
in the code blocks.

Make no mistake, this does not mean that the translated text needs
to have the same length as the English version. That is nearly
impossible.

Untranslatable strings
Translators should never translate:

- The code names of releases (which should be written in lower-
case)

- The names of programs

- The commands given as examples

- Metadata (often between colons :metadata:)
- Links

- Paths

72

990

991

992

993

994

995

996

997

998

999

1000

Debian Live Manual

SiSU Metadata, document information

Titel: Debian Live Manual

Autor: Debian Live Project jdebian-live@lists.debian.org;,

Rechte: Copyright: Copyright (C) 2006-2015 Live Systems Project, Copyright (C)
2016-2025 The Debian Live team

License: This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in /usr/-
share/common-licenses/GPL-3 file.
Herausgeber: Debian Live Project jdebian-live@lists.debian.org;,

Datum: 2025-02-26

Version Information

Quelldatei: live-manual.ssm.sst

Filetype: SiSU text 2.0, Unicode text, UTF-8 text, with very long lines (745)

Source Digest: SHA2-256(live-manual.ssm.sst)=f9805a6174df7fdbe82aede56b3bad3f-
5bab22d9cd32792668d7256a5c2871bd

Generated

Letzte Erstellung (metaverse): 2025-02-26 23:56:39 40000

erstellt bei: SiSU 7.3.0 of 2023w44/1 (2023-10-30)

Ruby Version: ruby 3.3.7 (2025-01-15 revision be31f993d7) [x86 64-linux-gnu]

73

http://www.gnu.org/licenses/

	Debian Live Manual
	Über Live Systeme
	Über dieses Handbuch
	1. Über dieses Handbuch
	1.1 Für die Ungeduldigen
	1.2 Begriffe
	1.3 Autoren
	1.4 Contributing to this document
	1.4.1 Applying changes
	1.4.2 Translation

	About the Debian Live Project
	2. About the Debian Live Project
	2.1 Motivation
	2.1.1 What is wrong with current live systems
	2.1.2 Why create our own live system?

	2.2 Philosophy
	2.2.1 Only unchanged packages from Debian “main” and “non-free-firmware”
	2.2.2 No package configuration of the live system

	2.3 Contact

	Benutzer
	Installation
	3. Installation
	3.1 Requirements
	3.2 Installing live-build
	3.2.1 From the Debian repository
	3.2.2 From source

	3.3 Installing live-boot and live-config
	3.3.1 From the Debian repository
	3.3.2 From source

	The basics
	4. The basics
	4.1 What is a live system?
	4.2 Downloading prebuilt images
	4.3 First steps: building an ISO hybrid image
	4.4 Using an ISO hybrid live image
	4.4.1 Burning an ISO image to a physical medium
	4.4.2 Copying an ISO hybrid image to a USB stick
	4.4.3 Using the space left on a USB stick
	4.4.4 Booting the live medium

	4.5 Using a virtual machine for testing
	4.5.1 Testing an ISO image with QEMU
	4.5.2 Testing an ISO image with VirtualBox

	4.6 Building and using an HDD image
	4.7 Building a netboot image
	4.7.1 DHCP server
	4.7.2 TFTP server
	4.7.3 NFS server
	4.7.4 Netboot testing HowTo
	4.7.5 Qemu

	4.8 Webbooting
	4.8.1 Getting the webboot files
	4.8.2 Booting webboot images

	Overview of tools
	5. Overview of tools
	5.1 The live-build package
	5.1.1 The lb config command
	5.1.2 The lb build command
	5.1.3 The lb clean command

	5.2 The live-boot package
	5.3 The live-config package

	Managing a configuration
	6. Managing a configuration
	6.1 Dealing with configuration changes
	6.1.1 Why use auto scripts? What do they do?
	6.1.2 Use example auto scripts

	6.2 Clone a configuration published via Git

	Customizing contents
	7. Customization overview
	7.1 Build time vs. boot time configuration
	7.2 Stages of the build
	7.3 Supplement lb config with files
	7.4 Customization tasks

	Customizing package installation
	8. Customizing package installation
	8.1 Package sources
	8.1.1 Distribution, archive areas and mode
	8.1.2 Distribution mirrors
	8.1.3 Distribution mirrors used at build time
	8.1.4 Distribution mirrors used at run time
	8.1.5 Additional repositories

	8.2 Choosing packages to install
	8.2.1 Package lists
	8.2.2 Using metapackages
	8.2.3 Local package lists
	8.2.4 Local binary package lists
	8.2.5 Generated package lists
	8.2.6 Using conditionals inside package lists
	8.2.7 Removing packages at install time
	8.2.8 Summary
	8.2.9 Desktop and language tasks
	8.2.10 Kernel flavour and version
	8.2.11 Custom kernels

	8.3 Installing modified or third-party packages
	8.3.1 Using packages.chroot to install custom packages
	8.3.2 Using an APT repository to install custom packages
	8.3.3 Custom packages and APT

	8.4 Configuring APT at build time
	8.4.1 Choosing apt or aptitude
	8.4.2 Using a proxy with APT
	8.4.3 Tweaking APT to save space
	8.4.4 Passing options to apt or aptitude
	8.4.5 APT pinning

	Customizing contents
	9. Customizing contents
	9.1 Includes
	9.1.1 Live/chroot local includes
	9.1.2 Binary local includes

	9.2 Hooks
	9.2.1 Chroot local hooks
	9.2.2 Binary local hooks
	9.2.3 Boot-time hooks

	9.3 Preseeding Debconf questions

	Customizing run time behaviours
	10. Customizing run time behaviours
	10.1 Customizing the live user
	10.2 Customizing locale and language
	10.3 Persistence
	10.3.1 The persistence.conf file
	10.3.2 Using more than one persistence store
	10.3.3 Using persistence with encryption

	Customizing the binary image
	11. Customizing the binary image
	11.1 Bootloaders
	11.2 ISO metadata

	Customizing Debian Installer
	12. Customizing Debian Installer
	12.1 Types of Debian Installer
	12.2 Customizing Debian Installer by preseeding
	12.3 Customizing Debian Installer content

	Projekt
	Contributing to the project
	13. Contributing to the project
	13.1 Translation of man pages

	Reporting bugs
	14. Reporting bugs
	14.1 Known issues
	14.2 Do the research
	14.3 Rebuild from scratch
	14.4 Use up-to-date packages
	14.5 Collect information
	14.6 Isolate the failing case if possible
	14.7 Use the correct package to report the bug against
	14.7.1 At build time while bootstrapping
	14.7.2 At build time while installing packages
	14.7.3 At boot time
	14.7.4 At run time

	14.8 Where to report bugs

	Coding Style
	15. Coding Style
	15.1 Compatibility
	15.2 Indenting
	15.3 Wrapping
	15.4 Variables
	15.5 Miscellaneous

	Beispiele
	Beispiele
	16. Examples
	16.1 Using the examples
	16.2 Tutorial 1: A default image
	16.3 Tutorial 2: A web browser utility
	16.4 Tutorial 3: A personalized image
	16.4.1 First revision
	16.4.2 Second revision

	16.5 A VNC Kiosk Client
	16.6 A minimal image for a 512MB USB key
	16.7 A localized GNOME desktop and installer

	Anhang
	Style guide
	17. Style guide
	17.1 Guidelines for authors
	17.1.1 Linguistic features
	17.1.2 Procedures

	17.2 Guidelines for translators
	17.2.1 Translation hints

	SiSU Metadata, document information

