OrthoPolynomialBase#
- class astropy.modeling.polynomial.OrthoPolynomialBase(x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, n_models=None, model_set_axis=None, name=None, meta=None, **params)[source]#
Bases:
PolynomialBaseThis is a base class for the 2D Chebyshev and Legendre models.
The polynomials implemented here require a maximum degree in x and y.
For explanation of
x_domain,y_domain,`x_windowand`y_windowsee Notes regarding usage of domain and window.- Parameters:
- x_degree
python:int degree in x
- y_degree
python:int degree in y
- x_domain
python:tupleorpython:None, optional domain of the x independent variable
- x_window
python:tupleorpython:None, optional range of the x independent variable
- y_domain
python:tupleorpython:None, optional domain of the y independent variable
- y_window
python:tupleorpython:None, optional range of the y independent variable
- **params
python:dict {keyword: value} pairs, representing {parameter_name: value}
- x_degree
Attributes Summary
Methods Summary
__call__(*inputs[, model_set_axis, ...])Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated.
evaluate(x, y, *coeffs)Evaluate the model on some input variables.
Determine how many coefficients are needed.
imhorner(x, y, coeff)invlex_coeff(coeffs)prepare_inputs(x, y, **kwargs)This method is used in
__call__to ensure that all the inputs to the model can be broadcast into compatible shapes (if one or both of them are input as arrays), particularly if there are more than one parameter sets.Attributes Documentation
- n_inputs = 2#
- n_outputs = 1#
- x_domain#
- x_window#
- y_domain#
- y_window#
Methods Documentation
- __call__(*inputs, model_set_axis=None, with_bounding_box=False, fill_value=nan, equivalencies=None, inputs_map=None, **new_inputs)#
Evaluate this model using the given input(s) and the parameter values that were specified when the model was instantiated.
- get_num_coeff()[source]#
Determine how many coefficients are needed.
- Returns:
- numc
python:int number of coefficients
- numc
- prepare_inputs(x, y, **kwargs)[source]#
This method is used in
__call__to ensure that all the inputs to the model can be broadcast into compatible shapes (if one or both of them are input as arrays), particularly if there are more than one parameter sets. This also makes sure that (if applicable) the units of the input will be compatible with the evaluate method.