
Building Expert Systems in Prolog
by

Dennis Merritt

John Stannard on the first free ascent of Foops - 1967

Published by:

Amzi! inc.
5861 Greentree Road
Lebanon, OH 45036 U.S.A.

phone +1-513-425-8050
fax +1-513-425-8025
e-mail info@amzi.com
web www.amzi.com

Book Edition Copyright ©1989 by Springer-Verlag.
On-line Edition Copyright ©2000 by Amzi! inc. All Rights Reserved.

This document ("Work") is protected by copyright laws and international copyright treaties, as well as other intellectual
property laws and treaties. You may use and distribute copies of this Work provided each copy of the Work is a true and
complete copy, including all copyright and trademark notices, and each copy is accompanied by a copy of this notice.
You may not distribute copies of this Work for profit either on a standalone basis or included as part of your own
product or work without written permission from Amzi! You may not charge any fees for copies of this work including
media or download fees. You may not include this Work as part of your own works. You may not rename, edit or create
any derivative works from this Work. Contact Amzi! for additional licensing arrangements.

Amzi! is a registered trademark and Logic Server, Active Prolog Tutor, Adventure in Prolog and the flying squirrel logo
are trademarks of Amzi! inc.

Last Updated: August 2000

PDF version March 2001 edited, designed and compiled by Daniel L. Dudley (daniel.dudley@chello.no)

ii

mailto:info@amzi.com

Preface
When I compare the books on expert systems in my library with the production expert systems I know of, I note that
there are few good books on building expert systems in Prolog. Of course, the set of actual production systems is a little
small for a valid statistical sample, at least at the time and place of this writing – here in Germany, and in the first days
of 1989. But there are at least some systems I have seen running in real life commercial and industrial environments,
and not only at trade shows.

I can observe the most impressive one in my immediate neighborhood. It is installed in the Telephone Shop of the
German Federal PTT near the Munich National Theater, and helps configure telephone systems and small PBXs for
mostly private customers. It has a neat, graphical interface, and constructs and prices an individual telephone
installation interactively before the very eyes of the customer.

The hidden features of the system are even more impressive. It is part of an expert system network with a distributed
knowledge base that will grow to about 150 installations in every Telephone Shop throughout Germany. Each of them
can be updated individually overnight via Teletex to present special offers or to adapt the selection process to the
hardware supplies currently available at the local warehouses.

Another of these industrial systems supervises and controls in "soft" real time the excavators currently used in Tokyo
for subway construction. It was developed on a Unix workstation and downloaded to a single board computer using a
real time operating system. The production computer runs exactly the same Prolog implementation that was used for
programming, too.

And there are two or three other systems that are perhaps not as showy, but do useful work for real applications, such as
oil drilling in the North Sea, or estimating the risks of life insurance for one of the largest insurance companies in the
world. What all these systems have in common is their implementation language: Prolog, and they run on "real life"
computers like Unix workstations or minis like VAXs. Certainly this is one reason for the preference of Prolog in
commercial applications.

But there is one other, probably even more important advantage: Prolog is a programmer's and software engineer's
dream. It is compact, highly readable, and arguably the "most structured" language of them all. Not only has it done
away with virtually all control flow statements, but even explicit variable assignment too!

These virtues are certainly reason enough to base not only systems but textbooks on this language. Dennis Merritt has
done this in an admirable manner. He explains the basic principles, as well as the specialized knowledge representation
and processing techniques that are indispensable for the implementation of industrial software such as those mentioned
above. This is important because the foremost reason for the relative neglect of Prolog in expert system literature is
probably the prejudice that "it can be used only for backward chaining rules." Nothing is farther from the truth. Its
relational data base model and its underlying unification mechanism adapt easily and naturally to virtually any
programming paradigm one cares to use. Merritt shows how this works using a copious variety of examples. His book
will certainly be of particular value for the professional developer of industrial knowledge-based applications, as well as
for the student or programmer interested in learning about or building expert systems. I am, therefore, happy to have
served as his editor.

Peter H. Schnupp
Munich, January 1989

Building Expert Systems in Prolog iii

Acknowledgements
A number of people have helped make this book possible. They include Dave Litwack and Bill Linn of Cullinet who
provided the opportunity and encouragement to explore these ideas. Further thanks goes to Park Gerald and the Boston
Computer Society, sounding boards for many of the programs in the book. Without the excellent Prolog products from
Cogent (now Amzi!), AAIS, Arity, and Logic Programming Associates none of the code would have been developed. A
special thanks goes to Peter Gable and Paul Weiss of Arity for their early help and Allan Littleford, provider of both
Cogent Prolog and feedback on the book. Jim Humphreys of Suffolk University gave the most careful reading of the
book, and advice based on years of experience. As have many other Mac converts, I feel compelled to mention my
Macintosh SE, Microsoft Word and Cricket Draw for creating an enjoyable environment for writing books. And finally
without both the technical and emotional support of Mary Kroening the book would not have been started or finished.

iv

Table of Contents
Preface ..iii

Acknowledgements ...iv

1 Introduction..1
1.1 Expert Systems .. 1
1.2 Expert System Features... 3

Goal-Driven Reasoning ...3
Uncertainty...4
Data Driven Reasoning ...4
Data Representation..5
User Interface ..6
Explanations ..7

1.3 Sample Applications... 7
1.4 Prolog ... 8
1.5 Assumptions... 8

2 Using Prolog's Inference Engine..9
2.1 The Bird Identification System.. 9

Rule formats ..9
Rules about birds...10
Rules for hierarchical relationships..10
Rules for other relationships..11

2.2 User Interface... 13
Attribute Value pairs ..13
Asking the user..13
Remembering the answer ...14
Multi-valued answers...14
Menus for the user...15
Other enhancements ...16

2.3 A Simple Shell .. 16
Command loop ..17
A tool for non-programmers...19

2.4 Summary .. 19
Exercises.. 19

3 Backward Chaining with Uncertainty...21
3.1 Certainty Factors .. 21

An Example ...21
Rule Uncertainty ..22
User Uncertainty..22
Combining Certainties ...23
Properties of Certainty Factors..23

3.2 MYCINs Certainty Factors.. 24
Determining Premise CF ...24

Building Expert Systems in Prolog v

Combining Premise CF and Conclusion CF..24
Premise Threshold CF...25
Combining CFs..25

3.3 Rule Format.. 26
3.4 The Inference Engine ... 27

Working Storage..27
Find a Value for an Attribute..27
Attribute Value Already Known..28
Ask User for Attribute Value ..28
Deduce Attribute Value from Rules ...28
Negation ..30

3.5 Making the Shell... 30
Starting the Inference ..31

3.6 English-like Rules... 32
Exercises.. 33

4 Explanation ..35
Value of Explanations to the User ...35
Value of Explanations to the Developer ..35
Types of Explanation ...36

4.1 Explanation in Clam ... 36
Tracing...38
How Explanations..39
Why Questions ..41

4.2 Native Prolog Systems ... 43
Exercises.. 46

5 Forward Chaining ..47
5.1 Production Systems ... 47
5.2 Using Oops... 48
5.3 Implementation... 52
5.4 Explanations for Oops .. 56
5.5 Enhancements ... 56
5.6 Rule Selection .. 57

Generating the conflict set...57
Time stamps ..58

5.7 LEX... 58
Changes in the Rules ..59
Implementing LEX ...59

5.8 MEA.. 61
Exercises.. 62

6 Frames..65
6.1 The Code.. 66
6.2 Data Structure .. 66

vi Table of Contents

6.3 The Manipulation Predicates.. 68
6.4 Using Frames ... 74
6.5 Summary .. 75
Exercises.. 75

7 Integration ..77
7.1 Foops (Frames and Oops) ... 77

Instances ...77
Rules for frinsts..79
Adding Prolog to Foops ...80

7.2 Room Configuration ... 81
Furniture frames ..82
Frame Demons..83
Initial Data..84
Input Data ..85
The Rules ..86
Output Data ...89

7.3 A Sample Run .. 90
7.4 Summary .. 91
Exercises.. 91

8 Performance...93
8.1 Backward Chaining Indexes... 93
8.2 Rete Match Algorithm... 94

Network Nodes ..95
Network Propagation ...96
Example of Network Propagation..97
Performance Improvements ..99

8.3 The Rete Graph Data Structures.. 100
8.4 Propagating Tokens ... 101
8.5 The Rule Compiler ... 103
8.6 Integration with Foops .. 108
8.7 Design Tradeoffs .. 109
Exercises.. 109

9 User Interface...111
9.1 Object Oriented Window Interface ... 111
9.2 Developer's Interface to Windows.. 111
9.3 High-Level Window Implementation... 114

Message Passing ..115
Inheritance...115

9.4 Low-Level Window Implementation.. 117
Exercises.. 120

Building Expert Systems in Prolog vii

10 Two Hybrids ...121
10.1 CVGEN... 121
10.2 The Knowledge Base ... 122

Rule for parameters...122
Rules for derived information...123
Questions for the user ...124
Default rules...124
Rules for edits..125
Static information...125

10.3 Inference Engine .. 126
10.4 Explanations... 127
10.5 Environment ... 128
10.6 AIJMP... 129
10.7 Summary .. 130
Exercises.. 130

11 Prototyping...131
11.1 The Problem... 131
11.2 The Sales Advisor Knowledge Base .. 131

Qualifying...132
Objectives - Benefits - Features ..132
Situation Analysis ..133
Competitive Analysis ...133
Miscellaneous Advice ..134
User Queries..134

11.3 The Inference Engine ... 135
11.4 User Interface... 136
11.5 Summary .. 138
Exercises.. 138

12 Rubik's Cube..139
12.1 The Problem... 139
12.2 The Cube.. 140
12.3 Rotation .. 142
12.4 High Level Rules .. 142
12.5 Improving the State .. 143
12.6 The Search... 144
12.7 More Heuristics .. 145
12.8 User Interface... 145
12.9 On the Limits of Machines.. 146
Exercises.. 146

viii Table of Contents

Appendices - Full Source Code ...147

A Native..149
Birds Knowledgebase (birds.nkb)... 149
Native Shell (native.pro) ... 153

B Clam..157
Car Knowledgebase (car.ckb) .. 157
Birds Knowledgebase (birds.ckb)... 158
Clam Shell (clam.pro)... 163
Build Rules (bldrules.pro) ... 176

C Oops ...179
Room Knowledgebase (room.okb)... 179
Animal Knowledgebase (animal.okb) ... 184
Oops Interpreter (oops.pro).. 187

D Foops..193
Room Knowledgebase (room.fkb).. 193
Foops (foops.pro) ... 200

E Rete-Foops...211
Room Knowledgebase (room.rkb).. 211
Rete Compiler (retepred.pro) ... 218
Rete Runtime (retefoop.pro)... 225

F Windows...239
Windows Demonstration (windemo.pro) .. 239
Windows (windows.pro) ... 243

G Rubik...273
Cube Solver (rubik.pro) .. 273
Cube Display (rubdisp.pro)... 286
Cube Entry (rubedit.pro)... 289
Move History (rubhist.pro) .. 291
Moves and Rotations (rubmov.pro) .. 293
Rubik Help (rubhelp.pro) .. 296
Rubik Data (rubdata.pro).. 297

Building Expert Systems in Prolog ix

1 Introduction
Over the past several years there have been many implementations of expert systems using
various tools and various hardware platforms, from powerful LISP machine workstations
to smaller personal computers.

The technology has left the confines of the academic world and has spread through many
commercial institutions. People wanting to explore the technology and experiment with it
have a bewildering selection of tools from which to choose. There continues to be a debate
as to whether or not it is best to write expert systems using a high-level shell, an AI
language such as LISP or Prolog, or a conventional language such as C.

This book is designed to teach you how to build expert systems from the inside out. It
presents the various features used in expert systems, shows how to implement them in
Prolog, and how to use them to solve problems.

The code presented in this book is a foundation from which many types of expert systems
can be built. It can be modified and tuned for particular applications. It can be used for
rapid prototyping. It can be used as an educational laboratory for experimenting with
expert system concepts.

 1.1 Expert Systems
Expert systems are computer applications which embody some non-algorithmic expertise
for solving certain types of problems. For example, expert systems are used in diagnostic
applications servicing both people and machinery. They also play chess, make financial
planning decisions, configure computers, monitor real time systems, underwrite insurance
policies, and perform many other services which previously required human expertise.

Domain
Expert User

Knowledge
Engineer

System
Engineer

User
Interface

Inference
Engine

Knowledge
Base

Working
Storage

expertise

encoded
expertise

Figure 1.1 Expert system components and human interfaces

Expert systems have a number of major system components and interface with individuals
in various roles. These are illustrated in figure 1.1. The major components are:

Building Expert Systems in Prolog 1

• Knowledge base – a declarative representation of the expertise, often in IF THEN
rules;

• Working storage – the data that is specific to a problem being solved;

• Inference engine – the code at the core of the system, which derives recommendations
from the knowledge base and problem-specific data in working storage;

• User interface – the code that controls the dialog between the user and the system.

To understand expert system design, it is also necessary to understand the major roles of
individuals who interact with the system. These are:

• Domain expert – the individual or individuals who currently are experts solving the
problems the system is intended to solve;

• Knowledge engineer – the individual who encodes the expert's knowledge in a
declarative form that can be used by the expert system;

• User – the individual who will be consulting with the system to get advice that would
have been provided by the domain expert.

Many expert systems are built with products called expert system shells. The shell is a
piece of software which contains the user interface, a format for declarative knowledge in
the knowledge base, and an inference engine. The knowledge engineer uses the shell to
build a system for a particular problem domain.

Expert systems are also built with shells that are custom developed for particular
applications. In this case there is another key individual:

• System engineer – the individual who builds the user interface, designs the declarative
format of the knowledge base, and implements the inference engine.

Depending on the size of the project, the knowledge engineer and the system engineer
might be the same person. For a custom built system, the design of the format of the
knowledge base and the coding of the domain knowledge are closely related. The format
has a significant effect on the coding of the knowledge.

One of the major bottlenecks in building expert systems is the knowledge engineering
process. The coding of the expertise into the declarative rule format can be a difficult and
tedious task. One major advantage of a customized shell is that the format of the
knowledge base can be designed to facilitate the knowledge engineering process.

The objective of this design process is to reduce the semantic gap. Semantic gap refers to
the difference between the natural representation of some knowledge and the
programmatic representation of that knowledge. For example, compare the semantic gap
between a mathematical formula and its representation in both assembler and FORTRAN.
FORTRAN code (for formulas) has a smaller semantic gap and is therefore easier to work
with.

Since the major bottleneck in expert system development is the building of the knowledge
base, it stands to reason that the semantic gap between the expert's representation of the
knowledge and the representation in the knowledge base should be minimized. With a
customized system, the system engineer can implement a knowledge base whose structures
are as close as possible to those used by the domain expert.

This book concentrates primarily on the techniques used by the system engineer and
knowledge engineer to design customized systems. It explains the various types of
inference engines and knowledge bases that can be designed, and how to build and use

2 Chapter 1 - Introduction

them. It tells how they can be mixed together for some problems, and customized to meet
the needs of a given application.

1.2 Expert System Features
There are a number of features which are commonly used in expert systems. Some shells
provide most of these features, and others just a few. Customized shells provide the
features which are best suited for the particular problem. The major features covered in
this book are:

• Goal driven reasoning or backward chaining – an inference technique which uses IF
THEN rules to repetitively break a goal into smaller sub-goals, which are easier to
prove;

• Coping with uncertainty – the ability of the system to reason with rules and data that
are not precisely known;

• Data driven reasoning or forward chaining – an inference technique that uses IF
THEN rules to deduce a problem solution from initial data;

• Data representation – the way in which the problem specific data in the system is
stored and accessed;

• User interface – that portion of the code that creates an easy-to-use system;

• Explanations – the ability of the system to explain the reasoning process that it used to
reach a recommendation.

Goal-Driven Reasoning
Goal-driven reasoning, or backward chaining, is an efficient way to solve problems that
can be modelled as "structured selection" problems. That is, the aim of the system is to
pick the best choice from many enumerated possibilities. For example, an identification
problem falls in this category. Diagnostic systems also fit this model, since the aim of the
system is to pick the correct diagnosis.

The knowledge is structured in rules, which describe how each of the possibilities might
be selected. The rule breaks the problem into sub-problems. For example, the following
top level rules are in a system which identifies birds.

IF
 family is albatross and
 color is white
THEN
 bird is laysan albatross.
IF
 family is albatross and
 color is dark
THEN
 bird is black footed albatross.

The system would try all of the rules which gave information satisfying the goal of
identifying the bird. Each would trigger sub-goals. In the case of these two rules, the sub-
goals of determining the family and the color would be pursued. The following rule is one
that satisfies the family sub-goal:

IF
 order is tubenose and
 size large and
 wings long narrow

Building Expert Systems in Prolog 3

THEN
 family is albatross.

The sub-goals of determining color, size, and wings would be satisfied by asking the user.
By having the lowest level sub-goal satisfied or denied by the user, the system effectively
carries on a dialog with the user. The user sees the system asking questions and responding
to answers as it attempts to find the rule which correctly identifies the bird.

Uncertainty
Often in structured selection problems the final answer is not known with complete
certainty. The expert's rules might be vague, and the user might be unsure of answers to
questions. This can be easily seen in medical diagnostic systems where the expert is not
able to be definite about the relationship between symptoms and diseases. In fact, the
doctor might offer multiple possible diagnoses.

For expert systems to work in the real world they must also be able to deal with
uncertainty. One of the simplest schemes is to associate a numeric value with each piece of
information in the system. The numeric value represents the certainty with which the
information is known. There are numerous ways in which these numbers can be defined,
and how they are combined during the inference process.

Data Driven Reasoning
For many problems it is not possible to enumerate all of the possible answers beforehand
and have the system select the correct one. For example, system configuration problems
fall in this category. These systems might put components in a computer, design circuit
boards, or lay out office space. Since the inputs vary and can be combined in an almost
infinite number of ways, the goal driven approach will not work.

The data driven approach, or forward chaining, uses rules similar to those used for
backward chaining. However, the inference process is different. The system keeps track
of the current state of problem solution and looks for rules, which will move that state
closer to a final solution.

A system to layout living room furniture would begin with a problem state consisting of a
number of unplaced pieces of furniture. Various rules would be responsible for placing the
furniture in the room, thus changing the problem state. When all of the furniture was
placed, the system would be finished, and the output would be the final state. Here is a rule
from such a system which places the television opposite the couch.

IF
 unplaced tv and
 couch on wall(X) and
 wall(Y) opposite wall(X)
THEN
 place tv on wall(Y).

This rule would take a problem state with an unplaced television and transform it to a state
that had the television placed on the opposite wall from the couch. Since the television is
now placed, this rule will not fire again. Other rules for other furniture will fire until the
furniture arrangement task is finished.

Note that for a data driven system, the system must be initially populated with data, in
contrast to the goal driven system which gathers data as it needs it. Figure 1.2 illustrates
the difference between forward and backward chaining systems for two simplified rules.
The forward chaining system starts with the data of a=1 and b=2 and uses the rules to

4 Chapter 1 - Introduction

derive d=4. The backward chaining system starts with the goal of finding a value for d and
uses the two rules to reduce that to the problem of finding values for a and b.

Forward Chaining

Data Rules Conclusion

a=1
b=2 IF a=1 & b=2 THEN C=3 IF C=3 THEN d=4 d=4

 Backward Chaining

Subgoals Rules Goal

a=1
b=2 IF a=1 & b=2 THEN C=3 IF C=3 THEN d=4 d=4

 Figure 1.2 Difference between forward and backward chaining

Data Representation
For all rule based systems, the rules refer to data. The data representation can be simple or
complex, depending on the problem. The four levels described in this section are
illustrated in figure 1.3.

Attribute-Value Pairs
color – white

Object Attribute-Value Triples
arm_chair – width – 3
straight_chair – width – 2

Records
chairs

object width color type
chair #1 3 orange easy
chair #2 2 brown straight

Frames
mammal

skin legs
fur default 4

elephant monkey
size tusks type tail size legs

large default 2 constraint:
indian or
african

 curly medium 2

Figure 1.3 Four levels of data representation

Building Expert Systems in Prolog 5

The most fundamental scheme uses attribute-value pairs as seen in the rules for identifying
birds. Examples are color-white, and size-large.

When a system is reasoning about multiple objects, it is necessary to include the object as
well as the attribute-value. For example, the furniture placement system might be dealing
with multiple chairs with different attributes, such as size. The data representation in this
case must include the object.

Once there are objects in the system, they each might have multiple attributes. This leads
to a record-based structure where a single data item in working storage contains an object
name and all of its associated attribute-value pairs.

Frames are a more complex way of storing objects and their attribute-values. Frames add
intelligence to the data representation, and allow objects to inherit values from other
objects. Furthermore, each of the attributes can have associated with it procedures (called
demons) which are executed when the attribute is asked for, or updated.

In a furniture placement system each piece of furniture can inherit default values for
length. When the piece is placed, demons are activated which automatically adjust the
available space where the item was placed.

User Interface
The acceptability of an expert system depends to a great extent on the quality of the user
interface. The easiest to implement interfaces communicate with the user through a
scrolling dialog as illustrated in figure 1.4. The user can enter commands, and respond to
questions. The system responds to commands, and asks questions during the inferencing
process.

 Start of Bird Identification

 what is color?
 >white
 what is size?
 >large
 ...
 The bird is a laysan_albatross

Figure 1.4 Scrolling dialog user interface

More advanced interfaces make heavy use of pop-up menus, windows, mice, and similar
techniques as shown in figure 1.5. If the machine supports it, graphics can also be a
powerful tool for communicating with the user. This is especially true for the development
interface which is used by the knowledge engineer in building the system.

6 Chapter 1 - Introduction

 consult quit

 goal-bird identification
 hypothesis - laysay_albatross

what is color?

 white
 dark
 green

Figure 1.5 Window and menu user interface

Explanations
One of the more interesting features of expert systems is their ability to explain
themselves. Given that the system knows which rules were used during the inference
process, it is possible for the system to provide those rules to the user as a means for
explaining the results.

This type of explanation can be very dramatic for some systems such as the bird
identification system. It could report that it knew the bird was a black footed albatross
because it knew it was dark colored and an albatross. It could similarly justify how it knew
it was an albatross.

At other times, however, the explanations are relatively useless to the user. This is because
the rules of an expert system typically represent empirical knowledge, and not a deep
understanding of the problem domain. For example a car diagnostic system has rules
which relate symptoms to problems, but no rules which describe why those symptoms are
related to those problems.

Explanations are always of extreme value to the knowledge engineer. They are the
program traces for knowledge bases. By looking at explanations the knowledge engineer
can see how the system is behaving, and how the rules and data are interacting. This is an
invaluable diagnostic tool during development.

1.3 Sample Applications
In chapters 2 through 9, some simple expert systems are used as examples to illustrate the
features and how they apply to different problems. These include a bird identification
system, a car diagnostic system, and a system which places furniture in a living room.

Chapters 10 and 11 focus on some actual systems used in commercial environments.
These were based on the principles in the book, and use some of the code from the book.

The final chapter describes a specialized expert system which solves Rubik's cube and
does not use any of the formalized techniques presented earlier in the book. It illustrates
how to customize a system for a highly specialized problem domain.

Building Expert Systems in Prolog 7

1.4 Prolog
The details of building expert systems are illustrated in this book through the use of Prolog
code. There is a small semantic gap between Prolog code and the logical specification of a
program. This means the description of a section of code, and the code are relatively
similar. Because of the small semantic gap, the code examples are shorter and more
concise than they might be with another language.

The expressiveness of Prolog is due to three major features of the language: rule-based
programming, built-in pattern matching, and backtracking execution. The rule-based
programming allows the program code to be written in a form which is more declarative
than procedural. This is made possible by the built-in pattern matching and backtracking
which automatically provide for the flow of control in the program. Together these
features make it possible to elegantly implement many types of expert systems.

There are also arguments in favor of using conventional languages, such as C, for building
expert system shells. Usually these arguments center around issues of portability,
performance, and developer experience. As newer versions of commercial Prologs have
increased sophistication, portability, and performance, the advantages of C over Prolog
decrease. However, there will always be a need for expert system tools in other languages.
(One mainframe expert system shell is written entirely in COBOL.)

For those seeking to build systems in other languages, this book is still of value. Since the
Prolog code is close to the logical specification of a program, it can be used as the basis for
implementation in another language.

1.5 Assumptions
This book is written with the assumption that the reader understands Prolog programming.
If not, Programming in Prolog by Clocksin and Mellish from Springer-Verlag is the
classic Prolog text. APT - The Active Prolog Tutor by the author and published by Solution
Systems in South Weymouth, Massachusetts is an interactive PC based tutorial that
includes a practice Prolog interpreter.

An in depth understanding of expert systems is not required, but the reader will probably
find it useful to explore other texts. In particular since this book focuses on system
engineering, readings in knowledge engineering would provide complementary
information. Some good books in this area are: Building Expert Systems by Hayes-Roth,
Waterman, and Lenat; Rule-Based Expert Systems by Buchanan and Shortliffe; and
Programming Expert Systems in OPS5 by Brownston, Kant, Farrell, and Martin.

8 Chapter 1 - Introduction

2 Using Prolog's Inference Engine
Prolog has a built-in backward chaining inference engine that can be used to partially
implement some expert systems. Prolog rules are used for the knowledge representation,
and the Prolog inference engine is used to derive conclusions. Other portions of the
system, such as the user interface, must be coded using Prolog as a programming
language.

The Prolog inference engine does simple backward chaining. Each rule has a goal and a
number of sub-goals. The Prolog inference engine either proves or disproves each goal.
There is no uncertainty associated with the results.

This rule structure and inference strategy is adequate for many expert system applications.
Only the dialog with the user needs to be improved to create a simple expert system. These
features are used in this chapter to build a sample application called "Birds", which
identifies birds.

In the later portion of this chapter the Birds system is split into two modules. One contains
the knowledge for bird identification, and the other becomes "Native" – the first expert
system shell developed in the book. Native can then be used to implement other similar
expert systems.

 2.1 The Bird Identification System
A system which identifies birds will be used to illustrate a native Prolog expert system.
The expertise in the system is a small subset of that contained in Birds of North America
by Robbins, Bruum, Zim, and Singer. The rules of the system were designed to illustrate
how to represent various types of knowledge, rather than to provide accurate identification.

Rule formats
The rules for expert systems are usually written in the form:

IF
 first premise, and
 second premise, and
 ...
THEN
 conclusion

The IF side of the rule is referred to as the left hand side (LHS), and the THEN side is
referred to as the right hand side (RHS). This is semantically the same as a Prolog rule:

conclusion :-
 first_premise,
 second_premise,
 ...

Note that this is a bit confusing since the syntax of Prolog is really THEN IF, and the
normal RHS and LHS appear on opposite sides.

Building Expert Systems in Prolog 9

Rules about birds
The most fundamental rules in the system identify the various species of birds. We can
begin to build the system immediately by writing some rules. Using the normal IF THEN
format, a rule for identifying a particular albatross is:

IF
 family is albatross and
 color is white
THEN
 bird is laysan_albatross

In Prolog the same rule is:

bird(laysan_albatross) :-
 family(albatross),
 color(white).

The following rules distinguish between two types of albatross and swan. They are clauses
of the predicate bird/1:

bird(laysan_albatross):-
 family(albatross),
 color(white).
bird(black_footed_albatross):-
 family(albatross),
 color(dark).
bird(whistling_swan) :-
 family(swan),
 voice(muffled_musical_whistle).
bird(trumpeter_swan) :-
 family(swan),
 voice(loud_trumpeting).

In order for these rules to succeed in distinguishing the two birds, we would have to store
facts about a particular bird that needed identification in the program. For example if we
added the following facts to the program:

family(albatross).
color(dark).

then the following query could be used to identify the bird:

?- bird(X).
X = black_footed_albatross

Note that at this very early stage there is a complete working Prolog program, which
functions as an expert system to distinguish between these four birds. The user interface is
the Prolog interpreter's interface, and the input data is stored directly in the program.

Rules for hierarchical relationships
The next step in building the system would be to represent the natural hierarchy of a bird
classification system. These would include rules for identifying the family and the order of
a bird. Continuing with the albatross and swan lines, the predicates for order and family
are:

order(tubenose) :-
 nostrils(external_tubular),

10 Chapter 2 - Using Prolog's Inference Engine

 live(at_sea),
 bill(hooked).
order(waterfowl) :-
 feet(webbed),
 bill(flat).
family(albatross) :-
 order(tubenose),
 size(large),
 wings(long_narrow).
family(swan) :-
 order(waterfowl),
 neck(long),
 color(white),
 flight(ponderous).

Now the expert system will identify an albatross from more fundamental observations
about the bird. In the first version, the predicate for family was implemented as a simple
fact. Now family is implemented as a rule. The facts in the system can now reflect more
primitive data:

nostrils(external_tubular).

live(at_sea).

bill(hooked).

size(large).

wings(long_narrow).

color(dark).

The same query still identifies the bird:

?- bird(X).
X = black_footed_albatross

So far the rules for birds just reflect the attributes of various birds, and the hierarchical
classification system. This type of organization could also be handled in more
conventional languages as well as in Prolog or some other rule-based language. Expert
systems begin to give advantages over other approaches when there is no clear hierarchy,
and the organization of the information is more chaotic.

Rules for other relationships
The Canada goose can be used to add some complexity to the system. Since it spends its
summers in Canada, and its winters in the United States, its identification includes where it
was seen and in what season. Two different rules would be needed to cover these two
situations:

bird(canada_goose):-
 family(goose),
 season(winter),
 country(united_states),
 head(black),
 cheek(white).
bird(canada_goose):-
 family(goose),
 season(summer),
 country(canada),
 head(black),
 cheek(white).

Building Expert Systems in Prolog 11

These goals can refer to other predicates in a different hierarchy:

country(united_states):- region(mid_west).
country(united_states):- region(south_west).
country(united_states):- region(north_west).
country(united_states):- region(mid_atlantic).
country(canada):- province(ontario).
country(canada):- province(quebec).

region(new_england):-
 state(X),
 member(X, [massachusetts, vermont,]).
region(south_east):-
 state(X),
 member(X, [florida, mississippi,]).

There are other birds that require multiple rules for the different characteristics of the male
and female. For example the male mallard has a green head, and the female is mottled
brown.

bird(mallard):-
 family(duck),
 voice(quack),
 head(green).
bird(mallard):-
 family(duck),
 voice(quack),
 color(mottled_brown).

Figure 2.1 shows some of the relationships between the rules to identify birds.

bird

(laysun_albatross) (black_footed_albatross) (trumpeter_swan)

family(albatross) family(albatross) family(swan)

color(white) color(dark) voice(loud)

family(albatross) family(swan)

order(tubenose)

live(at_sea)

bill(hooked)

order(waterfowl)

color(white)

neck(long)

flight(ponderous)

Figure 2.1 Relationships between some of the rules in the Bird identification system

Basically, any kind of identification situation from a bird book can be easily expressed in
Prolog rules. These rules form the knowledge base of an expert system. The only
drawback to the program is the user interface, which requires the data to be entered into
the system as facts.

12 Chapter 2 - Using Prolog's Inference Engine

2.2 User Interface
The system can be dramatically improved by providing a user interface which prompts for
information when it is needed, rather than forcing the user to enter it beforehand. The
predicate ask will provide this functionality.

Attribute Value pairs
Before looking at ask, it is necessary to understand the structure of the data which will be
asked about. All of the data has been of the form: "attribute-value". For example, a bird is
a mallard if it has the following values for these selected bird attributes:

Attribute Value
family duck
voice quack
head green

This is one of the simplest forms of representing data in an expert system, but is sufficient
for many applications. More complex representations can have "object-attribute-value"
triples, where the attribute-values are tied to various objects in the system. Still more
complex information can be associated with an object and this will be covered in the
chapter on frames. For now the simple attribute-value data model will suffice.

This data structure has been represented in Prolog by predicates which use the predicate
name to represent the attribute, and a single argument to represent the value. The rules
refer to attribute-value pairs as conditions to be tested in the normal Prolog fashion. For
example, the rule for mallard had the condition head(green) in the rule.

Of course since we are using Prolog, the full richness of Prolog's data structures could be
used, as in fact list membership was used in the rules for region. The final chapter
discusses a system which makes full use of Prolog throughout the system. However, the
basic attribute-value concept goes a long way for many expert systems, and using it
consistantly makes the implementation of features such as the user interface easier.

Asking the user
The ask predicate will have to determine from the user whether or not a given attribute-
value pair is true. The program needs to be modified to specify which attributes are
askable. This is easily done by making rules for those attributes that call ask.

eats(X):- ask(eats, X).

feet(X):- ask(feet, X).

wings(X):- ask(wings, X).

neck(X):- ask(neck, X).

color(X):- ask(color, X).

Now if the system has the goal of finding color(white) it will call ask, rather than look in
the program. If ask(color, white) succeeds, color(white) succeeds.

The simplest version of ask prompts the user with the requested attribute and value and
seeks confirmation or denial of the proposed information. The code is:

Building Expert Systems in Prolog 13

ask(Attr, Val):-
 write(Attr:Val),
 write('? '),
 read(yes).

The read will succeed if the user answers "yes", and fail if the user types anything else.
Now the program can be run without having the data built into the program. The same
query to bird starts the program, but now the user is responsible for determining whether
some of the attribute-values are true. The following dialog shows how the system runs:

?- bird(X).
nostrils : external_tubular? yes.
live : at_sea? yes.
bill : hooked? yes.
size : large? yes.
wings : long_narrow? yes.
color : white? yes.
X = laysan_albatross

There is a problem with this approach. If the user answered "no" to the last question, then
the rule for bird(laysan_albatross) would have failed and backtracking would have
caused the next rule for bird(black_footed_albatross) to be tried. The first subgoal of the
new rule causes Prolog to try to prove family(albatross) again, and ask the same questions
it already asked. It would be better if the system remembered the answers to questions and
did not ask again.

Remembering the answer
A new predicate, known/3 is used to remember the user's answers to questions. It is not
specified directly in the program, but rather is dynamically asserted whenever ask gets
new information from the user.

Every time ask is called it first checks to see if the answer is already known to be yes or
no. If it is not already known, then ask will assert it after it gets a response from the user.
The three arguments to known are: yes/no, attribute, and value. The new version of ask
looks like:

ask(A, V):-
 known(yes, A, V), % succeed if true
 !. % stop looking
ask(A, V):-
 known(_, A, V), % fail if false
 !,
 fail.
ask(A, V):-
 write(A:V), % ask user
 write('? : '),
 read(Y), % get the answer
 asserta(known(Y, A, V)), % remember it
 Y == yes. % succeed or fail

The cuts in the first two rules prevent ask from backtracking after it has already
determined the answer.

Multi-valued answers
There is another level of subtlety in the approach to known. The ask predicate now
assumes that each particular attribute value pair is either true or false. This means that the
user could respond with a "yes" to both color:white and color:black. In effect, we are

14 Chapter 2 - Using Prolog's Inference Engine

letting the attributes be multi-valued. This might make sense for some attributes such as
voice but not others such as bill, which only take a single value.

The best way to handle this is to add an additional predicate to the program, which
specifies the attributes that are multi-valued:

multivalued(voice).
multivalued(feed).

A new clause is now added to ask to cover the case where the attribute is not multi-valued
(and therefore single-valued) and already has a different value from the one asked for. In
this case ask should fail. For example, if the user has already answered yes to size - large
then ask should automatically fail a request for size - small without asking the user. The
new clause goes before the clause which actually asks the user:

ask(A, V):-
 not multivalued(A),
 known(yes, A, V2),
 V \== V2,
 !,
 fail.

Menus for the user
The user interface can further be improved by adding a menu capability that gives the user
a list of possible values for an attribute. It can further enforce that the user enter a value on
the menu.

This can be implemented with a new predicate, menuask. It is similar to ask, but has an
additional argument which contains a list of possible values for the attribute. It would be
used in the program in an analogous fashion to ask:

size(X):-
 menuask(size, X, [large, plump, medium, small]).

flight(X):-
 menuask(flight, X, [ponderous, agile, flap_glide]).

The menuask predicate can be implemented using either a sophisticated windowing
interface, or by simply listing the menu choices on the screen for the user. When the user
returns a value it can be verified, and the user reprompted if it is not a legal value.

A simple implementation would have initial clauses as in ask, and have a slightly different
clause for actually asking the user. That last clause of menuask might look like:

menuask(A, V, MenuList) :-
 write('What is the value for'), write(A), write('?'), nl,
 write(MenuList), nl,
 read(X),
 check_val(X, A, V, MenuList),
 asserta(known(yes, A, X)),
 X == V.

check_val(X, A, V, MenuList) :-
 member(X, MenuList),
 !.
check_val(X, A, V, MenuList) :-
 write(X), write(' is not a legal value, try again.'), nl,
 menuask(A, V, MenuList).

Building Expert Systems in Prolog 15

The check_val predicate validates the user's input. In this case the test ensures the user
entered a value on the list. If not, it retries the menuask predicate.

Other enhancements
Other enhancements can also be made to allow for more detailed prompts to the user, and
other types of input validation. These can be included as other arguments to ask, or
embodied in other versions of the ask predicate. Chapter 10 gives other examples along
these lines.

2.3 A Simple Shell
The bird identification program has two distinct parts: the knowledge base, which contains
the specific information about bird identification; and the predicates that control the user
interface.

By separating the two parts, a shell can be created, which can be used with any other
knowledge base. For example, a new expert system could be written that identifies fish. It
could be used with the same user interface code developed for the bird identification
system.

The minimal change needed to break the two parts into two modules is a high level
predicate that starts the identification process. Since in general it is not known what is
being identified, the shell will seek to solve a generic predicate called top_goal. Each
knowledge base will have to have a top_goal, which calls the goal to be satisfied. For
example:

top_goal(X) :- bird(X).

This is now the first predicate in the knowledge base about birds.

The shell has a predicate called solve, which does some housekeeping and then solves for
the top_goal. It looks like:

solve :-
 abolish(known, 3),
 define(known, 3),
 top_goal(X),
 write('The answer is '), write(X), nl.
solve :-
 write('No answer found.'), nl.

The built-in abolish predicate is used to remove any previous knowns from the system
when a new consultation is started. This allows the user to call solve multiple times in a
single session.

The abolish and define predicates are built-in predicates that respectively remove previous
knowns for a new consultation, and ensure that known is defined to the system so no error
condition is raised the first time it is referenced. Different dialects of Prolog might require
different built-in predicate calls.

In summary, the predicates of the bird identification system have been divided into two
modules. The predicates in the shell, called Native, are:

• solve – starts the consultation;

• ask – poses simple questions to the users and remembers the answers;

16 Chapter 2 - Using Prolog's Inference Engine

• menuask – presents the user with a menu of choices;

• supporting predicates for the above three predicates.

The predicates in the knowledge base are:

• top_goal – specifies the top goal in the knowledge base;

• rules for identifying or selecting whatever it is the knowledge base was built for (for
example bird, order, family, and region);

• rules for attributes that must be user supplied (for example size, color, eats, and
wings);

• multivalued – defines which attributes might have multiple values.

To use this shell with a Prolog interpreter, both the shell and the birds knowledge base
must be consulted. Then the query for solve is started.

?- consult(native).
yes
?- consult('birds.kb').
yes
?- solve.
nostrils : external_tubular?
...

Command loop
The shell can be further enhanced to have a top level command loop called go. To begin
with, go should recognize three commands:

• load – Load a knowledge base.

• consult – Consult the knowledge base by satisfying the top goal of the knowledge
base.

• quit – Exit from the shell.

The go predicate will also display a greeting and give the user a prompt for a command.
After reading a command, do is called to execute the command. This allows the command
names to be different from the actual Prolog predicates that execute the command. For
example, the common command for starting an inference is consult; however, consult is
the name of a built-in predicate in Prolog. This is the code:

go :-
 greeting,
 repeat,
 write('> '),
 read(X),
 do(X),
 X == quit.

greeting :-
 write('This is the Native Prolog shell.'), nl,
 write('Enter load, consult, or quit at the prompt.'), nl.

do(load) :-
 load_kb,
 !.
do(consult) :-
 solve,
 !.

Building Expert Systems in Prolog 17

do(quit).
do(X) :-
 write(X),
 write('is not a legal command.'), nl,
 fail.

The go predicate uses a repeat fail loop to continue until the user enters the command quit.
The do predicate provides an easy mechanism for linking the user's commands to the
predicates that do the work in the program. The only new predicate is load_kb, which
reconsults a knowledge base. It looks like:

load_kb :-
 write('Enter file name: '),
 read(F),
 reconsult(F).

Two other commands that could be added at this point are:

• help – provide a list of legal commands;

• list – list all of the knowns derived during the consultation (useful for debugging).

This new version of the shell can either be run from the interpreter as before, or compiled
and executed. The load command is used to load the knowledge base for use with the
compiled shell. The exact interaction between compiled and interpreted Prolog varies from
implementation to implementation. Figure 2.2 shows the architecture of the Native shell.

User Interface

 go
 ask
 menuask

Inference Engine

 solve
 load

Knowledge Base

 top_goal
 rules
 multi_valued
 askable

Working Storage

 known

Figure 2.2 Major predicates of Native Prolog shell

Using an interpreter the system would run as follows:

?- consult(native).
yes
?- go.
This is the native Prolog shell.
Enter load, consult, or quit at the prompt.
>load.
Enter file name: 'birds.kb'.

18 Chapter 2 - Using Prolog's Inference Engine

>consult.
nostrils : external_tubular ? yes.
...
The answer is black_footed_albatross
>quit.
?-

A tool for non-programmers
There are really two levels of Prolog, one which is very easy to work with, and one which
is a little more complex.

The first level is Prolog as a purely declarative rule based language. This level of Prolog is
easy to learn and use. The rules for bird identification are all formulated with this simple
level of understanding of Prolog.

The second level of Prolog requires a deeper understanding of backtracking, unification,
and built-in predicates. This level of understanding is needed for the shell.

By breaking the shell apart from the knowledge base, the code has also been divided along
these two levels. Even though the knowledge base is in Prolog, it only requires the high
level understanding of Prolog. The more difficult parts are hidden in the shell.

This means the knowledge base can be understood with only a little training by an
individual who is not a Prolog programmer. In other words, once the shell is hidden from
the user, this becomes an expert system tool that can be used with very little training.

2.4 Summary
The example shows that Prolog's native syntax can be used as a declarative language for
the knowledge representation of an expert system. The rules lend themselves to solving
identification and other types of selection problems that do not require dealing with
uncertainty.

The example has also shown that Prolog can be used as a development language for
building the user interface of an expert system shell. In this case Prolog is being used as a
full programming language.

Exercises
2.1 In Native, implement commands to provide help and to list the current "known"s.

2.2 Have menuask print a numbered list of items and let the user just enter the number
of the chosen item.

2.3 Modify both ask and menuask to recognize input from the user which is a
command, execute the command, and then re-ask the question.

2.4 Add a prompt field to ask which allows for a longer question for an attribute.

2.5 Modify the system to handle attribute-object-value triples as well as attribute-value
pairs. For example, rules might have goals such as color(head, green), color(body,
green), length(wings, long), and length(tail, short). Now ask will prompt with
both the object and the attribute as in "head color?". This change will lead to a more
natural representation of some of the knowledge in a system as well as reducing the
number of attributes.

2.6 Use the Native shell to build a different expert system. Note any difficulties in
implementing the system and features that would have made it easier.

Building Expert Systems in Prolog 19

3 Backward Chaining with Uncertainty
As we have seen in the previous chapter, backward chaining systems are good for solving
structured selection types of problems. The Birds system was a good example; however, it
made the assumption that all information was either absolutely true, or absolutely false. In
the real world, there is often uncertainty associated with the rules of thumb an expert uses,
as well as the data supplied by the user.

For example, in the Birds system the user might have spotted an albatross at dusk and not
been able to clearly tell if it was white or dark colored. An expert system should be able to
handle this situation and report that the bird might have been either a laysan or black
footed albatross.

The rules too might have uncertainty associated with them. For example, a mottled brown
duck might only identify a mallard with 80% certainty.

This chapter will describe an expert system shell, called Clam, which supports backward
chaining with uncertainty. The use of uncertainty changes the inference process from that
provided by pure Prolog, so Clam has its own rule format and inference engine.

3.1 Certainty Factors
The most common scheme for dealing with uncertainty is to assign a certainty factor to
each piece of information in the system. The inference engine automatically updates and
maintains the certainty factors as the inference proceeds.

An Example
Let's first look at an example using Clam. The certainty factors (preceded by cf) are
integers from –100 (for definitely false) to +100 (for definitely true).

The following is a small knowledge base in Clam that is designed to diagnose a car which
will not start. It illustrates some of the behavior of one scheme for handling uncertainty.

goal problem.

rule 1
if not turn_over and
battery_bad
then problem is battery.

rule 2
if lights_weak
then battery_bad cf 50.

rule 3
if radio_weak
then battery_bad cf 50.

rule 4
if turn_over and
smell_gas
then problem is flooded cf 80.

rule 5
if turn_over and
gas_gauge is empty
then problem is out_of_gas cf 90.

Building Expert Systems in Prolog 21

rule 6
if turn_over and
gas_gauge is low
then problem is out_of_gas cf 30.

ask turn_over
menu (yes no)
prompt 'Does the engine turn over?'.

ask lights_weak
menu (yes no)
prompt 'Are the lights weak?'.

ask radio_weak
menu (yes no)
prompt 'Is the radio weak?'.

ask smell_gas
menu (yes no)
prompt 'Do you smell gas?'.

ask gas_gauge
menu (empty low full)
prompt 'What does the gas gauge say?'.

The inference uses backward chaining similar to pure Prolog. The goal states that a value
for the attribute problem is to be found. Rule 1 will cause the sub-goal of bad_battery to
be pursued – just as in Prolog.

The rule format also allows for the addition of certainty factors. For example rules 5 and 6
reflect the varying degrees of certainty with which one can conclude that the car is out of
gas. The uncertainty arises from the inherent uncertainty in gas gauges. Rules 2 and 3 both
provide evidence that the battery is bad, but neither one is conclusive.

Rule Uncertainty
What follows is a sample dialog of a consultation with the Car expert system.

consult, restart, load, list, trace, how, exit
:consult
Does the engine turn over?
: yes
Do you smell gas?
: yes
What does the gas gauge say?
empty
low
full
: empty
problem-out_of_gas-cf-90
problem-flooded-cf-80
done with problem

Notice that, unlike Prolog, the inference does not stop after having found one possible
value for problem. It finds all of the reasonable problems and reports the certainty to which
they are known. As can be seen, these certainty factors are not probability values, but
simply give some degree of weight to each answer.

User Uncertainty
The following dialog shows how the user's uncertainty might be entered into the system.
The differences from the previous dialog are shown in bold.

22 Chapter 3 - Backward Chaining with Uncertainty

:consult
Does the engine turn over?
: yes
Do you smell gas?
: yes cf 50
What does the gas gauge say?
empty
low
full
: empty
problem-out_of_gas-cf
problem-flooded-cf-40

-90

done with problem

Notice in this case that the user was only certain to a degree of 50 that there was a gas
smell. This results in the system only being half as sure that the problem is flooded.

Combining Certainties
Finally consider the following consultation, which shows how the system combines
evidence for a bad battery. Remember that there were two rules that concluded the battery
was weak with a certainty factor of 50.

:consult
Does the engine turn over?
: no
Are the lights weak?
: yes
Is the radio weak?
: yes
problem-battery-cf-75
done with problem

In this case the system combined the two rules to determine that the battery was weak with
certainty factor 75. This propagated straight through rule 1 and became the certainty factor
for problem battery.

Properties of Certainty Factors
There are various ways in which the certainty factors can be implemented, and how they
are propagated through the system, but they all have to deal with the same basic situations:

• rules whose conclusions are uncertain;

• rules whose premises are uncertain;

• user entered data which is uncertain;

• combining uncertain premises with uncertain conclusions;

• updating uncertain working storage data with new, also uncertain information;

• establishing a threshold of uncertainty for when a premise is considered known.

Clam uses the certainty factor scheme that was developed for MYCIN, one of the earliest
expert systems used to diagnose bacterial infections. Many commercial expert system
shells today use this same scheme.

Building Expert Systems in Prolog 23

3.2 MYCINs Certainty Factors
The basic MYCIN certainty factors (CFs) were designed to produce results that seemed
intuitively correct to the experts. Others have argued for factors that are based more on
probability theory and still others have experimented with more complex schemes
designed to better model the real world. The MYCIN factors, however, do a reasonable job
of modeling for many applications with uncertain information.

We have seen from the example how certainty information is added to the rules in the then
clause. We have also seen how the user can specify CFs with input data. These are the
only two ways uncertainty gets into the system.

Uncertainty associated with a particular run of the system is kept in working storage.
Every time a value for an attribute is determined by a rule or a user interaction, the system
saves that attribute value pair and associated CF in working storage.

The CFs in the conclusion of the rule are based on the assumption that the premise is
known with a CF of 100. That is, if the conclusion has a CF of 80 and the premise is
known to CF 100, then the fact which is stored in working storage has a CF of 80. For
example, if working storage contained:

turn_over cf 100
smell_gas cf 100

then a firing of rule 4:

rule 4
if turn_over and
smell_gas
then problem is flooded cf 80

would result in the following fact being added to working storage:

problem flooded cf 80

Determining Premise CF
However, it is unlikely that a premise is perfectly known. The system needs a means for
determining the CF of the premise. The algorithm used is a simple one. The CF for the
premise is equal to the minimum CF of the individual sub goals in the premise. If working
storage contained:

turn_over cf 80
smell_gas cf 50

then the premise of rule 4 would be known with CF 50, the minimum of the two.

Combining Premise CF and Conclusion CF
When the premise of a rule is uncertain due to uncertain facts, and the conclusion is
uncertain due to the specification in the rule, then the following formula is used to
compute the adjusted certainty factor of the conclusion:

CF = RuleCF * PremiseCF / 100.

Given the above working storage and this formula, the result of a firing of rule 4 would be:

24 Chapter 3 - Backward Chaining with Uncertainty

problem is flooded cf 40

The resulting CF has been appropriately reduced by the uncertain premise. The premise
had a certainty factor of 50, and the conclusion a certainty factor of 80, thus yielding an
adjusted conclusion CF of 40.

Premise Threshold CF
A threshold value for a premise is needed to prevent all of the rules from firing. The
number 20 is used as a minimum CF necessary to consider a rule for firing. This means
that if working storage had:

turn_over cf 80
smell_gas cf 15

then rule 4 would not fire due to the low CF associated with the premise.

Combining CFs
Next, consider the case where there is more than one rule that supports a given conclusion.
In this case, each of the rules might fire and contribute to the CF of the resulting fact. If a
rule fires supporting a conclusion, and that conclusion is already represented in working
memory by a fact, then the following formulae are used to compute the new CF associated
with the fact. X and Y are the CFs of the existing fact and rule conclusion.

CF(X, Y) = X + Y(100 - X)/100. X, Y both > 0
CF(X, Y) = X + Y/1 - min(|X|, |Y|). one of X, Y < 0
CF(X, Y) = -CF(-X, -Y). X, Y both < 0

For example, both rules 2 and 3 provide evidence for battery_bad:

rule 2
if lights_weak
then battery_bad cf 50.

rule 3
if radio_weak
then battery_bad cf 50.

Assume the following facts are in working storage:

lights_weak cf 100
radio_weak cf 100

A firing of rule 2 would then add the following fact:

battery_bad cf 50

Next, rule 3 would fire – also concluding battery_bad cf 50. However, there already is a
battery_bad fact in working storage, so rule 3 updates the existing fact with the new
conclusion using the formulae above. This results in working storage being changed to:

battery_bad cf 75

This case most clearly shows why a new inference engine was needed for Clam. When
trying to prove a conclusion for which the CF is less than 100, we want to gather all of the

Building Expert Systems in Prolog 25

evidence both for and against that conclusion and combine it. Prolog's inference engine
will only look at a single rule at a time, and succeed or fail based on it.

3.3 Rule Format
Since we are writing our own inference engine, we can design our own internal rule format
as well. (We will use something easier to read for the user.) It has at least two arguments:
one for the IF or left hand side (LHS), which contains the premises, and one for the THEN
or right hand side (RHS), which contains the conclusion. It is also useful to keep a third
argument for a rule number or name. The overall structure looks like:

rule(Name, LHS, RHS).

The name will be a simple atom identifying the rule. The LHS and RHS must hold the rest
of the rule. Typically in expert systems, a rule is read: LHS implies RHS. This is
backwards from a Prolog rule, which can be thought of as being written RHS :- LHS, or
RHS is implied by LHS. That is, the RHS (conclusion) is written on the left of the rule,
and the LHS (premises) is written on the right.

Since we will be backward chaining, and each rule will be used to prove or disprove some
bit of information, the RHS contains one goal pattern, and its associated CF. This is:

rhs(Goal, CF)

The LHS can have many sub-goals, which are used to prove or disprove the RHS:

lhs(GoalList)

where GoalList is a list of goals.

The next bit of design has to do with the actual format of the goals themselves. Various
levels of sophistication can be added to these goals, but for now we will use the simplest
form, which is attribute-value pairs. For example, gas_gauge is an attribute, and low is a
value. Other attributes have simple yes-no values, such as smell_gas. An attribute-value
pair will look like:

av(Attribute, Value)

where Attribute and Value are simple atoms. The entire rule structure looks like:

rule(Name,
 lhs([av(A1, V1), av(A2, V2),]),
 rhs(av(Attr, Val), CF)).

Internally, rule 5 looks like:

rule(5,
 lhs([av(turns_over, yes), av(gas_gauge, empty)]),
 rhs(av(problem, flooded), 80)).

This rule format is certainly not easy to read, but it makes the structure clear for
programming the inference engine. There are two ways to generate more readable rules for
the user. One is to use operator definitions. The other is to use Prolog's language handling
ability to parse our own rule format. The built-in definite clause grammar (DCG) of most
Prologs is excellent for this purpose. Later in this chapter we will use DCG to create a
clean user interface to the rules. The forward chaining system in a later chapter uses the
operator definition approach.

26 Chapter 3 - Backward Chaining with Uncertainty

3.4 The Inference Engine
Now that we have a format for rules, we can write our own inference engine to deal with
those rules. Let's summarize the desired behavior:

• combine certainty factors as indicated previously;

• maintain working storage information that is updated as new evidence is acquired;

• find all information about a particular attribute when it is asked for, and put that
information in working storage.

The major predicates of the inference engine are shown in figure 3.1. They are described
in detail in the rest of this section.

findgoal

% already known % ask user % derive from rules

fact askable query_user fg

rule prove adjust update

findgoal fact combine

Figure 3.1 Major predicates of Clam inference engine

Working Storage
Let's first decide on the working storage format. It will simply contain the known facts
about attribute-value pairs. We will use the Prolog database for them and store them as:

fact(av(A, V), CF).

Find a Value for an Attribute
We want to start the inference by asking for the value of a goal. In the case of the Car
expert system we want to find the value of the attribute problem. The main predicate that
does inferencing will be findgoal/2. In the Car expert system, it could be called from an
interpreter with the following query:

?- findgoal(av(problem, X), CF).

The findgoal/2 predicate has to deal with three distinct cases:

• the attribute-value is already known;

• there are rules to deduce the attribute-value;

• we must ask the user.

Building Expert Systems in Prolog 27

The system can be designed to automatically ask the user if there are no rules, or it can be
designed to force the knowledge engineer to declare which attribute values will be
supplied by the user. The latter approach makes the knowledge base for the expert system
more explicit, and also provides the opportunity to add more information controlling the
dialog with the user. This might be in the form of clearer prompts, and/or input validation
criteria.

We can define a new predicate askable/2 that tells which attributes should be retrieved
from the user, and the prompt to use. For example:

askable(live, 'Where does it live?').

With this new information we can now write findgoal.

Attribute Value Already Known
The first rule covers the case where the information is in working storage. It was asserted
so we know all known values of the attribute have been found. Therefore we cut, so no
other clauses are tried.

findgoal(av(Attr, Val), CF) :-
 fact(av(Attr, Val), CF),
 !.

Ask User for Attribute Value
The next rule covers the case where there is no known information, and the attribute is
askable. In this case we simply ask.

findgoal(av(Attr, Val), CF) :-
 not fact(av(Attr, _), _),
 askable(Attr, Prompt),
 query_user(Attr, Prompt),
 !,
 findgoal(av(Attr, Val), CF).

The query_user predicate prompts the user for a value and CF and then asserts it as a fact.
The recursive call to findgoal will now pick up this fact.

query_user(Attr, Prompt) :-
 write(Prompt),
 read(Val),
 read(CF),
 asserta(fact(av(Attr, Val), CF)).

Deduce Attribute Value from Rules
The final rule of findgoal covers the interesting case of using other rules. Remember that
the inferencing is going to require looking for all rules that provide support for values for
the sought attribute, and combining the CFs from them. This is done by calling fg, which
uses a repeat fail loop to continue to find rules whose RHS conclude a value for the
attribute. The process stops when the attribute is known with a CF of 100, or all the rules
have been tried.

findgoal(Goal, CurCF) :-
 fg(Goal, CurCF).

28 Chapter 3 - Backward Chaining with Uncertainty

fg(Goal, CurCF) :-
 rule(N, lhs(IfList), rhs(Goal, CF)),
 prove(IfList, Tally),
 adjust(CF, Tally, NewCF),
 update(Goal, NewCF, CurCF),
 CurCF == 100,
 !.
fg(Goal, CF) :-
 fact(Goal, CF).

The three new predicates called in fg are as follows:

• prove – prove the LHS premise and find its CF;

• adjust – combine the LHS CF with the RHS CF;

• update – update existing working storage values with the new conclusion.

This is the guts of the inferencing process for the new inference engine. First it finds a rule
whose RHS matches the pattern of the goal. It then feeds the LHS of that rule into prove,
which succeeds if the LHS can be proved. The prove predicate returns the combined CF
from the LHS. If prove fails, backtracking is initiated causing the next rule, which might
match the goal pattern, to be tried.

prove(IfList, Tally) :-
 prov(IfList, 100, Tally).

prov([], Tally, Tally).
prov([H|T], CurTal, Tally) :-
 findgoal(H, CF),
 min(CurTal, CF, Tal),
 Tal >= 20,
 prov(T, Tal, Tally).

min(X, Y, X) :-
 X =< Y,
 !.
min(X, Y, Y) :-
 Y =< X.

The input argument to prove is the list of premises for the rule; the output is the Tally, or
combined CF from the premises. The prove predicate calls prov with an extra argument to
keep track of Tally. At each recursion the Tally is reset to the minimum up to that point.
Of course, prov recursively calls findgoal for each of the premises. Notice the check to
make sure the Tally stays above 20. This is the threshold value for considering an
attribute-value pair to be true.

After prove succeeds, adjust computes the combined CF based on the RHS CF and the
Tally from the LHS.

adjust(CF1, CF2, CF) :-
 X is CF1 * CF2 / 100,
 int_round(X, CF).

int_round(X, I) :-
 X >= 0,
 I is integer(X + 0.5).
int_round(X, I) :-
 X < 0,
 I is integer(X - 0.5).

Then update combines the new evidence for this attribute-value pair with any existing
known evidence. The first argument is the attribute-value pair just deduced, and the second

Building Expert Systems in Prolog 29

is its CF. The third argument is the returned value for the CF when it is combined with
existing facts for the attribute-value pair.

update(Goal, NewCF, CF) :-
 fact(Goal, OldCF),
 combine(NewCF, OldCF, CF),
 retract(fact(Goal, OldCF)),
 asserta(fact(Goal, CF)),
 !.
update(Goal, CF, CF) :-
 asserta(fact(Goal, CF)).

combine(CF1, CF2, CF) :-
 CF1 >= 0,
 CF2 >= 0,
 X is CF1 + CF2*(100 - CF1)/100,
 int_round(X, CF).
combine(CF1, CF2, CF) :-
 CF1 < 0,
 CF2 < 0,
 X is - (-CF1 -CF2 * (100 + CF1)/100),
 int_round(X, CF).
combine(CF1, CF2, CF) :-
 (CF1 < 0; CF2 < 0),
 (CF1 > 0; CF2 > 0),
 abs_minimum(CF1, CF2, MCF),
 X is 100 * (CF1 + CF2) / (100 - MCF),
 int_round(X, CF).

The abs_minimum predicate finds the minimum in terms of absolute value. The code can
be seen in the appendix.

Negation
One last point is to deal with negation. The premises might also be of the form not goal. In
this case we call findgoal for the goal, and complement the CF to find the degree of
certainty of its negation. For example, if a fact has a CF of 70, then not fact has a certainty
of -70.

findgoal(not Goal, NCF) :-
 findgoal(Goal, CF),
 NCF is - CF,
 !.

This rule should become the first clause for findgoal.

3.5 Making the Shell
Now that the inference engine is built, it can become part of a shell. The code to build this
first version of the Clam shell is the same as that used to build the Native shell. It consists
of a command loop with the commands load, consult, and exit. Figure 3.2 shows the
architecture of Clam.

super :-
 repeat,
 write('consult, load, exit'), nl,
 write(':'),
 read_line(X),
 doit(X),
 X == exit.

30 Chapter 3 - Backward Chaining with Uncertainty

doit(consult) :-
 top_goals,
 !.
doit(load) :-
 load_rules,
 !.
doit(exit).

User Interface

 super
 query_user

Inference Engine

 findgoal
 load

Knowledge Base

 goal
 rule
 askable

Working Storage

 fact

Figure 3.2 Major predicates of the Clam shell

Starting the Inference
The consult command does a little more than just call findgoal. It calls top_goals which
uses the top_goal facts to start the inference. The system might have more than one
top_goal to allow sequencing of the consultation. For example a diagnostic system might
have two goals, the first diagnoses the problem, and the second recommends a solution.

After top_goals satisfies a goal, it prints the values for the goal as seen in the early
examples of Car.

top_goals :-
 top_goal(Attr),
 top(Attr),
 print_goal(Attr),
 fail.
top_goals.

top(Attr) :-
 findgoal(av(Attr, Val), CF),
 !.
top(_) :-
 true.

print_goal(Attr) :-
 nl,
 fact(av(Attr, X), CF),
 CF >= 20,
 outp(av(Attr, X), CF), nl,
 fail.
print_goal(Attr) :-
 write('done with '), write(Attr), nl, nl.

Building Expert Systems in Prolog 31

outp(av(A, V), CF) :-
 output(A, V, PrintList),
 write(A-'cf'-CF),
 printlist(PrintList),
 !.
outp(av(A, V), CF) :-
 write(A-V-'cf'-CF).

printlist([]).
printlist([H|T]) :-
 write(H),
 printlist(T).

3.6 English-like Rules
The load command for Clam does not simply read in Prolog terms as in Native, but instead
uses DCG to read in a knowledge base in the format shown earlier in the chapter for the
Car system. You might notice that the askable items have the additional syntax to allow
menu choices, which was not included in the implementation details above. It is coded
similarly to the menu feature in Native.

The load_kb predicate in the shell gets a file name as in Native, and then calls load_rules
with the file name.

load_rules(F) :-
 clear_db,
 see(F),
 lod_ruls,
 write('rules loaded'), nl,
 seen,
 !.
lod_ruls :-
 repeat,
 read_sentence(L),
 process(L),
 L == eof.

process(eof) :- !.
process(L) :-
 trans(R, L, []),
 assertz(R),
 !.
process(L) :-
 write('translate error on:'), nl,
 write(L), nl.

clear_db :-
 abolish(top_goal, 1),
 abolish(askable, 4),
 abolish(rule, 3).

This section of code basically calls read_sentence to tokenize a sentence (up to a ".") into
a list. The token list is then processed by the DCG predicate trans, and the resulting
Prolog term, R, is asserted in the knowledge base. For a good description of DCG, see
Clocksin & Mellish chapter 9, Using Grammar Rules. The clear_db predicate removes all
earlier top_goal, askable, and rule predicates so that a new knowledge base can be loaded
over an existing one.

The tokenizing predicate, read_sentence, varies from Prolog to Prolog based on the
implementation. If the implementation has built-in predicates that can read tokens, then
read_sentence is trivial. If not, it has to read the input character by character and build the

32 Chapter 3 - Backward Chaining with Uncertainty

tokens. An example of this type of sentence read predicate can be found in Clocksin &
Mellish section 5.3, Reading English Sentences.

The top level DCG predicate, trans, looks for the three types of statements allowed in the
knowledge base:

trans(top_goal(X))-->[goal, is, X].
trans(top_goal(X))-->[goal, X].
trans(askable(A, M, P))-->
 [ask, A], menux(M), prompt(A, P).
trans(rule(N, lhs(IF), rhs(THEN, CF)))-->
 id(N),
 if(IF),
 then(THEN, CF).

The following predicates recognize the menu and prompt fields in the ask statement.

menux(M)--> [menu, '('], menuxlist(M).

menuxlist([Item])--> [Item, ')'].
menuxlist([Item|T])--> [Item], menuxlist(T).

prompt(_, P)--> [prompt, P].
prompt(P, P)--> [].

Next are the predicates used to parse the basic rule structure. Note the flexibility that can
be added into the system with DCG. Both and and ", " can be used as LHS separators.
The attribute-value phrases can be expressed in many different ways to allow the most
natural expression in the rules.

id(N)--> [rule, N].

if(IF)--> [if], iflist(IF).

iflist([IF])--> phrase(IF), [then].
iflist([Hif|Tif])--> phrase(Hif), [and], iflist(Tif).
iflist([Hif|Tif])--> phrase(Hif), [', '], iflist(Tif).

then(THEN, CF)--> phrase(THEN), [cf], [CF].
then(THEN, 100)--> phrase(THEN).

phrase(not av(Attr, yes))--> [not, Attr].
phrase(not av(Attr, yes))--> [not, a, Attr].
phrase(not av(Attr, yes))--> [not, an, Attr].
phrase(not av(Attr, Val))--> [not, Attr, is, Val].
phrase(not av(Attr, Val))--> [not, Attr, are, Val].
phrase(av(Attr, Val))--> [Attr, is, Val].
phrase(av(Attr, Val))--> [Attr, are, Val].
phrase(av(Attr, yes))--> [Attr].

Using DCG in this fashion, it is easy to implement as friendly a syntax for the knowledge
base as desired. The same approach could also be used for the Native system, with DCG
that translated English-like rules into Prolog syntax.

Now that we have a customized knowledge base and inference engine, it is possible to add
other features to the system. The next chapter shows how to add explanations.

Exercises
3.1 Add attribute object value triples to the knowledge representation of Clam.

Building Expert Systems in Prolog 33

3.2 There are other ways of dealing with uncertainty in the literature, which could be
used with Clam. A simple one would just use a few text modifiers such as weak,
very weak, or strong and have rules for combining them. Implement this or some
other scheme in Clam.

3.3 Isolate the predicates that are used for calculating certainty factors, such that it is
easy to add additional methods. Implement them so the calling predicates do not
need to know the syntax of the certainty factor, since they might be text, numbers,
or more complex data structures.

3.4 Allow rules to have optional threshold values associated with them, which override
the default of 20. This would be an addition to the rule syntax as well as the code.

3.5 Have the inference engine automatically generate a prompt to the user when there is
no askable or rule that finds a value for an attribute.

3.6 Add menus to the query user facility.

3.7 Implement another diagnostic application using Clam. Note any difficulties and
features which could be added to alleviate those difficulties.

34 Chapter 3 - Backward Chaining with Uncertainty

4 Explanation
It is often claimed that an important aspect of expert systems is the ability to explain their
behavior. This means the user can ask the system for justification of conclusions or
questions at any point in a consultation with an expert system. The system usually
responds with the rules that were used for the conclusion, or the rules being considered
that led to a question to the user.

Value of Explanations to the User
The importance of this feature is probably overestimated for the user. Typically the user
just wants the answer. Furthermore, when the user does want an explanation, the
explanation is not always useful. This is due to the nature of the "intelligence" in an expert
system.

The rules typically reflect empirical, or "compiled" knowledge. They are codifications of
an expert's rules of thumb, not the expert's deeper understanding that led to the rules of
thumb. For example, consider the following dialog with an expert system designed to give
advice on car problems:

Does the car start? no.
Does the engine turn over? yes.
Do you smell gas? yes.
Recommendation - Wait 5 minutes and try again.
why?
I used the rule:
If not start, and
engine_turn_over, and
smell_gas
Then recommend is 'Wait 5 minutes and try again.'.

The rule gives the correct advice for a flooded car, and knows the questions to ask to
determine if the car is flooded, but it does not contain the knowledge of what a flooded car
is and why waiting will help. If the user really wanted to understand what was happening,
he/she would need a short dissertation on carburetors, how they behave, and their
relationship to the gas pedal.

For a system such as this to have useful explanations, it would need to do more than parrot
the rules used. One approach is to annotate the rules with deeper explanations. This is
illustrated in chapter 10. Another approach being actively researched is to encode the
deeper knowledge into the system and use it to drive both the inference and the
explanations.

On the other hand, there are some systems in which the expert's knowledge is just
empirical knowledge. In this case, the system's explanation is useful to the user.
Classification systems such as the bird identification system fall in this category. The Bird
system would explain an identification of a laysan albatross with the rule used to identify
it. There is no underlying theory as to why a white albatross is a laysan albatross and a
dark one is a black footed albatross. That is simply the rule used to classify them.

Value of Explanations to the Developer
While an explanation feature might be of questionable value to the user of the system, it is
invaluable to the developer of the system. It serves the same diagnostic purpose as
program tracing for conventional programs. When the system is not behaving correctly,
the expert can use the explanations to find the rules that are in error. The knowledge

Building Expert Systems in Prolog 35

engineer uses the explanations to better tune the knowledge base to have more realistic
dialogs with the user.

Types of Explanation
There are four types of explanations commonly used in expert systems. We will
implement most of these in both the Clam shell and the Native shell:

• a rule trace, which reports on the progress of a consultation;

• explanation of how the system reached a given conclusion;

• explanation of why the system is asking a question;

• explanation of why not a given conclusion.

Since we wrote the inference engine for Clam it will not be difficult to modify it to include
these features. The Native system currently uses Prolog's inference engine. In order to add
explanation it will be necessary to write our own Prolog inference engine. Fortunately it is
not difficult to write Prolog in Prolog.

4.1 Explanation in Clam
First, let's look at some examples of the explanation features of Clam using the Car
system. Here is how the user turns on tracing for the consultation, and the results. The new
trace information is in bold. It shows the sequence of rule firings as they are expected.
Notice in particular that it reports correctly on the nesting of rules 2 and 3 within rule 1.

consult,
:trace on

restart, load, list, trace, how, exit

consult, restart, load, list, trace, how, exit
:consult
call rule 1
Does the engine turn over?
: no
call rule 2
Are the lights weak?
: yes
exit rule 2
call rule 3
Is the radio weak?
: yes
exit rule 3
exit rule 1
call rule 4
fail rule 4
call rule 5
fail rule 5
call rule 6
fail rule 6
problem-battery-cf-75
done with problem

Next we can look at the use of why explanations. The user would ask why and get the
inference chain that led to the question. For example:

...
Is the radio weak?
: why
rule 3
If

36 Chapter 4 - Explanation

radio_weak
Then
battery_bad 50
rule 1
If
not turn_over
battery_bad
Then
problem is battery 100
goal problem
...

Notice that the why explanation gives the chain of rules, in reverse order, that led to the
question. In this case the goal problem led to rule 1 which led to rule 3.

The how explanations start with answers. For example, the system has just reported that
the problem is the battery. The user wants to know how this result was derived.

...
problem-battery-cf-75
done with problem
consult, restart, load, list, trace, how, exit
:how
Goal? problem is battery
problem is battery was derived from rules: 1
rule 1
If
not turn_over
battery_bad
Then
problem is battery 100

In this case the rule(s) which directly supported the result are listed. Next the user wants to
know how battery_bad was derived.

consult, restart, load, list, trace, how, exit
:how
Goal? battery_bad
battery_bad was derived from rules: 3 2
rule 3
If
radio_weak
Then
battery_bad 50
rule 2
If
lights_weak
Then
battery_bad 50

In this case there were two rules that supported the goal, and the system lists them both.

Figure 4.1 shows the difference between how and why questions. The why questions
occur at the bottom of an inference chain, and the how questions occur at the top.

Building Expert Systems in Prolog 37

 query user
 why
 rule 3, rule 1

goal (problem is ?)

rule 1

rule 2

query userrule 3

 conclusion
 problem is . . .

 how
 rule 1
 rule 2, 3

Figure 4.1. Difference between how and why questions

Tracing
The first explanation addition to Clam will be the rule tracing facility. It will behave
similarly to the Prolog box model traces, and inform the user when a rule is "call"ed,
"exit"ed, or "fail"ed. It will use a special predicate bugdisp to communicate trace
information with the user. It will take as an argument a list of terms to be written on a line.

To make it a user option, bugdisp will only write if ruletrace is true. The user will have a
new high level command to turn tracing on or off which will assert or retract ruletrace. We
can then use bugdisp to add any diagnostics printout we like to the program.

bugdisp(L) :-
 ruletrace,
 write_line(L),
 !.
bugdisp(_).

write_line([]) :-
 nl.
write_line([H|T]) :-
 write(H),
 tab(1),
 write_line(T).

Here is the new command added to the do predicate called by the command loop
predicate, go. It allows the user to turn tracing on or off by issuing the command trace(on)
or trace(off).

do(trace(X)) :-
 set_trace(X),
 !.

set_trace(off) :-
 ruletrace,
 retract(ruletrace).
set_trace(on) :-
 not ruletrace,
 asserta(ruletrace).
set_trace(_).

38 Chapter 4 - Explanation

Now that we have the tools for displaying trace information, we need to add bugdisp calls
in the predicate that recursively tries rules, fg. It is easy to determine in fg when a rule is
called and when it has been successful. After the call to rule succeeds, the rule has been
called. After the call to prove, the rule has been successfully fired. The new code for the
predicate is added in bold.

fg(Goal, CurCF) :-
 rule(N, lhs(IfList), rhs(Goal, CF)),
 bugdisp(['call rule', N]),
 prove(N, IfList, Tally),
 bugdisp(['exit rule', N]),
 adjust(CF, Tally, NewCF),
 update(Goal, NewCF, CurCF, N),
 CurCF == 100,
 !.
fg(Goal, CF) :-
 fact(Goal, CF).

All that remains is to capture rules that fail after being called. The place to do this is in a
second clause to prove, which is called when the first clause fails. The second clause
informs the user of the failure, and continues to fail.

prove(N, IfList, Tally) :-
 prov(IfList, 100, Tally),
 !.
prove(N, _, _) :-
 bugdisp(['fail rule', N]),
 fail.

How Explanations
The next explanation feature to implement is how. The how question is asked by the user
to see the proof of some conclusion the system has reached. The proof can be generated by
either rederiving the result with extra tracing, or by having the original derivation stored in
working storage. Clam uses the second option and stores derivation information with the
fact in working storage. Each fact might have been derived from multiple rules, all
concluding the same attribute value pair and combining certainty factors. For this reason, a
list of rule numbers is stored as the third argument to fact. This is not the entire proof tree,
but just those rules which conclude the fact directly.

fact(AV, CF, RuleList)

A fact is updated by update, so this is where the derivation is captured. A new argument
is added to update which is the rule number that caused the update. Note that the first
clause of update adds the new rule number to the list of existing derivation rule numbers
for the fact. The second clause merely creates a new list with a single element.

update(Goal, NewCF, CF, RuleN) :-
 fact(Goal, OldCF, _),
 combine(NewCF, OldCF, CF),
 retract(fact(Goal, OldCF, OldRules)),
 asserta(fact(Goal, CF, [RuleN | OldRules])),
 !.
update(Goal, CF, CF, RuleN) :-
 asserta(fact(Goal, CF, [RuleN])).

The call to update from fg is modified to fill in the new argument with a rule number:

fg(Goal, CurCF) :-
 rule(N, lhs(IfList), rhs(Goal, CF)),
 ...

Building Expert Systems in Prolog 39

 update(Goal, NewCF, CurCF, N),
 ...

Now that the supporting rules for each derived fact are in working storage, we can answer
a user's question about how a fact was derived. The simplest thing to do is to have how
simply write the list of rules used. It is probably of more interest to the user to actually
display the rules as well. The predicate list_rules does that.

how(Goal) :-
 fact(Goal, CF, Rules),
 CF > 20,
 pretty(Goal, PG),
 write_line([PG, was, derived, from, 'rules: '|Rules]),
 nl,
 list_rules(Rules),
 fail.
how(_).

The how predicate for negated goals is similar and uses the fact that negation is
represented by a negative CF.

how(not Goal) :-
 fact(Goal, CF, Rules),
 CF < -20,
 pretty(not Goal, PG),
 write_line([PG, was, derived, from, 'rules: '|Rules]),
 nl,
 list_rules(Rules),
 fail.

The pretty predicate is used to convert av structures into a more readable list and visa
versa.

pretty(av(A, yes), [A]) :- !.
pretty(not av(A, yes), [not, A]) :- !.
pretty(av(A, no), [not, A]) :- !.
pretty(not av(A, V), [not, A, is, V]).
pretty(av(A, V), [A, is, V]).

The list_rules predicate writes a formatted listing of each rule used in deriving a given
fact.

list_rules([]).
list_rules([R|X]) :-
 list_rule(R),
 list_rules(X).

list_rule(N) :-
 rule(N, lhs(Iflist), rhs(Goal, CF)),
 write_line(['rule ', N]),
 write_line(['If']),
 write_ifs(Iflist),
 write_line(['Then']),
 pretty(Goal, PG),
 write_line([' ', PG, CF]), nl.

write_ifs([]).
write_ifs([H|T]) :-
 pretty(H, HP),
 tab(5), write_line(HP),
 write_ifs(T).

40 Chapter 4 - Explanation

We can use pretty in reverse, along with a predicate that reads a list of tokens from a line
to provide a nicer interface to the user for how questions. In this way the user doesn't have
to specify the internal form of the fact.

how :-
 write('Goal? '), read_line(X), nl,
 pretty(Goal, X),
 how(Goal).

The how command can now be added as part of the top level user interface:

do(how) :-
 how,
 !.

The full how command as coded above just displays for the user the rules directly
responsible for a fact. These rules themselves are likely based on other facts, which were
derived as well. There are two ways of presenting this information:

• let the user ask further hows of the various rules' left hand side goals to delve deeper
into the proof tree;

• have how automatically display the entire proof tree.

So far we have chosen the first. In order to implement the second choice, a predicate
how_lhs needs to be written, which will trace the full tree by recursively calling how for
each of the goals in the Iflist of the rule.

list_rules([]).
list_rules([R|X]) :-
 list_rule(R),
 how_lhs(R),
 list_rules(X).

how_lhs(N) :-
 rule(N, lhs(Iflist), _),
 !,
 how_ifs(Iflist).

how_ifs([]).
how_ifs([Goal|X]) :-
 how(Goal),
 how_ifs(X).

The three choices of user interface for hows (just rule numbers, listings of direct rules, list
of full proof tree) shows some of the problems with shells and the advantages of a toolbox
approach. In a customized expert system, the options that make the most sense for the
application can be used. In a generalized system the designer is faced with two unpleasant
choices. One is to keep the system easy to use and pick one option for all users. The other
is to give the flexibility to the user and provide all three, thus making the product more
complex for the user to learn.

Why Questions
The how question is asked from the top level of an inference, after the inference has been
completed. The why question is asked at the bottom of a chain of rules — when there are
no more rules and it is time to ask the user. The user wants to know why the question is
being asked.

Building Expert Systems in Prolog 41

In order to be able to answer this type of question, we must keep track of the inference
chain that led to the question to the user. One way to do this is to keep an extra argument
in the inference predicates that contains the chain of rules above it in the inference. This is
done in findgoal and prove. Each keeps a separate argument, Hist, which is the desired
list of rules. The list is initially the empty list at the top call to findgoal.

findgoal(Goal, CurCF, Hist) :-
 fg(Goal, CurCF, Hist).

fg(Goal, CurCF, Hist) :-
 ...
 prove(N, IfList, Tally, Hist),
 ...

The prove predicate maintains the list by adding the current rule number on the head of
the list before a recursive call to findgoal. The calls further down the recursion have this
new rule number available for answers to why questions. Notice that both Prolog's
recursive behavior and backtracking assure that the history is correct at any level of call.

prove(N, IfList, Tally, Hist) :-
 prov(IfList, 100, Tally, [N|Hist]),
 !.
prove(N, _, _) :-
 bugdisp(['fail rule', N]),
 fail.

prov([], Tally, Tally, Hist).
prov([H|T], CurTal, Tally, Hist) :-
 findgoal(H, CF, Hist),
 min(CurTal, CF, Tal),
 Tal >= 20,
 prov(T, Tal, Tally, Hist).

Finally, we need to give the user the ability to ask the why question without disturbing the
dialog. This means replacing the old reads of user input with a new predicate, get_user,
which gets an answer from the user and processes it as a why command if necessary. Hist
is of course passed down as an argument and is available for get_user to process. Also,
rather than just displaying rule numbers, we can list the rules for the user as well.

The process_ans predicate first looks for command patterns and behaves accordingly. If it
is a command, the command is executed and then failure is invoked causing the system to
backtrack and re-ask the user for an answer.

Note that now that we are capturing and interpreting the user's response with more
intelligence, we can give the user more options. For example, at the question level he/she
can turn tracing on or off for the duration of the session, ask a how question, or request
help. These are all easily added options for the implementer.

get_user(X, Hist) :-
 repeat,
 write(': '),
 read_line(X),
 process_ans(X, Hist).

process_ans([why], Hist) :-
 nl, write_hist(Hist),
 !,
 fail.
process_ans([trace, X], _) :-
 set_trace(X),
 !,
 fail.
process_ans([help], _) :-

42 Chapter 4 - Explanation

 help,
 !,
 fail.
process_ans(X, _). % just return user's answer

write_hist([]) :-
 nl.
write_hist([goal(X)|T]) :-
 write_line([goal, X]),
 !,
 write_hist(T).
write_hist([N|T]) :-
 list_rule(N),
 !,
 write_hist(T).

4.2 Native Prolog Systems
Since we wrote the inference engine for Clam, it was easy to modify it to add the code for
explanations. However, when we use pure Prolog, we don't have access to the inference
engine.

This problem is easily solved. We simply write a Prolog inference engine in Prolog. Then,
having written the inference engine, we can modify it to handle explanations.

An inference engine has to have access to the rules. In Prolog, the clauses are themselves
just Prolog terms. The built-in predicate clause gives us access to the rules. It has two
arguments, which unify with the head of a clause and its body. A fact has a body with just
the goal true.

Predicates that manipulate Prolog clauses are confusing to read due to the ambiguous use
of the comma in Prolog. It can be either:

• an operator used to separate the subgoals in a clause; or

• a syntactic separator of functor arguments.

Prolog clauses are just Prolog terms with functors of ":-" and ",". Just for now, pretend
Prolog used an "&" operator to separate goals rather than a "," operator. Then a clause
would look like:

a :- b & c & d.

Without the operator definitions it would look like:

:-(a, &(b, &(c, d))).

The clause built-in predicate picks up the first and second arguments of the ":-" functor. It
will find the entire Prolog database on backtracking. If patterns are specified in either
argument, then only clauses that unify with the patterns are found. For the above clause:

?- clause(Head, Body).
Head = a
Body = b & c & d

A recursive predicate working through the goals in Body would look like:

Building Expert Systems in Prolog 43

recurse(FirstGoal & RemainingGoals) :-
 process(FirstGoal),
 recurse(RemainingGoals).
recurse(SingleGoal) :-
 process(SingleGoal).

The use of "&" was just to distinguish between the two commas in Prolog. To resolve
ambiguous references to commas as in the first line of the above code, parenthesis are
used. The first line should really be written:

recurse((FirstGoal, RemainingGoals)) :-
...

 See Clocksin & Mellish Section 2.3, Operators for a full discussion of operators.

Given the means to access and manipulate the Prolog database of facts and rules, a simple
Prolog interpreter that proves a list of goals (goals separated by the "," operator) would
look like:

prove(true) :- !.
prove((Goal, Rest)) :-
 clause(Goal, Body),
 prove(Body),
 prove(Rest).
prove(Goal) :-
 clause(Goal, Body),
 prove(Body).

Notice that prove mimics precisely Prolog's behavior. First it finds a clause whose head
matches the first goal. Then it proves the list of goals in the Body of the clause. Notice that
unification automatically occurs between the Goal for the head of the clause and the Body.
This is because the Prolog clause is just a Prolog term. If it succeeds, it continues with the
rest of the goals in the list. It it fails, it backtracks and finds the next clause whose head
unifies with the Goal.

This interpreter will only handle pure Prolog whose clauses are asserted in the database. It
has no provisions for built-in predicates. These could be included by adding a final
catchall clause:

prove(X) :- call(X).

For Native we do not intend to have Prolog built-in predicates, but we do intend to call ask
and menuask. For the Native shell these are our own built-in predicates.

We will make some basic modifications to our Prolog interpreter to allow it to handle our
own built-in predicates and record information for explanations. First, we write an
intermediate predicate prov that calls clause. It can also check for built-in predicates such
as ask and menuask in the system. If the goal is either of these, they are just called with
real Prolog.

Next we add an extra argument, just as we did for Clam. The extra argument keeps track
of the level of nesting of a particular goal. By passing this history along to the ask
predicates, the ask predicates can now respond to why questions.

prove(true, _) :- !.
prove((Goal, Rest), Hist) :-
 prov(Goal, (Goal, Rest)),
 prove(Rest, Hist).

prov(true, _) :- !.

44 Chapter 4 - Explanation

prov(menuask(X, Y, Z), Hist) :-
 menuask(X, Y, Z, Hist),
 !.
prov(ask(X, Y), Hist) :-
 ask(X, Y, Hist),
 !.
prov(Goal, Hist) :-
 clause(Goal, List),
 prove(List, [Goal|Hist]).

Notice that the history is a list of goals, and not the full rules as saved in Clam.

The next step is to modify the top level predicate that looks for birds. First add an empty
history list as an argument to the top call of prove:

solve :-
 abolish(known, 3),
 define(known, 3),
 prove(top_goal(X), []),
 write('The answer is '), write(X), nl.
solve :-
 write('No answer found'), nl.

The processing of why questions is the same as in Clam.

get_user(X, Hist) :-
 repeat,
 read(X),
 process_ans(X, Hist),
 !.

process_ans(why, Hist) :-
 write(Hist),
 !,
 fail.
process_ans(X, _).

The dialog with the user would look like:

?- identify.
nostrils : external_tubular? why.
[nostrils(external_tubular), order(tubenose), family(albatross),
bird(laysan_albatross)]
nostrils : external_tubular?

We can further use clause to answer how questions. In Clam we chose to save the
derivations in the database. For native Prolog it is easier just to rederive the answer.

how(Goal) :-
 clause(Goal, List),
 prove(List, []),
 write(List).

It is also possible to ask whynot questions, which determine why an expected result was
not reached. This also uses clause to find the clauses that might have proved the goals, and
goes through the list of goals looking for the first one that failed. It is reported, and then
backtracking causes any other clauses that might have helped to be explained as well.

whynot(Goal) :-
 clause(Goal, List),
 write_line([Goal, 'fails because: ']),
 explain(List).

Building Expert Systems in Prolog 45

whynot(_).

explain((H, T)) :-
 check(H),
 explain(T).
explain(H) :-
 check(H).

check(H) :-
 prove(H, _),
 write_line([H, succeeds]),
 !.
check(H) :-
 write_line([H, fails]),
 fail.

The whynot predicate has the same design problems as how. Do we automatically recurse
through a whole failure tree, or do we let the user ask successive whynot's to delve deeper
into the mystery. This version just gives the first level. By adding a recursive call to
whynot in the second clause of check, it would print the whole story.

Exercises
4.1 Implement whynot for Clam.

4.2 Have whynot give a full failure history.

4.3 Make sure the explanation facility can handle attribute object value triples in both
Clam and Native.

4.4 Decide whether you like the full rules presented in answer to why questions as in
Clam, or just the goals as in Native. Make both systems behave the same way.

4.5 Enhance the trace function so it displays the goals currently being sought by the
system. Have various levels of trace information that can be controlled by the trace
command.

4.6 Using prove, implement a Prolog trace function.

4.7 Add a pretty printing predicate for Native to use when displaying Prolog rules.

46 Chapter 4 - Explanation

5 Forward Chaining
This chapter discusses a forward chaining rule based system and its expert system
applications. It shows how the forward chaining system works, how to use it, and how to
implement it quickly and easily using Prolog.

A large number of expert systems require the use of forward chaining, or data driven
inference. The most famous of these is Digital Equipment Corporation's XCON system. It
configures computers. It starts with the data about the customer order and works forward
toward a configuration based on that data. The XCON system was written in the OPS5
(forward chaining rule based) language.

Data driven expert systems are different from the goal driven, or backward chaining
systems seen in the previous chapters.

The goal driven approach is practical when there are a reasonable number of possible final
answers, as in the case of a diagnostic or identification system. The system methodically
tries to prove or disprove each possible answer, gathering the needed information as it
goes.

The data driven approach is practical when combinatorial explosion creates a seemingly
infinite number of possible right answers, such as possible configurations of a machine.

5.1 Production Systems
Forward chaining systems are often called “production” systems. Each of the rules is
actually a miniature procedure called a production. When the patterns in the left hand side
match working storage elements, then the actions on the right hand side are taken. This
chapter concentrates on building a production system called Oops.

Production systems are composed of three components. These are:

• the rule set;

• a working storage area which contains the current state of the system;

• an inference engine which knows how to apply the rules.

The rules are of the form:

left hand side (LHS) ==> right hand side (RHS).

The LHS is a collection of conditions which must be matched in working storage for the
rule to be executed. The RHS contains the actions to be taken if the LHS conditions are
met.

The execution cycle is:

1. Select a rule whose left hand side conditions match the current state as stored in the
working storage.

2. Execute the right hand side of that rule, thus somehow changing the current state.

3. Repeat until there are no rules which apply.

Building Expert Systems in Prolog 47

Production systems differ in the sophistication of the algorithm used to select a rule (step
1). The first version of Oops will use the simplest algorithm of just selecting the first rule
whose conditions match working storage.

The knowledge engineer programs in Oops by creating rules for the particular application.
The syntax of the rules is:

rule <rule id>:
[<N>: <condition>,]
==>
[<action>,].

where:

rule id — a unique identifier for the rule;

N — optional identification for the condition;

condition — a pattern to match against working storage;

action — an action to take.

Each condition is a legal Prolog data structure, including variables. Variables are
identified, as in Prolog, by an initial upper case letter, or underscore. In general, the
condition pattern is matched against those stored in working storage. The comparison
operators (>, =<, etc.) are also defined for comparing variables that are bound during the
pattern matching.

Note that the data representation of Oops is richer than that used in Clam. In Clam there
were only attribute–value pairs, or object–attribute–value triples. In Oops the data can be
represented by any legal Prolog term including variables.

The following RHS actions are supported:

assert(X) — adds the term X to working storage;

retract(all) — retracts all of the working storage terms which were matched in the
LHS of the rule being executed;

retract(N) — retracts LHS condition number N from working storage;

X = <arithmetic expression> — sets X to the value of the expression;

X # Y — unifies the structures X and Y;

write(X) — writes the term X to the terminal;

nl — writes a new line at the terminal;

read(X) — reads a term and unifies it to X;

prompt(X, Y) — writes X and reads Y;

5.2 Using Oops
In the Winston & Horn LISP book there is an example of a forward chaining animal
identification system. Some of those rules would be expressed in Oops like this:

rule id6:
[1: has(X, pointed_teeth),
 2: has(X, claws),
 3: has(X, forward_eyes)]
==>

48 Chapter 5 - Forward Chaining

[retract(all),
 assert(isa(X, carnivore))].

This rule would fire if working storage contained the Prolog terms:

has(robie, pointed_teeth)
has(robie, claws)
has(robie, forward_eyes)

When the rule fired, these three terms would be removed by the retract(all) action on the
RHS, and would be replaced with the term:

isa(robie, carnivore)

Since the working storage elements which matched the conditions were removed, this rule
would not fire again. Instead, another rule such as this might fire next:

rule id10:
[1: isa(X, mammal),
 2: isa(X, carnivore),
 3: has(X, black_stripes)]
==>
[retract(all),
 assert(isa(X, tiger))].

Rules about relationships are also easily coded. Again from Winston & Horn's example the
rule that says children are the same type of animal as their parents is expressed as follows:

rule id16:
[1: isa(Animal, Type),
 2: parent(Animal, Child)]
==>
[retract(2),
 assert(isa(Child, Type))].

This would transform working storage terms like:

isa(robie, tiger)
parent(robie, suzie)

to:

isa(robie, tiger)
isa(suzie, tiger)

The working storage is initialized with a statement of the form:

initial_data([<term>,]).

Each term is a legal Prolog term, which is asserted in working storage. For example:

initial_data([gives(robie, milk),
eats_meat(robie),
has(robie, tawny_color),
has(robie, dark_spots),
parent(robie, suzie)].

It would be better if we could set up the system to ask the user for the initial terms. In a
conventional programming language we might set up a loop which repeatedly asked for
data until the user typed in “end”.

Building Expert Systems in Prolog 49

To do the same thing in a production system requires a bit of trickery, which goes against
the grain of rule based systems. Theoretically, the rules are independent and don't
communicate with each other, but by setting flags in working storage the programmer can
force a specific order of rule firings.

Here is how to code the input loop in Oops. It violates another tenet of production systems
by making use of the known rule selection strategy. In the case of Oops, it is known that
rule 1 will be tried before rule 2.

initial_data([read_facts]).

rule 1: % This is the end condition of
[1: end, % the loop. If "end" and
 2: read_facts] % "read_facts" are both
 % in working storage,
==>
[retract(all)]. % then remove them both.

rule 2: % This is the body of the loop.
[1: read_facts] % If "read_facts" is in WS,
==> % then prompt for an attribute
[prompt('Attribute? ', X), % and assert it. If X
 assert(X)]. % is "end", rule 1 will fire next.

The animal identification problem is one that can be solved either in a data driven (forward
chaining) approach as illustrated here and in Winston & Horn, or in a goal driven
(backward chaining) approach. In fact, where the list of possible animals is known the
backward chaining approach is probably a more natural one for this problem.

A more suitable problem for a forward chaining system is configuration. The Oops sample
program in the appendix shows such a system. It lays out furniture in a living room.

The program includes a number of rules for laying out furniture. For example:

• The couch goes on the longer wall of the room, and is not on the same side as the
door.

• The television goes opposite the couch.

• If there is a lamp or television on a wall without a plug, buy an extension cord.

Here are those rules in Oops. They are more complex due to the need to work with the
amount of wall space available.

% f1 - the couch goes opposite the door
rule f1:
[1: furniture(couch, LenC), % an unplaced couch
 position(door, DoorWall), % find the wall with the door
 opposite(DoorWall, OW), % the wall opposite the door
 right(DoorWall, RW), % the wall right of the door
 2: wall(OW, LenOW), % available space opposite
 wall(RW, LenRW), % available space to the right
 LenOW >= LenRW, % if opposite bigger than right
 LenC =< LenOW] % length of couch less than
 % wall space
==>
[retract(1), % remove the furniture term
 assert(position(couch, OW)), % assert new position
 retract(2), % remove the old wall, length
 NewSpace = LenOW - LenC, % calculate the space left
 assert(wall(OW, NewSpace))]. % assert new space

% f3 - the tv should be opposite the couch

50 Chapter 5 - Forward Chaining

rule f3:
[1: furniture(tv, LenTV),
 2: position(couch, CW),
 3: opposite(CW, W),
 4: wall(W, LenW),
 LenW >= LenTV]
==>
[retract(1),
 assert(position(tv, W)),
 retract(4),
 NewSpace = LenW - LenTV,
 assert(wall(W, NewSpace))].

% get extension cords if needed
rule f12:
[1: position(tv, W),
 2: not(position(plug, W))]
==>
[assert(buy(extension_cord, W)),
 assert(position(plug, W))].

rule f13:
[1: position(table_lamp, W),
 2: not(position(plug, W))]
==>
[assert(buy(extension_cord, W)),
 assert(position(plug, W))].

The program also uses rules to control a dialog with the user to gather initial data. It needs
to know about room dimensions, furniture to be placed, plug locations, etc. It does this by
setting various data gathering goals. For example the initial goal of the system is to
place_furniture. It gives directions to the user and sets up the goal read_furniture. Once
read_furniture is done (signified by the user entering end : end), it sets up the next goal
of read_walls. Here is the beginning code.

rule 1:
[1: goal(place_furniture), % The initial goal causes a
 2: legal_furniture(LF)] % rule to fire with introductory info.
==> % It will set a new goal.
[retract(1),
 cls, nl,
 write('Enter a single item of furniture at each prompt.'), nl,
 write('Include the width (in feet) of each item.'), nl,
 write('The format is Item:Length.'), nl, nl,
 write('The legal values are:'), nl,
 write(LF), nl, nl,
 write('When there is no more furniture, enter "end:end".'), nl,
 assert(goal(read_furniture))].

rule 2:
[1: furniture(end, end), % When the furniture is read
 2: goal(read_furniture)] % set the new goal of reading
==> % wall sizes
[retract(all),
 assert(goal(read_walls))].

rule 3:
[1: goal(read_furniture), % Loop to read furniture.
 2: legal_furniture(LF)]
==>
[prompt('furniture> ', F:L),
 member(F, LF),
 assert(furniture(F, L))].

Building Expert Systems in Prolog 51

rule 4: % If rule 3 matched and failed
[1: goal(read_furniture), % the action, then member
 2: legal_furniture(LF)] % must have failed.
==>
[write('Unknown piece of furniture, must be one of:'), nl,
 write(LF), nl].

The room configurer illustrates both the strengths and weaknesses of a pure production
system. The rules for laying out the furniture are very clear. New rules can be added, and
old ones deleted without affecting the system. It is much easier to work with this program
structure than it would be to understand procedural code that attempted to do the same
thing.

On the other hand, the rules which interact with the user to collect data are difficult to read
and have interdependencies, which make them hard to maintain. The flow of control is
obscured. This code would be better written procedurally, but it is done using Oops to
illustrate how these kinds of problems can be solved with a production architecture.

An ideal architecture would integrate the two approaches. It would be very simple to let
Oops drop back down to Prolog for those cases where Oops is inappropriate. This
architecture is covered in chapter 7.

5.3 Implementation
The implementation of Oops is both compact and readable due to the following features of
Prolog:

• Each rule is represented as a single Prolog term (a relatively complex structure).

• The functors of the rule structure are defined as operators to allow the easy-to-read
syntax of the rule.

• Prolog's built-in backtracking search makes rule selection easy.

• Prolog's built-in pattern matching (unification) makes comparison with working
storage easy.

• Since each rule is a single term, unification causes variables to be automatically bound
between LHS conditions and RHS actions.

• The Prolog database provides an easy representation of working storage.

Each rule is a single Prolog term, composed primarily of two lists: the right hand side
(RHS), and the left hand side (LHS). These are stored using Prolog's normal data
structures, with rule being the predicate and the various arguments being lists.

In Clam, DCG was used to allow a friendly, flexible rule format. In Oops, Prolog operators
are used. The operators allow for a syntax that is formal, but readable. The operator syntax
can also be used directly in the code.

Without operator definitions, the rules would look like normal hierarchical Prolog data
structures:

rule(==>(:(id4, [:(1, flies(X)), :(2, lays_eggs(X))],
[retract(all), assert(isa(X, bird))])).

The following operator definitions allow for the more readable format of the rules:

op(230, xfx, ==>).
op(32, xfy, :).

52 Chapter 5 - Forward Chaining

op(250, fx, rule).

Working storage is stored in the database under the key fact. So to add a term to working
storage:

asserta(fact(isa(robie, carnivore))),

and to look for a term in working storage:

fact(isa(X, carnivore)).

Figure 5.1 shows the major predicates in the Oops inference engine. The inference cycle of
recognize–act is coded in the predicate go. It searches for the first rule which matches
working storage, and executes it. Then it repeats the process. If no rules match, then the
second clause of go is executed and the inference ends. Then the second clause prints out
the current state showing what was determined during the run. (Note that LHS and RHS
are bound to lists.)

go

rule try go

match process

fact match take process

Figure 5.1 Major predicates in Oops inference engine

go:-
 call(rule ID: LHS ==> RHS),
 try(LHS, RHS),
 write('Rule fired '), write(ID), nl,
 !,
 go.
go:-
 nl, write(done), nl,
 print_state.

This code illustrates the tremendous expressiveness of Prolog. The code is very tight due
to the built-in pattern matching and backtracking search. Especially note that since the
entire rule is a single Prolog term, the unification between variables in the conditions and
actions happens automatically. This leads to a use of variables that is, in some senses,
cleaner and more powerful than that found in OPS5.

The try/2 predicate is very simple. If match/2 fails, it forces go to backtrack and find the
next rule. The LHS is passed to process so retract statements can find the facts to retract.

try(LHS, RHS):-
 match(LHS),
 process(RHS, LHS).

Building Expert Systems in Prolog 53

The match/2 predicate recursively goes through the list of conditions, locating them in
working storage. If the condition is a comparison test, then the test is tried, rather than
searched for in the database.

match([]) :- !.
match([N:Prem|Rest]) :-
 !,
 (fact(Prem);
 test(Prem)), % a comparison test rather than a fact
 match(Rest).
match([Prem|Rest]) :-
 (fact(Prem); % condition number not specified
 test(Prem)),
 match(Rest).

The test/1 predicate can be expanded to include any kind of test. Oops uses most of the
basic tests provided with Prolog, plus a few. For example:

test(X >= Y):-
 X >= Y,
 !.
test(X = Y):-
 X is Y, % use = for arithmetic
 !.
test(X # Y):-
 X = Y, % use # for unification
 !.
test(member(X, Y)):-
 member(X, Y),
 !.
test(not(X)):-
 fact(X),
 !,
 fail.

If match/2 succeeds, then process/2 is called. It executes the RHS list of actions. It is
equally straightforward.

process([], _) :- !.
process([Action|Rest], LHS) :-
 take(Action, LHS),
 process(Rest, LHS).

Only the action retract needs the LHS. The take/2 predicate does a retract if that is what's
called for, or else passes control to take/1, which enumerates the simpler actions. Some
examples are given here.

take(retract(N), LHS) :-
 (N == all; integer(N)),
 retr(N, LHS),
 !.
take(A, _) :-
 take(A),
 !.
take(retract(X)) :-
 retract(fact(X)),
 !.
take(assert(X)) :-
 asserta(fact(X)),
 write(adding-X), nl,
 !.
take(X # Y) :-
 X = Y,
 !.

54 Chapter 5 - Forward Chaining

take(X = Y) :-
 X is Y,
 !.
take(write(X)) :-
 write(X),
 !.
take(nl) :-
 nl,
 !.
take(read(X)) :-
 read(X),
 !.

The retr predicate searches for LHS conditions with the same identification (N) and
retracts them. If all was indicated, then it retracts all of the LHS conditions.

retr(all, LHS) :-
 retrall(LHS),
 !.
retr(N, []) :-
 write('retract error, no '-N), nl,
 !.
retr(N, [N:Prem|_]) :-
 retract(fact(Prem)),
 !.
retr(N, [_|Rest]) :-
 !,
 retr(N, Rest).

retrall([]).
retrall([N:Prem|Rest]) :-
 retract(fact(Prem)),
 !,
 retrall(Rest).
retrall([Prem|Rest]) :-
 retract(fact(Prem)),
 !,
 retrall(Rest).
retrall([_|Rest]) :- % must have been a test
 retrall(Rest).

Oops can be made to look like the other shells by the addition of a command loop
predicate with commands similar to those in Clam and Native. Figure 5.2 shows the
architecture of Oops.

Building Expert Systems in Prolog 55

User Interface

 command_loop
 read
 write

Inference Engine

 go
 match
 process

Knowledge Base

 initial_data
 rule

Working Storage

 fact

Figure 5.2 Major predicates of the Oops shell

5.4 Explanations for Oops
Explanations for forward chaining systems are more difficult to implement. This is
because each rule modifies working storage, thus covering its tracks. The most useful
information in debugging a forward chaining system is a trace facility. That is, you want to
know each rule that is fired and the effects it has on working storage.

Each fact can have associated with it the rule which posted it, and this would give the
immediate explanation of a fact. However, the facts that supported the rules which led up
to that fact might have been erased from working memory. To give a full explanation, the
system would have to keep time stamped copies of old versions of facts.

The trace option is added in Oops in a similar fashion to which it was added in Clam. The
inference engine informs the user of the rules that are firing as they fire.

5.5 Enhancements
Oops in its current state is a simple forward chaining system. More advanced forward
chaining systems differ in two main aspects.

• more sophisticated rule selection when many rules match the current working storage;

• performance.

The current rule selection strategy of Oops is simply to pick the first rule that matches. If
many rules match, there might be other optimal choosing strategies. For example, we
could pick the rule that matched the most recently asserted facts, or the rule that had the
most specific match. Either of these would change the inference pattern of the system to
give effects that might be more natural.

Oops is also inefficient in its pattern matching, since at each cycle of the system it tries all
of the rules against working memory. There are various indexing schemes that can be used
to allow for much faster picking of rules which match working memory. These will be
discussed in chapter 8.

56 Chapter 5 - Forward Chaining

5.6 Rule Selection
OPS5, which is probably the most well known example of a forward chaining, or
production, system offers two different means of selecting rules. One is called LEX and
the other is MEA. Both make use of time stamped data to determine the best rule to fire
next. They differ slightly in the way in which they use the data. Both of these strategies
can be added to Oops as options.

Generating the conflict set
For both, the first step is to collect all of the rules whose LHS match working memory at a
given cycle. This set of rules is called the conflict set. It is not actually the rules, but rather
instantiations of the rules. This means that the same rule might have multiple instantiations
if there are multiple facts which match a LHS premise. This will often happen when there
are variables in the rules that are bound differently for different instantiations.

For example, an expert system to identify animals might have the following condition on
the LHS:

rule 12:
[...
 eats(X, meat),
 ...]
==> ...

In working memory there might be the following two facts:

...
eats(robie, meat).
eats(suzie, meat).
...

Assuming the other conditions on the LHS matched, this would lead to two different
instantiations of the same rule. One for robie and one for suzie.

The simplest way to get the conflict set is to use findall or its equivalent. (If your system
does not have a findall, a description of how to write your own can be found in Clocksin
and Mellish section 7.8, Assert and Retract: Random, Gensym, Findall.) It collects all of
the instantiations of a term in a list. The three arguments to findall are:

• a term that is used as a pattern to collect instantiations of variables;

• a list of goals used as a query;

• an output list whose elements match the pattern of the first argument, and for which
there is one element for each successful execution of the query in the second
argument.

The instantiations of the conflict set will be stored in a structure, r/4. The last three
arguments of r/4 will be the ID, LHS, and RHS of the rule, which will be used later.

The first argument of r/4 is the LHS with the variables instantiated with the working
storage elements that were matched. Each match of a LHS premise and working storage
element is also accompanied by a time stamp indicating when the working storage element
was last updated.

The query to be executed repeatedly by findall will be similar to the one currently used to
find just the first matching rule:

Building Expert Systems in Prolog 57

?- rule ID : LHS ==> RHS, match(LHS, Inst)

Note that match now has a second argument to store the instantiation of the rule, which
will be the first argument to r/4.

The following predicate puts the above pieces together and uses findall to build a list (CS)
of r/4s representing all of the rules that currently match working storage.

conflict_set(CS) :-
 findall(r(Inst, ID, LHS, RHS),
 [rule ID: LHS ==> RHS, match(LHS, Inst)],
 CS).

The match predicate just needs to be changed to capture the instantiation of the
conditions. Notice there is an additional argument, Time, in the fact predicate. This is a
time stamp that will be used in the selection process.

match([], []) :- !.
match([N:Prem|Rest], [Prem/Time|IRest]) :-
 !,
 (fact(Prem, Time);
 test(Prem), Time = 0), %comparison, not a fact
 match(Rest, IRest).
match([Prem|Rest], [Prem/Time|IRest]) :-
 (fact(Prem, Time); % no condition number
 test(Prem), Time = 0),
 match(Rest, IRest).

Time stamps
The timestamp is just a chronological counter that numbers the facts in working memory
as they are added. All assertions of facts are now handled by the assert_ws predicate as
follows:

assert_ws(fact(X, T)) :-
 getchron(T),
 asserta(fact(X, T)).

The getchron predicate simply keeps adding to a counter:

getchron(N) :-
 retract(chron(N)),
 NN is N + 1,
 asserta(chron(NN)),
 !.

5.7 LEX
Now that we have a list of possible rules and instantiations in the conflict set, it is
necessary to select one. First we will look at the OPS5 LEX method of rule selection. It
uses three criteria to select a rule.

The first is refraction. This discards any instantiations that have already been fired. Two
instantiations are the same if the variable bindings and the time stamps are the same. This
prevents the same rule from firing over and over — unless the programmer has caused
working memory to be repeatedly updated with the same fact.

58 Chapter 5 - Forward Chaining

The second is recency. This chooses the rules that use the most recent elements in working
memory. The conflict set rules are ordered with those rules with the highest time stamps
first. This is useful to give the system a sense of focus as it works on a problem. Facts that
are just asserted will most likely be used next in a rule.

The third is specificity. If there are still multiple rules in contention, the most specific is
used. The more conditions there are that apply in the LHS of the rule, the more specific it
is. For example, a rule with 4 conditions is more specific than one with 3 conditions. This
criteria ensures that general case rules will fire after more specific case rules.

If after these tests there are still multiple rules which apply, then one is chosen at random.

Changes in the Rules
The LEX strategy changes the way in which Oops rules are programmed. In the first
version of Oops, the knowledge engineer had to make sure that the working storage
elements that caused the rule to fire are changed. It was the knowledge engineer's
responsibility to ensure that a rule did not repeatedly fire.

The opposite is also true. Where looping is required, the facts matching the LHS must be
continually reasserted.

In the original version of Oops the knowledge engineer knew the order in which rules
would fire, and could use that information to control the inference. Using LEX he/she can
still control the inference, but it requires more work. For example, if it is desirable to have
the couch placed first by the system, then that rule must be structured to fire first. This can
be done by adding a goal to place the couch first and asserting it after the data is gathered.
For example:

rule gather_data
...
==>
[...
 assert(goal(couch_first))].
rule couch
[goal(couch_first),
...

The gather_data rule will assert the couch_first goal after all other assertions. This
means it is the most recent addition to working storage. The Lex recency criteria will then
ensure that the couch rule is fired next.

The rule which is supposed to fire last in the system also needs to be handled specially.
The easiest way to ensure a rule will fire last is to give it an empty list for the LHS. The
specificity check will keep it from firing until all others have fired.

Implementing LEX
To implement the LEX strategy, we modify the go predicate to first get the conflict set and
then pass it to the predicate select_rule, which picks the rule to execute. After processing
the rule, the instantiation associated with the rule is saved to be used as a check that it is
not re-executed.

go :-
 conflict_set(CS),
 select_rule(CS, r(Inst, ID, LHS, RHS)),
 process(RHS, LHS),
 asserta(instantiation(Inst)),

Building Expert Systems in Prolog 59

 write('Rule fired '), write(ID), nl,
 !,
 go.
go.

The select_rule predicate applies the three criteria above to select the appropriate rule. The
refract predicate applies refraction, and lex_sort applies both recency and specificity
through a sorting mechanism.

select_rule(CS, R) :-
 refract(CS, CS1),
 lex_sort(CSR, [R|_]).

First let's look at refract, which removes those rules that duplicate existing instantiations.
It relies on the fact that after each successful rule firing, the instantiation is saved in the
database.

refract([], []).
refract([r(Inst, _, _, _)|T], TR) :-
 instantiation(Inst),
 !,
 refract(T, TR).
refract([H|T], [H|TR]) :-
 refract(T, TR).

Once refract is done processing the list, only those rules with new instantiations are left
on the list.

The implementation of lex_sort doesn't filter the remaining rules, but sorts them so that
the first rule on the list is the desired rule. This is done by creating a key for each rule that
is used to sort the rules. The key is designed to sort by recency and specificity. The sorting
is done with a common built-in predicate, keysort, which sorts a list by keys where the
elements are in the form: key – term. (If your Prolog does not have a keysort, see
Clocksin and Mellish section 7.7, Sorting.)

lex_sort(L, R) :-
 build_keys(L, LK),
 keysort(LK, X),
 reverse(X, Y),
 strip_keys(Y, R).

The build_keys predicate adds the keys to each term. The keyed list is then sorted by
keysort. It comes out backwards, so it is reversed, and finally the keys are stripped from
the list. In order for this to work, the right key needs to be chosen.

The key that gives the desired results is itself a list. The elements are the time stamps of
the various matched conditions in the instantiation of the rule. The key (a list) is sorted so
that the most recent (highest number) time stamps are at the head of the list. These
complex keys can themselves be sorted to give the correct ordering of the rules. For
example, consider the following two rules, and working storage:

rule t1:
[flies(X),
 lays_eggs(X)]
==>
[assert(bird(X))].

rule t2:
[mammal(X),
 long_ears(X),
 eats_carrots(X)]

60 Chapter 5 - Forward Chaining

==>
[assert(animal(X, rabbit))].
fact(flies(lara), 9).
fact(flies(zach), 6).
fact(lays_eggs(lara), 7).
fact(lays_eggs(zach), 8).
fact(mammal(bonbon), 3).
fact(long_ears(bonbon), 4).
fact(eats_carrots(bonbon), 5).

There would be two instantiations of the first rule, one each for lara and zach, and one
instantiation of the second rule for bonbon. The highest numbers are the most recent time
stamps. The keys (in order) for these three instantiations would be:

[9, 7]
[8, 6]
[5, 4, 3]

In order to get the desired sort, lists must be compared element by element starting from
the head of the list. This gives the recency sort. The sort must also distinguish between
two lists of different lengths with the same common elements. This gives the specificity
sort. For AAIS prolog the sort works as desired with recency being more important than
specificity. It should be checked for other Prologs.

Here is the code to build the keys:

build_keys([], []).
build_keys([r(Inst, A, B, C)|T], [Key-r(Inst, A, B, C)|TR]) :-
 build_chlist(Inst, ChL),
 sort(ChL, X),
 reverse(X, Key),
 build_keys(T, TR).

build_chlist([], []).
build_chlist([_/Chron|T], [Chron|TC]) :-
 build_chlist(T, TC).

The build_keys predicate uses build_chlist to create a list of the time stamps associated
with the LHS instantiation. It then sorts those, and reverses the result, so that the most
recent time stamps are first in the list.

The final predicate, strip_keys, simply removes the keys from the resulting list.

strip_keys([], []).
strip_keys([Key-X|Y], [X|Z]) :-
 strip_keys(Y, Z).

5.8 MEA
The other strategy offered with OPS5 is MEA. This is identical to LEX with one
additional filter added. After refraction, it finds the time stamp associated with the first
condition of the rule and picks the rule with the highest time stamp on the first condition.
If there is more than one, then the normal LEX algorithm is used to pick which of them to
use.

At first this might seem like an arbitrary decision; however, it was designed to make goal
directed programming easier in OPS5. The flow of control of a forward chaining system is
often controlled by setting goal facts in working storage. Rules might have goals in the
conditions thus ensuring the rule will only fire when that goal is being pursued.

Building Expert Systems in Prolog 61

By making the goal condition the first condition on the LHS of each rule, and by using
MEA, the programmer can force the system to pursue goals in a specified manner. In fact,
using this technique it is possible to build backward chaining systems using a forward
chaining tool.

The test for MEA is simply added to the system. First, the filter is added to the select_rule
predicate. It will simply return the same conflict set if the current strategy is not MEA.

select_rule(R, CS) :-
 refract(CS, CS1),
 mea_filter(0, CS1, [], CSR),
 lex_sort(CSR, [R|_]).

The actual filter predicates build the new list in an accumulator variable, Temp. If the first
time stamp for a given rule is less than the current maximum, it is not included. If it equals
the current maximum, it is added to the list of rules. If it is greater than the maximum, that
timestamp becomes the new maximum, and the list is reinitialized to have just that single
rule.

mea_filter(_, X, _, X) :-
 not strategy(mea),
 !.
mea_filter(_, [], X, X).
mea_filter(Max, [r([A/T|Z], B, C, D)|X], Temp, ML) :-
 T < Max,
 !,
 mea_filter(Max, X, Temp, ML).
mea_filter(Max, [r([A/T|Z], B, C, D)|X], Temp, ML) :-
 T = Max,
 !,
 mea_filter(Max, X, [r([A/T|Z], B, C, D)|Temp], ML).
mea_filter(Max, [r([A/T|Z], B, C, D)|X], Temp, ML) :-
 T > Max,
 !,
 mea_filter(T, X, [r([A/T|Z], B, C, D)], ML).

These examples illustrate some of the difficulties with expert systems in general. The
OPS5 programmer must be intimately familiar with the nature of the inferencing in order
to get the performance desired from the system. He is only free to use the tools available to
him.

On the other hand, if the programmer has access to the selection strategy code, and knows
the type of inferencing that will be required, the appropriate strategy can be built into the
system. Given the accessibility of the above code, it is easy to experiment with different
selection strategies.

Exercises
5.1 Add full rule tracing to OOPS.

5.2 Add a command loop that turns on and off tracing, MEA/LEX strategies, loads rule
files, consults the rules, lists working storage, etc.

5.3 Add a feature that allows for the saving of test case data, which can then be run
against the system. The test data and the results are used to debug the system as it
undergoes change.

5.4 Allow each rule to optionally have a priority associated with it. Use the user-defined
rule priorities as the first criteria for selecting rule instantiations from the conflict
set.

62 Chapter 5 - Forward Chaining

5.5 Add features on the LHS and RHS that allow rules to be written, which can access
the conflict set and dynamically change the rule priorities. Figure out an application
for this.

5.6 Add new syntax to the knowledge base that allows rules to be clustered into rule
sets. Maintain separate conflict sets for each rule set and have the inference engine
process each rule set to completion. Have higher level rules, which can be used to
decide which rule sets to execute. Alternatively, each rule set can have an enabling
pattern associated with it that allows it to fire just as individual rules are fired.

5.7 Each fact in working storage can be thought of as being dependent on other facts.
The other facts are those that instantiated the LHS of a rule which updated the fact.
By keeping track of these dependencies, a form of truth maintenance can be added
to the system. When a fact is then removed from working storage, the system can
find other facts that were dependent on it and remove them as well.

Building Expert Systems in Prolog 63

6 Frames
Up until this point in the book, we have worked with data structures that are simply that —
data structures. It is often desirable to add some "intelligence" to the data structures, such
as default values, calculated values, and relationships between data.

Of the various schemes which evolved over the years, the frame based approach has been
one of the more popular. Information about an object in the system is stored in a frame.
The frame has multiple slots used to define the various attributes of the object. The slots
can have multiple facets for holding the value for the attributes, defaults or procedures that
are called to calculate the value.

The various frames are linked together in a hierarchy with a-kind-of (ako) links that allow
for inheritance. For example, rabbits and hamsters might be stored in frames that have
ako(mammal). In the frame for mammal are all of the standard attribute-values for
mammals, such as skin-fur and birth-live. These are inherited by rabbits and hamsters and
do not have to be specified in their frames. There can also be defaults for attributes which
might be overwritten by specific species. Legs-4 applies to most mammals, but monkeys
would have legs-2 specified.

Another feature of a frame based system is demons. These are procedures that are
activated by various updating procedures. For example, a financial application might have
demons on various account balances that are triggered when the value is too low. These
could also have editing capabilities that made sure the data being entered is consistent with
existing data. Figure 6.1 shows some samples of frames for animals.

facets
mammal value default when

updated
skin fur
birth live

sl
ot

s

legs 4 leg-check leg-check: value =< 4

facets
rabbit value default when

updated
ako mammal
ears long

sl
ot

s

move hops

facets
monkey value default when

updated
ako mammal
legs 2

sl
ot

s

tail curly

Figure 6.1 Examples of animal frames

Building Expert Systems in Prolog 65

6.1 The Code
In order to implement a frame system in Prolog, there are two initial decisions to be made.
The first is the design of the user interface, and the second is the design of the internal data
structure used to hold the frame information.

The access to data in the frame system will be through three predicates:

• get_frame — retrieves attribute values for a frame;

• add_frame — adds or updates attribute values for a frame;

• del_frame — deletes attribute values from a frame.

From the user's perspective, these operations will appear to be acting on structures that are
very similar to database records. Each frame is like a record, and the slots in the frame
correspond to the fields in the record. The intelligence in the frame system, such as
inheritance, defaults, and demons, happens automatically for the user.

The first argument of each of these predicates is the name of the frame. The second
argument has a list of the slots requested. Each slot is represented by a term of the form
attribute-value. For example, to retrieve values for the height and weight slots in the
frame dennis, the following query would be used:

?- get_frame(dennis, [weight-W, height-H]).
W = 155
H = 5-10

To add a new sport for mary:

?- add_frame(mary, [sport-rugby]).

To delete a slot's value for mynorca's computer:

?- del_frame(mynorca, [computer-'PC AT']).

These three primitive frame access predicates can be used to build more complex frame
applications. For example, the following query would find all of the women in the frame
database who are rugby players:

?- get_frame(X, [ako-woman, sport-rugby]).
X = mary ;
X = kelly;

A match-making system might have a predicate that looks for men and women who have a
hobby in common:

in_common(M, W, H) :-
 get_frame(M, [ako-man, hobby-H]),
 get_frame(W, [ako-woman, hobby-H]).

6.2 Data Structure
The next decision is to chose a type of data structure for the frames. The frame is a
relatively complex structure. It has a name and multiple slots. Each slot, which
corresponds to an attribute of the frame, can have a value. This is the same as in a normal
database. However in a frame system, the value is just one possible facet for the slot.

66 Chapter 6 - Frames

There might also be default values, predicates which are used to calculate values, and
demons which fire when the value in the slot is updated.

Furthermore, the frames can be organized in a hierarchy, where each frame has an a-kind-
of slot that has a list of the types of frames from which this frame inherits values.

The data structure chosen for this implementation has the predicate name frame with two
arguments. The first is the name of the frame, and the second is a list of slots separated by
a hyphen operator from their respective facet lists. The facet list is composed of prefix
operator facet names. The ones defined in the system are:

• val — the simple value of the slot;

• def — the default if no value is given;

• calc — the predicate to call to calculate a value for the slot;

• add — the predicate to call when a value is added for the slot;

• del — the predicate to call when the slot's value is deleted.

Here is the format of a frame data structure:

frame(name, [
 slotname1 - [
 facet1 val11,
 facet2 val12,
 ...],
 slotname2 - [
 facet1 val21,
 facet2 val 22,
 ...],
 ...]).

For example:

frame(man, [
 ako-[val [person]],
 hair-[def short, del bald],
 weight-[calc male_weight]]).
frame(woman, [
 ako-[val [person]],
 hair-[def long],
 weight-[calc female_weight]]).

In this case, both man and woman have ako slots with the value of person. The hair slot
has default values of long and short hair for women and men, but this would be overridden
by the values in individual frames. Both have facets that point to predicates that are to be
used to calculate weight, if none is given. The man's hair slot has a facet that points to a
demon, bald, to be called if the value for hair is deleted.

One additional feature permits values to be either single-valued or multi-valued. Single
values are represented by terms, multiple values are stored in lists. The add_frame and
del_frame predicates take this into account when updating the frame. For example hair
has a single value but hobbies and ako can have multiple values.

Building Expert Systems in Prolog 67

6.3 The Manipulation Predicates

get_frame

frame slot_vals

prep_req find_slot slot_vals

% get value from a facet % inherit a value

% value

facet_val facet_val find_slot% ako-X

% default value % calculate value

Figure 6.2 Major predicates of get_frame

The first predicate to look at is get_frame. It takes as input a query pattern, which is a list
of slots and requested values. This request list (ReqList) is then compared against the
SlotList associated with the frame. As each request is compared against the slot list,
Prolog's unification instantiates the variables in the list. Figure 6.2 shows the major
predicates used with get_frame.

get_frame(Thing, ReqList) :-
 frame(Thing, SlotList),
 slot_vals(Thing, ReqList, SlotList).

The slot_vals predicate takes care of matching the request list against the slot list. It is a
standard recursive list predicate, dealing with one item from the request list at a time. That
item is first converted from the more free-form style allowed in the input list to a more
formal structure describing the request. That structure is req/4 where the arguments are:

• name of the frame;

• the requested slot;

• the requested facet;

• the requested value.

The code for slot_vals recognizes request lists, and also single slot requests not in list
form. This means both of the following frame queries are legal:

?- get_frame(dennis, hair-X).
...
?- get_frame(dennis, [hair-X, height-Y]).
...

68 Chapter 6 - Frames

The slot_vals predicate is a standard list recursion predicate that fulfills each request on
the list in turn. The real work is done by find_slot, which fulfills the request from the
frame's slot list.

slot_vals(_, [], _).
slot_vals(T, [Req|Rest], SlotList) :-
 prep_req(Req, req(T, S, F, V)),
 find_slot(req(T, S, F, V), SlotList),
 !,
 slot_vals(T, Rest, SlotList).
slot_vals(T, Req, SlotList) :-
 prep_req(Req, req(T, S, F, V)),
 find_slot(req(T, S, F, V), SlotList).

The request list is composed of items of the form Slot - X. The prep_req predicate, which
builds the formal query structure, must recognize three cases:

• X is a variable, in which case the value of the slot is being sought.

• X is of the form Facet(Val), in which case a particular facet is being sought.

• X is a non-variable, in which case the slot value is being sought for comparison with
the given value.

Here is the code which prepares the formal query structure:

prep_req(Slot-X, req(T, Slot, val, X)) :-
 var(X),
 !.
prep_req(Slot-X, req(T, Slot, Facet, Val)) :-
 nonvar(X),
 X =.. [Facet, Val],
 facet_list(FL),
 member(Facet, FL),
 !.
prep_req(Slot-X, req(T, Slot, val, X)).
 facet_list([val, def, calc, add, del, edit]).

For example, the query

?- get_frame(dennis, [hair-X]).

would generate the more formal request for:

req(dennis, hair, val, X)

Having now prepared a more formal request, and a slot list to fulfill it, find_slot attempts
to satisfy the request. The first clause handles the case where the request is not for a
variable, but really just a test to see if a certain value exists. In this case another request
with a different variable (Val) is started, and the results compared with the original
request. Two cases are recognized: either the value was a single value, or the value was a
member of a list of values.

find_slot(req(T, S, F, V), SlotList) :-
 nonvar(V),
 find_slot(req(T, S, F, Val), SlotList),
 !,
 (Val == V;
 member(V, Val)).

Building Expert Systems in Prolog 69

The next clause covers the most common case, in which the value is a variable, and the
slot is a member of the slot list. Notice that the call to member both verifies that there is a
structure of the form Slot-FacetList and unifies FacetList with the list of facets associated
with the slot. This is because S is bound at the start of the call to member, and FacetList
is not. Next, facet_val is called, which gets the value from the facet list.

find_slot(req(T, S, F, V), SlotList) :-
 member(S-FacetList, SlotList),
 !,
 facet_val(req(T, S, F, V), FacetList).

If the requested slot was not in the given slot list for the frame, then the next clause uses
the values in the ako (a-kind-of) slot to see if there is a super class from which to inherit a
value. The value in the ako slot might be a list, or a single value. The higher frame's slot
list is then used in an attempt to satisfy the request. Note that this recurses up through the
hierarchy. Note also that a frame may have multiple values in the ako slot, allowing for a
more complex structure than a pure hierarchy. The system works through the list in order,
trying to satisfy a request from the first ako value first.

find_slot(req(T, S, F, V), SlotList) :-
 member(ako-FacetList, SlotList),
 facet_val(req(T, ako, val, Ako), FacetList),
 (member(X, Ako);
 X = Ako),
 frame(X, HigherSlots),
 find_slot(req(T, S, F, V), HigherSlots),
 !.

The final clause in find_slot calls the error handling routine. The error handling routine
should probably be set not to put up error messages in general, since often quiet failure is
required. During debugging it is useful to have it turned on.

find_slot(Req, _) :-
 error(['frame error looking for:', Req]).

The facet_val predicate is responsible for getting the value for the facet. It deals with four
possible cases:

• The requested facet and value are on the facet list. This covers the val facet as well as
specific requests for other facets.

• The requested facet is val, it is on the facet list, and its value is a list. In this case
member is used to get a value.

• There is a default (def) facet, which is used to get the value.

• There is a predicate to call (calc) to get the value. It expects the formal request as an
argument.

If the facet has a direct value in the facet list, then there is no problem. If there is not a
direct value, and the facet being asked for is the val facet, then alternate ways of getting
the value are used. First the default is tried and, if there is no default, a calc predicate is
used to compute the value. If a calc predicate is needed, then the call to it is built using the
univ (=..) built-in predicate, with the request pattern as the first argument, and other
arguments included in the calc predicate following.

facet_val(req(T, S, F, V), FacetList) :-
 FV =.. [F, V],
 member(FV, FacetList),
 !.

70 Chapter 6 - Frames

facet_val(req(T, S, val, V), FacetList) :-
 member(val ValList, FacetList),
 member(V, ValList),
 !.
facet_val(req(T, S, val, V), FacetList) :-
 member(def V, FacetList),
 !.
facet_val(req(T, S, val, V), FacetList) :-
 member(calc Pred, FacetList),
 Pred =.. [Functor | Args],
 CalcPred =.. [Functor, req(T, S, val, V) | Args],
 call(CalcPred).

An example of a predicate used to calculate values is the female_weight predicate. It
computes a default weight equal to twice the height of the individual.

female_weight(req(T, S, F, V)) :-
 get_frame(T, [height-H]),
 V is H * 2.

We have now seen the code that gets values from a frame. It first sets up a list of requested
slot values and then processes them one at a time. For each slot which is not defined for
the frame, inheritance is used to find a parent frame that defines the slot. For the slots that
are defined, each of the facets is tried in order to determine a value.

The next major predicate in the frame system adds values to slots. For single valued slots,
this is a replace. For multi-valued slots, the new value is added to the list of values.

The add_frame predicate uses the same basic form as get_frame. For updates, first the
old slot list is retrieved from the existing frame. Then the predicate add_slots is called
with the old list (SlotList) and the update list (UList). It returns the new list (NewList).

add_frame(Thing, UList) :-
 old_slots(Thing, SlotList),
 add_slots(Thing, UList, SlotList, NewList),
 retract(frame(Thing, _)),
 asserta(frame(Thing, NewList)),
 !.

The old_slots predicate usually just retrieves the slot list. However, if the frame doesn't
exist, it creates a new frame with an empty slot list.

old_slots(Thing, SlotList) :-
 frame(Thing, SlotList),
 !.
old_slots(Thing, []) :-
 asserta(frame(Thing, [])).

Next, comes add_slots, which does analogous list matching to slot_vals called by
get_frame.

add_slots(_, [], X, X).
add_slots(T, [U|Rest], SlotList, NewList) :-
 prep_req(U, req(T, S, F, V)),
 add_slot(req(T, S, F, V), SlotList, Z),
 add_slots(T, Rest, Z, NewList).
add_slots(T, X, SlotList, NewList) :-
 prep_req(X, req(T, S, F, V)),
 add_slot(req(T, S, F, V), SlotList, NewList).

The add_slot predicate deletes the old slot and associated facet list from the old slot list. It
then adds the new facet and value to that facet list and rebuilds the slot list. Note that

Building Expert Systems in Prolog 71

delete unifies FacetList with the old facet list. FL2 is the new facet list returned from
add_facet. The new slot and facet list, S-FL2 is then made the head of the add_slot
output list, with SL2, the slot list after deleting the old slot as the tail.

add_slot(req(T, S, F, V), SlotList, [S-FL2|SL2]) :-
 delete(S-FacetList, SlotList, SL2),
 add_facet(req(T, S, F, V), FacetList, FL2).

The add_facet predicate takes the request and deletes the old facet from the list, builds a
new facet and adds it to the facet list in the same manner as add_slot. The main trickiness
is that add_facet makes a distinction between a facet whose value is a list, and one whose
value is a term. In the case of a list, the new value is added to the list, whereas in the case
of a term, the old value is replaced. The add_newval predicate does this work, taking the
OldVal, the new value V and coming up with the NewVal.

add_facet(req(T, S, F, V), FacetList, [FNew|FL2]) :-
 FX =.. [F, OldVal],
 delete(FX, FacetList, FL2),
 add_newval(OldVal, V, NewVal),
 !,
 check_add_demons(req(T, S, F, V), FacetList),
 FNew =.. [F, NewVal].

add_newval(X, Val, Val) :-
 var(X),
 !.
add_newval(OldList, ValList, NewList) :-
 list(OldList),
 list(ValList),
 append(ValList, OldList, NewList),
 !.
add_newval([H|T], Val, [Val, H|T]).
add_newval(Val, [H|T], [Val, H|T]).
 add_newval(_, Val, Val).

The intelligence in the frame comes after the cut in add_facet. If a new value has been
successfully added, then check_add_demons looks for any demon procedures that must
be run before the update is completed.

In check_add_demons, get_frame is called to retrieve any demon predicates in the facet
add. Note that since get_frame uses inheritance, demons can be put in higher level frames
that apply to all sub frames.

check_add_demons(req(T, S, F, V), FacetList) :-
 get_frame(T, S-add(Add)),
 !,
 Add =.. [Functor | Args],
 AddFunc =.. [Functor, req(T, S, F, V) | Args],
 call(AddFunc).
check_add_demons(_, _).

The delete predicate used in the add routines must simply return a list that does not have
the item to be deleted in it. If there was no item, then returning the same list is the right
thing to do. Therefor delete looks like:

delete(X, [], []).
delete(X, [X|Y], Y) :-
 !.
delete(X, [Y|Z], [Y|W]) :-
 delete(X, Z, W).

72 Chapter 6 - Frames

The del_frame predicate is similar to both get_frame and add_frame. However, one
major difference is in the way items are deleted from lists. When add_frame was deleting
things from lists (for later replacements with updated values), the behavior of delete above
was appropriate. For del_frame, a failure should occur if there is nothing to delete from
the list. For this function we use remove, which is similar to delete, but fails if there was
nothing to delete.

remove(X, [X|Y], Y) :- !.
remove(X, [Y|Z], [Y|W]) :-
 remove(X, Z, W).

The rest of del_frame looks like:

del_frame(Thing) :-
 retract(frame(Thing, _)).
del_frame(Thing) :-
 error(['No frame', Thing, 'to delete']).
del_frame(Thing, UList) :-
 old_slots(Thing, SlotList),
 del_slots(Thing, UList, SlotList, NewList),
 retract(frame(Thing, _)),
 asserta(frame(Thing, NewList)).

del_slots([], X, X, _).
del_slots(T, [U|Rest], SlotList, NewList) :-
 prep_req(U, req(T, S, F, V)),
 del_slot(req(T, S, F, V), SlotList, Z),
 del_slots(T, Rest, Z, NewList).
del_slots(T, X, SlotList, NewList) :-
 prep_req(X, req(T, S, F, V)),
 del_slot(req(T, S, F, V), SlotList, NewList).

del_slot(req(T, S, F, V), SlotList, [S-FL2|SL2]) :-
 remove(S-FacetList, SlotList, SL2),
 del_facet(req(T, S, F, V), FacetList, FL2).
del_slot(Req, _, _) :-
 error(['del_slot - unable to remove', Req]).

del_facet(req(T, S, F, V), FacetList, FL) :-
 FV =.. [F, V],
 remove(FV, FacetList, FL),
 !,
 check_del_demons(req(T, S, F, V), FacetList).
del_facet(req(T, S, F, V), FacetList, [FNew|FL]) :-
 FX =.. [F, OldVal],
 remove(FX, FacetList, FL),
 remove(V, OldVal, NewValList),
 FNew =.. [F, NewValList],
 !,
 check_del_demons(req(T, S, F, V), FacetList).
del_facet(Req, _, _) :-
 error(['del_facet - unable to remove', Req]).

check_del_demons(req(T, S, F, V), FacetList) :-
 get_frame(T, S-del(Del)),
 !,
 Del =.. [Functor|Args],
 DelFunc =.. [Functor, req(T, S, F, V)|Args],
 call(DelFunc).
check_del_demons(_, _).

This code is essentially the same as for the add function, except that the new facet values
have elements deleted instead of replaced. Also, the del facet is checked for demons
instead of the add facet.

Building Expert Systems in Prolog 73

Here is an example of a demon called when a man's hair is deleted. It checks with the user
before proceeding.

bald(req(T, S, F, V)) :-
 write_line([T, 'will be bald, ok to proceed?']),
 read(yes).

6.4 Using Frames
The use of inheritance makes the frame based system an intelligent way of storing data.
For many expert systems, a large portion of the intelligence can be stored in frames instead
of in rules. Let's consider, for example, the bird identification expert system.

In the bird system there is a hierarchy of information about birds. The rules about the order
tubenose, family albatross, and particular albatrosses can all be expressed in frames as
follows:

frame(tubenose,
 [
 level-[val order],
 nostrils-[val external_tubular],
 live-[val at_sea],
 bill-[val hooked]
]).
frame(albatross,
 [
 ako-[val tubenose],
 level-[val family],
 size-[val large],
 wings-[val long-narrow]
]).
frame(laysan_albatross,
 [
 ako-[val albatross],
 level-[val species],
 color-[val white]
]).
frame(black_footed_albatross,
 [
 ako-[val albatross],
 level-[val species],
 color-[val dark]
]).

In a forward chaining system, we would feed some facts to the system and the system
would identify the bird based on those facts. We can get the same behavior with the frame
system and the predicate get_frame.

For example, if we know a bird has a dark color, and long narrow wings, we can ask the
query:

?- get_frame(X, [color-dark, wings-long_narrow]).
X = black_footed_albatross ;
no

Notice that this will find all of the birds that have the requested property. The ako slots
and inheritance will automatically apply the various slots from wherever in the hierarchy
they appear. In the above example, the color attribute was filled from the black footed
albatross frame and the wings attribute was filled from the albatross frame. This feature
can be used to find all birds with long narrow wings:

74 Chapter 6 - Frames

?- get_frame(X, [wings-long_narrow]).
X = albatross ;
X = black_footed_albatross ;
X = laysan_albatross ;
no

The queries in this case are more general than in the various expert systems used so far.
The query finds all frames that fit the given facts. The query could specify a level, but the
query can also be used to bind variables for various fits. For example, to get the level in
the hierarchy of the frames that have long narrow wings:

?- get_frame(X, [wings-long_narrow, level-L]).
X = albatross, L = family ;
X = black_footed_albatross, L = species;
X = laysan_albatross, L = species ;
no

6.5 Summary
For the expert systems we have seen already, we have used the Prolog database to store
information. That database has been relatively simple. By writing special access predicates
it is possible to create a much more sophisticated database using frame technology. These
frames can then be used to store knowledge about the particular environment.

Exercises
6.1 Add other facets to the slots to allow for specification of things like explanation of the

slot, certainty factors, and constraints.

6.2 Add an automatic query-the-user facility that is called whenever a slot value is sought
and there is no other frame to provide the answer. This will allow the frame system to
be used as a backward chaining expert system.

Building Expert Systems in Prolog 75

7 Integration
Many real problems cannot be solved by the simple application of a single expert system
technique. Problems often require multiple knowledge representation techniques as well as
conventional programming techniques.

Often it is necessary to either have the expert system embedded in a conventional
application, or to have other applications callable from the expert system. For example, a
financial expert system might need a tight integration with a spread sheet, or an
engineering expert system might need access to programs that perform engineering
calculations.

The degree to which the systems in this book can be integrated with other environments
depends on the flexibility of the Prolog used and the application that needs to be accessed.
The systems can be designed with the hooks in place for this integration. In the examples
presented in this chapter, the knowledge base tools will have hooks to Prolog.

Often the Prolog code can be used to implement features of the system that do not fit
neatly in the knowledge tools. This is often the case in the area of user interface, but
applies to other portions as well. In the example in this chapter, we will see Prolog used to
smooth over a number of the rough edges of the application.

The degree of integration needed between knowledge tools also depends somewhat on the
application. In this chapter, the forward chaining system and frame based knowledge
representation will be tightly integrated. By having control over the tools, the degree of
integration can be implemented to suit the individual application.

The example used in this chapter is the same room furniture placement used in the chapter
on forward chaining. While the application was developed with the pure Oops system, a
much more elegant solution can be implemented by integrating frames, Oops, and Prolog.
In particular, there is a lot of knowledge about the types of furniture that could be better
stored in a frame system. Also the awkward input and output sections of the system could
be better written in Prolog.

7.1 Foops (Frames and Oops)
The first step is to integrate the frame based knowledge representation with the Oops
forward chaining inference engine. The integration occurs in two places:

• The concept of a frame instance needs to be implemented.

• The rules must be able to reference the frame instances.

The instances are needed for an integrated system to distinguish between the frame data
definition in the knowledge base, and the instances of frames in working storage. The rules
will be matching and manipulating instances of frames, rather than the frame definitions
themselves. For example, there will be a frame describing the attributes of chairs, but there
might be multiple instances of chairs in working storage.

Instances
In the frame system as it is currently written, the frames are the data. Particular instances
of a frame, such as person, are just additional frames. For use in the expert system it is
cleaner to distinguish between frame definitions and instances of frames.

Building Expert Systems in Prolog 77

The definitions specify the slots for a frame, and the instances provide specific values for
the slots. The frame instances will be updated in working storage and accessed by the
rules. For example, person would be a frame definition, and mary would be an instance of
person.

The inheritance still works as before. That is, a person frame could be defined as well as
man and woman frames, which inherit from person. In this case, mary would be an
instance of woman, inheriting from both the woman frame and the person frame.

The frame definitions will be considered to define classes of things. So, person, man, and
woman are classes defined in frame relations. Individuals, such as mary, dennis,
michael, and diana are stored as instances of these classes.

To implement the instances, we need both a data structure and predicates to manipulate the
data structure. An instance of a frame looks a lot like a frame, and will be stored in the
relation frinst/4. The four arguments will be:

• the class name;

• the instance name;

• the list of slot attribute-value pairs associated with the instance;

• a time stamp indicating when the instance was last updated.

For example:

frinst(woman,
 mary,
 [ako-woman, hair-brown, hobby-rugby],
 32).
frinst(man,
 dennis,
 [ako-man, hair-blond, hobby-go],
 33).

The predicates which manipulate frinsts are:

• getf — retrieve attribute values for a frinst;

• addf — add a new frinst;

• uptf — update an existing frinst;

• delf — delete a frinst, or attribute values for a frinst;

• printf — print information about a frinst.

The code for getf is almost identical for that of get_frame. It just uses the frinst structure
to get data rather than the frame structure. The ako slot of a frinst is automatically set to
the class name, so if it is necessary to inherit values, the appropriate frames will be called
just as they were for get_frame. The only other change is the additional argument for
retrieving the time stamp as well.

getf(Class, Name, ReqList) :-
 getf(Class, Name, ReqList, _).
getf(Class, Name, ReqList, TimeStamp) :-
 frinst(Class, Name, SlotList, TimeStamp),
 slot_vals(Class, Name, ReqList, SlotList).

The addf predicate is similar to add_frame, however it has two new features. First, it will
generate a unique name for the frinst if none was given, and second it adds a time stamp.

78 Chapter 7 - Integration

The generated name is simply a number in sequence. The time stamp is generated the same
way, and uses the predicate getchron, which was already implemented for Oops. Note that
addf also sets the ako slot to the value of the Class.

addf(Class, Nm, UList) :-
 (var(Nm), genid(Name);
 Name=Nm),
 add_slots(Class, Name, [ako-Class|UList], SlotList,NewList),
 getchron(TimeStamp),
 asserta(frinst(Class, Name, NewList, TimeStamp)),
 !.

The uptf predicate is distinct from addf in that it only updates existing frinsts and does
not create new ones. It puts a new time stamp on the frinst as part of the update.

uptf(Class, Name, UList) :-
 frinst(Class, Name, SlotList, _),
 add_slots(Class, Name, UList, SlotList, NewList),
 retract(frinst(Class, Name, _, _)),
 getchron(TimeStamp),
 asserta(frinst(Class, Name, NewList, TimeStamp)),
 !.

The delf and printf predicates are similarly based on del_frame and print_frame. Both
offer options for accessing large numbers of instances. For example delf(Class) deletes all
frinsts in Class, whereas delf(Class, Name, DList) deletes the attribute values in DList
from the specified instance.

Rules for frinsts
Now that there is a mechanism for handling instances of frames, the next step is to revise
the Oops rule structure to use those instances. In Oops, each of the LHS conditions was a
Prolog term held in a fact relation. For Foops, the LHS conditions will be frinsts.

In keeping with the Oops design of using operators to make the rules more readable, the
frinsts will be presented differently in the rules. The form will be:

Class - Name with [Attr - Val, ...]

For example, the rule in the furniture configuration that puts table lamps on end tables is:

rule f11:
[table_lamp - TL with [position-none],
 end_table - ET with [position-wall/W]]
==>
[update(table_lamp - TL with [position-end_table/ET])].

Note that the RHS actions also use the same syntax for the instance.

The change is easy to implement due to the interchangeability of facts and rules in Prolog.
Oops refers to facts, expecting to find data. Foops uses the same code, but implements the
relation fact as a rule, which calls getf.

Following is the code that matches the premises from the LHS. It is the the same as in the
previous version except that the definition of fact has been changed to reflect the new
nature of each individual premise.

match([], []).

Building Expert Systems in Prolog 79

match([Prem|Rest], [Prem/Time|InstRest]) :-
 mat(Prem, Time),
 match(Rest, InstRest).

mat(N:Prem, Time) :-
 !,
 fact(Prem, Time).
mat(Prem, Time) :-
 fact(Prem, Time).
mat(Test, 0) :-
 test(Test).

fact(Prem, Time) :-
 conv(Prem, Class, Name, ReqList),
 getf(Class, Name, ReqList, Time).

conv(Class-Name with List, Class, Name, List).
conv(Class-Name, Class, Name, []).

The conv relation is used to allow the user to specify instances in an abbreviated form if
there is no attribute value list. For example, the following rule uses an instance of the class
goal where the name is the only important bit of information:

rule f1:
[goal - couch_first,
 couch - C with [position-none, length-LenC],
 door - D with [position-wall/W],
 ...

The only other change which has to be made is in the implementation of the action
commands which manipulate working storage. These now manipulate frinst structures
instead of the pure facts as they did in Oops. They simply call the appropriate frame
instance predicates.

assert_ws(fact(Prem, Time)) :-
 conv(Prem, Class, Name, UList),
 addf(Class, Name, UList).

update_ws(fact(Prem, Time)) :-
 conv(Prem, Class, Name, UList),
 uptf(Class, Name, UList).

retract_ws(fact(Prem, Time)) :-
 conv(Prem, Class, Name, UList),
 delf(Class, Name, UList).

Adding Prolog to Foops
Now that frames and Oops have been integrated into a new system, Foops, the next step is
to integrate Prolog as well. This has already been done for the frame based system with the
various demons that can be associated with frame slots. The Prolog predicates referred to
in the demon slots can simply be added directly to the knowledge base.

Adding Prolog to the rules is done by simply adding support for a call statement in both
the test (for the LHS) and take (for the RHS) predicates.

...
test(call(X)) :- call(X).
...
...
take(call(X)) :- call(X).
...

80 Chapter 7 - Integration

Calls to Prolog predicates can now be added on either side of a rule. The Prolog can be
simple predicates performing some function right in the knowledge base, or they can
initiate more complex processing, including accessing other applications.

Figure 7.1 shows the major components of the Foops shell. Frames and Prolog code have
been added to the knowledge base. Working storage is composed of frame instances, and
the inference engine includes the frame manipulation predicates.

User Interface

 command_loop
 read
 write

Inference Engine
 getf
 go addf
 match delf
 process uptf

Knowledge Base

 initial_data
 frame
 rule
 Prolog

Working Storage

 frinst

Figure 7.1 Major predicates of Foops shell

7.2 Room Configuration
Now that Foops is built, let's use it to attack the room configuration problem again. Many
of the aspects of the original system were handled clumsily in the original version. In
particular:

• The initial data gathering was awkward using rules that triggered other data gathering
rules.

• The wall space calculations were done in the rules.

• Each rule was responsible for maintaining the consistency of the wall space and the
furniture against the wall.

The new system will allow for a much cleaner expression of most of the system, and use
Prolog to keep the rough edges out of the rule and frame knowledge structures.

Much of the knowledge about the furniture in the room is better stored in frames. This
knowledge is then automatically applied by the rules accessing instances of furniture. The
rules then become simpler, and just deal with the IF THEN situations and not data
relationships.

Building Expert Systems in Prolog 81

Furniture frames
The knowledge base contains the basic frame definitions, which will be used by the
instances of furniture. The frames act as sophisticated data definition statements for the
system.

The highest frame defines the class furniture. It establishes defaults and demons that apply
to all furniture.

frame(furniture,
 [legal_types - [val [couch,
 chair,
 coffee_table,
 end_table,
 standing_lamp,
 table_lamp,
 tv,
 knickknack]],
 position - [def none, add pos_add],
 length - [def 3],
 place_on - [def floor]]).

The most interesting slot is position. Each piece of furniture has the default of having the
position none, meaning it has not been placed in the room. This means the programmer
need not add this value for each piece of furniture initially. As it is positioned, the instance
acquires a value that is used instead of the inherited default.

Also note that there is a demon, which is called when a position is added for a piece of
furniture. This demon will automatically maintain the relation between wall space and
furniture position. It will be described in detail a little later.

Next in the knowledge base are some classes of furniture. Note that the default length for a
couch will override the general default length of 3 for any piece of furniture without a
length specified.

frame(couch, [ako - [val furniture],
 length - [def 6]]).
frame(chair, [ako - [val furniture]]).

A table is another class of furniture, which is a bit different from other furniture in that
things can be placed on a table. It has additional slots for available space, the list of items
it is holding (things placed on the table), and the slot indicating that it can support other
items.

frame(table, [ako - [val furniture],
 space - [def 4],
 length - [def 4],
 can_support - [def yes],
 holding - [def []]]).

There are two types of tables which are recognized in the system:

frame(end_table, [ako - [val table],
 length - [def 2]]).
frame(coffee_table, [ako - [val table],
 length - [def 4]]).

Remember that frames can have multiple inheritance paths. This feature can be used to
establish other classes, which define attributes shared by certain types of furniture. For

82 Chapter 7 - Integration

example, the class electric is defined, which describes the properties of items that require
electricity.

frame(electric, [needs_outlet - [def yes]]).

Lamps are electric items included in the knowledge base. Note that lamps are further
divided between two types of lamps. A table lamp is different because it must be placed on
a table.

frame(lamp, [ako - [val [furniture, electric]]]).
frame(standing_lamp, [ako - [val lamp]]).
frame(table_lamp, [ako - [val lamp],
 place_on - [def table]]).

A knickknack is another item that should be placed on a table.

frame(knickknack, [ako - [val furniture],
 length - [def 1],
 place_on - [def table]]).

The television frame shows another use of calculated values. A television might be free
standing or it might have to be placed on a table. This ambiguity is resolved by a calculate
routine, which asks the user for a value. When a rule needs to know what to place the
television on, the user will be asked. This creates the same kind of dialog effect seen in the
backward chaining systems earlier in the book.

Note also that the television uses multiple inheritance, both as a piece of furniture and an
electrical item.

frame(tv, [ako - [val [furniture, electric]],
 place_on - [calc tv_support]]).

Another frame defines walls. There is a slot for the number of outlets on the wall and the
available space. If no space is defined, it is calculated. The holding slot is used to list the
furniture placed against the wall.

frame(wall, [length - [def 10],
 outlets - [def 0],
 space - [calc space_calc],
 holding - [def []]]).

Doors, goals, and recommendations are other types of data that are used in the system.

frame(door, [ako - [val furniture],
 length - [def 4]]).
frame(goal, []).
frame(recommend, []).

Frame Demons
Next in the knowledge base are the Prolog predicates used in the various frame demons.

Here is the predicate that is called to calculate a value for the place_on slot for a
television. It asks the user, and uses the answer to update the television frinst so that the
user will not be asked again.

tv_support(tv, N, place_on-table) :-
 nl,

Building Expert Systems in Prolog 83

 write('Should the TV go on a table? '),
 read(yes),
 uptf(tv, N, [place_on-table]).
tv_support(tv, N, place_on-floor) :-
 uptf(tv, N, [place_on-floor]).

The pos_add demon is called whenever the position of a piece of furniture is updated. It
illustrates how demons and frames can be used to create a database that maintains its own
semantic integrity. In this case, whenever the position of a piece of furniture is changed,
the available space of the wall it is placed next to, or the table it is placed on, is
automatically updated. Also the holding list of the wall or table is also updated.

This means that the single update of a furniture position results in the simultaneous update
of the wall or table space and wall or table holding list. Note the use of variables for the
class and name make it possible to use the same predicate for both tables and walls.

pos_add(C, N, position-CP/P) :-
 getf(CP, P, [space-OldS]),
 getf(C, N, [length-L]),
 NewS is OldS - L,
 NewS >= 0,
 uptf(CP, P, [holding-[C/N], space-NewS]).
pos_add(C, N, position-CP/P) :-
 nl,
 write_line(['Not enough room on', CP, P, for, C, N]),
 !,
 fail.

This predicate also holds the pure arithmetic needed to maintain the available space. This
used to be included in the bodies of the rules in Oops. Now it is only specified once, and is
part of a demon defined in the highest frame, furniture. It never has to be worried about in
any other frame definition or rules.

The pos_add demon also is designed to fail and report an error if something doesn't fit.
The original uptf predicate, which was called to update the position, also fails, and no part
of the update takes place. This insures the integrity of the database.

Initially, there is no space included in the wall and table frinsts. The following demon will
calculate it based on the holding list. This could also have been used instead of the above
predicate, but it is more efficient to calculate and store the number than to recalculate it
each time.

space_calc(C, N, space-S) :-
 getf(C, N, [length-L, holding-HList]),
 sum_lengths(HList, 0, HLen),
 S is L - HLen.

sum_lengths([], L, L).
sum_lengths([C/N|T], X, L) :-
 getf(C, N, [length-HL]),
 XX is X + HL,
 sum_lengths(T, XX, L).

Initial Data
Now let's look at the data initialization for the system. It establishes other slots for the wall
frames giving spatial relationships between them, and establishes the goal gather_data.

initial_data([goal - gather_data,
 wall - north with [opposite-south,
 right-west,

84 Chapter 7 - Integration

 left-east],
 wall - south with [opposite-north,
 right-east,
 left-west],
 wall - east with [opposite-west,
 right-north,
 left-south],
 wall - west with [opposite-east,
 right-south,
 left-north]
]).

Input Data
The first rule uses the call feature to call a Prolog predicate to perform the data gathering
operations, which used to be done with rules in Oops. Foops uses the Lex rule selection,
but this rule will fire first because no other rules have any furniture to work with. It then
asserts the goal couch_first after gathering the other data. Because Lex gives priority to
rules accessing recently updated elements in working storage, the rules that have as a goal
couch_first will fire next.

rule 1:
[goal - gather_data]
==>
[call(gather_data),
 assert(goal - couch_first)].

The Prolog predicate proceeds with prompts to the user and calls to frame predicates to
populate working storage.

gather_data :-
 read_furniture,
 read_walls.

read_furniture :-
 get_frame(furniture, [legal_types-LT]),
 write('Enter name of furniture at the prompt. '), nl,
 write(' It must be one of:'), nl,
 write(LT), nl,
 write('Enter end to stop input.'), nl,
 write('At the length prompt enter y or a new number.'), nl,
 repeat,
 write('>'),
 read(X),
 process_furn(X),
 !.

Note that this predicate has the additional intelligence of finding the default value for the
length of a piece of furniture and allowing the user to accept the default, or choose a new
value.

process_furn(end).
process_furn(X) :-
 get_frame(X, [length-DL]),
 write(length-DL), write('>'),
 read(NL),
 get_length(NL, DL, L),
 addf(X, _, [length-L]),
 fail.

get_length(y, L, L) :- !.
get_length(L, _, L).

Building Expert Systems in Prolog 85

The dialog to get the empty room layout is straight-forward Prolog.

read_walls :-
 nl, write('Enter data for the walls.'), nl,
 write('What is the length of the north & south walls? '),
 read(NSL),
 uptf(wall, north, [length-NSL]),
 uptf(wall, south, [length-NSL]),
 write('What is the length of the east & west walls? '),
 read(EWL),
 uptf(wall, east, [length-EWL]),
 uptf(wall, west, [length-EWL]),
 write('Which wall has the door? '),
 read(DoorWall),
 write('What is its length? '),
 read(DoorLength),
 addf(door, D, [length-DoorLength]),
 uptf(door, D, [position-wall/DoorWall]),
 write('Which walls have outlets? (a list)'),
 read(PlugWalls),
 process_plugs(PlugWalls).

process_plugs([]) :- !.
process_plugs([H|T]) :-
 uptf(wall, H, [outlets-1]),
 !,
 process_plugs(T).
process_plugs(X) :-
 uptf(wall, X, [outlets-1]).

The Rules
With the data definition, initial data, and input taken care of, we can proceed to the body of
rules. They are much simpler than the original versions.

The first rules place the couch either opposite the door or to its right, depending on which
wall has more space. Note that the update of the couch position is done with a single
action. The frame demons take care of the rest of the update.

rule f1:
[goal - couch_first,
 couch - C with [position-none, length-LenC],
 door - D with [position-wall/W],
 wall - W with [opposite-OW, right-RW],
 wall - OW with [space-SpOW],
 wall - RW with [space-SpRW],
 SpOW >= SpRW,
 LenC =< SpOW]
==>
[update(couch - C with [position-wall/OW])].

rule f2:
[goal - couch_first,
 couch - C with [position-none, length-LenC],
 door - D with [position-wall/W],
 wall - W with [opposite-OW, right-RW],
 wall - OW with [space-SpOW],
 wall - RW with [space-SpRW],
 SpRW >= SpOW,
 LenC =< SpRW]
==>
[update(couch - C with [position-wall/RW])].

86 Chapter 7 - Integration

The next rules position the television opposite the couch. They cover the two cases of a
free standing television and one that must be placed on a table. If the television needs to be
placed on a table, and there is no table big enough, then a recommendation to buy an end
table for the television is added. Because of specificity in Lex (the more specific rule has
priority), rule f4 will fire before f4a. If f4 was successful, then f4a will no longer apply. If
f4 failed, then f4a will fire the next time.

The rule to position the television puts the end table on the wall opposite the couch and the
television on the end table.

rule f3:
[couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none, place_on-floor]]
==>
[update(tv - TV with [position-wall/OW])].

rule f4:
[couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none, place_on-table],
 end_table - T with [position-none]]
==>
[update(end_table - T with [position-wall/OW]),
 update(tv - TV with [position-end_table/T])].

rule f4a:
[tv - TV with [position-none, place_on-table]]
==>
[assert(recommend - R with [buy-['table for tv']])].

The coffee table should be placed in front of the couch, no matter where it is.

rule f5:
[coffee_table - CT with [position-none], couch - C]
==>
[update(coffee_table - CT with [position-frontof(couch/C)])].

The chairs go on adjacent walls to the couch.

rule f6:
[chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [right-RW, left-LW],
 wall - RW with [space-SpR],
 wall - LW with [space-SpL],
 SpR > SpL]
==>
[update(chair - Ch with [position-wall/RW])].

rule f7:
[chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [right-RW, left-LW],
 wall - RW with [space-SpR],
 wall - LW with [space-SpL],
 SpL > SpR]
==>
[update(chair - Ch with [position-wall/LW])].

The end tables go next to the couch if there are no other end tables there. Otherwise they
go next to the chairs. Note that the rule first checks to make sure there isn't an unplaced
television that needs an end table for support. The television rule will position the end
table for holding the television.

Building Expert Systems in Prolog 87

rule f9:
[end_table - ET with [position-none],
 not tv - TV with [position-none, place_on-table],
 couch - C with [position-wall/W],
 not end_table - ET2 with [position-wall/W]]
==>
[update(end_table - ET with [position-wall/W])].

rule f10:
[end_table - ET with [position-none],
 not tv - TV with [position-none, place_on-table],
 chair - C with [position-wall/W],
 not end_table - ET2 with [position-wall/W]]
==>
[update(end_table - ET with [position-wall/W])].

Table lamps go on end tables.

rule f11:
[table_lamp - TL with [position-none],
 end_table - ET with [position-wall/W]]
==>
[update(table_lamp - TL with [position-end_table/ET])].

Knickknacks go on anything that will hold them. Note the use of variables in the class and
name positions. The query to the slot can_support will cause this rule to find anything
which has the attribute value can_support - yes. This slot is set in the table frame, so both
end tables and coffee tables will be available to hold the knickknack.

rule f11a:
[knickknack - KK with [position-none],
 Table - T with [can_support-yes, position-wall/W]]
==>
[update(knickknack - KK with [position-Table/T])].

The rules for determining if extensions cords are necessary are simplified by the use of
variables and frame inheritance. The rule looks for anything that needs an outlet. This will
be true of any items that need an outlet, which is a property inherited from frame electric.
It is not necessary to write separate rules for each case.

It is necessary to write a separate rule to cover those things that are positioned on other
things. The wall can only be found from the supporting item. This is the case where a
television or table lamp is placed on a table. While this is handled in rules here, it would
also have been possible to use frame demons to cover this case instead.

rule f12:
[Thing - X with [needs_outlet-yes, position-wall/W],
 wall - W with [outlets-0]]
==>
[assert(recommend - R with [buy-['extension cord'-W]])].

rule f13:
[Thing - X with [needs_outlet-yes, position-C/N],
 C - N with [position-wall/W],
 wall - W with [outlets-0]]
==>
[assert(recommend - R with [buy-['extension cord'-Thing/W]])].

Due to specificity priorities in Lex, the following rule will fire last. It calls a Prolog
predicate to output the results of the session.

rule f14:
[]

88 Chapter 7 - Integration

==>
[call(output_data)].

Output Data
The output_data predicate is again straight forward Prolog, which gets the relevant
information and displays it.

output_data :-
 write('The final results are:'), nl,
 output_walls,
 output_tables,
 output_recommends,
 output_unplaced.

output_walls :-
 getf(wall, W, [holding-HL]),
 write_line([W, wall, holding|HL]),
 fail.
output_walls.

output_tables :-
 getf(C, N, [holding-HL]),
 not C = wall,
 write_line([C, N, holding|HL]),
 fail.
output_tables.

output_recommends :-
 getf(recommend, _, [buy-BL]),
 write_line([purchase|BL]),
 fail.
output_recommends.

output_unplaced :-
 write('Unplaced furniture:'), nl,
 getf(T, N, [position-none]),
 write(T-N), nl,
 fail.
output_unplaced.

Figure 7.2 summarizes how the tools in Foops are applied to the furniture layout program.
Frames are used for objects and relationships, rules are used to define situations and
responses, and Prolog is used for odds and ends like I/O and calculations.

Frames

Rules

Prolog

information about objects - ex. furniture
relationships between objects - ex. length of
 furniture and wall space

situations and responses - when to place
 what and when

I/O - gather data
calculations - wall space updates

Figure 7.2 Summary of knowledge representation tools used in Foops

Building Expert Systems in Prolog 89

7.3 A Sample Run
Here is a portion of a sample run of the furniture placement system.

The system starts in the Foops command loop, and then begins the initial data gathering.

=>go.

Enter name of furniture at the prompt. It must be one of:
[couch, chair, coffee_table, end_table, standing_lamp, table_lamp,
tv, knickknack]

Enter end to stop input.

At the length prompt enter y or a new number.
>couch.
length-6>y.
>chair.
length-3>5.
...
>end.

Enter data for the walls.
What is the length of the north & south walls? 12.
What is the length of the east & west walls? 9.
Which wall has the door? east.
What is its length? 3.
Which walls have outlets? (a list)[east].
adding-(goal-couch_first)
Rule fired 1

One of the rules accessing the television causes this prompt to appear.

Should the TV go on a table? yes.

The system has informational messages regarding which rules are firing and what data is
being updated.

updating-(couch-110 with [position-wall/north])
Rule fired f2
updating-(end_table-116 with [position-wall/south])
updating-(tv-117 with [position-end_table/116])
Rule fired f4
...

Here is a message that appeared when a knickknack was unsuccessfully placed on an end
table. A different knickknack was then found to fit on the same table.

Not enough room on end_table 116 for knickknack 121
Rule fired f11a
updating-(knickknack-120 with [position-end_table/116])
Rule fired f11a

Here is one of the extension cord recommendations:

adding-(recommend-_3888 with [buy-[extension cord-
 table_lamp/north]])
Rule fired f13

The last rule to fire provides the final results.

90 Chapter 7 - Integration

The final results are:
north wall holding end_table/114 couch/110
east wall holding chair/112 door/122
west wall holding end_table/115 chair/113
south wall holding end_table/116
end_table 114 holding table_lamp/119
end_table 115 holding knickknack/121
end_table 116 holding knickknack/120 tv/117
purchase extension cord-table_lamp/north
purchase extension cord-tv/south
Unplaced furniture:
table_lamp-118
chair-111

7.4 Summary
A combination of techniques can lead to a much cleaner representation of knowledge for a
particular problem. The Prolog code for each of the techniques can be integrated relatively
easily to provide a more complex system.

Exercises
7.1 Integrate Clam with frames.

7.2 Implement multiple rule sets as described in the chapter five exercises. Let each rule
set be either forward or backward chaining, and use the appropriate inference engine
for both.

7.3 Build another expert system using Foops.

Building Expert Systems in Prolog 91

8 Performance
As the size of a knowledge base grows, performance becomes more problematic. The
inference engines we have looked at so far use a simple pattern matching algorithm to find
the rules to fire. Various indexing schemes can be used to speed up that pattern matching
process.

The indexing problem is different for forward and backward chaining systems. Backward
chaining systems need to be accessed by the goal pattern in the right hand side of the rule.
Forward chaining systems need to be indexed by the more complex patterns on the left
hand side. Backward chaining issues will be discussed briefly in this chapter, followed by
more in-depth treatment of a simplified Rete match algorithm for the Foops forward
chaining system.

8.1 Backward Chaining Indexes
For performance in backward chaining systems, the rules are indexed by goal patterns on
the right hand side. In particular, if the goal is to find a value for a given attribute, then the
rules should be indexed by the attribute set in the RHS of the rule. This happens
automatically for the pure Prolog rules in the bird identification program since the
attributes are Prolog predicate names, which are generally accessed through hashing
algorithms. The indices, if desired, must be built into the backward chaining engine used
in Clam. Some Prologs provide automatic indexing on the first argument of a predicate.
This feature could be used to provide the required performance.

Given indexing by the first argument, the rules in Clam would be represented by:

rule(Attribute, Val, CF, Name, LHS).

This way, a search for rules providing values for a given attribute would quickly find the
appropriate rules.

Without this, each rule could be represented with a functor based on the goal pattern and
accessed using the univ (=..) predicate rather than the pattern matching currently used in
Clam. The predicates that initially read the rules can store them using this scheme. For
example, the internal format of the Clam rules would be:

attribute(Val, CF, Name, LHS).

In particular, some rules from the car diagnostic system would be:

problem(battery, 100, 'rule 1',
 [av(turn_over, no), av(battery_bad, yes)]).
problem(flooded, 80, 'rule 4',
 [av(turn_over, yes), av(smell_gas, yes)]).

battery_bad(yes, 50, 'rule 3', [av(radio_weak, yes)]).

When the inference is looking for rules to establish values for an attribute-value pattern,
av(A, V), the following code would be used:

Rule =.. [A, V, CF, ID, LHS],
call(Rule),
...

Building Expert Systems in Prolog 93

This structure would allow Clam to take advantage of the hashing algorithms built into
Prolog for accessing predicates.

8.2 Rete Match Algorithm
OPS5 and some high-end expert system shells use the Rete match algorithm to optimize
performance. It is an indexing scheme, which allows for rapid matching of changes in
working memory with the rules. Previous match information is saved on each cycle, so the
system avoids redundant calculations. We will implement a simplified version of the Rete
algorithm for Foops.

The Rete algorithm is designed for matching left hand side rule patterns against working
storage elements. Let's look at two similar rules from the room placement expert system.

rule f3#
[couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none, place_on-floor]]
==>
[update(tv - TV with [position-wall/OW])].

rule f4#
[couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none, place_on-table],
 end_table - T with [position-none]]
==>
[update(end_table - T with [position-wall/OW]),
 update(tv - TV with [position-end_table/T])].

First let's define some terms. Each LHS is composed of one or more frame patterns. An
example of a frame pattern is:

tv-TV with [position-none, place_on-table]

The frame pattern will be the basic unit of indexing in the simplified Rete match
algorithm. In a full implementation, indexing is carried down to the individual attribute-
value pairs within the frame pattern, such as place_on-table.

The match algorithm used in the first implementation of Foops takes every rule and
compares it to all the frame instances on each cycle. In particular, both of the example
rules above would be compared against working storage on each cycle. Not only is
redundant matching being done on each cycle, within each cycle the same frame patterns
are being matched twice, once for each rule. Since working memory generally has few
changes on each cycle, and since many of the rules have redundant patterns, this approach
is very inefficient.

With the Rete algorithm, the status of the match information from one cycle is
remembered for the next. The indexing allows the algorithm to update only that match
information which is changed due to working memory changes.

The rules are compiled into a network structure where the nodes correspond to the frame
patterns in the LHS of the rules. There are three basic types of node, which serve as: the
entry to the network; the internals of the network; and the exit from the network. These are
called root nodes, two-input nodes, and rule nodes respectively.

The network has links which run from single frame patterns in the root nodes, through the
two-input nodes, to full LHS patterns in the rule nodes. Figure 8.1 shows the nodes and
links generated from the two sample rules.

94 Chapter 8 - Performance

couch-C with
 [position-wall/W]

Root Nodes
tv-TV with
 [position-none,
 place_on_floor]

wall-W with
 [opposite-OW]

end_table-T with
 [position-none]

tv-TV with
 [position-none,
 place_on_table]

couch-C with
 [position-wall/W]

wall-W with
 [opposite-OW]

couch-C with
 [position-wall/W],
wall-W with
 [opposite-OW]

tv-TV with
 [position-none,
 place_on_floor]

Tw
o-

in
pu

t N
od

es
#1

#2

couch-C with
 [position-wall/W],
wall-W with
 [opposite-OW]

tv-TV with
 [position-none,
 place_on_table]

#3

couch-C with
 [position-wall/W],
wall-W with
 [opposite-OW]
tv-TV with
 [position-none,
 place_on_table]

end_table-T with
 [position-none]

#4

Rule Nodes
Rule f3 Rule f4

Figure 8.1 The nodes of the Rete network for two sample rules

Network Nodes
The root nodes serve as entry points to the Rete network. They are the simplest patterns
recognized by the network, in this case the frame patterns that appear in the various rules.
A frame pattern only appears once in a root node even if it is referenced in multiple rules.
Each root node has pointers to two-input nodes, which are used to combine the patterns
into full LHS patterns.

Two-input nodes represent partially completed LHS patterns. The left input has a pattern
that has one or more frame patterns as they appear in one or more rules. The right input
has a single frame pattern, which when appended to the left input pattern completes more

Building Expert Systems in Prolog 95

of a full LHS pattern. The two-input node is linked to other two-input or rule nodes whose
left input matches the larger pattern.

The rule nodes are the exit points of the Rete network. They have full LHS patterns and
RHS patterns.

Network Propagation
Associated with each two-input node are copies of working storage elements that have
already matched either side of the node. These are called the left and right memories of the
node. In effect, this means working memory is stored in the network itself.

Whenever a frame instance is added, deleted, or updated it is converted to a "token". A
token is formed by comparing the frame instance to the root patterns. A root pattern which
is unified with the frame instance is a token. The token has an additional element which
indicates whether it is to be added to or deleted from the network.

wall-north with
 [opposite-south,
 left-west, right-east]

Frame Pattern

wall-W with [opposite-OW]

couch-C with
 [position-wall/W]

wall-W with
 [opposite-OW]

couch-C with
 [position-wall/W],
wall-W with
 [opposite-OW]

tvTV with
 [position-none,
 place_on-floor]

Rule f3
...
wall-W with [opposite-OW],
...

Frame Instance

Root
Node

Add
Token + wall-north with [opposite-south]

Two-
input
Node

couch-1 with
 [position-wall/north]

wall-north with
 [opposite-south]

Left Memory Right Memory

Add
Token

+ couch-1 with [position-wall/north],
 wall-north with [opposite-south]

couch-1 with [position-wall/north],
wall-north with [opposite-south]

Left Memory

Figure 8.2 The relationship between frame patterns, instances, tokens, and nodes

96 Chapter 8 - Performance

The token is sent from the root node to its successor nodes. If the token matches a left or
right pattern of a two-input successor node, it is added (or deleted) from the the
appropriate memory for that node. The token is then combined with each token from the
memory on the other side (right or left) and compared with the pattern formed by
combining the left and right patterns of the two input node. If there is a match, the new
combined token is sent to the successor nodes. This process continues until either a rule is
instantiated or there are no more matches.

Figure 8.2 shows the relationships between rules, frame patterns, frame instances, nodes,
and tokens. It shows the top portion of the network as shown in Figure 8.1. It assumes that
couch-1 with [position-wall/north] already exists in the left memory of two-input node #1.
Then the frame instance wall-north with [opposite-south, left-west, right-east] is added,
causing the generation of the token wall-north with [opposite-south]. The token updates
the right memory of node #1 as shown, and causes a new token to be generated, which is
sent to node #2, causing an update to its left memory.

Example of Network Propagation
Lets trace what happens in the network during selected phases of a run of the room
configuration system.

First the walls are placed during initialization. There are four wall frame instances
asserted, which define opposites and are therefore recognized by the portion of the system
we are looking at. They are used to build add-tokens that are sent to the network.

wall-north with [opposite-south].
wall-south with [opposite-north].
wall-east with [opposite-west].
wall-west with [opposite-east].

Each of these tokens matches the following root pattern, binding OW to the various
directions:

wall-W with [opposite-OW].

Therefore, each token is passed on to the right side of two-input node #1 as indicated by
the list of links associated with that root pattern. Each of these terms is stored in the right
memory of node #1. Since there is nothing in the left memory of node #1, network
processing stops until the next input is received.

Next, the furniture is initialized, with the couch, tv, and end_table placed with position-
none. They will be internally numbered 1, 2, and 3. Since the root pattern for couch in the
segment we are looking at has a position-wall/W, the couch does not show up in it at this
time. However, node #2 and node #4 have their right memories updated respectively with
the tokens:

tv-2 with [position-none, place_on-floor].
end_table-3 with [position-none].

At this point the system looks like figure 8.3. The shaded boxes correspond to the two-
input nodes of figure 8.1.

Building Expert Systems in Prolog 97

Two-input Nodes

Left Memory Right Memory

#1

#2

#3

#4

wall-north with [opposite-south]

wall-south with [opposite-north]

wall-east with [opposite-west]

wall-west with [opposite-east]

tv-2 with
 [position-none,
 place_on-floor]

end_table-3 with
 [position-none]

Figure 8.3 The sample network after initialization

After initialization, the system starts to fire rules. One of the early rules in the system will
lead to the placing of the couch against a wall, for example the north wall. This update will
cause the removal of the token couch-1 with [position-none] from parts of the network
not shown in the diagrams, and the addition of the token couch-1 with [position-
wall/north] to the left memory of node #1 as shown in figure 8.4. This causes a cascading
update of various left memories as shown in the rest of figure 8.4 and described below.

Node #1 now has both left and right memories filled in, so the system tries to combine the
one new memory term with the four right memory terms. There is one successful
combination with the wall-north token, so a new token is built from the two and passed to
the two successor nodes of node #1. The new token is:

[couch-1 with [position-wall/north],
 wall-north with [opposite-south]]

This token is stored in the left memories of both successors, node #2 and node #3. There is
no right memory in node #3, so nothing more happens there, but there is right memory in
node #2 that does match the input token. Therefore a new token is constructed and sent to
the successor of node #2. The new token is:

[couch-1 with [position-wall/north],
 wall-north with [opposite-south],
 tv-2 with [position-none, place_on-floor]]

The token is sent to the successor, which is rule #f3. The token is the binding of the left
side of the rule, and leads to variable bindings on the right side of the rule. This is a full

98 Chapter 8 - Performance

instantiation of the rule and is added to the conflict set. When the rule is fired, the action
on the right side causes the position of the tv to be updated.

update (tv-2 with [position-wall/south])

Two-input Nodes

Left Memory Right Memory

#1

#2

#3

#4

wall-north with [opposite-south]

wall-south with [opposite-north]

wall-east with [opposite-west]

wall-west with [opposite-east]

tv-2 with
 [position-none,
 place_on-floor]

end_table-3 with
 [position-none]

couch-1 with
 [position-wall/north]

couch-1 with
 [position-wall/north],
wall-north with
 [opposite-south]

couch-1 with
 [position-wall/north],
wall-north with
 [opposite-south]

Rule f3 instantiation

couch-1 with
 [position-wall/north],
wall-north with
 [opposite-south],
tv-2 with
 [position-none,
 place_on-floor]
==>
update (tv-2 with
 [position-wall/south])

Conflict Set

Figure 8.4 The cascading effect of positioning the couch

This update causes two tokens to be sent through the network. One is a delete token for tv-
2 with [position-none], and the other is an add token for tv-2 with [position-wall/south].
The delete causes the removal of the token from the right memory of node#2. The add
would not match any patterns in this segment of the network.

Performance Improvements
The Rete network provides a number of performance improvements over a simple
matching of rules to working memory:

Building Expert Systems in Prolog 99

• The root nodes act as indices into the network. Only those nodes affected by an update
to working memory are processed.

• The patterns that have been successfully matched are saved in the node left and right
memories. They do not have to be reprocessed.

• When rules share common sequences of patterns, that information is stored only once
in the network, meaning it only has to be processed once.

• The output of the network is full rule instantiations. Once an instantiation is removed
from the conflict set (due to a rule firing) it will not reappear on the conflict set —
thus preventing multiple firings of the rule.

Next, let's look at the code to build a Rete pattern matcher. First we will look at the data
structures used to define the Rete network, then the pattern matcher which propagates
tokens through the network, and finally the rule compiler that builds the network from the
rules.

8.3 The Rete Graph Data Structures
The roots of the network are based on the frame patterns from the rules. The root nodes are
represented as:

root(NID, Pattern, NextList).

NID is a generated identification for the node, Pattern is the frame pattern, and NextList
is the list of succesor nodes that use the Pattern. NextList serves as the pointers
connecting the network together. For example:

root(2, wall-W with [opposite-OW], [1-r]).

The two-input nodes of the network have terms representing the patterns that are matched
from the left and right inputs to the node. Together they form the template, which
determines if particular tokens will be successfully combined into rule instantiations. The
format of this structure is:

bi(NID, LeftPattern, RightPattern, NextList).

NID again is an identification. LeftPattern is the list of frame patterns that have been
matched in nodes previous to this one. RightPattern is the new frame pattern that will be
appended to the LeftPattern. NextList contains a list of successor nodes. For example:

bi(1, [couch-C with [position-wall/W]],
 [wall-W with [opposite-OW],
 [2-l, 3-l]).
bi(2, [couch-C with [position-wall/W],
 wall-W with [opposite-OW]],
 [tv-TV with [position-none, place_on-floor]],
 [rule(f3)]).

The end of the network is rules. The rules are stored as:

rul(N, LHS, RHS).

N is the identification of the rule. LHS is the list of frame patterns which represent the full
left hand side of the rule. RHS is the actions to be taken when the rule is instantiated.

100 Chapter 8 - Performance

8.4 Propagating Tokens
Tokens are generated from the updates to frame instances. There are only two update
predicates for the network: addrete, which adds tokens, and delrete, which deletes them.
Both take as input the Class, Name, and TimeStamp of the frame instance. Both are
called from the Foops predicates that update working memory: assert_ws, retract_ws and
update_ws. The major predicates of addrete are shown in figure 8.5.

addrete

root ffsend

getf send

sendsen

conflict_set
% update

rul matchRight/Leftbi

sendmemory
% right/left

Figure 8.5 Major predicates which propagate a token through the network

The addrete predicate uses a simple repeat-fail loop to match the frame instance against
each of the root nodes. It looks like:

addrete(Class, Name, TimeStamp) :-
 root(ID, Class-Name with ReqList, NextList),
 ffsend(Class, Name, ReqList, TimeStamp, NextList),
 fail.
addrete(_, _, _).

The ffsend predicate fullfills the request pattern in the root by a call to the frame system
predicate, getf. This fills in the values for the pattern thus creating a token. Next, send is
called with an add token.

ffsend(Class, Name, ReqList, TimeStamp, NextList) :-
 getf(Class, Name, ReqList),
 send(tok(add, [(Class-Name with ReqList)/TimeStamp]), NextList),
 !.

The delrete predicate is analagous, the only difference being it sends a delete token
through the network.

delrete(Class, Name, TimeStamp) :-
 root(ID, Class-Name with ReqList, NextList),
 delr(Class, Name, ReqList, TimeStamp),
 fail.
delrete(_, _, _).

delr(Class, Name, ReqList, TimeStamp) :-
 getf(Class, Name, ReqList),
 !,
 send(tok(del, [(Class-Name with ReqList)/TimeStamp]), NextList).
delr(Class, Name, ReqList, TimeStamp).

Building Expert Systems in Prolog 101

Predicate send passes the token to each of the successor nodes in the list:

send(_, []).
send(Token, [Node|Rest]) :-
 sen(Node, Token),
 send(Token, Rest).

The real work is done by sen. It has to recognize three cases:

• The token is being sent to a rule. In this case, the rule must be added to or deleted
from the conflict set.

• The token is being sent to the left side of a two-input node. In this case, the token is
added to or deleted from the left memory of the node. The list is then matched against
the right memory elements to see if a larger token can be built and passed through the
network.

• The token is being sent to the right side of a node. In this case, the token is added to or
deleted from the right memory of the node. It is then compared against the left
memory elements to see if a larger token can be built and passed through the network.

In Prolog:

sen(rule-N, tok(AD, Token)) :-
 rul(N, Token, Actions),
 (AD = add, add_conflict_set(N, Token, Actions);
 AD = del, del_conflict_set(N, Token, Actions)),
 !.
sen(Node-l, tok(AD, Token)) :-
 bi(Node, Token, Right, NextList),
 (AD = add, asserta(memory(Node-l, Token));
 AD = del, retract(memory(Node-l, Token))),
 !,
 matchRight(Node, AD, Token, Right, NextList).
sen(Node-r, tok(AD, Token)) :-
 bi(Node, Left, Token, NextList),
 (AD = add, asserta(memory(Node-r, Token));
 AD = del, retract(memory(Node-r, Token))),
 !,
 matchLeft(Node, AD, Token, Left, NextList).

Note how Prolog's unification automatically takes care of variable bindings between the
patterns in the node memory, and the instance in the token. In sen, the instance in Token
is unified with one of the right or left patterns in bi, automatically causing the opposite
pattern to become instantiated as well (or else the call to bi fails and the next bi is tried).
This instantiated Right or Left is then sent to matchRight or matchLeft respectively.

Both matchRight and matchLeft take the instantiated Right or Left and compare it with
the tokens stored in the right or left working memory associated with that node. If
unification is successful, a new token is built by appending the right or left from the
memory with the original token. The new token is then passed further with another call to
send.

matchRight(Node, AD, Token, Right, NextList) :-
 memory(Node-r, Right),
 append(Token, Right, NewTok),
 send(tok(AD, NewTok), NextList),
 fail.
matchRight(_, _, _, _, _).

matchLeft(Node, AD, Token, Left, NextList) :-
 memory(Node-l, Left),
 append(Left, Token, NewTok),

102 Chapter 8 - Performance

 send(tok(AD, NewTok), NextList),
 fail.
matchLeft(_, _, _, _, _).

Another type of node that is useful for the system handles the cases where the condition on
the LHS of the rule is a test, such as L > R or member(X, Y) – rather than a pattern to be
matched against working memory. The test nodes just perform the test and pass the tokens
through if they succeed. There is no memory associated with them.

A final node to make the system more useful is one to handle negated patterns in rules. It
works as a normal node, keeping instances in its memory that match the pattern in the rule,
however it only passes on tokens which do not match.

8.5 The Rule Compiler
The rule compiler builds the Rete network from the rules. The compiler predicates are not
as straight forward as the predicates that propagate tokens through the network. This is one
of the rare cases where the power of Prolog's pattern matching actually gets in the way,
and code needs to be written to overcome it.

The very unification which makes the pattern matching propagation predicates easy to
code gets in the way of the rule compiler. We allow variables in the rules, which behave as
normal Prolog variables, but when the network is built, we need to know which rules are
matching variables and which are matching atoms. For example, one rule might have the
pattern wall/W and another might have wall/east. These should generate two different
indices when building the network, but Prolog would not distinguish between them since
they unify with each other.

In order to distinguish between the variables and atoms in the frame patterns, we must pick
the pattern apart first, binding the variables to special atoms as we go. Once all of the
variables have been instantiated in this fashion, the patterns can be compared.

But first, let's look at the bigger picture. Each rule is compared, frame pattern by frame
pattern, against the network which has been developed from the rules previously
processed. The frame patterns of the rule are sent through the network in a similar fashion
to the propagation of tokens. If the frame patterns in the rule are accounted for in the
network, nothing is done. If a pattern is not in the network, then the network is updated to
include it.

The top level predicate for compiling rules into a Rete net, reads each rule and compiles it.

rete_compil :-
 rule N# LHS ==> RHS,
 rete_comp(N, LHS, RHS),
 fail.
rete_compil.

The major predicates involved in compiling rules into a Rete network are shown in figure
8.6.

Building Expert Systems in Prolog 103

rete_compil

rule rete_comp

check_root retcom

update_node update
% root/node

check
% root/node

retcombuild_rule

Figure 8.6 The major predicates for compiling rules into a Rete network

The next predicate, rete_comp, looks at the first frame pattern in the rule and determines
if it should build a new root node or if one already exists. It then passes the information
from the root node and the rest of the rule left hand side to retcom, which continues
traversing and/or building the network.

rete_comp(N, [H|T], RHS) :-
 term(H, Hw),
 check_root(RN, Hw, HList),
 retcom(root(RN), [Hw/_], HList, T, N, RHS),
 !.
rete_comp(N, _, _) .

The term predicate merely checks for shorthand terms of the form Class-Name and
replaces them with the full form Class-Name with []. Terms already in full form are left
unchanged.

term(Class-Name, Class-Name with []).
term(Class-Name with List, Class-Name with List).

The check_root predicate determines if there is already a root node for the term and, if
not, creates one. It will be described in detail a little later. The third argument from
check_root is the current list of nodes linked to this root.

The last goal is to call retcom, which is the main recursive predicate of the compilation
process. It has six arguments, as follows:

PNID — the id of the previous node

OutPat — pattern from previous node

PrevList — successor list from previous node

[H|T] — list of remaining frame patterns in rule

N — rule ID, for building the rule at the end

RHS — RHS of the rule, for building the rule at the end

There are two cases recognized by retcom:

• All of the frame patterns in the rule have been compiled into the network, and all that
is left is to link the full form of the rule to the network.

• The rule frame patterns processed so far match an existing two-input node, or a new
one is created.

104 Chapter 8 - Performance

In Prolog, the first case is recognized by having the empty list as the list of remaining
frame patterns. The rule is built and update_node is called to link the previous node to the
rule.

retcom(PNID, OutPat, PrevList, [], N, RHS) :-
 build_rule(OutPat, PrevList, N, RHS),
 update_node(PNID, PrevList, rule-N),
 !.

In the second case, the frame pattern being worked on (H) is first checked to see if it has a
root node. Then the network is checked to see if a two-input node exists whose left input
pattern matches the rule patterns processed so far (PrevNode). Either node might have
been found or added, and then linked to the rest of the network.

retcom(PNID, PrevNode, PrevList, [H|T], N, RHS) :-
 term(H, Hw),
 check_root(RN, Hw, HList),
 check_node(PrevNode, PrevList, [Hw/_], HList, NID,
 OutPat, NList),
 update_node(PNID, PrevList, NID-l),
 update_root(RN, HList, NID-r),
 !,
 retcom(NID, OutPat, NList, T, N, RHS).

Building rules is simply accomplished by writing a new rule structure:

build_rule(OutPat, PrevList, N, RHS) :-
 assertz(rul(N, OutPat, RHS)).

The check_root predicate is the first one that must deal with the pattern matching problem
mentioned earlier. It covers three cases:

• There is no existing root which matches the term using Prolog's pattern matching. In
this case a new root is added.

• There is an existing root that matches the term, atom for atom, variable for variable. In
this case no new root is needed.

• There is no precise match and a new root is created.

In Prolog:

check_root(NID, Pattern, []) :-
 not(root(_, Pattern, _)),
 gen_nid(NID),
 assertz(root(NID, Pattern, [])),
 !.
check_root(N, Pattern, List) :-
 asserta(temp(Pattern)),
 retract(temp(T1)),
 root(N, Pattern, List),
 root(N, T2, _),
 comp_devar(T1, T2),
 !.
check_root(NID, Pattern, []) :-
 gen_nid(NID),
 assertz(root(NID, Pattern, [])).

The first clause is straight forward. The gen_nid predicate is used to generate unique
numbers for identifying nodes in the Rete network.

Building Expert Systems in Prolog 105

The second clause is the difficult one. The first problem is to make a copy of Pattern,
which Prolog will not unify with the original term. The easiest way is to assert the term
and then retract it using a different variable name, as the first two goals of the second
clause do. We now have both Pattern and T1 as identical terms, but Prolog doesn't know
they are the same and will not bind the variables in one when they are bound in the other.

We can now use Pattern to find the root which matches it, using Prolog's match. Again,
not wishing to unify the variables, we call the root again using just the root identification.
This gives us T2, the exact pattern in the root before unification with Pattern.

Now we have T1 and T2, two terms which we know will unify in Prolog. The problem is
to see if they are also identical in their placement of variables. For this we call
comp_devar, which compares two terms after unifying all of the variables with generated
strings.

A very similar procedure is used for check_node. It is a little more complex in that it
needs to build and return the tokens that are the two inputs to a node. The arguments to
check_node are:

PNode — token list from previous node

PList — list of successor nodes from previous node

H — new token being added

HList — successor nodes from root for token H

NID — returned ID of the node

OutPat — returned tokenlist from the node

NList — returned list of successor nodes from the node

The clauses for check_node are:

check_node(PNode, PList, H, HList, NID, OutPat, []) :-
 not (bi(_, PNode, H, _)),
 append(PNode, H, OutPat),
 gen_nid(NID),
 assertz(bi(NID, PNode, H, [])),
 !.
check_node(PNode, PList, H, HList, NID, OutPat, NList) :-
 append(PNode, H, OutPat),
 asserta(temp(OutPat)),
 retract(temp(Tot1)),
 bi(NID, PNode, H, NList),
 bi(NID, T2, T3, _),
 append(T2, T3, Tot2),
 comp_devar(Tot1, Tot2),
check_node(PNode, PList, H, HList, NID, OutPat, []) :-
 append(PNode, H, OutPat),
 gen_nid(NID),
 assertz(bi(NID, PNode, H, [])).

The update predicates check to see if the new node is on the list of links from the old node.
If so, nothing is done. Otherwise a new link is added by putting the new node id on the list.

update_root(RN, HList, NID) :-
 member(NID, HList),
 !.
update_root(RN, HList, NID) :-
 retract(root(RN, H, HList)),
 asserta(root(RN, H, [NID|HList])).

106 Chapter 8 - Performance

update_node(root(RN), HList, NID) :-
 update_root(RN, HList, NID),
 !.
update_node(X, PrevList, NID) :-
 member(NID, PrevList),
 !.
update_node(PNID, PrevList, NID) :-
 retract(bi(PNID, L, R, _)),
 asserta(bi(PNID, L, R, [NID|PrevList])).

The comp_devar predicate takes each term it is comparing, and binds all the variables to
generated terms.

comp_devar(T1, T2) :-
 del_variables(T1),
 del_variables(T2),
 T1 = T2.

The del_variables predicate is used to bind the variables. The function that generates
atoms to replace the variables is initialized the same way each time it is called, so if T1
and T2 have the same pattern of variables, they will be replaced with the same generated
atoms and the terms will be identical.

del_variables(T) :-
 init_vargen,
 de_vari(T).

The basic strategy is to recognize the various types of structures and break them into
smaller components. When a component is identified as a variable, it is unified with a
generated atom.

First, de_vari looks at the case where the terms are lists. This is used for comparing token
lists in check_node. It is a standard recursive predicate, which removes the variables from
the head of the list and recursively calls itself with the tail. Note that unification will cause
all occurances of a variable in the head of the list to be bound to the same generated atom.
The third clause covers the case where the term was not a list.

de_vari([]).
de_vari([H|T]) :-
 de_var(H),
 de_vari(T).
de_vari(X) :-
 de_var(X).

The first clause of de_var removes the time stamps from consideration. The next two
clauses recognize the full frame pattern structure, and the attribute-value pair structure
respectively.

de_var(X/_) :-
 de_var(X).
de_var(X-Y with List) :-
 de_v(X-Y),
 de_vl(List),
 !.
de_var(X-Y) :-
 de_v(X-Y),
 !.

The next predicates continue to break the structures apart until finally d_v is given an
elementary term as an argument. If the term is a variable, an atom is generated to replace
it. Otherwise the term is left alone. Due to Prolog's unification, once one instance of a
variable is unified to a generated term, all other instances of that variable are automatically

Building Expert Systems in Prolog 107

unified to the same generated term. Thus, the generated atoms follow the same pattern as
the variables in the full term.

de_vl([]).
de_vl([H|T]) :-
 de_v(H),
 de_vl(T).

de_v(X-Y) :-
 d_v(X),
 d_v(Y).

d_v(V) :-
 var(V),
 var_gen(V),
 !.
d_v(_).

The next two predicates are used to generate the variable replacements. They are of the
form '#VAR_N', where N is a generated integer. In this case two built-in predicates of
AAIS Prolog are used to convert the integer to a string and concatenate it to the rest of the
form of the variable. The same effect could be achieved with the standard built-in, name,
and a list of ASCII characters representing the string.

init_vargen :-
 abolish(varg, 1),
 asserta(varg(1)).

var_gen(V) :-
 retract(varg(N)),
 NN is N + 1,
 asserta(varg(NN)),
 int2string(N, NS),
 stringconcat("#VAR_", NS, X),
 name(V, X).

The system only handles simple rules so far, and does not take into account either
negations or terms that are tests, such as comparing variables or other Prolog predicate
calls.

Nodes to cover tests are easily added. They are very similar to the normal two-input nodes,
but do not have memory associated with them. The left side is a token list just as in the
two-input nodes. The right side has the test pattern. If a token passes the test, a new token
with the test added is passed through the network.

The negated patterns store a count with each pattern in the left memory. That count reflects
the number of right memory terms which match the left memory term. Only when the
count is zero, is a token allowed to pass through the node.

8.6 Integration with Foops
Only a few changes have to be to Foops to incorporate the Rete network developed here.

A compile command is added to the main menu that builds the Rete network. It is called
after the load command.

The commands to update working memory are modified to propagate tokens through the
Rete network. This means calls to addrete and delrete as appropriate.

108 Chapter 8 - Performance

The refraction logic, which ensured the same instantiation would not be fired twice, is
removed since it is no longer necessary.

The predicate that builds the conflict set is removed, since the conflict set is maintained by
the predicates that process the network. The predicates that sort the conflict set are still
used to select a rule to fire.

8.7 Design Tradeoffs
There are a number of design tradeoffs made in this version. The first is the classic space
versus speed tradeoff. At each Rete memory, a full copy of each token is saved. This
allows it to be retrieved and matched quickly during execution. Much space could be
saved by only storing pointers to the working memory elements. These would have to be
retrieved and the token reconstructed when needed.

The other tradeoff is with the flexibility of the frame system. With the frames in the
original Foops, the frame patterns in the rules could take advantage of inheritance and
general classes, as in the rules which determined a need for electrical plugs in a room.
Since Rete-Foops instantiates the patterns before propagating tokens through the network,
this does not work. This feature could be incorporated but would add to the burden and
complexity of maintaining the network.

Exercises
8.1 Implement nodes which support rules which have tests such as X > Y, and negated

frame patterns.

8.2 The implementation described in this chapter makes heavy use of memory by storing
the full tokens in left and right memories. Build a new system in which space is saved
by storing a single copy of the token and having pointers to it in left and right
memory. The stored tokens just match single frame patterns. The complex tokens in
the middle of the network contain lists of pointers to the simple tokens.

8.3 Experiment with various size systems to see the performance gains of the Rete version
of Foops.

8.4 Figure out a way to allow Rete-Foops to use inheritance in frame patterns. That is, fix
it so the rule which finds electric plugs works.

8.5 Build an indexed version of Clam and make performance experiments with it.

Building Expert Systems in Prolog 109

9 User Interface
The user interface issues for expert system shells can be divided between two classes of
users and two different levels. The two users are the developer and the end-user of the
application. The levels are the external interface and the internal function.

For the developer, the internal function must be adequate before the external interface
becomes a factor. To build a configuration application, an easy-to-use backward chaining
system is not as good as a hard-to-use forward chaining system. To build a large
configuration system, an easy-to-use, low performance forward chaining system is not as
good as a hard-to-use, high performance forward chaining system.

The same is true for the end-user. While there is increasing awareness of the need for good
external interfaces, it should not be forgotten that the internal function is still the heart of
an application. If a doctor wants a diagnostic system to act as an intelligent assistant and
instead it acts as an all knowing guru, then it doesn't matter how well the external interface
is designed. The system will be a failure. If a system can save a company millions of
dollars by more accurately configuring computers, then the system will be used no matter
how poor the external interface is.

Given that a system meets the needs of both the developer and the end-user, then the
external interface becomes an essential ingredient in the satisfaction with the system. The
systems developed so far have used a command driven, dialog type user interface.
Increasingly windows, menus, and forms are being used to make interfaces easier to
understand and work with. This chapter describes how to build the tools necessary for
developing good user interfaces.

9.1 Object Oriented Window Interface
One of the major difficulties with computer languages in general, and Prolog in particular,
is the lack of standards for user interface features. There are emerging standards, but there
is still a long way to go. The windowing system described here includes a high-level,
object oriented interface for performing common window, menu and form operations,
which can be used with any Prolog or computer. The low level implementation will vary
from Prolog to Prolog, and computer to computer.

The interface is object-oriented in that each window, menu and form in the system is
considered to be a "window-object" that responds to messages requesting various
behaviors. For example, a display window would respond to "write" messages, and both a
menu and prompt window would respond to a "read" message.

The developer using the system defines window-objects to be used in an application and
then uses a single predicate, window, to send messages to them. The system can be easily
extended to include new messages and window-objects. For example, graphics can be
included for systems that support it.

9.2 Developer's Interface to Windows
The windows module provides for overlapping windows of four basic flavors.

display — an output only window. The user may scroll the window up and down
using the cursor keys.

menu — a pop-up vertical menu.

form — a fill-in-the-blanks form.

Building Expert Systems in Prolog 111

prompt — a one line input window.

The programmer creates the various windows by specifying their attributes with a create
message. Other window messages are used to open, close, read or write the window.

All of the window operations are performed with the predicate window. It can either be
specified with two or three arguments, depending on whether the message requires an
argument list. The arguments are:

• the window-object name or description,

• the operation to be performed (message),

• the arguments for the operation (optional).

For example, the following Prolog goals cause a value to be selected from a main menu, a
value to be written to a display window, and a useless window to be closed:

window(main_menu, read, X).
window(listing, write, 'Hello').
window(useless, close).

A window description is a list of terms. The functors describe the attribute, and the
arguments are the value(s). Some of the attributes used to define a window are:

type(T) — type of window (display, prompt, menu, or form),

coord(R1, C1, R2, C2) — the upper left and lower right coordinates of useable
window space,

border(Color) — the border color,

contents(Color) — the color of the contents of the window.

The following two attributes are used to initialize menus and forms:

menu(List) — List is a list of menu items.

form(Field_List) — Field_List defines the fields in the form. The field may be either
a literal or a variable. The two formats are:
lit(Row:Col, Literal),
var(FieldName, Row:Col, Length, InitialValue).

Some examples of window descriptions are:

[type(display), coord(2, 3, 10, 42), border(white:blue),
 contents(white:blue)]
[type(menu), coord(10, 50, 12, 70), border(bright:green),
 menu(['first choice',
 'second choice',
 'third choice',
 'fourth choice'])]
[type(form), coord(15, 34, 22, 76), border(blue),
 form([lit(2:2, 'Field One'),
 var(one, 2:12, 5, ''),
 lit(4:2, 'Field Two'),
 var(two, 4:12, 5, 'init')])]

The first argument of each window command refers to a window-object. It may either be
the name of a created window or a window description. If a description is used, the
window is created and used only for the duration of the command. This is useful for pop
up menus, prompts and forms. Created windows are more permanent.

112 Chapter 9 - User Interface

Some of the messages which can be sent to windows are:

window(W, create, Description) — stores the Description with the name W;

window(W, open) — opens a window by displaying it as the current top window
(usually not necessary since most messages open a window first);

window(W, close) — closes the window by removing the viewport from the screen
while preserving the contents (for later re-opening);

window(W, erase) — closes the window, and erases the contents as well;

window(W, display, X) — writes the term X to the window.

To use the windows to improve the user interface of a simple expert system shell, the main
menu can be made a pop-up menu. The text for questions to the user can appear in one
window, and the user can respond using pop-up menus or prompt windows. The advice
from the system can appear in another window.

 Load

 Explain
 Trace
 Quit

 Consult

Figure 9.1 Main menu

First, the permanent windows are created during the initialization phase. The descriptions
are stored in Prolog's database with the window name for use when the window is
referenced. The windows for a simple interface include the main menu, the window for
advice, and the window for questions to the user:

window_init:-
 window(wmain, create,
 [type(menu), coord(14, 25, 21, 40),
 border(blue), contents(yellow),
 menu(['Load',
 'Consult',
 'Explain',
 'Trace',
 'Quit'])]),
 window(advice, create,
 [type(display), coord(1, 1, 10, 78),
 border(blue:white), contents(blue:white)]),
 window(quest, create,
 [type(display), coord(13, 10, 13, 70),
 border(blue:white), contents(blue:white)]).

The main loop then uses the main menu:

go :-
 repeat,

Building Expert Systems in Prolog 113

 window(wmain, read, X),
 do(X),
 fail.

The user sees a menu as in figure 9.1. The cursor keys move the highlighting bar, and the
enter key selects a menu item. The ask and menuask predicates in the system use the
windows to get information from the user. First ask writes the text of the question to the
quest window, and then generates a pop-up prompt:

ask(A, V) :-
 window(quest, write, A),
 window([type(prompt), coord(16, 10, 16, 70),
 border(white:blue),
 contents(white:blue)],
 read, ['', Y]),
 asserta(known(A, Y)),
 ...

The menuask predicate also writes the text of the question to the quest window, but then
dynamically builds a pop-up menu, computing the size of the menu from the length of the
menu list:

menuask(Attribute, AskValue, Menu):-
 length(Menu, L),
 R1 = 16,
 R2 is R1 + L - 1,
 window(quest, write, Attribute),
 window([type(menu), coord(R1, 10, R2, 40),
 border(white:blue),
 contents(white:blue), menu(Menu)],
 read, Value),
 asserta(known(Attribute, Value)),
 ...

Figure 9.2 shows how a simple window interface would look with the Birds expert system.

goal − bird identification
hypothesis − laysay_albatross

consult quit

what is color?

 dark
 green

 white

Figure 9.2 Window interface for dialog with Birds system

9.3 High-Level Window Implementation
The window module is constructed in layers. The top layer can be used with any Prolog.
The lower layers have the actual implementations of the windows and vary from system to

114 Chapter 9 - User Interface

system. The detailed examples will come from a Macintosh based Prolog (AAIS) using a
rich user interface toolbox, and a PC based Prolog (Arity) using simple screen primitives.

Message Passing
At the top level, the interface is object oriented. This means messages are sent to the
individual windows. One feature of object oriented systems is that messages are
dispatched at run time based on the class of object. For example, the read message applies
to both the prompt windows and the menu windows, but the implementation is different in
each case. The implementations are called methods. The window predicate must determine
what type of window is receiving the message, and what the correct method to call is:

window(W, Op, Args):-
 get_type(W, T),
 find_proc(T, Op, Proc),
 P =.. [Proc, W, Args],
 call(P),
 !.

The get_type predicate finds the type of the window, find_proc gets the correct method to
call, and univ (=..) is used to call it.

When window is called with a window description as the first argument, it creates a
temporary window, sends the message to it, and then deletes it. A two argument version of
window is used to capture calls with no arguments.

window([H|T], Op, Args):-
 window(temp_w, create, [H|T]),
 window(temp_w, Op, Args),
 window(temp_w, delete),
 !.
window(W, Op) :-
 window(W, Op, []).

The get_type predicate uses select_parm to find the value for the type attribute of the
window. It uses the stored window definition.

get_type(W, X):-
 select_parm(W, [type(X)]),
 !.

Window definitions are stored in structures of the form:

wd(W, AttributeList).

Inheritance
Another feature of object oriented systems is inheritance of methods. The objects are
arranged in a class hierarchy, and lower level objects only have methods defined for them
that are different from the higher level methods. In the window program, type(window) is
the highest class, and the other types are subclasses of it. A predicate such as close is only
defined for the window superclass and not redefined for the subclasses.

This makes it easy to add new window types to the system. The new types can inherit
many of the methods of the existing types.

The classes are represented in Prolog using a subclass predicate:

Building Expert Systems in Prolog 115

subclass(window, display).
subclass(window, menu).
subclass(window, form).
subclass(window, prompt).

The methods are associated with classes by a method predicate. Some of the defined
methods are:

method(window, open, open_w).
method(window, close, close_w).
method(window, create, create_w).
method(window, display, display_w).
method(window, delete, delete_w).
method(display, write, write_d).
method(display, writeline, writeline_d).
method(menu, read, read_m).
method(form, read, read_f).
method(prompt, read, read_p).

The find_proc predicate is the one that looks for the correct method to call for a given
message and a given window type.

find_proc(T, Op, Proc):-
 find_p(T, Op, Proc),
 !.
find_proc(T, Op, Proc):-
 error([Op, 'is illegal operation for a window of type', T]).
 find_p(T, Op, Proc):- method(T, Op, Proc),
 !.

find_p(T, Op, Proc):-
 subclass(Super, T),
 !,
 find_p(Super, Op, Proc).

This completes the definition of the high level interface, with the exception of the one
utility predicate, select_parm. It is used by get_type to find the value of the type attribute,
but is also heavily used by the rest of the system to find attributes of windows, such as
coordinates. It has the logic built into it to allow for calculated attributes, such as height,
and attribute defaults. It is called with a request list of the desired attributes. For example,
to get a window's coordinates, height, and color:

select_parm(W, [coord(R1, C1, R2, C2), height(H),
 color(C)]).

The select_parm predicate gets the windows attribute list, and calls the fulfill predicate to
unify the variables in the request list with the values of the same attributes in the window
definition.

select_parm(W, RequestList):-
 wd(W, AttrList),
 fulfill(RequestList, AttrList),
 !.

The fulfill predicate recurses through the request list, calling w_attr each time to get the
value for a particular attribute.

fulfill([], _):- !.
fulfill([Req|T], AttrList):-
 w_attr(Req, AttrList),
 !,
 fulfill(T, AttrList).

116 Chapter 9 - User Interface

The w_attr predicate deals with three cases. The first is the simple case that the requested
attribute is on the list of defined attributes. The second is for attributes that are calculated
from defined attributes. The third sets defaults when the first two fail. Here are some of the
w_attr clauses:

w_attr(A, AttrList):-
 member(A, AttrList),
 !.
% calculated attributes
w_attr(height(H), AttrList):-
 w_attr(coord(R1, _, R2, _), AttrList),
 H is R2 - R1 + 1,
 !.
w_attr(width(W), AttrList):-
 w_attr(coord(_, C1, _, C2), AttrList),
 W is C2 - C1 + 1,
 !.
% default attributes
w_attr(title(''), _).
w_attr(border(white), _).
w_attr(contents(white), _).
w_attr(type(display), _).

9.4 Low-Level Window Implementation
In addition to being a powerful language for artificial intelligence applications, Prolog is
good at implementing more standard types of programs as well. Since most programs can
be specified logically, Prolog is a very efficient tool. While we will not look at all the
details in this chapter, a few samples from the low-level implementation should
demonstrate this point. An entire overlapping window system with reasonable response
time was implemented 100% in Prolog using just low-level screen manipulation
predicates.

The first example shows predicates that give the user control over a menu. They follow
very closely the logical specification of a menu driver. A main loop, menu_select,
captures keystrokes, and then there are a number of rules, m_cur, governing what to do
when various keys are hit. Here is the main loop for the Arity Prolog PC implementation:

menu_select(W, X):-
 select_parm(W, [coord(R1, C1, R2, _), width(L), attr(A)]),
 tmove(R1, C1), % move the cursor to first item
 revideo(L, A), % reverse video first item
 repeat,
 keyb(_, S), % read the keyboard
 m_cur(S, Z, w(W, R1, R2, C1, L, A)), % usually fails
 !,
 Z = X.

Here are four of the menu rules covering the cases where: the down arrow (scan code of
80) is hit (highlight the next selection); the down arrow is hit at the bottom of the menu
(scroll the menu); the home key (scan code of 71) is hit (go to the top); and the enter key
(scan code of 28) is hit (finally succeed and select the item).

m_cur(80, _, w(W, R1, R2, C1, L, A)):- % down arrow
 tget(R, _),
 R < R2,
 normvideo(L, A),
 RR is R + 1,
 tmove(RR, C1),
 revideo(L, A),
 !,
 fail.

Building Expert Systems in Prolog 117

m_cur(80, _, w(W, R1, R2, C1, L, A)):- % bottom down arrow
 tget(R, _),
 R >= R2,
 normvideo(L, A),
 scroll_window(W, 1),
 tmove(R2, C1),
 revideo(L, A),
 !,
 fail.
m_cur(71, _, w(W, R1, R2, C1, L, A)):- % home key
 normvideo(L, A),
 scroll_window(W, top),
 tmove(R1, C1),
 revideo(L, A),
 !,
 fail.
m_cur(28, X, w(W, R1, R2, C1, L, A)):- % enter key
 tget(R, _),
 select_stat(W, curline, Line), % current line
 Nth is Line + R - R1,
 getnth(W, Nth, X),
 normvideo(L, A),
 !.

Here is some of the code that deals with overlapping windows. When a window is opened,
the viewport, which is the section of the screen it appears in, is initialized. The system
maintains a list of active windows, where the list is ordered from the top window to the
bottom. In the case covered here, the window to be opened is already on the active list, but
not on the top.

make_viewport(W):-
 retract(active([H|T])),
 save_image(H),
 split(W, [H|T], L1, L2),
 w_chkover(W, L1, _),
 append([W|L1], L2, NL),
 assert(active(NL)).

The save_image predicate stores the image of the top window for redisplay if necessary.
The split predicate is a list utility, which splits the active list at the desired window name.
Next, w_chkover decides if the window needs to be redrawn due to overlapping windows
on top of it, and then a new active list is constructed with the requested window on top.

The w_chkover predicate recurses through the list of windows on top of the requested
window, checking each one for the overlap condition. If any window is overlapping, then
the requested window is redrawn. Otherwise nothing needs to be done.

w_chkover(W, [], no).
w_chkover(W, [H|T], Stat):-
 w_nooverlap(W, H),
 w_chkover(W, T, Stat).
w_chkover(W, _, yes):-
 restore_image(W),
 !.

An overlap is detected by simply comparing the coordinates of the two windows.

w_nooverlap(Wa, Wb):-
 select_parm(Wa, [coord(R1a, C1a, R2a, C2a)]),
 select_parm(Wb, [coord(R1b, C1b, R2b, C2b)]),
 (R1a > R2b + 2;
 R2a < R1b - 2;
 C1a > C2b + 2;
 C2a < C1b - 2),

118 Chapter 9 - User Interface

 !.

As opposed to the PC implementation, which requires coding to the detail level, the
Macintosh implementation uses a rich toolbox of primitive building blocks. However, the
complexity of the toolbox sometimes makes it more difficult to perform simple operations.
For example, to make a new window in the PC version, all that is necessary is to save the
window definition:

make_window(W, Def):-
 asserta(wd(W, Def)).

In the Macintosh version, a number of parameters and attributes must be set up to interface
with the Macintosh environment. The code to create a new window draws heavily on a
number of built-in AAIS Prolog predicates that access the Macintosh toolbox.

make_window(W, L) :-
 define(wd, 2),
 include([window, quickdraw, types, memory]),
 fulfill([coord(R1, C1, R2, C2), title(T), visible(V),
 procid(Pid), behind(B), goaway(G),
 refcon(RC)], L),
 new_record(rect, R),
 new_record(windowptr, WP),
 setrect(R, C1, R1, C2, R2),
 pname(T, Tp),
 newwindow(WP, R, Tp, V, Pid, B, G, RC, WPtr),
 asserta(wd(W, [wptr(WPtr)|L])).

Notice that the special Macintosh window parameters are easily represented using the
window attribute lists of the generic windows. The example above has attributes for
goaway, a box the user can click to make a window go away, and refcon for attaching
more sophisticated functions to windows. The select_parm predicate has intelligent
defaults set for each of these parameters so the user does not have to worry about
specifying them.

w_attr(goaway(false), _).
w_attr(refcon(0), _).

The generic window interface we developed recognizes a few fundamental types of
window. The Macintosh also has numerous window types. The w_attr predicate is used to
calculate values for the Macintosh parameters based on the generic parameters. The user
only sees the generic parameters. Internally, the Macintosh parameters are used. Here is
how the internal routines get a value for the Macintosh based parameter wproc, which
controls the type of box the window is drawn in:

w_attr(wproc(documentproc), L) :-
 akindof(text, L),
 !.
w_attr(wproc(dboxproc), L) :-
 akindof(dialog, L),
 !.
w_attr(wproc(plaindbox), L) :-
 akindof(graph, L),
 !.

The akindof predicate checks type against the inheritance specified by the subclass
predicate defined earlier.

akindof(ST, L) :-
 w_attr(type(T), L),
 subsub(ST, T),

Building Expert Systems in Prolog 119

 !.

subsub(X, X).
subsub(Y, X) :-
 subclass(C, X),
 subsub(Y, C).

As more toolboxes for user interface functions become available, such as Presentation
Manager, the low level portions of this window package can be modified to take advantage
of them. At the same time the simple object oriented high level interface described earlier
can be maintained for easy application development and portability.

Exercises
9.1 Implement object oriented windows on the Prolog system you use.

9.2 Add windowing interfaces to all of the expert system shells developed so far.

9.3 Add controls as a window type. These are display windows that use a graphical image
to represent a number. The easiest graphical control to implement is a thermometer in
a text based system (such as the IBM PC in text mode). The controls can also contain
digital readouts, which is of course even easier to implement.

9.4 Active images are controls which automatically display the contents of some variable
in a system. For example, in the furniture placement system it would be interesting to
have four controls that indicate the available space on each of the four walls. They can
be elegantly implemented using the attached procedure in the add slot of the frames.
Whenever a new value is added, the procedure sends it to the control window. (Note
that add is called during update of the slot in this implementation.)

9.5 In the windowing interface for the various shells, have trace information appear in a
separate window.

9.6 Add graphics windows to the system if your version of Prolog can support it.

9.7 In the main control loop, recognize certain user actions as a desire to manipulate the
windows. For example, function keys might allow the user to pop various windows to
the top. This would enable the system to keep trace information in one window, which
is overlapped by the main window. The user could access the other windows by taking
the appropriate actions.

120 Chapter 9 - User Interface

10 Two Hybrids
This chapter describes two similar expert systems, which were developed at Cullinet
Software, a large software vendor for IBM mainframes, VAXes, and PCs. The systems
illustrate some of the difficulties in knowledge base design and show the different features
needed in two seemingly very similar systems.

Both expert systems were designed to set parameters for the mainframe database, IDMS/R,
at a new user site. The parameters varied from installation to installation, and it was
necessary to have an experienced field support person set them at the site. Since field
support people are expensive, the expert systems were written to allow the customer to set
the parameters, thus freeing the support person for more demanding tasks.

The first, CVGEN, set the system generation (sysgen) parameters for the run time behavior
of the system. This included such parameters as storage pool sizes, logging behavior, and
restart procedures. These parameters had a serious effect on the performance of the
system, and needed to be set correctly based on each site's machine configuration and
application mix.

The second, AIJMP, set all of the parameters that ran an automated installation procedure.
This included parameters that determined which modules to include and how to build
installation libraries. These parameters determined how the software would reside at the
customer's site.

The systems were built using a variation of the pure Prolog approach described earlier in
the book. The inferencing parts of the system were separated from the knowledge base. It
was surprising to find that even with two systems as similar as these — they both set
parameters, the shell for one was not completely adequate for the other.

10.1 CVGEN
Various shells available on the PC were examined when CVGEN was built, yet none
seemed particularly well suited for this application. The main difficulty centered around
the nature of the dialog with the user. To a large degree, the expertise a field support
person brought to a site was the ability to ask the right questions to get information from
the systems programmers at the site, and the ability to judge whether the answers were
realistic.

To capture this expertise, the knowledge base had to be rich in its ability to represent the
dialog with the user. In particular:

• The system was designed to be used by systems programmers who were technically
sophisticated, but not necessarily familiar with the parameters for IDMS/R. This
meant fairly lengthy prompts were needed in the dialog with the user.

• The input data had to be subjected to fairly complex validation criteria, which was
often best expressed in additional sets of rules. A large portion of the field person's
expertise was knowing what values made sense in a particular situation.

• The output of the system had to be statements, which were syntactically correct for
IDMS/R. This meant the rules not only found values for parameters but built the
statements as well.

Building Expert Systems in Prolog 121

The first objective of the system was to gather the data necessary to set the parameters by
asking meaningful questions of the systems programmer. This meant providing prompts
with a fair amount of text.

The next objective of the system was to validate the user's input data. The answers to the
questions needed to be checked for realistic values. For example, when asking for the
desired number of simultaneous batch users, the answer had to be checked for
reasonableness based on the size of machine.

A similar objective was to provide reasonable default answers for most of the questions.
As were the edit checks, the defaults were often based on the particular situation and
required calculation using rules.

Given these objectives, the questioning facility needs to have the ability to call rule sets to
compute the default before asking a question, and another rule set to validate the user's
response. It also needs to be able to store questions that are up to a full paragraph of text.

The knowledge base needs to be designed to make it easy for the experts to view the
dialog, and the edit and default rules. The knowledge base also needs some pure factual
information.

The actual rules for inferencing were relatively simple. The system had a large number of
shallow rules (the inference chains were not very deep), which were best expressed in
backward chaining rules. The backward chaining was natural since the experts also tackled
the problem by working backward from the goals of setting individual parameter values.

Also, since the system was setting parameters, uncertainty was not an issue. The parameter
was either set to a value or it wasn't. For this reason pure Prolog was used for the main rule
base.

Pure Prolog had the additional advantage of making it easy for the rules to generate
IDMS/R syntax. The arguments to the parameter setting rules were lists of words in the
correct syntax, with variables in the positions where the actual value of the parameter was
placed. The rules then sought those values and plugged them into the correct syntax.

10.2 The Knowledge Base
The knowledge base is divided into six parts, designed to make it easy for the expert to
examine and maintain it. These are:

• main rules for the parameters;

• rules for derived information;

• questions for the user;

• rules for complex validation;

• rules for complex default calculations;

• static information.

Rule for parameters
The rules for each parameter are stored in the knowledge base with the parameter name as
the functor. Thus each parameter is represented by a predicate. The argument to the
predicate is a list with the actual IDMS/R syntax used to set the parameter. Variables in the

122 Chapter 10 - Two Hybrids

list are set by the body of the predicate. A separate predicate, parm, is used to hold the
predicate names that represent parameters.

Most knowledge bases are designed with askable information listed separately from the
rules, as in the earlier examples in the book. In this case however, the experts wanted the
relationship between user dialog and rules to be more explicit. Therefor the ask predicate
is embedded in the body of a rule whenever it is appropriate.

In the following example, the parameter is ina, which when set will result in a text string
of the form INACTIVE INTERVAL IS X, where X is some time value. Some of the sub-
goals, which are derived from other rules, are online_components and small_shop,
whereas int_time_out_problems is obtained from the user.

parm(ina).

ina(['INACTIVE INTERVAL IS', 60]):-
 online_components,
 small_shop.
ina(['INACTIVE INTERVAL IS', 60]):-
 online_components,
 heavily_loaded.
ina(['INACTIVE INTERVAL IS', 60]):-
 ask(initial_install, no),
 online_components,
 ask(int_time_out_problems, yes).
ina(['INACTIVE INTERVAL IS', 30]):-
 online_components.

Some parameters also have subparameters that must be set. The structure of the knowledge
base reflects this situation:

parm(sys).

sys(['SYSCTL IS', 'NO']):-
 never.
sys(['SYSCTL IS', 'SYSCTL']):-
 os_class(os).

subprm(sys, dbn, [' DBNAME IS', 'NULL']):-
 ask(initial_install, no),
 ask(multiple_dictionaries, yes),
 ask(db_name, null).
subprm(sys, dbn, [' DBNAME IS', V1]):-
 ask(initial_install, no),
 ask(multiple_dictionaries, yes),
 ask(db_name, V1),
 V1 \== null.

Rules for derived information
The next part of the knowledge base contains the level of rules below the
parameter/subparameter level. These rules represent derived information. They read as
standard Prolog. Here are a few examples:

heavily_loaded:-
 ask(heavy_cpu_utilization, yes),
 !.
heavily_loaded:-
 ask(heavy_channel_utilization, yes),
 !.

Building Expert Systems in Prolog 123

mvs_xa:-
 ask(operating_system, mvs),
 ask(xa_installed, yes),
 !.

online_components:-
 dc_ucf,
 !.
online_components:-
 ask(cv_online_components, yes),
 !.

Questions for the user
The next portion of the knowledge base describes the user interaction. Standard Prolog
rules do not cover this case, so special structures are used to hold the information.
Operator definitions are used to make it easy to work with the structure.

The first two examples show some of the default and edit rules, which are simple enough
to keep directly in the question definition.

quest abend_storage_size
default 200
edit between(0, 32767)
prompt
 ['Enter the amount of storage, in fullwords, available',
 'to the system for processing abends in the event',
 'of a task control element (TCE) stack overflow.',
 'Note that this resource is single threaded.'].
quest abru_value
default no
edit member([yes, no])
prompt
 ['Do you want the system to write a snap dump to the',
 'log file when an external run unit terminates',
 'abnormally?'].

The next two rules require more complex edit and default rule sets to be called. The square
brackets in the default field indicate there is a rule set to be consulted. In these examples,
ed_batch_user will be called to check the answer to allowed_batch_users, and
def_storage_cushion is used to calculate a default value for storage_cushion_size.

quest allowed_batch_users
default 0
edit ed_batch_user
prompt
 ['How many concurrent batch jobs may access',
 'the CV at one time?'].
quest storage_cushion_size
default [def_storage_cushion]
edit between(0, 16384)
prompt
 ['How many bytes of storage cushion would',
 'you like? When available storage is less than the',
 'cushion no new tasks are started. A recommended',
 'value has been calculated for you.'].

Default rules
The next two sections contain the rules that are used for edit and default calculations. For
example, the following rules are used to calculate a default value for the storage cushion

124 Chapter 10 - Two Hybrids

parameter. Notice that it in turn asks other questions and refers to the settings of another
parameter, in this case the storage pool (stopoo).

def_storage_cushion(CUS):-
 ask(initial_install, yes),
 stopoo([_, SP]),
 PSP is SP / 10,
 min(PSP, 100, CUS),
 !.
def_storage_cushion(V1):-
 ask(total_buffer_pools, V2),
 stopoo([_, V3]),
 ask(maximum_tasks, V4),
 V1 is (V2 + V3 + 3) / (3 * V4),
 !.

Rules for edits
Here are the rules that are used to edit the response to the number of batch users. The
user's response is passed as the argument, and rules succeed or fail in standard Prolog
fashion depending on the user's response.

ed_batch_user(V1):-
 V1 =< 2,
 !.
ed_batch_user(V1):-
 machine_size(large),
 V1 =< 10,
 !.
ed_batch_user(V1):-
 machine_size(medium),
 V1 =< 5,
 !.
ed_batch_user(V1):-
 machine_size(small),
 V1 =< 3,
 !.

Static information
The final section contains factual information. For example, here is a table of the MIPS
ratings for various machines, and the rules used to broadly classify machines into sizes.

mac_mips('4381-1', 1.7).
mac_mips('4381-2', 2.3).
mac_mips('3083EX', 3.7).
mac_mips('3083BX', 6.0).
mac_mips('3081GX', 12.2).
mac_mips('3081KX', 15.5).
mac_mips('3084QX', 28.5).

mips_size(M, tiny):-
 M < 0.5,
 !.
mips_size(M, small):-
 M >= 0.5,
 M < 1.5,
 !.
mips_size(M, medium):-
 M >= 1.5,
 M < 10,
 !.

Building Expert Systems in Prolog 125

mips_size(M, large):-
 M >= 10.

The knowledge base is designed to reduce the semantic gap between it and the way in
which the experts view the knowledge. The main parameter setting rules are organized by
parameter and subparameter as the expert expects. The secondary rules for deriving
information and the queries to the user are kept in separate sections.

The dialog with the user is defined by data structures, which act as specialized frames with
slots for default routines and edit routines. Their definition is relatively simple since the
frames are not general purpose, but designed specifically to represent knowledge as the
expert describes it.

The standard Prolog rule format is used to define the edit and default rules. In the
knowledge base the rules are simple, so Prolog's native syntax is not unreasonable to use.
It would of course be possible to utilize a different syntax, but the Prolog syntax captures
the semantics of these rules exactly. The experts working with the knowledge base are
technically oriented and easily understand the Prolog syntax. Finally, supporting data used
by the system is stored directly in the knowledge base.

It is up to the inference engine to make sense of this knowledge base.

10.3 Inference Engine
The inference is organized around the specialized knowledge base. The highest level
predicates are set up to look for values for all of the parameters. The basic predicate
set_parms accomplishes this. It uses the parm predicate to get parameter names and then
uses the univ (=..) built-in function to build a call to a parameter setting predicate.

set_parms:-
 parm(Parm),
 set_parm(Parm),
 fail.
set_parms:-
 write('no more parms'), nl.
set_parm(Parm):-
 get_parm(Parm, Syntax),
 write(Parm), write(': '),
 print_line(Syntax), nl,
 subs(Parm).

get_parm(Parm, Syntax):-
 PS =.. [Parm, Syntax],
 call(PS),
 !.

subs(Parm):-
 subprm(Parm, Sub, Syntax),
 write(Parm), write('/'), write(Sub), write(':'),
 print_line(Syntax), nl,
 subs(Sub),
 fail.
subs(Parm):-
 true.

The next portion of the inference engine deals with the questions to the user. The
following operator definitions are used to define the data structure for questions.

:-op(250, fx, quest).
:-op(240, yfx, default).
:-op(240, yfx, edit).

126 Chapter 10 - Two Hybrids

:-op(240, yfx, prompt).

The basic ask predicate follows the patterns used earlier, but is more complex due to the
fact that it handles both attribute-value pairs and object-attribute-value triples. The
implementation of triples is relatively straight-forward and not worth repeating. The
interesting portions of ask have to do with handling defaults and edits.

The following code is used by the ask predicate to perform edits on a user response. It is
called after the user enters a value. If the edit fails, the user is presented with an
explanation for why the edit failed, and is reprompted for the answer.

The third argument to edit is the edit criterion. It could be a simple edit such as member
or less_than, or one of the more complex edit rules. The built-in univ (=..) is used to
construct the goal that is called for the edit process. The actual code is slightly more
complex due to additional arguments holding trace information for explanations.

edit(X, X, none):- !. % passes, no edit criteria.
edit(X, X, Ed) :-
 Ed =.. [Pred | Args],
 Edx =.. [Pred, X | Args],
 call(Edx),
 !.
edit(X, X, not(Ed)):-
 Ed =.. [Pred | Args],
 Edx =.. [Pred, X | Args],
 notcall(Edx),
 !.

The default is handled in a similar fashion. It is calculated before the prompt to the user,
and is displayed in the answer window. Just hitting enter allows the user to take the default
rather than entering a new value.

default([], []):- !.
default(D, D):-
 atomic(D),
 !.
default([D], X):-
 P =.. [D, X],
 call(P).

10.4 Explanations
Explanations become a bit more difficult with the ask predicate. The how questions are
handled pretty much as in the Clam and Native systems described earlier in the book.
Since why traces require overhead during the inference process, and performance is a key
issue for a system with a long dialog such as this one, the why trace implementation is
different from that in Native. The basic strategy is to use pure Prolog as indicated for most
of the inferencing, but to redo the inference using a Prolog in Prolog inference engine to
answer why questions.

In order to do this the system must in fact restart the inference, but since the parameters are
all basically independent, the why trace need only restart from the last call to set a
parameter. For this reason, the set_parm predicate writes a record to the database
indicating which parameter is currently being set.

Once the why trace gets into ask, the Prolog in Prolog must stop. In fact, the question
might have arisen from setting a parameter, calculating a default value or specifying an
edit criteria. Again, for these cases a flag is kept in the database so that trace knows the
current situation.

Building Expert Systems in Prolog 127

The why trace then starts at the beginning, traces pure Prolog inferencing until it
encounters ask. The why explanation then notes that it is in ask, and finds out from the
database if ask has gone into either default or edit. If so it proceeds to trace the default or
edit code. The final explanation to the user has the Prolog traces interspersed with the
various junctions caused by edit and default in ask.

This system is a perfect example of one in which the explanations are of more use in
diagnosing the system than in shedding light on an answer for the user. Many of the rules
are based solely on empirical evidence, and reflect no understanding of underlying
principles. For this reason a separate explanation facility was added to the knowledge base
that would explain in English the rationale behind the setting of a particular parameter.

For example, the setting of the maxeru parameter is relatively complex. The rule, while
correct in figuring a value for the parameter, does not give much insight into it. The
separate exp predicate in the knowledge base is displayed in addition to the rule if the user
asks how a value of maxeru was derived.

parm(maxeru).

maxeru(['MAXIMUM ERUS IS', MAXERU]):-
 maxeru_potential(PMERU),
 max_eru_tas(F),
 MAXERUF is PMERU * F,
 MAXERU is integer(MAXERUF),
 explain(maxerutas01).

exp(maxerutas01,
 ['MAXERUS and MAXTASKS are set together. They are both ',
 'potentially set to values which are dictated by the size ',
 'of the terminal network. The total tasks for both is then ',
 'compared to the maximum realistic number for the ',
 'machine size. If the total tasks is too high, both ',
 'MAXERUS and MAXTASKS are scaled down ',
 'accordingly.']).

10.5 Environment
CVGEN is also designed to handle many of the details necessary in a commercially
deployed system. These details include the ability to change an answer to a question, save
a consultation session and restore it, build and save test runs of the system, and the ability
to list and examine the cache and the knowledge base from within a consultation. The
system also includes a tutorial, which teaches how to use the system.

Most of these features are straight-forward to implement, however changing a response is
a bit tricky. When the user changes an answer to a question, it is almost impossible to
predict what effects that will have on the results. Whole new chains of inferencing might
be triggered. The safest way to incorporate the change is to rerun the inference. By saving
the user's responses to questions, the system avoids asking any questions previously asked.
New questions might be asked due to the new sequence of rules fired after the change.

The facts which are stored are not necessarily the same as the user's response. In particular,
the user response of "take the default" is different from the actual answer, which is the
default value itself. For this reason, both the facts and the user responses to questions are
cached. Thus, when the user asks to change a response, the response can be edited and the
inference rerun without reprompting for all of the answers.

This list of responses can also be used for building test cases, which are rerun as the
knowledge base is modified.

128 Chapter 10 - Two Hybrids

10.6 AIJMP
The AIJMP system seemed on the surface to be identical to the CVGEN system. Both set
parameters. It was initially assumed that the shell used for CVGEN could be applied to
AIJMP as well. While this was in general true, there were still key areas that needed to be
changed.

The differences have much to do with the nature of the user interaction. The CVGEN
system fits very nicely into the classic expert system dialog as first defined in the MYCIN
system. The system tries to reach goals and asks questions as it goes. However, for AIJMP
there is often the need for large amounts of tabular data on various pieces of hardware and
software. For these cases a question and answer format becomes very tedious for the user;
a form-based front end to gather information is much more appropriate.

AIJMP uses forms to capture some data, and dialogs to ask for other data as needed. This
led to the need to expand the basic inferencing to handle these cases.

Another difficulty became evident in the nature of the expertise. Much of what was needed
was purely algorithmic expertise. For example, part of the system uses formulas to
compute library sizes based on different storage media. Many of the parameters required
both rules of thumb and algorithmic calculations.

The best solution to the problem, for the knowledge engineer, was to build into the
inference engine the various predicates which performed calculations. This way they could
be referred to easily from within the rules.

Some of the declarative knowledge required for AIJMP could not be easily represented in
rules. For example, many products depend on the existence of co-requisite products. When
the user enters a list of products to be installed, it must be checked to make sure all product
dependencies are satisfied. The clearest way to represent this knowledge was with
specialized data structures. Operators are used to make the structures easy to work with.

product 'ads batch 10.1'
psw [adsb]
coreqs ['idms db', 'i data dict'].
product 'ads batch 10.2'
psw [adsb]
coreqs ['idms db', 'i data dict'].
product 'ads online'
psw [adso, nlin]
coreqs ['idms db', 'idms cv', 'i data dict',
 'idms dc' / 'idms ucf'].
product auditor
psw [audi, culp]
coreqs [].
product autofile
psw [auto]
coreqs [].

The inference engine was enhanced to use this structure for co-requisite checking. The
design goal is to make the knowledge base look as familiar as possible to the experts. With
Prolog, it is not difficult to define specialized structures that minimize semantic gap and to
modify the inference engine to use them.

One simple example of how the custom approach makes life easier for the expert and
knowledge engineer is in the syntax for default specifications in the questions for the user.
The manual on setting these parameters used the "@" symbol to indicate that a parameter
had as its default the value of another parameter. This was a shorthand syntax well
understood by the experts. In many cases the same value (for example a volume id on a

Building Expert Systems in Prolog 129

disk) would be used for many parameters by default. Only a slight modification to the
code allowed the knowledge to be expressed using this familiar syntax:

quest loadunit
default @ diskunit
edit none
prompt
['What is the unit for the load library?'].

One of the major bottlenecks in expert system development is knowledge engineering. By
customizing the knowledge base so it more closely matches the expert's view of the
knowledge domain, the task becomes that much simpler. A simple change such as this one
makes it easier for the expert and the knowledge base to interact.

10.7 Summary
These two systems show how some of the techniques in this book can be used to build real
systems. The examples also show some of the difficulties with shells, and the advantages
of customized systems in reducing semantic gap.

Exercises
10.1 Incorporate data structures for user queries with edits and defaults for the Clam

shell.

10.2 The CVGEN user query behavior can be built into Foops when a value is sought
from the frame instances. If there is no other way to get the value, the user should
be queried. Additional facets can be used for prompt, default, and edit criteria,
which the inference engine uses just like in CVGEN.

10.3 Add features of CVGEN to the shells that are needed for real world applications.
These include the ability to save user responses, allow editting of responses, saving
a consultation, and rerunning a consultation. The last feature is essential for testing
and debugging systems. Old test runs can be saved and rerun as the knowledge base
changes. Hopefully the changes will not adversely affect the old runs.

130 Chapter 10 - Two Hybrids

11 Prototyping
Regardless of whether one is going to use Prolog to build a finished application, Prolog is
still a powerful tool for prototyping the application. The problem might fit nicely into
Clam or Foops, in which case those systems should be used for the prototype. Otherwise,
pure Prolog can be used to model the application.

In an expert system prototype it is important to model all of the different types of
knowledge that will be used in the application. Initial knowledge engineering should be
focused on what types of information the expert uses and how it is used. The full range of
expertise should be modelled, but not to the depth required for a real system.

The Prolog rules used in a prototype can be quickly molded to get the desired effects in the
application. The clean break between the inference engine and the knowledge base can be
somewhat ignored to allow more rapid development of the prototype. Explanations, traces
and many of the other features of an expert system are left out of the prototype. The I/O is
implemented simply to just give a feeling for the user interaction with the system. The full
system can be more elegantly designed once the prototype has been reviewed by the
potential users.

11.1 The Problem
This section describes the building of a prototype system, which acts as an advisor for a
mainframe software salesperson. A good sales person must not only be congenial and buy
lunches, but must also have good product knowledge and know how to map that
knowledge onto a potential customer's needs. The type of knowledge needed by the sales
person is different from that typically held by a technical person.

The technical person thinks of a product in terms of its features, and implementation
details. The sales person must think of the prospect's real and perceived needs and be able
to map those to benefits provided by the features in the product. That is, the sales person
must understand the prospect's objectives and be able to present the benefits and features
of the product that help meet those objectives.

The salesperson must also have similar product knowledge about the competitor's products
and know which benefits to stress that will show up the weaknesses in the competitor's
product for the particular prospect.

In addition to this product knowledge, the sales person also has rules for deciding whether
or not the prospect is likely to buy, and recognizing various typical sales situations.

With a large workload, it is often difficult for a sales person to keep up on product
knowledge. An expert system, which helps the sales person position the products for the
prospect, would be a big asset for a high tech sales person. The Sales Advisor system is a
prototype of such a system, designed to help in the early stages of the sales cycle.

11.2 The Sales Advisor Knowledge Base
The ways in which sales people mentally organize product knowledge are fairly consistent.
The knowledge base for the sales advisor should be organized in a format which is as close
to the sales person's organization of the knowledge as possible. This way the semantic gap
will be reduced and the knowledge base will be more easily maintained by a domain
expert.

Building Expert Systems in Prolog 131

The main types of knowledge used by the salesperson fall into the following categories:

Qualification — the way in which the salesperson determines if the prospect is a
good potential customer and worth pursuing;

Objective Benefit Feature (OBF) analysis — the way a salesperson matches the
customer's objectives with the benefits and features of the product;

Competitive analysis — the way a salesperson decides which benefits and features to
stress based on the competitor's weaknesses;

Situation analysis — the way a salesperson determines if the products will run in the
prospect's shop.

Miscellaneous advice — various rules covering different situations, which do not fall
neatly in the above categories.

Having this overall organization, we can now begin to prototype the system. The first step
is to design the knowledge base. Simple Prolog rules can be used wherever possible. The
knowledge for each area will be considered separately. The example uses the products sold
for mainframe computers by Cullinet Software.

Qualifying
First we implement the knowledge for qualifying the prospect. This type of knowledge
falls easily into a rule format. The final version will probably need some uncertainty
handling as in Clam, but it is also important for this system to provide more text output
than Clam provides. The quickest way to build the prototype is to use pure Prolog syntax
rules with I/O statements included directly in the body of the rule. Clam can be used later
with modifications for better text display.

Two examples of qualifying rules are: the prospect must have an IBM mainframe, and the
prospect's revenues must be at least $30 million. They are written as unqualified since if
the prospect fails a test then it is unqualified.

unqualified:-
 not computer('IBM'),
 advise('Prospect must have an IBM computer'),
 nl.
unqualified:-
 revenues(X),
 X < 30,
 advise('Prospect is unlikely to buy IDMS with revenues under $30
million'),
 nl.

Objectives - Benefits - Features
Sales people typically store product knowledge in a tabular form called an objective-
benefit-feature chart, or OBF chart. It categorizes product knowledge so that for each
objective of the customer, the benefits of the product for meeting that objective and the
features of the product are detailed.

For the prototype we can simplify the prospect objectives by considering three main ones:
development of applications, building an information center and building efficient
production systems. Each prospect might have a different one of these objectives. The
benefits of each product in the product line varies for each of these objectives. This
information is stored in Prolog structures of three arguments called obf. The first argument
is the feature (or product), the second is the customer objective and the third is the benefit
that is stressed to the prospect.

132 Chapter 11 - Prototyping

obf('IDMS/R', development,
 'IDMS/R separates programs from data, simplifying
development.').

obf('IDMS/R', information,
 'IDMS/R maintains corporate information for shared access.').

obf('IDMS/R', production,
 'IDMS/R allows finely tuned data access for optimal
performance.').

obf('ADS', development,
 'ADS automates many programming tasks thus increasing
productivity.').

obf('ADS', production,
 'ADS generates high performance compiled code.').

obf('OLQ', development,
 'OLQ allows easy validation of the database during
development.').

obf('OLQ', information,
 'OLQ lets end users access corporate data easily.').

obf('OLE', information,
 'OLE lets users get information with English language
queries.').

By using a chart such as this, the salesperson can stress only those features and benefits
that meet the prospect's objectives. For example, OLE (OnLine English — a natural
language query) would only be mentioned for an information center. OLQ (OnLine Query
— a structured query language) would be presented as a data validation tool to a
development shop, and as an end user query tool to an information center.

This knowledge could have been stored as rules of the form:

obf('OLE', 'OLE lets users get information in English') :-
 objective(information).

This type of rule is further away from the way in which the experts understand the
knowledge. The structures are more natural to deal with and the inference engine can be
easily modified to deal with what is really just a different format of a rule.

Situation Analysis
The next key area is making sure that the products are compatible with the customer's
configuration. We wouldn't want to sell something that doesn't work. For example, OLE
would not run at the time on a small machine or under a DOS operating system.

unsuitable('OLE'):-
 operating_system(dos).
unsuitable('OLE'):-
 machine_size(small).

Competitive Analysis
A good sales person will not directly attack the competition, but will use the competition's
weakness to advantage. This is done by stressing those aspects of a product which
highlight the competitor's weakness. That is, how can our product be differentiated from
the competitor's. For example, two of Cullinet's main competitors were IBM and ADR.

Building Expert Systems in Prolog 133

Both IBM and Cullinet provided systems that performed well, but Cullinet's was easy to
use, so ease of use was stressed when the competitor was IBM. ADR's system was also
easy to use, but did not perform as well as Cullinet's, so against ADR performance was
stressed.

prod_dif('IDMS/R', 'ADR',
 'IDMS/R allows specification of linked lists for high
performance.').

prod_dif('IDMS/R', 'IBM',
 'IDMS/R allows specification of indexed lists for easy
access.').

prod_dif('ADS', 'ADR',
 'ADS generates high performance code.').

prod_dif('ADS', 'IBM',
 'ADS is very easy to use.').

Miscellaneous Advice
Besides this tabular data, there are also collections of miscellaneous rules for different
situations. For example, there were two TP monitors, UCF, and DC. One allowed the user
to use CICS for terminal networks, and the other provided direct control of terminals. The
recommendation would depend on the situation. Another example is dealing with federal
government prospects, which required help with the Washington office as well. Another
rule recommends a technical sales approach, rather than the business oriented sell, for
small shops that are not responding well.

advice:-
 not objective(production),
 tp_monitor('CICS'),
 online_applications(many),
 nl,
 advise('Since there are many existing online applications and'),
 nl,
 advise('performance isn''t an issue suggest UCF instead of DC'),
 nl.
advice:-
 industry(government),
 government(federal),
 nl,
 advise('If it's the federal government, make sure you work'),
 nl,
 advise(' with our federal government office on the account'),
 nl.
advice:-
 competition('ADR'),
 revenues(X),
 X < 100,
 friendly_account(no),
 nl,
 advise(' Market database technical issues'),
 nl,
 advise(' Show simple solutions in shirt sleeve sessions'),
 nl.

User Queries
Finally, the knowledge base contains a list of those items which will be obtained from the
user.

134 Chapter 11 - Prototyping

competition(X):-
 menuask('Who is the competition?',
 X, ['ADR', 'IBM', 'other']).

computer(X):-
 menuask('What type of computer are they using?',
 X, ['IBM', 'other']).

friendly_account(X):-
 menuask('Has the account been friendly?',
 X, [yes, no]).

government(X):-
 menuask('What type of government account is it?',
 X, [federal, state, local]).

industry(X):-
 menuask('What industry segment?',
 X, ['manufacturing', 'government', 'other']).

machine_size(X):-
 menuask('What size machine are they using?',
 X, [small, medium, large]).

objective(X):-
 menuask('What is the main objective for looking at DBMS?',
 X, ['development', 'information', 'production']).

online_applications(X):-
 menuask('Are there many existing online applications?',
 X, [many, few]).

operating_system(X):-
 menuask('What operation system are they using?',
 X, ['OS', 'DOS']).

revenues(X):-
 ask('What are their revenues (in millions)?',X).

tp_monitor(X):-
 menuask('What is their current TP monitor?',
 X, ['CICS', 'other']).

11.3 The Inference Engine
Now that a knowledge base has been designed, which has a reasonably small semantic gap
with the expert's knowledge, the inference engine can be written. For the prototype, some
of the knowledge is more easily stored in the inference engine. The high level order of
goals to seek is stored in the main predicate, recommend.

recommend:-
 qualify,
 objective_products,
 product_differentiation,
 other_advice,
 !.
recommend.

First, the prospect is qualified. The qualify predicate checks to make sure there are no
unqualified rules which fire.

qualify:-
 unqualified,
 !,

Building Expert Systems in Prolog 135

 fail.
qualify.

The objective_products predicate uses the user's objectives and the OBF chart to
recommend which products to sell and which benefits to present. It makes use of the
unsuitable rules to ensure no products are recommended, which will not work in the
customer's shop.

objective_products:-
 objective(X),
 advise('The following products meet objective'),
 advise(X), nl, nl,
 obf(Product, X, Benefit),
 not unsuitable(Product),
 advise(Product:Benefit),nl,
 fail.
objective_products.

Next, the product differentiation table is used in a similar fashion.

product_differentiation:-
 competition(X),
 prod_dif(_,X,_),
 advise('Since the competition is '),
 advise(X),
 advise(', stress:'), nl, nl,
 product_diff(X),
 !.
product_differentiation.

product_diff(X):-
 prod_dif(Prod, X, Advice),
 tab(5), advise(Advice), nl,
 fail.
product_diff(_).

Finally, the other advice rules are all tried.

other_advice:-
 advice,
 fail.
other_advice.

11.4 User Interface
For a prototype, the user interface is still a key point. The system will be looking for
supporters inside an organization, and it must be easy for people to understand the system.
The windowing environment makes it relatively easy to put together a reasonable
interface.

For this example, one display window is used for advice near the top of the screen, and a
smaller window near the bottom is used for questions to the user. Pop-up menus and
prompter windows are used to gather information from the user. Figure 11.1 shows the
user interface.

136 Chapter 11 - Prototyping

 IDMS/R maintains corporate information for
 shared access
OLQ lets end users access corporate data easily

What industry segment?

government
other

manufacturing

Figure 11.1 User interface of sales advisor prototype

The two display windows are defined at the beginning of the session.

window_init:-
 window(advice, create, [type(display), coord(1,1,10,78),
 border(blue:white),
 contents(blue:white)]),
 window(quest, create, [type(display), coord(13,10,13,70),
 border(blue:white),
 contents(blue:white)]).

The prompt and pop-up menu windows are defined dynamically as they are needed. The
ask and menuask predicates work as in other examples. Here are the clauses that interface
with the user.

ask(A,V):-
 window(quest,write,A),
 window([type(prompt),coord(16,10,16,70),border(white:blue),
 contents(white:blue)],
 read, ['', Y]),
 asserta(known(A,Y)),
 Y = V.

menuask(Attribute,AskValue,Menu):-
 length(Menu,L),
 R1 = 16,
 R2 is R1 + L - 1,
 window(quest,write,Attribute),
 window([type(menu),coord(R1,10,R2,40),border(white:blue),
 contents(white:blue),menu(Menu)],
 read, AnswerValue),
 asserta(known(Attribute,AnswerValue)),
 AskValue = AnswerValue.

The advise predicate uses the predefined display window, advice.

advise([H|T]):-
 window(advice,writeline,[H|T]),
 !.
advise(X):-
 window(advice,write,X).

Building Expert Systems in Prolog 137

11.5 Summary
One can model a fairly complex domain relatively quickly in Prolog, using the tools
available. A small semantic gap on the knowledge base and good user interface are two
very important points in the prototype.

Exercises
11.1 Prototype an expert system that plays poker or some similar game. It will need to be

specialized to understand the particular knowledge of the game. Experiment with
the prototype to find the best type of user interface and dialog with the system.

138 Chapter 11 - Prototyping

12 Rubik's Cube
This chapter describes a Prolog program that solves Rubik's cube. The program illustrates
many of the knowledge engineering problems in building expert systems. Performance is a
key issue and affects most of the design decisions in the program.

This program differs from the others in the book in that the knowledge and the reasoning
are all intertwined in one system. The system uses Prolog's powerful data structures to map
the expertise for solving a cube into working code. It illustrates how to build a system in a
problem domain that does not fit easily into the attribute-value types on data representation
used for the rest of the book.

Like most expert systems, the program can perform at a level comparable to a human
expert, but does not have an "understanding" of the problem domain. It is simply a
collection of the rules, based on Unscrambling the Cube by Black & Taylor, that an expert
uses to solve the cube . Depending on the machine, it unscrambles cubes as fast or faster
than a human expert. It does not, however, have the intelligence to discover the rules for
solving Rubik's cube from a description of the problem.

A Rubik's cube program illustrates many of the trade-offs in AI programs. The design is
influenced heavily by the language in which the program is written. The representation of
the problem is the key, but each language provides different capabilities for knowledge
representation and tools for manipulating the knowledge.

Performance has always been the issue with expert systems. A blind search strategy for the
cube simply would not work. Heuristics programming was invented to solve problems
such as this. Using various rules (intelligence), the search space can be drastically reduced
so that the problem can be solved in a reasonable amount of time. This is exactly what
happens in the Rubik's cube program. As with the basic knowledge representation, the
representation of the rules and how they are applied also figure heavily in the program
design.

Through this example we will see both the tremendous power and expressiveness of
Prolog as well as the obfuscation it sometimes brings as well.

12.1 The Problem
Rubik's cube is a simple looking puzzle. It is a cube with nine tiles on each face. In its
solved state each of the sides is made up of tiles of the same color, with a different color
for each side. Each of the tiles is actually part of a small cube, or cubie. Each face of the
cube (made up of nine cubies) can be rotated. The mechanical genius of the puzzle is that
the same cubie can be rotated from multiple sides. A corner cubie can move with three
sides, an edge cubie with two sides. Figure 12.1 shows a cube in the initial solved state,
and after the right side was rotated 90 degrees clockwise.

Figure 12.1 A Rubik's Cube before and after the right side is rotated

Building Expert Systems in Prolog 139

The problem is to take a cube whose sides have been randomly rotated and figure out how
to get it back to the initial solved state. The scrambled cube might look like that of figure
12.2.

Figure12.2 A scrambled Rubik's Cube

There are an astronomical number of possible ways to try to unscramble the cube, not very
many of which lead to the solved state. To reach a solution using a blind search algorithm
is not feasible, even on the largest machines. A human expert can unscramble the cube in
well less than a minute.

The difficulty with solving the cube revolves around the fact that if you move one cubie,
you have to move seven other cubies as well (the center one doesn't really go anywhere).
This is not a big problem in the early stages of unscrambling the cube, but once a number
of tiles are positioned correctly, new rotations tend to destroy the solved parts of the cube.

The experienced cube solver knows which complex sequences of moves can be used to
manipulate a small portion of the cube without disturbing the other portions of the cube.
For example, a 14 move sequence can be used to twist two corner pieces without
disturbing any other pieces.

It is important to realize there are actually two different senses of solving the cube. One
assumes the problem solver has no previous knowledge of the cube. The other assumes the
individual is an expert familiar with all of the intricacies of the cube.

In the first case, the person solving the cube must be able to discover the need for complex
sequences of moves and then discover the actual sequences. The program does not have
anywhere near the level of "intelligence" necessary to solve the cube in this sense.

In the second case the person is armed with full knowledge of many complex sequences of
moves, which can be brought to bear on rearranging various parts of the cube. The
problem here is to be able to quickly determine which sequences to apply given a
particular scrambled cube. This is the type of "expertise" that is contained in the Rubik's
cube program.

In the following sections we will look at how the cube is represented, what is done by
searching, what is done with heuristics, how the heuristics are coded, how the cube is
manipulated, and how it is displayed.

12.2 The Cube
The core of the program has to be the knowledge representation of the cube and its
fundamental rotations.

The cube lends itself to two obvious representation strategies. It can either be viewed
simply as 54 tiles, or as 20 cubies (or pieces) each with either two or three tiles. Since
much of the intelligence in the program is based on locating pieces and their positions on
the cube, a representation that preserves the piece identity is preferred. However, there are

140 Chapter 12 - Rubik's Cube

also brute force search predicates, which need a representation that can be manipulated
fast. For these predicates a simple flat structure of tiles is best.

The next decision is whether to use flat Prolog data structures (terms) — with each tile
represented as an argument of the term, or lists — with each element a tile. Lists are much
better for any predicates that might want to search for specific pieces, but they are slower
to manipulate as a single entity. Data structures are more difficult to tear apart argument by
argument, but are much more efficient to handle as a whole.

(The above statements are true for most Prologs that implement terms using fixed length
records. Some Prologs however use lists internally, thus changing the performance trade-
offs mentioned above.)

Based on the conflicting design constraints of speed and accessibility, the program actually
uses two different notations. One is designed for speed using flat data structures and tiles;
the other is a list of cubies, designed for use by the analysis predicates.

The cube is then represented by either the structure:

cube(X1, X2, X3, X4, ..., X53, X54)

where each X represents a tile, or by the list:

[p(X1), p(X2), ...p(X7, X8, X9), ...p(X31, X32), p(X33, X34),
 ...]

where each p(..) represents a piece. A piece might have one, two, or three arguments,
depending on whether it is a center piece, edge piece, or corner piece.

The tiles are each represented by an uppercase letter representing the side of the cube the
tile should reside on. These are front, back, top, bottom, right, and left. (The display
routine maps the sides to colors.) Quotes are used to indicate the tiles are constants, not
variables. Using the constants, the solved state (or goal state of the program) is stored as
the Prolog fact goalstate/1:

goalstate(cube('F', 'R', 'U', 'B', ...)).

The ordering of the tiles is not important as long as it is used consistently. The particular
ordering chosen starts with the center tiles and then works systematically through the
various cubies.

Having decided on two representations, it is necessary to quickly change from one to the
other. Unification has exactly the power we need to easily transform between one notation
of the cube and the other. A predicate pieces takes the flat structure and converts it to a
list, or visa versa.

pieces(cube(X1, X2, ... X54), [p(X1), ... p(X7, X8, X9), ...]).

If Z is a variable containing a cube in structure notation, then the query

?- pieces(Z, Y).

will bind the variable Y to the same cube in list notation. It can also be used the other way.

The following query can be used to get the goal state in list notation in the variable
PieceState:

Building Expert Systems in Prolog 141

?- goalstate(FlatState), pieces(FlatState, PieceState).
FlatState = cube('F', 'R', 'U', 'B', ...).
PieceState = [p('F'), p('R'), ...p('R', 'U'), ...p('B', 'R',
'F'), ...].

The first goal unifies FlatState with the initial cube we saw earlier. pieces/2 is then used
to generate PieceState from FlatState.

12.3 Rotation
Unification also gives us the most efficient way to rotate a cube. Each rotation is
represented by a predicate, which maps one arrangement of tiles to another. The first
argument is the name of the rotation, while the second and third arguments represent a
clockwise turn of the side. For example, the rotation of the upper side is represented by:

mov(u, cube(X1, ...X6, X7, X8, X9, ...),
cube(X1, ...X6, X20, X19, X21, ...))

We can apply this rotation to the top of the goal cube:

?- goalstate(State), mov(u, State, NewState).

The variable NewState would now have a solved cube with the upper side rotated
clockwise.

Since these can be used in either direction, we can write a higher level predicate that will
make either type of move based on a sign attached to the move.

move(+M, OldState, NewState):-
 mov(M, OldState, NewState).
move(-M, OldState, NewState):-
 mov(M, NewState, OldState).

Having now built the basic rotations, it is necessary to represent the complex sequences of
moves necessary to unscramble the cube. In this case the list notation is the best way to go.
For example, a sequence that rotates three corner pieces is represented by:

seq(tc3, [+r, -u, -l, +u, -r, -u, +l, +u]).

The sequence can be applied to a cube using a recursive list predicate, move_list/3:

move_list([], X, X).
move_list([Move|T], X, Z):-
 move(Move, X, Y),
 move_list(T, Y, Z).

At this point we have a very efficient representation of the cube and a means of rotating it.
We next need to apply some expertise to the search for a solution.

12.4 High Level Rules
The most obvious rule for solving Rubik's cube is to attack it one piece at a time. The
placing of pieces in the solved cube is done in stages. In Black & Taylor's book they
recognize six different stages, which build the cube up from the left side to the right. Some
examples of stages are: put the left side edge pieces in place, and put the right side corner
pieces in place.

142 Chapter 12 - Rubik's Cube

Each stage has from one to four pieces that need placement. One of the advantages of
writing expert systems directly in a programming language such as Prolog, is that it is
possible to structure the heuristics in an efficient, customized fashion. That is what is done
in this program.

The particular knowledge necessary to solve each stage is stored in predicates, which are
then used by another predicate, stage/1, to set up and solve each stage. Each stage has a
plan of pieces it tries to solve for. These are stored in the predicate pln/2. It contains the
stage number and a list of pieces. For example, stage 5 looks for the four edge pieces on
the right side:

pln(5, [p('R', 'U'), p('F', 'R'), p('R', 'D'), p('B', 'R')]).

Each stage will also use a search routine, which tries various combinations of rotations to
position a particular target piece. Different rotations are useful for different stages and,
these too, are stored in predicates similar to pln/2. The predicate is cnd/2, which contains
the candidate rotations for the stage.

For example, the first stage (left edge pieces) can be solved using just the simple rotations
of the right, upper, and front faces. The last stage (right corner pieces) requires the use of
powerful sequences that exchange and twist corner pieces without disturbing the rest of the
cube. These have names such as corner-twister 3 and tri-corner 1. They are selected from
Black and Taylor's book. These two examples are represented:

cnd(1, [r, u, f]).
cnd(6, [u, tc1, tc3, ct1, ct3]).

The stage/1 predicate drives each of the stages. It basically initializes the stage, and then
calls a general purpose routine to improve the cube's state. The initialization of the stage
includes setting up the data structures that hold the plan for the stage and the candidate
moves. Stage also reorients the cube for the stage to take advantage of symmetries and/or
make for better displays.

12.5 Improving the State
The stage/1 predicate calls the main working predicates, which search for the rotations to
put a given piece in place and update all of the appropriate data structures. The
representation of the partially solved cube is a key design issue for this portion of the
program.

There are predicates in the program that search through a cube in list-piece notation (rather
than tile notation) and determine where a piece is or, conversely, which piece is in a given
position. These predicates are useful for many portions of the program but are too slow to
be used for testing whether a given search has been successful or not. This is true since
they not only have to check for the new piece being placed but also have to insure that
none of the previously placed pieces have moved.

Unification is again the answer. So far, there are two cube/54 terms used in the program.
One represents the final solved state of the cube, the other represents the current state of
the cube. We introduce a third cube/54, referred to as the criteria, which is used to denote
those tiles which are currently in place and the tiles of the cubie that are currently being
positioned.

Initially all of the arguments of this third cube are variables. This structure will unify with
any cube. As pieces are put in place, the variables representing tiles of the criteria cube are
unified with the corresponding tiles of the solved cube. In this case, the criteria cube will
only unify with a cube that has those corresponding tiles in place.

Building Expert Systems in Prolog 143

As the program attempts to place each piece, it binds another piece in the criteria. For
example, as the program attempts to position the sixth piece, the improve/2 predicate first
binds the sixth piece in the criteria with the solved state. At this point then, the first six
pieces will have bound values the same as the solved state. The remaining tiles will be
represented by unbound variables which unify with anything. The criteria cube will then
successfully unify with any cube that has the first six pieces in place.

12.6 The Search
Now that we have a plan of attack on the cube, and a means of representing the current
state, and the criteria for testing if a given piece is in place, we can institute a very fast
search routine. The core routine to the Rubik's cube program is a predicate rotate/3. It is
called:

rotate(Moves, State, Crit).

The variable Moves is unbound at calling, and contains the list of moves necessary to
position the piece after the search has succeeded. State is the current state of the cube, and
Crit is the criteria for this stage of the solution. Crit has all of the pieces found so far
bound, as well as the one additional piece for this search. rotate/3 searches for a sequence
of moves which will put the new piece in place without disturbing the existing pieces.

The rotate/3 predicate illustrates the tremendous power and compactness of Prolog code.
At the same time it illustrates the difficulty of understanding some Prolog code. Prolog's
power derives from the built in backtracking execution and unification. Both of these
features help to eliminate many of the standard programming structures normally used.
Thus, a predicate like rotate/3 has a fraction of the code it would take in another language
(and executes fast as well), but it requires a good understanding of the underlying
execution behavior of Prolog to understand it.

rotate([], State, State).
rotate(Moves, State, Crit):-
 rotate(PriorMoves, State, NextState),
 get_move(ThisMove, NextState, Crit),
 append(PriorMoves, [ThisMove], Moves).

The rotate/3 predicate does a breadth first search as can be seen by the fact that it calls
itself recursively before it calls the move generation predicate get_move/3. Since the
application of moves and testing is so fast, and the depth of search is never great,
intermediate results are not saved as in a normal breadth first search. Instead, they are just
recalculated each time.

The append/3 predicate can be used to build lists. In this case it takes ThisMove and
appends it to the end of the list PriorMoves, generating a new list, Moves.

The candidate moves for a given stage are stored in a predicate cand/1 (the actual program
is a little more complex) which is maintained by the stage/1 predicate. For stage one, it
would look like:

cand(r).
cand(u).
cand(f).

The get_move/3 predicate is called with Move unbound, and the second and third
arguments bound to the current state and criteria respectively. If the call to move/3 fails
(because it does not rotate the cube into a position which unifies with the criteria), then
cand/1 backtracks generating another possible move. When all of the positive moves fail,
then get_move/3 tries again with negative moves.

144 Chapter 12 - Rubik's Cube

get_move(+Move, State, Crit):-
 cand(Move),
 mov(Move, State, Crit).
get_move(-Move, State, Crit):-
 cand(Move),
 mov(Move, Crit, State).

The efficiencies in rotate/3 show the rationale behind the early design decisions of cube
representation. The get_move/3 predicate is called with State and Crit. If it generates a
move that unifies with Crit, it succeeds, otherwise it fails and backtracks. All of this
testing and analysis is done automatically by Prolog's pattern matching call mechanism
(unification).

The entire logic of the breadth first search also happens automatically due to the
backtracking behavior of Prolog. If get_move fails to find a move that reaches the criteria,
rotate/3 backtracks into the recursive call to rotate/3. Since the recursive call to rotate/3
uses NextState as the criteria, and NextState is unbound, the recursive call will succeed in
generating PriorMoves and a modified state. Now get_move/3 tries again with this new
state to see if a single move will reach the criteria. This process repeats through as many
levels of depth as is necessary to find a sequence of moves that reach the criteria.

In practice, any more than a three-deep search begins to get tedious. The design of the
program is such that it does not require more than a three-deep search to find and position
any given piece.

12.7 More Heuristics
The program, as described so far, almost works. However, it turns out there are a few
situations that will cause the search routines to dig too deep for a solution. These situations
drastically affect the performance.

It was necessary to add more intelligence to the program to recognize situations that will
not be easily unscrambled by the search routine, and to correct them before calling
rotate/3.

One of the problems occurs when positioning pieces on the left side. If the piece to be
positioned is currently on the right side, then a few simple moves will put it in place on the
left side. However, if the piece is already on the left side, but in the wrong position, then it
will have to be moved to the right and back to the left. This longer sequence of moves
takes longer to search for, so one of the extra heuristics looks for this situation.

The heuristics analyze the cube, test for this condition, and blindly move the piece to the
right if it occurs. Then the normal search routine gets it back into its proper place. There
are a couple of situations like this that are covered by the heuristics.

It is tempting to think of adding more and more of these heuristics to straighten out the
cube with less searching. There is a trade-off, however, and that is it takes time to apply
the heuristics, and the search routine is relatively fast. So a heuristic is only worthwhile
when the search is slow. The program may be improved by additional heuristics, but the
search will still be the core of the program.

12.8 User Interface
A graphical representation of the cube is used to display the progress of the program. A
window is kept for recording all of the moves used so far.

Building Expert Systems in Prolog 145

In addition the program contains a cube editor that allows you to describe the scrambled
cube that has been on your shelf all these years. Just carefully apply the moves step by step
and you will get it back to its original state.

12.9 On the Limits of Machines
I don't mind saying that I was pretty proud of myself for writing this program. It was one
of my better hacks. At the time, I had a neighbor who was 12 years old and who had just
gotten a computer. He loved it and used to come over to my house to hang out with
someone who actually got paid for playing with these things.

I had finished an early version of the cube program and decided to knock his socks off. I
said, look at this, and ran the program. On my PC-XT it solved a randomly scrambled cube
in about three minutes. I looked at him and waited for his awed response — there was
nothing. I asked him what he thought. He said he wasn't impressed, his best time was 45
seconds!

Exercises
12.1 Improve the speed of the program by experimenting with more heuristics and more

canned move sequences. Try to find the optimal balance between the powerful
heuristics and sequences and the time it takes to search for them.

12.2 Experiment with a version of the cube program, which when given the goal of
replacing two pieces without disturbing the others, can "discover" a sequence and
remember it for future use.

146 Chapter 12 - Rubik's Cube

Appendices - Full Source Code

Building Expert Systems in Prolog 147

A Native
Birds Knowledgebase (birds.nkb)

% BIRDS.NKB - a sample bird identification system for use with the
% Native shell.

% top_goal where Native starts the inference.

top_goal(X) :-
 bird(X).

order(tubenose) :-
 nostrils(external_tubular),
 live(at_sea),
 bill(hooked).
order(waterfowl) :-
 feet(webbed),
 bill(flat).
order(falconiforms) :-
 eats(meat),
 feet(curved_talons),
 bill(sharp_hooked).
order(passerformes) :-
 feet(one_long_backward_toe).

family(albatross) :-
 order(tubenose),
 size(large),
 wings(long_narrow).
family(swan) :-
 order(waterfowl),
 neck(long),
 color(white),
 flight(ponderous).
family(goose) :-
 order(waterfowl),
 size(plump),
 flight(powerful).
family(duck) :-
 order(waterfowl),
 feed(on_water_surface),
 flight(agile).
family(vulture) :-
 order(falconiforms),
 feed(scavange),
 wings(broad).
family(falcon) :-
 order(falconiforms),
 wings(long_pointed),
 head(large),
 tail(narrow_at_tip).
family(flycatcher) :-
 order(passerformes),
 bill(flat),
 eats(flying_insects).
family(swallow) :-
 order(passerformes),
 wings(long_pointed),
 tail(forked),
 bill(short).

Building Expert Systems in Prolog 149

Native — Birds Knowledgebase (birds.nkb)

bird(laysan_albatross) :-
 family(albatross),
 color(white).
bird(black_footed_albatross) :-
 family(albatross),
 color(dark).
bird(fulmar) :-
 order(tubenose),
 size(medium),
 flight(flap_glide).
bird(whistling_swan) :-
 family(swan),
 voice(muffled_musical_whistle).
bird(trumpeter_swan) :-
 family(swan),
 voice(loud_trumpeting).
bird(canada_goose) :-
 family(goose),
 season(winter), % rules can be further broken down
 country(united_states), % to include regions and migration
 head(black), % patterns
 cheek(white).
bird(canada_goose) :-
 family(goose),
 season(summer),
 country(canada),
 head(black),
 cheek(white).
bird(snow_goose) :-
 family(goose),
 color(white).
bird(mallard) :-
 family(duck), % different rules for male
 voice(quack),
 head(green).
bird(mallard) :-
 family(duck), % and female
 voice(quack),
 color(mottled_brown).
bird(pintail) :-
 family(duck),
 voice(short_whistle).
bird(turkey_vulture) :-
 family(vulture),
 flight_profile(v_shaped).
bird(california_condor) :-
 family(vulture),
 flight_profile(flat).
bird(sparrow_hawk) :-
 family(falcon),
 eats(insects).
bird(peregrine_falcon) :-
 family(falcon),
 eats(birds).
bird(great_crested_flycatcher) :-
 family(flycatcher),
 tail(long_rusty).
bird(ash_throated_flycatcher) :-
 family(flycatcher),
 throat(white).
bird(barn_swallow) :-
 family(swallow),
 tail(forked).

150 Appendices - Full Source Code

Native — Birds Knowledgebase (birds.nkb)

bird(cliff_swallow) :-
 family(swallow),
 tail(square).
bird(purple_martin) :-
 family(swallow),
 color(dark).

country(united_states) :-
 region(new_england).
country(united_states) :-
 region(south_east).
country(united_states) :-
 region(mid_west).
country(united_states) :-
 region(south_west).
country(united_states) :-
 region(north_west).
country(united_states) :-
 region(mid_atlantic).
country(canada) :-
 province(ontario).
country(canada) :-
 province(quebec).
country(canada) :-
 province(etc).

region(new_england) :-
 state(X),
 member(X,[massachusetts,vermont,etc]).
region(south_east) :-
 state(X),
 member(X,[florida,mississippi,etc]).
region(canada) :-
 province(X),
 member(X,[ontario,quebec,etc]).

nostrils(X) :-
 ask(nostrils,X).

live(X) :-
 ask(live,X).

bill(X) :-
 ask(bill,X).

size(X) :-
 menuask(size,X,[large,plump,medium,small]).

eats(X) :-
 ask(eats,X).

feet(X) :-
 ask(feet,X).

wings(X) :-
 ask(wings,X).

neck(X) :-

Building Expert Systems in Prolog 151

Native — Birds Knowledgebase (birds.nkb)

 ask(neck,X).

color(X) :-
 ask(color,X).

flight(X) :-
 menuask(flight,X,[ponderous,powerful,agile,flap_glide,other]).

feed(X) :-
 ask(feed,X).

head(X) :-
 ask(head,X).

tail(X) :-
 menuask(tail,X,[narrow_at_tip,forked,long_rusty,square,other]).

voice(X) :-
 ask(voice,X).

season(X) :-
 menuask(season,X,[winter,summer]).

cheek(X) :-
 ask(cheek,X).

flight_profile(X) :-
 menuask(flight_profile,X,[flat,v_shaped,other]).

throat(X) :-
 ask(throat,X).

state(X) :-
 menuask(state,X,[massachusetts,vermont,florida,mississippi,etc]).

province(X) :-
 menuask(province,X,[ontario,quebec,etc]).

multivalued(voice).
multivalued(color).
multivalued(eats).

152 Appendices - Full Source Code

Native Shell (native.pro)
% Native - a simple shell for use with Prolog
% knowledge bases. It includes explanations.

:-op(900,xfy, :).

main :-
 greeting,
 repeat,
 write('> '),
 read(X),
 do(X),
 X == quit.

greeting :-
 write('This is the native Prolog shell.'), nl,
 native_help.

do(help) :-
 native_help,
 !.
do(load) :-
 load_kb,
 !.
do(solve) :-
 solve,
 !.
do(how(Goal)) :-
 how(Goal),
 !.
do(whynot(Goal)) :-
 whynot(Goal),
 !.
do(quit).
do(X) :-
 write(X),
 write(' is not a legal command.'), nl,
 fail.

native_help :-
 write('Type help. load. solve. how(Goal). whynot(Goal). or quit.'), nl,
 write('at the prompt.'), nl.

load_kb :-
 write('Enter file name in single quotes (ex. ''birds.nkb''.): '),
 read(F),
 reconsult(F).

solve :-
 abolish(known,3),
 prove(top_goal(X),[]),
 write('The answer is '), write(X), nl.
solve :-
 write('No answer found.'), nl.

ask(Attribute,Value,_) :-
 known(yes,Attribute,Value), % succeed if we know its true
 !. % and dont look any further
ask(Attribute,Value,_) :-

Building Expert Systems in Prolog 153

Native — Native Shell (native.pro)

 known(_,Attribute,Value), % fail if we know its false
 !,
 fail.
ask(Attribute,_,_) :-
 not multivalued(Attribute),
 known(yes,Attribute,_), % fail if its some other value.
 !, % this ensures this is the wrong value
 fail.
ask(A,V,Hist) :-
 write(A :V), % if we get here, we need to ask.
 write('? (yes or no) '),
 get_user(Y,Hist), % get the answer
 asserta(known(Y,A,V)), % remember it so we dont ask again.
 Y = yes. % succeed or fail based on answer.

% "menuask" is like ask, only it gives the user a menu to to choose
% from rather than a yes on no answer. In this case there is no
% need to check for a negative since "menuask" ensures there will
% be some positive answer.

menuask(Attribute,Value,_,_) :-
 known(yes,Attribute,Value), % succeed if we know
 !.
menuask(Attribute,_,_,_) :-
 known(yes,Attribute,_), % fail if its some other value
 !, fail.
menuask(Attribute,AskValue,Menu,Hist) :-
 nl,
 write('What is the value for '), write(Attribute), write('?'), nl,
 display_menu(Menu),
 write('Enter the number of choice> '),
 get_user(Num,Hist),nl,
 pick_menu(Num,AnswerValue,Menu),
 asserta(known(yes,Attribute,AnswerValue)),
 AskValue = AnswerValue. % succeed or fail based on answer

display_menu(Menu) :-
 disp_menu(1,Menu),
 !. % make sure we fail on backtracking

disp_menu(_,[]).
disp_menu(N,[Item|Rest]) :-
% recursively write the head of the list and disp_menu the tail
 write(N), write(' : '), write(Item), nl,
 NN is N + 1,
 disp_menu(NN,Rest).

pick_menu(N,Val,Menu) :-
 integer(N), % make sure they gave a number
 pic_menu(1,N,Val,Menu), % start at one
 !.
pick_menu(Val,Val,_). % if they didn't enter a number, use
 % what they entered as the value
pic_menu(_,_,none_of_the_above,[]). % if we've exhausted the list
pic_menu(N,N,Item,[Item|_]). % the counter matches the number
pic_menu(Ctr,N,Val,[_|Rest]) :-
 NextCtr is Ctr + 1, % try the next one
 pic_menu(NextCtr,N,Val,Rest).

get_user(X,Hist) :-
 repeat,
 write('> '),
 read(X),

154 Appendices - Full Source Code

Native — Native Shell (native.pro)

 process_ans(X,Hist),
 !.

process_ans(why,Hist) :-
 write_list(4,Hist),
 !,
 fail.
process_ans(X,_).

% Prolog in Prolog for explanations.
% It is a bit confusing because of the ambiguous use of the comma, both
% to separate arguments and as an infix operator between the goals of
% a clause.

prove(true,_) :-
 !.
prove((Goal,Rest),Hist) :-
 prov(Goal,[Goal|Hist]),
 prove(Rest,Hist).
prove(Goal,Hist) :-
 prov(Goal,[Goal|Hist]).

prov(true,_) :-
 !.
prov(menuask(X,Y,Z),Hist) :-
 menuask(X,Y,Z,Hist),
 !.
prov(ask(X,Y),Hist) :-
 ask(X,Y,Hist),
 !.
prov(Goal,Hist) :-
 clause(Goal,Body),
 prove(Body,Hist).

% EXPLANATIONS

how(Goal) :-
 clause(Goal,Body),
 prove(Body,[]),
 write_body(4,Body).

whynot(Goal) :-
 clause(Goal,Body),
 write_line([Goal,'fails because: ']),
 explain(Body).
whynot(_).

explain(true).
explain((Head,Body)) :-
 check(Head),
 explain(Body).

check(H) :-
 prove(H,[]),
 write_line([H,succeeds]),
 !.
check(H) :-
 write_line([H,fails]),
 fail.

write_list(N,[]).

Building Expert Systems in Prolog 155

Native — Native Shell (native.pro)

write_list(N,[H|T]) :-
 tab(N), write(H), nl,
 write_list(N,T).

write_body(N,(First,Rest)) :-
 tab(N), write(First), nl,
 write_body(N,Rest).
write_body(N,Last) :-
 tab(N), write(Last), nl.

write_line(L) :-
 flatten(L,LF),
 write_lin(LF).

write_lin([]) :-
 nl.
write_lin([H|T]) :-
 write(H), tab(1),
 write_lin(T).

flatten([],[]) :-
 !.
flatten([[]|T],T2) :-
 flatten(T,T2),
 !.
flatten([[X|Y]|T], L) :-
 flatten([X|[Y|T]],L),
 !.
flatten([H|T],[H|T2]) :-
 flatten(T,T2).

156 Appendices - Full Source Code

B Clam
Car Knowledgebase (car.ckb)

goal problem.

rule 1
 if not turn_over and
 battery_bad
 then problem is battery cf 100.

rule 2
 if lights_weak
 then battery_bad cf 50.

rule 3
 if radio_weak
 then battery_bad cf 50.

rule 4
 if turn_over and
 smell_gas
 then problem is flooded cf 80.

rule 5
 if turn_over and
 gas_gauge is empty
 then problem is out_of_gas cf 90.

rule 6
 if turn_over and
 gas_gauge is low
 then problem is out_of_gas cf 30.

output problem is battery get the battery recharged.
output problem is out_of_gas start walking or hitching to a gas station.
output problem is flooded wait 5 minutes and try again.

ask turn_over
 menu (yes no)
 prompt 'Does the engine turn over?'.

ask lights_weak
 menu (yes no)
 prompt 'Are the lights weak?'.

ask radio_weak
 menu (yes no)
 prompt 'Is the radio weak?'.

ask smell_gas
 menu (yes no)
 prompt 'Do you smell gas?'.

ask gas_gauge
 menu (empty low full)
 prompt 'What does the gas gauge say?'.

Building Expert Systems in Prolog 157

Birds Knowledgebase (birds.ckb)
goal bird.

rule 1
 if nostrils is external_tubular and
 live is at_sea and
 bill is hooked
 then order is tubenose cf 80.

rule 2
 if feet is webbed and
 bill is flat
 then order is waterfowl cf 80.

rule 3
 if eats is meat and
 feet is curved_talons and
 bill is sharp_hooked
 then order is falconiforms cf 80.

rule 4
 if feet is one_long_backward_toe
 then order is passerformes cf 80.

rule 5
 if order is tubenose and
 size is large and
 wings is long_narrow
 then family is albatross cf 80.

rule 6
 if order is waterfowl and
 neck is long and
 color is white and
 flight is ponderous
 then family is swan cf 80.

rule 7
 if order is waterfowl and
 size is plump and
 flight is powerful
 then family is goose cf 80.

rule 8
 if order is waterfowl and
 feed is on_water_surface and
 flight is agile
 then family is duck cf 80.

rule 9
 if order is falconiforms and
 feed is scavange and
 wings is broad
 then family is vulture cf 80.

rule 10
 if order is falconiforms and
 wings is long_pointed and
 head is large and
 tail is narrow_at_tip
 then family is falcon cf 80.

rule 11
 if order is passerformes and
 bill is flat and
 eats is flying_insects

158 Appendices - Full Source Code

Clam — Birds Knowledgebase (birds.ckb)

 then family is flycatcher cf 80.

rule 12
 if order is passerformes and
 wings is long_pointed and
 tail is forked and
 bill is short
 then family is swallow cf 80.

rule 13
 if family is albatross and
 color is white
 then bird is laysan_albatross cf 80.

rule 14
 if family is albatross and
 color is dark
 then bird is black_footed_albatross cf 80.

rule 15
 if order is tubenose and
 size is medium and
 flight is flap_glide
 then bird is fulmar cf 80.

rule 16
 if family is swan and
 voice is muffled_musical_whistle
 then bird is whistling_swan cf 80.

rule 17
 if family is swan and
 voice is loud_trumpeting
 then bird is trumpeter_swan cf 80.

rule 18
 if family is goose and
 season is winter and
 country is united_states and
 head is black and
 cheek is white
 then bird is canada_goose cf 80.

rule 19
 if family is goose and
 season is summer and
 country is canada and
 head is black and
 cheek is white
 then bird is canada_goose cf 80.

rule 20
 if family is goose and
 color is white
 then bird is snow_goose cf 80.

rule 21
 if family is duck and
 voice is quack and
 head is green
 then bird is mallard cf 80.

rule 22
 if family is duck and
 voice is quack and
 color is mottled_brown
 then bird is mallard cf 80.

Building Expert Systems in Prolog 159

Clam — Birds Knowledgebase (birds.ckb)

rule 23
 if family is duck and
 voice is short_whistle
 then bird is pintail cf 80.

rule 24
 if family is vulture and
 flight_profile is v_shaped
 then bird is turkey_vulture cf 80.

rule 25
 if family is vulture and
 flight_profile is flat
 then bird is california_condor cf 80.

rule 26
 if family is falcon and
 eats is insects
 then bird is sparrow_hawk cf 80.

rule 27
 if family is falcon and
 eats is birds
 then bird is peregrine_falcon cf 80.

rule 28
 if family is flycatcher and
 tail is long_rusty
 then bird is great_crested_flycatcher cf 80.

rule 29
 if family is flycatcher and
 throat is white
 then bird is ash_throated_flycatcher cf 80.

rule 30
 if family is swallow and
 tail is forked
 then bird is barn_swallow cf 80.

rule 31
 if family is swallow and
 tail is square
 then bird is cliff_swallow cf 80.

rule 32
 if family is swallow and
 color is dark
 then bird is purple_martin cf 80.

rule 33
 if region is new_england
 then country is united_states.

rule 34
 if region is south_east
 then country is united_states.

rule 35
 if region is mid_west
 then country is united_states.

rule 36
 if region is south_west
 then country is united_states.

rule 37
 if region is north_west

160 Appendices - Full Source Code

Clam — Birds Knowledgebase (birds.ckb)

 then country is united_states.

rule 38
 if region is mid_atlantic
 then country is united_states.

rule 39
 if region is ontario
 then country is canada.

rule 40
 if region is quebec
 then country is canada.

ask bill
 menu (hooked flat sharp_hooked short other)
 prompt 'What type of bill?'.

ask cheek
 menu (white other)
 prompt 'What type of cheek?'.

ask color
 menu (white dark mottled_brown other)
 prompt 'What color is it?'.

ask region
 menu (new_england south_east mid_west south_west
 north_west mid_atlantic ontario quebec other)
 prompt 'What region was it seen in?'.

ask eats
 menu (meat flying_insects insects birds other)
 prompt 'What does it eat?'.

ask feed
 menu (on_water_surface scavange other)
 prompt 'Where does it feed?'.

ask feet
 menu (webbed curved_talons one_long_backward_toe other)
 prompt 'What type of feet?'.

ask flight
 menu (ponderous powerful agile flap_glide other)
 prompt 'What type of flight?'.

ask flight_profile
 menu (v_shaped flat other)
 prompt 'What is the flight profile?'.

ask head
 menu (large black green other)
 prompt 'What type of head?'.

ask live
 menu (at_sea other)
 prompt 'Where does it live?'.

ask neck
 menu (long other)
 prompt 'What type of neck does it have?'.

ask nostrils
 menu (external_tubular other)
 prompt 'What type of nostrils?'.

ask season

Building Expert Systems in Prolog 161

Clam — Birds Knowledgebase (birds.ckb)

 menu (summer fall winter spring)
 prompt 'What season was it seen in?'.

ask size
 menu (large medium small plump other)
 prompt 'What size is it?'.

ask tail
 menu (narrow_at_tip forked long_rusty square other)
 prompt 'What type of tail?'.

ask throat
 menu (white other)
 prompt 'What type of throat?'.

ask voice
 menu (muffled_musical_whistle loud_trumpeting quack short_whistle other)
 prompt 'What type of voice?'.

ask wings
 menu (long_narrow broad long_pointed other)
 prompt 'What type of wings does it have?'.

multivalued voice.

multivalued color.

multivalued eats.

162 Appendices - Full Source Code

Clam Shell (clam.pro)
% Clam - expert system shell with EMYCIN type certainty factors

% This system is an imitation of the EMYCIN imitators. It does backward
% chaininging (goal directed) inference with uncertainty. The uncertainty
% is modelled using the MYCIN certainty factors.

% The only data structure is an attribute:value pair.

% NOTE - CF calculation in update only good for positive CF

main :-
 do_over,
 super.

% The main command loop

super :-
 repeat,
 write('consult restart load list trace on/off how exit'), nl,
 write('> '),
 read_line([X|Y]),
 doit([X|Y]),
 X == exit.

doit([consult]) :-
 top_goals,
 !.
doit([restart]) :-
 do_over,
 !.
doit([load]) :-
 load_rules,
 !.
doit([list]) :-
 list_facts,
 !.
doit([trace,X]) :-
 set_trace(X),
 !.
doit([how|Y]) :-
 how(Y),
 !.
doit([exit]).
doit([X|Y]) :-
 write('invalid command : '),
 write([X|Y]), nl.

% top_goals works through each of the goals in sequence

top_goals :-
 ghoul(Attr),
 top(Attr),
 print_goal(Attr),
 fail.
top_goals.

% top starts the backward chaining by looking for rules that reference
% the attribute in the RHS. If it is known with certainty 100, then
% no other rules are tried, and other candidates are eliminated. Otherwise
% other rules which might yield different values for the attribute

Building Expert Systems in Prolog 163

Clam — Clam Shell (clam.pro)

% are tried as well

top(Attr) :-
 findgoal(av(Attr,Val),CF,[goal(Attr)]),
 !.
top(_) :-
 true.

% prints all hypotheses for a given attribute

print_goal(Attr) :-
 nl,
 fact(av(Attr,X),CF,_),
 CF >= 20,
 outp(av(Attr,X),CF), nl,
 fail.
print_goal(Attr) :-
 write('done with '), write(Attr), nl,
 nl.

outp(av(A,V),CF) :-
 output(A,V,PrintList),
 pretty(av(A,V), X),
 printlist(X),
 tab(1), write(cf(CF)), write(': '),
 printlist(PrintList),
 !.
outp(av(A,V),CF) :-
 pretty(av(A,V), X),
 printlist(X),
 tab(1), write(cf(CF)).

printlist([]).
printlist([H|T]) :-
 write(H), tab(1),
 printlist(T).

% findgoal is the guts of the inference. It copes with already known
% attribute value pairs, multivalued attributes and single valued
% attributes. It uses the EMYCIN certainty factor arithmetic to
% propagate uncertainties.

% 1 - if its recorded and the value matches, we're done, if the
% value doesn't match, but its single valued and known with
% certainty 100 definitely fail

findgoal(X,Y,_) :-
 bugdisp([' ',X]),
 fail.
findgoal(not Goal,NCF,Hist) :-
 findgoal(Goal,CF,Hist),
 NCF is - CF,
 !.
findgoal(Goal,CF,Hist) :-
 fact(Goal,CF,_),
 !.
%findgoal(av(Attr,Val),CF) :-
% bound(Val),
% fact(av(Attr,V,_),CF),
% Val \= V,
% single_valued(Attr),
% CF=100,
% !,
% fail.

164 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

% 2 - if its askable, just ask and record the answer

findgoal(Goal,CF,Hist) :-
 can_ask(Goal,Hist),
 !,
 findgoal(Goal,CF,Hist).

% 3 - find a rule with the required attribute on the RHS. try to prove
% the LHS. If its proved, use the certainty of the LHS combined
% with the certainty of the RHS to compute the cf of the derived
% result

findgoal(Goal,CurCF,Hist) :-
 fg(Goal,CurCF,Hist).

fg(Goal,CurCF,Hist) :-
 rule(N,lhs(IfList), rhs(Goal,CF)),
 bugdisp(['call rule',N]),
 prove(N,IfList,Tally,Hist),
 bugdisp(['exit rule',N]),
 adjust(CF,Tally,NewCF),
 update(Goal,NewCF,CurCF,N),
 CurCF == 100,
 !.
fg(Goal,CF,_) :-
 fact(Goal,CF,_).

% can_ask shows how to query the user for various types of goal patterns

can_ask(av(Attr,Val),Hist) :-
 not asked(av(Attr,_)),
 askable(Attr,Menu,Edit,Prompt),
 query_user(Attr,Prompt,Menu,Edit,Hist),
 asserta(asked(av(Attr,_))).

% answer the how question at the top level, to explain how an answer was
% derived. It can be called successive times to get the whole proof.

how([]) :-
 write('Goal? '), read_line(X), nl,
 pretty(Goal,X),
 how(Goal).
how(X) :-
 pretty(Goal,X),
 nl,
 how(Goal).
how(not Goal) :-
 fact(Goal,CF,Rules),
 CF < -20,
 pretty(not Goal,PG),
 write_line([PG,was,derived,from,'rules: '|Rules]),
 nl,
 list_rules(Rules),
 fail.
how(Goal) :-
 fact(Goal,CF,Rules),
 CF > 20,
 pretty(Goal,PG),
 write_line([PG,was,derived,from,'rules: '|Rules]),
 nl,
 list_rules(Rules),
 fail.
how(_).

Building Expert Systems in Prolog 165

Clam — Clam Shell (clam.pro)

list_rules([]).
list_rules([R|X]) :-
 list_rule(R),
% how_lhs(R),
 list_rules(X).

list_rule(N) :-
 rule(N, lhs(Iflist), rhs(Goal,CF)),
 write_line(['rule ',N]),
 write_line([' If']),
 write_ifs(Iflist),
 write_line([' Then']),
 pretty(Goal,PG),
 write_line([' ',PG,CF]), nl.

write_ifs([]).
write_ifs([H|T]) :-
 pretty(H,HP),
 tab(4), write_line(HP),
 write_ifs(T).

pretty(av(A,yes),[A]) :-
 !.
pretty(not av(A,yes), [not,A]) :-
 !.
pretty(av(A,no),[not,A]) :-
 !.
pretty(not av(A,V),[not,A,is,V]).
pretty(av(A,V),[A,is,V]).

how_lhs(N) :-
 rule(N,lhs(Iflist),_),
 !,
 how_ifs(Iflist).

how_ifs([]).
how_ifs([Goal|X]) :-
 how(Goal),
 how_ifs(X).

% get input from the user. Either a straight answer from the menu, or
% an answer with cf N appended to it.

query_user(Attr,Prompt,[yes,no],_,Hist) :-
 !,
 write(Prompt), nl,
 get_user(X,Hist),
 get_vcf(X,Val,CF),
 asserta(fact(av(Attr,Val),CF,[user])).
query_user(Attr,Prompt,Menu,Edit,Hist) :-
 write(Prompt), nl,
 menu_read(VList,Menu,Hist),
 assert_list(Attr,VList).

menu_read(X,Menu,Hist) :-
 write_list(2,Menu),
 get_user(X,Hist).

get_user(X,Hist) :-
 repeat,
 write(': '),

166 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

 read_line(X),
 process_ans(X,Hist).

process_ans([why],Hist) :-
 nl, write_hist(Hist),
 !,
 fail.
process_ans(X,_).

write_hist([]) :-
 nl.
write_hist([goal(X)|T]) :-
 write_line([goal,X]),
 !,
 write_hist(T).
write_hist([N|T]) :-
 list_rule(N),
 !,
 write_hist(T).

write_list(N,[]).
write_list(N,[H|T]) :-
 tab(N), write(H), nl,
 write_list(N,T).

assert_list(_,[]).
assert_list(Attr,[not,Val,cf,CF|X]) :-
 !,
 NCF is - CF,
 asserta(fact(av(Attr,Val),NCF,[user])),
 assert_list(Attr,X).
assert_list(Attr,[not,Val|X]) :-
 !,
 asserta(fact(av(Attr,Val),-100,[user])),
 assert_list(Attr,X).
assert_list(Attr,[Val,cf,CF|X]) :-
 !,
 asserta(fact(av(Attr,Val),CF,[user])),
 assert_list(Attr,X).
assert_list(Attr,[Val|X]) :-
 asserta(fact(av(Attr,Val),100,[user])),
 assert_list(Attr,X).

get_vcf([no],yes,-100).
get_vcf([no,CF],yes,NCF) :-
 NCF is -CF.
get_vcf([no,cf,CF],yes,NCF) :-
 NCF is -CF.
get_vcf([Val,CF],Val,CF).
get_vcf([Val,cf,CF],Val,CF).
get_vcf([Val],Val,100).
get_vcf([not,Val],Val,-100).
get_vcf([not,Val,CF],Val,NCF) :-
 NCF is -CF.
get_vcf([not,Val,cf,CF],Val,NCF) :-
 NCF is -CF.

% prove works through a LHS list of premises, calling findgoal on
% each one. the total cf is computed as the minimum cf in the list

prove(N,IfList,Tally,Hist) :-
 prov(IfList,100,Tally,[N|Hist]),

Building Expert Systems in Prolog 167

Clam — Clam Shell (clam.pro)

 !.
prove(N,_,_) :-
 bugdisp(['fail rule',N]),
 fail.

prov([],Tally,Tally,Hist).
prov([H|T],CurTal,Tally,Hist) :-
 findgoal(H,CF,Hist),
 minimum(CurTal,CF,Tal),
 Tal >= 20,
 prov(T,Tal,Tally,Hist).

% update - if its already known with a given cf, here is the formula
% for adding in the new cf. This is used in those cases where multiple
% RHS reference the same attr :val

update(Goal,NewCF,CF,RuleN) :-
 fact(Goal,OldCF,_),
 combine(NewCF,OldCF,CF),
 retract(fact(Goal,OldCF,OldRules)),
 asserta(fact(Goal,CF,[RuleN|OldRules])),
 (CF == 100,single_valued(Attr),erase_other(Attr)
 ;
 true
),
 !.
update(Goal,CF,CF,RuleN) :-
 asserta(fact(Goal,CF,[RuleN])).

erase_other(Attr) :-
 fact(av(Attr,Val),CF,_),
 CF < 100,
 retract(fact(av(Attr,Val),CF,_)),
 fail.
erase_other(Attr) :-
 true.

adjust(CF1,CF2,CF) :-
 X is CF1 * CF2 / 100,
 int_round(X,CF).

combine(CF1,CF2,CF) :-
 CF1 >= 0,
 CF2 >= 0,
 X is CF1 + CF2 * (100 - CF1) / 100,
 int_round(X,CF).
combine(CF1,CF2,CF) :-
 CF1 < 0,
 CF2 < 0,
 X is - (-CF1 -CF2 * (100 + CF1) / 100),
 int_round(X,CF).
combine(CF1,CF2,CF) :-
 (CF1 < 0; CF2 < 0),
 (CF1 > 0; CF2 > 0),
 abs_minimum(CF1,CF2,MCF),
 X is 100 * (CF1 + CF2) / (100 - MCF),
 int_round(X,CF).

abs_minimum(A,B,X) :-
 absolute(A, AA),
 absolute(B, BB),
 minimum(AA,BB,X).

168 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

absolute(X, X) :-
 X >= 0.
absolute(X, Y) :-
 X < 0,
 Y is -X.

%minimum(A,B,A) :-
% A =< B.
%minimum(A,B,B) :-
% B > A.

%min([],X,X).
%min([H|T],Z,X) :-
% H < Z,
% min(T,H,X).
%min([H|T],Z,X) :-
% H >= Z,
% min(T,Z,X).

minimum(X,Y,X) :-
 X =< Y,
 !.
minimum(X,Y,Y) :-
 Y =< X.

int_round(X,I) :-
 X >= 0,
 I is integer(X + 0.5).
int_round(X,I) :-
 X < 0,
 I is integer(X - 0.5).

set_trace(off) :-
 ruletrace,
 retract(ruletrace).
set_trace(on) :-
 not ruletrace,
 asserta(ruletrace).
set_trace(_).

single_valued(A) :-
 multivalued(A),
 !,
 fail.
single_valued(A) :-
 true.

list_facts :-
 fact(X,Y,_),
 write(fact(X,Y)), nl,
 fail.
list_facts :-
 true.

do_over :-
 abolish(asked,1),
 abolish(fact,3).

Building Expert Systems in Prolog 169

Clam — Clam Shell (clam.pro)

clear :-
 abolish(asked,1),
 abolish(fact,3),
 abolish(rule,1),
 abolish(multivalued,1),
 abolish(askable,1),
 abolish(ghoul,1).

blank_lines(0).
blank_lines(N) :-
 nl,
 NN is N - 1,
 blank_lines(NN).

bugdisp(L) :-
 ruletrace,
 write_line(L),
 !.
bugdisp(_).

write_line(L) :-
 flatten(L,LF),
 write_lin(LF).

write_lin([]) :-
 nl.
write_lin([H|T]) :-
 write(H), tab(1),
 write_lin(T).

flatten([],[]) :-
 !.
flatten([[]|T],T2) :-
 flatten(T,T2),
 !.
flatten([[X|Y]|T], L) :-
 flatten([X|[Y|T]],L),
 !.
flatten([H|T],[H|T2]) :-
 flatten(T,T2).

member(X,[X|Y]).
member(X,[Y|Z]) :-
 member(X,Z).

%%%
% LDRULS - this module reads a rule file and translates it to internal
% Prolog format for the Clam shell

load_rules :-
 write('Enter file name in single quotes (ex. ''car.ckb''.): '),
 read(F),
 load_rules(F).

load_rules(F) :-
 clear_db,
 see(F),
 lod_ruls,
 write('rules loaded'), nl,
 seen,

170 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

 !.

lod_ruls :-
 repeat,
 read_sentence(L),
% bug(L),
 process(L),
 L == ['!EOF'].

process(['!EOF']) :-
 !.
process(L) :-
 trans(R,L,[]),
 bug(R),
 assertz(R),
 !.
process(L) :-
 write('trans error on:'), nl,
 write(L), nl.

clear_db :-
 abolish(cf_model,1),
 abolish(ghoul,1),
 abolish(askable,4),
 abolish(output,3),
 abolish(rule,3).

bug(cf_model(X)) :-
 write(cf_model(X)), nl,
 !.
bug(ghoul(X)):-
 write(ghoul(X)), nl,
 !.
bug(askable(A,_,_,_)):-
 write('askable '), write(A), nl,
 !.
bug(output(A,V,PL)):-
 write('output '), write(V), nl,
 !.
bug(rule(N,_,_)):-
 write('rule '), write(N), nl,
 !.
bug(X) :-
 write(X), nl.

% trans - translates a list of atoms in external rule form to internal
% rule form

trans(cf_model(X)) -->
 [cf,model,X].
trans(cf_model(X)) -->
 [cf,model,is,X].
trans(cf_model(X)) -->
 [cf,X].
trans(ghoul(X)) -->
 [goal,is,X].
trans(ghoul(X)) -->
 [goal,X].
trans(askable(A,M,E,P)) -->
 [ask,A],
 menux(M),
 editchk(E),
 prompt(A,P).

Building Expert Systems in Prolog 171

Clam — Clam Shell (clam.pro)

trans(output(A,V,PL)) -->
 [output],
 phraz(av(A,V)),
 plist(PL).
trans(rule(N,lhs(IF),rhs(THEN,CF))) -->
 id(N),
 if(IF),
 then(THEN,CF).
trans(multivalued(X)) -->
 [multivalued,X].
trans('Parsing error'-L,L,_).

%default(D) -->
% [default,D].
%default(none) -->
% [].

menux(M) -->
 [menu,'('],
 menuxlist(M).

menuxlist([Item]) -->
 [Item,')'].
menuxlist([Item|T]) -->
 [Item],
 menuxlist(T).

editchk(E) -->
 [edit,E].
editchk(none) -->
 [].

prompt(_,P) -->
 [prompt,P].
prompt(P,P) -->
 [].

id(N) -->
 [rule,N].

if(IF) -->
 [if],
 iflist(IF).

iflist([IF]) -->
 phraz(IF),
 [then].
iflist([Hif|Tif]) -->
 phraz(Hif),
 [and],
 iflist(Tif).
iflist([Hif|Tif]) -->
 phraz(Hif),
 [','],
 iflist(Tif).

then(THEN,CF) -->
 phraz(THEN),
 [cf],

172 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

 [CF].
then(THEN,100) -->
 phraz(THEN).

phraz(not av(Attr,yes)) -->
 [not,Attr].
phraz(not av(Attr,yes)) -->
 [not,a,Attr].
phraz(not av(Attr,yes)) -->
 [not,an,Attr].
phraz(not av(Attr,Val)) -->
 [not,Attr,is,Val].
phraz(not av(Attr,Val)) -->
 [not,Attr,are,Val].
phraz(av(Attr,Val)) -->
 [Attr,is,Val].
phraz(av(Attr,Val)) -->
 [Attr,are,Val].
phraz(av(Attr,yes)) -->
 [Attr].

plist([Text]) -->
 [Text].
plist([Htext|Ttext]) -->
 [Htext],
 plist(Ttext).

%%
%% end LDRULS
%%%

read_line(L) :-
 read_word_list([13,10], L),
 !.

read_sentence(S) :-
 read_word_list([`.], S),
 !.

%%%
%% From the Cogent Prolog Toolbox
%%
%% rwl.pro - read word list, based on Clocksin & Mellish
%%
%% Read word list reads in a list of chars (terminated with a !, . or ?)
%% and converts it to a list of atomic entries (including numbers).
%% Uppercase is converted to lower case.
%% A 'word' is one item in our generated list

%% This version has been modified for CLAM by allowing an additional
%% argument, Xs, that is a list of the ending characters. This allows the
%% code to be used for both command input, terminated by the Enter key, and
%% reading the knowledge base files, terminated after multiple lines by
%% a period.

%% It has further been modified to skip everything between a % and the
%% end of line, allowing for Prolog style comments.

read_word_list(LW,[W|Ws]) :-
 get0(C),
 readword(C, W, C1), % Read word starting with C, C1 is first new
 restsent(LW, C1, Ws). % character - use it to get rest of sentence

restsent(_, '!EOF', []).

Building Expert Systems in Prolog 173

Clam — Clam Shell (clam.pro)

restsent(LW,C,[]) :- % Nothing left if hit last-word marker
 member(C,LW),
 !.
restsent(LW,C,[W1|Ws]) :-
 readword(C,W1,C1), % Else read next word and rest of sentence
 restsent(LW,C1,Ws).

readword('!EOF','!EOF','!EOF').
readword(`%,W,C2) :- % allow Prolog style comments
 !,
 skip(13),
 get0(C1),
 readword(C1,W,C2).
readword(`',W,C2) :-
 !,
 get0(C1),
 to_next_quote(C1,Cs),
 name(W, [`'|Cs]),
 get0(C2).
readword(C,W,C1) :- % Some words are single characters
 single_char(C), % i.e. punctuation
 !,
 name(W, [C]), % get as an atom
 get0(C1).
readword(C, W, C1) :-
 is_num(C), % if we have a number --
 !,
 number_word(C, W, C1, _). % convert it to a genuine number
readword(C,W,C2) :- % otherwise if character does not
 in_word(C,NewC), % delineate end of word - keep
 get0(C1), % accumulating them until
 restword(C1,Cs,C2), % we have all the words
 name(W, [NewC|Cs]). % then make it an atom
readword(C,W,C2) :- % otherwise
 get0(C1),
 readword(C1,W,C2). % start a new word

restword(C, [NewC|Cs], C2) :-
 in_word(C, NewC),
 get0(C1),
 restword(C1, Cs, C2).
restword(C, [], C).

to_next_quote(`', [`']).
to_next_quote(C,[C|Rest]) :-
 get0(C1),
 to_next_quote(C1,Rest).

single_char(`,).
single_char(`;).
single_char(`:).
single_char(`?).
single_char(`!).
single_char(`.).
single_char(`().
single_char(`)).

in_word(C,C) :-
 C >= `a,
 C =< `z.
in_word(C,C) :-
 C >= `A,
 C =< `Z.

174 Appendices - Full Source Code

Clam — Clam Shell (clam.pro)

in_word(`-,`-).
in_word(`_,`_).

% Have character C (known integer) - keep reading integers and build
% up the number until we hit a non-integer. Return this in C1, and
% return the computed number in W.

number_word(C, W, C1, Pow10) :-
 is_num(C),
 !,
 get0(C2),
 number_word(C2, W1, C1, P10),
 Pow10 is P10 * 10,
 W is integer(((C - `0) * Pow10) + W1).
number_word(C, 0, C, 0.1).

is_num(C) :-
 C =< `9,
 C >= `0.

% These symbols delineate end of sentence

%lastword(`.).
%lastword(`!).
%lastword(`?).
%lastword(13). % carriage return
%lastword(10). % line feed

%%
%% end RWL.PRO from Cogent Prolog Toolbox
%%%

Building Expert Systems in Prolog 175

Build Rules (bldrules.pro)
% build rules use dcg in reverse to make clam rules from Prolog rules
% You can use bldrules.pro to convert, for example, the native Prolog
% rules of the birds.pro into clam syntax.

main :-
 write($From file: $), read(From),
 write($To file: $), read(To),
 doit(From,To).

doit(From,To) :-
 see(From),
 tell(To),
 test.

test :-
 cntr_set(1,1),
 repeat,
 read(X),
 tran(X,Ans,[]),
 write_nice(Ans), nl,
 X == '!EOF'.
test :-
 told,
 seen,
 write(done).

xxif(Body) -->
 [if],
 xxbody(Body).

xxthen(Head) -->
 {Head =.. [F,A]},
 [then,F,is,A].

xxbody((H,T)) -->
 {!,H =.. [F,A]},
 [F,is,A,and],
 xxbody(T).
xxbody(H) -->
 {H =.. [F,A]},
 [F,is,A].

tran(A,B,C) :-
 trans(A,B,C),
 !.
tran(X,X,_).

trans('!EOF','!EOF',_).

trans((Head :- true)) -->
 {Head =.. [F,A]},
 [F,is,A],
 !.
trans((Head :- Body)) -->
 {cntr_get(1,ID)},
 [rule, ID],
 xxif(Body),

Building Expert Systems in Prolog 176

Clam — Build Rules (bldrules.pro)

 xxthen(Head),
 {ID2 is ID + 1,
 cntr_set(1,ID2)}.

write_nice(X) :-
 wr_nice(X),
 !.

wr_nice([]) :-
 !,
 write('.'), nl.
wr_nice([if|T]):-
 !,
 nl, write(' if '),
 wr_nice(T).
wr_nice([then|T]):-
 !,
 nl, write(' then '),
 wr_nice(T).
wr_nice([and|T]):-
 !,
 write(and), nl, write(' '),
 wr_nice(T).
wr_nice([H|T]) :-
 !,
 write(H), write(' '),
 wr_nice(T).
wr_nice(X) :-
 write(X).

Building Expert Systems in Prolog 177

C Oops
Room Knowledgebase (room.okb)

% ROOM is an expert system for placing furniture in a living room.

% It is written using the OOPS production system rules language.

% It is only designed to illustrate the use of a forward chaining
% rules based language for solving configuration problems. As such
% it makes many simplifying assumptions (such as furniture has no
% width). It just decides which wall each item goes on, and does
% not decide the relative placement on the wall.

% Furniture to be placed in the room is stored in terms of the form
% "furniture(item,length)". The rules look for unplaced furniture,
% and if found attempt to place it according to the rules of thumb.
% Once placed, the available space on a wall is updated, the furniture
% is ed on a wall with a term of the form "position(item,wall)",
% and the original "furniture" term is removed.

% These are the terms which are initially stored in working storage.
% They set a goal used to force firing of certain preliminary rules,
% and various facts about the problem domain used by the actual
% configuration rules.

initial_data([goal(place_furniture),
 not_end_yet,
 legal_furniture([couch, chair, table_lamp, end_table,
 coffee_table, tv, standing_lamp, end]),
 opposite(north,south),
 opposite(south,north),
 opposite(east,west),
 opposite(west,east),
 right(north,west),
 right(west,south),
 right(south,east),
 right(east,north),
 left(north,east),
 left(east,south),
 left(south,west),
 left(west,north)]).

% Rules 1-8 are an example of how to generate procedural behavior
% from a non-procedural rule language. These rules force a series
% of prompts and gather data from the user on the room and furniture
% to be configured. They are included to illustrate the kludgy
% nature of production systems in a conventional setting.

% This is in contrast to rules f1-f14 which elegantly configure the room.

rule 1:
 [1: goal(place_furniture), % The initial goal causes a rule to
 2: legal_furniture(LF)] % to fire with introductory information.
 ==> % It will set a new goal.
 [retract(1),
 nl,
 write('Enter a single item of furniture at each prompt.'),nl,
 write('Include the width (in feet) of each item.'),nl,
 write('The format is Item:Length.'),nl,nl,
 write('The legal values are:'),nl,
 write(LF),nl,nl,

Building Expert Systems in Prolog 179

Oops — Room Knowledgebase (room.okb)

 write('When there is no more furniture, enter "end:end."'),nl,
 assert(goal(read_furniture))].

rule 2:
 [1: furniture(end,end), % When the furniture is read
 2: goal(read_furniture)] % set the new goal of reading
 ==> % reading wall sizes
 [retract(all),
 assert(goal(read_walls))].

rule 3:
 [1: goal(read_furniture), % Loop to read furniture.
 2: legal_furniture(LF)]
 ==>
 [prompt('furniture> ', F:L),
 member(F,LF),
 assert(furniture(F,L))].

rule 4: % If rule 3 matched and failed
 [1: goal(read_furniture), % the action, then member must
 2: legal_furniture(LF)] % have failed.
 ==>
 [write('Unknown piece of furniture, must be one of:'),nl,
 write(LF),nl].

rule 5:
 [1: goal(read_walls)]
 ==>
 [retract(1),
 prompt('What is the length of the north and south sides? ', LengthNS),
 prompt('What is the length of the east and west sides? ', LengthEW),
 assert(wall(north,LengthNS)),
 assert(wall(south,LengthNS)),
 assert(wall(east,LengthEW)),
 assert(wall(west,LengthEW)),
 assert(goal(find_door))].

rule 6:
 [1: goal(find_door)]
 ==>
 [retract(1),
 prompt('Which wall has the door? ', DoorWall),
 prompt('What is the width of the door? ', DoorWidth),
 retract(wall(DoorWall,X)),
 NewWidth = X - DoorWidth,
 assert(wall(DoorWall, NewWidth)),
 assert(position(door,DoorWall)),
 assert(goal(find_plugs)),
 write('Which walls have plugs? "end." when no more plugs:'),nl].

rule 7:
 [1: goal(find_plugs),
 2: position(plug,end)]
 ==>
 [retract(all)].

rule 8:
 [1: goal(find_plugs)]
 ==>
 [prompt('Side: ', Wall),
 assert(position(plug,Wall))].

180 Appendices - Full Source Code

Oops — Room Knowledgebase (room.okb)

% Rules f1-f13 illustrate the strength of rule based programming.
% Each rule captures a rule of thumb used in configuring furniture
% in a living room. The rules are all independent, transparent,
% and can be easily maintained. Complexity can be added without
% concern for the flow of control.

% f1, f2 - place the couch first, it should be either opposite the
% door, or to its right, depending on which wall is longer.

rule f1:
 [1: furniture(couch,LenC), % an unplaced couch
 position(door, DoorWall), % find the wall with the door
 opposite(DoorWall, OW), % the wall opposite the door
 right(DoorWall, RW), % the wall to the right of the door
 2: wall(OW, LenOW), % available space opposite
 wall(RW, LenRW), % available space to the right
 LenOW >= LenRW, % if opposite wall bigger than right
 LenC =< LenOW] % length of couch less than wall space
 ==>
 [retract(1), % remove the furniture term
 assert(position(couch, OW)), % assert the new position
 retract(2), % remove the old wall,length
 NewSpace = LenOW - LenC, % calculate the space now available
 assert(wall(OW, NewSpace))]. % assert the wall with new space left

rule f2:
 [1: furniture(couch,LenC),
 2: position(door, DoorWall),
 3: opposite(DoorWall, OW),
 4: right(DoorWall, RW),
 5: wall(OW, LenOW),
 6: wall(RW, LenRW),
 LenOW =< LenRW,
 LenC =< LenRW]
 ==>
 [retract(1),
 assert(position(couch, RW)),
 retract(6),
 NewSpace = LenRW - LenC,
 assert(wall(RW, NewSpace))].

% f3 - the tv should be opposite the couch

rule f3:
 [1: furniture(tv,LenTV),
 2: position(couch, CW),
 3: opposite(CW, W),
 4: wall(W, LenW),
 LenW >= LenTV]
 ==>
 [retract(1),
 assert(position(tv, W)),
 retract(4),
 NewSpace = LenW - LenTV,
 assert(wall(W, NewSpace))].

% f4, f5 - the coffee table should be in front of the couch or if there
% is no couch, in front of a chair.

rule f4:
 [1: furniture(coffee_table,_),
 2: position(couch, CW)]
 ==>

Building Expert Systems in Prolog 181

Oops — Room Knowledgebase (room.okb)

 [retract(1),
 assert(position(coffee_table, front_of_couch:CW))].

rule f5:
 [1: furniture(coffee_table,_),
 2: position(chair, CW)]
 ==>
 [retract(1),
 assert(position(coffee_table, front_of_chair:CW))].

% f6, f7 - chairs should be on adjacent walls from the couch

rule f6:
 [1: furniture(chair,LC),
 position(couch, CW),
 right(CW, ChWa),
 left(CW, ChWb),
 4: wall(ChWa, La),
 wall(ChWb, Lb),
 La >= Lb,
 La >= LC]
 ==>
 [retract(1),
 assert(position(chair, ChWa)),
 NewSpace = La - LC,
 retract(4),
 assert(wall(ChWa, NewSpace))].

rule f7:
 [1: furniture(chair,LC),
 position(couch, CW),
 right(CW, ChWa),
 left(CW, ChWb),
 wall(ChWa, La),
 4: wall(ChWb, Lb),
 La =< Lb,
 Lb >= LC]
 ==>
 [retract(1),
 assert(position(chair, ChWb)),
 NewSpace = Lb - LC,
 retract(4),
 assert(wall(ChWb, NewSpace))].

rule f8:
 [1: furniture(chair,LC),
 2: position(couch, CW),
 3: left(CW, ChW),
 4: wall(ChW, L),
 L >= LC]
 ==>
 [retract(1),
 assert(position(chair, ChW)),
 NewSpace = L - LC,
 retract(4),
 assert(wall(ChW, NewSpace))].

% put end_tables next to the couch first, then on the walls with
% the chairs

rule f9:
 [1: furniture(end_table,TL),
 2: position(couch, W),

182 Appendices - Full Source Code

Oops — Room Knowledgebase (room.okb)

 3: not(position(end_table, W)),
 4: wall(W, L),
 L >= TL]
 ==>
 [retract(1),
 assert(position(end_table, W, nolamp)),
 NewSpace = L - TL,
 retract(4),
 assert(wall(W, NewSpace))].

rule f10:
 [1: furniture(end_table,TL),
 2: position(chair, W),
 3: not(position(end_table, W)),
 4: wall(W, L),
 L >= TL]
 ==>
 [retract(1),
 assert(position(end_table, W, nolamp)),
 NewSpace = L - TL,
 retract(4),
 assert(wall(W, NewSpace))].

% put the table lamps on the end tables

rule f11:
 [1: furniture(table_lamp,_),
 2: position(end_table, W, nolamp)]
 ==>
 [retract(all),
 assert(position(table_lamp, W)),
 assert(position(end_table, W, lamp))].

% get extension cords if needed

rule f12:
 [1: position(tv, W),
 2: not(position(plug, W))]
 ==>
 [assert(buy(extension_cord, W)),
 assert(position(plug, W))].

rule f13:
 [1: position(table_lamp, W),
 2: not(position(plug, W))]
 ==>
 [assert(buy(extension_cord, W)),
 assert(position(plug, W))].

% When no other rules fire, here is the summary

rule f14:
 [1: not_end_yet]
 ==>
 [retract(1),
 write('Recommendations:'), nl, nl,
 write('furniture positions:'), nl, nl,
 list(position(_,_)),
 list(position(_,_,_)), nl,
 write('purchase recommendations:'), nl, nl,
 list(buy(_,_)),nl,
 write('furniture which wouldn''t fit:'), nl, nl,
 list(furniture(_,_)),nl,nl].

Building Expert Systems in Prolog 183

Animal Knowledgebase (animal.okb)
% from Winston & Horn's LISP

% Rules for animal identification. The first three rules are an
% input loop. Enter attributes that match the patterns in the rules.
% For example: has(robie,hair), or lays_eggs(suzie). These facts will
% help identify robie and suzie. Enter "end" to end the input loop.
%
% The attributes can also be put in the list of initial_data.
% Example:
%
% initial_data([has(dennis,hair),
% has(dennis,hoofs),
% has(dennis,black_stripes),
% parent(dennis,diana)
%]
%).
%
% This should lead to the identification of dennis and diana as zebras.

initial_data([goal(animal_id)]).

rule 1:
 [1: goal(animal_id)]
 ==>
 [assert(read_facts),
 retract(1)].

rule 2:
 [1: end,
 2: read_facts]
 ==>
 [retract(all)].

rule 3:
 [1: read_facts]
 ==>
 [prompt('Attribute ? ',X),
 assert(X)].

rule id1:
 [1: has(X,hair)]
 ==>
 [assert(isa(X,mammal)),
 retract(all)].

rule id2:
 [1: gives(X,milk)]
 ==>
 [assert(isa(X,mammal)),
 retract(all)].

rule id3:
 [1: has(X,feathers)]
 ==>
 [assert(isa(X,bird)),
 retract(all)].

184 Appendices - Full Source Code

Oops — Animal Knowledgebase (animal.okb)

rule id4:
 [1: flies(X),
 2: lays_eggs(X)]
 ==>
 [assert(isa(X,bird)),
 retract(all)].

rule id5:
 [1: eats_meat(X)]
 ==>
 [assert(isa(X,carnivore)),
 retract(all)].

rule id6:
 [1: has(X,pointed_teeth),
 2: has(X,claws),
 3: has(X,forward_eyes)]
 ==>
 [assert(isa(X,carnivore)),
 retract(all)].

rule id7:
 [1: isa(X,mammal),
 2: has(X,hoofs)]
 ==>
 [assert(isa(X,ungulate)),
 retract(all)].

rule id8:
 [1: isa(X,mammal),
 2: chews_cud(X)]
 ==>
 [assert(isa(X,ungulate)),
 assert(even_toed(X)),
 retract(all)].

rule id9:
 [1: isa(X,mammal),
 2: isa(X,carnivore),
 3: has(X,tawny_color),
 4: has(X,dark_spots)]
 ==>
 [assert(isa(X,cheetah)),
 retract(all)].

rule id10:
 [1: isa(X,mammal),
 2: isa(X,carnivore),
 3: has(X,tawny_color),
 4: has(X,black_stripes)]
 ==>
 [assert(isa(X,tiger)),
 retract(all)].

rule id11:
 [1: isa(X,ungulate),
 2: has(X,long_neck),
 3: has(X,long_legs),
 4: has(X,dark_spots)]

Building Expert Systems in Prolog 185

Oops — Animal Knowledgebase (animal.okb)

 ==>
 [assert(isa(X,giraffe)),
 retract(all)].

rule id12:
 [1: isa(X,ungulate),
 2: has(X,black_stripes)]
 ==>
 [assert(isa(X,zebra)),
 retract(all)].

rule id13:
 [1: isa(X,bird),
 2: does_not_fly(X),
 3: has(X,long_neck),
 4: has(X,long_legs),
 5: has_attr(X,black_and_white)]
 ==>
 [assert(isa(X,ostrich)),
 retract(all)].

rule id14:
 [1: isa(X,bird),
 2: does_not_fly(X),
 3: swims(X),
 4: has_attr(X,black_and_white)]
 ==>
 [assert(isa(X,penguin)),
 retract(all)].

rule id15:
 [1: isa(X,bird),
 2: flies_well(X)]
 ==>
 [assert(isa(X,albatross)),
 retract(all)].

rule id16:
 [1: isa(Animal,Type),
 2: parent(Animal,Child)]
 ==>
 [assert(isa(Child,Type)),
 retract(all)].

rule id17:
 [1: even_toed(X),
 2: has_attr(X,slow),
 3: isa(X,ungulate)]
 ==>
 [assert(isa(X,sloth)),
 retract(all)].

186 Appendices - Full Source Code

Oops Interpreter (oops.pro)
% OOPS2 - A toy production system interpreter. It uses a forward chaining,
% data driven, rule based approach for expert system development.
%
% Version 2, the simplest version without LEX, MEA, or conflict sets
%
% author Dennis Merritt
% Copyright (c) Dennis Merritt, 1986

% operator definitions

:-op(800,xfx,==>). % used to separate LHS and RHS of rule
:-op(500,xfy,:). % used to separate attributes and values
:-op(810,fx,rule). % used to define rule
:-op(700,xfy,#). % used for unification instead of =

main :-
 welcome,
 supervisor.

welcome :-
 nl, nl,
 write($ OOPS - A Toy Production System$), nl, nl,
 write($This is an interpreter for files containing rules coded in the$), nl,
 write($OOPS format.$), nl, nl,
 write($The => prompt accepts three commands:$), nl, nl,
 write($ load. - prompts for name of rules file$), nl,
 write($ enclose in single quotes$), nl,
 write($ list. - lists working memory$), nl,
 write($ go. - starts the inference$), nl,
 write($ exit. - does what you'd expect$), nl, nl.

% the supervisor, uses a repeat fail loop to read and process commands
% from the user

supervisor :-
 repeat,
 write('=>'),
 read(X),
% write(echo1-X),
 doit(X),
% write(echo2-X),
 X = exit.

doit(X) :-
 do(X).

% actions to take based on commands

do(exit) :-
 !.
do(go) :-
 initialize,
 go,
 !.
do(load) :-
 load,
 !.
do(list) :-
 lst, % lists all of working storage

Building Expert Systems in Prolog 187

Oops — Oops Interpreter (oops.pro)

 !.
do(list(X)) :-
 lst(X), % lists all which match the pattern
 !.
do(_) :-
 write('invalid command').

% loads the rules (Prolog terms) into the Prolog database

load :-
 write('Enter file name in single quotes (ex. ''room.okb''.): '),
 read(F),
 reconsult(F). % loads a rule file into interpreter work space

% assert each of the initial conditions into working storage

initialize :-
 initial_data(X),
 assert_list(X).

% working storage is represented by database terms stored
% under the key "fact"

assert_list([]) :-
 !.
assert_list([H|T]) :-
 assertz(fact(H)),
 !,
 assert_list(T).

% the main inference loop, find a rule and try it. if it fired, say so
% and repeat the process. if not go back and try the next rule. when
% no rules succeed, stop the inference

go :-
 call(rule ID: LHS ==> RHS),
 try(LHS,RHS),
 write('Rule fired '), write(ID), nl,
 !,
 go.
go.

% find the current conflict set.

%conflict_set(CS) :-
% bagof(rule ID: LHS ==> RHS,
% [rule ID: LHS ==> RHS, match(LHS)],CS).

% match the LHS against working storage, if it succeeds, process the
% actions from the RHS

try(LHS,RHS) :-
 match(LHS),
 process(RHS,LHS),
 !.

% recursively go through the LHS list, matching conditions against
% working storage

match([]) :-
 !.

188 Appendices - Full Source Code

Oops — Oops Interpreter (oops.pro)

match([N:Prem|Rest]) :-
 !,
 (fact(Prem)
 ;
 test(Prem) % a comparison test rather than a fact
),
 match(Rest).
match([Prem|Rest]) :-
 (fact(Prem) % condition number not specified
 ;
 test(Prem)
),
 match(Rest).

% various tests allowed on the LHS

test(not(X)) :-
 fact(X),
 !,
 fail.
test(not(X)) :-
 !.
test(X # Y) :-
 X = Y,
 !.
test(X > Y) :-
 X > Y,
 !.
test(X >= Y) :-
 X >= Y,
 !.
test(X < Y) :-
 X < Y,
 !.
test(X =< Y) :-
 X =< Y,
 !.
test(X = Y) :-
 X is Y,
 !.
test(member(X,Y)) :-
 member(X,Y),
 !.

% recursively execute each of the actions in the RHS list

process([],_) :-
 !.
process([Action|Rest],LHS) :-
 take(Action,LHS),
 !,
 process(Rest,LHS).

% if its retract, use the reference numbers stored in the Lrefs list,
% otherwise just take the action

take(retract(N),LHS) :-
 (N == all
 ;
 integer(N)
),
 retr(N,LHS),!.
take(A,_) :-
 take(A),!.

Building Expert Systems in Prolog 189

Oops — Oops Interpreter (oops.pro)

take(retract(X)) :-
 retract(fact(X)),
 !.
take(assert(X)) :-
 asserta(fact(X)),
 write(adding-X), nl,
 !.
take(X # Y) :-
 X = Y,
 !.
take(X = Y) :-
 X is Y,
 !.
take(write(X)) :-
 write(X),
 !.
take(nl) :-
 nl,
 !.
take(read(X)) :-
 read(X),
 !.
take(prompt(X,Y)) :-
 nl, write(X), read(Y),
 !.
take(member(X,Y)) :-
 member(X,Y),
 !.
take(list(X)) :-
 lst(X),
 !.

% logic for retraction

retr(all,LHS) :-
 retrall(LHS),
 !.
retr(N,[]) :-
 write('retract error, no '-N), nl,
 !.
retr(N,[N:Prem|_]) :-
 retract(fact(Prem)),
 !.
retr(N,[_|Rest]) :-
 !,
 retr(N,Rest).

retrall([]).
retrall([N:Prem|Rest]) :-
 retract(fact(Prem)),
 !, retrall(Rest).
retrall([Prem|Rest]) :-
 retract(fact(Prem)),
 !, retrall(Rest).
retrall([_|Rest]) :- % must have been a test
 retrall(Rest).

% list all of the terms in working storage

lst :-
 fact(X),
 write(X), nl,
 fail.
lst :-
 !.

190 Appendices - Full Source Code

Oops — Oops Interpreter (oops.pro)

% lists all of the terms which match the pattern

lst(X) :-
 fact(X),
 write(X), nl,
 fail.
lst(_) :-
 !.

% utilities

member(X,[X|Y]).
member(X,[Y|Z]) :-
 member(X,Z).

Building Expert Systems in Prolog 191

D Foops
Room Knowledgebase (room.fkb)

% ROOM.FKB - a version of the room knowledge base for FOOPS. Much of the
% knowledge about furniture is stored in frames, thus simplifying
% the rule portion of the knowledge base.

frame(furniture, [
 legal_types - [val [couch,chair,coffee_table,end_table,standing_lamp,
 table_lamp,tv,knickknack]],
 position - [def none, add pos_add],
 length - [def 3],
 place_on - [def floor],
 can_hold - [def 0]]).

frame(couch, [
 ako - [val furniture],
 length - [def 6]]).

frame(chair, [
 ako - [val furniture],
 length - [def 3]]).

% A table is different from most furniture in that it can hold things
% on it.

frame(table, [
 ako - [val furniture],
 space - [def 4],
 length - [def 4],
 can_support - [def yes],
 holding - [def []]]).

frame(end_table, [
 ako - [val table],
 length - [def 2]]).

frame(coffee_table, [
 ako - [val table],
 length - [def 4]]).

% electric is used as a super class for anything electrical. It contains
% the defaults for those attributes unique to electrical things.

frame(electric, [
 needs_outlet - [def yes]]).

frame(lamp, [
 ako - [val [furniture, electric]]]).

frame(standing_lamp, [
 ako - [val lamp]]).

frame(table_lamp, [
 ako - [val lamp],
 place_on - [def table]]).

frame(tv, [
 ako - [val [furniture, electric]],
 place_on - [calc tv_support]]).

Building Expert Systems in Prolog 193

Foops — Room Knowledgebase (room.fkb)

frame(knickknack, [
 ako - [val furniture],
 length - [def 1],
 place_on - [def table]]).

frame(wall, [
 length - [def 10],
 outlets - [def 0],
 space - [calc space_calc],
 holding - [def []]]).

frame(door, [
 ako - [val furniture],
 length - [def 4]]).

frame(goal, []).

frame(recommend, []).

% calculate the available space if needed. The available space is
% computed from the length of the item minus the sum of the lengths of
% the items it is holding. The held items are in the holding list.
% The items in the list are identified only by their unique names.
% This is used by walls and tables.

space_calc(C,N,space-S) :-
 getf(C,N,[length-L,holding-HList]),
 sum_lengths(HList,0,HLen),
 S is L - HLen.

sum_lengths([],L,L).

sum_lengths([C/N|T],X,L) :-
 getf(C,N,[length-HL]),
 XX is X + HL,
 sum_lengths(T,XX,L).

% When placing the tv, check with the user to see if it goes on the
% floor or a table.

tv_support(tv,N,place_on-table) :-
 nl,
 write('Should the TV go on a table? '),
 read(yes),
 uptf(tv,N,[place_on-table]).

tv_support(tv,N,place_on-floor) :-
 uptf(tv,N,[place_on-floor]).

% Whenever a piece is placed in position, update the holding list of the
% item which holds it (table or wall) and the available space. If something
% is placed in front of something else, then do nothing.

pos_add(_,_,position-frontof(X)) :-
 uptf(C,N,[holding-[X]]).

pos_add(C,N,position-CP/P) :-
 getf(CP,P,[space-OldS]),
 getf(C,N,[length-L]),
 NewS is OldS - L,
 NewS >= 0,
 uptf(CP,P,[holding-[C/N],space-NewS]).

194 Appendices - Full Source Code

Foops — Room Knowledgebase (room.fkb)

pos_add(C,N,position-CP/P) :-
 nl, write_line(['Not enough room on',CP,P,for,C,N]),
 !, fail.

% The forward chaining rules of the system. They make use of call
% to activate some pure Prolog predicates at the end of the knowledge

% and can be easily maintained. Complexity can be added without

% base. In particular, data gathering, and wall space calculations
% are done in Prolog.

% These are the terms which are initially stored in working storage.
% They set a goal used to force firing of certain preliminary rules,
% and various facts about the problem domain used by the actual
% configuration rules.

initial_data([goal - gather_data,
 wall - north with [opposite-south,right-west,left-east],
 wall - south with [opposite-north,right-east,left-west],
 wall - east with [opposite-west,right-north,left-south],
 wall - west with [opposite-east,right-south,left-north]]).

% first gather data, then try the couch first.

rule 1:
 [goal - gather_data]
 ==>
 [call(gather_data),
 assert(goal - couch_first)].

% Rules f1-f13 illustrate the strength of rule based programming.
% Each rule captures a rule of thumb used in configuring furniture
% in a living room. The rules are all independent, transparent,

% concern for the flow of control.

% f1, f2 - place the couch first, it should be either opposite the
% door, or to its right, depending on which wall has more space.

rule f1:
 [goal - couch_first,
 couch - C with [position-none,length-LenC],
 door - D with [position-wall/W],
 wall - W with [opposite-OW,right-RW],
 wall - OW with [space-SpOW],
 wall - RW with [space-SpRW],
 SpOW >= SpRW,
 LenC =< SpOW]
 ==>
 [update(couch - C with [position-wall/OW])].

rule f2:
 [goal - couch_first,
 couch - C with [position-none,length-LenC],
 door - D with [position-wall/W],
 wall - W with [opposite-OW,right-RW],
 wall - OW with [space-SpOW],
 wall - RW with [space-SpRW],
 SpRW >= SpOW,
 LenC =< SpRW]
 ==>
 [update(couch - C with [position-wall/RW])].

% f3 - f3a the tv should be opposite the couch. if it needs a table, an
% end table should be placed under it, if no table is available put

Building Expert Systems in Prolog 195

Foops — Room Knowledgebase (room.fkb)

% it on the floor anyway and recommend the purchase of a table. The rules
% first check to see if the couch has been placed.

rule f3:

 ==>

 [update(chair - Ch with [position-wall/LW])].

 [couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none,place_on-floor]]
 ==>
 [update(tv - TV with [position-wall/OW])].

rule f4:
 [couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none,place_on-table],
 end_table - T with [position-none]]
 ==>
 [update(end_table - T with [position-wall/OW]),
 update(tv - TV with [position-end_table/T])].

rule f4a:
 [tv - TV with [position-none,place_on-table]]
 ==>
 [assert(recommend - R with [buy-['table for tv']])].

% f5 - the coffee table should be in front of the couch.

rule f5:
 [coffee_table - CT with [position-none],
 couch - C]

 [update(coffee_table - CT with [position-frontof(couch/C)])].

% f6, f7 - chairs should be on adjacent walls from the couch, which ever
% has the most space

rule f6:
 [chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [right-RW,left-LW],
 wall - RW with [space-SpR],
 wall - LW with [space-SpL],
 SpR >= SpL]
 ==>
 [update(chair - Ch with [position-wall/RW])].

rule f7:
 [chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [right-RW,left-LW],
 wall - RW with [space-SpR],
 wall - LW with [space-SpL],
 SpL > SpR]
 ==>

% put end_tables next to the couch first, then on the walls with
% the chairs

rule f9:
 [end_table - ET with [position-none],
 not tv - TV with [position-none,place_on-table],
 couch - C with [position-wall/W],

196 Appendices - Full Source Code

Foops — Room Knowledgebase (room.fkb)

 not end_table - ET2 with [position-wall/W]]
 ==>
 [update(end_table - ET with [position-wall/W])].

rule f10:

 [end_table - ET with [position-none],
 not tv - TV with [position-none,place_on-table],
 chair - C with [position-wall/W],
 not end_table - ET2 with [position-wall/W]]
 ==>
 [update(end_table - ET with [position-wall/W])].

% put the table lamps on the end tables

rule f11:
 [table_lamp - TL with [position-none],
 end_table - ET with [position-wall/W]]
 ==>
 [update(table_lamp - TL with [position-end_table/ET])].

% put the knickknacks on anything which will hold them.

rule f11a:
 [knickknack - KK with [position-none],
 Table - T with [can_support-yes, position-wall/W]]
 ==>
 [update(knickknack - KK with [position-Table/T])].

% get extension cords if needed

rule f12:
 [Thing - X with [needs_outlet-yes, position-wall/W],
 wall - W with [outlets-0]]
 ==>
 [assert(recommend - R with [buy-['extension cord'-W]])].

rule f13:
 [Thing - X with [needs_outlet-yes, position-C/N],
 C - N with [position-wall/W],
 wall - W with [outlets-0]]
 ==>
 [assert(recommend - R with [buy-['extension cord'-Thing/W]])].

% When no other rules fire, here is the summary

rule f14:
 []
 ==>
 [call(output_data)].

% Prolog predicates called by various rules to perform functions better
% handled by Prolog.

% Gather the input data from the user.

gather_data :-
 read_furniture,
 read_walls.

Building Expert Systems in Prolog 197

Foops — Room Knowledgebase (room.fkb)

read_furniture :-
 get_frame(furniture,[legal_types-LT]),
 write('Enter name of furniture at the prompt. It must be one of:'), nl,
 write(LT), nl,
 write('Enter ''end.'' to stop input.'), nl,
 write('At the length prompt enter ''y.'' or a new number.'), nl,
 repeat,
 write('>'), read(X),
 process_furn(X),
 !.

process_furn(end).
process_furn(X) :-
 get_frame(X,[length-DL]),
 write(length-DL),write('>'),
 read(NL),
 get_length(NL,DL,L),
 addf(X,_,[length-L]),
 fail.

get_length(y,L,L) :- !.
get_length(L,_,L).

read_walls :-
 nl, write('Enter data for the walls.'), nl,
 write('What is the length of the north & south walls? '),
 read(NSL),
 uptf(wall,north,[length-NSL]),
 uptf(wall,south,[length-NSL]),
 write('What is the length of the east & west walls? '),
 read(EWL),
 uptf(wall,east,[length-EWL]),
 uptf(wall,west,[length-EWL]),
 write('Which wall has the door? '),
 read(DoorWall),
 write('What is its length? '),
 read(DoorLength),
 addf(door,D,[length-DoorLength]),
 uptf(door,D,[position-wall/DoorWall]),
 write('Which walls have outlets? (a list)'),
 read(PlugWalls),
 process_plugs(PlugWalls).

process_plugs([]) :- !.
process_plugs([H|T]) :-
 uptf(wall,H,[outlets-1]),
 !,
 process_plugs(T).
process_plugs(X) :-
 uptf(wall,X,[outlets-1]).

output_data :-
 write('The final results are:'),nl,
% print_frames,
 output_walls,
 output_tables,
 output_recommends,
 output_unplaced.

output_walls :-
 getf(wall,W,[holding-HL]),
 write_line([W,wall,holding|HL]),

198 Appendices - Full Source Code

Foops — Room Knowledgebase (room.fkb)

 fail.
output_walls.

output_tables :-
 getf(C,N,[holding-HL]),
 not C = wall,
 write_line([C,N,holding|HL]),
 fail.
output_tables.

output_recommends :-
 getf(recommend,_,[buy-BL]),
 write_line([purchase|BL]),
 fail.
output_recommends.

output_unplaced :-
 write('Unplaced furniture:'), nl,
 getf(T,N,[position-none]),
 write(T-N), nl,
 fail.
output_unplaced.

Building Expert Systems in Prolog 199

Foops (foops.pro)
% FOOPS.PRO - an integration of frames, forward chaining with LEX and MEA,
% and Prolog.
% Copyright (c) Dennis Merritt, 1986 - Permission granted for
% non-commercial use

% The first section of the code contains the basic OOPS code, the
% second section contains the FRAMES code.

% OPERATOR DEFINITIONS

:-op(800,xfx,==>). % used to separate LHS and RHS of rule
:-op(500,xfy,:). % used to separate attributes and values
:-op(810,fx,rule). % used to define rule
:-op(700,xfy,#). % used for unification instead of =
:-op(700,xfy,\=). % not equal
:-op(600,xfy,with). % used for frame instances in rules

main :-
 welcome,
 supervisor.

welcome :-
 write($FOOPS - A Toy Production System$),nl,nl,
 write($This is an interpreter for files containing rules coded in the$),nl,
 write($FOOPS format.$), nl, nl,
 write($The => prompt accepts four commands:$), nl, nl,
 write($ load. - prompts for name of rules file$), nl,
 write($ enclose in single quotes$), nl,
 write($ go. - starts the inference$), nl,
 write($ list. - list working memory$), nl,
 write($ exit. - does what you'd expect$), nl, nl.

% THE SUPERVISOR, USES A REPEAT FAIL LOOP TO READ AND PROCESS COMMANDS
% FROM THE USER

supervisor :-
 repeat,
 write('=>'),
 read(X),
 doit(X),
 X = exit.

doit(X) :- do(X).

% ACTIONS TO TAKE BASED ON COMMANDS

do(exit) :- !.
do(go) :-
 initialize,
 timer(T1),
 go,
 timer(T2),
 T is 10 * (T2 - T1),
 write(time-T), nl, !.
do(load) :- load, !.
do(list) :- lst, !. % lists all of working storage
do(list(X)) :- lst(X), !. % lists all which match the pattern
do(_) :- write('invalid command'), nl.

200 Appendices - Full Source Code

Foops — Foops (foops.pro)

% LOADS THE RULES (PROLOG TERMS) INTO THE PROLOG DATABASE

load :-
 write('Enter the file name in single quotes (ex. ''room.fkb''.): '),
 read(F),
 reconsult(F). % loads a rule file into interpreter work space

% ASSERT EACH OF THE INITIAL CONDITIONS INTO WORKING STORAGE

 asserta(instantiation(Inst)),

initialize :-
 setchron(1),
 abolish(instantiation,1),
 delf(all),
 assert(mea(no)),
 assert(gid(100)),
 initial_data(X),
 assert_list(X), !.
initialize :-
 error(301,[initialization,error]).

% WORKING STORAGE IS REPRESENTED BY DATABASE TERMS STORED
% UNDER THE KEY "fact"

assert_list([]) :- !.
assert_list([H|T]) :-
 getchron(Time),
 assert_ws(fact(H,Time)),
 !, assert_list(T).

% THE MAIN INFERENCE LOOP, FIND A RULE AND TRY IT. IF IT FIRED, SAY SO
% AND REPEAT THE PROCESS. IF NOT GO BACK AND TRY THE NEXT RULE. WHEN
% NO RULES SUCCEED, STOP THE INFERENCE

go :-
 conflict_set(CS),
 write_cs(CS),
 select_rule(CS,r(Inst,ID,LHS,RHS)),
 write($Rule Selected $), write(ID), nl,
 (process(RHS,LHS); true),

 write($Rule fired $), write(ID), nl,
 !, go.
go.

write_cs([]).
write_cs([r(I,ID,L,R)|X]) :-
 write(ID), nl,
 writeinst(I),
 write_cs(X).

writeinst([]).
writeinst([H|T]) :-
 tab(5),
 write(H), nl,
 writeinst(T).

conflict_set(CS) :-
 bagof(r(Inst,ID,LHS,RHS),
 (rule ID: LHS ==> RHS, match(LHS,Inst)), CS).

Building Expert Systems in Prolog 201

Foops — Foops (foops.pro)

select_rule(CS,R) :-
 refract(CS,CS1),
 mea_filter(0,CS1,[],CSR),
 lex_sort(CSR,R).

list_cs([]).
list_cs([K-r(_,ID,_,_)|T]) :-
 write(ID-K), nl,
 list_cs(T).

% ELIMINATE those rules which have already been tried

refract([],[]).
refract([r(Inst,_,_,_)|T],TR) :-
 instantiation(Inst),
 !, refract(T,TR).
refract([H|T],[H|TR]) :-
 refract(T,TR).

% SORT THE REST OF THE CONFLICT SET ACCORDING TO THE LEX STRATEGY

lex_sort(L,R) :-
 build_keys(L,LK),
% keysort(LK,X),
 sort(LK,X),
 reverse(X,[K-R|_]).

% BUILD LISTS OF TIME STAMPS FOR LEX SORT KEYS

build_keys([],[]).
build_keys([r(Inst,A,B,C)|T],[Key-r(Inst,A,B,C)|TR]) :-
 build_chlist(Inst,ChL),
 sort(ChL,X),
 reverse(X,Key),
 build_keys(T,TR).

% BUILD A LIST OF JUST THE TIMES OF THE VARIOUS MATCHED ATTRIBUTES
% FOR USE IN RULE SELECTION

build_chlist([],[]).
build_chlist([_/Chron|T],[Chron|TC]) :-
 build_chlist(T,TC).

% ADD THE TEST FOR MEA IF APPROPRIATE THAT EMPHASIZES THE FIRST ATTRIBUTE
% SELECTED.

mea_filter(_,X,_,X) :- not mea(yes), !.
mea_filter(_,[],X,X).
mea_filter(Max,[r([A/T|Z],B,C,D)|X],Temp,ML) :-
 T < Max,
 !, mea_filter(Max,X,Temp,ML).
mea_filter(Max,[r([A/T|Z],B,C,D)|X],Temp,ML) :-
 T = Max,
 !, mea_filter(Max,X,[r([A/T|Z],B,C,D)|Temp],ML).
mea_filter(Max,[r([A/T|Z],B,C,D)|X],Temp,ML) :-
 T > Max,
 !, mea_filter(T,X,[r([A/T|Z],B,C,D)],ML).

% RECURSIVELY GO THROUGH THE LHS LIST, MATCHING CONDITIONS AGAINST
% WORKING STORAGE

202 Appendices - Full Source Code

Foops — Foops (foops.pro)

match([],[]).
match([Prem|Rest],[Prem/Time|InstRest]) :-
 mat(Prem,Time),
 match(Rest,InstRest).

mat(N:Prem,Time) :-
 !, fact(Prem,Time).
mat(Prem,Time) :-
 fact(Prem,Time).
mat(Test,0) :-
 test(Test).

fact(Prem,Time) :-
 conv(Prem,Class,Name,ReqList),
 getf(Class,Name,ReqList,Time).

assert_ws(fact(Prem,Time)) :-
 conv(Prem,Class,Name,UList),
 addf(Class,Name,UList).

update_ws(fact(Prem,Time)) :-
 conv(Prem,Class,Name,UList),
 uptf(Class,Name,UList).

retract_ws(fact(Prem,Time)) :-
 conv(Prem,Class,Name,UList),
 delf(Class,Name,UList).

conv(Class-Name with List, Class, Name, List).
conv(Class-Name, Class, Name, []).

% VARIOUS TESTS ALLOWED ON THE LHS

test(not(X)) :-
 fact(X,_),
 !, fail.
test(not(X)) :- !.
test(X#Y) :- X=Y, !.
test(X>Y) :- X>Y, !.
test(X>=Y) :- X>=Y, !.
test(X<Y) :- X<Y, !.
test(X=<Y) :- X=<Y, !.
test(X \= Y) :- not X=Y, !.
%test(X = Y) :- X=Y, !.
test(X = Y) :- X is Y, !.
test(is_on(X,Y)) :- is_on(X,Y), !.
test(call(X)) :- call(X).

% RECURSIVELY EXECUTE EACH OF THE ACTIONS IN THE RHS LIST

process([],_) :- !.
process([Action|Rest],LHS) :-
 take(Action,LHS),
 !, process(Rest,LHS).
process([Action|Rest],LHS) :-
 error(201,[Action,fails]).

% IF ITS RETRACT, USE THE REFERENCE NUMBERS STORED IN THE Lrefs LIST,
% OTHERWISE JUST TAKE THE ACTION

Building Expert Systems in Prolog 203

Foops — Foops (foops.pro)

take(retract(N),LHS) :-
 (N == all; integer(N)),
 retr(N,LHS), !.
take(A,_) :- take(A), !.

take(retract(X)) :- retract_ws(fact(X,_)), !.
take(assert(X)) :-
 getchron(T),
 assert_ws(fact(X,T)),
 write(adding-X), nl,
 !.
take(update(X)) :-
 getchron(T),
 update_ws(fact(X,T)),
 write(updating-X), nl,
 !.
take(X # Y) :- X=Y, !.
take(X = Y) :- X is Y, !.
take(write(X)) :- write(X), !.
take(write_line(X)) :- write_line(X), !.
take(nl) :- nl, !.
take(read(X)) :- read(X), !.
take(prompt(X,Y)) :- nl, write(X), read(Y), !.
take(cls) :- cls, !.
take(is_on(X,Y)) :- is_on(X,Y), !.
take(list(X)) :- lst(X), !.
take(call(X)) :- call(X).

% LOGIC FOR RETRACTION

retr(all,LHS) :-retrall(LHS), !.
retr(N,[]) :- error(202,['retract error, no ',N]), !.
retr(N,[N:Prem|_]) :- retract_ws(fact(Prem,_)), !.
retr(N,[_|Rest]) :- !, retr(N,Rest).

retrall([]).
retrall([N:Prem|Rest]) :-
 retract_ws(fact(Prem,_)),
 !, retrall(Rest).
retrall([Prem|Rest]) :-
 retract_ws(fact(Prem,_)),
 !, retrall(Rest).
retrall([_|Rest]) :- % must have been a test
 retrall(Rest).

% LIST ALL OF THE TERMS IN WORKING STORAGE

lst :-
 fact(X,_),
 write(X), nl,
 fail.
lst.

% LISTS ALL OF THE TERMS WHICH MATCH THE PATTERN

lst(X) :-
 fact(X,_),
 write(X), nl,
 fail.
lst(_).

204 Appendices - Full Source Code

Foops — Foops (foops.pro)

% UTILITIES

member(X,[X|Y]).
member(X,[Y|Z]) :-
 member(X,Z).

reverse(F,R) :-
 rever(F,[],R).

rever([],R,R).
rever([X|Y],T,R) :-
 rever(Y,[X|T],R).

% MAINTAIN A TIME COUNTER

setchron(N) :-
 retract(chron(_)),
 asserta(chron(N)), !.
setchron(N) :-
 asserta(chron(N)).

getchron(N) :-
 retract(chron(N)),
 NN is N + 1,
 asserta(chron(NN)), !.

%
% THIS SECTION IMPLEMENTS A FRAME BASED SCHEME FOR KNOWLEDGE REPRESENTATION
%

:- op(600,fy,val).
:- op(600,fy,calc).
:- op(600,fy,def).
:- op(600,fy,add).
:- op(600,fy,del).

% prep_req takes a request of the form Slot-Val, and forms it into the
% more accurate req(Class,Slot,Facet,Value). If no facet was mentioned
% in the original request, then the facet of "any" is used to indicate
% the system should use everything possible to find a value.

prep_req(Slot-X,req(C,N,Slot,val,X)) :- var(X), !.
prep_req(Slot-X,req(C,N,Slot,Facet,Val)) :-
 nonvar(X),
 X =.. [Facet,Val],
 facet_list(FL),
 is_on(Facet,FL), !.
prep_req(Slot-X,req(C,N,Slot,val,X)).

facet_list([val,def,calc,add,del,edit]).

% RETRIEVE A LIST OF SLOT VALUES

get_frame(Class, ReqList) :-
 frame(Class, SlotList),
 slot_vals(Class,_,ReqList,SlotList).

getf(Class,Name,ReqList) :-
 getf(Class,Name,ReqList,_).

Building Expert Systems in Prolog 205

Foops — Foops (foops.pro)

getf(Class,Name,ReqList,TimeStamp) :-
 frinst(Class, Name, SlotList, TimeStamp),
 slot_vals(Class, Name, ReqList, SlotList).

slot_vals(_,_,ReqL,SlotL) :-
 var(ReqL),
 !,
 ReqL = SlotL.
slot_vals(_,_,[],_).
slot_vals(C,N,[Req|Rest],SlotList) :-
 prep_req(Req,req(C,N,S,F,V)),
 find_slot(req(C,N,S,F,V),SlotList),
 !, slot_vals(C,N,Rest,SlotList).
slot_vals(C,N, Req, SlotList) :-
 not(list(Req)),
 prep_req(Req,req(C,N,S,F,V)),
 find_slot(req(C,N,S,F,V), SlotList).

find_slot(req(C,N,S,F,V), SlotList) :-
 nonvar(V), !,
 find_slot(req(C,N,S,F,Val), SlotList), !,
 (Val = V; list(Val),is_on(V,Val)).
find_slot(req(C,N,S,F,V), SlotList) :-
 is_on(S-FacetList, SlotList), !,
 facet_val(req(C,N,S,F,V),FacetList).
find_slot(req(C,N,S,F,V), SlotList) :-
 is_on(ako-FacetList, SlotList),
 facet_val(req(C,N,ako,val,Ako),FacetList),
 (is_on(X,Ako); X = Ako),
 frame(X, HigherSlots),
 find_slot(req(C,N,S,F,V), HigherSlots), !.
find_slot(Req,_) :-
 error(99,['frame error looking for:',Req]).

facet_val(req(C,N,S,F,V),FacetList) :-
 FV =.. [F,V],
 is_on(FV,FacetList), !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(val ValList,FacetList),
 is_on(V,ValList), !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(calc Pred,FacetList),
 CalcPred =.. [Pred,C,N,S-V],
 call(CalcPred), !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(def V,FacetList), !.

% ADD A LIST OF SLOT VALUES

add_frame(Class, UList) :-
 old_slots(Class,SlotList),
 add_slots(Class,_,UList,SlotList,NewList),
 retract(frame(Class,_)),
 asserta(frame(Class,NewList)), !.

addf(Class,Nm,UList) :-
 (var(Nm),genid(Name);Name=Nm),
 add_slots(Class,Name,[ako-Class|UList],SlotList,NewList),
 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)),
 !.

206 Appendices - Full Source Code

Foops — Foops (foops.pro)

uptf(Class,Name,UList) :-
 frinst(Class,Name,SlotList,_),
 add_slots(Class,Name,UList,SlotList,NewList),

 getchron(TimeStamp),

 G is N + 1,

 FX =.. [F,OldVal],

add_newval(X,Val,Val) :- var(X), !.

 get_frame(C,S-add(Add)), !,
 AddFunc =.. [Add,C,N,S-V],

 retract(frinst(Class,Name,_,_)),

 asserta(frinst(Class,Name,NewList,TimeStamp)),
 !.
uptf(Class,Name,UList) :-
 error(105,[update,failed,Class,Name,UList]).

genid(G) :-
 retract(gid(N)),

 asserta(gid(G)).

old_slots(Class,SlotList) :-
 frame(Class,SlotList), !.
old_slots(Class,[]) :-
 asserta(frame(Class,[])).

add_slots(_,_,[],X,X).
add_slots(C,N,[U|Rest],SlotList,NewList) :-
 prep_req(U,req(C,N,S,F,V)),
 add_slot(req(C,N,S,F,V),SlotList,Z),
 !, add_slots(C,N,Rest,Z,NewList).
add_slots(C,N,X,SlotList,NewList) :-
 prep_req(X,req(C,N,S,F,V)),
 add_slot(req(C,N,S,F,V),SlotList,NewList).

add_slot(req(C,N,S,F,V),SlotList,[S-FL2|SL2]) :-
 delete(S-FacetList,SlotList,SL2),
 add_facet(req(C,N,S,F,V),FacetList,FL2).

add_facet(req(C,N,S,F,V),FacetList,[FNew|FL2]) :-

 delete(FX,FacetList,FL2),
 add_newval(OldVal,V,NewVal),
 !, check_add_demons(req(C,N,S,F,V),FacetList),
 FNew =.. [F,NewVal].

add_newval(OldList,ValList,NewList) :-
 list(OldList),
 list(ValList),
 append(ValList,OldList,NewList), !.
add_newval([H|T],Val,[Val,H|T]).
add_newval(_,Val,Val).

check_add_demons(req(C,N,S,F,V),FacetList) :-

 call(AddFunc).
check_add_demons(_,_).

% DELETE A LIST OF SLOT VALUES

del_frame(Class) :-
 retract(frame(Class,_)).
del_frame(Class) :-
 error(203,['No frame',Class,'to delete']).

Building Expert Systems in Prolog 207

Foops — Foops (foops.pro)

del_frame(Class, UList) :-
 old_slots(Class,SlotList),
 del_slots(Class,_,UList,SlotList,NewList),
 retract(frame(Class,_)),

 fail.

 asserta(frame(Class,NewList)).

delf(all) :-
 retract(frinst(_,_,_,_)),

delf(all).

delf(Class,Name) :-
 retract(frinst(Class,Name,_,_)),
 !.
delf(Class,Name) :-
 error(103,['No instance of ',Class,' for ',Name]).

delf(Class,Name,UList) :-
 old_flots(Class,Name,SlotList),
 del_slots(Class,Name,UList,SlotList,NewList),
 retract(frinst(Class,Name,_,_)),
 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)).

del_slots(_,_,[],X,X).
del_slots(C,N,[U|Rest],SlotList,NewList) :-
 prep_req(U,req(C,N,S,F,V)),
 del_slot(req(C,N,S,F,V),SlotList,Z),
 del_slots(C,N,Rest,Z,NewList).
del_slots(C,N,X,SlotList,NewList) :-
 prep_req(X,req(C,N,S,F,V)),
 del_slot(req(C,N,S,F,V),SlotList,NewList).

del_slot(req(C,N,S,F,V),SlotList,[S-FL2|SL2]) :-
 remove(S-FacetList,SlotList,SL2),
 del_facet(req(C,N,S,F,V),FacetList,FL2).
del_slot(Req,_,_) :-
 error(104,['del_slot - unable to remove',Req]).

del_facet(req(C,N,S,F,V),FacetList,FL) :-
 FV =.. [F,V],
 remove(FV,FacetList,FL),
 !, check_del_demons(req(C,N,S,F,V),FacetList).
del_facet(req(C,N,S,F,V),FacetList,[FNew|FL]) :-
 FX =.. [F,OldVal],
 remove(FX,FacetList,FL),
 remove(V,OldVal,NewValList),
 FNew =.. [F,NewValList],
 !, check_del_demons(req(C,N,S,F,V),FacetList).
del_facet(Req,_,_) :-
 error(105,['del_facet - unable to remove',Req]).

check_del_demons(req(C,N,S,F,V),FacetList) :-
 get_frame(C,S-del(Del)), !,
 DelFunc =.. [Del,C,N,S-V],
 call(DelFunc).
check_del_demons(_,_).

208 Appendices - Full Source Code

Foops — Foops (foops.pro)

% PRINT A FRAME

print_frames :-
 frame(Class, SlotList),
 print_frame(Class),
 fail.
print_frames.

print_frame(Class) :-
 frame(Class,SlotList),
 write_line(['Frame:',Class]),
 print_slots(SlotList), nl.

printfs :-
 frame(Class,_),
 printf(Class,_),
 fail.
printfs.

printf(Class,Name) :-
 frinst(Class,Name,SlotList,Time),
 write_line(['Frame:',Class,Name,Time]),
 print_slots(SlotList), nl.

printf(Class) :-
 frinst(Class,Name,SlotList,Time),
 write_line(['Frame:',Class,Name,Time]),
 print_slots(SlotList), nl, fail.
printf(_).

print_slots([]).
print_slots([Slot|Rest]) :-
 write_line([' Slot:',Slot]),
 print_slots(Rest).

% UTILITIES

delete(X,[],[]).
delete(X,[X|Y],Y) :- !.
delete(X,[Y|Z],[Y|W]) :- delete(X,Z,W).

remove(X,[X|Y],Y) :- !.
remove(X,[Y|Z],[Y|W]) :- remove(X,Z,W).

is_on(X,[X|Y]).
is_on(X,[Y|Z]) :- is_on(X,Z).

error_threshold(100).

error(NE,_) :- error_threshold(N), N > NE, !, fail.
error(NE,E) :-
 nl, write('*** '), write(error-NE), tab(1),
 write_line(E),
 !, fail.

write_line([]) :- nl.

Building Expert Systems in Prolog 209

Foops — Foops (foops.pro)

write_line([H|T]) :-
 write(H), tab(1),
 write_line(T).

time_test :-
 write('TT> '),
 read(X),
 timer(T1),
 X,
 timer(T2),
 nl, nl,
 T is T2 - T1,
 write(time-T).

210 Appendices - Full Source Code

E Rete-Foops
Room Knowledgebase (room.rkb)

% ROOM.RKB - a version of ROOM for use with RETE-FOOPS.

frame(furniture, [legal_types - [val [couch,chair,coffee_table,end_table,
 standing_lamp,table_lamp,tv,knickknack]
],
 position - [def none, add pos_add],
 length - [def 3],
 place_on - [def floor],
 can_hold - [def 0]
]
).

frame(couch, [ako - [val furniture],
 length - [def 6]
]
).

frame(chair, [ako - [val furniture],
 length - [def 3]
]
).

% A table is different from most furniture in that it can hold things
% on it.

frame(table, [ako - [val furniture],
 space - [def 4],
 length - [def 4],
 can_support - [def yes],
 holding - [def []]
]
).

frame(end_table, [ako - [val table],
 length - [def 2]
]
).

frame(coffee_table, [ako - [val table],
 length - [def 4]
]
).

% electric is used as a super class for anything electrical. It contains
% the defaults for those attributes unique to electrical things.

frame(electric, [needs_outlet - [def yes]]).

frame(lamp, [ako - [val [furniture, electric]]]).

frame(standing_lamp, [ako - [val lamp]]).

Building Expert Systems in Prolog 211

Rete-Foops — Room Knowledgebase (room.rkb)

frame(table_lamp, [ako - [val lamp],
 place_on - [def table]
]
).

frame(tv, [ako - [val [furniture, electric]],
 place_on - [calc tv_support]]
).

frame(knickknack, [ako - [val furniture],
 length - [def 1],
 place_on - [def table]
]
).

frame(wall, [length - [def 10],
 outlets - [def 0],
 space - [calc space_calc],
 holding - [def []]
]
).

frame(door, [ako - [val furniture],
 length - [def 4]
]
).

frame(goal, []).

frame(recommend, []).

% Calculate the available space if needed. The available space is
% computed from the length of the item minus the sum of the lengths of
% the items it is holding. The held items are in the holding list.
% The items in the list are identified only by their unique names.
% This is used by walls and tables.

space_calc(C,N,space-S) :-
 getf(C,N,[length-L,holding-HList]),
 sum_lengths(HList,0,HLen),
 S is L - HLen.

sum_lengths([],L,L).
sum_lengths([C/N|T],X,L) :-
 getf(C,N,[length-HL]),
 XX is X + HL,
 sum_lengths(T,XX,L).

% When placing the tv, check with the user to see if it goes on the
% floor or a table.

tv_support(tv,N,place_on-table) :-
 nl,
 write('Should the TV go on a table? '),
 read(yes),
 uptf(tv,N,[place_on-table]).
tv_support(tv,N,place_on-floor) :-
 uptf(tv,N,[place_on-floor]).

212 Appendices - Full Source Code

Rete-Foops — Room Knowledgebase (room.rkb)

% Whenever a piece is placed in position, update the holding list of the
% item which holds it (table or wall) and the available space. If something
% is placed in front of something else, then do nothing.

pos_add(_,_,position-frontof(X)) :-
 uptf(C,N,[holding-[X]]).
pos_add(C,N,position-CP/P) :-
 getf(CP,P,[space-OldS]),
 getf(C,N,[length-L]),
 NewS is OldS - L,
 NewS >= 0,
 uptf(CP,P,[holding-[C/N],space-NewS]).
pos_add(C,N,position-CP/P) :-
 nl,write_line(['Not enough room on',CP,P,for,C,N]),
 !,fail.

% The forward chaining rules of the system. They make use of call
% to activate some pure Prolog predicates at the end of the knowledge
% base. In particular, data gathering, and wall space calculations
% are done in Prolog.

% These are the terms that are initially stored in working storage.
% They set a goal used to force firing of certain preliminary rules,
% and various facts about the problem domain used by the actual
% configuration rules.

initial_data([
 wall - north with [opposite-south,right-west,left-east],
 wall - south with [opposite-north,right-east,left-west],
 wall - east with [opposite-west,right-north,left-south],
 wall - west with [opposite-east,right-south,left-north],
 goal - door_first,
 door - d1 with [length - 3],
 couch - c1 with [length - 6],
 chair - ch1 with [length - 3],
 chair - ch2 with [length - 3],
 chair - ch3 with [length - 3],
 chair - ch4 with [length - 3],
 chair - ch5 with [length - 3],
 chair - ch6 with [length - 3],
 chair - ch7 with [length - 3],
 tv - tv1 with [length - 2, place_on - floor]]).

% first gather data, then try the couch first.

rule 1#
 [goal - gather_data]
 ==>
 [call(gather_data),
 assert(goal - couch_first)].

rule a1#
 [goal - door_first]
 ==>
 [update(door - d1 with [position - wall/east]),
 assert(goal - couch_first)].

% Rules f1-f13 illustrate the strength of rule based programming.
% Each rule captures a rule of thumb used in configuring furniture
% in a living room. The rules are all independent, transparent,
% and can be easily maintained. Complexity can be added without
% concern for the flow of control.

Building Expert Systems in Prolog 213

Rete-Foops — Room Knowledgebase (room.rkb)

% f1, f2 - place the couch first, it should be either opposite the
% door, or to its right, depending on which wall has more space.

rule f1#
 [goal - couch_first,
 couch - C with [position-none,length-LenC],
 door - D with [position-wall/W],
 wall - W with [right-RW]]
 ==>
 [update(couch - C with [position-wall/RW])].

rule f2#
 [goal - couch_first,
 couch - C with [position-none,length-LenC],
 door - D with [position-wall/W],
 wall - W with [opposite-OW]]
 ==>
 [update(couch - C with [position-wall/OW])].

% f3 - f3a the tv should be opposite the couch. If it needs a table, an
% end table should be placed under it, if no table is available put
% it on the floor anyway and recommend the purchase of a table. The rules
% first check to see if the couch has been placed.

rule f3#
 [couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none,place_on-floor]]
 ==>
 [update(tv - TV with [position-wall/OW])].

rule f4#
 [couch - C with [position-wall/W],
 wall - W with [opposite-OW],
 tv - TV with [position-none,place_on-table],
 end_table - T with [position-none]]
 ==>
 [update(end_table - T with [position-wall/OW]),
 update(tv - TV with [position-end_table/T])].

 ==>

rule f4a#
 [tv - TV with [position-none,place_on-table]]
 ==>
 [assert(recommend - R with [buy-['table for tv']])].

% f5 - the coffee table should be in front of the couch.

rule f5#
 [coffee_table - CT with [position-none],
 couch - C]
 ==>
 [update(coffee_table - CT with [position-frontof(couch/C)])].

% f6, f7 - chairs should be on adjacent walls from the couch, which ever
% has the most space

rule f6#
 [chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [right-RW]]

214 Appendices - Full Source Code

Rete-Foops — Room Knowledgebase (room.rkb)

 [update(chair - Ch with [position-wall/RW])].

rule f7#
 [chair - Ch with [position-none],
 couch - C with [position-wall/W],
 wall - W with [left-LW]]

 [table_lamp - TL with [position-none],

% wall - W with [outlets-0]]

% [assert(recommend - R with [buy-['extension cord'-Thing/W]])].

 ==>
 [update(chair - Ch with [position-wall/LW])].

% put end_tables next to the couch first, then on the walls with
% the chairs

%rule f9#
% [end_table - ET with [position-none],
% not tv - TV with [position-none,place_on-table],
% couch - C with [position-wall/W],
% not end_table - ET2 with [position-wall/W]]
% ==>
% [update(end_table - ET with [position-wall/W])].

%rule f10#
% [end_table - ET with [position-none],
% not tv - TV with [position-none,place_on-table],
% chair - C with [position-wall/W],
% not end_table - ET2 with [position-wall/W]]
% ==>
% [update(end_table - ET with [position-wall/W])].

% put the table lamps on the end tables

rule f11#

 end_table - ET with [position-wall/W]]
 ==>
 [update(table_lamp - TL with [position-end_table/ET])].

% put the knickknacks on anything which will hold them.

%rule f11a#
% [knickknack - KK with [position-none],
% Table - T with [can_support-yes, position-wall/W]]
% ==>
% [update(knickknack - KK with [position-Table/T])].

% get extension cords if needed

%rule f12#
% [Thing - X with [needs_outlet-yes, position-wall/W],

% ==>
% [assert(recommend - R with [buy-['extension cord'-W]])].

%rule f13#
% [Thing - X with [needs_outlet-yes, position-C/N],
% C - N with [position-wall/W],
% wall - W with [outlets-0]]
% ==>

% When no other rules fire, here is the summary

Building Expert Systems in Prolog 215

Rete-Foops — Room Knowledgebase (room.rkb)

finished :-
 output_data.

% Prolog predicates called by various rules to perform functions better
% handled by Prolog.

% Gather the input data from the user.

gather_data :-
 read_furniture,
 read_walls.

read_furniture :-
 get_frame(furniture,[legal_types-LT]),
 write('Enter name of furniture at the prompt. It must be one of:'), nl,
 write(LT), nl,
 write('Enter end to stop input.'), nl,
 write('At the length prompt enter y or a new number.'), nl,
 repeat,
 write('>'), read(X),
 process_furn(X),
 !. % end was input

process_furn(end).
process_furn(X) :-
 get_frame(X,[length-DL]),
 write(length-DL), write('>'),
 read(NL),
 get_length(NL,DL,L),
 assert_ws(X - _ with [length-L]),
 fail.

get_length(y,L,L) :- !.
get_length(L,_,L).

read_walls :-
 nl, write('Enter data for the walls.'), nl,
 write('What is the length of the north & south walls? '),
 read(NSL),
 update_ws(wall-north with [length-NSL]),
 update_ws(wall-south with [length-NSL]),
 write('What is the length of the east & west walls? '),
 read(EWL),
 update_ws(wall-east with [length-EWL]),
 update_ws(wall-west with [length-EWL]),
 write('Which wall has the door? '),
 read(DoorWall),
 write('What is its length? '),
 read(DoorLength),
 assert_ws(door-D with [length-DoorLength]),
 update_ws(door-D with [position-wall/DoorWall]),
 write('Which walls have outlets? (a list)'),
 read(PlugWalls),
 process_plugs(PlugWalls).

process_plugs([]) :- !.
process_plugs([H|T]) :-
 update_ws(wall-H with [outlets-1]),
 !,
 process_plugs(T).
process_plugs(X) :-

216 Appendices - Full Source Code

Rete-Foops — Room Knowledgebase (room.rkb)

 update_ws(wall-X with [outlets-1]).

output_data :-
 write('The final results are:'), nl,
 output_walls,
 output_tables,
 output_recommends,
 output_unplaced.

output_walls :-
 getf(wall,W,[holding-HL]),
 write_line([W,wall,holding|HL]),
 fail.
output_walls.

output_tables :-
 getf(C,N,[holding-HL]),
 not C = wall,
 write_line([C,N,holding|HL]),
 fail.
output_tables.

output_recommends :-
 getf(recommend,_,[buy-BL]),
 write_line([purchase|BL]),
 fail.
output_recommends.

output_unplaced :-
 write('Unplaced furniture:'), nl,
 getf(T,N,[position-none]),
 write(T-N), nl,
 fail.
output_unplaced.

Building Expert Systems in Prolog 217

Rete Compiler (retepred.pro)
% RETEPRED.PRO - the predicates that implement the Rete pattern
% matching algorithm.

% It should be modified some day to use pointers to working memory in
% the memory predicates rather than the full tokens - this would save
% a lot of space.

% retecomp - compile rules into a rete network

:-op(800,xfx,==>). % used to separate LHS and RHS of rule
:-op(500,xfy,#). % used to separate attributes and values
:-op(810,fx,rule). % used to define rule
:-op(700,xfy,#). % used for unification instead of =
:-op(700,xfy,\=). % not equal
:-op(600,xfy,with). % used for frame instances in rules

rete_compile :-
 abolish(root,3),
 abolish(bi,4),
 abolish(tes,4),
 abolish(rul,3),
 abolish(varg,1),
 abolish(nid,1),
 asserta(nid(0)),
 rete_compil.
% display_net.

display_net :-
 display_roots,nl,
 display_bis,nl,
 display_teses,nl,
 display_ruls.

display_roots :-
 root(N,A,B),
 write(root(N,A,B)), nl,
 fail.
display_roots.

display_bis :-
 bi(A,B,C,D),
 write(bi(A)), nl,
 write_list([left|B]),
 write_list([right|C]),
 write(D), nl, nl,
 fail.
display_bis.

display_teses :-
 tes(A,B,C,D),
 write(tes(A)), nl,
 write_list([left|B]),
 write_list([right|C]), nl,
 write(D), nl, nl,
 fail.
display_teses.

display_ruls :-
 rul(A,B,C),

Building Expert Systems in Prolog 218

Rete-Foops — Rete Compiler (retepred.pro)

 write(rul(A)), nl,
 write_list([left|B]),
 write_list([right|C]), nl,
 fail.
display_ruls.

write_list([]).
write_list([H|T]) :-
 write(H), nl,
 wr_lis(T).

wr_lis([]).
wr_lis([H|T]) :-
 tab(5),write(H), nl,
 wr_lis(T).

% compile each rule into the rete net

rete_compil :-
 rule N# LHS ==> RHS,
 rete_comp(N,LHS,RHS),
 fail.
rete_compil :-
 message(201).

% compile an individual rule into the net

rete_comp(N,[H|T],RHS) :-
 term(H,Hw),
 check_root(RN,Hw,HList),
 retcom(root(RN),[Hw/_],HList,T,N,RHS),
 message(202,N),
 !.
rete_comp(N,_,_) :-
 message(203,N).

% the main compile loop
% PNID - the id of the previous node
% OutTok - list of tokens from previous node
% PrevList - transfer list from previous node
% [H|T] - list of remaining clauses in rule
% N - The rule ID, for building the rule at the end
% RHS - the rhs of the rule for building the rule at the end

retcom(PNID,OutTok,PrevList,[],N,RHS) :-
 build_rule(OutTok,PrevList,N,RHS),
 update_node(PNID,PrevList,rule-N),
 !.
retcom(PNID,PrevNode,PrevList,[H|T],N,RHS) :-
 term(H,Hw),
 check_root(RN,Hw,HList),
 check_node(PrevNode,PrevList,[Hw/_],HList,NID,OutTok,NList),
 update_node(PNID,PrevList,NID-l),
 update_root(RN,HList,NID-r),
 !,
 retcom(NID,OutTok,NList,T,N,RHS).
retcom(PNID,PrevNode,PrevList,[H|T],N,RHS) :- % some kind of tester call
 check_tnode(PrevNode,PrevList,[H/0],HList,NID,OutTok,NList),
 update_node(PNID,PrevList,test-NID),
 !,
 retcom(test-NID,OutTok,NList,T,N,RHS).

term(Class-Name with List,Class-Name with List).

Building Expert Systems in Prolog 219

Rete-Foops — Rete Compiler (retepred.pro)

term(Class-Name, Class-Name with []).

check_root(NID,Term,[]) :-
 not(root(_,Term,_)),
 gen_nid(NID),
 assertz(root(NID,Term,[])),
 !.
check_root(N,Term,List) :-
 asserta(temp(Term)),
 retract(temp(T1)),
 root(N,Term,List),
 root(N,T2,_),
 comp_devar(T1,T2),
 !.
check_root(NID,Term,[]) :-
 gen_nid(NID),
 assertz(root(NID,Term,[])).

% if this node was already on the list do nothing, otherwise add it
% to the list

update_root(RN,HList,NID) :-
 member(NID,HList),
 !.
update_root(RN,HList,NID) :-
 retract(root(RN,H,HList)),
 asserta(root(RN,H,[NID|HList])).

update_node(root(RN),HList,NID) :-
 update_root(RN,HList,NID),
 !.
update_node(X,PrevList,NID) :-
 member(NID,PrevList),
 !.
update_node(test-N,PrevList,NID) :-
 retract(tes(N,L,T,_)),
 asserta(tes(N,L,T,[NID|PrevList])),
 !.
update_node(PNID,PrevList,NID) :-
 retract(bi(PNID,L,R,_)),
 asserta(bi(PNID,L,R,[NID|PrevList])).

% check to see if there is a node which already fits, otherwise
% create a new one
% PNode - token list from previous node
% PList - list of successor nodes from previous node
% H - new token being added
% HList - successor nodes from root for token H
% NID - returned ID of the node
% OutTok - returned tokenlist from the node
% NList - returned list of successor nodes from the node

% first case - there isn't a matching rule using Prolog's match, so
% build a new one

check_node(PNode,PList,H,HList,NID,OutTok,[]) :-
 not (bi(_,PNode,H,_)),
 append(PNode,H,OutTok),
 gen_nid(NID),
 assertz(bi(NID,PNode,H,[])),
 !.

% second case - there was a matching rule using Prolog's match, so

220 Appendices - Full Source Code

Rete-Foops — Rete Compiler (retepred.pro)

% match again using generated constants instead of variables. If
% this matches then we have a match, otherwise we had a match
% where variables don't line up and its no good. (asserts and
% retracts allow different variables to have same information and
% prevent binding of variables in one from affecting the other)

check_node(PNode,PList,H,HList,NID,OutTok,NList) :-
 append(PNode,H,OutTok),
 asserta(temp(OutTok)),
 retract(temp(Tot1)),
 bi(NID,PNode,H,NList),
 bi(NID,T2,T3,_),
 append(T2,T3,Tot2),
 comp_devar(Tot1,Tot2),
 !.

% third case - the variables didn't line up from the second rule, so
% make a new node.

check_node(PNode,PList,H,HList,NID,OutTok,[]) :-
 append(PNode,H,OutTok),
 gen_nid(NID),
 assertz(bi(NID,PNode,H,[])).

% check for test node - similar to check for regular node

check_tnode(PNode,PList,H,HList,NID,OutTok,[]) :-
 not (tes(_,PNode,H,_)),
 append(PNode,H,OutTok),
 gen_nid(NID),
 assertz(tes(NID,PNode,H,[])),
 !.

% second case - there was a matching rule using Prolog's match, so
% match again using generated constants instead of variables. If
% this matches then we have a match, otherwise we had a match
% where variables don't line up and its no good. (asserts and
% retracts allow different variables to have same information and
% prevent binding of variables in one from affecting the other)

check_tnode(PNode,PList,H,HList,NID,OutTok,NList) :-
 append(PNode,H,OutTok),
 asserta(temp(OutTok)),
 retract(temp(Tot1)),
 tes(NID,PNode,H,NList),
 tes(NID,T2,T3,_),
 append(T2,T3,Tot2),
 comp_devar(Tot1,Tot2),
 !.

% third case - the variables didn't line up from the second rule, so
% make a new node.

check_tnode(PNode,PList,H,HList,NID,OutTok,[]) :-
 append(PNode,H,OutTok),
 gen_nid(NID),
 assertz(tes(NID,PNode,H,[])).

build_rule(OutTok,PrevList,N,RHS) :-
 assertz(rul(N,OutTok,RHS)).

gen_nid(NID) :-

Building Expert Systems in Prolog 221

Rete-Foops — Rete Compiler (retepred.pro)

 retract(nid(N)),
 NID is N + 1,
 asserta(nid(NID)).

% the hard part, undo Prolog's pattern matching so variables match just
% variables and not constants. de-var replaces all the variables with
% generated constants - this ensures only variables will match variables.

comp_devar(T1,T2) :-
 de_vari(T1),
 de_vari(T2),
 T1 = T2.

de_vari([]).
de_vari([H|T]) :-
 de_var(H),
 de_vari(T).
de_vari(X) :-
 de_var(X).

de_var(X/_) :-
 de_var(X).
de_var(X-Y with List) :-
 init_vargen,
 de_v(X-Y),
 de_vl(List),
 !.
de_var(X-Y) :-
 init_vargen,
 de_v(X-Y),
 !.

de_vl([]).
de_vl([H|T]) :-
 de_v(H),
 de_vl(T).

de_v(X-Y) :-
 d_v(X),
 d_v(Y).

d_v(V) :-
 var(V),
 var_gen(V),
 !.
d_v(_).

init_vargen :-
 abolish(varg,1),
 asserta(varg(1)).

var_gen(V) :-
 retract(varg(N)),
 NN is N + 1,
 asserta(varg(NN)),
 string_integer(NS,N),
 string_list(NS,NL),
 append("#VAR_",NL,X),
 name(V,X).

222 Appendices - Full Source Code

Rete-Foops — Rete Compiler (retepred.pro)

% predicates to update the rete network

% add a token to the rete net. a token is of the form C-N with [S-V,...]
% ReqList gets bound with the values from the term added to the database.

addrete(Class,Name,TimeStamp) :-
 root(ID,Class-Name with ReqList, NextList),
 ffsend(Class,Name,ReqList,TimeStamp,NextList),
 fail.
addrete(_,_,_).

% fullfill the request list from the token, and send the instantiated
% token through the net.

ffsend(Class,Name,ReqList,TimeStamp,NextList) :-
 getf(Class,Name,ReqList),
 send(tok(add,[(Class-Name with ReqList)/TimeStamp]), NextList),
 !.

delrete(Class,Name,TimeStamp) :-
 root(ID,Class-Name with ReqList, NextList),
 delr(Class,Name,ReqList,TimeStamp),
 fail.
delrete(_,_,_).

delr(Class,Name,ReqList,TimeStamp) :-
 getf(Class,Name,ReqList),
 !,
 send(tok(del,[(Class-Name with ReqList)/TimeStamp]), NextList).
delr(Class,Name,ReqList,TimeStamp).

% send the new token to each of the succesor nodes

send(_,[]).
send(Tokens,[Node|Rest]) :-
 sen(Node,Tokens),
 send(Tokens,Rest).

% add or delete the new token from the appropriate memory, build new
% tokens from left or right and send them to successor nodes.

sen(rule-N,tok(AD,TokenList)) :-
 rul(N,TokenList,Actions),
 (AD = add, add_conflict_set(N,TokenList,Actions);
 AD = del, del_conflict_set(N,TokenList,Actions)
),
 !.
sen(Node-l,tok(AD,TokenList)) :-
 bi(Node,TokenList,Right,NextList),
 (AD = add, asserta(memory(Node-l,TokenList));
 AD = del, retract(memory(Node-l,TokenList))
),
 !,
 matchRight(Node,AD,TokenList,Right,NextList).
sen(Node-r,tok(AD,TokenList)) :-
 bi(Node,Left,TokenList,NextList),
 (AD = add, asserta(memory(Node-r,TokenList));
 AD = del, retract(memory(Node-r,TokenList))
),
 !,
 matchLeft(Node,AD,TokenList,Left,NextList).
sen(test-N,tok(AD,TokenList)) :-

Building Expert Systems in Prolog 223

Rete-Foops — Rete Compiler (retepred.pro)

 tes(N,TokenList,[Test/0],NextList),
 test(Test),
 append(TokenList,[Test/0],NewToks),
 !,
 send(tok(AD,NewToks),NextList).

matchRight(Node,AD,TokenList,Right,NextList) :-
 memory(Node-r,Right),
 append(TokenList,Right,NewToks),
 send(tok(AD,NewToks),NextList),
 fail.
matchRight(_,_,_,_,_).

matchLeft(Node,AD,TokenList,Left,NextList) :-
 memory(Node-l,Left),
 append(Left,TokenList,NewToks),
 send(tok(AD,NewToks),NextList),
 fail.
matchLeft(_,_,_,_,_).

224 Appendices - Full Source Code

Rete Runtime (retefoop.pro)
% RETEFOOP.PRO - forward chaining, frames, and Rete algorithm, also using
% LEX and MEA to sort the conflict set.
%
% Copyright (c) Dennis Merritt, 1988

% operator definitions

:-op(800,xfx,==>). % used to separate LHS and RHS of rule
:-op(500,xfy,#). % used to separate attributes and values
:-op(810,fx,rule). % used to define rule
:-op(700,xfy,#). % used for unification instead of =
:-op(700,xfy,\=). % not equal
:-op(600,xfy,with). % used for frame instances in rules

main :- welcome, supervisor.

welcome :-
 write($ RETEFOOP - A Toy Production System$), nl, nl,
 write($This is an interpreter for files containing rules coded in the$), nl,
 write($FOOPS format.$), nl, nl,
 write($The => prompt accepts three commands:$), nl, nl,
 write($ load. - prompts for name of rules file$), nl,
 write($ enclose in single quotes$), nl,
 write($ compile. - compiles rules into a rete net$), nl,
 write($ displaynet. - displays the rete net$), nl,
 write($ list. - lists stuff$), nl,
 write($ list(X). - lists things which match X$), nl,
 write($ options. - allows setting of message levels$), nl,
 write($ go. - starts the inference$), nl,
 write($ exit. - does what you'd expect$), nl, nl.

% the supervisor, uses a repeat fail loop to read and process commands
% from the user

supervisor :-
 repeat,
 write('=>'),
 read(X),
 doit(X),
 X = exit.

doit(X) :-
 timer(T1),
 do(X),
 timer(T2),
 T is (T2 - T1) / 600,
 message(101,T),
 !.

% actions to take based on commands

do(exit) :- !.
do(go) :-
 initialize,
 go,
 !.
do(load) :-
 load,
 !.

Building Expert Systems in Prolog 225

Rete-Foops — Rete Runtime (retefoop.pro)

do(compile) :-
 compile,
 !.
do(displaynet) :-
 display_net,
 !.
do(list) :-
 lst, % lists all of working storage
 !.
do(list(X)) :-
 lst(X), % lists all that match the pattern
 !.
do(options) :-
 set_messtypes,
 !.
do(_) :-
 message(102).

% loads the rules (Prolog terms) into the Prolog database

load :-
 write('Enter the file name in single quotes (ex. ''room.rkb''.): '),
 read(F),
 reconsult(F), % loads a rule file into interpreter work space
 rete_compile. % ** rete change **

compile :-
 rete_compile.

% assert each of the initial conditions into working storage

initialize :-
 message(120),
 abolish(memory,2),
 abolish(inst,3),
 setchron(1),
 delf(all),
 abolish(conflict_set,1),
 assert(conflict_set([])),
 assert(mea(no)),
 initial_data(X),
 assert_list(X),
 message(121),
 !.
initialize :-
 message(103).

% working storage is represented frame instances - frinsts and also
% stored in a rete net

assert_list([]) :- !.
assert_list([H|T]) :-
 assert_ws(H),
 !,
 assert_list(T).

% the main inference loop, find a rule and try it. If it fired, say so
% and repeat the process. If not, go back and try the next rule. When
% no rules succeed, stop the inference.

go :-
 conflict_set(CS),
 select_rule(CS,inst(ID,LHS,RHS)),

226 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

 message(104,ID),
 (process(ID,RHS,LHS); true), % action side might fail
 del_conflict_set(ID,LHS,RHS),
 !,
 go.
go :-
 conflict_set([]),
 finished, % supplied in kb for what to do at end
 !.
go :-
 message(119).

del_conflict_set(N,TokenList,Action) :-
 conflict_set(CS),
 remove(inst(N,TokenList,Action),CS,CS2),
 message(105,N),
 retract(conflict_set(_)),
 asserta(conflict_set(CS2)).
del_conflict_set(N,TokenList,Action) :-
 message(106,N).

add_conflict_set(N,TokenList,Action) :-
 message(107,N),
 retract(conflict_set(CS)),
 asserta(conflict_set([inst(N,TokenList,Action)|CS])).

select_rule(CS,R) :-
 message(122,CS),
 mea_filter(0,CS,[],CSR),
 lex_sort(CSR,R).

% sort the rest of the conflict set according to the lex strategy

lex_sort(L,R) :-
 build_keys(L,LK),
 sort(LK,X),
 reverse(X,[K-R|_]).

% build lists of time stamps for lex sort keys

build_keys([],[]).
build_keys([inst(N,TokenList,C)|T],[Key-inst(N,TokenList,C)|TR]) :-
 build_chlist(TokenList,ChL),
 sort(ChL,X),
 reverse(X,Key),
 build_keys(T,TR).

% build a list of just the times of the various matched attributes
% for use in rule selection

build_chlist([],[]).
build_chlist([_/Chron|T],[Chron|TC]) :-
 build_chlist(T,TC).

% add the test for mea if appropriate that emphasizes the first attribute
% selected.

mea_filter(_,X,_,X) :-
 not mea(yes),
 !.
mea_filter(_,[],X,X).
mea_filter(Max,[inst(N,[A/T|Z],C)|X],Temp,ML) :-

Building Expert Systems in Prolog 227

Rete-Foops — Rete Runtime (retefoop.pro)

 T < Max,
 !,
 mea_filter(Max,X,Temp,ML).
mea_filter(Max,[inst(N,[A/T|Z],C)|X],Temp,ML) :-
 T = Max,
 !,
 mea_filter(Max,X,[inst(N,[A/T|Z],C)|Temp],ML).
mea_filter(Max,[inst(N,[A/T|Z],C)|X],Temp,ML) :-
 T > Max,
 !,
 mea_filter(T,X,[inst(N,[A/T|Z],C)],ML).

get_ws(Prem,Time) :-
 conv(Prem,Class,Name,ReqList),
 getf(Class,Name,ReqList,Time).

assert_ws(Prem) :-
 message(109,Prem),
 conv(Prem,Class,Name,AList),
 addf(Class,Name,AList,TimeStamp),
 addrete(Class,Name,TimeStamp).

update_ws(Prem) :-
 conv(Prem,Class,Name,UList),
 frinst(Class,Name,_,TS),
 uptrf(Class,Name,UList,TimeStamp), % note - does delrete in uptrf
 addrete(Class,Name,TimeStamp),
 !.
update_ws(Prem) :-
 message(108,Prem).

retract_ws(Prem/T) :- retract_ws(Prem).
retract_ws(Prem) :-
 conv(Prem,Class,Name,UList),
 delrete(Class,Name,TimeStamp),
 delf(Class,Name,UList).

conv(Class-Name with List, Class, Name, List).
conv(Class-Name, Class, Name, []).

% various tests allowed on the LHS

test(not(X)) :-
 get_ws(X,_),
 !,
 fail.
test(not(X)) :- !.
test(X#Y) :-
 X = Y,
 !.
test(X>Y) :-
 X > Y,
 !.
test(X>=Y) :-
 X >= Y,
 !.
test(X<Y) :-
 X < Y,
 !.
test(X=<Y) :-
 X =< Y,
 !.

228 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

test(X \= Y) :-
 not X = Y,
 !.
test(X = Y) :-
 X = Y,
 !.
test(X = Y) :-
 X is Y,
 !.
test(is_on(X,Y)) :-
 is_on(X,Y),
 !.
test(call(X)) :-
 call(X).

% recursively execute each of the actions in the RHS list

process(N,[],_) :-
 message(118,N),
 !.
process(N,[Action|Rest],LHS) :-
 take(Action,LHS),
 !,
 process(N,Rest,LHS).
process(N,[Action|Rest],LHS) :-
 message(110,N),
 !,
 fail.

% if its retract, use the reference numbers stored in the Lrefs list,
% otherwise just take the action

take(retract(N),LHS) :-
 (N == all; integer(N)),
 retr(N,LHS),
 !.
take(A,_) :-
 take(A),
 !.

take(retract(X)) :-
 retract_ws(X),
 !.
take(assert(X)) :-
 assert_ws(X),
 !.
take(update(X)) :-
 update_ws(X),
 !.
take(X # Y) :-
 X = Y,
 !.
take(X = Y) :-
 X is Y,
 !.
take(write(X)) :-
 write(X),
 !.
take(write_line(X)) :-
 write_line(X),
 !.
take(nl) :-
 nl,
 !.
take(read(X)) :-

Building Expert Systems in Prolog 229

Rete-Foops — Rete Runtime (retefoop.pro)

 read(X),
 !.
take(prompt(X,Y)) :-
 nl,
 write(X),
 read(Y),
 !.
take(cls) :-
 cls,
 !.
take(is_on(X,Y)) :-
 is_on(X,Y),
 !.
take(list(X)) :-
 lst(X),
 !.
take(call(X)) :-
 call(X).

% logic for retraction

retr(all,LHS) :-
 retrall(LHS),
 !.
retr(N,[]) :-
 message(111,N),
 !.
retr(N,[N#Prem|_]) :-
 retract_ws(Prem),
 !.
retr(N,[_|Rest]) :-
 !,
 retr(N,Rest).

retrall([]).
retrall([N#Prem|Rest]) :-
 retract_ws(Prem),
 !,
 retrall(Rest).
retrall([Prem|Rest]) :-
 retract_ws(Prem),
 !,
 retrall(Rest).
retrall([_|Rest]) :- % must have been a test
 retrall(Rest).

% list all of the terms in working storage

lst :- printfs.

% lists all of the terms which match the pattern

lst(X) :-
 get_ws(X,_),
 write(X), nl,
 fail.
lst(_) :- !.

% maintain a time counter

setchron(N) :-
 retract(chron(_)),
 asserta(chron(N)),

230 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

 !.
setchron(N) :-
 asserta(chron(N)).

getchron(N) :-
 retract(chron(N)),
 NN is N + 1,
 asserta(chron(NN)),
 !.

% this implements a frame based scheme for knowledge representation

:- op(600,fy,val).
:- op(600,fy,calc).
:- op(600,fy,def).
:- op(600,fy,add).
:- op(600,fy,del).

% prep_req takes a request of the form Slot-Val, and forms it into the
% more accurate req(Class,Slot,Facet,Value). If no facet was mentioned
% in the original request, then the facet of "any" is used to indicate
% the system should use everything possible to find a value.

prep_req(Slot-X,req(C,N,Slot,val,X)) :-
 var(X),
 !.
prep_req(Slot-X,req(C,N,Slot,Facet,Val)) :-
 nonvar(X),
 X =.. [Facet,Val],
 facet_list(FL),
 is_on(Facet,FL),
 !.
prep_req(Slot-X,req(C,N,Slot,val,X)).

facet_list([val,def,calc,add,del,edit]).

% retrieve a list of slot values

get_frame(Class, ReqList) :-
 frame(Class, SlotList),
 slot_vals(Class,_,ReqList,SlotList).

getf(Class,Name,ReqList) :-
 getf(Class,Name,ReqList,_).

getf(Class,Name,ReqList,TimeStamp) :-
 frinst(Class, Name, SlotList, TimeStamp),
 slot_vals(Class, Name, ReqList, SlotList).

slot_vals(_,_,[],_).
slot_vals(C,N,[Req|Rest],SlotList) :-
 prep_req(Req,req(C,N,S,F,V)),
 find_slot(req(C,N,S,F,V),SlotList),
 !,
 slot_vals(C,N,Rest,SlotList).
slot_vals(C,N, Req, SlotList) :-
 prep_req(Req,req(C,N,S,F,V)),
 find_slot(req(C,N,S,F,V), SlotList).

find_slot(req(C,N,S,F,V), SlotList) :-
 nonvar(V),

Building Expert Systems in Prolog 231

Rete-Foops — Rete Runtime (retefoop.pro)

 !,
 find_slot(req(C,N,S,F,Val), SlotList),
 !,
 (Val = V; list(Val),is_on(V,Val)).
find_slot(req(C,N,S,F,V), SlotList) :-
 is_on(S-FacetList, SlotList),
 !,
 facet_val(req(C,N,S,F,V),FacetList).
find_slot(req(C,N,S,F,V), SlotList) :-
 is_on(ako-FacetList, SlotList),
 facet_val(req(C,N,ako,val,Ako),FacetList),
 (is_on(X,Ako); X = Ako),
 frame(X, HigherSlots),
 find_slot(req(C,N,S,F,V), HigherSlots),
 !.
find_slot(Req,_) :-
 message(112,Req),
 fail.

facet_val(req(C,N,S,F,V),FacetList) :-
 FV =.. [F,V],
 is_on(FV,FacetList),
 !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(val ValList,FacetList),
 is_on(V,ValList),
 !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(calc Pred,FacetList),
 CalcPred =.. [Pred,C,N,S-V],
 call(CalcPred),
 !.
facet_val(req(C,N,S,val,V),FacetList) :-
 is_on(def V,FacetList),
 !.

% add a list of slot values

add_frame(Class, UList) :-
 old_slots(Class,SlotList),
 add_slots(Class,_,UList,SlotList,NewList),
 retract(frame(Class,_)),
 asserta(frame(Class,NewList)),
 !.

addf(Class,Nm,UList) :-
 addf(Class,Nm,UList,TimeStamp).

addf(Class,Nm,UList,TimeStamp) :-
 (var(Nm), genid(Name); Name = Nm),
 add_slots(Class,Name,[ako-Class|UList],SlotList,NewList),
 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)),
 !.

uptf(Class,Name,UList) :-
 uptf(Class,Name,UList,TS).

uptf(Class,Name,UList,TimeStamp) :-
 frinst(Class,Name,SlotList,TS),
 add_slots(Class,Name,UList,SlotList,NewList),
 retract(frinst(Class,Name,_,_)),

232 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)),
 !.
uptf(Class,Name,UList,TimeStamp) :-
 message(113,[Class,Name,UList]).

uptrf(Class,Name,UList) :-
 uptf(Class,Name,UList,TS).

uptrf(Class,Name,UList,TimeStamp) :-
 frinst(Class,Name,SlotList,TS),
 add_slots(Class,Name,UList,SlotList,NewList),
 delrete(Class,Name,TS),
 retract(frinst(Class,Name,_,_)),
 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)),
 !.
uptrf(Class,Name,UList,TimeStamp) :-
 message(113,[Class,Name,UList]).

genid(G) :-
 retract(gid(N)),
 G is N + 1,
 asserta(gid(G)).

gid(100).

old_slots(Class,SlotList) :-
 frame(Class,SlotList),
 !.
old_slots(Class,[]) :-
 asserta(frame(Class,[])).

old_flots(Class,Name,SlotList) :-
 frinst(Class,Name,SlotList,_).

add_slots(_,_,[],X,X).
add_slots(C,N,[U|Rest],SlotList,NewList) :-
 prep_req(U,req(C,N,S,F,V)),
 add_slot(req(C,N,S,F,V),SlotList,Z),
 !,
 add_slots(C,N,Rest,Z,NewList).
add_slots(C,N,X,SlotList,NewList) :-
 prep_req(X,req(C,N,S,F,V)),
 add_slot(req(C,N,S,F,V),SlotList,NewList).

add_slot(req(C,N,S,F,V),SlotList,[S-FL2|SL2]) :-
 delete(S-FacetList,SlotList,SL2),
 add_facet(req(C,N,S,F,V),FacetList,FL2).

add_facet(req(C,N,S,F,V),FacetList,[FNew|FL2]) :-
 FX =.. [F,OldVal],
 delete(FX,FacetList,FL2),
 add_newval(OldVal,V,NewVal),
 !,
 check_add_demons(req(C,N,S,F,V),FacetList),
 FNew =.. [F,NewVal].

Building Expert Systems in Prolog 233

Rete-Foops — Rete Runtime (retefoop.pro)

add_newval(X,Val,Val) :-
 var(X),
 !.
add_newval(OldList,ValList,NewList) :-
 list(OldList),
 list(ValList),
 append(ValList,OldList,NewList),
 !.
add_newval([H|T],Val,[Val,H|T]).
add_newval(_,Val,Val).

check_add_demons(req(C,N,S,F,V),FacetList) :-
 get_frame(C,S-add(Add)),
 !,
 AddFunc =.. [Add,C,N,S-V],
 call(AddFunc).
check_add_demons(_,_).

% delete a list of slot values

del_frame(Class) :-
 retract(frame(Class,_)).
del_frame(Class) :-
 message(114,Class).

del_frame(Class, UList) :-
 old_slots(Class,SlotList),
 del_slots(Class,_,UList,SlotList,NewList),
 retract(frame(Class,_)),
 asserta(frame(Class,NewList)).

delf(all) :-

 del_slots(C,N,Rest,Z,NewList).

 retract(frinst(_,_,_,_)),
 fail.
delf(all).

delf(Class,Name) :-
 retract(frinst(Class,Name,_,_)),
 !.
delf(Class,Name) :-
 message(115,Class-Name).

delf(Class,Name,[]) :-
 !,
 delf(Class,Name).
delf(Class,Name,UList) :-
 old_flots(Class,Name,SlotList),
 del_slots(Class,Name,UList,SlotList,NewList),
 retract(frinst(Class,Name,_,_)),
 getchron(TimeStamp),
 asserta(frinst(Class,Name,NewList,TimeStamp)).

del_slots(_,_,[],X,X).
del_slots(C,N,[U|Rest],SlotList,NewList) :-
 prep_req(U,req(C,N,S,F,V)),
 del_slot(req(C,N,S,F,V),SlotList,Z),

del_slots(C,N,X,SlotList,NewList) :-
 prep_req(X,req(C,N,S,F,V)),
 del_slot(req(C,N,S,F,V),SlotList,NewList).

234 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

del_slot(req(C,N,S,F,V),SlotList,[S-FL2|SL2]) :-
 remove(S-FacetList,SlotList,SL2),
 del_facet(req(C,N,S,F,V),FacetList,FL2).
del_slot(Req,_,_) :-
 message(116,Req).

del_facet(req(C,N,S,F,V),FacetList,FL) :-
 FV =.. [F,V],
 remove(FV,FacetList,FL),
 !,
 check_del_demons(req(C,N,S,F,V),FacetList).
del_facet(req(C,N,S,F,V),FacetList,[FNew|FL]) :-
 FX =.. [F,OldVal],
 remove(FX,FacetList,FL),
 remove(V,OldVal,NewValList),
 FNew =.. [F,NewValList],
 !,
 check_del_demons(req(C,N,S,F,V),FacetList).
del_facet(Req,_,_) :-
 message(117,Req).

check_del_demons(req(C,N,S,F,V),FacetList) :-
 get_frame(C,S-del(Del)),
 !,
 DelFunc =.. [Del,C,N,S-V],
 call(DelFunc).
check_del_demons(_,_).

% print a frame

 frinst(Class,Name,SlotList,Time),

print_frames :-
 frame(Class, SlotList),
 print_frame(Class),
 fail.
print_frames.

print_frame(Class) :-
 frame(Class,SlotList),
 write_line(['Frame:',Class]),
 print_slots(SlotList), nl.

printfs :-
 frame(Class,_),
 printf(Class,_),
 fail.
printfs.

printf(Class,Name) :-
 frinst(Class,Name,SlotList,Time),
 write_line(['Frame:',Class,Name,Time]),
 print_slots(SlotList), nl.

printf(Class) :-

 write_line(['Frame:',Class,Name,Time]),
 print_slots(SlotList), nl,
 fail.
printf(_).

Building Expert Systems in Prolog 235

Rete-Foops — Rete Runtime (retefoop.pro)

print_slots([]).
print_slots([Slot|Rest]) :-
 write_line([' Slot:',Slot]),
 print_slots(Rest).

% utilities

delete(X,[],[]).
delete(X,[X|Y],Y) :- !.
delete(X,[Y|Z],[Y|W]) :-
 delete(X,Z,W).

remove(X,[X|Y],Y) :- !.
remove(X,[Y|Z],[Y|W]) :-
 remove(X,Z,W).

is_on(X,[X|Y]).
is_on(X,[Y|Z]) :-
 is_on(X,Z).

write_line([]) :- nl.
write_line([H|T]) :-
 write(H),tab(1),
 write_line(T).

time_test :-
 write('TT> '),
 read(X),
 timer(T1),
 X,
 timer(T2),
 nl, nl,
 T is (T2 - T1) / 10,
 write(time-T).

append([H|T], W, [H|Z]) :-
 append(T, W, Z).
append([], W, W).

member(X, [X|_]).
member(X, [_|T]) :-
 member(X,T).

reverse(L1,L2) :-
 revzap(L1,[],L2).

revzap([X|L],L2,L3) :-
 revzap(L,[X|L2],L3).
revzap([],L,L).

% Message handling and messages

message(N) :-
 message(N,'').

message(N,Args) :-
 mess(N,break,Text),

236 Appendices - Full Source Code

Rete-Foops — Rete Runtime (retefoop.pro)

 write(break), tab(1), write(N), write(': '), write(Text), write(Args), nl.
% break.
message(N,Args) :-
 mess(N,error,Text),
 write(error), tab(1), write(N), write(': '), write(Text), write(Args), nl,
 !,
 fail.
message(N,Args) :-
 mess(N,Type,Text),
 mess_types(TT),
 member(Type,TT),
 write(Type), tab(1), write(N), write(': '), write(Text), write(Args), nl,
 !.
message(_,_).

mess_types([info,trace,warning,debug]).

set_messtypes :-
 message(123,[info,warn,trace,error,debug]),
 mess_types(X),
 message(124,X),
 read(MT),
 retract(mess_types(_)),
 asserta(mess_types(MT)).

mess(101,info , 'Time for command: '). % retefoops doit
mess(102,error, 'Invalid Command'). % retefoops do
mess(103,error, 'Initialization Error'). % retefoops initialize
mess(104,trace, 'Rule Firing: '). % retefoops go
mess(105,trace, 'Conflict Set Delete: '). % retefoops del_confli...
mess(106,trace, 'Failed to CS Delete: '). % retefoops del_confli...
mess(107,trace, 'Conflict Set Add: '). % retefoops add_confli...
mess(108,error, 'Update Fails for: '). % retefoops update_ws
mess(109,trace, 'Asserting: '). % retefoops add_ws
mess(110,trace, 'Failing Action Part: '). % retefoops process
mess(111,error, 'Retract Error, no: '). % retefoops take
mess(112,debugx, 'Frame error looking for: '). % retefoops find_slot
mess(113,error, 'Frame instance update error: '). % retefoops uptf
mess(114,error, 'No frame to delete: '). % retefoops del_frame
mess(115,error, 'No instance to delete: '). % retefoops delf
mess(116,error, 'Unable to delete slot: '). % retefoops del_slot
mess(117,error, 'Unable to delete facet: '). % retefoops del_facet
mess(118,trace, 'Rule Fired: '). % retefoops process
mess(119,error, 'Premature end to run: '). % retefoops go
mess(120,info, 'Initializing'). % retefoops initialize
mess(121,info, 'Initialization Complete'). % retefoops initialize
mess(122,debugx, 'Conflict Set'). % retefoops select_rule
mess(123,info, 'Legal Message Types: '). % retefoops set_message
mess(124,info, 'Current Message Types: '). % retefoops set_message
mess(201,info, 'Rule Rete Network Complete'). % retecomp rete_compil
mess(202,info, 'Rule: '). % retecomp rete_comp
mess(203,error, 'Rule Failed to Compile: '). % retecomp rete_comp

Building Expert Systems in Prolog 237

F Windows
Windows Demonstration (windemo.pro)

% WINDEMO.PRO - demonstrates how to use windows

:- module windemo.

:- public main/0, restart/0.

:- extrn window/2:far, window/3:far.

main:-
 cls,
 go.

restart:-
 halt.

go:-
 create_windows,
 ctr_set(1,1), % used by list2
 ctr_set(3,1), % used by dummy
 repeat,
 window(wmain,read,X),
 do(X),
 fail.

create_windows:-
 window(wform, create,
 [type(form),
 coord(8,20,16,53),
 title(' Form not Function '),
 border(white:magenta),contents(white:magenta),
 form([lit(2:5,'First'),
 var(one,2:20,8,''),
 lit(4:5,'Second'),
 var(two,4:20,8,'two'),
 lit(6:5,'Third'),
 var(three,6:20,8,'')
]
)
]
),
 window(wform2, create,
 [type(form),
 coord(12,24,14,49),
 title(' Form two '),
 border(white:green),contents(white:green),
 form([lit(2:3,'First and Last'),
 var(three,2:20,8,'')
]
)
]
),
 window(wprompt, create,
 [type(prompt),
 coord(18,10,18,70),
 border(black:green),

Building Expert Systems in Prolog 239

Windows — Windows Demonstration (windemo.pro)

 contents(black:green),
 title(' input ')
]
),
 window(wmain, create,
 [type(menu),
 coord(15,25,20,40),
 border(blue),
 contents(yellow),
 menu(['new numbers',
 'add numbers',
 'try prompt',
 'try dynamic',
 'try form',
 exit,
 one,two,three,four,five,six,seven
]
)
]
),
 window(wexit, create,
 [type(display),
 coord(20,40,21,50),
 border(black:red),
 contents(black:red),
 title(' exit ')
]
),
 window(wdummy, create,
 [type(menu),
 coord(18,32,23,42),
 border(bright:green),
 contents(green:white),
 title(' dummy '),
 menu([return,one,two,three,four,five,six])
]
),
 window(wdummylog, create,
 [coord(1,1,10,15)]
),
 window(wlist1, create,
 [type(display),
 coord(2,2,23,50),
 border(reverse:blue),
 contents(reverse:blue),
 title(' List One ')
]
),
 window(wlist2, create,
 [type(display),
 coord(2,20,23,78),
 border(yellow),
 contents(blue:yellow),
 title(' List Two ')
]
).

do('new numbers'):-
 list1,
 !.
do('add numbers'):-
 list2,
 !.
do('try prompt'):-
 prompt,
 !.
do('try dynamic'):-

240 Appendices - Full Source Code

Windows — Windows Demonstration (windemo.pro)

 pop,
 !.
do('try form'):-
 form,
 !.
do(exit):-
 exit.
do(_):-
 dummy.

list1:-

 window(x, driver),

 window(wlist1,open),
 ctr_set(0,1),
 repeat,
 ctr_inc(0,N),
 window(wlist1, write, 'line number is ':N),
 N >= 50,
 window(wlist1, writelist,[nl]),
 window(wlist1, writelist,
 ['You can use home, end, pgup, & pgdn',
 'to examine the contents',
 'use enter to leave the '-wlist1-' window'
]
),
 window(x, driver),
 window(wlist1, close),
 !.

list2:-
 window(wlist2, open),
 window(wlist2, write, 'adding more numbers'),
 ctr_set(2,1),
 repeat,
 ctr_inc(1,N),
 ctr_inc(2,Test),
 window(wlist2, write, 'adding number':N),
 Test >= 10,
 window(x, driver),
 !.

exit:-
 window(wexit, write, ['Good Bye']),

 cls,
 halt.

dummy:-
 repeat,
 window(wdummy, read, X),
 ctr_inc(3,N),
 window(wdummylog, write, [N:X]),
 X == return,
 window(wdummy, close),
 !.

prompt:-
 repeat,
 window(wprompt, read, ['',X]),
 window(wdummylog, write, [X]),
 X == '',
 window(wprompt, close),
 !.

Building Expert Systems in Prolog 241

Windows — Windows Demonstration (windemo.pro)

pop:-
 window([type(prompt),
 coord(23,2,23,10),
 title(' pop '),
 contents(white:blue)
],
 read, ['',X]
),
 window(wdummylog, write, [X]),
 window([type(menu),
 coord(20,2,21,5),
 contents(white:magenta),
 menu([yes,no])
],
 read, Y
),
 window(wdummylog, write, [Y]),
 !.

form:-
 window(wform, read, _),
 recorded(wform,var(Vname,_,_,Val),_),
 window(wdummylog, write, [Vname=Val]),
 window(wform2, read, _),
 window(wform2, erase),
 fail.
form.

242 Appendices - Full Source Code

Windows (windows.pro)
% WINDOWS.PRO - Windowing predicates, written for an old version
% of Arity Prolog. While not operational at this time, they do
% illustrate the power of Prolog for systems type work.

:- module windows.
:- segment(ijseg2).

:- public window/2, window/3.
:- public showcurse/0, hidecurse/0.

:- default(invisible).

:- extrn curtype/2:asm. % sets the cursor, can be replaced with:

showcurse:-
 curtype(7,8).

hidecurse:-
 curtype(39,40).

%***
%
% window/3 is the main predicate. The windowing system is organized
% at the top in an object oriented fashon. The window/3 arguments are:
% arg1 - operation (message)
% arg2 - window (the object)
% arg3 - parameters (input or output - either a singleton or a list

% The objects can be one of four types of window -
% display, menu, form, prompt
%
%***

:- mode window(+,+).

window(W, Op):-
 window(W, Op, []).

:- mode window(+,+,?).

window([H|T], Op, Args):-
 window(temp_w, create, [H|T]),
 window(temp_w, Op, Args),
 window(temp_w, delete),
 !.
window(W, Op, Args):-
 get_type(W, T),
 find_proc(T, Op, Proc),
 doproc(Proc, W, Args),
 !.

% get_type/2 figures out what type of window we have

:- mode get_type(+,-).

get_type(W, X):-
 select_parm(W, [type(X)]),
 !.
get_type(W, window). % W is currently undefined

Building Expert Systems in Prolog 243

Windows — Windows (windows.pro)

% find_proc/3 finds the appropriate procedure for the message
% and window type

:- mode find_proc(+,+,-).

find_proc(T, Op, Proc):-
 find_p(T, Op, Proc),
 !.
find_proc(T, Op, Proc):-
 error([Op, 'is illegal operation for a window of type', T]).

find_p(T, Op, Proc):-
 method(T, Op, Proc),
 !.
find_p(T, Op, Proc):-
 subclass(Super, T),
 !,
 find_p(Super, Op, Proc).

% table of objects

:- mode subclass(+,?).

subclass(window, display).
subclass(window, menu).
subclass(window, form).
subclass(window, prompt).

% table of procedures to use for various operations and types

:- mode method(+,+,-).

method(window, open, open_w).
method(window, close, close_w).
method(window, create, create_w).
method(window, change, change_w).
method(window, driver, driver_w).
method(window, display, display_w).
method(window, delete, delete_w).
method(window, erase, erase_w).
method(display, write, write_d).
method(display, writelist, writelist_d).
method(display, writeline, writeline_d).
method(menu, read, read_m).
method(form, read, read_f).
method(form, display, nop).
method(prompt, read, read_p).

% doproc - a faster way to do a call.

:- mode doproc(+,+,+).

doproc(create_w,W,A):-
 !,
 create_w(W,A).
doproc(open_w,W,A):-
 !,
 open_w(W,A).
doproc(close_w,W,A):-
 !,
 close_w(W,A).
doproc(delete_w,W,A):-

244 Appendices - Full Source Code

Windows — Windows (windows.pro)

 !,
 delete_w(W,A).
doproc(display_w,W,A):-
 !,
 display_w(W,A).
doproc(erase_w,W,A):-
 !,
 erase_w(W,A).
doproc(change_w,W,A):-
 !,
 change_w(W,A).
doproc(write_d,W,A):-
 !,
 write_d(W,A).
doproc(writelist_d,W,A):-
 !,
 writelist_d(W,A).
doproc(writeline_d,W,A):-
 !,
 writeline_d(W,A).
doproc(read_m,W,A):-
 !,
 read_m(W,A).
doproc(read_f,W,A):-
 !,
 read_f(W,A).
doproc(read_p,W,A):-
 !,
 read_p(W,A).
doproc(driver_w,W,A):-
 !,
 driver_w(W,A).
doproc(nop,_,_):- !.
doproc(X,W,A):-
 error(['No window method ',X,' defined.']).

%**
%
% methods for the super class "window". these are used by default
% if they are not redefined for the subclass.
%
% create_w - create new window from specs
% open_w - open a window for use
% close_w - remove the window contents and viewport
% change_w - changes a windows definition
% display_w - display a portion of contents in window
% driver_w - gives control to user to view other windows
%
%**

%--
%
% create_w/2 records a new window definition
%
%--

:- mode create_w(+,?).

create_w(W,L):-
 make_window(W,L),
 !.

%--
%
% open_w/1 calls make_viewport which opens up a viewport for the window
%

Building Expert Systems in Prolog 245

Windows — Windows (windows.pro)

%--

:- mode open_w(+,?).

open_w(W,[]):-
 exists_window(W),
 make_viewport(W),
 !.

%--
%
% close_w/1 closes a viewport on the active list
%
%--

:- mode close_w(+,?).

close_w(W,[]):-
 del_viewport(W),
 !.

%--
%
% delete_w removes both viewport and dataarea
%
%--

:- mode delete_w(+,?).

delete_w(W,[]):-
 del_viewport(W),
 del_dataarea(W),
 del_stat(W),
 del_image(W),
 del_window(W),
 !.

%--
%
% erase_w removes the viewport and dataarea, but preserves
% window definition
%
%--

:- mode erase_w(+,?).

erase_w(W,_):-
 del_viewport(W),
 del_dataarea(W),
 del_stat(W),
 del_image(W),
 !.

%--
%
% change_w/2 changes a windows position on the viewport
%
%--

:- mode change_w(+,?).

change_w(W,L):-
 recorded_w(windef,wd(W,Lold),_),
 merge_wl(L,Lold,Lnew),

246 Appendices - Full Source Code

Windows — Windows (windows.pro)

 w_clrb(W),
 recorded_w(active,AL,_),
 remove(W,AL,NL),
 redraw(NL,W),
 recorded_w(active,AL,DBRef), erase(DBRef),
 recorda(active,NL,_),
 window(W,create,Lnew),
 window(W,open),
 !.

merge_wl([],Lnew,Lnew):- !.
merge_wl([Hn|Tn], Lold, Lnew):-
 rep_we(Hn, Lold, Temp),
 !,
 merge_wl(Tn, Temp, Lnew).

rep_we(X,[],[X]):- !.
rep_we(X, [H|T], [X|T]):-
 functor(X,F,A),
 functor(H,F,A),
 !.
rep_we(X,[H|T],[H|T2]):-
 !,
 rep_we(X,T,T2).

%--
%
% display_w writes a page of a window from a given starting point
%
%--

:- mode display_w(+,?).

display_w(W, [_, 0]):- !.
display_w(W, [Line, NN]):- % add NN lines to the top
 NN < 0,
 N is -NN,
 select_parm(W, [coord(R1, C1, R2, C2)]),
 RLL is R1 + N - 1,
 (RLL =< R2,
 RL = RLL;

),

 RF = RFF

 RL = R2

 display_viewport(W, Line, R1, RL, C1),
 !.
display_w(W, [Line, NN]):- % add NN lines to the bottom
 NN > 0, % note Line is line number at top of window
 select_parm(W, [coord(R1, C1, R2, C2)]),
 RFF is R2 - NN + 1,
 (RFF =< R1,
 RF = R1;

),
 Offset is RF - R1, % if first line to be displayed
 Lineoff is Line + Offset, % is mid viewport somewhere
 display_viewport(W, Lineoff, RF, R2, C1),
 !.
display_w(W, Line):-
 select_parm(W, [coord(R1, C1, R2, C2)]),
 display_viewport(W, Line, R1, R2, C1),
 !.

%--
%

Building Expert Systems in Prolog 247

Windows — Windows (windows.pro)

% driver_w turns control over to the user for manipulating the
% current window.
%
%--

driver_w(_,_):-
 repeat,
 recorded_w(active,[W|_],_),
 select_parm(W,[coord(R1,C1,_,_)]),
 tmove(R1,C1),
 keyb(A,S),
 w_exec(S,Flag,W),
 Flag == end,

 scroll_window(W,top),

w_exec(73,xxx,W):- % pgup
 select_parm(W,[height(H)]),

w_exec(_,xxx,_):- !.

%

 !.

:- mode w_exec(+,-,+).

w_exec(71,xxx,W):- % home

 !.
w_exec(79,xxx,W):- % end
 scroll_window(W,bottom),
 !.
w_exec(81,xxx,W):- % pgdn
 select_parm(W,[height(H)]),
 HH is H - 1,
 scroll_window(W,HH),
 !.

 HH is - H + 1,
 scroll_window(W,HH),
 !.
w_exec(72,xxx,W):- % up arrow
 scroll_window(W,-1),
 !.
w_exec(80,xxx,W):- % down arrow
 scroll_window(W,1),
 !.
w_exec(59,xxx,W):- % f1 change windows
 recorded_w(active,List,_),
 last_item(List,NewW),
 window(NewW,open),
 !.
w_exec(28,end,_):- !. % enter - leave the driver

%**
%
% methods for subclass display

% write_d - write to the window
% writelist_d - write a list of terms to the window
%
%**

%--
%
% write_d
% write to the window. The term can be a simple term, or a list of terms
% which make up a line. See w_wlin for other allowed contructs.
%
%--

:- mode write_d(+,?).

248 Appendices - Full Source Code

Windows — Windows (windows.pro)

write_d(W, Term):-
 scroll_window(W, bottom),
 select_stat(W,curnum,L1,NL),
 select_parm(W, [coord(R1,C1,R2,C2), attr(CC)]),
 Row is NL - L1 + 1 + R1,
 add_data(W, Term),
 write_viewport(W, Term, CC, L1, NL, Row, R2, C1, C2),
 !.

%--
%
% writelist_d
% write multiple lines to the window, using write_d
%
%--

:- mode writelist_d(+,?).

writelist_d(W, []):-!.
writelist_d(W, [H|T]):-
 w_writ(W,H),
 !,
 writelist_d(W,T).

w_writ(W,nl):-
 write_d(W,'').
w_writ(W,H):-
 write_d(W,H).

%--
%
% writeline_d
% write a list of terms on a line, without the list format
%
%--

:- mode writeline_d(+,?).

writeline_d(W, L):-
 make_line(L, $$, S),
 write_d(W, S),
 !.

make_line([], S, S).
make_line([H|T], Temp, S):-
 string_term(HS, H),
 concat(Temp, HS, Temp2),
 make_line(T, Temp2, S).

%**
%
% methods for subclass menu
%
% read_m - read a term from the menu
%
%**

%--
%
% read_m
% w_menu - returns a menu choice from a menu window, the window may
% be dynamically built, using the first clause
%

Building Expert Systems in Prolog 249

Windows — Windows (windows.pro)

%--

:- mode read_m(+,?).

read_m(W,X):-
 init_menu_dataarea(W),
 window(W,open),
 menu_select(W,X),
 !.
% (string_term(X,XX); atom_string(XX,X)), !.

%**
%
% methods for subclass form
%
% read_f - read the fields in the form
%
%**

%--
%
% read_f - updates the contents of the form window
%
%--

:- mode read_f(+,?).

read_f(W,[]):-
 init_form_dataarea(W),
 window(W,open),
 clear_viewport(W),
 display_form(W),
 select_parm(W,[coord(_,C1,R2,_)]),
 RR is R2 + 1,
 tmove(RR,C1),
 write(' F9 to enter '),
 fill_form(W),
 read_form(W),
 !.

%**
%
% methods for subclass prompt
%
%**

%--
%
% read_p read the prompt
%
%--

:- mode read_p(+,?).

read_p(W,X):-
 var(X),
 window(W,open),
 fill_prompt(W,Z),
 !,
 Z = X.
read_p(W,X):-
 atomic(X),
 window(W,open),
 fill_prompt(W,Z),
 !,
 Z == X. % ok if X an atom and Z a string

250 Appendices - Full Source Code

Windows — Windows (windows.pro)

read_p(W,[Def,X]):-
 write_d(W,Def),
 fill_prompt(W,Z),
 !,
 Z = X.

%**
%
% Basic window data manipulation routines - a window is composed

%

 fail.

% of a viewport and dataarea
%
%**

%--

% make a new window
%
%--

:- mode make_window(+,?).

make_window(W, Def):-
 (recorded_w(windef,wd(W,_),DBRef),
 erase(DBRef);
 true
),
 recorda(windef,wd(W,Def),_),
 !.

%--
%
% del_window removes a window definition
%
%--

:- mode del_window(+).

del_window(W):-
 recorded_w(windef,wd(W,_),DBRef),
 erase(DBRef),
 !.
del_window(_).

%--
%
% exists window checks for existence of a window definition
%
%--

:- mode exists_window(+).

exists_window(W):-
 recorded_w(windef,wd(W,_),_),
 !.
exists_window(W):-
 error(['No window definition for ',W]),

%--
%
% select_parm extracts various parameters from a window definition.
% The RequestList is a list of structures with keyword functors
% and variable arguments, which are bound by w_attr. w_attr
% also contains the defaults and computed parameters (ie height)

Building Expert Systems in Prolog 251

Windows — Windows (windows.pro)

%
%--

:- mode select_parm(+,+).

select_parm(W,RequestList):-
 recorded_w(windef,wd(W,AttrList),_),
 fullfill(RequestList, AttrList),
 !.

:- mode fullfill(+,+).

fullfill([],_):- !.
fullfill([Req|T], AttrList):-
 w_attr(Req, AttrList),
 !,
 fullfill(T, AttrList).

:- mode w_attr(+,+).

w_attr(height(H), AttrList):-
 w_attr(coord(R1,_,R2,_),AttrList),
 H is R2 - R1 + 1,
 !.
w_attr(width(W), AttrList):-
 w_attr(coord(_,C1,_,C2),AttrList),
 W is C2 - C1 + 1,
 !.
w_attr(attr(A), AttrList):-
 w_attr(contents(Color),AttrList),
 attr(Color,A),
 !.
w_attr(border_attr(A), AttrList):-
 w_attr(border(Color),AttrList),
 attr(Color,A),
 !.
w_attr(A, AttrList):-
 member(A, AttrList),
 !.
w_attr(coord(1,1,23,78),_). % default values
w_attr(title(''),_).
w_attr(border(white),_).
w_attr(contents(white),_).
w_attr(type(display),_).

%--
%
% update_parm provides the facility to update and window parameters.
%
%--

:- mode update_parm(+,?).

update_parm(W,UpdateList):-
 recorded_w(windef,wd(W,AttrList),DBRef), erase(DBRef),
 modify(UpdateList, AttrList, NewList),
 recorda(windef,wd(W,NewList),_),
 !.

modify([],L,L):-!.
modify([Req|T], AttrList, NewList):-
 functor(Req,F,A),
 mod(F, Req, AttrList, [], NewL),
 !,

252 Appendices - Full Source Code

Windows — Windows (windows.pro)

 modify(T, NewL, NewList).

mod(_,_,[],L,L).
mod(F,A,[OldA|AL],Temp,NewL):-
 functor(OldA,F,_),
 append([A|Temp],AL,NewL),
 !.
mod(F,A,[OldA|AL],Temp,NewL):-
 mod(F,A,AL,[OldA|Temp],NewL).

%--
%
% select_stat is used to get the status of a window
%
%--

:- mode select_stat(+,+,?).

select_stat(W,curline,L):-
 recorded_w(curline,cl(W,L,_),_),
 !.
select_stat(W,numlines,N):-
 recorded_w(curline,cl(W,_,N),_).

:- mode select_stat(+,+,?,?).

select_stat(W,curnum,L,N):-
 recorded_w(curline,cl(W,L,N),_).

%--
%
% update_stat is used to change the active status of a window
%
%--

:- mode update_stat(+,+,?).

update_stat(W,curline,L):-
 (recorded_w(curline,cl(W,_,NL),DBRef),
 erase(DBRef);
 NL = 0
),
 !,
 recorda(curline,cl(W,L,NL),_).
update_stat(W,numlines,N):-
 (recorded_w(curline,cl(W,L,_),DBRef),
 erase(DBRef);
 L = 1
),
 !,
 recorda(curline,cl(W,L,N),_).

:- mode update_stat(+,+,?,?).

update_stat(W,curnum,L,N):-
 (recorded_w(curline,cl(W,_,_),DBRef),
 erase(DBRef);
 true
),
 !,
 recorda(curline,cl(W,L,N),_).

Building Expert Systems in Prolog 253

Windows — Windows (windows.pro)

%--
%
% del_stat removes the windows status information
%
%--

:- mode del_stat(+).

del_stat(W):-
 recorded_w(curline,cl(W,_,_),DBRef),
 erase(DBRef),
 !.
del_stat(_).

%--
%
% select_content will repeatedly give the next record from
% a given starting point, and its position
%
%--

:- mode select_content(+,?,?,?).

select_content(W,Start,Count,X):-
 ctr_set(20,0),
 recorded_w(W,X,_),

%

:- mode make_viewport(+).

 ctr_inc(20,Count),
 Count >= Start.

%--
%
% add to a windows data area
%
%--

:- mode add_data(+,?).

add_data(W, Term):-
 (string(Term),
 S = Term;
 string_term(S,Term)
),
 recordz(W, S, _),
 !.

%--

% make_viewport initializes a viewport. If it is already the head of the
% active list, do nothing. If it is not on the active list, get it
% and put it on. Otherwise move it to the head from where it is now.
%
%--

make_viewport(W):- % If its on the top, clear the decks
 recorded_w(active,[W|T],_),
 del_image(W),
 !.
make_viewport(W):- % make sure active and curline exist
 w_inact(W), % and go to next clause
 w_nocur(W),
 fail.
make_viewport(W):- % If its on the list somewhere
 recorded_w(active,[H|T],_),

254 Appendices - Full Source Code

Windows — Windows (windows.pro)

 save_image(H),
 split(W,[H|T],L1,L2),
 w_chkover(W,L1,_),
 append([W|L1], L2, NL),
 recorded_w(active,_,DBRef), erase(DBRef),
 recorda(active,NL,_),
 !.
make_viewport(W):-
 recorded_w(active,L,DBRef), erase(DBRef),
 recorda(active,[W|L],_),
 w_ini(W),
 !.
make_viewport(W):-
 error(['Initializing viewport',W]).

w_inact(W):-
 recorded_w(active,_,_),

 !.
w_inact(W):-
 recorda(active,[],_).

w_nocur(W):-
 select_stat(W, curnum, _, _),
 !.
w_nocur(W):-
 update_stat(W, curnum, 1, 0).

w_ini(W):-
 w_box(W),
 clear_viewport(W),
 window(W,display,1), % display from line 1
 set_arrows(W),
 !.

w_chkover(W, [], no).
w_chkover(W, [H|T], Stat):-
 w_nooverlap(W,H),
 w_chkover(W,T,Stat).
w_chkover(W,_,yes):-
 restore_image(W),
 !.

:- mode w_nooverlap(+,+).

w_nooverlap(Wa,Wb):-
 select_parm(Wa, [coord(R1a,C1a,R2a,C2a)]),
 select_parm(Wb, [coord(R1b,C1b,R2b,C2b)]),
 (R1a > R2b + 2;
 R2a < R1b - 2;
 C1a > C2b + 2;
 C2a < C1b - 2
),
 !.

%--
%
% save the screen image
%
%--

:- mode save_image(+).

Building Expert Systems in Prolog 255

Windows — Windows (windows.pro)

save_image(W):-
 del_image(W),
 select_parm(W,[coord(R1,C1,R2,C2)]),
 RR1 is R1 - 1, CC1 is C1 - 1,
 RR2 is R2 + 1, CC2 is C2 + 1,
 region_ca((RR1,CC1),(RR2,CC2),SA),
 recorda(image,W-SA,_),
 !.

%--
%
% restore the screen image
%
%--

:- mode restore_image(+).

restore_image(W):-
 select_parm(W,[coord(R1,C1,R2,C2)]),
 RR1 is R1 - 1, CC1 is C1 - 1,
 RR2 is R2 + 1, CC2 is C2 + 1,
 recorded_w(image,W-SA,Ref),
 region_ca((RR1,CC1),(RR2,CC2),SA),
 !.

%--
%
% delete an image
%
%--

:- mode del_image(+).

del_image(W):-
 recorded_w(image,W-_,R),
 erase(R),
 !.
del_image(W).

%--
%
% del_dataarea removes the contents of the window
%
%--

:- mode del_dataarea(+).

del_dataarea(W):-
 eraseall(W),
 update_stat(W,curnum,1,0),
 !.

%--
%
% clear_viewport clears the screen
%
%--

:- mode clear_viewport(+).

clear_viewport(W):-
 select_parm(W,[coord(R1,C1,R2,C2),attr(A)]),
 tmove(R2,C1),
 wca(1,` ,A),

256 Appendices - Full Source Code

Windows — Windows (windows.pro)

 tscroll(0,(R1,C1),(R2,C2)),
 !.
clear_viewport(_).

%--
%
% del_viewport removes a viewport updating active lists and overlays
%
%--

:- mode del_viewport(+).

del_viewport(W):-
 recorded_w(active,AList,_),
 member(W,AList), %fail and go away if nothing to delete
 AList = [H|_],
 (W == H; save_image(H)), % in case closing a window other
 w_clrb(W), % than the uppermost
 remove(W,AList,Newl),
 del_image(W),
 redraw(Newl,W),
 recorded_w(active,AList,DBRef), erase(DBRef),
 recorda(active,Newl,_),
 !.
del_viewport(_). % always succeed

redraw(Newl,W):- % from back to front, redraw
 reverse(Newl,Backwards), % affected windows
 redr(Backwards,W,[]),
 !.

redr([],_,_):- !.
redr([H|T], W, Redrawn):-
 w_nooverlap(H,W),
 w_chkover(H,Redrawn,Stat),
 (Stat == yes,
 Red = [H|Redrawn];
 Red = Redrawn
),
 !,
 redr(T,W,Red).
redr([H|T], W, Redrawn):-
 restore_image(H),
 !,
 redr(T, W, [H|Redrawn]).

% remove the window from the viewport

:- mode w_clrb(+).

w_clrb(W):-
 select_parm(W, [coord(R1, C1, R2, C2)]),
 RR1 is R1 - 1, CC1 is C1 - 1,
 RR2 is R2 + 1, CC2 is C2 + 1,
 tmove(RR2,CC1),wca(1,` ,7),
 tscroll(0, (RR1, CC1), (RR2, CC2)),
 !.
w_clrb(W):- !.

%--
%
% writes a term to the specified line in the viewport
%
%--

Building Expert Systems in Prolog 257

Windows — Windows (windows.pro)

:- mode write_viewport(+,+,+,+,+,+,+,+,+).

write_viewport(W, Term, CC, L1, NL, Row, R2, C1, C2):-
 (Row =< R2,
 R = Row,
 L2 is L1,
 !;
 scroll_viewport(W, 1),
 L2 is L1 + 1, R = R2
),
 Width is C2 - C1 + 1,
 (string(Term),
 S = Term;
 string_term(S,Term)
),
 w_wline(S, R, C1, CC, Width),
 NNL is NL + 1,
 update_stat(W,curnum,L2,NNL),
 !.

:- mode w_wline(+,+,+,+,+).

w_wline(Term, R, C1, CC, Width):-
 tmove(R,C1),
 wa(Width,CC),
 (string_length(Term,L),
 L =< Width,
 Term = S;
 substring(Term,0,Width,S)
),
 write(S).

%--
%
% display_viewport writes lines from R1 to R2 starting at line L
% from the dataarea to the viewport
%
%--

:- mode display_viewport(+,+,+,+,+).

display_viewport(W,Line,R1,R2,C1):-
 key(W,Key),
 nth_ref(W,Line,Ref),
 select_parm(W,[width(Wid), attr(A)]),
 RL is R2 + 1,
 w_disp(Ref, Key, R1, RL, C1, A, Wid),
 !.
display_viewport(_,_,_,_,_). % succeed if no key yet

:- mode w_disp(+,+,+,+,+,+,+).

w_disp(Ref, Ref, _, _, _, _, _):- !.
w_disp(_, _, Row, Row, _, _, _):- !.
w_disp(Ref, Sref, Row, RL, C1, CC, Width):-
 instance(Ref, Term),
 w_wline(Term, Row, C1, CC, Width),
 Row2 is Row + 1,
 nref(Ref, Nref),
 !,
 w_disp(Nref, Sref, Row2, RL, C1, CC, Width).

%--

258 Appendices - Full Source Code

Windows — Windows (windows.pro)

%
% the box, only one choice, double line
%
%--

:- mode w_box(+).

w_box(W):-
 select_parm(W, [coord(R1, C1, R2, C2), title(T), border(C)]),
 box(R1, C1, R2, C2, C),
 Rt is R1 - 1,
 Ct is C1 + 3,
 tmove(Rt,Ct),
 write(T),
 !.

:- mode box(+,+,+,+,+).

box(R1, C1, R2, C2, C):-
 R0 is R1 - 1,
 C0 is C1 - 1,
 R3 is R2 + 1,
 C3 is C2 + 1,
 Width is C2 - C1 + 1,
 Height is R2 - R1 + 1,
 attr(C,CC),
 left_side(R1, C0, CC, R2),
 top(R0, C0, C1, C3, Width, CC),
 right_side(R1, C3, CC, R2),
 bottom(R3, C0, C1, C3, Width, CC),
 !.

:- mode left_side(+,+,+,+).

left_side(R1, C0, CC, R2):-
 w_vert(R1, C0, 186, CC, R2).

:- mode top(+,+,+,+,+,+).

top(R0, C0, C1, C3, Width, CC):-
 tmove(R0, C0),
 wca(1, 201, CC),
 tmove(R0, C1),
 wca(Width, 205, CC),
 tmove(R0, C3),
 wca(1, 187, CC).

:- mode right_side(+,+,+,+).

right_side(R1, C3, CC, R2):-
 w_vert(R1, C3, 186, CC, R2).

:- mode bottom(+,+,+,+,+,+).

bottom(R3, C0, C1, C3, Width, CC):-
 tmove(R3, C0),
 wca(1,200,CC),
 tmove(R3, C1),
 wca(Width, 205, CC),
 tmove(R3,C3),
 wca(1, 188, CC).

Building Expert Systems in Prolog 259

Windows — Windows (windows.pro)

:- mode w_vert(+,+,+,+,+).

w_vert(R1, C1, Char, Color, R2):-
 ctr_set(0,R1),
 repeat,
 ctr_inc(0,R),
 tmove(R, C1),
 wca(1, Char, Color),
 R >= R2,
 !.

%--
%
% scroll the viewport
%
%--

:- mode scroll_viewport(+,?).

scroll_viewport(W, N):-
 select_parm(W, [coord(R1, C1, R2, C2)]),
 Height is R2 - R1 + 1,
 Heightm is -Height,
 (N > Heightm,
 N < Height,
 NN = N;
 NN = 0
),
 tscroll(NN, (R1,C1), (R2,C2)).

%--
%
% scroll the window
%
%--

:- mode scroll_window(+,+).

scroll_window(W, top):-
 window(W,open),
 select_stat(W,curline,1), % already at the top
 set_arrows(W),
 !.
scroll_window(W, top):-
 select_stat(W,curline,L),
 S is 1 - L,
 scroll_window(W,S),
 !.
scroll_window(W, bottom):-
 window(W,open),
 select_parm(W, [coord(R1, C1, R2, C2)]),
 Height is R2 - R1 + 1,
 select_stat(W, curnum, L, NL),
 NL < L + Height, % already at the bottom
 set_arrows(W),
 !.
scroll_window(W, bottom):-
 select_parm(W, [coord(R1, C1, R2, C2)]),
 Height is R2 - R1 + 1,
 select_stat(W, curnum, L, NL),
 Last is L + Height,
 S is NL + 1 - Last,
 scroll_window(W, S),
 !.
scroll_window(W, N):-
 window(W,open),

260 Appendices - Full Source Code

Windows — Windows (windows.pro)

 select_stat(W, curnum, Line, NL),
 select_parm(W,[height(H)]),
 H < NL, % if it fits on one frame, no scroll
 MaxLine is NL - H + 1, % biggest line # allowed at first row
 Newline is Line + N,
 real_nl(in(Line,MaxLine,Newline,N), out(Newl,NN)),
 set_arrow(W,MaxLine,Newl),
 update_stat(W, curnum, Newl, NL),
 scroll_viewport(W, NN),
 window(W, display, [Newl, NN]),
 !.
scroll_window(_,_).

%--
%
% set_arrows puts the little arrows at the top and bottom indicating
% that there is more to be seen.
%
%--

:- mode set_arrows(+).

set_arrows(W):-
 select_stat(W, curnum, Line, NL),
 select_parm(W, [height(H)]),
 Max is NL - H + 1,
 set_arrow(W, Max, Line),
 !.

set_arrow(W,Max,New):-
 select_parm(W, [coord(R1,C1,R2,C2)]),
 RR1 is R1 - 1,
 RR2 is R2 + 1,
 setar(Max,New,up(RR1:C1),down(RR2:C1)),
 !.

setar(_, 1, up(R:C), _):-
 tmove(R,C),
 put(`Í),
 fail.
setar(Max, Max, _, down(R:C)):-
 tmove(R,C),
 put(`Í),
 fail.
setar(_, New, up(R:C), _):-
 New > 1,
 tmove(R,C),
 put(`�),
 fail.
setar(Max, New, _, down(R:C)):-
 New < Max,
 tmove(R,C),
 put(`�),
 fail.
setar(_,_,_,_).

real_nl(in(Line,MaxLine,Newline,N), out(Newline,N)):-
 Newline > 0,
 Newline =< MaxLine,
 !.
real_nl(in(Line,MaxLine,Newline,N), out(1,NN)):-
 Newline =< 0,
 Newline =< MaxLine,
 NN is 1 - Line,
 Line =\= 1, % fail if already at first line

Building Expert Systems in Prolog 261

Windows — Windows (windows.pro)

 !.
real_nl(in(Line,MaxLine,Newline,N), out(MaxLine,NN)):-
 Newline > 0,
 Newline > MaxLine,
 NN is MaxLine - Line,
 Line =\= MaxLine, % fail if already at last line
 !.

%--
%
% predicates to define and read maps, aka forms.
% they expect an initial definition of the map fields
% in a window spec as follows:
%
% form([lit(Row:Col,Literal),
% var(FieldName,Row:Col,Length,InitValue),
% ...])
%
% This is converted to window records of the form
%
% recordz(W,lit(..),_). etc
%
% It is sometimes easier for the application to build this directly.
%
%--

%--
%
% copy the window definition specs to the dataarea
%
%--

:- mode init_form_dataarea(+).

init_form_dataarea(F):-
 recorded_w(F,_,_),
 !.
init_form_dataarea(F):-
 select_parm(F,[form(List)]),
 init_map(F,List),
 !.

:- mode init_map(+,?).

init_map(W,[]):-!.
init_map(W,[H|T]):-
 recordz(W,H,_),
 !, init_map(W, T).

%--
%
% put the form data on the viewport
%
%--

:- mode display_form(+).

display_form(S):-
 select_parm(S,[coord(R0,C0,_,_),attr(At)]),
 recorded_w(S,Field,_),
 write_field(R0:C0,At,Field),
 fail.
display_form(S):-true.

write_field(R0:C0, At, lit(R:C,Lit)):-

262 Appendices - Full Source Code

Windows — Windows (windows.pro)

 RR is R0 + R, CC is C0 + C,
 tmove(RR,CC),
 write(Lit),
 !.
write_field(R0:C0, At, var(_,R:C,Length,Val)):-
 rev_attr(At, Rat),
 RR is R0 + R, CC is C0 + C,
 tmove(RR,CC),
 wa(Length,Rat),
 write(Val),
 !.

%--
%
% read the data from the viewport and store in the dataarea
%
%--

:- mode read_form(+).

read_form(S):-
 select_parm(S,[coord(R0,C0,_,_)]),
 recorded_w(S,var(Name,R:C,Length,_),Ref),
 RR is R0 + R, CC is C0 + C,
 C2 is CC + Length - 1,
 region_c((RR,CC),(RR,C2),Str),
 strcnv(Str,Val),
 replace(Ref,var(Name,R:C,Length,Val)),
 fail.
read_form(S).

strcnv(S,V):-
 strip_leading(S,S1),
 strip_trailing(S1,V),
 !.

%--
%
% capture keystrokes and drive form data entry
%
%--

:- mode fill_form(+).

fill_form(S):-
 build_field_list(S),
 recorded_w(field_list,S-[R:C:C2|T],_),
 tmove(R,C),
 set_flag(current_field,R:C:C2),
 get_keystrokes(S,[R:C:C2|T]).

build_field_list(S):-
 (recorded_w(field_list,S-L,Ref),erase(Ref); true),
 recorda(field_list,S-[],_),
 bfl(S),
 !.

bfl(S):-
 select_parm(S,[coord(R0,C0,_,_)]),
 recorded_w(S,var(_,R:C,Length,_),_),
 RR is R0 + R, CC is C0 + C,
 C2 is CC + Length - 1,
 add_field(S,RR:CC:C2),

Building Expert Systems in Prolog 263

Windows — Windows (windows.pro)

 fail.
bfl(S):-
 recorded_w(field_list,S-L,Ref), % If there is only one, make
 length(L,N), N == 1, % a dummy second one so next_item
 append(L,L,L2), % has something to find
 erase(Ref),
 recorda(field_list,S-L,Ref),
 !.
bfl(_).

add_field(S,F):-
 recorded_w(field_list,S-L,Ref),
 append(L,[F],L2),
 erase(Ref),
 recorda(field_list,S-L2,_),
 !.

get_keystrokes(W,List):-
 select_parm(W,[attr(At)]),
 rev_attr(At, Rat),
 repeat,
 get_flag(current_field,F),
 keyb(A,S),
 put_viewport(A:S,F,List,Rat),
 !. % user ended input

put_viewport(A:67, F, FList, Rat). % f9
put_viewport(A:77, F, FList, Rat):- % rt arrow
 curse_inc(F, FList),
 !,
 fail.
put_viewport(A:75, F, FList, Rat):- % left arrow
 curse_dec(F, FList),
 !,
 fail.
put_viewport(A:72, F, FList, Rat):- % up arrow
 prev_item(F, FList, R:C:C2),
 set_flag(current_field, R:C:C2),
 tmove(R,C),
 !,
 fail.
put_viewport(A:80, F, FList, Rat):- % down arrow
 next_item(F, FList, R:C:C2),
 set_flag(current_field, R:C:C2),
 tmove(R,C),
 !,
 fail.
put_viewport(A:28, F, FList, Rat):- % enter
 next_item(F, FList, R:C:C2),
 set_flag(current_field, R:C:C2),
 tmove(R,C),
 !,
 fail.
put_viewport(A:14, F, FList, Rat):- % back space
 curse_dec(F, FList),
 wca(1, ` , Rat),
 !,
 fail.
put_viewport(A:_, F, FList, Rat):- % letter
 wca(1, A, Rat),
 curse_inc(F, FList),
 !,
 fail.

264 Appendices - Full Source Code

Windows — Windows (windows.pro)

curse_inc(Rx:Cx:C2x, FList):-
 tget(R,C),
 C < C2x,
 CC is C + 1,
 tmove(R,CC),
 !.
curse_inc(F, FList):-
 next_item(F, FList, R:C:C2),
 set_flag(current_field, R:C:C2),
 tmove(R,C),
 !.

curse_dec(Rx:Cx:C2x, FList):-
 tget(R,C),
 C > Cx,
 CC is C - 1,
 tmove(R,CC),
 !.
curse_dec(F, FList):-
 prev_item(F, FList, R:C:C2),
 set_flag(current_field, R:C:C2),
 tmove(R,C),
 !.

%--
%
% write the menu dataarea from the window definition
%
%--

:- mode init_menu_dataarea(+).

init_menu_dataarea(W):-
 recorded_w(W,_,_),
 !.
init_menu_dataarea(W):-
 m_init(W).

m_init(W):-
 select_parm(W,[menu(ItemList)]),
 m_create(W,ItemList,Nitems,0),
 update_stat(W,curnum,1,Nitems),
 !.

m_create(_,[],Nitems,Nitems):- !.
m_create(W,[Item|Rest],Nitems,X):-
 add_data(W,Item),
 XX is X + 1,
 !,
 m_create(W,Rest,Nitems,XX).

%--
%
% select an item from the menu
%
%--

:- mode menu_select(+,?).

menu_select(W,X):-
 select_parm(W,[coord(R1,C1,R2,_),
 width(L),
 attr(A)]),

Building Expert Systems in Prolog 265

Windows — Windows (windows.pro)

 tmove(R1,C1),
 revideo(L,A),
 repeat,
 keyb(_,S),
 m_cur(S,Z,w(W,R1,R2,C1,L,A)), % will fail until Z has a value
 !,
 Z = X. % might fail if X had a value

:- mode m_cur(+,-,+).

m_cur(80,_,w(W,R1,R2,C1,L,A)):- % down arrow
 tget(R,_),
 R < R2,
 normvideo(L,A),
 RR is R + 1,
 tmove(RR,C1),
 revideo(L,A),
 !,
 fail.
m_cur(80,_,w(W,R1,R2,C1,L,A)):- % down arrow at bottom
 tget(R,_),
 R >= R2,
 normvideo(L,A),
 scroll_window(W,1),
 tmove(R2,C1),
 revideo(L,A),
 !,
 fail.
m_cur(72,_,w(W,R1,R2,C1,L,A)):- % up arrow
 tget(R,_),
 R > R1,
 normvideo(L,A),
 RR is R - 1,
 tmove(RR,C1),
 revideo(L,A),
 !,
 fail.
m_cur(72,_,w(W,R1,R2,C1,L,A)):- % up arrow at top
 tget(R,_),
 R =< R1,
 normvideo(L,A),
 scroll_window(W,-1),
 tmove(R1,C1),
 revideo(L,A),
 !,
 fail.
m_cur(71,_,w(W,R1,R2,C1,L,A)):- % home
 normvideo(L,A),
 scroll_window(W,top),
 tmove(R1,C1),
 revideo(L,A),
 !,
 fail.
m_cur(79,_,w(W,R1,R2,C1,L,A)):- % end
 normvideo(L,A),
 scroll_window(W,bottom),
 tmove(R2,C1),
 revideo(L,A),
 !,
 fail.
m_cur(28,X,w(W,R1,R2,C1,L,A)):- % enter
 tget(R,_),
 select_stat(W,curline,Line),
 Nth is Line + R - R1,
 nth_ref(W, Nth, Ref),
 instance(Ref,X),
 normvideo(L,A),

266 Appendices - Full Source Code

Windows — Windows (windows.pro)

 !.

revideo(L,A):-
 rev_attr(A,RevAt),
 wa(L,RevAt).

normvideo(L,A):-
 wa(L,A).

%--
%
% read the prompt
%
%--

:- mode fill_prompt(+,?).

fill_prompt(W,Z):-
 select_parm(W,[coord(R1,C1,_,_), width(L), contents(Color)]),
 attr(Color,At),
 repeat,
 C2 is C1 + L - 1,
 tmove(R1,C1),
 lined(Y,R1:C1:C2,At),
 strip_leading(Y,Y1),
 strip_trailing(Y1,X),
 !,
 Z = X. % might fail if checking X value

% lined - a line editor, returns a string

% :- mode lined(?,+,+).

lined(NewS,R:C1:C2,At):-
 L is C2 - C1 + 1,
 tmove(R,C1),
 wa(L,At),
 repeat,
 keyb(A,S),
 modify(A:S,R:C1:C2,EndFlag,At),
 EndFlag == end,
 region_c((R,C1),(R,C2),NewS),
 !.

%:- mode modify(+,+,?,+).

modify(_:28,R:C1:C2,end,At):- !. % CR - end edit
modify(_:1,R:C1:C2,x,At):- % Esc - erase line
 tscroll(0,(R,C1),(R,C2)),
 tmove(R,C1),
 !.
modify(_:77,R:C1:C2,x,At):- % cursor right
 tget(R,C),
 (C < C2,
 CC is C + 1;
 CC = C2
),
 tmove(R,CC),
 !.
modify(_:75,R:C1:C2,x,At):- % cursor left
 tget(R,C),
 (C > C1,
 CC is C - 1;

Building Expert Systems in Prolog 267

Windows — Windows (windows.pro)

 CC = C1
),
 tmove(R,CC),
 !.
modify(_:83,R:C1:C2,x,At):- % Del - delete character
 tget(R,C),
 C < C2,
 CC is C + 1,
 hidecurse,
 region_ca((R,CC),(R,C2),S),
 list_text([32,At],LastChar),
 concat(S,LastChar,St),
 region_ca((R,C),(R,C2),St),
 tmove(R,C),
 showcurse,
 !.
modify(_:83,R:C1:C2,x,At):- % Del - last space
 wca(1,` ,At),
 !.
modify(_:14,R:C1:C2,x,At):- % BS - move everything to the left
 tget(R,C),
 C > C1,
 CC is C - 1,
 hidecurse,
 region_ca((R,C),(R,C2),S),
 list_text([32,At],LastChar),
 concat(S,LastChar,St),
 region_ca((R,CC),(R,C2),St),
 tmove(R,CC),
 showcurse,
 !.
modify(_:14,_,_,_):- !. % BS - first space
modify(A:_,R:C1:C2,x,At):- % any other character, insert
 tget(R,C),
 C < C2, CC is C + 1,
 hidecurse,
 C2a is C2 - 1,
 region_ca((R,C),(R,C2a),S),
 tmove(R,C),
 wca(1,A,At),
 region_ca((R,CC),(R,C2),S),
 tmove(R,CC),
 showcurse,
 !.
modify(A:_ ,_,_,At):- % last space
 wca(1,A,At).

%--
%
% debug dumps all the current window data
%
%--

debug:-
 write('window dump'), nl,
 debug_active,
 debug_windefs,
 !.

debug_active:-
 recorded_w(active,L,_),
 write(active:L), nl,
 !.
debug_active:-
 write('no active list'), nl.

268 Appendices - Full Source Code

Windows — Windows (windows.pro)

debug_windefs:-
 recorded_w(windef,wd(W,A),_),
 write(W:A), nl,
 debug_curline(W),
 debug_data(W),
 fail.
debug_windefs:-
 write('no more windefs'), nl.

debug_curline(W):-
 recorded_w(curline,cl(W,Line,Num),_),
 write(W:curline:Line:Num), nl,
 !.
debug_curline(W):-
 write('no curline for':W), nl.

debug_data(W):-
 recorded_w(W,X,_),
 write(W:'first record':X), nl,
 !.
debug_data(W):-
 write('no data for':W), nl.

%**
%
% Utilities
%
%**

% recorded_w_w - a rewrite of recorded_w for a far Prolog routine.

:- mode recorded_w_w(+,?,-).

recorded_w(K,T,R):-
 key(K,Kref),
 nref(Kref,Nref),
 rec_w(Kref,Nref,R,T).

:- mode rec_w(+,+,-,?).

rec_w(K,K,_,_):-
 !,
 fail.
rec_w(K,R,R,T):-
 instance(R,T).
rec_w(K,R,Ro,T):-
 nref(R,Rn),
 rec_w(K,Rn,Ro,T).

append([], X, X).
append([H|T], L, [H|Newt]):-
 append(T, L, Newt).

member(X, [X | Y]):- !.
member(X, [Y | Z]):-
 member(X, Z).

split(Item, List, Front, Back):-
 append(Front, [Item|Back], List),
 !.

Building Expert Systems in Prolog 269

Windows — Windows (windows.pro)

remove(Item,List,NewList):-
 split(Item,List,Front,Back),
 append(Front,Back,NewList),
 !.

reverse(Forwards, Backwards):-
 rev(Forwards, [], Backwards),
 !.

rev([], B, B):- !.
rev([H|T], X, B):-
 rev(T, [H|X], B).

attr(black,0).
attr(blue,1).
attr(green,2).
attr(cyan,3).
attr(red,4).
attr(magenta,5).
attr(yellow,6).
attr(white,7).
attr(S:Fg:Bg, A):-
 attr(S:Fg, Af),
 attr(reverse:Bg, Ab),
 A is Af \/ Ab,
 !.
attr(bright:X,N):-
 attr(X,A),
 N is A \/ 8,!.
attr(reverse:X,N):-
 attr(X,A),
 rev_attr(A,N),
 !.
attr(Fg:Bg, A):-
 attr(Fg, Af),
 attr(reverse:Bg, Ab),
 A is Af \/ Ab,
 !.

rev_attr(At, Rat):-
 BG is (At /\ 7) << 4,
 FG is (At /\ 112) >> 4,
 A is At /\ 136,
 Rat is A \/ BG \/ FG.

% strip leading & trailing take the leading and trailing blanks
% off a string. The final test is due to the unforgiveable nature
% of list_text to return either strings or atoms at its will
%

strip_leading(Si,So):-
 string_length(Si,Li),
 ctr_set(0,0),
 repeat,
 ctr_inc(0,Pos),
 (Pos >= Li,
 atom_string('',So)
 ;
 nth_char(Pos,Si,Char),
 Char \== 32,
 Lo is Li - Pos,

270 Appendices - Full Source Code

Windows — Windows (windows.pro)

 substring(Si,Pos,Lo,So)
),
 !.

strip_trailing(Si,So):-
 string_length(Si,Li),
 Last is Li - 1,
 ctr_set(0,Last),
 repeat,
 ctr_dec(0,Pos),
 (Pos < 0, atom_string('',So)
 ;
 nth_char(Pos,Si,Char),
 Char \== 32,
 Lo is Pos + 1,
 substring(Si,0,Lo,So)
),
 !.

% flag setting predicates

get_flag(F,Val):-
 recorded_w(flag,F:Val,_).

set_flag(F,Val):-
 recorded_w(flag,F:_,Ref),
 replace(Ref,F:Val),
 !.
set_flag(F,Val):-
 recorda(flag,F:Val,_).

% wraps circularly around list

next_item(Item, List, NextItem):-
 split(Item, List, Front, Back),
 (first_item(Back,
 NextItem)
 ;
 first_item(Front, NextItem)
),
 !.

prev_item(Item, List, PrevItem):-
 split(Item, List, Front, Back),
 (last_item(Front, PrevItem)
 ;
 last_item(Back, PrevItem)
),
 !.

first_item([First|_],First):-
 true.

last_item([Last],Last):- !.
last_item([H|T],Last):-
 last_item(T,Last).

error(List):-
 tget(R,C),
 tscroll(0,(24,0),(24,79)),

Building Expert Systems in Prolog 271

Windows — Windows (windows.pro)

 tmove(24,0),
 write('*** Window Error *** '),
 err(List),
 tmove(R,C),
 !.

err([]).
err([H|T]):-
 write(H),
 tab(1),
 err(T).

272 Appendices - Full Source Code

G Rubik
Cube Solver (rubik.pro)

% RUBIK.PRO
% CUBE SOLVER II
% A Rubik's Cube Solver
% written by Dennis Merritt
% as described in Building Expert Systems in Prolog (Springer-Verlag)
% available from:
% Amzi! inc.
% 40 Samuel Prescott Dr.
% Stow, MA 01775 USA
% Tel 508/897-7332, FAX 508/897-2784
% e-mail amzi@world.std.com
%
% This program may be copied, modified and redistributed although proper
% acknowledgement is appreciated.
%
% This implementation was done with Cogent Prolog, also available
% from Amzi! inc.
%
% This is the main module which contains the predicates for
% the main control loop,
% manual mode,
% solve mode, and
% utility functions.
%
% Note - The Cogent/Prolog compiler supports modules. The export declarations
% are for predicates defined in the current module which may be used
% by other modules. The import declarations are for predicates
% defined in other modules.

:-export main/0.
:-export append/3.
:-export get_flag/2.
:-export set_flag/2.
:-export error/1.
:-export reverse/2.

:-import add_history/1. % rubhist
:-import cnd/2. % rubdata
:-import cube_print/1. % rubdisp
:-import get_color/1. % rubedit
:-import pristine/1. % rubdata
:-import rub_help/0. % rubhelp
:-import m_disp/1. % rubdisp
:-import m_choose/2. % rubdisp
:-import move/3. % rubmov
:-import orientation/2. % rubdata
:-import pln/2. % rubdata
:-import rdfield/2. % rubdisp
:-import rdchar/2. % rubdisp
:-import redit/1. % rubedit
:-import rewrite/2. % rubedit
:-import rot/3. % rubmov
:-import seq/2. % rubdata
:-import side_color/1. % rubdata
:-import s_r/2. % rubdata
:-import vw/2. % rubdata
:-import wrfield/2. % rubdisp
:-import writec/2. % rubdisp

Building Expert Systems in Prolog 273

Rubik — Cube Solver (rubik.pro)

:-import logfile/1. % dynamic db

% main menu choices. The cut after each ensures they wont be

 pristine(G), % Start with the goal state

:-import impplan/1. % dynamic db
:-import state/1. % dynamic db
:-import crit/1. % dynamic db
:-import ghoul/1. % dynamic db
:-import sidecolor/1. % dynamic db
:-import flag/2. % dynamic db
:-import cand/1. % dynamic db
:-import candmove/1. % dynamic db

:-op(500,xfy,:).

main :- % The start up entry point
 banner,
 go.

go:- % The main control loop
 repeat,
 init_color,
 m_disp(main), % The main menu
 m_choose(main,X), % Select an item
 do(X), % Execute it
 X == exit. % Go back to the repeat or end

% These are the predicates which are called for the various

% backtracked into when the main loop fails.

do(solve):- % in this module
 solve,
 !.
do(manual):- % in this module
 manual,
 !.
do(help):- % in rubhelp
 rub_help,
 !.
do(exit). % built-in predicate to exit

banner:-
 nl, nl,
 write($Cube Solver II$), nl,
 write($An illustrative Prolog program from$), nl,
 write($Building Expert Systems in Prolog (Springer-Verlag) by Dennis
Merritt$), nl,
 write($implemented in Cogent Prolog$), nl, nl,
 write($For more information contact:$), nl,
 write($Amzi! inc.$), nl,
 write($40 Samuel Prescott Dr.$), nl,
 write($Stow, MA 01775 USA$), nl,
 write($Tel 508/897-7332, FAX 508/897-2784$), nl,
 write($e-mail amzi@world.std.com$), nl, nl.

% These predicates initialize the state to the goal state (ghoul),
% and allow you to enter single moves. They are intended to demonstrate the
% effects of the various sequences used by the solve routines.

% They are also called by the solve routine if manual scrambling
% is requested

manual:-

 retractif(state(_)),

274 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

 assert(state(G)),
 cube_print(G), % Display it
 disp_moves, % List the possible moves
 repeat, % Start repeat-fail loop
 rdfield(move,M), % Get a move
 (M == q, % If '', clear and end
 nl,
 !
 ;
 state(S),
 man_move(M,S,S2), % Apply move to it
 retract(state(_)),
 assert(state(S2)),
 cube_print(S2),
 fail % Print it and fail back
).

man_move(M,S,S2):-
 movel(M,S,S2),
 !.
man_move(M,S,S2):- % Pop a + in front of an unsigned move
 movel(+M,S,S2),
 !.
man_move(M,_,_):-
 error('Unknown move'-M),
 !,
 fail.

% See rubdoc1 and rubdoc2 for the big picture

disp_moves:- % List the three types of moves
 wrfield(moves,''), % Heading
 move(X,_,_), % Will backtrack through all moves
 write(X),tab(1), % Write move
 fail. % Go back for the next one
disp_moves:-
 nl,
 wrfield(rotations,''), % No more moves, do the same for rots
 rot(X,_,_),
 write(X),tab(1),
 fail.
disp_moves:- % And again for seqs
 nl,
 wrfield(sequences,''),
 seq(X,_),
 write(X),tab(1),
 fail.
disp_moves:- % Got em all, end
 nl,
 wrfield(end_disp,'').

% This is the main body of the program, which actually solves the cube.

solve:-
 m_disp(solve), % solve submenu
 m_choose(solve,X),
 rdchar(stepmode,SM),
 (SM == `y´, % check for a y (scan code 21)
 set_flag(stepmode,on)
 ;
 set_flag(stepmode,off)
),
 solve(X). % call solve w/ arity one with menu choice

solve(X):-

Building Expert Systems in Prolog 275

Rubik — Cube Solver (rubik.pro)

 init_solve(X), % initialize all the stuff
 T1 is cputime,
 stages,
 T is cputime - T1,
 state(S),
 cube_print(S),
 write($Done time = $),
 write(T), nl, nl.
solve(X):-
 error('failing to solve'),
 halt. % something wrong, back to main

init_solve(X):-
 wrfield(prob,X),
 initialize(X), % getting closer to the real work
 !.

initialize(X):-
 pristine(G),
 retractall(ghoul(_)),
 assert(ghoul(G)),
 init_crit(Crit), % set up the initial criteria (all variables
 retractall(crit(_)),
 assert(crit(Crit)),
 retractall(stage(_)),
 assert(stage(1)), % the first stage will call the others
 !,
 initial(X). % get specific start state in the database

initial(random):- % create a new random cube
 random_cube(Cube),
 retractall(state(_)),
 assert(state(Cube)),
 !.
initial(edit):- % edit your own
 redit(Cube),
 retractall(state(_)),
 assert(state(Cube)),
 new_colors(Cube),
 !.
initial(manual):- % scramble your own
 manual,
 state(Cube),
 new_colors(Cube),
 !.

stages:-
 repeat,
 retract(stage(N)),
 init_stage(N,Plan), % Set the stage, get the plan
 state(S),
 cube_print(S),
 build_plan(Plan),
 improve(N,Plan), % Put the pieces in the plan in place
 vw(N,V), % undo the stage view (done by init_stage)
 undo_view(V),
 N2 is N + 1, % next stage
 assert(stage(N2)),
 N2 >= 7.

build_plan([]) :- !.
build_plan([H|T]) :-
 assert(impplan(H)),

276 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

 build_plan(T).

% init_stage goes to rubdata to get the table entries which define
% the heuristics for the stage

init_stage(N,Plan):- % return list of target pieces for this stage
 wrfield(stage,N),
 cnd(N,Cands), % set up candidate moves used by search
 build_cand(Cands),
 vw(N,V), % set up preferred view for stage
 set_view(V),
 pln(N,Plan), % get list of target pieces
 !.

% improve - works through the list of target pieces for the stage.
% it first checks to see if its already in place

improve(Stage,[]) :- !.
improve(Stage,[Piece|Rest]) :-
 impro(Stage,Piece),
 !,
 improve(Stage,Rest).

improve(Stage):-
 impplan(Piece),
 impro(Stage,Piece).

impro(Stage,Piece) :-
 add_criteria(Piece,Crit), % Add new piece to criteria
 target_loc(Piece,Pos,Orient), % Where is it
 impr(Orient,Stage,Pos,Piece),
 !.

impr(0,_,_,_) :- !. % In place and oriented
impr(_,Stage,Pos,Piece) :-
 imp(Stage,Pos,Piece).

% imp - getting into the real work

imp(Stage,Pos,Piece):-
 color_piece(PieceC,Piece), % translate side notation to
 wrfield(target,PieceC), % color notation for display
 heuristics(Stage,Pos), % See if special help is needed.
 orientation(Piece, View), % Preferred view for this piece.
 set_view(View),
 crit(Crit),
 state(State),
 cntr_set(4,0), % to limit wild searches
% gc(7),
 rotate(Moves,State,Crit), % Search for moves which transform
 retract(state(_)),
 assert(state(Crit)),
 wrfield(rot,Moves),
 add_history(Moves),
 undo_view(View),
 !.

heuristics(Stage,Pos):-
 (shift_right_1(Stage,Pos)
 ;
 shift_right_2(Stage,Pos)

Building Expert Systems in Prolog 277

Rubik — Cube Solver (rubik.pro)

),
 !.
heuristics(_,_):-
 true.

% The shift_right heuristics are used to avoid the situations where
% the piece is in one of the target positions for the stage, but the
% wrong one, or mis-oriented. By blindly moving it to the right the
% search is reduced since it doesn't have to search to move it both
% out of a critical target position and back into the correct one.

shift_right_1(1,Pos):-
 smember('L',Pos), % Is the target piece already on the left?
 s_r(Pos,Moves), % If so get the canned moves to move it
 change(Moves), % right for easy search.
 !.

shift_right_2(Stage,Pos):-
 Stage < 4, % If the target piece is not on the right
 notsmember('R',Pos), % side, get the canned moves to put it
 s_r(Pos,Moves), % there to allow easier search
 change(Moves),
 !.

% rotate - the real guts of the solution, all the rest of the code provides
% support for these six lines.

% These lines illustrate the power and obscurity of Prolog.
% Prolog can be very expressive when the main information is carried
% in the predicate. However, sometimes the work is being done by
% unification, and it is not at all apparent by reading the code.
% Furthermore, since Prolog predicates often work backwards and
% forwards, it is not clear in a given case what is intended to be
% be input, and what is the output, and, as in this case, what might
% be an in-out.

% The input and output states of rotate are:

% Input: Moves - unbound
% State - bound to the cube structure for the current state
% Crit - partially bound cube structure. the bound portions
% represent the pieces in place + the current goal piece

% Output: Moves - a list of moves
% State - same as input
% Crit - fully bound to the new state

% rotate does a breadth first search by recursively calling itself
% before it calls get_move which trys new moves. it does not save the
% search trees as most breadth first algorithms do, but rather recalculates
% the moves since they can be executed so fast.

% get_move fails when called with the partially bound Crit, unless
% it is a move which reaches the desired state. The failure causes
% backtracking. However when rotate calls itself, it gives it a
% fully unbound variable NextState. This call to rotate succeeds and
% keeps adding new moves generated by get_move on backtracking.

% eventually get_move finds a match and rotate succeeds.

rotate([], State, State). % start with a no move
rotate(Moves, State, Crit):- % nothing didn't work, get serious
 rotate(PriorMoves, State, NextState), % get something to build on
% cntr_inc(4,N4),
% check_prog(N4),

278 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

 get_move(ThisMove, NextState, Crit), % generate possible moves
 append(PriorMoves, [ThisMove], Moves). % build up the list

check_prog(N) :-
 N < 250,
 !.
check_prog(_) :-
 error('not converging'),
 halt.

% The following predicates all perform various useful services
% for the main predicates above. Some are declared export as well
% and are used by other modules

% add_criteria puts a new piece on the criteria structure. it works
% by creating two piece format lists, one of the goal state, and the
% other of the current criteria. It then walks through the two lists
% simultaneously looking for the target piece in the goal state.
% when it finds it it adds it to the criteria. Crit is unbound on entry

add_criteria(Piece,Crit):-
 crit(OldCrit),
 pieces(OldCrit, OldCritP),
 ghoul(Ghoul),
 pieces(Ghoul, GhoulP),
 add_crit(OldCritP, GhoulP, NewCritP, Piece),
 pieces(Crit, NewCritP),

 ini_col(SC).

 retract(crit(_)),
 assert(crit(Crit)),
 !.

add_crit([V1|V2], [V3|V4], [V3|V2], V5):-
 matches(V3, V5),
 !.
add_crit([V1|V2], [V3|V4], [V1|V5], V6):-
 !,
 add_crit(V2, V4, V5, V6).
add_crit(V1, V2, V3, V4):-
 error('something wrong with add_crit'),
 !.

% The center tiles dont move on the cube. Sooo if someone enters a cube
% with different color sides then we must find the new center tiles
% and map the new colors to the sides accordingly

new_colors(Cube):-
 rewrite(ColorCube,Cube),
 get_color(ColorCube),
 rewrite(ColorCube,NewCube),
 retract(state(_)),
 assert(state(NewCube)).

% Set up the initial mapping of sides to colors

init_color:-
 side_color(SC),
 retractall(sidecolor(_)),

ini_col([]):- !.
ini_col([S-C|T]):-
 assert(sidecolor(S-C)),

Building Expert Systems in Prolog 279

Rubik — Cube Solver (rubik.pro)

 ini_col(T).

% translate a piece in piece notation to color notation

color_piece(PieceC,Piece):-
 Piece=..[p|Args],
 col_p(ArgsC,Args),
 PieceC=..[p|ArgsC].

col_p([],[]):- !.
col_p([PC|RestC],[P|Rest]):-
 sidecolor(P-PC),
 col_p(RestC,Rest).

% execute about 50 or 60 random rotations to the goal cube. due to the
% random function, the random cubes will be the same from run to
% run. It always starts from the same seed.

random_cube(Cube):-
 ghoul(Start),
 rand_cub(Start,Cube,50).

rand_cub(Cube,Cube,0).
rand_cub(Now,Cube,N):-
 repeat,
 rand_move(M,RN),
 movel(M,Now,Next),
 NN is N - 1,
 !,
 rand_cub(Next,Cube,NN).

rand_move(M,RN):-
 RN is integer(random*12),
 arg(RN,m(+f,+b,+r,+l,+u,+d,-f,-b,-r,-l,-u,-d),M).

% the classic

member(V1, [V1|V2]):- !.
member(V1, [V2|V3]):-
 member(V1, V3).

% display a list of terms without the list notation

write_list([]):-
 true.
write_list([H|T]):-
 write(H),tab(1),
 write_list(T).

% target_loc finds the location of a given piece on the cube. it can
% also be used to find the piece at a given location. it returns the
% orientation as well, which is 0 if in place, or 1 if in place but
% twisted

target_loc(Piece, Pos, Orient):-
 ghoul(Gt),
 pieces(Gt, G),
 state(St),
 pieces(St, S),
 find_piece(G, S, Pos, Piece, Orient),

280 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

 !.
target_loc(Piece, _,_):-
 error('Failing to find piece'-Piece),
 fail.

% find_piece does the work for target_loc, walking two lists simultaneously
% looking for either the piece or the position, whichever is bound.

find_piece([Gh|Gt], [Sh|St], Pos, Piece, Orient):-
 matches(Pos, Gh),
 matches(Piece, Sh),
 comp(Gh,Sh,Orient),
 !.
find_piece([V1|V2], [V3|V4], V5, V6, Orient):-
 !,
 find_piece(V2, V4, V5, V6, Orient).

matches(V1, V2):-
 comp(V1, V2, V3),
 V3 < 2,
 !.

% comp returns 0 if direct hit, 1 if in place but twisted, and
% 2 if no match

comp(p(V1), p(V1), 0):- !.
comp(p(V1, V2), p(V1, V2), 0):- !.
comp(p(V1, V2), p(V2, V1), 1):- !.
comp(p(V1, V2, V3), p(V1, V2, V3), 0):- !.
comp(p(V1, V2, V3), p(V1, V3, V2), 1):- !.
comp(p(V1, V2, V3), p(V2, V1, V3), 1):- !.
comp(p(V1, V2, V3), p(V2, V3, V1), 1):- !.
comp(p(V1, V2, V3), p(V3, V1, V2), 1):- !.
comp(p(V1, V2, V3), p(V3, V2, V1), 1):- !.
comp(V1, V2, 2).

% allows easy handling of database entries used as flags

set_flag(Flag,Val):-
 retract(flag(Flag,_)),
 assert(flag(Flag,Val)),
 !.
set_flag(Flag,Val):-
 assert(flag(Flag,Val)).

get_flag(Flag,Val):-
 flag(Flag,Val).

% get_move is used by rotate to generate moves. the possible moves
% are stored in the database under the key cand. backtracking causes
% successive moves to be tried

get_move(+V1, V2, V3):-
 cand(V1),
 movep(V1, V2, V3).
get_move(-V1, V2, V3):-
 cand(V1),
 movep(V1, V3, V2).

% build_cand creates the database of possible moves for a given stage.
% this is one of the important heuristics for limiting the search

Building Expert Systems in Prolog 281

Rubik — Cube Solver (rubik.pro)

build_cand(V1):-
 retractall(cand(_)),
 retractall(candmove(_)),
 build_cands(V1),
 !.

build_cands([]):- !.
build_cands([V1|V2]):-
 can_seq(V1),
 assertz(cand(V1)),
 !,
 build_cands(V2).

can_seq(M):- % if the search move is a sequence
 seq(M,S), % precompute it, so it isn't constantly
 variable(X), % redone during search.
 move_list(S,X,Y),
 assertz(candmove(m(M,X,Y))),
 !.
can_seq(_).

% another classic

append([], V1, V1).
append([V1|V2], V3, [V1|V4]):-
 append(V2, V3, V4).

% apply a list of moves to a state

move_list([], V1, V1):- !.
move_list([Move|V3], V4, V5):-
 movel(Move, V4, V6),
 !,
 move_list(V3, V6, V5).

% movel is the basic move predicate called from everywhere

movel(+M, V2, V3):- % distinguish between clockwise
 movep(M, V2, V3),
 !.
movel(-M, V2, V3):- % and counter clockwise moves
 movep(M, V3, V2),
 !.

% find the move, be it a simple move, a rotation, or a sequence.
% if its a sequence break it into its simple componenents

movep(M, X, Y):-
 move(M, X, V3),
 !,
 Y = V3.
movep(M, X, Y):-
 rot(M, X, V3),
 !,
 Y = V3.
movep(M, X, Y):-
 candmove(m(M,X,V3)),
 !,
 Y = V3.
movep(V1, V2, V3):-
 seq(V1, V4),

282 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

 !,
 move_list(V4, V2, V3),
 !.
movep([V1|V2], V3, V4):-
 move_list([V1|V2], V3, V4),
 !.

% same as move_list, only print new state when done

move_listp(V1, V2, V3):-
 move_list(V1, V2, V3),
 wrfield(rot,V1).

% change is move_list for keeps.
% it takes the old value changes it, updates it,
% and records the history. it is called by the heuristic routines

change(ML):-
 retract(state(Old)),
 move_listp(ML,Old,New),
 add_history(ML),
 assert(state(New)),
 !.

% establish a new view. this means not just rotating the cube, but also
% rotating the criteria and the goal structures. this is necessary so
% any predicates working with any of the three winds up comparing
% apples and apples.

set_view([]):- !.
set_view(V):-
 retract(state(S1)),
 move_list(V, S1, S2),
 assert(state(S2)),
 retract(ghoul(G1)),
 move_list(V, G1, G2),
 assert(ghoul(G2)),
 retract(crit(C1)),
 move_list(V, C1, C2),
 assert(crit(C2)),
 wrfield(rot,V),
 add_history(V),
 !.

undo_view([]):- !.
undo_view(RV):-
 reverse(RV,V),
 set_view(V),
 !.

% convert a cube structure to a list of pieces and visa versa

pieces(cube(X1, X2, X3, X4, X5, X6,
 V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17,
 V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
 V28, V29, V30, V31, V32, V33, V34, V35, V36, V37,
 V38, V39, V40, V41, V42, V43, V44, V45, V46, V47,
 V48, V49, V50, V51, V52, V53, V54
),
 [p(X1), p(X2), p(X3), p(X4), p(X5), p(X6),
 p(V7, V8, V9), p(V10, V11, V12), p(V13, V14, V15),
 p(V16, V17, V18), p(V19, V20, V21), p(V22, V23, V24),
 p(V25, V26, V27), p(V28, V29, V30), p(V31, V32),

Building Expert Systems in Prolog 283

Rubik — Cube Solver (rubik.pro)

 p(V33, V34), p(V35, V36), p(V37, V38), p(V39, V40),
 p(V41, V42), p(V43, V44), p(V45, V46), p(V47, V48),
 p(V49, V50), p(V51, V52), p(V53, V54)
]
).

% get an unbound cube

variable(cube(X1, X2, X3, X4, X5, X6,
 V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17,
 V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
 V28, V29, V30, V31, V32, V33, V34, V35, V36, V37,
 V38, V39, V40, V41, V42, V43, V44, V45, V46, V47,
 V48, V49, V50, V51, V52, V53, V54
)
).

% the initial criteria, unbound except for the six center tiles

init_crit(cube('F', 'R', 'U', 'B', 'L', 'D',
 V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17,
 V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
 V28, V29, V30, V31, V32, V33, V34, V35, V36, V37,
 V38, V39, V40, V41, V42, V43, V44, V45, V46, V47,
 V48, V49, V50, V51, V52, V53, V54
)
).

notsmember(X,Y):-
 smember(X,Y),
 !,
 fail.
notsmember(X,Y):-
 true.

% like the classic, but works on a structure instead

smember(X,Y):-
 Y=..[Fun|Args],
 member(X,Args).

% display errors

error(X):-
 wrfield(error,X), nl,
 get1(_).

% reverse a list of moves, and flip the signs along the way

reverse(L, R) :-
 rever(L, [], R).

rever([], Z, Z).
rever([H|T], X, Z) :-
 flip_sign(H, FH),
 rever(T, [FH|X], Z).

flip_sign(+ X, - X):- !.
flip_sign(- X, + X):- !.

284 Appendices - Full Source Code

Rubik — Cube Solver (rubik.pro)

retractif(X) :-
 retract(X),
 !.
retractif(_).

Building Expert Systems in Prolog 285

Cube Display (rubdisp.pro)
% RUBDISP.PRO - Copyright (C) 1993, Amziod

% This file contains the display predicates.

:-export cube_print/1.
:-export wrfield/2, rdfield/2, rdchar/2.
:-export writec/2.
:-export color/1,color/2,color/3.
:-export m_disp/1,m_erase/1,m_choose/2.

:-import error/1. % rubik
:-import get_flag/2. % rubik
:-import sidecolor/1. % dynamic database

 V28, V29, V30, V31, V32, V33, V34, V35, V36, V37,

check_step.

 write(C), tab(1),

:- op(500,xfy,:).

% cube_print - displays the full color cube. Both variables and
% blanks appear as spaces. unification is again used
% to map the input cube to the individual displays

cube_print(cube(F, R, U, B, L, D,
 V7, V8, V9, V10, V11, V12, V13, V14, V15, V16, V17,
 V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,

 V38, V39, V40, V41, V42, V43, V44, V45, V46, V47,
 V48, V49, V50, V51, V52, V53, V54
)
) :-
 nl,
 tab(6), pc([V28, V45, V22]),
 tab(6), pc([V53, B, V51]),
 tab(6), pc([V25, V43, V19]),
 pc([V29, V54, V26, V27, V44, V21, V20, V52, V23]),
 pc([V37, L, V35, V36, U, V32, V31, R, V33]),
 pc([V17, V50, V14, V15, V40, V9, V8, V48, V11]),
 tab(6), pc([V13, V39, V7]),
 tab(6), pc([V49, F, V47]),
 tab(6), pc([V16, V41, V10]),
 tab(6), pc([V18, V42, V12]),
 tab(6), pc([V38, D, V34]),
 tab(6), pc([V30, V46, V24]),
 check_step,
 !.

check_step :-
 get_flag(stepmode, on),
 write($Hit Enter to continue$),
 get0(_).

pc([]):-
 nl.
pc([V1| V2]):-
 sidecolor(V1 - C),

% write(V1), tab(1),
 pc(V2).

% wrfield & rdfield - allow input and output to a named field

286 Appendices - Full Source Code

Rubik — Cube Display (rubdisp.pro)

wrfield(F,X):-
 field(F,P),
 write(P),
 write(X),
 nl.

field(prompt, $>$).

rdfield(F,X):-
 field(F,P),
 write(P),
 read(X).

rdchar(F,X):-
 field(F,P),
 write(P),
 get(X).

% field - these are the field definitions for the cube program

field(prob, $Problem: $).
field(stage, $\nStage: $).
field(target, $Target: $).
field(rot, $Rotation: $).
field(try, $Trying: $).

field(error, $Error: $).
field(done, $Done: $).
field(continue, $Hit Enter to continue.$).
field(stepmode, $Stepmode? (y/n): $).
field(history, $History? (y/n): $).
field(move, $Enter move\n(end with period, ex. u., -l., ct1., -tc3.) : $).
field(moves, $Moves: $).
field(rotations, $Rotations: $).
field(sequences, $Sequences: $).
field(end_disp, $Enter q. to end$).
field(msg20, $ $).
field(msg21, $ $).

m_disp(Menu):-
 menu(Menu, Choices),
 m_dis(1, Choices),
 !.

m_dis(_, []) :-
 nl.
m_dis(N, [H|T]) :-
 write($[$), write(N), write($]$),
 write(H), tab(1),
 NN is N + 1,
 m_dis(NN, T).

m_choose(Menu,Choice):-
 write($Choice: $),
 get(Nascii),
 N is Nascii - `0,
 menu(Menu, Choices),
 m_ch(N, Choices, Choice).

m_ch(N, [], _) :-
 write($Bad menu choice, try again$), nl,
 fail.
m_ch(1, [X|_], X) :- !.

Building Expert Systems in Prolog 287

Rubik — Cube Display (rubdisp.pro)

m_ch(N, [H|T], X) :-
 NN is N - 1,
 m_ch(NN, T, X).

menu(main, [solve, manual, help, exit]).
menu(solve, [random, manual, edit]).

288 Appendices - Full Source Code

Cube Entry (rubedit.pro)
% RUBEDIT.PRO - Copyright (C) 1994, Amzi! inc.

% This module allows the user to easily enter a scrambled
% cube position. the cube is displayed in goal form.
% the cursor keys move from tile to tile, and the f1 key
% selects the color for the tile. repeated hits of f1
% changes the color. f1 was chosen since that allows a
% machine with a pcmouse to do cube editing with the mouse and
% and the left button (f1) with no special changes.

:-export redit/1.
:-export set_tcolor/1.
:-export get_color/1.
:-export rewrite/2.

:-import cube_print/1. % rubdisp
:-import error/1. % rubik
:-import ghoul/1. % rubdata
:-import wrfield/2. % rubdisp
:-import sidecolor/1. % dynamic database

redit(Y):-
 ghoul(G),
 cube_print(G),
 write($Enter single letters separated by spaces in the pattern$), nl,
 write($of the display. The letters should represent the colors$), nl,
 write($on your cube. Exact spacing isn't critical.$), nl,
 read_cube(X), % read it off the screen
 trans_cube(X,Y), % change colors to side notation
 cube_print(Y).
redit(_):-
 error('failing edit'),
 halt.

% read_cube - reads the edited cube directly from the screen, there was
% no need to save information about colors during the cursor movement
% stage ("edi"). it was for this reason that "change_color" writes the
% letter of the color in the tile.

% read_cube looks exactly like print_cube, only in reverse

read_cube(cube(F, R, U, B, L, D,
 V7, V8, V9, V10, V11, V12, V13, V14, V15, V16,
 V17, V18, V19, V20, V21, V22, V23, V24, V25, V26,
 V27, V28, V29, V30, V31, V32, V33, V34, V35, V36,
 V37, V38, V39, V40, V41, V42, V43, V44, V45, V46,
 V47, V48, V49, V50, V51, V52, V53, V54
)
):-
 rc([V28, V45, V22]),
 rc([V53, B, V51]),
 rc([V25, V43, V19]),
 rc([V29, V54, V26, V27, V44, V21, V20, V52, V23]),
 rc([V37, L, V35, V36, U, V32, V31, R, V33]),
 rc([V17, V50, V14, V15, V40, V9, V8, V48, V11]),
 rc([V13, V39, V7]),
 rc([V49, F, V47]),
 rc([V16, V41, V10]),
 rc([V18, V42, V12]),
 rc([V38, D, V34]),
 rc([V30, V46, V24]),
 !.

Building Expert Systems in Prolog 289

Rubik — Cube Entry (rubedit.pro)

rc([]):- !.
rc([V1| V2]):-
 get(X),
 name(V1,[X]),
 !,
 rc(V2).

trans_cube(X,Y):-
 get_color(X), % establish new side colors
 rewrite(X,Y). % translate color notation to side notation

get_color(X):-
 X=..[cube,F,R,U,B,L,D|_], % the sides in color notation
 set_tcolor(['F'-F,'R'-R,'U'-U,'B'-B,'L'-L,'D'-D]).

rewrite(C,S):-
 var(S), % this one if color input and side output
 C=..[cube|Clist],
 rewrit(Clist,Slist),
 S=..[cube|Slist],
 !.
rewrite(C,S):-
 var(C), % this one if side input, and color out. It
 S=..[cube|Slist], % is called by the manual routine when building
 rewrit(Clist,Slist), % a cube to solve. Rotate moves might have been used
 C=..[cube|Clist], % which changed the side colors
 !.

rewrit([],[]):- !.
rewrit([X|Ctail],[Y|Stail]):-
 var(X),
 var(Y),
 !,
 rewrit(Ctail,Stail).
rewrit([Color|Ctail],[Side|Stail]):-
 sidecolor(Side-Color),
 !,
 rewrit(Ctail,Stail).

 set_tcolor(Tail).

set_tcolor([]):- !.
set_tcolor([S-C|Tail]):-
 retract(sidecolor(S-_)),
 assert(sidecolor(S-C)),
 !,

290 Appendices - Full Source Code

Move History (rubhist.pro)
% RUBHIST.PRO - Copyright (C) 1994, Amzi! inc.

% This module records history information so you can unscramble
% a real cube by looking at the log file.

:-export add_history/1.

:-import append/3. % rubik
:-import attr/2. % rubdisp
:-import clr_bottom/0. % rubik
:-import error/1. % rubik
:-import bug/1. % rubik
:-import get_flag/2. % rubik
:-import reverse/2. % rubik
:-import move/3. % rubmove
:-import rot/3. % rubmove
:-import seq/2. % rubdata
:-import wrfield/2. % rubdisp

% add_history takes a list of moves as input. As output it sends
% the expanded version of the moves to the logfile. That is, sequences
% are broken down into primitive moves before being written to the
% window

add_history(V1):-
 expand(V1, V2), % expand the list
 de_list(V2,V3), % remove inbedded lists (flatten the list)
 segment_list(V3,V4), % break into pieces that fit in window
 write_hist(V4),
 !.
add_history(X):-
 error([add_history,X]).

write_hist([]).
write_hist([FirstLine|Rest]) :-
 write(' Moves: '),
 wr_hist(FirstLine),
 nl,
 write_hist(Rest).

wr_hist([]).
wr_hist([H|T]) :-
 tab(2),
 write(H),
 wr_hist(T).

% expand pushes its way through a list of moves and sequences, making
% sequences into other move lists. It takes care to preserve the
% meaning of a counterclockwise sequence by reversing the list defining
% the sequence. This reverse also changes the sign of each term along
% the way. The first argument is the imput list, the second is output

expand([], []) :- !.
expand([Term|V3], [Term|V4]):-
 moveterm(Term, X), % strip the sign
 (move(X,_,_)
 ;
 rot(X,_,_) % its a primitive
),
 !,

Building Expert Systems in Prolog 291

Rubik — Move History (rubhist.pro)

 expand(V3, V4).
expand([Seq|V3], [Termlist|V5]):-
 moveterm(Seq,S), % we can guess its a sequence
 seq(S, SL),
 (signterm(Seq,-),
 reverse(SL,Sterms) % flip if necessary
 ;
 Sterms = SL
),
 expand(Sterms,Termlist), % double recursion, on this sequence
 !,
 expand(V3, V5). % ...and the rest of the list
expand(X,_):-
 error(['expand fails on',X]).

% separate the move and sign of a term, first arg is input, second output

moveterm(+ X, X) :- !.
moveterm(- X, X) :- !.

signterm(+ X, +) :- !.
signterm(- X, -) :- !.

% "expand" left imbedded lists where sequences used to be, flatten them
% out since they arn't necessary

de_list([], []) :- !.
de_list(V1, [V1]):-
 (V1 = +X
 ;
 V1 = -X
).
de_list([V1|V2], V3):-
 de_list(V1, V4), % double recursion on the head and tail
 de_list(V2, V5),
 append(V4, V5, V3).

% having flattened it, segment_list breaks a long list into smaller
% lists that will fit in the display window. This is because the
% window routine is too lazy to deal with lines that are too long

segment_list([A,B,C,D,E|Tin],[[A,B,C,D,E]|Tout]):-
 segment_list(Tin,Tout).
segment_list([],[]) :- !.
segment_list(L,[L]) :- !.

292 Appendices - Full Source Code

Moves and Rotations (rubmov.pro)
% RUBMOV.PRO - copyright (C) 1994, Amzi! inc.

% this file contains the definitions of all of the
% moves and rotations primitive to Rubik's Cube.

% Both moves and rotations are done using Prologs unification.
% The first argument is the name of the move or rotation, and the
% second and third arguments define transformations of the structure
% which represents the cube.

% By convention the moves are named by a single character which stands
% for the position of the side being turned. Rotations are used to
% reposition the entire cube (leaving the pieces in the same relative
% positions). They are named by the side which defines the axis
% of rotation, preceded by the letter r.

% (Why the funny variable names? This program was originally written
% in micro-Prolog (one of my favorites) with its parenthetical list
% notation. I then acquired Arity Prolog and wrote a translation
% program converted the micro-Prolog syntax to Edinburgh syntax.
% It did the dumb thing with variable names, and I've never bothered
% to fix many of them, such as these.)

% The sides are: u up, d down, l left, r right, f front, b back.

:- export move/3,rot/3.

move(u,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9, V10, V11, V12,
 V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23,
 V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34,
 V35, V36, V37, V38, V39, V40, V41, V42, V43, V44, V45,
 V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X2, X3, X4, X5, X6, V20, V19, V21, V10, V11,
 V12, V8, V7, V9, V16, V17, V18, V26, V25, V27, V22,
 V23, V24, V14, V13, V15, V28, V29, V30, V43, V44,
 V33, V34, V39, V40, V37, V38, V31, V32, V41, V42,
 V35, V36, V45, V46, V47, V48, V49, V50, V51, V52,
 V53, V54)
).
move(d,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17,
 V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42,
 V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V17, V16, V18, V13, V14, V15, V29, V28,
 V30, V19, V20, V21, V11,
 V10, V12, V25, V26, V27, V23, V22, V24, V31, V32,
 V41, V42, V35, V36, V45, V46, V39, V40, V37, V38, V43, V44, V33,
 V34, V47, V48, V49, V50, V51, V52, V53, V54)
).
move(r,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18,
 V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V30, V31,
 V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42, V43, V44,
 V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X2, X3, X4, X5, X6, V12, V11, V10, V24,
 V23, V22, V13, V14, V15, V16, V17, V18, V9,
 V8, V7, V21, V20, V19, V25, V26, V27, V28, V29, V30, V48, V47, V52,

Building Expert Systems in Prolog 293

Rubik — Moves and Rotations (rubmov.pro)

 V51, V35, V36, V37, V38, V39, V40, V41, V42, V43, V44, V45, V46,
 V34, V33, V49, V50, V32, V31, V53, V54)
).
move(l,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20,
 V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41,
 V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V27, V26, V25, V15, V14, V13, V19, V20, V21, V22, V23, V24,
 V30, V29, V28, V18, V17, V16, V31, V32, V33, V34, V54, V53,
 V50, V49, V39, V40, V41, V42, V43, V44, V45, V46, V47, V48,
 V36, V35, V51, V52, V38, V37)
).
move(f,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20,
 V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41,
 V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X2, X3, X4, X5, X6, V13, V15, V14, V7, V9, V8, V16, V18, V17,
 V10, V12, V11, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V49, V50, V47, V48,
 V43, V44, V45, V46, V39, V40, V41, V42, V51, V52, V53, V54)
).
move(b,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21,
 V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41,
 V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),

 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,

 V30, V29, V28, V9, V8, V7, V21, V20, V19, V15, V14, V13,

 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18, V22, V24, V23, V28,
 V30, V29, V19, V21, V20, V25, V27, V26, V31, V32, V33, V34, V35,
 V36, V37, V38, V39, V40, V41, V42, V51, V52, V53, V54, V47,
 V48, V49, V50, V45, V46, V43, V44)
).

rot(ru,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,
 V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21,
 V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42,
 V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X2, X4, X3, X5, X1, X6, V20, V19, V21, V23, V22,
 V24, V8, V7, V9, V11,
 V10, V12, V26, V25, V27, V29, V28,
 V30, V14, V13, V15, V17, V16, V18, V43, V44, V45, V46, V39,
 V40, V41, V42, V31, V32, V33, V34, V35, V36, V37, V38, V52,
 V51, V48, V47, V54, V53, V50, V49)
).
rot(rr,

 V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20,
 V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41,
 V42, V43, V44, V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X6, X2, X1, X3, X5, X4, V12, V11,
 V10, V24, V23, V22, V18, V17, V16,

 V27, V26, V25, V48, V47, V52, V51, V50, V49, V54, V53, V42,
 V41, V46, V45, V40, V39, V44, V43, V34, V33, V38, V37,
 V32, V31, V36, V35)
).
rot(rf,
 cube(X1, X2, X3, X4, X5, X6, V7, V8, V9,

294 Appendices - Full Source Code

Rubik — Moves and Rotations (rubmov.pro)

 V10, V11, V12, V13, V14, V15, V16, V17, V18,
 V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29,
 V30, V31,
 V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42, V43, V44,
 V45, V46, V47, V48, V49, V50, V51, V52, V53, V54),
 cube(X1, X3, X5, X4, X6, X2, V13, V15, V14, V7, V9, V8, V16, V18, V17,
 V10, V12, V11,
 V25, V27, V26, V19, V21, V20, V28,
 V30, V29, V22, V24, V23, V36,
 V35, V32, V31, V38, V37, V34, V33, V49, V50, V47, V48, V53, V54,
 V51, V52, V39, V40, V41, V42, V43, V44, V45, V46)
).

Building Expert Systems in Prolog 295

Rubik Help (rubhelp.pro)
% RUBHELP.PRO - Copyright (C) 1994, Amzi! inc.

% This is the help you get when you ask for help.

:- export rub_help/0.

rub_help:-

 write($ with the option (prompts)$), nl, nl,

 write($are labeled by the side they affect. The letters used are:$), nl,

 helpscreen(_),
 nl, write($[more - hit any key to continue]$),
 get1(_),
 fail.
rub_help.

helpscreen(intro):-
 write($INTRODUCTION$), nl, nl,
 write($The cube solver will generate a sequence of moves that will$), nl,
 write($solve any given cube (if solvable). See rubdoc1.txt for$), nl,
 write($notes on the method.$), nl, nl.
helpscreen('menu options'):-
 write($MAIN MENU OPTIONS$), nl, nl,
 write($Solve - solves three types of cubes (from submenu)$), nl, nl,
 write($ random - generate a random cube to solve$), nl,
 write($ manual - allows you to scramble your own$), nl,
 write($ edit - allows you to describe a real cube$), nl, nl,

 write($ stepmode - stops after each sequence (useful if$), nl,
 write($ solving a real cube)$), nl,
 write($Manual - allows manipulation of cube (useful to see the$), nl,
 write($ effects of all the legal moves)$), nl, nl,
 write($Help - this stuff$), nl, nl,
 write($Exit - return to dos$), nl.
helpscreen(notation):-
 write($NOTES ON NOTATION$), nl, nl,
 write($The cube is unfolded so all six sides are visible. All moves$), nl,

 nl,
 write($ B - back$), nl,
 write($ L - left U - up R - right$), nl,
 write($ F - front$), nl,
 write($ D - down$), nl, nl,
 write($Directions - + clockwise, - counterclockwise$), nl, nl,
 write($Pieces are referred to by color. The colors are:$), nl, nl,
 write($ W - white, G - green, B - blue, Y - yellow,$), nl,
 write($ R - red (PC magenta), O - orange (PC red) $), nl, nl,
 write($Moves - three types$), nl, nl,
 write($ Side moves - represented by single side letter, ex +r$), nl,
 write($ Rotations - rotate entire cube, preface side with r$), nl,
 write($ ex. -ru, +rr (used to exploit symmetry)$), nl,
 write($ Sequences - sequence of moves by name ex. +ct1$), nl.
helpscreen('solve display'):-
 write($SOLVE DISPLAY FIELDS$), nl, nl,
 write($Stage - the current stage (see rubdoc1.txt)$), nl, nl,
 write($Target - the piece being solved for$), nl, nl,
 write($Trying - the n-1 nodes of the breadth first search$), nl, nl,
 write($Rotation - the chosen sequence of moves for the current goal$), nl,
 nl,
 write($Hit any key to end$).

296 Appendices - Full Source Code

Rubik Data (rubdata.pro)
% RUBDATA.PRO - Copyright (C) 1994, Amzi! inc.

% This file contains all the data needed to drive
% the main cube solving predicates.

:-export seq/2, s_r/2, orientation/2.
:-export cnd/2, pln/2, vw/2.
:-export pristine/1.
:-export side_color/1.

% the sequences of moves used to perform special transformations
% such as twisting the corners without moving anything else

seq(s, [+rr, -r, +l]).
seq(tc1, [-l, +u, +r, -u, +l, +u, -r, -u]).
seq(tc1u2, [+ru, +ru, +tc1, -ru, -ru]).
seq(tc3, [+r, -u, -l, +u, -r, -u, +l, +u]).
seq(ct1, [-r, +d, +r, +f, +d, -f, -u, +f,
 -d, -f, -r, -d, +r, +u]).
seq(ct3, [-r, +d, +r, +f, +d, -f, +u, +u,
 +f, -d, -f, -r, -d, +r, +u, +u]).
seq(ef1, [-u, +f, -r, +u, -f, -s, +f, -u,
 +r, -f, +u, +s]).
seq(ef2, [+l, +f, -u, +f, -r, +u, -f, -s,
 +f, -u, +r, -f, +u, +s, -f, -l]).
seq(et1, [+f, +f, +r, +r, +f, +f, +r, +r,
 +f, +f, +r, +r]).
seq(h, [+l, +f, +u, -f, -u, -l]).
seq(g, [-r, -f, -u, +f, +u, +r]).
seq(pt, [+ru, +ru]).
seq(mr2a, [+r, +f, -r, -f]).
seq(mr2b, [-r, -u, +r, +u]).
seq(mr3a, [-u, +r, +u]).
seq(mr3b, [+f, -r, -f]).

% cnd defines the moves which will be used in a given stage for search

cnd(1, [r, u, f]).
cnd(2, [r, mr2a, mr2b]).
cnd(3, [r, mr3a, mr3b]).
cnd(4, [r, tc1u2, ct1]).
cnd(5, [u, h, g, ef1, ef2]).
cnd(6, [u, tc1, tc3, ct1, ct3]).

% s_r is used by the shift_right heuristics. it lists the move sequence
% needed to move a piece which is not on the right, to the right. the
% first arguement is the position the piece is at

s_r(p('F','L','U'), [-mr2a]).
s_r(p('F','L','D'), [+rr, -mr2a, -rr]).
s_r(p('B','L','U'), [-rr, -mr2a, +rr]).
s_r(p('B','L','D'), [+rr, +rr, -mr2a, -rr, -rr]).
s_r(p('F','U'), [-mr3a]).
s_r(p('F','D'), [+s, -mr3a, -s]).
s_r(p('B','U'), [-s, -mr3a, +s]).
s_r(p('B','D'), [+s, +s, -mr3a, -s, -s]).
s_r(p('L','U'), [+u, +u]).
s_r(p('F','L'), [+f, +f]).
s_r(p('L','D'), [+d, +d]).
s_r(p('B','L'), [+b, +b]).

Building Expert Systems in Prolog 297

Rubik — Rubik Data (rubdata.pro)

% orientation defines the rotation moves necessary to position the
% cube to take advantage of symmetry for each piece

orientation(p('F','L','U'), []).
orientation(p('F','L','D'), [+rr]).
orientation(p('B','L','U'), [-rr]).
orientation(p('B','L','D'), [+rr, +rr]).
orientation(p('F','U'), []).
orientation(p('F','D'), [+s]).
orientation(p('B','U'), [-s]).
orientation(p('B','D'), [+s, +s]).
orientation(p('L','U'), []).
orientation(p('F','L'), [+rr]).
orientation(p('L','D'), [+rr, +rr]).
orientation(p('B','L'), [-rr]).
orientation(_, []).

% pln lists the target pieces for each stage

pln(1, [p('L','U'),p('F','L'),p('L','D'),p('B','L')]).
pln(2, [p('B','L','D'),p('F','L','D'),p('B','L','U')]).
pln(3, [p('F','U'),p('F','D'),p('B','U'),p('B','D')]).
pln(4, [p('F','L','U')]).
pln(5, [p('R','U'),p('F','R'),p('R','D'),p('B','R')]).
pln(6, [p('F','R','U'),p('B','R','U'),p('B','R','D'),p('F','R','D')]).

% vw defines the preferred orientation for a stage

vw(5, [-rf]).
vw(6, [-rf]).
vw(_, []).

% this is the pristine state

pristine(cube('F','R','U','B','L','D',
 'F','R','U','F','R','D','F','L','U','F','L','D','B','R','U','B','R','D',
 'B','L','U','B','L','D','R','U','R','D','L',
 'U','L','D','F','U','F','D','B','U',
 'B','D','F','R','F','L','B','R','B','L')).

% the initial mapping of sides and colors

side_color(['F'-'G', 'R'-'R', 'U'-'W', 'B'-'Y', 'L'-'O', 'D'-'B']).

298 Appendices - Full Source Code

	Cover Page
	Preface
	Acknowledgements
	Table of Contents
	Introduction
	Expert Systems
	Expert System Features
	Goal-Driven Reasoning
	Uncertainty
	Data Driven Reasoning
	Data Representation
	User Interface
	Explanations

	Sample Applications
	Prolog
	Assumptions

	Using Prolog's Inference Engine
	The Bird Identification System
	Rule formats
	Rules about birds
	Rules for hierarchical relationships
	Rules for other relationships

	User Interface
	Attribute Value pairs
	Asking the user
	Remembering the answer
	Multi-valued answers
	Menus for the user
	Other enhancements

	A Simple Shell
	Command loop
	A tool for non-programmers

	Summary
	Exercises

	Backward Chaining with Uncertainty
	Certainty Factors
	An Example
	Rule Uncertainty
	User Uncertainty
	Combining Certainties
	Properties of Certainty Factors

	MYCINs Certainty Factors
	Determining Premise CF
	Combining Premise CF and Conclusion CF
	Premise Threshold CF
	Combining CFs

	Rule Format
	The Inference Engine
	Working Storage
	Find a Value for an Attribute
	Attribute Value Already Known
	Ask User for Attribute Value
	Deduce Attribute Value from Rules
	Negation

	Making the Shell
	Starting the Inference

	English-like Rules
	Exercises

	Explanation
	Value of Explanations to the User
	Value of Explanations to the Developer
	Types of Explanation
	Explanation in Clam
	Tracing
	How Explanations
	Why Questions

	Native Prolog Systems
	Exercises

	Forward Chaining
	Production Systems
	Using Oops
	Implementation
	Explanations for Oops
	Enhancements
	Rule Selection
	Generating the conflict set
	Time stamps

	LEX
	Changes in the Rules
	Implementing LEX

	MEA
	Exercises

	Frames
	The Code
	Data Structure
	The Manipulation Predicates
	Using Frames
	Summary
	Exercises

	Integration
	Foops (Frames and Oops)
	Instances
	Rules for frinsts
	Adding Prolog to Foops

	Room Configuration
	Furniture frames
	Frame Demons
	Initial Data
	Input Data
	The Rules
	Output Data

	A Sample Run
	Summary
	Exercises

	Performance
	Backward Chaining Indexes
	Rete Match Algorithm
	Network Nodes
	Network Propagation
	Example of Network Propagation
	Performance Improvements

	The Rete Graph Data Structures
	Propagating Tokens
	The Rule Compiler
	Integration with Foops
	Design Tradeoffs
	Exercises

	User Interface
	Object Oriented Window Interface
	Developer's Interface to Windows
	High-Level Window Implementation
	Message Passing
	Inheritance

	Low-Level Window Implementation
	Exercises

	Two Hybrids
	CVGEN
	The Knowledge Base
	Rule for parameters
	Rules for derived information
	Questions for the user
	Default rules
	Rules for edits
	Static information

	Inference Engine
	Explanations
	Environment
	AIJMP
	Summary
	Exercises

	Prototyping
	The Problem
	The Sales Advisor Knowledge Base
	Qualifying
	Objectives - Benefits - Features
	Situation Analysis
	Competitive Analysis
	Miscellaneous Advice
	User Queries

	The Inference Engine
	User Interface
	Summary
	Exercises

	Rubik's Cube
	The Problem
	The Cube
	Rotation
	High Level Rules
	Improving the State
	The Search
	More Heuristics
	User Interface
	On the Limits of Machines
	Exercises

	Appendices - Full Source Code
	Native
	Birds Knowledgebase (birds.nkb)
	Native Shell (native.pro)

	Clam
	Car Knowledgebase (car.ckb)
	Birds Knowledgebase (birds.ckb)
	Clam Shell (clam.pro)
	Build Rules (bldrules.pro)

	Oops
	Room Knowledgebase (room.okb)
	Animal Knowledgebase (animal.okb)
	Oops Interpreter (oops.pro)

	Foops
	Room Knowledgebase (room.fkb)
	Foops (foops.pro)

	Rete-Foops
	Room Knowledgebase (room.rkb)
	Rete Compiler (retepred.pro)
	Rete Runtime (retefoop.pro)

	Windows
	Windows Demonstration (windemo.pro)
	Windows (windows.pro)

	Rubik
	Cube Solver (rubik.pro)
	Cube Display (rubdisp.pro)
	Cube Entry (rubedit.pro)
	Move History (rubhist.pro)
	Moves and Rotations (rubmov.pro)
	Rubik Help (rubhelp.pro)
	Rubik Data (rubdata.pro)

