
Debian Live Manual

Debian Live Project ¡debian-live@lists.debian.org¿

2015-08-23

Debian Live Manual

Debian Live Project ¡debian-live@lists.debian.org¿
Copyright © 2006-2015 Live Systems Project,Copyright © 2016-
2025 The Debian Live team
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public Li-
cense along with this program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in
/usr/share/common-licenses/GPL-3 file.

i

http://www.gnu.org/licenses/

Contents

Contents

Debian Live Manual i

Despre 3

Despre acest manual 4

1. Despre acest manual 4

1.1 For the impatient . 4

1.2 Termeni . 4

1.3 Autori . 5

1.4 Cum se poate contribui la acest document 6

1.4.1 Applying changes 6

1.4.2 Translation . 6

About the Debian Live Project 8

2. About the Debian Live Project 8

2.1 Motivatie . 8

2.1.1 Ce nu e bine cu sistemele live actuale 8

2.1.2 De ce e nevoie de propriul nostru sistem live ? . . 8

2.2 Filozofia . 8

2.2.1 Only unchanged packages from Debian main and non-
free-firmware . 8

2.2.2 Nu vor fi programe de configurare pentru sistemul
live. 9

2.3 Contact . 9

Utilizator 10

Installation 11

3. Installation 11

3.1 Requirements . 11

3.2 Installing live-build . 11

3.2.1 From the Debian repository 11

3.2.2 From source . 11

3.3 Installing live-boot and live-config 12

3.3.1 From the Debian repository 12

3.3.2 From source . 12

The basics 14

4. The basics 14

4.1 What is a live system? 14

4.2 Downloading prebuilt images 14

4.3 First steps: building an ISO hybrid image 15

4.4 Using an ISO hybrid live image 15

4.4.1 Burning an ISO image to a physical medium . . . 15

4.4.2 Copying an ISO hybrid image to a USB stick . . . 16

4.4.3 Using the space left on a USB stick 16

4.4.4 Booting the live medium 16

4.5 Using a virtual machine for testing 17

4.5.1 Testing an ISO image with QEMU 17

4.5.2 Testing an ISO image with VirtualBox 17

4.6 Building and using an HDD image 18

4.7 Building a netboot image 18

4.7.1 DHCP server . 19

i

Contents

4.7.2 TFTP server . 20

4.7.3 NFS server . 20

4.7.4 Netboot testing HowTo 20

4.7.5 Qemu . 20

4.8 Webbooting . 21

4.8.1 Getting the webboot files 21

4.8.2 Booting webboot images 21

Overview of tools 22

5. Overview of tools 22

5.1 The live-build package . 22

5.1.1 The lb config command 22

5.1.2 The lb build command 23

5.1.3 The lb clean command 23

5.2 The live-boot package . 23

5.3 The live-config package 23

Managing a configuration 24

6. Managing a configuration 24

6.1 Dealing with configuration changes 24

6.1.1 Why use auto scripts? What do they do? 24

6.1.2 Use example auto scripts 24

6.2 Clone a configuration published via Git 25

Customizing contents 26

7. Customization overview 26
7.1 Build time vs. boot time configuration 26
7.2 Stages of the build . 26
7.3 Supplement lb config with files 26
7.4 Customization tasks . 27

Customizing package installation 28

8. Customizing package installation 28
8.1 Package sources . 28

8.1.1 Distribution, archive areas and mode 28
8.1.2 Distribution mirrors 29
8.1.3 Distribution mirrors used at build time 29
8.1.4 Distribution mirrors used at run time 29
8.1.5 Additional repositories 29

8.2 Choosing packages to install 30
8.2.1 Package lists . 30
8.2.2 Using metapackages 30
8.2.3 Local package lists 31
8.2.4 Local binary package lists 31
8.2.5 Generated package lists 31
8.2.6 Using conditionals inside package lists 31
8.2.7 Removing packages at install time 32
8.2.8 Summary . 32
8.2.9 Desktop and language tasks 32
8.2.10 Kernel flavour and version 33
8.2.11 Custom kernels 33

8.3 Installing modified or third-party packages 34
8.3.1 Using packages.chroot to install custom packages . 34

ii

Contents

8.3.2 Using an APT repository to install custom packages 34

8.3.3 Custom packages and APT 35

8.4 Configuring APT at build time 35

8.4.1 Choosing apt or aptitude 35

8.4.2 Using a proxy with APT 35

8.4.3 Tweaking APT to save space 36

8.4.4 Passing options to apt or aptitude 36

8.4.5 APT pinning . 37

Customizing contents 38

9. Customizing contents 38

9.1 Includes . 38

9.1.1 Live/chroot local includes 38

9.1.2 Binary local includes 38

9.2 Hooks . 39

9.2.1 Chroot local hooks 39

9.2.2 Binary local hooks 39

9.2.3 Boot-time hooks 39

9.3 Preseeding Debconf questions 39

Customizing run time behaviours 40

10. Customizing run time behaviours 40

10.1 Customizing the live user 40

10.2 Customizing locale and language 40

10.3 Persistence . 41

10.3.1 The persistence.conf file 43

10.3.2 Using more than one persistence store 43

10.3.3 Using persistence with encryption 44

Customizing the binary image 46

11. Customizing the binary image 46

11.1 Bootloaders . 46

11.2 ISO metadata . 46

Customizing Debian Installer 47

12. Customizing Debian Installer 47

12.1 Types of Debian Installer 47

12.2 Customizing Debian Installer by preseeding 47

12.3 Customizing Debian Installer content 48

Proiect 49

Contributing to the project 50

13. Contributing to the project 50

13.1 Translation of man pages 50

Reporting bugs 51

14. Reporting bugs 51

14.1 Known issues . 51

14.2 Do the research . 51

14.3 Rebuild from scratch . 51

14.4 Use up-to-date packages 52

14.5 Collect information . 52

iii

Contents

14.6 Isolate the failing case if possible 52

14.7 Use the correct package to report the bug against 53

14.7.1 At build time while bootstrapping 53

14.7.2 At build time while installing packages 53

14.7.3 At boot time . 53

14.7.4 At run time . 53

14.8 Where to report bugs . 53

Coding Style 54

15. Coding Style 54

15.1 Compatibility . 54

15.2 Indenting . 54

15.3 Wrapping . 54

15.4 Variables . 55

15.5 Miscellaneous . 56

Exemple 57

Exemple 58

16. Examples 58

16.1 Using the examples . 58

16.2 Tutorial 1: A default image 58

16.3 Tutorial 2: A web browser utility 58

16.4 Tutorial 3: A personalized image 59

16.4.1 First revision . 59

16.4.2 Second revision 60

16.5 A VNC Kiosk Client . 60

16.6 A minimal image for a 512MB USB key 61
16.7 A localized GNOME desktop and installer 62

Anex 64

Style guide 65

17. Style guide 65
17.1 Guidelines for authors 65

17.1.1 Linguistic features 65
17.1.2 Procedures . 66

17.2 Guidelines for translators 68
17.2.1 Translation hints 68

SiSU Metadata, document information 70

iv

Debian Live Manual1

2

Despre2

3

Despre acest manual3

1. Despre acest manual4

This manual serves as a single access point to all documentation related to5

the Debian Live Project and in particular applies to the software produced
by the project for the Debian bookworm release. An up-to-date version
can always be found at https://live-team.pages.debian.net/live-manual/

While live-manual is primarily focused on helping you build a live system6

and not on end-user topics, an end user may find some useful information
in these sections: The Basics covers downloading prebuilt images and
preparing images to be booted from media or the network, either using the
web builder or running live-build directly on your system. Customizing
run time behaviours describes some options that may be specified at the
boot prompt, such as selecting a keyboard layout and locale, and using
persistence.

Anumite comenzi din text trebuie sa fie executate ca ‘super˙utilizator’,7

privilegiu care poate fi obtinut fie prin comanda su, sau sudo. Pentru
a distinge intre acesti utilizatori se vor folosi $ respectiv # . Aceste
simboluri nu fac parte din comenzi.

1.1 For the impatient8

While we believe that everything in this manual is important to at least9

some of our users, we realize it is a lot of material to cover and that
you may wish to experience early success using the software before delv-
ing into the details. Therefore, we suggest reading in the following or-
der.

First, read this chapter, About this manual, from the beginning and10

ending with the Terms section. Next, skip to the three tutorials at the
front of the Examples section designed to teach you image building and
customization basics. Read Using the examples first, followed by Tutorial
1: A default image, Tutorial 2: A web browser utility and finally Tutorial
3: A personalized image. By the end of these tutorials, you will have a
taste of what can be done with live systems.

We encourage you to return to more in-depth study of the manual, per- 11

haps next reading The basics, skimming or skipping Building a netboot
image, and finishing by reading the Customization overview and the chap-
ters that follow it. By this point, we hope you are thoroughly excited by
what can be done with live systems and motivated to read the rest of the
manual, cover-to-cover.

1.2 Termeni 12

Live system : An operating system that can boot without installation 13

to a hard drive. Live systems do not alter local operating system(s) or
file(s) already installed on the computer hard drive unless instructed
to do so. Live systems are typically booted from media such as CDs,
DVDs or USB sticks. Some may also boot over the network (via net-
boot images, see Building a netboot image), and over the Internet (via
the boot parameter fetch=URL, see Webbooting).

Live medium : As distinct from live system, the live medium refers to 14

the CD, DVD or USB stick where the binary produced by live-build
and used to boot the live system is written. More broadly, the term
also refers to any place where this binary resides for the purposes of
booting the live system, such as the location for the network boot files.

Debian Live Project : The project which maintains, among others, the 15

live-boot, live-build, live-config, live-tools and live-manual packages.

Host system : Mediul folosit pentru crearea sistemului live pe un sistem 16

4

https://live-team.pages.debian.net/live-manual/

Debian Live Manual

dat.

Target system : Mediul folosit pentru rularea sistemului live.17

live-boot : O coloctie se scripte folosite la pornirea sistemului live.18

live-build : A collection of scripts used to build customized live systems.19

live-config : O colectie de scripte folosite la configurarea sitemului live20

in timpul procesului de pornire.

live-tools : A collection of additional scripts used to perform useful21

tasks within a running live system.

live-manual : Acest document face parte din pachetul numit live-22

manual.

Debian Installer (d-i) : Sistemul de instalare oficial pentru distributia23

Debian.

Boot parameters : Parameti care pot fi adaugati la promptul24

bootloader-ului care sa infuenteze kernelul sau live-config.

chroot : Programul chroot, chroot(8), permite rularea a diferite in-25

stante din mediul GNU/Linux pe un singur sistem si in simultan fara
a necesita o repornire a sistemului.

Binary image : A file containing the live system, such as live-image-26

amd64.hybrid.iso or live-image-amd64.img.

Target distribution : Dea pe care se bazeaza sistemul live. Aceasta27

distributie poate fi diferita de cea a sistemului gazda.

stable/testing/unstable : The stable distribution, currently code-28

named bookworm , contains the latest officially released distribution
of Debian. The testing distribution, temporarily codenamed trixie ,
is the staging area for the next stable release. A major advantage of
using this distribution is that it has more recent versions of software
relative to the stable release. The unstable distribution, permanently

codenamed sid , is where active development of Debian occurs. Gen-
erally, this distribution is run by developers and those who like to live
on the edge. Throughout the manual, we tend to use codenames for
the releases, such as trixie or sid , as that is what is supported by the
tools themselves.

1.3 Autori 29

Lista autorilor (in ordine alfabetica): 30

Ben Armstrong 31

Brendan Sleight 32

Carlos Zuferri 33

Chris Lamb 34

Daniel Baumann 35

Franklin Piat 36

Jonas Stein 37

Kai Hendry 38

Marco Amadori 39

Mathieu Geli 40

Matthias Kirschner 41

Richard Nelson 42

Roland Clobus 43

Trent W. Buck 44

5

Debian Live Manual

1.4 Cum se poate contribui la acest document 45

This manual is intended as a community project and all proposals for 46

improvements and contributions are extremely welcome. Please see the
section Contributing to the project for detailed information on how to
fetch the commit key and make good commits.

1.4.1 Applying changes47

In order to make changes to the English manual you have to edit the48

right files in manual/en/ but prior to the submission of your contribu-
tion, please preview your work. To preview the live-manual, ensure the
packages needed for building it are installed by executing:

49

apt - get i n s t a l l make po4a ruby ruby - nokog i r i s i su - complete

Pute-ti crea live-manual de la nivelul de sus al directorului Git checkout50

al dvs, prin executatea:

51

$ make bu i ld

Since it takes a while to build the manual in all supported languages,52

authors may find it convenient to use one of the fast proofing shortcuts
when reviewing the new documentation they have added to the English
manual. Using PROOF=1 builds live-manual in html format, but without
the segmented html files, and using PROOF=2 builds live-manual in pdf
format, but only the A4 and letter portraits. That is why using either
of the PROOF= possibilities can save up a considerable amount of time,
e.g:

53

$ make bu i ld PROOF=1

When proofing one of the translations it is possible to build only one 54

language by executing, e.g:

55

$ make bu i ld LANGUAGES=de

It is also possible to build by document type, e.g: 56

57

$ make bu i ld FORMATS=pdf

Or combine both, e.g: 58

59

$ make bu i ld LANGUAGES=de FORMATS=html

After revising your work and making sure that everything is fine, do not 60

use make commit unless you are updating translations in the commit, and
in that case, do not mix changes to the English manual and translations in
the same commit, but use separate commits for each. See the Translation
section for more details.

1.4.2 Translation 61

Note: For the translation of the man pages see Translation of man 62

pages

In order to translate live-manual, follow these steps depending on whether 63

you are starting a translation from scratch or continue working on an
already existing one:

Start a new translation from scratch 64

6

Debian Live Manual

Translate the about˙manual.ssi.pot , about˙project.ssi.pot and 65

index.html.in.pot files in manual/pot/ to your language with your
favourite editor (such as poedit) and send the translated .po files
to the mailing list to check their integrity. live-manual’s integrity
check not only ensures that the .po files are 100% translated but
it also detects possible errors.

Once checked, to enable a new language in the autobuild66

it is enough to add the initial translated files to manual/po/-
$–LANGUAGE˝/ and edit manual/˙sisu/home/index.html adding
the name of the language and its name in English between brack-
ets. And then, add the folder manual/$–LANGUAGE˝/ to the
file .gitignore. Finally, run make commit.

Continue with an already started translation67

If your target language has already been added, you can ran-68

domly continue translating the remaining .po files in manual/po/-
$–LANGUAGE˝/ using your favourite editor (such as poedit) .

Do not forget that you need to run make commit to ensure that69

the translated manuals are updated from the .po files and then
you can review your changes launching make build before git add
., git commit -m Translating... and git push. Remember that
since make build can take a considerable amount of time, you can
proofread languages individually as explained in Applying changes

After running make commit you will see some text scroll by. These70

are basically informative messages about the processing status and also
some hints about what can be done in order to improve live-manual.
Unless you see a fatal error, you usually can proceed and submit your
contribution.

live-manual comes with two utilities that can greatly help translators to71

find untranslated and changed strings. The first one is make translate. It

launches an script that tells you in detail how many untranslated strings
there are in each .po file. The second one, the make fixfuzzy target, only
acts upon changed strings but it helps you to find and fix them one by
one.

Keep in mind that even though these utilities might be really helpful to 72

do translation work on the command line, the use of an specialized tool
like poedit is the recommended way to do the task. It is also a good idea
to read the Debian localization (l10n) documentation and, specifically to
live-manual, the Guidelines for translators.

Note: You can use make clean to clean your git tree before pushing. 73

This step is not compulsory thanks to the .gitignore file but it is a good
practice to avoid committing files involuntarily.

7

About the Debian Live Project74

2. About the Debian Live Project75

2.1 Motivatie76

2.1.1 Ce nu e bine cu sistemele live actuale77

When Debian Live Project was initiated (around 2006), there were al-78

ready several Debian based live systems available and they are doing a
great job. From the Debian perspective most of them have one or more
of the following disadvantages:

Ele nu sunt proiecte Debian si drept urmare nu au suport din partea79

Comunitatii Debian

Ele amalgameaza diferite distributii, ca testing si unstable .80

Ele suporta doar arhitectura i386.81

Ele au modificat comportamentul si /sau aspectul programelor pentru82

a castuga spatiu.

Acestea includ pachete din afara arhivelor Debian83

Ele folosesc kernele modificate care contin patch-uri ce nu fac parte84

din Debian.

Ele sunt greoaie si lente datorete marimii lor si deci inapropiate pentru85

situatii de salvare/rescue.

Ele nu sunt disponibile in diferite sosuri ca CDs, DVDs, USB-stick si86

netboot images.

2.1.2 De ce e nevoie de propriul nostru sistem live ?87

Debian se considera Sistemul de Operare Universal: Are un mecanism88

live pentru a se promova in jur si de a prezenta cu acuratete sistemul de
operare ce are urmatoarele mari avantaje:

It is a subproject of Debian. 89

El reflecta starea (actuala) a distributiei. 90

Se poate utiliza pe maximum de arhitecturi posibile. 91

Contine doar programe Debian. 92

Nu contine nici un pachet care nu este din afara arhivelor Debian. 93

Foloseste un kernel Debian nealterat, fara patch-uri aditionale. 94

2.2 Filozofia 95

2.2.1 Only unchanged packages from Debian main and 96

non-free-firmware

Se vor folosi numai pachete din depozitul Debian sectiunea main. Sec- 97

tiunea non-free nu este parte a Debian drept urmare nu poate fi folosita
nici un fel la construirea imaginilor live cu Debian.

Starting with Debian 12 bookworm we added the non-free-firmware 98

section for better support of modern hardware.

Nu vor fi facute nici o schimbare in programe. Daca este nevoie de acest 99

lucru, schimbarile vor fi facute in coordonare cu responsabilul de program
din Debian.

Ca o exceptie, programele specifice ca live-boot, live-build sau live-config 100

pot fi folosite temporar din depozitele proprii live, pentru nevoi de dez-
voltare. (de exemplu pentru creerea de development snapshots). Acestea
vor fi upload-ate in Debian la date cuvenite.

8

https://wiki.debian.org/Firmware

Debian Live Manual

2.2.2 Nu vor fi programe de configurare pentru sistemul live.101

In aceasta faza nu vor fi propuse sau instalate example sau configuratii102

alternative. Toate programele sunt folosite cu configuratia default ‘de
baza’, la fel ca in instalatia normaladin Debian.

In caz de nevoie a unei configuratii diferite, aceasta schimbare va fii facuta103

in coordonare cu responsabilui de program din Debian.

A system for configuring packages is provided using debconf allowing104

custom configured packages to be installed in your custom produced live
system images, but for the prebuilt live images we choose to leave pack-
ages in their default configuration, unless absolutely necessary in order
to work in the live environment. Wherever possible, we prefer to adapt
packages within the Debian archive to work better in a live system ver-
sus making changes to the live toolchain or prebuilt image configurations.
For more information, please see Customization overview.

2.3 Contact105

Mailing list : The primary contact for the project is the mailing106

list at https://lists.debian.org/debian-live/. You can email the list directly by
addressing your mail to debian-live@lists.debian.org. The list archives are
available at https://lists.debian.org/debian-live/.

IRC : Un numar de utilizatori si dezvoltatori sunt prezenti in canalul107

#debian-live pe n irc.debian.org (OFTC). Daca aveti o intrebare pentru
IRC , fiti cu multa rabdare in asteptarea raspunsului. In caz de lipsa
a unui raspuns , folositi mailing list.

BTS : BTS adica Reporting bugs.108

9

https://lists.debian.org/debian-live/
debian-live@lists.debian.org
https://lists.debian.org/debian-live/

Utilizator109

10

Installation110

3. Installation111

3.1 Requirements112

Building live system images has very few system requirements for the113

host system:

Superuser (root) access114

An up-to-date version of live-build115

A POSIX-compliant shell, such as bash or dash116

debootstrap117

Linux 2.6 or newer118

A mount point with dev and exec rights.119

120

mount ¡ your˙mount˙point ¿ - odev , exec , remount

Note that using Debian or a Debian-derived distribution is not required121

- live-build will run on almost any distribution with the above require-
ments.

3.2 Installing live-build122

You can install live-build in a number of different ways:123

From the Debian repository124

From source125

From snapshots126

If you are using Debian, the recommended way is to install live-build via 127

the Debian repository.

3.2.1 From the Debian repository 128

Simply install live-build like any other package: 129

130

apt - get i n s t a l l l i v e - bu i ld

3.2.2 From source 131

live-build is developed using the Git version control system. On Debian 132

based systems, this is provided by the git package. To check out the latest
code, execute:

133

$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - bu i ld . g i t

You can build and install your own Debian package by executing: 134

135

$ cd l i v e - bu i ld
$ dpkg - bui ldpackage -b - uc - us
$ cd . .

Now install whichever of the freshly built .deb files you were interested 136

in, e.g.

137

dpkg - i l i v e - bu i l d ˙ 4 . 0 -1 ˙ a l l . deb

You can also install live-build directly to your system by executing: 138

139

11

Debian Live Manual

make i n s t a l l

and uninstall it with:140

141

make un i n s t a l l

3.3 Installing live-boot and live-config142

Note: You do not need to install live-boot or live-config on your system143

to create customized live systems. However, doing so will do no harm
and is useful for reference purposes. If you only want the documenta-
tion, you may now install the live-boot-doc and live-config-doc packages
separately.

3.3.1 From the Debian repository144

Both live-boot and live-config are available from the Debian repository145

as per Installing live-build.

3.3.2 From source146

To use the latest source from git, you can follow the process below. Please147

ensure you are familiar with the terms mentioned in Terms.

Checkout the live-boot and live-config sources148

149

$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - boot . g i t
$ g i t c l one https : // s a l s a . debian . org / l i v e - team/ l i v e - c on f i g . g i t

Consult the live-boot and live-config man pages for details on customizing150

if that is your reason for building these packages from source.

Build live-boot and live-config .deb files 151

You must build either on your target distribution or in a chroot containing 152

your target platform: this means if your target is trixie then you should
build against trixie .

Use a personal builder such as pbuilder or sbuild if you need to build live- 153

boot for a target distribution that differs from your build system. For
example, for trixie live images, build live-boot in a trixie chroot. If your
target distribution happens to match your build system distribution, you
may build directly on the build system using dpkg-buildpackage (provided
by the dpkg-dev package):

154

$ cd l i v e - boot
$ dpkg - bui ldpackage -b - uc - us
$ cd . . / l i v e - c on f i g
$ dpkg - bui ldpackage -b - uc - us

Use applicable generated .deb files 155

As live-boot and live-config are installed by live-build system, installing 156

the packages in the host system is not sufficient: you should treat the gen-
erated .deb files like any other custom packages. Since your purpose for
building from source is likely to test new things over the short term before
the official release, follow Installing modified or third-party packages to
temporarily include the relevant files in your configuration. In particular,
notice that both packages are divided into a generic part, a documen-
tation part and one or more back-ends. Include the generic part, only
one back-end matching your configuration, and optionally the documen-
tation. Assuming you are building a live image in the current directory
and have generated all .deb files for a single version of both packages in
the directory above, these bash commands would copy all of the relevant
packages including default back-ends:

157

12

Debian Live Manual

$ cp . . / l i v e - boot– ˙ , - i n i t r amf s - t oo l s , - doc ˝* . deb con f i g / packages .←↩
chroot /

$ cp . . / l i v e - c on f i g – ˙ , - s y s v i n i t , - doc ˝* . deb con f i g / packages . chroot←↩
/

13

The basics158

4. The basics159

This chapter contains a brief overview of the build process and instruc-160

tions for using the three most commonly used image types. The most
versatile image type, iso-hybrid, may be used on a virtual machine, opti-
cal medium or USB portable storage device. In certain special cases, as
explained later, the hdd type may be more suitable. The chapter includes
detailed instructions for building and using a netboot type image, which
is a bit more involved due to the setup required on the server. This is
an slightly advanced topic for anyone who is not already familiar with
netbooting, but it is included here because once the setup is done, it is
a very convenient way to test and deploy images for booting on the local
network without the hassle of dealing with image media.

The section finishes with a quick introduction to webbooting which161

is, perhaps, the easiest way of using different images for different pur-
poses, switching from one to the other as needed using the internet as a
means.

Throughout the chapter, we will often refer to the default filenames162

produced by live-build. If you are downloading a prebuilt image instead,
the actual filenames may vary.

4.1 What is a live system?163

A live system usually means an operating system booted on a computer164

from a removable medium, such as a CD-ROM or USB stick, or from a
network, ready to use without any installation on the usual drive(s), with
auto-configuration done at run time (see Terms).

With live systems, it’s an operating system, built for one of the supported 165

architectures (currently amd64 and arm64). It is made from the following
parts:

Linux kernel image , usually named vmlinuz* 166

Initial RAM disk image (initrd) : a RAM disk set up for the Linux 167

boot, containing modules possibly needed to mount the System image
and some scripts to do it.

System image : The operating system’s filesystem image. Usually, a 168

SquashFS compressed filesystem is used to minimize the live system
image size. Note that it is read-only. So, during boot the live system
will use a RAM disk and ‘union’ mechanism to enable writing files
within the running system. However, all modifications will be lost
upon shutdown unless optional persistence is used (see Persistence).

Bootloader : A small piece of code crafted to boot from the chosen 169

medium, possibly presenting a prompt or menu to allow selection of op-
tions/configuration. It loads the Linux kernel and its initrd to run with
an associated system filesystem. Different solutions can be used, de-
pending on the target medium and format of the filesystem containing
the previously mentioned components: isolinux to boot from a CD or
DVD in ISO9660 format, syslinux for HDD or USB drive booting from
a VFAT partition, extlinux for ext2/3/4 and btrfs partitions, pxelinux
for PXE netboot, GRUB for ext2/3/4 partitions, etc.

You can use live-build to build the system image from your specifications, 170

set up a Linux kernel, its initrd, and a bootloader to run them, all in one
medium-dependent format (ISO9660 image, disk image, etc.).

4.2 Downloading prebuilt images 171

You can download one of the prebuilt images from https://www.debian.org/ 172

14

https://www.debian.org/CD/live/
https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

Debian Live Manual

CD/live/. For many of the popular desktop environments (GNOME, Xfce,
KDE, etc.) a specific live image is prepared.

If you are unsure which file to download, use the ‘Live GNOME’ image173

from the ‘stable’ release. You can then skip reading the next sections and
run the image in a virtual machine.

4.3 First steps: building an ISO hybrid image174

Regardless of the image type, you will need to perform the same basic175

steps to build an image each time. As a first example, create a build di-
rectory, change to that directory and then execute the following sequence
of live-build commands to create a basic ISO hybrid image containing a
default live system without X.org. It is suitable for burning to CD or
DVD media, and also to copy onto a USB stick.

The name of the working directory is absolutely up to you, but if you176

take a look at the examples used throughout live-manual, it is a good
idea to use a name that helps you identify the image you are working
with in each directory, especially if you are working or experimenting
with different image types. In this case you are going to build a default
system so let’s call it, for example, live-default.

177

$ mkdir l i v e - d e f au l t && cd l i v e - d e f au l t

Then, run the lb config command. This will create a config/ hierarchy178

in the current directory for use by other commands:

179

$ lb c on f i g

No parameters are passed to these commands, so defaults for all of their180

various options will be used. See The lb config command for more de-
tails.

Now that the config/ hierarchy exists, build the image with the lb build 181

command:

182

lb bu i ld

This process can take a while, depending on the speed of your computer 183

and your network connection. When it is complete, there should be
a live-image-amd64.hybrid.iso image file, ready to use, in the current
directory.

Note: If you are building on an amd64 system the name of the resulting 184

image will be live-image-amd64.hybrid.iso. Keep in mind this naming
convention throughout the manual.

4.4 Using an ISO hybrid live image 185

After either building or downloading an ISO hybrid image the usual next 186

step is to prepare your medium for booting, either CD-R(W) or DVD-
R(W) optical media or a USB stick.

4.4.1 Burning an ISO image to a physical medium 187

Burning an ISO image is easy. Just install xorriso and use it from the 188

command-line to burn the image. For instance:

189

apt - get i n s t a l l x o r r i s o
$ x o r r i s o - as cdrecord -v dev=/dev/ s r0 blank=as ˙needed l i v e - image -←↩

amd64 . hybrid . i s o

15

https://www.debian.org/CD/live/
https://www.debian.org/CD/live/

Debian Live Manual

4.4.2 Copying an ISO hybrid image to a USB stick190

ISO images prepared with xorriso, can be simply copied to a USB stick191

with the cp program or an equivalent. Plug in a USB stick with a size
large enough for your image file and determine which device it is, which
we hereafter refer to as $–USBSTICK˝. This is the device file of your
key, such as /dev/sdb, not a partition, such as /dev/sdb1! You can find
the right device name by looking in dmesg’s output after plugging in the
stick, or better yet, ls -l /dev/disk/by-id.

Once you are certain you have the correct device name, use the cp com-192

mand to copy the image to the stick. This will definitely overwrite any
previous contents on your stick!

193

$ cp l i v e - image - amd64 . hybrid . i s o $–USBSTICK˝
$ sync

Note: The sync command is useful to ensure that all the data, which194

is stored in memory by the kernel while copying the image, is written to
the USB stick.

4.4.3 Using the space left on a USB stick195

After copying the live-image-amd64.hybrid.iso to a USB stick, the first196

partition on the device will be filled up by the live system. To use the
remaining free space, use a partitioning tool such as gparted or parted to
create a new partition on the stick.

197

gparted $–USBSTICK˝

After the partition is created, where $–PARTITION˝ is the name of the198

partition, such as /dev/sdb2, you have to create a filesystem on it. One
possible choice would be ext4.

199

mkfs . ext4 $–PARTITION˝

Note: If you want to use the extra space with Windows, apparently that 200

OS cannot normally access any partitions but the first. Some solutions to
this problem have been discussed on our mailing list, but it seems there
are no easy answers.

Remember: Every time you install a new live-image-amd64.hybrid.iso on 201

the stick, all data on the stick will be lost because the partition table is
overwritten by the contents of the image, so back up your extra partition
first to restore again after updating the live image.

4.4.4 Booting the live medium 202

The first time you boot your live medium, whether CD, DVD, USB key, 203

or PXE boot, some setup in your computer’s BIOS may be needed first.
Since BIOSes vary greatly in features and key bindings, we cannot get into
the topic in depth here. Some BIOSes provide a key to bring up a menu
of boot devices at boot time, which is the easiest way if it is available on
your system. Otherwise, you need to enter the BIOS configuration menu
and change the boot order to place the boot device for the live system
before your normal boot device.

Once you’ve booted the medium, you are presented with a boot menu. 204

If you just press enter here, the system will boot using the default entry,
Live and default options. For more information about boot options, see
the help entry in the menu and also the live-boot and live-config man
pages found within the live system.

Assuming you’ve selected Live and booted a default desktop live image, 205

16

Debian Live Manual

after the boot messages scroll by, you should be automatically logged into
the user account and see a desktop, ready to use. If you have booted a
console-only image, you should be automatically logged in on the console
to the user account and see a shell prompt, ready to use.

4.5 Using a virtual machine for testing206

It can be a great time-saver for the development of live images to run207

them in a virtual machine (VM). This is not without its caveats:

Running a VM requires enough RAM for both the guest OS and the208

host and a CPU with hardware support for virtualization is recom-
mended.

There are some inherent limitations to running on a VM, e.g. poor209

video performance, limited choice of emulated hardware.

When developing for specific hardware, there is no substitute for210

running on the hardware itself.

Occasionally there are bugs that relate only to running in a VM. When211

in doubt, test your image directly on the hardware.

Provided you can work within these constraints, survey the available VM212

software and choose one that is suitable for your needs.

4.5.1 Testing an ISO image with QEMU213

The most versatile VM in Debian is QEMU. If your processor has hard-214

ware support for virtualization, use the qemu-kvm package; the qemu-
kvm package description briefly lists the requirements.

First, install qemu-kvm if your processor supports it. If not, install qemu,215

in which case the program name is qemu instead of kvm in the following

examples. The qemu-utils package is also valuable for creating virtual
disk images with qemu-img.

216

apt - get i n s t a l l qemu -kvm qemu - u t i l s

Booting an ISO image is simple: 217

218

$ kvm -cdrom l i v e - image - amd64 . hybrid . i s o -m 4G

See the man pages for more details. 219

Note: For live systems containing a desktop environment that you want 220

to test with qemu, you may wish to include the spice-vdagent package
in your live-build configuration. This will automatically adjust the res-
olution and enable the clipboard between the virtual machine and the
host.

221

$ echo ” sp i ce - vdagent” ¿¿ c on f i g /package - l i s t s / s p i c e . l i s t . chroot

4.5.2 Testing an ISO image with VirtualBox 222

In order to test the ISO with virtualbox: 223

224

apt - get i n s t a l l v i r tua lbox v i r tua lbox - qt v i r tua lbox - dkms
$ v i r tua lbox

Create a new virtual machine, change the storage settings to use 225

live-image-amd64.hybrid.iso as the CD/DVD device, and start the ma-
chine.

17

Debian Live Manual

Note: For live systems containing X.org that you want to test with 226

virtualbox, you may wish to include the VirtualBox X.org driver pack-
age, virtualbox-guest-dkms and virtualbox-guest-x11, in your live-build
configuration. Otherwise, the resolution is limited to 800x600.

227

$ echo ” v i r tua lbox - guest - dkms v i r tua lbox - guest - x11” ¿¿ c on f i g /←↩
package - l i s t s /my. l i s t . chroot

In order to make the dkms package work, also the kernel headers for the228

kernel flavour used in your image need to be installed. Instead of manually
listing the correct linux-headers package in above created package list,
the selection of the right package can be done automatically by live-
build.

229

$ lb c on f i g - - l inux - packages ” l inux - image l inux - headers ”

4.6 Building and using an HDD image230

Building an HDD image is similar to an ISO hybrid one in all re-231

spects except you specify -b hdd and the resulting filename is live-image-
amd64.img which cannot be burnt to optical media. It is suitable for
booting from USB sticks, USB hard drives, and various other portable
storage devices. Normally, an ISO hybrid image can be used for this
purpose instead, but if you have a BIOS which does not handle hybrid
images properly, you need an HDD image.

Note: if you created an ISO hybrid image with the previous example, you232

will need to clean up your working directory with the lb clean command
(see The lb clean command):

233

lb c l ean - - b inary

Run the lb config command as before, except this time specifying the 234

HDD image type:

235

$ lb c on f i g -b hdd

Now build the image with the lb build command: 236

237

lb bu i ld

When the build finishes, a live-image-amd64.img file should be present 238

in the current directory.

The generated binary image contains a VFAT partition and the syslinux 239

bootloader, ready to be directly written on a USB device. Once again,
using an HDD image is just like using an ISO hybrid one on USB. Follow
the instructions in Using an ISO hybrid live image, except use the filename
live-image-amd64.img instead of live-image-amd64.hybrid.iso.

Likewise, to test an HDD image with Qemu, install qemu as described 240

above in Testing an ISO image with QEMU. Then run kvm or qemu,
depending on which version your host system needs, specifying live-image-
amd64.img as the first hard drive.

241

$ kvm -hda l i v e - image - amd64 . img

4.7 Building a netboot image 242

The following sequence of commands will create a basic netboot image 243

18

Debian Live Manual

containing a default live system without X.org. It is suitable for booting
over the network.

Note: if you performed any previous examples, you will need to clean244

up your working directory with the lb clean command:

245

lb c l ean

In this specific case, a lb clean –binary would not be enough to clean246

up the necessary stages. The cause for this is that in netboot setups, a
different initramfs configuration needs to be used which live-build per-
forms automatically when building netboot images. Since the initramfs
creation belongs to the chroot stage, switching to netboot in an existing
build directory means to rebuild the chroot stage too. Therefore, lb clean
(which will remove the chroot stage, too) needs to be used.

Run the lb config command as follows to configure your image for net-247

booting:

248

$ lb c on f i g -b netboot - - net - root - path ”/ srv /debian - l i v e ” - - net -←↩
root - s e r v e r ”192 . 168 . 0 . 2 ”

In contrast with the ISO and HDD images, netbooting does not, itself,249

serve the filesystem image to the client, so the files must be served via
NFS. Different network filesystems can be chosen through lb config. The –
net-root-path and –net-root-server options specify the location and server,
respectively, of the NFS server where the filesystem image will be located
at boot time. Make sure these are set to suitable values for your network
and server.

Now build the image with the lb build command:250

251

lb bu i ld

In a network boot, the client runs a small piece of software which usually 252

resides on the EPROM of the Ethernet card. This program sends a
DHCP request to get an IP address and information about what to do
next. Typically, the next step is getting a higher level bootloader via the
TFTP protocol. That could be pxelinux, GRUB, or even boot directly
to an operating system like Linux.

For example, if you unpack the generated live-image-amd64.netboot.tar 253

archive in the /srv/debian-live directory, you’ll find the filesystem image
in live/filesystem.squashfs and the kernel, initrd and pxelinux bootloader
in tftpboot/.

We must now configure three services on the server to enable netbooting: 254

the DHCP server, the TFTP server and the NFS server.

4.7.1 DHCP server 255

We must configure our network’s DHCP server to be sure to give an IP 256

address to the netbooting client system, and to advertise the location of
the PXE bootloader.

Here is an example for inspiration, written for the ISC DHCP server 257

isc-dhcp-server in the /etc/dhcp/dhcpd.conf configuration file:

258

/ etc /dhcp/dhcpd . conf - c on f i g u r a t i on f i l e f o r i s c - dhcp - s e r v e r

ddns - update - s t y l e none ;

opt ion domain - name ”example . org ” ;
opt ion domain -name - s e r v e r s ns1 . example . org , ns2 . example . org ;

de fau l t - l e a s e - time 600 ;
max- l ea s e - time 7200 ;

19

Debian Live Manual

log - f a c i l i t y l o c a l 7 ;

subnet 1 9 2 . 1 6 8 . 0 . 0 netmask 255 . 255 . 255 . 0 –
range 192 . 1 6 8 . 0 . 1 1 9 2 . 1 6 8 . 0 . 2 5 4 ;
f i l ename ” pxe l inux . 0 ” ;
next - s e r v e r 1 9 2 . 1 6 8 . 0 . 2 ;
opt ion subnet -mask 2 5 5 . 2 5 5 . 2 5 5 . 0 ;
opt ion broadcast - address 1 9 2 . 1 6 8 . 0 . 2 5 5 ;
opt ion r ou t e r s 1 9 2 . 1 6 8 . 0 . 1 ;

˝

4.7.2 TFTP server259

This serves the kernel and initial ramdisk to the system at run time.260

You should install the tftpd-hpa package. It can serve all files contained261

inside a root directory, usually /srv/tftp. To let it serve files inside /srv/-
debian-live/tftpboot, run as root the following command:

262

dpkg - r e c on f i g u r e - plow tftpd - hpa

and fill in the new tftp server directory when being asked about it.263

4.7.3 NFS server264

Once the guest computer has downloaded and booted a Linux kernel and265

loaded its initrd, it will try to mount the Live filesystem image through
a NFS server.

You need to install the nfs-kernel-server package.266

Then, make the filesystem image available through NFS by adding a line267

like the following to /etc/exports:

268

/ srv /debian - l i v e *(ro , async , no ˙ roo t ˙ squash , no ˙ sub t r e e ˙ ch e ck)

and tell the NFS server about this new export with the following com- 269

mand:

270

expo r t f s - rv

Setting up these three services can be a little tricky. You might need 271

some patience to get all of them working together. For more information,
see the syslinux wiki at https://wiki.syslinux.org/wiki/index.php?title=PXELINUX

or the Debian Installer Manual’s TFTP Net Booting section at https://

www.debian.org/releases/stable/amd64/ch04s05.en.html. They might help, as their
processes are very similar.

4.7.4 Netboot testing HowTo 272

Netboot image creation is made easy with live-build, but testing the 273

images on physical machines can be really time consuming.

To make our life easier, we can use virtualization. 274

4.7.5 Qemu 275

Install qemu, bridge-utils, sudo. 276

Edit /etc/qemu-ifup: 277

278

#!/bin / sh
sudo -p ”Password f o r $0 : ” / sb in / i f c o n f i g $1 1 7 2 . 2 0 . 0 . 1
echo ”Executing / e t c /qemu - i f up ”
echo ”Bring ing up $1 f o r br idged mode . . . ”
sudo / sb in / i f c o n f i g $1 0 . 0 . 0 . 0 promisc up

20

https://wiki.syslinux.org/wiki/index.php?title=PXELINUX
https://www.debian.org/releases/stable/amd64/ch04s05.en.html
https://www.debian.org/releases/stable/amd64/ch04s05.en.html

Debian Live Manual

echo ”Adding $1 to br0 . . . ”
sudo / usr / sb in / b r c t l add i f br0 $1
s l e e p 2

Get, or build a grub-floppy-netboot.279

Launch qemu with -net nic,vlan=0 -net tap,vlan=0,ifname=tun0280

4.8 Webbooting281

Webbooting is a convenient way of retrieving and booting live systems282

using the internet as a means. The requirements for webbooting are very
few. On the one hand, you need a medium with a bootloader, an initial
ramdisk and a kernel. On the other hand, a web server to store the
squashfs files which contain the filesystem.

4.8.1 Getting the webboot files283

As usual, you can build the images yourself or use the prebuilt files. Using284

prebuilt images would be handy for doing initial testing until one can fine
tune their own needs. If you have built a live image you will find the files
needed for webbooting in the build directory under binary/live/. The
files are called vmlinuz, initrd.img and filesystem.squashfs.

It is also possible to extract those files from an already existing iso image.285

In order to achieve that, loopback mount the image as follows:

286

mount - o loop image . i s o /mnt

The files are to be found under the live/ directory. In this specific case,287

it would be /mnt/live/. This method has the disadvantage that you need
to be root to be able to mount the image. However, it has the advantage
that it is easily scriptable and thus, easily automated.

But undoubtedly, the easiest way of extracting the files from an iso image 288

and uploading it to the web server at the same time, is using the midnight
commander or mc. If you have the genisoimage package installed, the two-
pane file manager allows you to browse the contents of an iso file in one
pane and upload the files via ftp in the other pane. Even though this
method requires manual work, it does not require root privileges.

4.8.2 Booting webboot images 289

While some users will prefer virtualization to test webbooting, we refer to 290

real hardware here to match the following possible use case which should
only be considered as an example.

In order to boot a webboot image it is enough to have the components 291

mentioned above, i.e. vmlinuz and initrd.img in a usb stick inside a
directory named live/ and install syslinux as bootloader. Then boot from
the usb stick and type fetch=URL/PATH/TO/FILE at the boot options.
live-boot will retrieve the squashfs file and store it into ram. This way, it
is possible to use the downloaded compressed filesystem as a regular live
system. For example:

292

append boot=l i v e components f e t ch=http : / / 192 . 1 6 8 . 2 . 5 0 / images /←↩
webboot/ f i l e s y s t em . squash f s

Use case: You have a web server in which you have stored two squashfs 293

files, one which contains a full desktop, like for example gnome, and a
standard one. If you need a graphical environment for one machine, you
can plug your usb stick in and webboot the gnome image. If you need
one of the tools included in the second type of image, perhaps for another
machine, you can webboot the standard one.

21

Overview of tools294

5. Overview of tools295

This chapter contains an overview of the three main tools used in building296

live systems: live-build, live-boot and live-config.

5.1 The live-build package297

live-build is a collection of scripts to build live systems. These scripts are298

also referred to as commands.

The idea behind live-build is to be a framework that uses a configuration299

directory to completely automate and customize all aspects of building a
Live image.

Many concepts are similar to those used to build Debian packages with300

debhelper:

The scripts have a central location for configuring their operation. In301

debhelper, this is the debian/ subdirectory of a package tree. For ex-
ample, dh˙install will look, among others, for a file called debian/install
to determine which files should exist in a particular binary package. In
much the same way, live-build stores its configuration entirely under a
config/ subdirectory.

The scripts are independent - that is to say, it is always safe to run302

each command.

Unlike debhelper, live-build provides the tools to generate a skeleton con-303

figuration directory. This could be considered to be similar to tools such
as dh-make. For more information about these tools, read on, since the re-

mainder of this section discuses the four most important commands. Note
that the preceding lb is a generic wrapper for live-build commands.

lb config : Responsible for initializing a Live system configuration 304

directory. See The lb config command for more information.

lb build : Responsible for starting a Live system build. See The lb 305

build command for more information.

lb clean : Responsible for removing parts of a Live system build. See 306

The lb clean command for more information.

5.1.1 The lb config command 307

As discussed in live-build, the scripts that make up live-build read their 308

configuration with the source command from a single directory named
config/. As constructing this directory by hand would be time-consuming
and error-prone, the lb config command can be used to create the initial
skeleton configuration tree.

Issuing lb config without any arguments creates the config/ subdirectory 309

which is populated with some default settings in configuration files, and
two skeleton trees named auto/ and local/.

310

$ lb c on f i g
[2025 -02 -15 1 2 : 3 4 : 5 6] lb c on f i g
P: Using http proxy : http : / / 1 2 7 . 0 . 0 . 1 : 3 1 4 2
P: Creat ing c on f i g t r e e f o r a debian / t e s t i n g /amd64 system
P: Symlinking hooks . . .

Using lb config without any arguments would be suitable for users who 311

need a very basic image, or who intend to provide a more complete con-
figuration via auto/config later (see Managing a configuration for de-
tails).

22

Debian Live Manual

Normally, you will want to specify some options. For example, to specify 312

which package manager to use while building the image:

313

$ lb c on f i g - - apt apt i tude

It is possible to specify many options, such as:314

315

$ lb c on f i g - - binary - images netboot - - bootappend - l i v e ”boot=l i v e ←↩
components hostname=l i v e - host username=l i v e - user ” . . .

A full list of options is available in the lb˙config man page.316

5.1.2 The lb build command317

The lb build command reads in your configuration from the config/ di-318

rectory. It then runs the lower level commands needed to build your Live
system.

5.1.3 The lb clean command319

It is the job of the lb clean command to remove various parts of a build320

so subsequent builds can start from a clean state. By default, chroot,
binary and source stages are cleaned, but the cache is left intact. Also,
individual stages can be cleaned. For example, if you have made changes
that only affect the binary stage, use lb clean –binary prior to building
a new binary. If your changes invalidate the bootstrap and/or package
caches, e.g. changes to –mode, –architecture, or –bootstrap, you must use
lb clean –purge. See the lb˙clean man page for a full list of options.

5.2 The live-boot package321

live-boot is a collection of scripts providing hooks for the initramfs-tools, 322

used to generate an initramfs capable of booting live systems, such as
those created by live-build. This includes the live system ISOs, netboot
tarballs, and USB stick images.

At boot time it will look for read-only media containing a /live/ directory 323

where a root filesystem (often a compressed filesystem image like squashfs)
is stored. If found, it will create a writable environment, using OverlayFS,
for Debian like systems to boot from.

More information on initial ramfs in Debian can be found in the Debian 324

Linux Kernel Handbook at https://kernel-team.pages.debian.net/kernel-handbook/

in the chapter on initramfs.

5.3 The live-config package 325

live-config consists of the scripts that run at boot time after live-boot to 326

configure the live system automatically. It handles such tasks as setting
the hostname, locales and timezone, creating the live user, inhibiting cron
jobs and performing autologin of the live user.

23

https://kernel-team.pages.debian.net/kernel-handbook/

Managing a configuration327

6. Managing a configuration328

This chapter explains how to manage a live configuration from initial329

creation, through successive revisions and successive releases of both the
live-build software and the live image itself.

6.1 Dealing with configuration changes330

Live configurations rarely are perfect on the first try. It may be fine to331

pass lb config options from the command-line to perform a single build,
but it is more typical to revise those options and build again until you
are satisfied. To support these changes, you will need auto scripts which
ensure your configuration is kept in a consistent state.

6.1.1 Why use auto scripts? What do they do?332

The lb config command stores the options you pass to it in config/*333

files along with many other options set to default values. If you run lb
config again, it will not reset any option that was defaulted based on
your initial options. So, for example, if you run lb config again with a
new value for –binary-images, any dependent options that were defaulted
for the old image type may no longer work with the new ones. Nor
are these files intended to be read or edited. They store values for over a
hundred options, so nobody, let alone yourself, will be able to see in these
which options you actually specified. And finally, if you run lb config,
then upgrade live-build and it happens to rename an option, config/*
would still contain variables named after the old option that are no longer
valid.

For all these reasons, auto/* scripts will make your life easier. They are 334

simple wrappers to the lb config, lb build and lb clean commands that are
designed to help you manage your configuration. The auto/config script
stores your lb config command with all desired options, the auto/clean
script removes the files containing configuration variable values, and the
auto/build script keeps a build.log of each build. Each of these scripts
is run automatically every time you run the corresponding lb command.
By using these scripts, your configuration is easier to read and is kept
internally consistent from one revision to the next. Also, it will be much
easier for you identify and fix options which need to change when you
upgrade live-build after reading the updated documentation.

6.1.2 Use example auto scripts 335

For your convenience, live-build comes with example auto shell scripts to 336

copy and edit. Start a new, default configuration, then copy the examples
into it:

337

$ mkdir mylive && cd mylive && lb con f i g
$ mkdir auto
$ cp / usr / share /doc/ l i v e - bu i ld / examples /auto /* auto/

Edit auto/config, adding any options as you see fit. For instance: 338

339

#!/bin / sh
lb c on f i g noauto “

- - d i s t r i b u t i o n s t ab l e “
- - binary - images hdd “
- - mirror - boots t rap http :// f tp . ch . debian . org /debian / “
- - mirror - b inary http :// f tp . ch . debian . org /debian / “
”$–@˝”

Now, each time you use lb config, auto/config will reset the configuration 340

24

Debian Live Manual

based on these options. When you want to make changes to them, edit
the options in this file instead of passing them to lb config. When you
use lb clean, auto/clean will clean up the config/* files along with any
other build products. And finally, when you use lb build, a log of the
build will be written by auto/build in build.log.

Note: A special noauto parameter is used here to suppress another341

call to auto/config, thereby preventing infinite recursion. Make sure you
don’t accidentally remove it when making edits. Also, take care to ensure
when you split the lb config command across multiple lines for readability,
as shown in the example above, that you don’t forget the backslash (at
the end of each line that continues to the next.

6.2 Clone a configuration published via Git342

Use the lb config –config option to clone a Git repository that contains a343

live system configuration. If you would like to base your configuration on
one maintained by the Debian Live Project, look at https://salsa.debian.org/

live-team/ for the repository named live-images in the category Subgroups
and projects. This repository contains the configurations for the live
systems prebuilt images.

For example, to build a standard image, use the live-images repository344

as follows:

345

$ mkdir l i v e - images && cd l i v e - images
$ lb c on f i g - - c on f i g https : // s a l s a . debian . org / l i v e - team/ l i v e -←↩

images . g i t : : debian
$ cd images / standard

Edit auto/config and any other things you need in the config tree to suit346

your needs. For example, the unofficial non-free prebuilt images are made
by simply adding –archive-areas main contrib non-free.

You may optionally define a shortcut in your Git configuration by adding 347

the following to your $–HOME˝/.gitconfig:

348

[u r l ” https : // s a l s a . debian . org / l i v e - team /”]
insteadOf = l s o :

This enables you to use lso: anywhere you need to specify the address of 349

a salsa.debian.org git repository. If you also drop the optional .git suffix,
starting a new image using this configuration is as easy as:

350

$ lb c on f i g - - c on f i g l s o : l i v e - images : : debian

Cloning the entire live-images repository pulls the configurations used 351

for several images. If you feel like building a different image after you
have finished with the first one, change to another directory and again
and optionally, make any changes to suit your needs.

In any case, remember that every time you will have to build the image 352

as superuser: lb build

25

https://salsa.debian.org/live-team/
https://salsa.debian.org/live-team/

Customizing contents353

7. Customization overview354

This chapter gives an overview of the various ways in which you may355

customize a live system.

7.1 Build time vs. boot time configuration356

Live system configuration options are divided into build-time options357

which are options that are applied at build time and boot-time options
which are applied at boot time. Boot-time options are further divided
into those occurring early in the boot, applied by the live-boot package,
and those that happen later in the boot, applied by live-config. Any
boot-time option may be modified by the user by specifying it at the
boot prompt. The image may also be built with default boot parameters
so users can normally just boot directly to the live system without speci-
fying any options when all of the defaults are suitable. In particular, the
argument to lb –bootappend-live consists of any default kernel command
line options for the Live system, such as persistence, keyboard layouts,
or timezone. See Customizing locale and language, for example.

Build-time configuration options are described in the lb config man358

page. Boot-time options are described in the man pages for live-boot
and live-config. Although the live-boot and live-config packages are in-
stalled within the live system you are building, it is recommended that
you also install them on your build system for easy reference when you are
working on your configuration. It is safe to do so, as none of the scripts
contained within them are executed unless the system is configured as a
live system.

7.2 Stages of the build 359

The build process is divided into stages, with various customizations 360

applied in sequence in each. The first stage to run is the bootstrap stage.
This is the initial phase of populating the chroot directory with packages
to make a barebones Debian system. This is followed by the chroot
stage, which completes the construction of chroot directory, populating
it with all of the packages listed in the configuration, along with any
other materials. Most customization of content occurs in this stage. The
final stage of preparing the live image is the binary stage, which builds
a bootable image, using the contents of the chroot directory to construct
the root filesystem for the Live system, and including the installer and
any other additional material on the target medium outside of the Live
system’s filesystem. After the live image is built, if enabled, the source
tarball is built in the source stage.

Within each of these stages, there is a particular sequence in which com- 361

mands are applied. These are arranged in such a way as to ensure cus-
tomizations can be layered in a reasonable fashion. For example, within
the chroot stage, preseeds are applied before any packages are installed,
packages are installed before any locally included files are copied, and
hooks are run later, after all of the materials are in place.

7.3 Supplement lb config with files 362

Although lb config creates a skeletal configuration in the config/ directory, 363

to accomplish your goals, you may need to provide additional files in
subdirectories of config/. Depending on where the files are stored in the
configuration, they may be copied into the live system’s filesystem or into
the binary image filesystem, or may provide build-time configurations of
the system that would be cumbersome to pass as command-line options.
You may include things such as custom lists of packages, custom artwork,

26

Debian Live Manual

or hook scripts to run either at build time or at boot time, boosting the
already considerable flexibility of debian-live with code of your own.

7.4 Customization tasks364

The following chapters are organized by the kinds of customization task365

users typically perform: Customizing package installation, Customizing
contents and Customizing locale and language cover just a few of the
things you might want to do.

27

Customizing package installation366

8. Customizing package installation367

Perhaps the most basic customization of a live system is the selection of368

packages to be included in the image. This chapter guides you through
the various build-time options to customize live-build’s installation of
packages. The broadest choices influencing which packages are available
to install in the image are the distribution and archive areas. To ensure
decent download speeds, you should choose a nearby distribution mirror.
You can also add your own repositories for backports, experimental or
custom packages, or include packages directly as files. You can define
lists of packages, including metapackages which will install many related
packages at once, such as packages for a particular desktop or language.
Finally, a number of options give some control over apt, or if you prefer,
aptitude, at build time when packages are installed. You may find these
handy if you use a proxy, want to disable installation of recommended
packages to save space, or need to control which versions of packages are
installed via APT pinning, to name a few possibilities.

8.1 Package sources369

8.1.1 Distribution, archive areas and mode370

The distribution you choose has the broadest impact on which packages371

are available to include in your live image. Specify the codename, which
defaults to testing . Any current distribution carried in the archive may
be specified by its codename here. (See Terms for more details.) The
–distribution option not only influences the source of packages within the
archive, but also instructs live-build to enable other sources.

For example, to build against the stable release, with security, updates 372

(enabled per default) and additionally proposed-updates and backports,
specify:

373

$ lb c on f i g - - d i s t r i b u t i o n s t ab l e - - proposed - updates t rue - -←↩
backports t rue

Similarly, for the unstable release, sid , which has neither security nor 374

updates, specify:

375

$ lb c on f i g - - d i s t r i b u t i o n s i d

Within the distribution archive, archive areas are major divisions of the 376

archive. In Debian, these are main, contrib and non-free. Only main
contains software that is part of the Debian distribution, hence that is
the default. One or more values may be specified, e.g.

377

$ lb c on f i g - - arch ive - a reas ”main con t r ib non - f r e e ”

Experimental support is available for some Debian derivatives through 378

a –mode option. By default, this option is set to debian only if you are
building on a Debian or on an unknown system. If lb config is invoked
on any of the supported derivatives, it will default to create an image of
that derivative. If lb config is run in e.g. ubuntu mode, the distribution
names and archive areas for the specified derivative are supported instead
of the ones for Debian. The mode also modifies live-build behaviour to
suit the derivatives.

Note: The projects for whom these modes were added are primarily re- 379

sponsible for supporting users of these options. The Debian Live Project,
in turn, provides development support on a best-effort basis only, based

28

Debian Live Manual

on feedback from the derivative projects as we do not develop or support
these derivatives ourselves.

8.1.2 Distribution mirrors380

The Debian archive is replicated across a large network of mirrors around381

the world so that people in each region can choose a nearby mirror for best
download speed. Each of the –mirror-* options governs which distribution
mirror is used at various stages of the build. Recall from Stages of the
build that the bootstrap stage is when the chroot is initially populated
by debootstrap with a minimal system, and the chroot stage is when the
chroot used to construct the live system’s filesystem is built. Thus, the
corresponding mirror switches are used for those stages, and later, in the
binary stage, the –mirror-binary and –mirror-binary-security values are
used, superseding any mirrors used in an earlier stage.

8.1.3 Distribution mirrors used at build time382

To set the distribution mirrors used at build time to point at a local mir-383

ror, it is sufficient to set –mirror-bootstrap and –mirror-chroot-security
as follows.

384

$ lb c on f i g - - mirror - boots t rap http :// l o c a l h o s t /debian / “
- - mirror - chroot - s e c u r i t y http :// l o c a l h o s t /debian -←↩

s e c u r i t y /

The chroot mirror, specified by –mirror-chroot, defaults to the –mirror-385

bootstrap value.

8.1.4 Distribution mirrors used at run time386

The –mirror-binary* options govern the distribution mirrors placed in387

the binary image. These may be used to install additional packages while
running the live system. The defaults employ deb.debian.org, a service
that chooses a geographically close mirror based, among other things, on
the user’s IP family and the availability of the mirrors. This is a suitable
choice when you cannot predict which mirror will be best for all of your
users. Or you may specify your own values as shown in the example
below. An image built from this configuration would only be suitable for
users on a network where mirror is reachable.

388

$ lb c on f i g - - mirror - b inary http :// mirror /debian / “
- - mirror - binary - s e c u r i t y http :// mirror /debian - s e c u r i t y / ←↩

“
- - mirror - binary - backports http :// mirror /debian - backports←↩

/

8.1.5 Additional repositories 389

You may add more repositories, broadening your package choices be- 390

yond what is available in your target distribution. These may be, for
example, for backports, experimental or custom packages. To configure
additional repositories, create config/archives/your-repository.list.chroot,
and/or config/archives/your-repository.list.binary files. As with the –
mirror-* options, these govern the repositories used in the chroot stage
when building the image, and in the binary stage, i.e. for use when
running the live system.

For example, config/archives/live.list.chroot allows you to install pack- 391

ages from the debian-live snapshot repository at live system build
time.

392

deb http :// debian - l i v e . a l i o t h . debian . org / s id - snapshots main ←↩
con t r i b non - f r e e

29

Debian Live Manual

If you add the same line to config/archives/live.list.binary, the reposi-393

tory will be added to your live system’s /etc/apt/sources.list.d/ direc-
tory.

If such files exist, they will be picked up automatically.394

You should also put the ASCII-armored GPG key used to sign the reposi-395

tory into config/archives/your-repository.key.–binary,chroot˝ files.

Should you need custom APT pinning, such APT preferences snip-396

pets can be placed in config/archives/your-repository.pref.–binary,chroot˝
files and will be automatically added to your live system’s /etc/apt/-
preferences.d/ directory.

Similarly, if you need custom APT˙AUTH.CONF(5) authentication con-397

figuration, this can be placed in config/archives/your-repository.auth.-
–binary,chroot˝ files and will be automatically added to your live system’s
/etc/apt/auth.conf.d/ directory

8.2 Choosing packages to install398

There are a number of ways to choose which packages live-build will399

install in your image, covering a variety of different needs. You can
simply name individual packages to install in a package list. You can also
use metapackages in those lists, or select them using package control file
fields. And finally, you may place package files in your config/ tree, which
is well suited to testing of new or experimental packages before they are
available from a repository.

8.2.1 Package lists400

Package lists are a powerful way of expressing which packages should401

be installed. The list syntax supports conditional sections which makes
it easy to build lists and adapt them for use in multiple configurations.

Package names may also be injected into the list using shell helpers at
build time.

Note: The behaviour of live-build when specifying a package that does 402

not exist is determined by your choice of APT utility. See Choosing apt
or aptitude for more details.

8.2.2 Using metapackages 403

The simplest way to populate your package list is to use a task metapack- 404

age maintained by your distribution. For example:

405

$ lb c on f i g
$ echo task - gnome - desktop ¿ con f i g /package - l i s t s / desktop . l i s t .←↩

chroot

This supersedes the older predefined list method supported in live-build 406

2.x. Unlike predefined lists, task metapackages are not specific to the
Live System project. Instead, they are maintained by specialist working
groups within the distribution and therefore reflect the consensus of each
group about which packages best serve the needs of the intended users.
They also cover a much broader range of use cases than the predefined
lists they replace.

All task metapackages are prefixed task-, so a quick way to determine 407

which are available (though it may contain a handful of false hits that
match the name but aren’t metapackages) is to match on the package
name with:

408

$ apt - cache search - - names - only ˆ task -

In addition to these, you will find other metapackages with various pur- 409

30

Debian Live Manual

poses. Some are subsets of broader task packages, like gnome-core, while
others are individual specialized parts of a Debian Pure Blend, such as
the education-* metapackages. To list all metapackages in the archive, in-
stall the debtags package and list all packages with the role::metapackage
tag as follows:

410

$ debtags search r o l e : : metapackage

8.2.3 Local package lists411

Whether you list metapackages, individual packages, or a combination412

of both, all local package lists are stored in config/package-lists/. Since
more than one list can be used, this lends itself well to modular designs.
For example, you may decide to devote one list to a particular choice of
desktop, another to a collection of related packages that might as easily
be used on top of a different desktop. This allows you to experiment
with different combinations of sets of packages with a minimum of fuss,
sharing common lists between different live image projects.

Package lists that exist in this directory need to have a .list suffix in order413

to be processed, and then an additional stage suffix, .chroot or .binary to
indicate which stage the list is for.

The packages in the .list.chroot˙install list are present both in the live414

system and in the installed system.

Note: If you don’t specify the stage suffix, the list will be used for both415

stages. Normally, you want to specify .list.chroot so that the packages
will only be installed in the live filesystem and not have an extra copy of
the .deb placed on the medium.

8.2.4 Local binary package lists416

To make a binary stage list, place a file suffixed with .list.binary in config/- 417

package-lists/. These packages are not installed in the live filesystem, but
are included on the live medium under pool/. You would typically use
such a list with one of the non-live installer variants. As mentioned above,
if you want this list to be the same as your chroot stage list, simply use
the .list suffix by itself.

8.2.5 Generated package lists 418

It sometimes happens that the best way to compose a list is to generate 419

it with a script. Any line starting with an exclamation point indicates
a command to be executed within the chroot when the image is built.
For example, one might include the line ! grep-aptavail -n -sPackage -
FPriority standard —sort in a package list to produce a sorted list of
available packages with Priority: standard.

In fact, selecting packages with the grep-aptavail command (from the 420

dctrl-tools package) is so useful that live-build provides a Packages helper
script as a convenience. This script takes two arguments: field and pat-
tern. Thus, you can create a list with the following contents:

421

$ lb c on f i g
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot

8.2.6 Using conditionals inside package lists 422

Any of the live-build configuration variables stored in config/* (minus the 423

LB˙ prefix) may be used in conditional statements in package lists. Gener-
ally, this means any lb config option uppercased and with dashes changed

31

Debian Live Manual

to underscores. But in practice, it is only the ones that influence package
selection that make sense, such as DISTRIBUTION, ARCHITECTURES
or ARCHIVE˙AREAS.

For example, to install ia32-libs if the –architectures amd64 is speci-424

fied:

425

#i f ARCHITECTURES amd64
ia32 - l i b s
#end i f

You may test for any one of a number of values, e.g. to install memtest86+426

if either –architectures i386 or –architectures amd64 is specified:

427

#i f ARCHITECTURES i386 amd64
memtest86+
#end i f

You may also test against variables that may contain more than one428

value, e.g. to install vrms if either contrib or non-free is specified via
–archive-areas:

429

#i f ARCHIVE˙AREAS cont r ib non - f r e e
vrms
#end i f

The nesting of conditionals is not supported.430

8.2.7 Removing packages at install time431

You can list packages in files with .list.chroot˙live and .list.chroot˙install432

suffixes inside the config/package-lists directory. If both a live and an

install list exist, the packages in the .list.chroot˙live list are removed with
a hook after the installation (if the user uses the installer). The packages
in the .list.chroot˙install list are present both in the live system and in
the installed system. This is a special tweak for the installer and may be
useful if you have –debian-installer live set in your config, and wish to
remove live system-specific packages at install time.

8.2.8 Summary 433

The table below shows which configuration files are required to achieve 434

the desired availability of the package.
435

X.chroot X.chroot˙-
live

X X.binary

Package is
installed
in the live
system

Yes Yes Yes No

Package is
removed
after in-
stalling the
live system

No Yes No N/A

Package can
be installed
from the live
system with-
out network

N/A N/A Yes *1 Yes

*1: Because the installer needs this package 436

X = config/package-lists/custom˙name.list 437

8.2.9 Desktop and language tasks 438

Desktop and language tasks are special cases that need some extra plan- 439

ning and configuration. Live images are different from Debian Installer

32

Debian Live Manual

images in this respect. In the Debian Installer, if the medium was pre-
pared for a particular desktop environment flavour, the corresponding
task will be automatically installed. Thus, there are internal gnome-
desktop, kde-desktop, lxde-desktop and xfce-desktop tasks, none of which
are offered in tasksel’s menu. Likewise, there are no menu entries for tasks
for languages, but the user’s language choice during the install influences
the selection of corresponding language tasks.

When developing a desktop live image, the image typically boots directly440

to a working desktop, the choices of both desktop and default language
having been made at build time, not at run time as in the case of the
Debian Installer. That’s not to say that a live image couldn’t be built
to support multiple desktops or multiple languages and offer the user a
choice, but that is not live-build’s default behaviour.

Because there is no provision made automatically for language tasks,441

which include such things as language-specific fonts and input-method
packages, if you want them, you need to specify them in your configu-
ration. For example, a GNOME desktop image containing support for
German might include these task metapackages:

442

$ lb c on f i g
$ echo ” task - gnome - desktop task - laptop ” ¿¿ c on f i g /package - l i s t s /my←↩

. l i s t . chroot
$ echo ” task - german task - german - desktop task - german - gnome - desktop ”←↩

¿¿ c on f i g /package - l i s t s /my. l i s t . chroot

8.2.10 Kernel flavour and version443

One or more kernel flavours will be included in your image by default,444

depending on the architecture. You can choose different flavours via the
–linux-flavours option. Each flavour is suffixed to the default stub linux-

image to form each metapackage name which in turn depends on an exact
kernel package to be included in your image.

Thus by default, an amd64 architecture image will include the linux- 445

image-amd64 flavour metapackage, and an i386 architecture image will
include the linux-image-586 metapackage.

When more than one kernel package version is available in your configured 446

archives, you can specify a different kernel package name stub with the –
linux-packages option. For example, supposing you are building an amd64
architecture image and add the experimental archive for testing purposes
so you can install the linux-image-3.18.0-trunk-amd64 kernel. You would
configure that image as follows:

447

$ lb c on f i g - - l inux - packages l inux - image - 3 . 1 8 . 0 - trunk
$ echo ”deb http :// deb . debian . org /debian / exper imenta l main” ¿ ←↩

c on f i g / a r ch i v e s / exper imenta l . l i s t . chroot

8.2.11 Custom kernels 448

You can build and include your own custom kernels, so long as they are 449

integrated within the Debian package management system. The live-build
system does not support kernels not built as .deb packages.

The proper and recommended way to deploy your own kernel packages is 450

to follow the instructions in the kernel-handbook. Remember to modify
the ABI and flavour suffixes appropriately, then include a complete build
of the linux and matching linux-latest packages in your repository.

If you opt to build the kernel packages without the matching metapack- 451

ages, you need to specify an appropriate –linux-packages stub as discussed
in Kernel flavour and version. As we explain in Installing modified or

33

Debian Live Manual

third-party packages, it is best if you include your custom kernel pack-
ages in your own repository, though the alternatives discussed in that
section work as well.

It is beyond the scope of this document to give advice on how to customize452

your kernel. However, you must at least ensure your configuration satisfies
these minimum requirements:

Use an initial ramdisk.453

Include the union filesystem module (i.e. usually OverlayFS).454

Include any other filesystem modules required by your configuration455

(i.e. usually squashfs).

8.3 Installing modified or third-party packages456

While it is against the philosophy of a live system, it may sometimes457

be necessary to build a live system with modified versions of packages
that are in the Debian repository. This may be to modify or support
additional features, languages and branding, or even to remove elements
of existing packages that are undesirable. Similarly, third-party packages
may be used to add bespoke and/or proprietary functionality.

This section does not cover advice regarding building or maintaining458

modified packages. Joachim Breitner’s ‘How to fork privately’ method
from http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html may
be of interest, however. The creation of bespoke packages is covered
in the Debian New Maintainers’ Guide at https://www.debian.org/doc/manuals/

maint-guide/ and elsewhere.

There are two ways of installing modified custom packages:459

packages.chroot460

Using a custom APT repository461

Using packages.chroot is simpler to achieve and useful for one-off cus-462

tomizations but has a number of drawbacks, while using a custom APT
repository is more time-consuming to set up.

8.3.1 Using packages.chroot to install custom packages 463

To install a custom package, simply copy it to the config/packages.- 464

chroot/ directory. Packages that are inside this directory will be auto-
matically installed into the live system during build - you do not need to
specify them elsewhere.

Packages must be named in the prescribed way. One simple way to do 465

this is to use dpkg-name.

Using packages.chroot for installation of custom packages has disadvan- 466

tages:

It is not possible to use secure APT. 467

You must install all appropriate packages in the config/packages.- 468

chroot/ directory.

It does not lend itself to storing live system configurations in revision 469

control.

8.3.2 Using an APT repository to install custom packages 470

Unlike using packages.chroot, when using a custom APT repository you 471

must ensure that you specify the packages elsewhere. See Choosing pack-
ages to install for details.

While it may seem unnecessary effort to create an APT repository to 472

install custom packages, the infrastructure can be easily re-used at a
later date to offer updates of the modified packages.

The APT repository does not necessarily need to be online, you can use 473

34

http://www.joachim-breitner.de/blog/archives/282-How-to-fork-privately.html
https://www.debian.org/doc/manuals/maint-guide/
https://www.debian.org/doc/manuals/maint-guide/

Debian Live Manual

a local repository instead. However, in both cases the repository needs
to be signed.

Example:474

475

$ gpg - - armor - - output c on f i g / a r ch i v e s / custom˙repo . gpg . key$–←↩
EXTENSION˝ - - export - opt ions export - minimal - - export $–←↩
SIGNING˙KEY˝

$ cat ¡ ¡ EOF ¿ con f i g / a r ch i v e s / custom˙repo . l i s t $ –EXTENSION˝
deb [s igned - by=/etc /apt/ t ru s t ed . gpg . d/ custom˙repo . gpg . key$–←↩

EXTENSION˝ . asc] $–URI˝ $–SUITE˝ $–COMPONENTS˝
EOF
$ echo ”$–PACKAGES˙FROM˙REPOSITORY˝” ¿ con f i g /package - l i s t s /←↩

custom˙repo . l i s t $ –EXTENSION˝

Where:476

$–EXTENSION˝: the optional stage suffix, see the summary477

$–SIGNING˙KEY˝: the keyID of the signature of the repository478

$–URI˝: the URI to the repository, e.g. http://deb.debian.org/debian/479

or file://$(pwd)/my˙local˙repository

$–SUITE˝: the suite within the repository, e.g. my-debian-based-distro480

$–COMPONENTS˝: the components within the repository, e.g. main481

$–PACKAGES˙FROM˙REPOSITORY˝: the names of the packages to482

install (dependencies will automatically be installed as well)

8.3.3 Custom packages and APT483

live-build uses APT to install all packages into the live system so will484

therefore inherit behaviours from this program. One relevant example is
that (assuming a default configuration) given a package available in two
different repositories with different version numbers, APT will elect to
install the package with the higher version number.

Because of this, you may wish to increment the version number in your 485

custom packages’ debian/changelog files to ensure that your modified
version is installed over one in the official Debian repositories. This may
also be achieved by altering the live system’s APT pinning preferences -
see APT pinning for more information.

8.4 Configuring APT at build time 486

You can configure APT through a number of options applied only at 487

build time. (APT configuration used in the running live system may
be configured in the normal way for live system contents, that is, by
including the appropriate configurations through config/includes.chroot/-
.) For a complete list, look for options starting with apt in the lb˙config
man page.

8.4.1 Choosing apt or aptitude 488

You can elect to use either apt or aptitude when installing packages at 489

build time. Which utility is used is governed by the –apt argument to
lb config. Choose the method implementing the preferred behaviour for
package installation, the notable difference being how missing packages
are handled.

apt: With this method, if a missing package is specified, the package 490

installation will fail. This is the default setting.

aptitude: With this method, if a missing package is specified, the 491

package installation will succeed.

8.4.2 Using a proxy with APT 492

One commonly required APT configuration is to deal with building an 493

35

Debian Live Manual

image behind a proxy. You may specify your APT proxy with the –apt-
http-proxy option as needed, e.g.

494

$ lb c on f i g - - apt - http - proxy http :// proxy/

8.4.3 Tweaking APT to save space495

You may find yourself needing to save some space on the image medium,496

in which case one or the other or both of the following options may be of
interest.

If you don’t want to include APT indices in the image, you can omit497

those with:

498

$ lb c on f i g - - apt - i n d i c e s f a l s e

This will not influence the entries in /etc/apt/sources.list, but merely499

whether /var/lib/apt contains the indices files or not. The tradeoff is
that APT needs those indices in order to operate in the live system, so
before performing apt-cache search or apt-get install, for instance, the
user must apt-get update first to create those indices.

If you find the installation of recommended packages bloats your image500

too much, provided you are prepared to deal with the consequences dis-
cussed below, you may disable that default option of APT with:

501

$ lb c on f i g - - apt - recommends f a l s e

The most important consequence of turning off recommends is that live-502

boot and live-config themselves recommend some packages that provide
important functionality used by most Live configurations.

Two packages which you most probably will want to add again are: 503

user-setup which live-config recommends is used to create the live user. 504

sudo which live-config recommends is used to obtain root access in the 505

live-image, which is needed to shutdown the computer.

506

$ lb c on f i g - - apt - recommends f a l s e
$ echo ”user - setup sudo” ¿ con f i g /package - l i s t s /recommends . l i s t .←↩

chroot

In all but the most exceptional circumstances you need to add back at 507

least some of these recommends to your package lists or else your image
will not work as expected, if at all. Look at the recommended packages
for each of the live-* packages included in your build and if you are not
certain you can omit them, add them back into your package lists.

The more general consequence is that if you don’t install recommended 508

packages for any given package, that is, packages that would be found to-
gether with this one in all but unusual installations (APT pinning.

8.4.4 Passing options to apt or aptitude 509

If there is not a lb config option to alter APT’s behaviour in the way you 510

need, use –apt-options or –aptitude-options to pass any options through
to your configured APT tool. See the man pages for apt and aptitude
for details. Note that both options have default values that you will
need to retain in addition to any overrides you may provide. So, for
example, suppose you have included something from snapshot.debian.org
for testing purposes and want to specify Acquire::Check-Valid-Until=false
to make APT happy with the stale Release file, you would do so as per
the following example, appending the new option after the default value
–yes:

36

Debian Live Manual

511

$ lb c on f i g - - apt - opt ions ” - - yes - oAcquire : : Check - Valid - Unt i l=←↩
f a l s e ”

Please check the man pages to fully understand these options and when to512

use them. This is an example only and should not be construed as advice
to configure your image this way. This option would not be appropriate
for, say, a final release of a live image.

For more complicated APT configurations involving apt.conf options you513

might want to create a config/apt/apt.conf file instead. See also the
other apt-* options for a few convenient shortcuts for frequently needed
options.

8.4.5 APT pinning514

For background, please first read the apt˙preferences(5) man page.515

APT pinning can be configured either for build time, or else for run
time. For the former, create config/archives/*.pref, config/archives/*.-
pref.chroot, and config/apt/preferences. For the latter, create config/-
includes.chroot/etc/apt/preferences.

Let’s say you are building a trixie live system but need all the live516

packages that end up in the binary image to be installed from sid at
build time. You need to add sid to your APT sources and pin the live
packages from it higher, but all other packages from it lower, than the
default priority. Thus, only the packages you want are installed from sid
at build time and all others are taken from the target system distribution,
trixie . The following will accomplish this:

517

$ echo ”deb http :// mirror /debian / s i d main” ¿ c on f i g / a r ch i v e s / s i d .←↩
l i s t . chroot

$ cat ¿¿ c on f i g / a r ch i v e s / s i d . p r e f . chroot ¡ ¡ EOF

Package : l i v e -*
Pin : r e l e a s e n=s i d
Pin - P r i o r i t y : 600

Package : *
Pin : r e l e a s e n=s i d
Pin - P r i o r i t y : 1
EOF

Negative pin priorities will prevent a package from being installed, as 518

in the case where you do not want a package that is recommended by
another package. Suppose you are building an LXDE image using task-
lxde-desktop in config/package-lists/desktop.list.chroot, but don’t want
the user prompted to store wifi passwords in the keyring. This metapack-
age depends on lxde-core, which recommends gksu, which in turn recom-
mends gnome-keyring. So you want to omit the recommended gnome-
keyring package. This can be done by adding the following stanza to
config/apt/preferences:

519

Package : gnome - keyr ing
Pin : v e r s i on *
Pin - P r i o r i t y : -1

37

Customizing contents520

9. Customizing contents521

This chapter discusses fine-tuning customization of the live system con-522

tents beyond merely choosing which packages to include. Includes allow
you to add or replace arbitrary files in your live system image, hooks
allow you to execute arbitrary commands at different stages of the build
and at boot time, and preseeding allows you to configure packages when
they are installed by supplying answers to debconf questions.

9.1 Includes523

While ideally a live system would include files entirely provided by un-524

modified packages, it is sometimes convenient to provide or modify some
content by means of files. Using includes, it is possible to add (or re-
place) arbitrary files in your live system image. live-build provides two
mechanisms for using them:

Chroot local includes: These allow you to add or replace files to the525

chroot/Live filesystem. Please see Live/chroot local includes for more
information.

Binary local includes: These allow you to add or replace files in the526

binary image. Please see Binary local includes for more information.

Please see Terms for more information about the distinction between the527

Live and binary images.

9.1.1 Live/chroot local includes528

Chroot local includes can be used to add or replace files in the chroot/Live529

filesystem so that they may be used in the Live system. A typical use
is to populate the skeleton user directory (/etc/skel) used by the Live
system to create the live user’s home directory. Another is to supply
configuration files that can be simply added or replaced in the image
without processing; see Chroot local hooks if processing is needed.

To include files, simply add them to your config/includes.chroot directory. 530

This directory corresponds to the root directory / of the live system. For
example, to add a file /var/www/index.html in the live system, use:

531

$ mkdir -p c on f i g / i n c l ud e s . chroot /var /www
$ cp /path/ to /my/ index . html c on f i g / i n c l ud e s . chroot /var /www

Your configuration will then have the following layout: 532

533

- - c on f i g
[. . .]
—-- i n c l ud e s . chroot
— ` - - var
— ` - - www
— ` - - index . html
[. . .]

Chroot local includes are installed after package installation so that files 534

installed by packages are overwritten.

9.1.2 Binary local includes 535

To include material such as documentation or videos on the medium 536

filesystem so that it is accessible immediately upon insertion of the
medium without booting the Live system, you can use binary local in-
cludes. This works in a similar fashion to chroot local includes. For
example, suppose the files ˜/video˙demo.* are demo videos of the live

38

Debian Live Manual

system described by and linked to by an HTML index page. Simply copy
the material to config/includes.binary/ as follows:

537

$ cp ˜/ video˙demo . * c on f i g / i n c l ud e s . b inary /

These files will now appear in the root directory of the live medium.538

9.2 Hooks539

Hooks allow commands to be run in the chroot and binary stages of the540

build in order to customize the image. Depending on whether you are
building a live image or a regular system image you have to place your
hooks in config/hooks/live or config/hooks/normal respectively. These
are frequently referred to as local hooks because they are executed inside
the build environment.

There are also boot-time hooks that allow you to run commands once541

the image has already been built, during the boot process.

9.2.1 Chroot local hooks542

To run commands in the chroot stage, create a hook script with a543

.hook.chroot suffix containing the commands either in the config/hooks/-
live or config/hooks/normal directories. The hook will run in the chroot
after the rest of your chroot configuration has been applied, so remem-
ber to ensure your configuration includes all packages and files your hook
needs in order to run. See the example chroot hook scripts for vari-
ous common chroot customization tasks provided in /usr/share/doc/live-
build/examples/hooks which you can copy or symlink to use them in your
own configuration.

9.2.2 Binary local hooks544

To run commands in the binary stage, create a hook script with a 545

.hook.binary suffix containing the commands either in the config/hooks/-
live or config/hooks/normal directories. The hook will run after all other
binary commands are run, but before binary˙checksums, the very last bi-
nary command. The commands in your hook do not run in the chroot,
so take care not to modify any files outside of the build tree, or you
may damage your build system! See the example binary hook scripts for
various common binary customization tasks provided in /usr/share/doc/-
live-build/examples/hooks which you can copy or symlink to use them in
your own configuration.

9.2.3 Boot-time hooks 546

To execute commands at boot time, you can supply live-config hooks 547

as explained in the Customization section of its man page. Examine
live-config’s own hooks provided in /lib/live/config/, noting the sequence
numbers. Then provide your own hook prefixed with an appropriate se-
quence number, either as a chroot local include in config/includes.chroot/-
lib/live/config/, or as a custom package as discussed in Installing modified
or third-party packages.

9.3 Preseeding Debconf questions 548

Files in the config/preseed/ directory suffixed with .cfg followed by the 549

stage (.chroot or .binary) are considered to be debconf preseed files and
are installed by live-build using debconf-set-selections during the corre-
sponding stage.

For more information about debconf, please see debconf(7) in the debconf 550

package.

39

Customizing run time behaviours551

10. Customizing run time behaviours552

All configuration that is done during run time is done by live-config.553

Here are some of the most common options of live-config that users are
interested in. A full list of all possibilities can be found in the man page
of live-config.

10.1 Customizing the live user554

One important consideration is that the live user is created by live-boot555

at boot time, not by live-build at build time. This not only influences
where materials relating to the live user are introduced in your build, as
discussed in Live/chroot local includes, but also any groups and permis-
sions associated with the live user.

You can specify additional groups that the live user will belong to by556

using any of the possibilities to configure live-config. For example, to add
the live user to the fuse group, you can either add the following file in
config/includes.chroot/etc/live/config.conf.d/10-user-setup.conf:

557

LIVE˙USER˙DEFAULT˙GROUPS=”audio cdrom dip f loppy video plugdev ←↩
netdev powerdev scanner b luetooth fu s e ”

or use live-config.user-default-groups=audio,cdrom,dip,floppy,video,plugdev,netdev,powerdev,scanner,bluetooth,fuse558

as a boot parameter.

It is also possible to change the default username user and the default559

password live. If you want to do that for any reason, you can easily
achieve it as follows:

To change the default username you can simply specify it in your con- 560

fig:

561

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components username=l i v e -←↩
user ”

One possible way of changing the default password is by means of a hook 562

as described in Boot-time hooks. In order to do that you can use the
passwd hook from /usr/share/doc/live-config/examples/hooks, prefix it
accordingly (e.g. 2000-passwd) and add it to config/includes.chroot/lib/-
live/config/

10.2 Customizing locale and language 563

When the live system boots, language is involved in two steps: 564

the locale generation 565

setting the keyboard configuration 566

The default locale when building a Live system is locales=en˙US.UTF-8. 567

To define the locale that should be generated, use the locales parameter
in the –bootappend-live option of lb config, e.g.

568

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components l o c a l e s=de˙CH .←↩
UTF-8”

Multiple locales may be specified as a comma-delimited list. 569

This parameter, as well as the keyboard configuration parameters in- 570

dicated below, can also be used at the kernel command line. You can

40

Debian Live Manual

specify a locale by language˙country (in which case the default encod-
ing is used) or the full language˙country.encoding word. A list of sup-
ported locales and the encoding for each can be found in /usr/share/-
i18n/SUPPORTED.

Both the console and X keyboard configuration are performed by live-571

config using the console-setup package. To configure them, use the
keyboard-layouts, keyboard-variants, keyboard-options and keyboard-
model boot parameters via the –bootappend-live option. Valid options
for these can be found in /usr/share/X11/xkb/rules/base.lst. To find
layouts and variants for a given language, try searching for the English
name of the language and/or the country where the language is spoken,
e.g:

572

$ egrep - i '(ˆ!—german . * sw i t z e r l and) ' / usr / share /X11/xkb/ r u l e s /←↩
base . l s t

! model
! l ayout

ch German (Switze r land)
! va r i an t

l egacy ch : German (Switzer land , l egacy)
de˙nodeadkeys ch : German (Switzer land , e l im ina t e dead keys)
de˙sundeadkeys ch : German (Switzer land , Sun dead keys)
de˙mac ch : German (Switzer land , Macintosh)

! opt ion

Note that each variant lists the layout to which it applies in the descrip-573

tion.

Often, only the layout needs to be configured. For example, to get the574

locale files for German and Swiss German keyboard layout in X use:

575

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components l o c a l e s=de˙CH .←↩
UTF-8 keyboard - l ayout s=ch”

However, for very specific use cases, you may wish to include other pa-576

rameters. For example, to set up a French system with a French-Dvorak
layout (called Bepo) on a TypeMatrix EZ-Reach 2030 USB keyboard,
use:

577

$ lb c on f i g - - bootappend - l i v e “
”boot=l i v e components l o c a l e s=fr ˙FR .UTF-8 keyboard - l ayout s=f r←↩

keyboard - va r i an t s=bepo keyboard - model=tm2030usb”

Multiple values may be specified as comma-delimited lists for each of the 578

keyboard-* options, with the exception of keyboard-model, which accepts
only one value. Please see the keyboard(5) man page for details and ex-
amples of XKBMODEL, XKBLAYOUT, XKBVARIANT and XKBOP-
TIONS variables. If multiple keyboard-variants values are given, they will
be matched one-to-one with keyboard-layouts values (see setxkbmap(1)
-variant option). Empty values are allowed; e.g. to define two layouts, the
default being US QWERTY and the other being US Dvorak, use:

579

$ lb c on f i g - - bootappend - l i v e “
”boot=l i v e components keyboard - l ayout s=us , us keyboard -←↩

va r i an t s=,dvorak”

10.3 Persistence 580

A live cd paradigm is a pre-installed system which runs from read-only 581

media, like a cdrom, where writes and modifications do not survive re-
boots of the host hardware which runs it.

A live system is a generalization of this paradigm and thus supports other 582

media in addition to CDs; but still, in its default behaviour, it should be
considered read-only and all the run-time evolutions of the system are
lost at shutdown.

41

Debian Live Manual

‘Persistence’ is a common name for different kinds of solutions for saving583

across reboots some, or all, of this run-time evolution of the system. To
understand how it works it would be handy to know that even if the
system is booted and run from read-only media, modifications to the
files and directories are written on writable media, typically a ram disk
(tmpfs) and ram disks’ data do not survive reboots.

The data stored on this ramdisk should be saved on a writable persistent584

medium like local storage media, a network share or even a session of a
multisession (re)writable CD/DVD. All these media are supported in live
systems in different ways, and all but the last one require a special boot
parameter to be specified at boot time: persistence.

If the boot parameter persistence is set (and nopersistence is not set),585

local storage media (e.g. hard disks, USB drives) will be probed for
persistence volumes during boot. It is possible to restrict which types
of persistence volumes to use by specifying certain boot parameters de-
scribed in the live-boot(7) man page. A persistence volume is any of the
following:

a partition, identified by its GPT name.586

a filesystem, identified by its filesystem label.587

an image file located on the root of any readable filesystem (even an588

NTFS partition of a foreign OS), identified by its filename.

The volume label for overlays must be persistence but it will be ignored589

unless it contains in its root a file named persistence.conf which is used
to fully customize the volume’s persistence, this is to say, specifying the
directories that you want to save in your persistence volume after a reboot.
See The persistence.conf file for more details.

Here are some examples of how to prepare a volume to be used for590

persistence. It can be, for instance, an ext4 partition on a hard disk or
on a usb key created with, e.g.:

591

mkfs . ext4 -L p e r s i s t e n c e /dev/sdb1

See also Using the space left on a USB stick. 592

If you already have a partition on your device, you could just change the 593

label with one of the following:

594

tune2 f s -L p e r s i s t e n c e /dev/sdb1 # f o r ext2 , 3 , 4 f i l e s y s t em s

Here’s an example of how to create an ext4-based image file to be used 595

for persistence:

596

$ dd i f =/dev/ nu l l o f=p e r s i s t e n c e bs=1 count=0 seek=1G # fo r a 1GB ←↩
s i z e d image f i l e

$ / sb in /mkfs . ext4 -F p e r s i s t e n c e

Once the image file is created, as an example, to make /usr persistent 597

but only saving the changes you make to that directory and not all the
contents of /usr, you can use the union option. If the image file is located
in your home directory, copy it to the root of your hard drive’s filesystem
and mount it in /mnt as follows:

598

cp p e r s i s t e n c e /
mount - t ext4 / p e r s i s t e n c e /mnt

Then, create the persistence.conf file adding content and unmount the 599

image file.

600

echo ”/ usr union” ¿¿ /mnt/ p e r s i s t e n c e . conf
umount /mnt

42

Debian Live Manual

Now, reboot into your live medium with the boot parameter persis-601

tence.

10.3.1 The persistence.conf file602

A volume with the label persistence must be configured by means of603

the persistence.conf file to make arbitrary directories persistent. That
file, located on the volume’s filesystem root, controls which directories it
makes persistent, and in which way.

How custom overlay mounts are configured is described in full detail in the604

persistence.conf(5) man page, but a simple example should be sufficient
for most uses. Let’s say we want to make our home directory and APT
cache persistent in an ext4 filesystem on the /dev/sdb1 partition:

605

mkfs . ext4 -L p e r s i s t e n c e /dev/sdb1
mount - t ext4 /dev/sdb1 /mnt
echo ”/home” ¿¿ /mnt/ p e r s i s t e n c e . conf
echo ”/ var / cache /apt” ¿¿ /mnt/ p e r s i s t e n c e . conf
umount /mnt

Then we reboot. During the first boot the contents of /home and /var/-606

cache/apt will be copied into the persistence volume, and from then on
all changes to these directories will live in the persistence volume. Please
note that any paths listed in the persistence.conf file cannot contain white
spaces or the special . and .. path components. Also, neither /lib, /lib/-
live (or any of their sub-directories) nor / can be made persistent using
custom mounts. As a workaround for this limitation you can add / union
to your persistence.conf file to achieve full persistence.

10.3.2 Using more than one persistence store607

There are different methods of using multiple persistence store for differ-608

ent use cases. For instance, using several volumes at the same time or
selecting only one, among various, for very specific purposes.

Several different custom overlay volumes (with their own persistence.conf 609

files) can be used at the same time, but if several volumes make the same
directory persistent, only one of them will be used. If any two mounts are
nested (i.e. one is a sub-directory of the other) the parent will be mounted
before the child so no mount will be hidden by the other. Nested custom
mounts are problematic if they are listed in the same persistence.conf file.
See the persistence.conf(5) man page for how to handle that case if you
really need it (hint: you usually don’t).

One possible use case: If you wish to store the user data i.e. /home and 610

the superuser data i.e. /root in different partitions, create two partitions
with the persistence label and add a persistence.conf file in each one like
this, # echo /home ¿ persistence.conf for the first partition that will
save the user’s files and # echo /root ¿ persistence.conf for the second
partition which will store the superuser’s files. Finally, use the persistence
boot parameter.

If a user would need multiple persistence store of the same type for dif- 611

ferent locations or testing, such as private and work, the boot parameter
persistence-label used in conjunction with the boot parameter persistence
will allow for multiple but unique persistence media. An example would
be if a user wanted to use a persistence partition labeled private for per-
sonal data like browser bookmarks or other types, they would use the boot
parameters: persistence persistence-label=private. And to store work re-
lated data, like documents, research projects or other types, they would
use the boot parameters: persistence persistence-label=work.

It is important to remember that each of these volumes, private and 612

work, also needs a persistence.conf file in its root. The live-boot man
page contains more information about how to use these labels with legacy
names.

43

Debian Live Manual

10.3.3 Using persistence with encryption613

Using the persistence feature means that some sensible data might get614

exposed to risk. Especially if the persistent data is stored on a portable
device such as a usb stick or an external hard drive. That is when en-
cryption comes in handy. Even if the entire procedure might seem com-
plicated because of the number of steps to be taken, it is really easy to
handle encrypted partitions with live-boot. In order to use luks , which
is the supported encryption type, you need to install cryptsetup both on
the machine you are creating the encrypted partition with and also in
the live system you are going to use the encrypted persistent partition
with.

To install cryptsetup on your machine:615

616

apt - get i n s t a l l c ryptsetup

To install cryptsetup in your live system, add it to your package-617

lists:

618

$ lb c on f i g
$ echo ” cryptsetup cryptsetup - i n i t r am f s ” ¿ c on f i g /package - l i s t s /←↩

encrypt ion . l i s t . chroot

Once you have your live system with cryptsetup, you basically only need619

to create a new partition, encrypt it and boot with the persistence and
persistence-encryption=luks parameters. We could have already antici-
pated this step and added the boot parameters following the usual pro-
cedure:

620

$ lb c on f i g - - bootappend - l i v e ”boot=l i v e components p e r s i s t e n c e ←↩
pe r s i s t en c e - encrypt ion=luks ”

Let’s go into the details for all of those who are not familiar with encryp- 621

tion. In the following example we are going to use a partition on a usb
stick which corresponds to /dev/sdc2. Please be warned that you need to
determine which partition is the one you are going to use in your specific
case.

The first step is plugging in your usb stick and determine which device it 622

is. The recommended method of listing devices in live-manual is using ls
-l /dev/disk/by-id. After that, create a new partition and then, encrypt
it with a passphrase as follows:

623

cryptsetup - - v e r i f y - passphrase luksFormat /dev/ sdc2

Then open the luks partition in the virtual device mapper. Use any name 624

you like. We use live here as an example:

625

cryptsetup luksOpen /dev/ sdc2 l i v e

The next step is filling the device with zeros before creating the filesys- 626

tem:

627

dd i f =/dev/ zero o f=/dev/mapper/ l i v e

Now, we are ready to create the filesystem. Notice that we are adding 628

the label persistence so that the device is mounted as persistence store
at boot time.

629

mkfs . ext4 -L p e r s i s t e n c e /dev/mapper/ l i v e

44

Debian Live Manual

To continue with our setup, we need to mount the device, for example in 630

/mnt.

631

mount /dev/mapper/ l i v e /mnt

And create the persistence.conf file in the root of the partition. This is, as632

explained before, strictly necessary. See The persistence.conf file.

633

echo ”/ union” ¿ /mnt/ p e r s i s t e n c e . conf

Then unmount the mount point:634

635

umount /mnt

And optionally, although it might be a good way of securing the data we636

have just added to the partition, we can close the device:

637

cryptsetup luksC lo se l i v e

Let’s summarize the process. So far, we have created an encryption638

capable live system, which can be copied to a usb stick as explained in
Copying an ISO hybrid image to a USB stick. We have also created an
encrypted partition, which can be located in the same usb stick to carry
it around and we have configured the encrypted partition to be used as
persistence store. So now, we only need to boot the live system. At
boot time, live-boot will prompt us for the passphrase and will mount
the encrypted partition to be used for persistence.

45

Customizing the binary image639

11. Customizing the binary image640

11.1 Bootloaders641

live-build uses syslinux and some of its derivatives (depending on the642

image type) as bootloaders by default. They can be easily customized to
suit your needs.

In order to use a full theme, copy /usr/share/live/build/bootloaders into643

config/bootloaders and edit the files in there. If you do not want to
bother modifying all supported bootloader configurations, only providing
a local customized copy of one of the bootloaders, e.g. isolinux in config/-
bootloaders/isolinux is enough too, depending on your use case.

When modifying one of the default themes, if you want to use a person-644

alized background image that will be displayed together with the boot
menu, add a splash.png picture of 640x480 pixels. Then, remove the
splash.svg file.

There are many possibilities when it comes to making changes. For645

instance, syslinux derivatives are configured by default with a timeout
of 0 (zero) which means that they will pause indefinitely at their splash
screen until you press a key.

To modify the boot timeout of a default iso-hybrid image just edit a646

default isolinux.cfg file specifying the timeout in units of 1/10 seconds.
A modified isolinux.cfg to boot after five seconds would be similar to
this:

647

i n c l ude menu . c f g
d e f au l t vesamenu . c32

prompt 0
timeout 50

11.2 ISO metadata 648

When creating an ISO9660 binary image, you can use the following op- 649

tions to add various textual metadata for your image. This can help you
easily identify the version or configuration of an image without booting
it.

LB˙ISO˙APPLICATION/–iso-application NAME: This should describe 650

the application that will be on the image. The maximum length for
this field is 128 characters.

LB˙ISO˙PREPARER/–iso-preparer NAME: This should describe the 651

preparer of the image, usually with some contact details. The default
for this option is the live-build version you are using, which may help
with debugging later. The maximum length for this field is 128 char-
acters.

LB˙ISO˙PUBLISHER/–iso-publisher NAME: This should describe the 652

publisher of the image, usually with some contact details. The maxi-
mum length for this field is 128 characters.

LB˙ISO˙VOLUME/–iso-volume NAME: This should specify the volume 653

ID of the image. This is used as a user-visible label on some platforms
such as Windows and Apple Mac OS. The maximum length for this
field is 32 characters.

46

Customizing Debian Installer654

12. Customizing Debian Installer655

Live system images can be integrated with Debian Installer. There are a656

number of different types of installation, varying in what is included and
how the installer operates.

Please note the careful use of capital letters when referring to the Debian657

Installer in this section - when used like this we refer explicitly to the
official installer for the Debian system, not anything else. It is often seen
abbreviated to d-i.

12.1 Types of Debian Installer658

The three main types of installer are:659

Normal Debian Installer : This is a normal live system image with a660

separate kernel and initrd which (when selected from the appropriate
bootloader) launches into a standard Debian Installer instance, just as
if you had downloaded a CD image of Debian and booted it. Images
containing a live system and such an otherwise independent installer are
often referred to as combined images.

On such images, Debian is installed by fetching and installing .deb pack-661

ages using debootstrap, from local media or some network-based net-
work, resulting in a default Debian system being installed to the hard
disk.

This whole process can be preseeded and customized in a number of ways;662

see the relevant pages in the Debian Installer manual for more information.
Once you have a working preseeding file, live-build can automatically put
it in the image and enable it for you.

Live Debian Installer : This is a live system image with a separate ker- 663

nel and initrd which (when selected from the appropriate bootloader)
launches into an instance of the Debian Installer.

Installation will proceed in an identical fashion to the normal installation 664

described above, but at the actual package installation stage, instead of
using debootstrap to fetch and install packages, the live filesystem image
is copied to the target. This is achieved with a special udeb called live-
installer.

After this stage, the Debian Installer continues as normal, installing and 665

configuring items such as bootloaders and local users, etc.

Note: to support both normal and live installer entries in the bootloader 666

of the same live medium, you must disable live-installer by preseeding
live-installer/enable=false.

Desktop Debian Installer : Regardless of the type of Debian Installer 667

included, d-i can be launched from the Desktop by clicking on an icon.
This is user friendlier in some situations. In order to make use of this,
the debian-installer-launcher package needs to be included.

Note that by default, live-build does not include Debian Installer images 668

in the images, it needs to be specifically enabled with lb config. Also,
please note that for the Desktop installer to work, the kernel of the live
system must match the kernel d-i uses for the specified architecture. For
example:

669

$ lb c on f i g - - debian - i n s t a l l e r l i v e
$ echo debian - i n s t a l l e r - launcher ¿¿ c on f i g /package - l i s t s /my. l i s t .←↩

chroot

12.2 Customizing Debian Installer by preseeding 670

As described in the Debian Installer Manual, Appendix B at https: 671

47

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Debian Live Manual

//www.debian.org/releases/stable/amd64/apb.en.html, Preseeding provides a way to
set answers to questions asked during the installation process, without
having to manually enter the answers while the installation is running.
This makes it possible to fully automate most types of installation and
even offers some features not available during normal installations. This
kind of customization is best accomplished with live-build by placing the
configuration in a preseed.cfg file included in config/includes.installer/.
For example, to preseed setting the locale to en˙US:

672

$ echo ”d - i debian - i n s t a l l e r / l o c a l e s t r i n g en˙US” “
¿¿ c on f i g / i n c l ud e s . i n s t a l l e r / preseed . c f g

12.3 Customizing Debian Installer content673

For experimental or debugging purposes, you might want to include lo-674

cally built d-i component udeb packages. Place these in config/packages.-
binary/ to include them in the image. Additional or replacement files
and directories may be included in the installer initrd as well, in a similar
fashion to Live/chroot local includes, by placing the material in config/-
includes.installer/.

48

https://www.debian.org/releases/stable/amd64/apb.en.html
https://www.debian.org/releases/stable/amd64/apb.en.html

Proiect675

49

Contributing to the project676

13. Contributing to the project677

When submitting a contribution, please clearly identify its copyright678

holder and include any applicable licensing statement. Note that to be
accepted, the contribution must be licensed under the same license as the
rest of the documents, namely, GPL version 3 or later.

Contributions to the project, such as translations and patches, are greatly679

welcome. Anyone can send merge requests. The projects are hosted
on Salsa: https://salsa.debian.org/live-team follow Salsa’s documentation for in-
structions on how to contribute.

Even though all commits might be revised, we ask you to use your com-680

mon sense and make good commits with good commit messages.

Write commit messages that consist of complete, meaningful sen-681

tences in English, starting with a capital letter and ending with a
full stop. Usually, these will start with the form Fixing/Adding/-
Removing/Correcting/Translating/....

Write good commit messages. The first line must be an accurate682

summary of the contents of the commit which will be included in the
changelog. If you need to make some further explanations, write them
below leaving a blank line after the first one and then another blank
line after each paragraph. Lines of paragraphs should not exceed 80
characters in length.

Commit atomically, this is to say, do not mix unrelated things in the683

same commit. Make one different commit for each change you make.

13.1 Translation of man pages684

You can also contribute to the project working on the translation of the 685

man pages for the different live-* packages that the project maintains.
The procedure is different depending on whether you are starting a trans-
lation from scratch or continue working on an already existing one:

Working on an already existing translation 686

If you want to maintain the translation of an already existing language 687

you have to make your changes to your manpages/po/$–LANGUAGE˝/-
*.po file or files and then run make rebuild from inside the man-
pages/ directory. This will update the actual man pages in manpages/-
$–LANGUAGE˝/*

Starting a new translation from scratch 688

In order to add a new translation of any of the project’s man pages 689

you have to follow a similar procedure. It could be summarized as fol-
lows:

Open the manpages/pot/ file or files in your favourite edi- 690

tor, such as poedit, and save it as a .po file in manpages/-
po/$–LANGUAGE˝/. (You will have to create your $–LAN-
GUAGE˝/ directory).

Run make rebuild from inside the manpages/ directory to create 691

the manpages/$–LANGUAGE˝/ files which will contain the actual
man pages.

Remember that you will have to add all the directories and files, then 692

make the commit and finally push to the git server.

50

https://salsa.debian.org/live-team

Reporting bugs693

14. Reporting bugs694

Live systems are far from being perfect, but we want to make it as close695

as possible to perfect - with your help. Do not hesitate to report a bug. It
is better to fill a report twice than never. However, this chapter includes
recommendations on how to file good bug reports.

For the impatient:696

First check whether the bugs has been reported already. You can see697

the full list of bugs that are assigned to the live-team at https://bugs.

debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org.

Before submitting a bug report always try to reproduce the bug with698

the most recent versions of the packages of live-build, live-boot, live-
config and live-tools that you’re using.

Try to give as specific information as possible about the bug. This699

includes (at least) the version of live-build, live-boot, live-config, and
live-tools used and the distribution of the live system you are building.

14.1 Known issues700

Currently known issues are listed in the BTS at https://bugs.debian.org/cgi-bin/701

pkgreport.cgi?maint=debian-live%40lists.debian.org.

Note: Since Debian testing and Debian unstable distributions are mov-702

ing targets, when you specify either of them as the target system distri-
bution, a successful build may not always be possible.

If this causes too much difficulty for you, do not build a system based on703

testing or unstable , but rather, use stable . live-build always defaults
to the stable release.

It is out of the scope of this manual to train you to correctly identify and 704

fix problems in packages of the development distributions, however, you
can always try the following: If a build fails when the target distribution
is testing , try unstable . If unstable does work, revert to testing and pin
the newer version of the failing package from unstable (see APT pinning
for details).

14.2 Do the research 705

Before filing the bug, please search the web for the particular error mes- 706

sage or symptom you are getting. As it is highly unlikely that you are the
only person experiencing a particular problem. There is always a chance
that it has been discussed elsewhere and a possible solution, patch, or
workaround has been proposed.

You should pay particular attention to the live systems mailing list, as 707

well as the homepage, as these are likely to contain the most up-to-date
information. If such information exists, always include the references to
it in your bug report.

In addition, you should check the current bug lists for live-build, live-boot, 708

live-config and live-tools to see whether something similar has already
been reported.

14.3 Rebuild from scratch 709

To ensure that a particular bug is not caused by an uncleanly built system, 710

please always rebuild the whole live system from scratch to see if the bug
is reproducible.

51

https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?maint=debian-live%40lists.debian.org

Debian Live Manual

14.4 Use up-to-date packages711

Using outdated packages can cause significant problems when trying to712

reproduce (and ultimately fix) your problem. Make sure your build sys-
tem is up-to-date and any packages included in your image are up-to-date
as well. If possible, try to reproduce the bug with the newest code from
source, see Installation for details.

14.5 Collect information713

Please provide enough information with your report. Include, at least,714

the exact version of live-build where the bug is encountered and the
steps to reproduce it. Please use your common sense and provide any
other relevant information if you think that it might help in solving the
problem.

To make the most out of your bug report, we require at least the following715

information:

Architecture of the host system716

Distribution of the host system717

Version of live-build on the host system718

Version of debootstrap on the host system719

Architecture of the live system720

Distribution of the live system721

Version of live-boot on the live system722

Version of live-config on the live system723

Version of live-tools on the live system724

You can generate a log of the build process by using the tee command.725

We recommend doing this automatically with an auto/build script (see
Managing a configuration for details).

726

lb bu i ld 2¿&1 — tee bu i ld . l og

At boot time, live-boot and live-config store their logfiles in /var/log/- 727

live/. Check them for error messages.

Additionally, to rule out other errors, it is always a good idea to tar 728

up your config/ directory and upload it somewhere (do not send it as
an attachment to the mailing list), so that we can try to reproduce the
errors you encountered. If this is difficult (e.g. due to size) you can
use the output of lb config –dump which produces a summary of your
config tree (i.e. lists files in subdirectories of config/ but does not include
them).

Remember to send in any logs that were produced with English locale 729

settings, e.g. run your live-build commands with a leading LC˙ALL=C
or LC˙ALL=en˙US.

14.6 Isolate the failing case if possible 730

If possible, isolate the failing case to the smallest possible change that 731

breaks. It is not always easy to do this so if you cannot manage it for
your report, do not worry. However, if you plan your development cycle
well, using small enough change sets per iteration, you may be able to
isolate the problem by constructing a simpler ‘base’ configuration that
closely matches your actual configuration plus just the broken change set
added to it. If you have a hard time sorting out which of your changes
broke, it may be that you are including too much in each change set and
should develop in smaller increments.

52

Debian Live Manual

14.7 Use the correct package to report the bug against732

In general, you should report build time errors against the live-build733

package, boot time errors against live-boot, and run time errors against
live-config. If you are unsure of which package is appropriate or need
more help before submitting a bug report, please report it against the
debian-live pseudo-package. We will then take care about it and reassign
it where appropriate.

However, we would appreciate it if you try to narrow it down according734

to where the bug appears.

14.7.1 At build time while bootstrapping735

live-build first bootstraps a basic Debian system with debootstrap. If a736

bug appears here, check if the error is related to a specific Debian package
(most likely), or if it is related to the bootstrapping tool itself.

In both cases, this is not a bug in the live system, but rather in Debian737

itself and probably we cannot fix it directly. Please report such a bug
against the bootstrapping tool or the failing package.

14.7.2 At build time while installing packages738

live-build installs additional packages from the Debian archive and de-739

pending on the Debian distribution used and the daily archive state, it
can fail. If a bug appears here, check if the error is also reproducible on
a normal system.

If this is the case, this is not a bug in the live system, but rather in De-740

bian - please report it against the failing package. Running debootstrap
separately from the Live system build or running lb bootstrap –debug
will give you more information.

Also, if you are using a local mirror and/or any sort of proxy and you are741

experiencing a problem, please always reproduce it first by bootstrapping
from an official mirror.

14.7.3 At boot time 742

If your image does not boot, please report it to the mailing list together 743

with the information requested in Collect information. Do not forget to
mention, how/when the image failed exactly, whether using virtualization
or real hardware. If you are using a virtualization technology of any kind,
please always run it on real hardware before reporting a bug. Providing
a screenshot of the failure is also very helpful.

14.7.4 At run time 744

If a package was successfully installed, but fails while actually running 745

the Live system, this is probably a bug in live-config.

14.8 Where to report bugs 746

The Debian Live Project keeps track of all bugs in the Bug Tracking 747

System (BTS). For information on how to use the system, please see
https://bugs.debian.org/. You can also submit the bugs by using the reportbug
command from the package with the same name.

Please note that bugs found in distributions derived from Debian (such 748

as Ubuntu and others) should not be reported to the Debian BTS unless
they can be also reproduced on a Debian system using official Debian
packages.

53

https://bugs.debian.org/

Coding Style749

15. Coding Style750

This chapter documents the coding style used in live systems.751

15.1 Compatibility752

Avoid bashisms, the codebase must be POSIX compliant and thus753

universally compatible.

Furthermore it must comply with the version of the POSIX specifica-754

tion chosen by the current Debian Policy.

You can check your scripts with ‘sh -n’ and ‘checkbashisms’.755

Make sure all shell code runs with ‘set -e’.756

15.2 Indenting757

Always use tabs over spaces.758

Keep case branch terminators (;;) aligned with the content of the759

branch, rather than the branch entry.

Good:760

761

case ”$–1˝” in
foo)

foobar
; ;

bar)
foobar
; ;

e sac

15.3 Wrapping 762

Generally, lines should be 80 chars at maximum. 763

Placement of keywords like then and do should be chosen with good 764

judgement with respect to clutter and readability. For small bits of
code in particular it should be preferred to have them on the same line
as the prior keyword they relate to (if; for; etc). Only place on the next
line where it makes good sense to do so; typically this might only be
to comply with maximum line length restrictions. One situation where
they should always be placed on the next line is where what they follow
is broken up onto multiple lines, and thus it being on a new line creates
clear separation between that and the body of code following it. I.e. :

Preferred: 765

766

i f f oo ; then
bar

f i

f o r FOO in $ITEMS; do
bar

done

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”]

then
MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '– ←↩

pr in t $1 ˝ ') ”
f i

i f [”$–MY˙FOO˝” = ”something”] && [- e ”path/$–FILE˙1˝”] ——
[”$–MY˙BAR˝” = ” someth ing ˙ e l s e ”] && [$–ALLOW˝ = ” true ”]

then
foobar

54

Debian Live Manual

f i

Less ideal:767

768

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”] ; then

MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '– ←↩
pr in t $1 ˝ ') ”

f i

Horrible:769

770

i f [”$–MY˙LOCATION˙VARIABLE˝” = ”something”] && [- e ”$–←↩
MY˙OUTPUT˙FILE˝”] —— [”$–MY˙LOCATION˙VARIABLE˝” = ”something←↩
- e l s e ”] && [- e ”$–MY˙OUTPUT˙FILE˙2˝”] ; then

MY˙OTHER˙VARIABLE=”$ (some˙bin $–FOOBAR˝ — awk - F˙ '– ←↩
pr in t $1 ˝ ') ”

f i

Prefer placing the opening brace of a function on a new line (for771

consistency with established style), and keep the braces aligned with
the function name:

Good:772

773

Foo ()
–

bar
˝

Bad (inconsistent with existing style):774

775

Foo () –
bar

˝

Awful: 776

777

Foo ()
–
bar
˝

15.4 Variables 778

Variables are always in capital letters. 779

Config variables used in live-build should start with an LB˙ prefix. 780

Local function variables should be restricted to local scope. 781

Variables in connection to a boot parameter in live-config start with 782

LIVE˙.

All other variables in live-config start with ˙ prefix. 783

Use braces around variables; e.g. write $–FOO˝ instead of $FOO. 784

Always protect variables with quotes to respect potential whites- 785

paces (except where necessary to achieve correct word splitting): write
$–FOO˝ not $–FOO˝.

For consistency reasons, always use quotes when assigning values to 786

variables:

Bad: 787

788

FOO=bar

Good: 789

790

55

Debian Live Manual

FOO=”bar”

If multiple variables are used, prefer quoting the full expression:791

Typically bad:792

793

i f [- f ”$–FOO˝”/ foo /”$–BAR˝”/ bar] ; then
foobar

f i

Good:794

795

i f [- f ”$–FOO˝/ foo /$–BAR˝/bar”] ; then
foobar

f i

15.5 Miscellaneous796

Prefer — (without the surround quotes) as a separator in calls to sed,797

e.g. sed -e ‘s—’ (without ”).

Don’t use the test command for comparisons or tests, use [and]798

(without ”); e.g. if [-x /bin/foo]; ... and not if test -x /bin/foo;

Use case wherever it makes code more readable than conditional checks799

(if foo; ... and tests without the actual if keyword, e.g. [-e $–FILE˝]
——exit 0).

Use Foo˙bar style names for functions, i.e. a capital first letter, then800

all lowercase, with sensible use of underscores for better readability.

56

Exemple801

57

Exemple802

16. Examples803

This chapter covers example builds for specific use cases with live systems.804

If you are new to building your own live system images, we recommend
you first look at the three tutorials in sequence, as each one teaches
new techniques that will help you use and understand the remaining
examples.

16.1 Using the examples805

To use these examples you need a system to build them on that meets806

the requirements listed in Requirements and has live-build installed as
described in Installing live-build.

Note that, for the sake of brevity, in these examples we do not specify807

a local mirror to use for the build. You can speed up downloads con-
siderably if you use a local mirror. You may specify the options when
you use lb config, as described in Distribution mirrors used at build time,
or for more convenience, set the default for your build system in /etc/-
live/build.conf. Simply create this file and in it, set the corresponding
LB˙MIRROR˙* variables to your preferred mirror. All other mirrors used
in the build will be defaulted from these values. For example:

808

LB˙MIRROR˙BOOTSTRAP=”http :// mirror /debian /”
LB˙MIRROR˙CHROOT˙SECURITY=”http :// mirror /debian - s e c u r i t y /”
LB˙MIRROR˙CHROOT˙BACKPORTS=”http :// mirror /debian - backports /”

16.2 Tutorial 1: A default image809

Use case: Create a simple first image, learning the basics of live- 810

build.

In this tutorial, we will build a default ISO hybrid live system image 811

containing only base packages (no Xorg) and some live system support
packages, as a first exercise in using live-build.

You can’t get much simpler than this: 812

813

$ mkdir t u t o r i a l 1 ; cd t u t o r i a l 1 ; lb c on f i g

Examine the contents of the config/ directory if you wish. You will see 814

stored here a skeletal configuration, ready to customize or, in this case,
use immediately to build a default image.

Now, as superuser, build the image, saving a log as you build with 815

tee.

816

lb bu i ld 2¿&1 — tee bu i ld . l og

Assuming all goes well, after a while, the current directory will contain 817

live-image-amd64.hybrid.iso. This ISO hybrid image can be booted di-
rectly in a virtual machine as described in Testing an ISO image with
Qemu and Testing an ISO image with VirtualBox, or else imaged onto
optical media or a USB flash device as described in Burning an ISO image
to a physical medium and Copying an ISO hybrid image to a USB stick,
respectively.

16.3 Tutorial 2: A web browser utility 818

Use case: Create a web browser utility image, learning how to apply 819

58

Debian Live Manual

customizations.

In this tutorial, we will create an image suitable for use as a web820

browser utility, serving as an introduction to customizing live system
images.

821

$ mkdir t u t o r i a l 2
$ cd t u t o r i a l 2
$ lb c on f i g
$ echo ” task - lxde - desktop f i r e f o x - e s r ” ¿¿ c on f i g /package - l i s t s /my.←↩

l i s t . chroot

Our choice of LXDE for this example reflects our desire to provide a822

minimal desktop environment, since the focus of the image is the single
use we have in mind, the web browser. We could go even further and
provide a default configuration for the web browser in config/includes.-
chroot/etc/iceweasel/profile/, or additional support packages for viewing
various kinds of web content, but we leave this as an exercise for the
reader.

Build the image, again as superuser, keeping a log as in Tutorial 1:823

824

lb bu i ld 2¿&1 — tee bu i ld . l og

Again, verify the image is OK and test, as in Tutorial 1.825

16.4 Tutorial 3: A personalized image826

Use case: Create a project to build a personalized image, containing827

your favourite software to take with you on a USB stick wherever you
go, and evolving in successive revisions as your needs and preferences
change.

Since we will be changing our personalized image over a number of revi-828

sions, and we want to track those changes, trying things experimentally
and possibly reverting them if things don’t work out, we will keep our
configuration in the popular git version control system. We will also use
the best practice of autoconfiguration via auto scripts as described in
Managing a configuration.

16.4.1 First revision 829

830

$ mkdir -p t u t o r i a l 3 /auto
$ cp / usr / share /doc/ l i v e - bu i ld / examples /auto /* t u t o r i a l 3 /auto/
$ cd t u t o r i a l 3

Edit auto/config to read as follows: 831

832

#!/bin / sh

lb c on f i g noauto “
- - d i s t r i b u t i o n s t ab l e “
”$–@˝”

Perform lb config to generate the config tree, using the auto/config script 833

you just created:

834

$ lb c on f i g

Now populate your local package list: 835

836

$ echo ” task - lxde - desktop sp i ce - vdagent hexchat ” ¿¿ c on f i g /package←↩
- l i s t s /my. l i s t . chroot

59

Debian Live Manual

First, –distribution stable ensures that stable˝ is used instead of the de- 837

fault –testing. Second, we have added spice-vdagent for easier testing the
image in qemu. And finally, we have added an initial favourite package:
hexchat.

Now, build the image:838

839

lb bu i ld

Note that unlike in the first two tutorials, we no longer have to type 2¿&1840

—tee build.log as that is now included in auto/build.

Once you’ve tested the image (as in Tutorial 1) and are satisfied it works,841

it’s time to initialize our git repository, adding only the auto scripts we
just created, and then make the first commit:

842

$ g i t i n i t
$ cp / usr / share /doc/ l i v e - bu i ld / examples / g i t i g n o r e . g i t i g n o r e
$ g i t add . g i t i g n o r e auto c on f i g
$ g i t commit -m ” I n i t i a l import . ”

16.4.2 Second revision843

In this revision, we’re going to clean up from the first build, replace the844

smplayer package with vlc package, rebuild, test and commit.

The lb clean command will clean up all generated files from the previous845

build except for the cache, which saves having to re-download packages.
This ensures that the subsequent lb build will re-run all stages to regen-
erate the files from our new configuration.

846

lb c l ean

Now install the vlc package before the lxde package chooses between 847

smplayer, vlc and mplayer-gui in our local package list in config/package-
lists/my.list.chroot:

848

$ echo ” v l c task - lxde - desktop sp i ce - vdagent hexchat ” ¿¿ c on f i g /←↩
package - l i s t s /my. l i s t . chroot

Build again: 849

850

lb bu i ld

Test, and when you’re satisfied, commit the next revision: 851

852

$ g i t commit - a -m ”Replac ing smplayer with v l c . ”

Of course, more complicated changes to the configuration are possible, 853

perhaps adding files in subdirectories of config/. When you commit new
revisions, just take care not to hand edit or commit the top-level files in
config containing LB˙* variables, as these are build products, too, and
are always cleaned up by lb clean and re-created with lb config via their
respective auto scripts.

We’ve come to the end of our tutorial series. While many more kinds of 854

customization are possible, even just using the few features explored in
these simple examples, an almost infinite variety of different images can
be created. The remaining examples in this section cover several other use
cases drawn from the collected experiences of users of live systems.

16.5 A VNC Kiosk Client 855

Use case: Create an image with live-build to boot directly to a VNC 856

60

Debian Live Manual

server.

Make a build directory and create an skeletal configuration inside it,857

disabling recommends to make a minimal system. And then create two
initial package lists: the first one generated with a script provided by
live-build named Packages (see Generated package lists), and the second
one including xorg, gdm3, metacity and xvnc4viewer.

858

$ mkdir vnc - kiosk - c l i e n t
$ cd vnc - kiosk - c l i e n t
$ lb c on f i g - - apt - recommends f a l s e
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot
$ echo ”xorg gdm3 metacity xt ightvncv i ewer ” ¿ c on f i g /package - l i s t s←↩

/my. l i s t . chroot

As explained in Tweaking APT to save space you may need to re-add859

some recommended packages to make your image work properly.

An easy way to list recommends is using apt-cache. For example:860

861

$ apt - cache depends l i v e - c on f i g l i v e - boot

In this example we found out that we had to re-include several packages862

recommended by live-config and live-boot: user-setup to make autologin
work and sudo as an essential program to shutdown the system. Besides,
it could be handy to add live-tools to be able to copy the image to RAM
and eject to eventually eject the live medium. So:

863

$ echo ” l i v e - t o o l s user - setup sudo e j e c t ” ¿ c on f i g /package - l i s t s /←↩
recommends . l i s t . chroot

After that, create the directory /etc/skel in config/includes.chroot and864

put a custom .xsession in it for the default user that will launch
metacity and start xvncviewer, connecting to port 5901 on a server at
192.168.1.2:

865

$ mkdir -p c on f i g / i n c l ud e s . chroot / e t c / s k e l
$ cat ¿ c on f i g / i n c l ud e s . chroot / e tc / s k e l / . x s e s s i on ¡ ¡ EOF
#!/bin / sh

/ usr /bin /metacity &
/usr /bin / xvncviewer 1 9 2 . 1 6 8 . 1 . 2 : 1

e x i t
EOF

Build the image: 866

867

lb bu i ld

Enjoy. 868

16.6 A minimal image for a 512MB USB key 869

Use case: Create a default image with some components removed in 870

order to fit on a 512MB USB key with a little space left over to use as
you see fit.

When optimizing an image to fit a certain media size, you need to under- 871

stand the tradeoffs you are making between size and functionality. In this
example, we trim only so much as to make room for additional material
within a 512MB media size, but without doing anything to destroy the
integrity of the packages contained within, such as the purging of locale
data via the localepurge package, or other such intrusive optimizations.

61

Debian Live Manual

Of particular note, we use –debootstrap-options to create a minimal sys-
tem from scratch and –binary image hdd to create an image that can be
copied to a USB key.

872

$ lb c on f i g - - binary - image hdd - - apt - i n d i c e s f a l s e - - apt -←↩
recommends f a l s e - - debootstrap - opt ions ” - - va r i an t=minbase” - -←↩
f irmware - chroot f a l s e - -memtest none

To make the image work properly, we must re-add, at least, two recom-873

mended packages which are left out by the –apt-recommends false option.
See Tweaking APT to save space

874

$ echo ”user - setup sudo” ¿ con f i g /package - l i s t s /recommends . l i s t .←↩
chroot

Additionally, you’ll want to have network access, so another two recom-875

mended packages need to be re-added:

876

$ echo ” ifupdown i s c - dhcp - c l i e n t ” ¿¿ c on f i g /package - l i s t s /←↩
recommends . l i s t . chroot

Now, build the image in the usual way:877

878

lb bu i ld 2¿&1 — tee bu i ld . l og

On the author’s system at the time of writing this, the above configuration879

produced a 298MiB image. This compares favourably with the 380MiB
image produced by the default configuration in Tutorial 1, when –binary-
image hdd is added.

Leaving off APT’s indices with –apt-indices false saves a fair amount of880

space, the tradeoff being that you need to do an apt-get update before
using apt in the live system. Dropping recommended packages with –apt-
recommends false saves some additional space, at the expense of omitting
some packages you might otherwise expect to be there. –debootstrap-
options –variant=minbase bootstraps a minimal system from the start.
Not automatically including firmware packages with –firmware-chroot
false saves some space too. And finally, –memtest none prevents the
installation of a memory tester.

Note: A minimal system can also be achieved using hooks, like for exam- 881

ple the stripped.hook.chroot hook found in /usr/share/doc/live-build/-
examples/hooks. It may shave off additional small amounts of space and
produce an image of 277MiB. However, it does so by removal of docu-
mentation and other files from packages installed on the system. This
violates the integrity of those packages and that, as the comment header
warns, may have unforeseen consequences. That is why using a minimal
debootstrap is the recommended way of achieving this goal.

16.7 A localized GNOME desktop and installer 882

Use case: Create a GNOME desktop image, localized for Switzerland 883

and including an installer.

We want to make an iso-hybrid image using our preferred desktop, in 884

this case GNOME, containing all of the same packages that would be
installed by the standard Debian installer for GNOME.

Our initial problem is the discovery of the names of the appropriate 885

language tasks. Currently, live-build cannot help with this. While we
might get lucky and find this by trial-and-error, there is a tool, grep-dctrl,
which can be used to dig it out of the task descriptions in tasksel-data,
so to prepare, make sure you have both of those things:

886

62

Debian Live Manual

apt - get i n s t a l l d c t r l - t o o l s t a sk s e l - data

Now we can search for the appropriate tasks, first with:887

888

$ grep - d c t r l -FTest - lang de / usr / share / t a s k s e l / desc s /debian - ta sk s .←↩
desc - sTask

Task : german

By this command, we discover the task is called, plainly enough, german.889

Now to find the related tasks:

890

$ grep - d c t r l - FEnhances german / usr / share / t a s k s e l / desc s /debian -←↩
ta sk s . desc - sTask

Task : german - desktop
Task : german - kde - desktop

At boot time we will generate the de˙CH.UTF-8 locale and select the ch891

keyboard layout. Now let’s put the pieces together. Recalling from Using
metapackages that task metapackages are prefixed task-, we just specify
these language boot parameters, then add standard priority packages and
all our discovered task metapackages to our package list as follows:

892

$ mkdir l i v e - gnome - ch
$ cd l i v e - gnome - ch
$ lb c on f i g “

- - bootappend - l i v e ”boot=l i v e components l o c a l e s=de˙CH .UTF-8 ←↩
keyboard - l ayout s=ch” “

- - debian - i n s t a l l e r l i v e
$ echo ' ! Packages P r i o r i t y standard ' ¿ c on f i g /package - l i s t s /←↩

standard . l i s t . chroot
$ echo task - gnome - desktop task - german task - german - desktop ¿¿ ←↩

c on f i g /package - l i s t s / desktop . l i s t . chroot
$ echo debian - i n s t a l l e r - launcher ¿¿ c on f i g /package - l i s t s / i n s t a l l e r←↩

. l i s t . chroot

Note that we have included the debian-installer-launcher package to 893

launch the installer from the live desktop.

63

Anex894

64

Style guide895

17. Style guide896

17.1 Guidelines for authors897

This section deals with some general considerations to be taken into898

account when writing technical documentation for live-manual. They are
divided into linguistic features and recommended procedures.

Note: Authors should first read Contributing to this document899

17.1.1 Linguistic features900

Use plain English901

Keep in mind that a high percentage of your readers are not native902

speakers of English. So as a general rule try to use short, meaningful
sentences, followed by a full stop.

This does not mean that you have to use a simplistic, naive style. It is a903

suggestion to try to avoid, as much as possible, complex subordinate sen-
tences that make the text difficult to understand for non-native speakers
of English.

Variety of English904

The most widely spread varieties of English are British and American905

so it is very likely that most authors will use either one or the other.
In a collaborative environment, the ideal variety would be International
English but it is very difficult, not to say impossible, to decide on which
variety among all the existing ones, is the best to use.

We expect that different varieties may mix without creating misunder-906

standings but in general terms you should try to be coherent and before
deciding on using British, American or any other English flavour at your
discretion, please take a look at how other people write and try to imitate
them.

Be balanced 907

Do not be biased. Avoid including references to ideologies completely un- 908

related to live-manual. Technical writing should be as neutral as possible.
It is in the very nature of scientific writing.

Be politically correct 909

Try to avoid sexist language as much as possible. If you need to make 910

references to the third person singular preferably use they rather than he
or she or awkward inventions such as s/he, s(he) and the like.

Be concise 911

Go straight to the point and do not wander around aimlessly. Give as 912

much information as necessary but do not give more information than
necessary, this is to say, do not explain unnecessary details. Your readers
are intelligent. Presume some previous knowledge on their part.

Minimize translation work 913

Keep in mind that whatever you write will have to be translated into 914

several other languages. This implies that a number of people will have
to do an extra work if you add useless or redundant information.

Be coherent 915

As suggested before, it is almost impossible to standardize a collabora- 916

tive document into a perfectly unified whole. However, every effort on
your side to write in a coherent way with the rest of the authors will be
appreciated.

Be cohesive 917

65

Debian Live Manual

Use as many text-forming devices as necessary to make your text cohesive 918

and unambiguous. (Text-forming devices are linguistic markers such as
connectors).

Be descriptive919

It is preferable to describe the point in one or several paragraphs than920

merely using a number of sentences in a typical changelog style. Describe
it! Your readers will appreciate it.

Dictionary921

Look up the meaning of words in a dictionary or encyclopedia if you do922

not know how to express certain concepts in English. But keep in mind
that a dictionary can either be your best friend or can turn into your
worst enemy if you do not know how to use it correctly.

English has the largest vocabulary that exists (with over one million923

words). Many of these words are borrowings from other languages. When
looking up the meaning of words in a bilingual dictionary the tendency
of a non-native speaker of English is to choose the one that sounds more
similar in their mother tongue. This often turns into an excessively formal
discourse which does not sound quite natural in English.

As a general rule, if a concept can be expressed using different synonyms,924

it is a good advice to choose the first word proposed by the dictionary.
If in doubt, choosing words of Germanic origin (Usually monosyllabic
words) is often the right thing to do. Be warned that these two techniques
might produce a rather informal discourse but at least your choice of
words will be of wide use and generally accepted.

Using a dictionary of collocations is recommended. They are extremely925

helpful when it comes to know which words usually occur together.

Again it is a good practice to learn from the work of others. Using a926

search engine to check how other authors use certain expressions may
help a lot.

False friends, idioms and other idiomatic expressions 927

Watch out for false friends. No matter how proficient you are in a foreign 928

language you cannot help falling from time to time in the trap of the so
called false friends, words that look similar in two languages but whose
meanings or uses might be completely different.

Try to avoid idioms as much as possible. Idioms are expressions that may 929

convey a completely different meaning from what their individual words
seem to mean. Sometimes, idioms might be difficult to understand even
for native speakers of English!

Avoid slang, abbreviations, contractions... 930

Even though you are encouraged to use plain, everyday English, technical 931

writing belongs to the formal register of the language.

Try to avoid slang, unusual abbreviations that are difficult to understand 932

and above all contractions that try to imitate the spoken language. Not
to mention typical irc and family friendly expressions.

17.1.2 Procedures 933

Test before write 934

It is important that authors test their examples before adding them to 935

live-manual to ensure that everything works as described. Testing on a
clean chroot or VM can be a good starting point. Besides, it would be
ideal if the tests were then carried out on different machines with different
hardware to spot possible problems that may arise.

Examples 936

When providing an example try to be as specific as you can. An example 937

is, after all, just an example.

It is often better to use a line that only applies to a specific case than 938

66

Debian Live Manual

using abstractions that may confuse your readers. In this case you can
provide a brief explanation of the effects of the proposed example.

There may be some exceptions when the example suggests using some939

potentially dangerous commands that, if misused, may cause data loss
or other similar undesirable effects. In this case you should provide a
thorough explanation of the possible side effects.

External links940

Links to external sites should only be used when the information on those941

sites is crucial when it comes to understanding a special point. Even so,
try to use links to external sites as sparsely as possible. Internet links are
likely to change from time to time resulting in broken links and leaving
your arguments in an incomplete state.

Besides, people who read the manual offline will not have the chance to942

follow those links.

Avoid branding and things that violate the license under which the943

manual is published

Try to avoid branding as much as possible. Keep in mind that other944

downstream projects might make use of the documentation you write.
So you are complicating things for them if you add certain specific mate-
rial.

live-manual is licensed under the GNU GPL. This has a number of im-945

plications that apply to the distribution of the material (of any kind,
including copyrighted graphics or logos) that is published with it.

Write a first draft, revise, edit, improve, redo if necessary946

- Brainstorm!. You need to organize your ideas first in a logical sequence947

of events.

- Once you have somehow organized those ideas in your mind write a948

first draft.

- Revise grammar, syntax and spelling. Keep in mind that the proper 949

names of the releases, such as trixie or sid , should not be capitalized
when referred to as code names. In order to check the spelling you can
run the spell target. i.e. make spell

- Improve your statements and redo any part if necessary. 950

Chapters 951

Use the conventional numbering system for chapters and subtitles. e.g. 952

1, 1.1, 1.1.1, 1.1.2 ... 1.2, 1.2.1, 1.2.2 ... 2, 2.1 ... and so on. See markup
below.

If you have to enumerate a series of steps or stages in your description, 953

you can also use ordinal numbers: First, second, third ... or First, Then,
After that, Finally ... Alternatively you can use bulleted items.

Markup 954

And last but not least, live-manual uses SiSU to process the text files 955

and produce a multiple format output. It is recommended to take a look
at SiSU’s manual to get familiar with its markup, or else type:

956

$ s i s u - - he lp markup

Here are some markup examples that may prove useful: 957

- For emphasis/bold text: 958

959

– foo ˝ or ! – foo ˝ !

produces: foo or foo . Use it to emphasize certain key words. 960

- For italics: 961

962

67

http://www.sisudoc.org/
http://www.sisudoc.org/manual/en/html/sisu_manual/markup.html

Debian Live Manual

/– foo ˝/

produces: foo. Use them e.g. for the names of Debian packages.963

- For monospace:964

965

#–foo˝#

produces: foo. Use it e.g. for the names of commands. And also to966

highlight some key words or things like paths.

- For code blocks:967

968

code–

$ foo
bar

˝ code

produces:969

970

$ foo
bar

Use code– to open and ˝code to close the tags. It is important to remem-971

ber to leave a space at the beginning of each line of code.

17.2 Guidelines for translators972

This section deals with some general considerations to be taken into973

account when translating the contents of live-manual.

As a general recommendation, translators should have read and under-974

stood the translation rules that apply to their specific languages. Usually,
translation groups and mailing lists provide information on how to pro-
duce translated work that complies with Debian quality standards.

Note: Translators should also read Contributing to this document. In 975

particular the section Translation

17.2.1 Translation hints 976

Comments 977

The role of the translator is to convey as faithfully as possible the mean- 978

ing of words, sentences, paragraphs and texts as written by the original
authors into their target language.

So they should refrain from adding personal comments or extra bits 979

of information of their own. If they want to add a comment for other
translators working on the same documents, they can leave it in the
space reserved for that. That is, the header of the strings in the po files
preceded by a number sign # . Most graphical translation programs can
automatically handle those types of comments.

TN, Translator’s Note 980

It is perfectly acceptable however, to include a word or an expression in 981

brackets in the translated text if, and only if, that makes the meaning of
a difficult word or expression clearer to the reader. Inside the brackets
the translator should make evident that the addition was theirs using the
abbreviation TN or Translator’s Note.

Impersonal sentences 982

Documents written in English make an extensive use of the impersonal 983

form you. In some other languages that do not share this characteristic,
this might give the false impression that the original texts are directly

68

Debian Live Manual

addressing the reader when they are actually not doing so. Translators
must be aware of that fact and reflect it in their language as accurately
as possible.

False friends984

The trap of false friends explained before especially applies to translators.985

Double check the meaning of suspicious false friends if in doubt.

Markup986

Translators working initially with pot files and later on with po files will987

find many markup features in the strings. They can translate the text
anyway, as long as it is translatable, but it is extremely important that
they use exactly the same markup as the original English version.

Code blocks988

Even though the code blocks are usually untranslatable, including them989

in the translation is the only way to score a 100% complete translation.
And even though it means more work at first because it might require
the intervention of the translators if the code changes, it is the best way,
in the long run, to identify what has already been translated and what
has not when checking the integrity of the .po files.

Newlines990

The translated texts need to have the exact same newlines as the original991

texts. Be careful to press the Enter key or type if they appear in the
original files. These newlines often appear, for instance, in the code
blocks.

Make no mistake, this does not mean that the translated text needs to992

have the same length as the English version. That is nearly impossi-
ble.

Untranslatable strings993

Translators should never translate:994

- The code names of releases (which should be written in lowercase) 995

- The names of programs 996

- The commands given as examples 997

- Metadata (often between colons :metadata:) 998

- Links 999

- Paths 1000

69

Debian Live Manual

SiSU Metadata, document information

Title: Debian Live Manual

Author: Debian Live Project ¡debian-live@lists.debian.org¿

Rights: Copyright: Copyright (C) 2006-2015 Live Systems Project, Copyright (C) 2016-2025

The Debian Live team

License: This program is free software: you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Foundation,

either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program. If not, see http://www.gnu.org/licenses/.

The complete text of the GNU General Public License can be found in /usr/share/-

common-licenses/GPL-3 file.

Publisher: Debian Live Project ¡debian-live@lists.debian.org¿

Date: 2025-02-26

Version Information

Sourcefile: live-manual.ssm.sst

Filetype: SiSU text 2.0, Unicode text, UTF-8 text, with very long lines (745)

Source Digest: SHA2-256(live-manual.ssm.sst)=6445c4dfb9ce611683d7c716e05bb469-

0bb746fcc7b6bcea8f9092b88b74bded

Generated

Document (ao) last generated: 2025-02-27 00:04:35 +0000

Generated by: SiSU 7.3.0 of 2023w44/1 (2023-10-30)

Ruby version: ruby 3.3.7 (2025-01-15 revision be31f993d7) [x86˙64-linux-gnu]

70

http://www.gnu.org/licenses/

	Debian Live Manual
	Despre
	Despre acest manual
	1. Despre acest manual
	1.1 For the impatient
	1.2 Termeni
	1.3 Autori
	1.4 Cum se poate contribui la acest document
	1.4.1 Applying changes
	1.4.2 Translation

	About the Debian Live Project
	2. About the Debian Live Project
	2.1 Motivatie
	2.1.1 Ce nu e bine cu sistemele live actuale
	2.1.2 De ce e nevoie de propriul nostru sistem live ?

	2.2 Filozofia
	2.2.1 Only unchanged packages from Debian “main” and “non-free-firmware”
	2.2.2 Nu vor fi programe de configurare pentru sistemul live.

	2.3 Contact

	Utilizator
	Installation
	3. Installation
	3.1 Requirements
	3.2 Installing live-build
	3.2.1 From the Debian repository
	3.2.2 From source

	3.3 Installing live-boot and live-config
	3.3.1 From the Debian repository
	3.3.2 From source

	The basics
	4. The basics
	4.1 What is a live system?
	4.2 Downloading prebuilt images
	4.3 First steps: building an ISO hybrid image
	4.4 Using an ISO hybrid live image
	4.4.1 Burning an ISO image to a physical medium
	4.4.2 Copying an ISO hybrid image to a USB stick
	4.4.3 Using the space left on a USB stick
	4.4.4 Booting the live medium

	4.5 Using a virtual machine for testing
	4.5.1 Testing an ISO image with QEMU
	4.5.2 Testing an ISO image with VirtualBox

	4.6 Building and using an HDD image
	4.7 Building a netboot image
	4.7.1 DHCP server
	4.7.2 TFTP server
	4.7.3 NFS server
	4.7.4 Netboot testing HowTo
	4.7.5 Qemu

	4.8 Webbooting
	4.8.1 Getting the webboot files
	4.8.2 Booting webboot images

	Overview of tools
	5. Overview of tools
	5.1 The live-build package
	5.1.1 The lb config command
	5.1.2 The lb build command
	5.1.3 The lb clean command

	5.2 The live-boot package
	5.3 The live-config package

	Managing a configuration
	6. Managing a configuration
	6.1 Dealing with configuration changes
	6.1.1 Why use auto scripts? What do they do?
	6.1.2 Use example auto scripts

	6.2 Clone a configuration published via Git

	Customizing contents
	7. Customization overview
	7.1 Build time vs. boot time configuration
	7.2 Stages of the build
	7.3 Supplement lb config with files
	7.4 Customization tasks

	Customizing package installation
	8. Customizing package installation
	8.1 Package sources
	8.1.1 Distribution, archive areas and mode
	8.1.2 Distribution mirrors
	8.1.3 Distribution mirrors used at build time
	8.1.4 Distribution mirrors used at run time
	8.1.5 Additional repositories

	8.2 Choosing packages to install
	8.2.1 Package lists
	8.2.2 Using metapackages
	8.2.3 Local package lists
	8.2.4 Local binary package lists
	8.2.5 Generated package lists
	8.2.6 Using conditionals inside package lists
	8.2.7 Removing packages at install time
	8.2.8 Summary
	8.2.9 Desktop and language tasks
	8.2.10 Kernel flavour and version
	8.2.11 Custom kernels

	8.3 Installing modified or third-party packages
	8.3.1 Using packages.chroot to install custom packages
	8.3.2 Using an APT repository to install custom packages
	8.3.3 Custom packages and APT

	8.4 Configuring APT at build time
	8.4.1 Choosing apt or aptitude
	8.4.2 Using a proxy with APT
	8.4.3 Tweaking APT to save space
	8.4.4 Passing options to apt or aptitude
	8.4.5 APT pinning

	Customizing contents
	9. Customizing contents
	9.1 Includes
	9.1.1 Live/chroot local includes
	9.1.2 Binary local includes

	9.2 Hooks
	9.2.1 Chroot local hooks
	9.2.2 Binary local hooks
	9.2.3 Boot-time hooks

	9.3 Preseeding Debconf questions

	Customizing run time behaviours
	10. Customizing run time behaviours
	10.1 Customizing the live user
	10.2 Customizing locale and language
	10.3 Persistence
	10.3.1 The persistence.conf file
	10.3.2 Using more than one persistence store
	10.3.3 Using persistence with encryption

	Customizing the binary image
	11. Customizing the binary image
	11.1 Bootloaders
	11.2 ISO metadata

	Customizing Debian Installer
	12. Customizing Debian Installer
	12.1 Types of Debian Installer
	12.2 Customizing Debian Installer by preseeding
	12.3 Customizing Debian Installer content

	Proiect
	Contributing to the project
	13. Contributing to the project
	13.1 Translation of man pages

	Reporting bugs
	14. Reporting bugs
	14.1 Known issues
	14.2 Do the research
	14.3 Rebuild from scratch
	14.4 Use up-to-date packages
	14.5 Collect information
	14.6 Isolate the failing case if possible
	14.7 Use the correct package to report the bug against
	14.7.1 At build time while bootstrapping
	14.7.2 At build time while installing packages
	14.7.3 At boot time
	14.7.4 At run time

	14.8 Where to report bugs

	Coding Style
	15. Coding Style
	15.1 Compatibility
	15.2 Indenting
	15.3 Wrapping
	15.4 Variables
	15.5 Miscellaneous

	Exemple
	Exemple
	16. Examples
	16.1 Using the examples
	16.2 Tutorial 1: A default image
	16.3 Tutorial 2: A web browser utility
	16.4 Tutorial 3: A personalized image
	16.4.1 First revision
	16.4.2 Second revision

	16.5 A VNC Kiosk Client
	16.6 A minimal image for a 512MB USB key
	16.7 A localized GNOME desktop and installer

	Anexă
	Style guide
	17. Style guide
	17.1 Guidelines for authors
	17.1.1 Linguistic features
	17.1.2 Procedures

	17.2 Guidelines for translators
	17.2.1 Translation hints

	SiSU Metadata, document information

