
Computational Complexity�

A Conceptual Perspective

Oded Goldreich

Department of Computer Science and Applied Mathematics

Weizmann Institute of Science� Rehovot� Israel�

December ��� ����

I

to Dana

c�Copyright ���� by Oded Goldreich�

Permission to make copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for pro�t or com�

mercial advantage and that new copies bear this notice and the full citation on the �rst

page� Abstracting with credit is permitted�

II

Preface

The strive for e�ciency is ancient and universal� as time and other resources are
always in shortage� Thus� the question of which tasks can be performed e�ciently
is central to the human experience�

A key step towards the systematic study of the aforementioned question is a
rigorous de�nition of the notion of a task and of procedures for solving tasks� These
de�nitions were provided by computability theory� which emerged in the ���	
s�
This theory focuses on computational tasks� and considers automated procedures
�i�e�� computing devices and algorithms� that may solve such tasks�

In focusing attention on computational tasks and algorithms� computability
theory has set the stage for the study of the computational resources �like time� that
are required by such algorithms� When this study focuses on the resources that are
necessary for any algorithm that solves a particular task �or a task of a particular
type�� the study becomes part of the theory of Computational Complexity �also
known as Complexity Theory���

Complexity Theory is a central �eld of the theoretical foundations of Computer
Science� It is concerned with the study of the intrinsic complexity of computational
tasks� That is� a typical Complexity theoretic study looks at the computational re
sources required to solve a computational task �or a class of such tasks�� rather than
at a speci�c algorithm or an algorithmic schema� Actually� research in Complexity
Theory tends to start with and focus on the computational resources themselves�
and addresses the e�ect of limiting these resources on the class of tasks that can be
solved� Thus� Computational Complexity is the study of the what can be achieved
within limited time �and�or other limited natural computational resources��

The �halfcentury� history of Complexity Theory has witnessed two main re
search e�orts �or directions�� The �rst direction is aimed towards actually estab
lishing concrete lower bounds on the complexity of computational problems� via
an analysis of the evolution of the process of computation� Thus� in a sense� the
heart of this direction is a �lowlevel� analysis of computation� Most research in
circuit complexity and in proof complexity falls within this category� In contrast� a

�In contrast� when the focus is on the design and analysis of speci�c algorithms �rather than
on the intrinsic complexity of the task�� the study becomes part of a related sub�eld that may
be called Algorithmic Design and Analysis� Furthermore� Algorithmic Design and Analysis tends
to be sub�divided according to the domain of mathematics� science and engineering in which the
computational tasks arise� In contrast� Complexity Theory typically maintains a unity of the
study of tasks solveable within certain resources �regardless of the origins of these tasks��

III

IV

second research e�ort is aimed at exploring the connections among computational
problems and notions� without being able to provide absolute statements regarding
the individual problems or notions� This e�ort may be viewed as a �highlevel�
study of computation� The theory of NPcompleteness as well as the studies of
approximation� probabilistic proof systems� pseudorandomness and cryptography
all fall within this category�

The current book focuses on the latter e�ort �or direction�� We list several
reasons for our decision to focus on the �highlevel� direction� The �rst is the great
conceptual signi�cance of the known results� that is� many known results �as well as
open problems� in this direction have an extremely appealing conceptual message�
which can also be appreciated by nonexperts� Furthermore� these conceptual
aspects may be explained without entering excessive technical detail� Consequently�
the �highlevel� direction is more suitable for an exposition in a book of the current
nature� Finally� there is a subjective reason� the �highlevel� direction is within
our own expertise� while this cannot be said about the �lowlevel� direction�

The last paragraph brings us to a discussion of the nature of the current book�
which is captured by the subtitle �i�e�� �a conceptual perspective��� Our main
thesis is that complexity theory is extremely rich in conceptual content� and that
this contents should be explicitly communicated in expositions and courses on the
subject� The desire to provide a corresponding textbook is indeed the motivation
for writing the current book and its main governing principle�

This book o�ers a conceptual perspective on complexity theory� and the pre
sentation is designed to highlight this perspective� It is intended to serve as an
introduction to Computational Complexity that can be used either as a textbook
or for selfstudy� Indeed� the book
s primary target audience consists of students
that wish to learn complexity theory and educators that intend to teach a course
on complexity theory� The book is also intended to promote interest in complexity
theory and make it acccessible to general readers with adequate background �which
is mainly being comfortable with abstract discussions� de�nitions and proofs�� We
expect most readers to have a basic knowledge of algorithms� or at least be fairly
comfortable with the notion of an algorithm�

The book focuses on several subareas of complexity theory �see the following
organization and chapter summaries�� In each case� the exposition starts from the
intuitive questions addresses by the subarea� as embodied in the concepts that it
studies� The exposition discusses the fundamental importance of these questions�
the choices made in the actual formulation of these questions and notions� the
approaches that underly the answers� and the ideas that are embedded in these
answers� Our view is that these ��nontechnical�� aspects are the core of the �eld�
and the presentation attempts to re�ect this view�

We note that being guided by the conceptual contents of the material leads� in
some cases� to technical simpli�cations� Indeed� for many of the results presented
in this book� the presentation of the proof is di�erent �and arguably easier to
understand� than the standard presentations�

Organization and Chapter

Summaries

This book consists of ten chapters and seven appendices� The chapters constitute
the core of this book and are written in a style adequate for a textbook� whereas the
appendices provide additional perspective and are written in the style of a survey
article� The relative length and ordering of the chapters �and appendices� does not
re�ect their relative importance� but rather an attempt at the best logical order
�i�e�� minimizing the number of forward pointers��

Following are brief summaries of the book
s chapters and appendices� Theses
summaries are more detailed than those provided in Section ����� but less detailed
than the summaries provided at the beginning of each chapter�

Chapter �� Introduction and Preliminaries� The introduction provides a
highlevel overview of some of the content of complexity theory as well as a discus
sion of some of the characteristic features of this �eld� The preliminaries provide
the relevant background on computability theory� which is the setting in which
complexity theoretic questions are being studied� Most importantly� central no
tions such as search and decision problems� algorithms that solve such problems�
and their complexity are de�ned� In addition� this part presents the basic notions
underlying nonuniform models of computation �like Boolean circuits��

Chapter �� P� NP and NP�completeness� The PvsNP Question can be
phrased as asking whether or not �nding solutions is harder than checking the
correctness of solutions� An alternative formulation in terms of decision problems
asks whether or not discovering proofs is harder than verifying their correctness�
that is� is proving harder than verifying� It is widely believed that the answer
to the two equivalent formulation is that �nding �resp�� proving� is harder than
checking �resp�� verifying�� that is� that P is di�erent from NP� At present� when
faced with a hard problem in NP� we can only hope to prove that it is not in P
assuming that NP is di�erent from P� This is where the theory of NPcompleteness�
which is based on the notion of a reduction� comes into the picture� In general�
one computational problem is reducible to another problem if it is possible to
e�ciently solve the former when provided with an �e�cient� algorithm for solving
the latter� A problem �in NP� is NPcomplete if any problem in NP is reducible

V

VI

to it� Amazingly enough� NPcomplete problems exist� and furthermore hundreds
of natural computational problems arising in many di�erent areas of mathematics
and science are NPcomplete�

Chapter �� Variations on P and NP� Nonuniform polynomialtime �P�poly�
captures e�cient computations that are carried out by devices that handle speci�c
input lengths� The basic formalism ignores the complexity of constructing such de
vices �i�e�� a uniformity condition�� but a �ner formalism �based on �machines that
take advice�� allows to quantify the amount of nonuniformity� The Polynomial
time Hierarchy �PH� generalizes NP by considering statements expressed by a
quanti�ed Boolean formula with a �xed number of alternations of existential and
universal quanti�ers� It is widely believed that each quanti�er alternation adds ex
pressive power to the class of such formulae� The two di�erent classes are related
by showing that if NP is contained in P�poly then the Polynomialtime Hierarchy
collapses to its second level�

Chapter 	� More Resources� More Power
 When using �nice� functions to
determine the algorithm
s resources� it is indeed the case that more resources allow
for more tasks to be performed� However� when �ugly� functions are used for the
same purpose� increasing the resources may have no e�ect� By nice functions we
mean functions that can be computed without exceeding the amount of resources
that they specify� Thus� we get results asserting� for example� that there are
problems that are solvable in cubictime but not in quadratictime� In the case of
nonuniform models of computation� the issue of �nicety� does not arise� and it is
easy to establish separations results�

Chapter �� Space Complexity� This chapter is devoted to the study of the
space complexity of computations� while focusing on two rather extreme cases�
The �rst case is that of algorithms having logarithmic space complexity� which
seem a proper and natural subset of the set of polynomialtime algorithms� The
second case is that of algorithms having polynomial space complexity� which in turn
can solve almost all computational problems considered in this book� Among the
results presented in this chapter are a logspace algorithm for exploring �undirected�
graphs� a nondeterministic logspace procedure for recognizing directed graphs
that are not strongly connected� and complete problems for NL and PSPACE
�under logspace and polynomialtime reductions� respectively��

Chapter �� Randomness and Counting� Various failure types of probabilis
tic polynomialtime algorithms give rise to complexity classes such as BPP� RP �
and ZPP� The results presented include the emulation of probabilistic choices by
nonuniform advice �i�e�� BPP � P�poly� and the emulation of twosided prob
abilistic error by an ��sequence of quanti�ers �i�e�� BPP � ���� Turning to
counting problems �i�e�� counting the number of solutions for NPtype problems��
we distinguish between exact counting and approximate counting �in the sense of

VII

relative approximation�� While any problem in PH is reducible to the exact count
ing class �P� approximate counting �for �P� is �probabilisticly� reducible to NP �
Additional related topics include �Pcompleteness� the complexity of searching for
unique solutions� and the relation between approximate counting and generating
almost uniformly distributed solutions�

Chapter � The Bright Side of Hardness� It turns out that hard problem can
be �put to work� to our bene�t� most notably in cryptography� One key issue that
arises in this context is bridging the gap between �occasional� hardness �e�g�� worst
case hardness or mild averagecase hardness� and �typical� hardness �i�e�� strong
averagecase hardness�� We consider two conjectures that are related to P �� NP �
The �rst conjecture is that there are problems that are solvable in exponential
time but are not solvable by �nonuniform� families of small �say polynomialsize�
circuits� We show that these types of worstcase conjectures can be transformed
into averagecase hardness results that yield nontrivial derandomizations of BPP
�and even BPP � P�� The second conjecture is that there are problems in NP
for which it is easy to generate �solved� instances that are hard to solve for other
people� This conjecture is captured in the notion of one�way functions� which are
functions that are easy to evaluate but hard to invert �in an averagecase sense�� We
show that functions that are hard to invert in a relatively mild averagecase sense
yield functions that are hard to invert almost everywhere� and that the latter yield
predicates that are very hard to approximate �called hard�core predicates�� The
latter are useful for the construction of generalpurpose pseudorandom generators
as well as for a host of cryptographic applications�

Chapter �� Pseudorandom Generators� A fresh view at the question of ran�
domness was taken in the theory of computing� It has been postulated that a
distribution is pseudorandom if it cannot be told apart from the uniform distri
bution by any e�cient procedure� The paradigm� originally associating e�cient
procedures with polynomialtime algorithms� has been applied also with respect
to a variety of limited classes of such distinguishing procedures� The archetypical
case of pseudorandom generators refers to e�cient generators that fool any feasible
procedure� that is� the potential distinguisher is any probabilistic polynomialtime
algorithm� which may be more complex than the generator itself� These generators
are called generalpurpose� because their output can be safely used in any e�cient
application� In contrast� for purposes of derandomization� one may use pseudoran
dom generators that are somewhat more complex than the potential distinguisher
�which represents the algorithm to be derandomized�� Following this approach and
using various hardness assumptions� one may obtain corresponding derandomiza
tions of BPP �including a full derandomization� i�e�� BPP � P�� Other forms of
pseudorandom generators include ones that fool spacebounded distinguishers� and
even weaker ones that only exhibit some limited random behavior �e�g�� outputting
a pairwise independent sequence��

VIII

Chapter �� Probabilistic Proof Systems� Randomized and interactive veri
�cation procedures� giving rise to interactive proof systems� seem much more pow
erful than their deterministic counterparts� In particular� interactive proof systems
exist for any set in PSPACE � coNP �e�g�� for the set of unsatis�ed proposi
tional formulae�� whereas it is widely believed that some sets in coNP do not
have NPproof systems� Interactive proofs allow the meaningful conceptualization
of zero�knowledge proofs� which are interactive proofs that yield nothing �to the
veri�er� beyond the fact that the assertion is indeed valid� Under reasonable com
plexity assumptions� every set in NP has a zeroknowledge proof system� �This
result has many applications in cryptography�� A third type of probabilistic proof
systems is the model of PCPs� standing for probabilistically checkable proofs� These
are �redundant� NPproofs that o�ers a tradeo� between the number of locations
�randomly� examined in the proof and the con�dence in its validity� In particular�
a small constant error probability can be obtained by reading a constant number
of bits in the redundant NPproof� The PCP Theorem asserts that NPproofs can
be e�ciently transformed into PCPs� The study of PCPs is closely related to the
study of the complexity of approximation problems�

Chapter ��� Relaxing the Requirement� In light of the apparent infeasibility
of solving numerous useful computational problems� it is natural to seek relaxations
of these problems that remain useful for the original applications and yet allow
for feasible solving procedures� Two such types of relaxations are provided by
adequate notions of approximation and a theory of averagecase complexity� The
notions of approximation refer to the computational problems themselves� that
is� for each problem instance we extend the set of admissible solutions� In the
context of search problems this means settling for solutions that have a value
that is �su�ciently close� to the value of the optimal solution� whereas in the
context of decision problems this means settling for procedures that distinguish
yesinstances from instances that are �far� from any yesinstance� Turning to
averagecase complexity� we note that a systematic study of this notion requires
the development of a nontrivial conceptual framework� A major aspect of this
framework is limiting the class of distributions in a way that� on one hand� allows
for various types of natural distributions and� on the other hand� prevents the
collapse of averagecase hardness to worstcase hardness�

Appendix A� Glossary of Complexity Classes� The glossary provides self
contained de�nitions of most complexity classes mentioned in the book� The glos
sary is partitioned into two parts� dealing separately with complexity classes that
are de�ned in terms of algorithms and their resources �i�e�� time and space com
plexity of Turing machines� and complexity classes de�ned in terms of nonuniform
circuit �and referring to their size and depth�� The following classes are de�ned�
P � NP � coNP � BPP� RP � coRP � ZPP� �P � PH� E � EXP � NEXP � L� NL� RL�
PSPACE � P�poly� NCk� and ACk�

IX

Appendix B� On the Quest for Lower Bounds� This appendix surveys some
attempts at proving lower bounds on the complexity of natural computational prob
lems� The �rst part� devoted to Circuit Complexity� reviews lower bounds for the
size of �restricted� circuits that solve natural computational problems� This repre
sents a program whose longterm goal is proving that P �� NP � The second part�
devoted to Proof Complexity� reviews lower bounds on the length of �restricted�
propositional proofs of natural tautologies� This represents a program whose long
term goal is proving that NP �� coNP �

Appendix C� On the Foundations of Modern Cryptography� This ap
pendix surveys the foundations of cryptography� which are the paradigms� ap
proaches and techniques used to conceptualize� de�ne and provide solutions to
natural security concerns� It presents some of these conceptual tools as well as
some of the fundamental results obtained using them� The appendix augments
the partial treatment of oneway functions� pseudorandom generators� and zero
knowledge proofs �which is included in Chapters ����� Using these basic tools� the
appendix provides a treatment of basic cryptographic applications such as Encryp
tion� Signatures� and General Cryptographic Protocols�

Appendix D� Probabilistic Preliminaries and Advanced Topics in Ran�
domization� The probabilistic preliminaries include conventions regarding ran
dom variables and overviews of three useful inequalities �i�e�� Markov Inequality�
Chebyshev
s Inequality� and Cherno� Bound�� The advanced topics include con
structions and lemmas regarding families of hashing functions� a study of the sam
ple and randomness complexities of estimating the average value of an arbitrary
function� and the problem of randomness extraction �i�e�� procedures for extracting
almost perfect randomness from sources of weak or defected randomness��

Appendix E� Explicit Constructions� Complexity theory provides a clear
perspective on the intuitive notion of an explicit construction� This perspective is
demonstrated with respect to error correcting codes and expander graphs� On the
topic of codes� the appendix focuses on various computational aspects� containing
a review of several popular constructions as well as a construction of a binary code
of constant rate and constant relative distance� Also included are a brief review
of the notions of locally testable and locally decodable codes� and a useful upper
bound on the number of codewords that are close to any single word� Turning
to expander graphs� the appendix contains a review of two standard de�nitions of
expanders� two levels of explicitness� two properties of expanders that are related to
�singlestep and multistep� random walks on them� and two explicit constructions
of expander graphs�

Appendix F� Some Omitted Proofs� This appendix contains some proofs that
were not included in the main text �for a variety of reasons� and still are bene�cial
as alternatives to the original and�or standard presentations� Included are proofs

X

that PH is reducible to �P via randomized Karpreductions� and that IP�f� �
AM�O�f�� � AM�f�� for any function f such that f�n� � f�� ���� poly�n�g�

Appendix G� Some Computational Problems� This appendix includes def
initions of most of the speci�c computational problems that are referred to in the
main text� In particular� it contains a brief introduction to graph algorithms�
boolean formulae and �nite �elds�

Acknowledgments

My perspective on complexity theory was most in�uenced by Shimon Even and
Leonid Levin� In fact� it was hard not to be in�uenced by these two remarkable and
highly opinionated researchers �especially for somebody like me who was fortunate
to spend a lot of time with them���

Shimon Even viewed complexity theory as the study of the limitations of al
gorithms� a study concerned with natural computational resources and natural
computational tasks� Complexity theory was there to guide the engineer and to
address the deepest questions that bother an intellectually curious computer scien
tist� I believe that this book shares Shimon
s view of complexity theory as evolving
around such questions�

Leonid Levin emphasized the general principles that underly complexity theory�
rejecting any �modeldependent e�ects� as well as the common coupling of com
plexity theory with the theory of automata and formal languages� In my opinion�
this book is greatly in�uenced by these opinions of Levin�

I wish to acknowledge the in�uence of numerous other colleagues on my pro
fessional perspectives and attitudes� These include Sha� Goldwasser� Dick Karp�
Silvio Micali� and Avi Wigderson� I also wish to thank many colleagues for their
comments and advice regarding earlier versions of this text� A partial list includes
Noam Livne� Omer Reingold� Dana Ron� Ronen Shaltiel� Amir Shpilka� Madhu
Sudan� Salil Vadhan� and Avi Wigderson�

Lastly� I am grateful to Mohammad Mahmoody Ghidary and Or Meir for their
careful reading of drafts of this manuscript and for the numerous corrections and
suggestions they have provided�

Relation to previous texts of mine� Some of the text of this book has been
adapted from previous texts of mine� In particular� Chapters � and � were written
based on my surveys ���� Chap� �� and ���� Chap� ��� respectively� but the exposition
has been extensively revised to �t the signi�cantly di�erent aims of the current
book� Similarly� Section ��� and Appendix C were written based on my survey ����
Chap� �� and books ���� ���� but� again� the previous texts are very di�erent in many
ways� In contrast� Appendix B was adapted with relatively little modi�cations from
an early draft of a section of an article by Avi Wigderson and myself ��	���

�Shimon Even was my graduate studies adviser �at the Technion� �	
��
�� whereas I had a
lot of meetings with Leonid Levin during my post�doctoral period �at MIT� �	
��
���

XI

XII

Contents

Preface III

Organization and Chapter Summaries V

Acknowledgments XI

� Introduction and Preliminaries �
��� Introduction �

����� A brief overview of Complexity Theory � � � � � � � � � � � � �
����� Characteristics of Complexity Theory � � � � � � � � � � � � � �
����� Contents of this book �
����� Approach and style of this book � � � � � � � � � � � � � � � � ��

������� The general principle � � � � � � � � � � � � � � � � � ��
������� On a few speci�c choices � � � � � � � � � � � � � � � ��
������� On the presentation of technical details � � � � � � � �
������� Organizational principles � � � � � � � � � � � � � � � �
������ Additional notes ��

���� Standard notations and other conventions � � � � � � � � � � � ��
��� Computational Tasks and Models ��

����� Representation ��
����� Computational Tasks ��

������� Search problems �	
������� Decision problems �	
������� Promise problems �an advanced comment� � � � � � ��

����� Uniform Models �Algorithms� � � � � � � � � � � � � � � � � � � ��
������� Turing machines ��
������� Uncomputable functions � � � � � � � � � � � � � � � � ��
������� Universal algorithms � � � � � � � � � � � � � � � � � � ��
������� Time and space complexity � � � � � � � � � � � � � � ��
������ Oracle machines ��
������� Restricted models ��

����� Nonuniform Models �Circuits and Advice� � � � � � � � � � � ��
������� Boolean Circuits ��
������� Machines that take advice � � � � � � � � � � � � � � ��

XIII

XIV CONTENTS

������� Restricted models ��
���� Complexity Classes �

Chapter Notes ��

� P� NP and NP�Completeness 	
��� The P versus NP Question ��

����� The search version� �nding versus checking � � � � � � � � � � 	
������� The class P as a natural class of search problems � � �
������� The class NP as another natural class of search

problems � �
������� The P versus NP question in terms of search problems �

����� The decision version� proving versus verifying � � � � � � � � � �
������� The class P as a natural class of decision problems � �
������� The class NP and NPproof systems � � � � � � � � �
������� The P versus NP question in terms of decision prob

lems � �
����� Equivalence of the two formulations � � � � � � � � � � � � � � �
����� The traditional de�nition of NP � � � � � � � � � � � � � � � � �
���� In support of P di�erent from NP � � � � � � � � � � � � � � � ��
����� Two technical comments regarding NP � � � � � � � � � � � � � ��

��� Polynomialtime Reductions ��
����� The general notion of a reduction � � � � � � � � � � � � � � � � ��
����� Reducing optimization problems to search problems � � � � � �
����� Selfreducibility of search problems � � � � � � � � � � � � � � � ��

��� NPCompleteness ��
����� De�nitions ��
����� The existence of NPcomplete problems � � � � � � � � � � � � ��
����� Some natural NPcomplete problems � � � � � � � � � � � � � � �

������� Circuit and formula satis�ability� CSAT and SAT � �
������� Combinatorics and graph theory � � � � � � � � � � � ��

����� NP sets that are neither in P nor NPcomplete � � � � � � � � ��
��� Three relatively advanced topics ��

����� Promise Problems �	
������� De�nitions �	
������� Discussion ��
������� The common convention � � � � � � � � � � � � � � � ��

����� Optimal search algorithms for NP � � � � � � � � � � � � � � � ��
����� The class coNP and its intersection with NP � � � � � � � � � ��

Chapter Notes ��
Exercises �	�

� Variations on P and NP ���
��� Nonuniform polynomialtime �P�poly� � � � � � � � � � � � � � � � � � ���

����� Boolean Circuits ���
����� Machines that take advice ���

��� The Polynomialtime Hierarchy �PH� � � � � � � � � � � � � � � � � � � ���

CONTENTS XV

����� Alternation of quanti�ers ���
����� Nondeterministic oracle machines � � � � � � � � � � � � � � � ��	
����� The P�polyversusNP Question and PH � � � � � � � � � � � � ���

Chapter Notes ���
Exercises ���

	 More Resources� More Power
 ���
��� Nonuniform complexity hierarchies ��	
��� Time Hierarchies and Gaps ���

����� Time Hierarchies ���
������� The Time Hierarchy Theorem � � � � � � � � � � � � ���
������� Impossibility of speedup for universal computation ���
������� Hierarchy theorem for nondeterministic time � � � � ���

����� Time Gaps and SpeedUp ���
��� Space Hierarchies and Gaps ��	
Chapter Notes ���
Exercises ���

� Space Complexity �	�
 �� General preliminaries and issues ���

 ���� Important conventions ���
 ���� On the minimal amount of useful computation space � � � � � ���
 ���� Time versus Space ���

 ������ Two composition lemmas � � � � � � � � � � � � � � � ���
 ������ An obvious bound �
 ������ Subtleties regarding spacebounded reductions � � � � �
 ������ Complexity hierarchies and gaps � � � � � � � � � � � � �
 ����� Simultaneous timespace complexity � � � � � � � � � � �

 ���� Circuit Evaluation �
 �� Logarithmic Space �

 ���� The class L �
 ���� LogSpace Reductions �
 ���� LogSpace uniformity and stronger notions � � � � � � � � � � � �
 ���� Undirected Connectivity �

 ������ The basic approach �
 ������ The actual implementation � � � � � � � � � � � � � � � �

 �� NonDeterministic Space Complexity � � � � � � � � � � � � � � � � � � ���
 ���� Two models ���
 ���� NL and directed connectivity � � � � � � � � � � � � � � � � � � ��

 ������ Completeness and beyond � � � � � � � � � � � � � � � ���
 ������ Relating NSPACE to DSPACE � � � � � � � � � � � � ���
 ������ Complementation or NL�coNL � � � � � � � � � � � � ���

 ���� Discussion ���
 �� PSPACE and Games ���
Chapter Notes ���
Exercises ���

XVI CONTENTS

� Randomness and Counting ���

��� Probabilistic PolynomialTime ���

����� Twosided error� The complexity class BPP � � � � � � � � � � ��	

������� On the power of randomization � � � � � � � � � � � � ���

������� A probabilistic polynomialtime primality test � � � ���

����� Onesided error� The complexity classes RP and coRP � � � � ���

������� Testing polynomial identity � � � � � � � � � � � � � � ��

������� Relating BPP to RP � � � � � � � � � � � � � � � � � � ���

����� Zerosided error� The complexity class ZPP � � � � � � � � � � �		

����� Randomized LogSpace �	�

������� De�nitional issues �	�

������� The accidental tourist sees it all � � � � � � � � � � � �	�

��� Counting �	�

����� Exact Counting �	�

������� On the power of �P � � � � � � � � � � � � � � � � � � �	�

������� Completeness in �P � � � � � � � � � � � � � � � � � � �	

����� Approximate Counting ���

������� Relative approximation for �Rdnf � � � � � � � � � � ���

������� Relative approximation for �P � � � � � � � � � � � � ���

����� Searching for unique solutions � � � � � � � � � � � � � � � � � � ���

����� Uniform generation of solutions � � � � � � � � � � � � � � � � � ���

������� Relation to approximate counting � � � � � � � � � � ���

������� A direct procedure for uniform generation � � � � � � ��

Chapter Notes ���

Exercises ���

 The Bright Side of Hardness �	�

��� OneWay Functions ���

����� The concept of oneway functions � � � � � � � � � � � � � � � � ��

����� Ampli�cation of Weak OneWay Functions � � � � � � � � � � ���

����� HardCore Predicates �

��� Hard Problems in E �

����� Ampli�cation wrt polynomialsize circuits � � � � � � � � � � � � �

������� Fromworstcase hardness to mild averagecase hard
ness �

������� Yao
s XOR Lemma � � � � � � � � � � � � � � � � � � ���

������� List decoding and hardness ampli�cation � � � � � � ���

����� Ampli�cation wrt exponentialsize circuits � � � � � � � � � � � ��	

������� Hard regions ���

������� Hardness ampli�cation via hard regions � � � � � � � ��

Chapter Notes ���

Exercises ���

CONTENTS XVII

� Pseudorandom Generators ���
Introduction ���
��� The General Paradigm ���
��� GeneralPurpose Pseudorandom Generators � � � � � � � � � � � � � � ���

����� The basic de�nition ���
����� The archetypical application � � � � � � � � � � � � � � � � � � ���
����� Computational Indistinguishability � � � � � � � � � � � � � � � ��
����� Amplifying the stretch function � � � � � � � � � � � � � � � � � ���
���� Constructions �		
����� Nonuniformly strong pseudorandom generators � � � � � � � � �	�
����� Other variants and a conceptual discussion � � � � � � � � � � �	

������� Stronger notions �	
������� Conceptual Discussion � � � � � � � � � � � � � � � � � �	�

��� Derandomization of timecomplexity classes � � � � � � � � � � � � � � �	�
����� De�nition �	�
����� Construction �	�
����� Variants and a conceptual discussion � � � � � � � � � � � � � � ���

������� Construction ���� as a general framework � � � � � � ���
������� A conceptual discussion regarding derandomization ��

��� SpaceBounded Distinguishers ��
����� De�nitional issues ���
����� Two Constructions ���

������� Overviews of the proofs of Theorems ���� and ���� � ���
������� Derandomization of spacecomplexity classes � � � � ���

�� Special Purpose Generators ���
�� �� PairwiseIndependence Generators � � � � � � � � � � � � � � � ���

�� ���� Constructions ���
�� ���� Applications ���

�� �� SmallBias Generators ���
�� ���� Constructions ���
�� ���� Applications ���
�� ���� Generalization ���

�� �� Random Walks on Expanders � � � � � � � � � � � � � � � � � � ��	
Chapter Notes ���
Exercises ��

� Probabilistic Proof Systems �	
Introduction and Preliminaries ���
��� Interactive Proof Systems ���

����� De�nition �
����� The Power of Interactive Proofs � � � � � � � � � � � � � � � � � � �

������� A simple example �
������� The full power of interactive proofs � � � � � � � � � � �

����� Variants and �ner structure� an overview � � � � � � � � � � � ���
������� ArthurMerlin games a�k�a publiccoin proof systems ���
������� Interactive proof systems with twosided error � � � ���

XVIII CONTENTS

������� A hierarchy of interactive proof systems � � � � � � � ���
������� Something completely di�erent � � � � � � � � � � � � ���

����� On computationally bounded provers� an overview � � � � � � ���
������� How powerful should the prover be! � � � � � � � � � ���
������� Computationalsoundness � � � � � � � � � � � � � � � ��

��� ZeroKnowledge Proof Systems ��
����� De�nitional Issues ���

������� A wider perspective� the simulation paradigm � � � ���
������� The basic de�nitions � � � � � � � � � � � � � � � � � � ���

����� The Power of ZeroKnowledge � � � � � � � � � � � � � � � � � � ���
������� A simple example ���
������� The full power of zeroknowledge proofs � � � � � � � ���

����� Proofs of Knowledge � a parenthetical subsection � � � � � � � ���
��� Probabilistically Checkable Proof Systems � � � � � � � � � � � � � � � ���

����� De�nition ���
����� The Power of Probabilistically Checkable Proofs � � � � � � � ��	

������� Proving that NP � PCP�poly� O���� � � � � � � � � ���
������� Overview of the �rst proof of the PCP Theorem � � ���
������� Overview of the second proof of the PCP Theorem � ���

����� PCP and Approximation ���
����� More on PCP itself� an overview � � � � � � � � � � � � � � � � ��

������� More on the PCP characterization of NP � � � � � � ��
������� PCP with superlogarithmic randomness � � � � � � ���

Chapter Notes ���
Exercises �		

�� Relaxing the Requirements 	��
�	�� Approximation ��	

�	���� Search or Optimization ���
�	������ A few positive examples � � � � � � � � � � � � � � � � ���
�	������ A few negative examples � � � � � � � � � � � � � � � ���

�	���� Decision or Property Testing � � � � � � � � � � � � � � � � � � ���
�	������ De�nitional issues ���
�	������ Two models for testing graph properties � � � � � � � ���
�	������ Beyond graph properties � � � � � � � � � � � � � � � ���

�	�� Average Case Complexity ���
�	���� The basic theory ���

�	������ De�nitional issues ���
�	������ Complete problems � � � � � � � � � � � � � � � � � � ��	
�	������ Probabilistic versions � � � � � � � � � � � � � � � � � ���

�	���� Rami�cations ���
�	������ Search versus Decision � � � � � � � � � � � � � � � � � ���
�	������ Simple versus sampleable distributions � � � � � � � ��	

Chapter Notes ���
Exercises ���

CONTENTS XIX

Epilogue 	�

A Glossary of Complexity Classes 	��
A�� Preliminaries �
A�� Algorithmbased classes ��	

A���� Time complexity classes ���
A������ Classes closely related to polynomial time � � � � � � ���
A������ Other time complexity classes � � � � � � � � � � � � ���

A���� Space complexity ���
A�� Circuitbased classes ���

B On the Quest for Lower Bounds 	�
B�� Preliminaries ���
B�� Boolean Circuit Complexity ���

B���� Basic Results and Questions ��	
B���� Monotone Circuits ���
B���� BoundedDepth Circuits ���
B���� Formula Size ���

B�� Arithmetic Circuits ���
B���� Univariate Polynomials ���
B���� Multivariate Polynomials ��

B�� Proof Complexity ���
B���� Logical Proof Systems ���
B���� Algebraic Proof Systems ���
B���� Geometric Proof Systems ���

C On the Foundations of Modern Cryptography 	��
C�� Introduction and Preliminaries ���

C���� Modern cryptography ���
C���� Preliminaries ���

C������ E�cient Computations and Infeasible ones � � � � � ���
C������ Randomized �or probabilistic� Computations � � � � ��

C���� Prerequisites� Organization� and Beyond � � � � � � � � � � � � ��
C�� Computational Di�culty ���

C���� OneWay Functions ���
C���� HardCore Predicates ���

C�� Pseudorandomness ���
C���� Computational Indistinguishability � � � � � � � � � � � � � � � ��	
C���� Pseudorandom Generators ���
C���� Pseudorandom Functions ���

C�� ZeroKnowledge ���
C���� The Simulation Paradigm ���
C���� The Actual De�nition ��
C���� A construction and a generic application � � � � � � � � � � � � ���

C������ Commitment schemes � � � � � � � � � � � � � � � � � ���
C������ E�ciency considerations � � � � � � � � � � � � � � � ���

XX CONTENTS

C������ A generic application � � � � � � � � � � � � � � � � � ���
C���� Variants and Issues ���

C������ De�nitional variations � � � � � � � � � � � � � � � � � ���
C������ Related notions� POK� NIZK� and WI � � � � � � � � 		

C� Encryption Schemes � 	�
C� �� De�nitions � 	�
C� �� Constructions � 	�
C� �� Beyond Eavesdropping Security � � � � � � � � � � � � � � � � � 	�

C�� Signatures and Message Authentication � � � � � � � � � � � � � � � � 	�
C���� De�nitions � ��
C���� Constructions � ��

C�� General Cryptographic Protocols � ��
C���� The De�nitional Approach and Some Models � � � � � � � � � �

C������ Some parameters used in de�ning security models � ��
C������ Example� Multiparty protocols with honest majority ��
C������ Another example� Twoparty protocols allowing abort ��

C���� Some Known Results � �	
C���� Construction Paradigms and Two Simple Protocols � � � � � � ��

C������ Passivelysecure computation with shares � � � � � � ��
C������ From passivelysecure protocols to activelysecure

ones � ��
C���� Concluding Remarks � ��

D Probabilistic Preliminaries and Advanced Topics in Randomiza�
tion ���
D�� Probabilistic preliminaries � �	

D���� Notational Conventions � �	
D���� Three Inequalities � ��

D�� Hashing � ��
D���� De�nitions � ��
D���� Constructions � �
D���� The Leftover Hash Lemma � � � � � � � � � � � � � � � � � � � ��

D�� Sampling � ��
D���� Formal Setting � �	
D���� Known Results � �	
D���� Hitters � ��

D�� Randomness Extractors � ��
D���� De�nitions and various perspectives � � � � � � � � � � � � � � ��

D������ The Main De�nition � � � � � � � � � � � � � � � � � � ��
D������ Extractors as averaging samplers � � � � � � � � � � � �
D������ Extractors as randomnesse�cient errorreductions � ��
D������ Other perspectives � � � � � � � � � � � � � � � � � � � ��

D���� Constructions � ��
D������ Some known results � � � � � � � � � � � � � � � � � � ��
D������ The pseudorandomness connection � � � � � � � � � � ��
D������ Recommended reading � � � � � � � � � � � � � � � � �

CONTENTS XXI

E Explicit Constructions ���
E�� Error Correcting Codes � �

E���� A few popular codes �
E������ A mildly explicit version of Proposition E�� � � � � � �
E������ The Hadamard Code � � � � � � � � � � � � � � � � � �
E������ The Reed�Solomon Code � � � � � � � � � � � � � � � �
E������ The Reed�Muller Code � � � � � � � � � � � � � � � � �
E����� Binary codes of constant relative distance and con

stant rate � �
E���� Two additional computational problems � � � � � � � � � � � � �
E���� A list decoding bound � ��

E�� Expander Graphs � ��
E���� De�nitions and Properties � ��

E������ Two Mathematical De�nitions � � � � � � � � � � � � ��
E������ Two levels of explicitness � � � � � � � � � � � � � � � ��
E������ Two properties � �

E���� Constructions � ��
E������ The Margulis�Gabber�Galil Expander � � � � � � � � �	
E������ The Iterated ZigZag Construction � � � � � � � � � � �	

F Some Omitted Proofs ��
F�� Proving that PH reduces to �P � �
F�� Proving that IP�f� � AM�O�f�� � AM�f� � � � � � � � � � � � � � ��

F���� Emulating general interactive proofs by AMgames � � � � � � ��
F������ The basic approach � � � � � � � � � � � � � � � � � � ��
F������ Random selection � � � � � � � � � � � � � � � � � � � ��
F������ The iterated partition protocol � � � � � � � � � � � � ��

F���� Linear speedup for AM � ��
F������ The basic switch �from MA to AM� � � � � � � � � � ��
F������ The augmented switch �from �MAMA�j to �AMA�jA� �	

G Some Computational Problems ���
G�� Graphs � ��
G�� Boolean Formulae � �
G�� Finite Fields� Polynomials and Vector Spaces � � � � � � � � � � � � � ��
G�� The Determinant and the Permanent � � � � � � � � � � � � � � � � � � ��
G� Primes and Composite Numbers � ��

Bibliography ���

XXII CONTENTS

List of Figures

��� Dependencies among the advanced chapters� � � � � � � � � � � � � � � �	
��� A single step by a Turing machine� ��
��� A circuit computing f�x�� x�� x�� x�� � �x� 	 x�� x�
 �x�
 x��� � � � �	
��� Recursive construction of parity circuits and formulae� � � � � � � � � ��

��� An array representing ten computation steps on input ��	y�y�� � � � ��
��� The idea underlying the reduction of CSAT to SAT� � � � � � � � � � �	
��� The reduction to G�C � the clause gadget and its subgadget� � � � � �
��� The reduction to G�C � connecting the gadgets� � � � � � � � � � � � ��
�� The world view under P �� coNP �NP �� NP � � � � � � � � � � � � � �		

 �� Algorithmic composition for spacebounded computation � � � � � � � � 	
 �� The recursive procedure in NL � Dspace�O�log���� � � � � � � � � � ���
 �� The main step in proving NL � coNL� � � � � � � � � � � � � � � � � ���

��� Tracks connecting gadgets for the reduction to cycle cover� � � � � � � �	�
��� External edges for the analysis of the clause gadget � � � � � � � � � � �	�
��� A Deus ex Machina clause gadget for the reduction to cycle cover� � ��	
��� A structured clause gadget for the reduction to cycle cover� � � � � � ���
�� External edges for the analysis of the box � � � � � � � � � � � � � � � ���

��� The hardcore of a oneway function � an illustration� � � � � � � � � � �
��� Proofs of hardness ampli�cation� organization � � � � � � � � � � � � � ��	

��� Pseudorandom generators � an illustration� � � � � � � � � � � � � � � ���
��� Analysis of stretch ampli�cation � the ith hybrid� � � � � � � � � � � � ���
��� The �rst generator that �fools� spacebounded machines� � � � � � � ��	
��� An a�ne transformation de�ned by a Toeplitz matrix� � � � � � � � � ��
�� The LFSR smallbias generator �for t � k���� � � � � � � � � � � � � � ���
��� Pseudorandom generators at a glance � � � � � � � � � � � � � � � � � ���

��� Zeroknowledge proofs � an illustration� � � � � � � � � � � � � � � � � ���
��� Detail for testing consistency of linear and quadratic forms� � � � � � ���
��� The amplifying reduction in the second proof of the PCP Theorem� � ���

�	�� Two types of averagecase completeness � � � � � � � � � � � � � � � � ���

XXIII

XXIV LIST OF FIGURES

�	�� Worstcase vs averagecase assumptions � � � � � � � � � � � � � � � � ���

E�� Detail of the zigzag product of G� and G� � � � � � � � � � � � � � � � ��

F�� The transformation of an MAgame into an AMgame� � � � � � � � � ��
F�� The transformation of MAMA into AMA� � � � � � � � � � � � � � � � �	

Chapter �

Introduction and

Preliminaries

When you set out on your journey to Ithaca�
pray that the road is long�
full of adventure� full of knowledge�

K�P� Cavafy� Ithaca

The current chapter consists of two parts� The �rst part provides a highlevel
introduction to �computational� complexity theory� This introduction is much
more detailed than the laconic statements made in the preface� but is quite sparse
when compared to the richness of the �eld� In addition� the introduction contains
several important comments regarding the contents� approach and style of the
current book�

P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the rest
of the book� It includes a discussion of computational tasks and computational
models� as well as natural complexity measures associated with the latter� More
speci�cally� this part recalls the basic notions and results of computability theory
�including the de�nition of Turing machines� some undecidability results� the notion
of universal machines� and the de�nition of oracle machines�� In addition� this part
presents the basic notions underlying nonuniform models of computation �like
Boolean circuits��

�

� CHAPTER �� INTRODUCTION AND PRELIMINARIES

��� Introduction

This section consists of two parts� the �rst part refers to the area itself� whereas
the second part refers to the current book� The �rst part provides a brief overview
of Complexity Theory �Section ������ as well as some re�ections about its char
acteristics �Section ������� The second part describes the contents of this book
�Section ������� the considerations underlying the choice of topics as well as the
way they are presented �Section ������� and various notations and conventions �Sec
tion ���� ��

����� A brief overview of Complexity Theory

Out of the tough came forth sweetness�

Judges� �����

Complexity Theory is concerned with the study of the intrinsic complexity of com
putational tasks� Its ��nal� goals include the determination of the complexity of
any wellde�ned task� Additional goals include obtaining an understanding of the
relations between various computational phenomena �e�g�� relating one fact regard
ing computational complexity to another�� Indeed� we may say that the former
type of goals is concerned with absolute answers regarding speci�c computational
phenomena� whereas the latter type is concerned with questions regarding the re�
lation between computational phenomena�

Interestingly� so far Complexity Theory has been more successful in coping with
goals of the latter ��relative�� type� In fact� the failure to resolve questions of the
�absolute� type� led to the �ourishing of methods for coping with questions of the
�relative� type� Musing for a moment� let us say that� in general� the di�culty
of obtaining absolute answers may naturally lead to seeking conditional answers�
which may in turn reveal interesting relations between phenomena� Furthermore�
the lack of absolute understanding of individual phenomena seems to facilitate the
development of methods for relating di�erent phenomena� Anyhow� this is what
happened in Complexity Theory�

Putting aside for a moment the frustration caused by the failure of obtaining
absolute answers� we must admit that there is something fascinating in the success
to relate di�erent phenomena� in some sense� relations between phenomena are
more revealing than absolute statements about individual phenomena� Indeed� the
�rst example that comes to mind is the theory of NPcompleteness� Let us consider
this theory� for a moment� from the perspective of these two types of goals�

Complexity theory has failed to determine the intrinsic complexity of tasks such
as �nding a satisfying assignment to a given �satis�able� propositional formula or
�nding a �coloring of a given ��colorable� graph� But it has established that
these two seemingly di�erent computational tasks are in some sense the same �or�
more precisely� are computationally equivalent�� We �nd this success amazing

�The quote is commonly used to mean that bene�t arose out of misfortune�

���� INTRODUCTION �

and exciting� and hopes that the reader shares these feelings� The same feeling of
wonder and excitement is generated by many of the other discoveries of Complexity
theory� Indeed� the reader is invited to join a fast tour of some of the other questions
and answers that make up the �eld of Complexity theory�

We will indeed start with the �P versus NP Question�� Our daily experience is
that it is harder to solve a problem than it is to check the correctness of a solution
�e�g�� think of either a puzzle or a research problem�� Is this experience merely
a coincidence or does it represent a fundamental fact of life �or a property of the
world�! Could you imagine a world in which solving any problem is not signi�cantly
harder than checking a solution to it! Would the term �solving a problem� not
lose its meaning in such a hypothetical �and impossible in our opinion� world!
The denial of the plausibility of such a hypothetical world �in which �solving� is
not harder than �checking�� is what �P di�erent from NP� actually means� where
P represents tasks that are e�ciently solvable and NP represents tasks for which
solutions can be e�ciently checked�

The mathematically �or theoretically� inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs� Indeed�
�nding proofs is a special type of the aforementioned task of �solving a problem�
�and verifying the validity of proofs is a corresponding case of checking correctness��
Again� �P di�erent from NP� means that there are theorems that are harder to
prove than to be convinced of their correctness when presented with a proof� This
means that the notion of a proof is meaningful �i�e�� that proofs do help when
trying to be convinced of the correctness of assertions�� Here NP represents sets
of assertions that can be e�ciently veri�ed with the help of adequate proofs� and
P represents sets of assertions that can be e�ciently veri�ed from scratch �i�e��
without proofs��

In light of the foregoing discussion it is clear that the PversusNP Question is
a fundamental scienti�c question of farreaching consequences� The fact that this
question seems beyond our current reach led to the development of the theory of
NPcompleteness� Loosely speaking� this theory identi�es a set of computational
problems that are as hard as NP� That is� the fate of the PversusNP Question
lies with each of these problems� if any of these problems is easy to solve then
so are all problems in NP� Thus� showing that a problem is NPcomplete provides
evidence to its intractability �assuming� of course� �P di�erent than NP��� Indeed�
demonstrating NPcompleteness of computational tasks is a central tool in indicat
ing hardness of natural computational problems� and it has been used extensively
both in computer science and in other disciplines� NPcompleteness indicates not
only the conjectured intractability of a problem but rather also its �richness� in the
sense that the problem is rich enough to �encode� any other problem in NP� The
use of the term �encoding� is justi�ed by the exact meaning of NPcompleteness�
which in turn is based on establishing relations between di�erent computational
problems �without referring to their �absolute� complexity��

The foregoing discussion of the PversusNP Question also hints to the impor�
tance of representation� a phenomenon that is central to complexity theory� In
general� complexity theory is concerned with problems the solutions of which are

� CHAPTER �� INTRODUCTION AND PRELIMINARIES

implicit in the problem
s statement �or rather in the instance�� That is� the problem
�or rather its instance� contains all necessary information� and one merely needs to
process this information in order to supply the answer�� Thus� complexity theory is
concerned with manipulation of information� and its transformation from one rep
resentation �in which the information is given� to another representation �which
is the one desired�� Indeed� a solution to a computational problem is merely a
di�erent representation of the information given� that is� a representation in which
the answer is explicit rather than implicit� For example� the answer to the question
of whether or not a given Boolean formula is satis�able is implicit in the formula
itself �but the task is to make the answer explicit�� Thus� complexity theory clari
�es a central issue regarding representation� that is� the distinction between what
is explicit and what is implicit in a representation� Furthermore� it even suggests
a quanti�cation of the level of nonexplicitness�

In general� complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers� Examples include the aforementioned
concepts of proofs and representation as well as concepts like randomness� knowl
edge� interaction� secrecy and learning� We next discuss some of these concepts
and the perspective o�ered by complexity theory�

The concept of randomness has puzzled thinkers for ages� Their perspective
can be described as ontological� they asked �what is randomness� and wondered
whether it exist at all �or is the world deterministic�� The perspective of complexity
theory is behavioristic� it is based on de�ning objects as equivalent if they cannot
be told apart by any e�cient procedure� That is� a coin toss is �de�ned to be�
�random� �even if one believes that the universe is deterministic� if it is infeasible
to predict the coin
s outcome� Likewise� a string �or a distribution of strings� is
�random� if it is infeasible to distinguish it from the uniform distribution �regard
less of whether or not one can generate the latter�� Interestingly� randomness �or
rather pseudorandomness� de�ned this way is e�ciently expandable� that is� under
a reasonable complexity assumption �to be discussed next�� short pseudorandom
strings can be deterministically expanded into long pseudorandom strings� Indeed�
it turns out that randomness is intimately related to intractability� Firstly� note
that the very de�nition of pseudorandomness refers to intractability �i�e�� the infea
sibility of distinguishing a pseudorandomness object from a uniformly distributed
object�� Secondly� as stated� a complexity assumption� which refers to the exis
tence of functions that are easy to evaluate but hard to invert �called one�way
functions�� implies the existence of deterministic programs �called pseudorandom
generators� that stretch short random seeds into long pseudorandom sequences� In
fact� it turns out that the existence of pseudorandom generators is equivalent to
the existence of oneway functions�

Complexity theory o�ers its own perspective on the concept of knowledge �and
distinguishes it from information�� Speci�cally� complexity theory views knowledge
as the result of a hard computation� Thus� whatever can be e�ciently done by any

�In contrast� in other disciplines� solving a problem may require gathering information that is
not available in the problem�s statement� This information may either be available from auxiliary
�past� records or be obtained by conducting new experiments�

���� INTRODUCTION

one is not considered knowledge� In particular� the result of an easy computation
applied to publicly available information is not considered knowledge� In contrast�
the value of a hard to compute function applied to publicly available information
is knowledge� and if somebody provides you with such a value then it has provided
you with knowledge� This discussion is related to the notion of zero�knowledge
interactions� which are interactions in which no knowledge is gained� Such inter
actions may still be useful� because they may convince a party of the correctness
of speci�c data that was provided beforehand�

The foregoing paragraph has explicitly referred to interaction� It has pointed
one possible motivation for interaction� gaining knowledge� It turns out that in
teraction may help in a variety of other contexts� For example� it may be easier to
verify an assertion when allowed to interact with a prover rather than when reading
a proof� Put di�erently� interaction with a good teacher may be more bene�cial
than reading any book� We comment that the added power of such interactive
proofs is rooted in their being randomized �i�e�� the veri�cation procedure is ran
domized�� because if the veri�er
s questions can be determined beforehand then the
prover may just provide the transcript of the interaction as a traditional written
proof�

Another concept related to knowledge is that of secrecy� knowledge is some
thing that one party has while another party does not have �and cannot feasibly
obtain by itself� � thus� in some sense knowledge is a secret� In general� complexity
theory is related to Cryptography� where the latter is broadly de�ned as the study
of systems that are easy to use but hard to abuse� Typically� such systems involve
secrets� randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its pre
scribed behavior� Thus� much of Cryptography is based on complexity theoretic
assumptions and its results are typically transformations of relatively simple com
putational primitives �e�g�� oneway functions� into more complex cryptographic
applications �e�g�� secure encryption schemes��

We have already mentioned the concept of learning when referring to learning
from a teacher versus learning from a book� Recall that complexity theory provides
evidence to the advantage of the former� This is in the context of gaining knowledge
about publicly available information� In contrast� computational learning theory
is concerned with learning objects that are only partially available to the learner
�i�e�� learning a function based on its value at a few random locations or even at
locations chosen by the learner�� Complexity theory sheds light on the intrinsic
limitations of learning �in this sense��

Complexity theory deals with a variety of computational tasks� We have already
mentioned two fundamental types of tasks� searching for solutions �or rather ��nd
ing solutions�� and making decisions �e�g�� regarding the validity of assertion�� We
have also hinted that in some cases these two types of tasks can be related� Now
we consider two additional types of tasks� counting the number of solutions and
generating random solutions� Clearly� both the latter tasks are at least as hard as
�nding arbitrary solutions to the corresponding problem� but it turns out that for
some natural problems they are not signi�cantly harder� Speci�cally� under some

� CHAPTER �� INTRODUCTION AND PRELIMINARIES

natural conditions on the problem� approximately counting the number of solutions
and generating an approximately random solution is not signi�cantly harder than
�nding an arbitrary solution�

Having mentioned the notion of approximation� we note that the study of the
complexity of �nding approximate solutions has also received a lot of attention�
One type of approximation problems refers to an objective function de�ned on the
set of potential solutions� Rather than �nding a solution that attains the optimal
value� the approximation task consists of �nding a solution that attains an �almost
optimal� value� where the notion of �almost optimal� may be understood in dif
ferent ways giving rise to di�erent levels of approximation� Interestingly� in many
cases� even a very relaxed level of approximation is as di�cult to obtain as solving
the original �exact� search problem �i�e�� �nding an approximate solution is as hard
as �nding an optimal solution�� Surprisingly� these hardness of approximation re
sults are related to the study of probabilistically checkable proofs� which are proofs
that allow for ultrafast probabilistic veri�cation� Amazingly� every proof can be
e�ciently transformed into one that allows for probabilistic veri�cation based on
probing a constant number of bits �in the alleged proof�� Turning back to approx
imation problems� we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original �exact� search problem�

Approximation is a natural relaxation of various computational problems� An
other natural relaxation is the study of average�case complexity� where the �aver
age� is taken over some �simple� distributions �representing a model of the prob
lem
s instances that may occur in practice�� We stress that� although it was not
stated explicitly� the entire discussion so far has referred to �worstcase� analysis
of algorithms� We mention that worstcase complexity is a more robust notion
than averagecase complexity� For starters� one avoids the controversial question
of what are the instances that are �important in practice� and correspondingly
the selection of the class of distributions for which averagecase analysis is to be
conducted� Nevertheless� a relatively robust theory of averagecase complexity has
been suggested� albeit it is less developed than the theory of worstcase complexity�

In view of the central role of randomness in complexity theory �as evident� say�
in the study of pseudorandomness� probabilistic proof systems� and cryptography��
one may wonder as to whether the randomness needed for the various applications
can be obtained in reallife� One speci�c question� which received a lot of atten
tion� is the possibility of �purifying� randomness �or �extracting good randomness
from bad sources��� That is� can we use �defected� sources of randomness in or
der to implement almost perfect sources of randomness� The answer depends� of
course� on the model of such defected sources� This study turned out to be related
to complexity theory� where the most tight connection is between some type of
randomness extractors and some type of pseudorandom generators�

So far we have focused on the time complexity of computational tasks� while
relying on the natural association of e�ciency with time� However� time is not
the only resource one should care about� Another important resource is space�
the amount of �temporary� memory consumed by the computation� The study
of space complexity has uncovered several fascinating phenomena� which seem to

���� INTRODUCTION �

indicate a fundamental di�erence between space complexity and time complexity�
For example� in the context of space complexity� verifying proofs of validity of
assertions �of any speci�c type� has the same complexity as verifying proofs of
invalidity for the same type of assertions�

In case the reader feels dizzy� it is no wonder� We took an ultrafast airtour of
some mountain tops� and dizziness is to be expected� Needless to say� the rest of
the book o�ers a totally di�erent touring experience� We will climb some of these
mountains by foot� step by step� and will often stop to look around and re�ect�

Absolute Results �a�k�a� Lower�Bounds�� As stated upfront� absolute re
sults are not known for many of the �big questions� of complexity theory �most
notably the PversusNP Question�� However� several highly nontrivial absolute
results have been proved� For example� it was shown that using negation can
speedup the computation of monotone functions �which do not require negation
for their mere computation�� In addition� many promising techniques were intro
duced and employed with the aim of providing a lowlevel analysis of the progress of
computation� However� as stated in the preface� the focus of this book is elsewhere�

����� Characteristics of Complexity Theory

We are successful because we use the right level of abstraction

Avi Wigderson ������

Using the �right level of abstraction� seems to be a main characteristic of the The
ory of Computation at large� The right level of abstraction means abstracting away
secondorder details� which tend to be contextdependent� while using de�nitions
that re�ect the main issues �rather than abstracting them away too�� Indeed� using
the right level of abstraction calls for an extensive exercising of good judgment� and
one indication for having chosen the right abstractions is the result of their study�

One major choice of the theory of computation� which is currently taken for
granted� is the choice of a model of computation and corresponding complexity
measures and classes� Two extreme choices that were avoided are a too realistic
model and a too abstract model� On the one hand� the main model of computation
used in complexity theory does not try to re�ect �or mirror� the speci�c operation
of reallife computers used at a speci�c historical time� Such a choice would have
made it very hard to develop complexity theory as we know it and to uncover
the fundamental relations discussed in this book� the mass of details would have
obscured the view� On the other hand� avoiding any reference to any concrete
model �like in the case of recursive function theory� does not encourage the intro
duction and study of natural measures of complexity� Indeed� as we shall see in
Section ������ the choice was �and is� to use a simple model of computation �which
does not mirror reallife computers�� while avoiding any e�ects that are speci�c to
that model �by keeping a eye on a host of variants and alternative models�� The
freedom from the speci�cs of the basic model is obtained by considering complexity

� CHAPTER �� INTRODUCTION AND PRELIMINARIES

classes that are invariant under a change of model �as long as the alternative model
is �reasonable���

Another major choice is the use of asymptotic analysis� Speci�cally� we con
sider the complexity of an algorithm as a function of its input length� and study
the asymptotic behavior of this function� It turns out that structure that is hidden
by concrete quantities appears at the limit� Furthermore� depending on the case�
we classify functions according to di�erent criteria� For example� in case of time
complexity we consider classes of functions that are closed under multiplication�
whereas in case of space complexity we consider closure under addition� In each
case� the choice is governed by the nature of the complexity measure being consid
ered� Indeed� one could have developed a theory without using these conventions�
but this would have resulted in a far more cumbersome theory� For example� rather
than saying that �nding a satisfying assignment for a given formula is polynomial
time reducible to deciding the satis�ability of some other formulae� one could have
stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem�

Both the aforementioned choices are common to other branches of the theory of
computation� One aspect that makes complexity theory unique is its perspective
on the most basic question of the theory of computation� that is� the way it studies
the question of what can be e�ciently computed� The perspective of complexity
theory is general in nature� This is re�ected in its primary focus on the relevant
notion of e�ciency �captured by corresponding resource bounds� rather than on
speci�c computational problems� In most cases� complexity theoretic studies do
not refer to any speci�c computational problems or refer to such problems merely
as an illustration� Furthermore� even when speci�c computational problems are
studied� this study is �explicitly or at least implicitly� aimed at understanding the
computational limitations of certain resource bounds�

The aforementioned general perspective seems linked to the signi�cant role of
conceptual considerations in the �eld� The rigorous study of an intuitive notion of
e�ciency must be initiated with an adequate choice of de�nitions� Since this study
refers to any possible �relevant� computation� the de�nitions cannot be derived by
abstracting some concrete reality �e�g�� a speci�c algorithmic schema�� Indeed� the
de�nitions attempt to capture any possible reality� which means that the choice
of de�nitions is governed by conceptual principles and not merely by empirical
observations�

����� Contents of this book

This book is intended to serve as an introduction to Computational Complexity
that can be used either as a textbook or for selfstudy� It consists of ten chapters
and seven appendices� The chapters constitute the core of this book and are written
in a style adequate for a textbook� whereas the appendices provide additional
perspective and are written in the style of a survey article�

Section ��� and Chapter � are a prerequisite to the rest of the book� Technically
speaking� the notions and results that appear in these parts are extensively used
in the rest of the book� More importantly� the former parts are the conceptual

���� INTRODUCTION �

framework that shapes the �eld and provides a good perspective on the �eld
s
questions and answers� Indeed� Section ��� and Chapter � provide the very basic
material that must be understood by anybody having an interest in complexity
theory�

In contrast� the rest of the book covers more advanced material� which means
that none of it can be claimed to be absolutely necessary for a basic understanding
of complexity theory� Indeed� although some advanced chapters refer to material in
other advanced chapters� the relation between these chapters is not a fundamental
one� Thus� one may choose to read and�or teach an arbitrary subset of the advanced
chapters and do so in an arbitrary order� provided one is willing to follow the
relevant references to some parts of other chapters �see Figure ����� Needless to
say� we recommend reading and�or teaching all the advanced chapters� and doing
so by following the order presented in this book�

The rest of this section provides a brief summary of the contents of the various
chapters and appendices� This summary is intended for the teacher and�or the
expert� whereas the student is referred to the more readerfriendly summaries that
appear in the book
s pre�x�

Section ���� Preliminaries� This section provides the relevant background on
computability theory� which is the basis for the rest of this book �as well as for
complexity theory at large�� Most importantly� it contains a discussion of central
notions such as search and decision problems� algorithms that solve such problems�
and their complexity� In addition� this section presents nonuniform models of
computation �e�g�� Boolean circuits��

Chapter �� P� NP and NP�completeness� This chapter presents the PvsNP
Question both in terms of search problems and in terms of decision problems� The
second main topic of this chapter is the theory of NPcompleteness� The chapter
also provides a treatment of the general notion of a �polynomialtime� reduction�
with special emphasis on selfreducibility� Additional topics include the existence of
problems in NP that are neither NPcomplete nor in P� optimal search algorithms�
the class coNP� and promise problems�

Chapter �� Variations on P and NP� This chapter provides a treatment
of nonuniform polynomialtime �P�poly� and of the Polynomialtime Hierarchy
�PH�� Each of the two classes is de�ned in two equivalent ways �e�g�� P�poly is
de�ned both in terms of circuits and in terms of �machines that take advice��� In
addition� it is shown that if NP is contained in P�poly then PH collapses to its
second level �i�e�� ����

Chapter 	� More Resources� More Power
 The focus of this chapter is
on Hierarchy Theorems� which assert that typically more resources allow for solv
ing more problems� These results depend on using bounding functions that can
be computed without exceeding the amount of resources that they specify� and
otherwise Gap Theorems may apply�

�	 CHAPTER �� INTRODUCTION AND PRELIMINARIES

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1 paragidm

de-ran. space
gen.
pur.

OWF

 case

10.1.1

prop.
test.

10.1.2

9.1 IP

9.2 ZK

PCP

9.3

average

10.2

rand. count.

6.1.4

7.1.3

5.2
L

5.4

4.1 advice

4.3 space
3.1

PHP/poly

5.3
PSPACE

5.1 general
3.2.3

3.2
4.2 TIME

5.2.4

(of opt.)
approx.

5.3.1

NL

(RL)

Solid arrows indicate the use of speci�c results that are stated in the
section to which the arrow points� Dashed lines �and arrows� indicate
an important conceptual connection� the wider the line� the tighter
the connection� When relations are only between subsections� their
index is indicated�

Figure ���� Dependencies among the advanced chapters�

Chapter �� Space Complexity� Among the results presented in this chapter
are a logspace algorithm for testing connectivity of �undirected� graphs� a proof
that NL � coNL� and complete problems for NL and PSPACE �under logspace
and polytime reductions� respectively��

Chapter �� Randomness and Counting� This chapter focuses on various
randomized complexity classes �i�e�� BPP� RP � and ZPP� and the counting class
�P � The results presented in this chapter include BPP � P�poly and BPP �
��� the �Pcompleteness of the Permanent� the connection between approximate
counting and uniform generation of solutions� and the randomized reductions of
approximate counting to NP and ofNP to solving problems with unique solutions�

���� INTRODUCTION ��

Chapter � The Bright Side of Hardness� This chapter deals with two con
jectures that are related to P �� NP � The �rst conjecture is that there are problems
in E that are not solvable by �nonuniform� families of small �say polynomialsize�
circuits� whereas the second conjecture is equivalent to the notion of one�way func�
tions� Most of this chapter is devoted to �hardness ampli�cation� results that
convert these conjectures into tools that can be used for nontrivial derandomiza
tions of BPP �resp�� for a host of cryptographic applications��

Chapter �� Pseudorandom Generators� The pivot of this chapter is the no
tion of computational indistinguishability and corresponding notions of pseudoran
domness� The de�nition of generalpurpose pseudorandom generators �running in
polynomialtime and withstanding any polynomialtime distinguisher� is presented
as a special case of a general paradigm� The chapter also contains a presentation
of other instantiations of the latter paradigm� including generators aimed at deran
domizing complexity classes such as BPP� generators withstanding spacebounded
distinguishers� and some specialpurpose generators�

Chapter �� Probabilistic Proof Systems� This chapter provides a treatment
of three types of probabilistic proof systems� interactive proofs� zero�knowledge
proofs� and probabilistic checkable proofs� The results presented include IP �
PSPACE � zeroknowledge proofs for any NPset� and the PCP Theorem� For the
latter� only overviews of the two di�erent known proofs are provided�

Chapter ��� Relaxing the Requirement� This chapter provides a treatment
of two types of approximation problems and a theory of averagecase �or rather
typicalcase� complexity� The traditional type of approximation problems refers
to search problems and consists of a relaxation of standard optimization prob
lems� The second type is known as �property testing� and consists of a relaxation
of standard decision problems� The theory of averagecase complexity involves
several nontrivial de�nitional choices �e�g�� an adequate choice of the class of dis
tributions��

Appendix A� Glossary of Complexity Classes� The glossary provides self
contained de�nitions of most complexity classes mentioned in the book�

Appendix B� On the Quest for Lower Bounds� The �rst part� devoted
to Circuit Complexity� reviews lower bounds for the size of �restricted� circuits
that solve natural computational problems� The second part� devoted to Proof
Complexity� reviews lower bounds on the length of �restricted� propositional proofs
of natural tautologies�

Appendix C� On the Foundations of Modern Cryptography� The �rst
part of this appendix augments the partial treatment of oneway functions� pseu
dorandom generators� and zeroknowledge proofs �which is included in Chapters

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

����� Using these basic tools� the second part provides a treatment of basic cryp
tographic applications such as Encryption� Signatures� and General Cryptographic
Protocols�

Appendix D� Probabilistic Preliminaries and Advanced Topics in Ran�
domization� The probabilistic preliminaries include conventions regarding ran
dom variables and overviews of three useful inequalities �i�e�� Markov Inequality�
Chebyshev
s Inequality� and Cherno� Bound�� The advanced topics include con
structions of hashing functions and variants of the Leftover Hashing Lemma� and
overviews of samplers and extractors �i�e�� the problem of randomness extraction��

Appendix E� Explicit Constructions� This appendix focuses on various com
putational aspects of error correcting codes and expander graphs� On the topic
of codes� the appendix contains a review of the Hadamard code� ReedSolomon
codes� ReedMuller codes� and a construction of a binary code of constant rate and
constant relative distance� Also included are a brief review of the notions of locally
testable and locally decodable codes� and a listdecoding bound� On the topic of
expander graphs� the appendix contains a review of the standard de�nitions and
properties as well as a presentation of the MargulisGabberGalil and the ZigZag
constructions�

Appendix F� Some Omitted Proofs� This appendix contains some proofs
that are bene�cial as alternatives to the original and�or standard presentations�
Included are proofs that PH is reducible to �P via randomized Karpreductions�
and that IP�f� � AM�O�f�� � AM�f��

Appendix G� Some Computational Problems� This appendix contains a
brief introduction to graph algorithms� Boolean formulae� and �nite �elds�

Bibliography� As stated in x�������� we tried to keep the bibliographic list as
short as possible �and still reached a couple of hundreds of entries�� As a result
many relevant references were omitted� In general� our choice of references was
biased in favor of textbooks and survey articles� We tried� however� not to omit
references to key papers in an area�

Absent from this book� As stated in the preface� the current book does not
provide a uniform cover of the various areas of complexity theory� Notable omis
sions include the areas of circuit complexity �cf� ���� �� �� and proof complexity
�cf� �� ��� which are brie�y reviewed in Appendix B� Additional topics that are
commonly covered in complexity theory courses but omitted here include the study
of branching programs and decision trees �cf� ������� parallel computation ������ and
communication complexity ������ We mention that the recent textbook of Arora
and Barak ���� contains a treatment of all these topics� Finally� we mention two
areas that we consider related to complexity theory� although this view is not very

���� INTRODUCTION ��

common� These areas are distributed computing ���� and computational learning
theory ������

����� Approach and style of this book

According to a common opinion� the most important aspect of a scienti�c work
is the technical result that it achieves� whereas explanations and motivations are
merely redundancy introduced for the sake of �error correction� and�or comfort� It
is further believed that� like in a work of art� the interpretation of the work should
be left with the reader �or viewer or listener��

The author strongly disagrees with the aforementioned opinions� and argues
that there is a fundamental di�erence between art and science� and that this dif
ference refers exactly to the meaning of a piece of work� Science is concerned with
meaning �and not with form�� and in its quest for truth and�or understanding sci
ence follows philosophy �and not art�� The author holds the opinion that the most
important aspects of a scienti�c work are the intuitive question that it addresses�
the reason that it addresses this question� the way it phrases the question� the ap
proach that underlies its answer� and the ideas that are embedded in the answer�
Following this view� it is important to communicate these aspects of the work� and
the current book is written accordingly�

The foregoing issues are even more acute when it comes to complexity theory�
�rstly because conceptual considerations seems to play an even more central role in
complexity theory �as opposed to other �elds� cf�� Section ������� Furthermore �or
maybe consequently�� complexity theory is extremely rich in conceptual content�
Unfortunately� this content is rarely communicated �explicitly� in books and�or
surveys of the area�� The annoying �and quite amazing� consequences are students
that have only a vague understanding of the meaning and general relevance of the
fundamental notions and results that they were taught� The author
s view is that
these consequences are easy to avoid by taking the time to explicitly discuss the
meaning of de�nitions and results� A related issue is using the �right� de�nitions
�i�e�� those that re�ect better the fundamental nature of the notion being de�ned�
and teaching things in the �conceptually� �right� order�

����	�� The general principle

In accordance with the foregoing� the focus of this book is on the conceptual aspects
of the technical material� Whenever presenting a subject� the starting point is the
intuitive questions being addressed� The presentation explains the importance of
these questions� the speci�c ways that they are phrased �i�e�� the choices made in
the actual formulation�� the approaches that underly the answers� and the ideas
that are embedded in these answers� Thus� a signi�cant portion of the text is

�It is tempting to speculate on the reasons for this phenomenon� One speculation is that
communicating the conceptual content of complexity theory involves making bold philosophical
assertions that are technically straightforward� whereas this combination does not �t the person�
ality of most researchers in complexity theory�

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

devoted to motivating discussions that refer to the concepts and ideas that underly
the actual de�nitions and results�

The material is organized around conceptual themes� which re�ect fundamen
tal notions and�or general questions� Speci�c computational problems are rarely
referred to� with exceptions that are used either for sake of clarity or because the
speci�c problem happens to capture a general conceptual phenomenon� For exam
ple� in this book� �complete problems� �e�g�� NPcomplete problems� are always
secondary to the class for which they are complete��

����	�� On a few speci�c choices

Our technical presentation often di�ers from the standard one� In many cases
this is due to conceptual considerations� At times� this leads to some technical
simpli�cations� In this section we only discuss general themes and�or choices that
have a global impact on much of the presentation�

Avoiding non�deterministic machines� We try to avoid nondeterministic
machines as much as possible� As argued in several places �e�g�� Section �������
we believe that these �ctitious �machines� have a negative e�ect both from a
conceptual and technical point of view� The conceptual damage caused by using
nondeterministic machines is that it is unclear why one should care about what
such machines can do� Needless to say� the reason to care is clear when noting that
these �ctitious �machines� o�er a �convenient or rather slothful� way of phrasing
fundamental issues� The technical damage caused by using nondeterministic ma
chines is that they tend to confuse the students� Furthermore� they do not o�er
the best way to handle more advanced issues �e�g�� counting classes��

In contrast� we use search problems as the basis for much of the presentation�
Speci�cally� the class PC �see De�nition ����� which consists of search problems
having e�ciently checkable solutions� plays a central role in our presentation� In
deed� de�ning this class is slightly more complicated than the standard de�nition
of NP �based on nondeterministic machines�� but the technical bene�ts start ac
cumulating as we proceed� Needless to say� the class PC is a fundamental class
of computational problems and this fact is the main motivation to its presenta
tion� �Indeed� the most conceptually appealing phrasing of the PvsNP Question
consists of asking whether every search problem in PC can be solved e�ciently��

Avoiding model�dependent e�ects� Our focus is on the notion of e�cient
computation� A rigorous de�nition of this notion seems to require reference to
some concrete model of computation� however� all questions and answers considered

�We admit that a very natural computational problem can give rise to a class of problems that
are computationally equivalent to it� and that in such a case the class may be less interesting
than the original problem� This is not the case for any of the complexity classes presented in
this book� Still� in some cases �e�g�� NP and �P�� the historical evolution actually went from a
speci�c computational problem to a class of problems that are computationally equivalent to it�
However� in all cases presented in this book� a retrospective evaluation suggests that the class is
actually more important than the original problem�

���� INTRODUCTION �

in this book are invariant under the choice of such a concrete model� provided
of course that the model is �reasonable� �which� needless to say� is a matter of
intuition�� Indeed� the foregoing text re�ects the tension between the need to
make rigorous de�nitions and the desire to be independent of technical choices�
which are unavoidable when making rigorous de�nitions� Furthermore� in contrast
to common beliefs� the foregoing comments refer not only to timecomplexity but
also to spacecomplexity� However� in both cases� the claim of invariance may not
hold for marginally small resources �e�g�� lineartime or sublogarithmic space��

In contrast to the foregoing paragraph� in some cases we choose to be speci�c�
The most notorious case is the association of e�ciency with polynomialtime �see
x��������� Indeed� all the questions and answers regarding e�cient computation can
be phrased without referring to polynomialtime �i�e�� by stating explicit functional
relations between the complexities of the problems involved�� but such a generalized
treatment will be painful to follow�

����	�� On the presentation of technical details

In general� the more complex the technical material is� the more levels of exposi
tions we employ �starting from the most highlevel exposition� and when necessary
providing more than one level of details�� In particular� whenever a proof is not
very simple� we try to present the key ideas �rst� and postpone implementation
details to later� We also try to clearly indicate the passage from a highlevel presen
tation to its implementation details �e�g�� by using phrases such as �details follow���
In some cases� especially in the case of advanced results� only proof sketches are
provided and the implication is that the reader should be able to �llup the missing
details�

Few results are stated without a proof� In some of these cases the proof idea
or a proof overview is provided� but the reader is not expected to be able to �llup
the highly nontrivial details� �In these cases� the text clearly indicates this state
of a�airs�� One notable example is the proof of the PCP Theorem �Theorem ������

We tried to avoid the presentation of material that� in our opinion� is neither
the �last word� on the subject nor represents the �right� way of approaching the
subject� Thus� we do not always present the �best� known result�

����	�	 Organizational principles

Each of the main chapters starts with a highlevel summary and ends with chapter
notes and exercises� The latter are not aimed at testing or inspiring creativity� but
are rather designed to help and verify the basic understanding of the main text� In
some cases� exercises �augmented by adequate guidelines� are used for presenting
additional related material�

The book contains material that ranges from topics that are currently taught
in undergraduate courses on computability �and basic complexity� to topics that
are currently taught mostly in advanced graduate courses� Although this situation
may �and hopefully will� change in the future� we believe that it will remain to be
the case that typical readers of the advanced chapters will be more sophisticated

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

than typical readers of the basic chapters �i�e�� Section ��� and Chapter ��� Ac
cordingly� the style of presentation becomes more sophisticated as one progresses
from Chapter � to later chapters�

As stated in the preface� this book focuses on the highlevel approach to com
plexity theory� whereas the lowlevel approach �i�e�� lower bounds� is only brie�y
reviewed �in Appendix B�� Other appendices contain material that is closely re
lated to complexity theory but is not an integral part of it �e�g�� the Foundations
of Cryptography��� Further details on the contents of the various chapters and
appendices are provided in Section ������

In an attempt to keep the bibliographic list from becoming longer than an
average chapter� we omitted many relevant references� One trick used towards this
end is referring to lists of references in other texts� especially when these texts are
cited anyhow� Indeed� our choices of references were biased in favor of textbooks
and survey articles� because we believe that they provide the best way to further
learn about a research direction and�or approach� We tried� however� not to omit
references to key papers in an area� In some cases� when we needed a reference for
a result of interest and could not resort to the aforementioned trick� we cited also
less central papers�

As a matter of policy� we tried to avoid credits in the main text� The few
exceptions are either pointers to texts that provide details that we chose to omit
or usage of terms �bearing researchers
 names� that are too popular to avoid�

Teaching note� The text also includes some teaching notes� which are typeset as this

one� Some of these notes express quite opinionated recommendations and	or justify

various expositional choices made in the text�

����	�� Additional notes

The author
s guess is that the text will be criticized for lengthy discussions of tech
nically trivial issues� Indeed� most researchers dismiss various conceptual clari�ca
tions as being trivial and devote all their attention to the technically challenging
parts of the material� The consequence is students that master the technical ma
terial but are confused about its meaning� In contrast� the author recommends
not being embarrassed of devoting time to conceptual clari�cations� even if some
students may view them as obvious�

The motivational discussions presented in the text do not necessarily represent
the original motivation of the researchers that pioneered a speci�c study and�or
contributed greatly to it� Instead� these discussions provide what the author con
siders to be a good motivation and�or perspective on the corresponding concepts�

����� Standard notations and other conventions

Following are some notations and conventions that are freely used in this book�

�As further articulated in Section ���� we recommend not including a basic treatment of cryp�
tography within a course on complexity theory� Indeed� cryptography may be claimed to be
the most appealing application of complexity theory� but a super�cial treatment of cryptography
�from this perspective� is likely to be misleading and cause more harm than good�

��	� COMPUTATIONAL TASKS AND MODELS ��

Standard asymptotic notation� When referring to integral functions� we use
the standard asymptotic notation� that is� for f� g � N N � we write f � O�g�
�resp�� f � "�g�� if there exists a constant c � 	 such that f�n� � c � g�n� �resp��
f�n� � c � g�n�� holds for all n � N � We usually denote by �poly� an unspeci�ed
polynomial� and write f�n� � poly�n� instead of �there exists a polynomial p such

that f�n� � p�n� for all n � N �� We also use the notation f � eO�g� that mean
f�n� � poly�logn� � g�n�� and f � o�g� �resp�� f � ��g�� that mean f�n� � c � g�n�
�resp�� f�n� � c � g�n�� for every constant c � 	 and all su�ciently large n�

Integrality issues� Typically� we ignore integrality issues� This means that we
may assume that log� n is an integer rather than using a more cumbersome form as
blog� nc� Likewise� we may assume that various equalities are satis�ed by integers
�e�g�� �n � mm�� even when this cannot possibly be the case �e�g�� �n � �m�� In
all these cases� one should consider integers that approximately satisfy the relevant
equations �and deal with the problems that emerge by such approximations� which
will be ignored in the current text��

Standard combinatorial and graph theory terms and notation� For any
set S� we denote by �S the set of all subsets of S �i�e�� �S � fS� � S� � Sg�� For

a natural number n � N � we denote �n�
def
� f�� ���� ng� Many of the computational

problems refer to �nite �undirected� graphs� Such a graph� denoted G � �V�E��
consists of a set of vertices� denoted V � and a set of edges� denoted E� which are
unordered pairs of vertices� By default� graphs are undirected� whereas directed
graphs consists of vertices and directed edges� where a directed edge is an order
pair of vertices� We also refer to other graph theoretic terms such as connectivity�
being acyclic �i�e�� having no simple cycles�� being a tree �i�e�� being connected and
acyclic�� kcolorability� etc� For further background on graphs and computational
problems regarding graphs� the reader is referred to Appendix G���

Typographic conventions� We denote formally de�ned complexity classes by
calligraphic letters �e�g�� NP�� but we do so only after de�ning these classes� Fur
thermore� when we wish to maintain some ambiguity regarding the speci�c formu
lation of a class of problems we use Roman font �e�g�� NP may denote either a class
of search problems or a class of decision problems�� Likewise� we denote formally
de�ned computational problems by typewriter font �e�g�� SAT�� In contrast� generic
problems and algorithms will be denoted by italic font�

��� Computational Tasks and Models

But� you may say� we asked you to speak about
women and �ction
 what� has that got to do with a
room of one�s own� I will try to explain�

Virginia Woolf� A room of one
s own

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

This section provides the necessary preliminaries to the rest of the book� that is�
it reviews the notion of computational tasks and computational models for solving
these tasks� We start by introducing the general framework for our discussion of
computational tasks �or problems�� This framework refers to the representation
of instances �as binary sequences� and to two types of tasks �i�e�� searching for
solutions and making decisions�� In order to facilitate a study of methods for
solving these tasks� the latter are de�ned with respect to in�nitely many possible
instances �each being a �nite object���

Once computational tasks are de�ned� we turn to methods for solving these
tasks� which are described in terms of some model of computation� Speci�cally�
we consider two types of models of computation� uniform models and nonuniform
models� The uniform models correspond to the intuitive notion of an algorithm�
and will provide the stage for the rest of the book �which focuses on e�cient
algorithms�� In contrast� nonuniform models �e�g�� Boolean circuits� facilitate a
closer look at the way computation progresses� and will be used only sporadically
in this book�

Organization of Section ���� The contents of Sections ����������� corresponds
to a traditional Computability course� except that it includes also a keen inter
est in universal machines �see x��������� a discussion of the association of e�cient
computation with polynomialtime algorithm �x��������� and a de�nition of oracle
machines �x������ �� This material �with the exception of Kolmogorov Complex
ity� is taken for granted in the rest of the current book� In contrast� Section �����
presents basic preliminaries regarding nonuniform models of computation �i�e��
various types of Boolean circuits�� and these are only used lightly in the rest of
the book� �We also call the reader
s attention to the discussion of generic com
plexity classes in Section ���� �� Thus� whereas Sections ����������� �and ���� � are
absolute prerequisites for the rest of this book� Section ����� is not�

Teaching note� The author believes that there is no real need for a semester�long

course in Computability
i�e�� a course that focuses on what can be computed rather

than on what can be computed e�ciently�� Instead� undergraduates should take a

course in Computational Complexity� which should contain the computability aspects

that serve as a basis for the rest of the course� Speci�cally� the former aspects should

occupy at most �� of the course� and the focus should be on basic complexity issues

captured by P� NP� and NP�completeness� augmented by a selection of some more

advanced material� Indeed� such a course can be based on Chapters � and � of the

current book
augmented by a selection of some topics from other chapters��

����� Representation

In Mathematics and related sciences� it is customary to discuss objects without
specifying their representation� This is not possible in the theory of computation�

�The comparison of di�erent methods seems to require the consideration of in�nitely many
possible instances otherwise� the choice of the language in which the methods are described may
play a major role �cf� the discussion of Kolmogorov Complexity in x���������

��	� COMPUTATIONAL TASKS AND MODELS ��

where the representation of objects plays a central role� In a sense� a computation
merely transforms one representation of an object to another representation of the
same object� In particular� a computation designed to solve some problem merely
transforms the problem instance to its solution� where the latter can be though of
as a �possibly partial� representation of the instance� Indeed� the answer to any
fully speci�ed question is implicit in the question itself�

Computational tasks refers to objects that are represented in some canonical
way� where such canonical representation provides an �explicit� and �full� �but not
�overly redundant�� description of the corresponding object� We will consider only
�nite objects like sets� graphs� numbers� and functions �and keep distinguishing
these types of objects although� actually� they are all equivalent�� �For example�
see Appendix G�� for a discussion of the representation of graphs��

Strings� We consider �nite objects� each represented by a �nite binary sequence�
called a string� For a natural number n� we denote by f	� �gn the set of all strings
of length n� hereafter referred to as n�bit �long� strings� The set of all strings is
denoted f	� �g�� that is� f	� �g� � �n�Nf	� �gn� For x� f	� �g�� we denote by jxj
the length of x �i�e�� x � f	� �gjxj�� and often denote by xi the ith bit of x �i�e��
x � x�x� � � �xjxj�� For x� y � f	� �g�� we denote by xy the string resulting from
concatenation of the strings x and y�

At times� we associate f	� �g��f	� �g� with f	� �g�� the reader should merely
consider an adequate encoding �e�g�� the pair �x� � � �xm� y� � � � yn��f	� �g��f	� �g�
may be encoded by the string x�x� � � �xmxm	�y� � � � yn � f	� �g��� Likewise� we
may represent sequences of strings �of �xed or varying length� as single strings�
When we wish to emphasize that such a sequence �or some other object� is to be
considered as a single object we use the notation h�i �e�g�� �the pair �x� y� is encoded
as the string hx� yi���

Numbers� Unless stated di�erently� natural numbers will be encoded by their
binary expansion� that is� the string bn�� � � � b�b� � f	� �gn encodes the numberPn��

i�� bi � �i� where typically we assume that this representation has no leading
zeros �i�e�� bn�� � ��� Rational numbers will be represented as pairs of natural
numbers� In the rare cases in which one considers real numbers as part of the
input to a computational problem� one actually mean rational approximations of
these real numbers�

Special symbols� We denote the empty string by � �i�e�� � � f	� �g� and j�j � 	��
and the empty set by �� It will be convenient to use some special symbols that
are not in f	� �g�� One such symbol is �� which typically denotes an indication by
some algorithm that something is wrong�

����� Computational Tasks

Two fundamental types of computational tasks are the socalled search problems
and decision problems� In both cases� the key notions are the problem
s instances

�	 CHAPTER �� INTRODUCTION AND PRELIMINARIES

and the problem
s speci�cation�

������� Search problems

A search problem consists of a speci�cation of a set of valid solutions �possibly an
empty one� for each possible instance� That is� given an instance� one is required
to �nd a corresponding solution �or to determine that no such solution exists��
For example� consider the problem in which one is given a system of equations
and is asked to �nd a valid solution� Needless to say� much of computer science
is concerned with solving various search problems �e�g�� �nding shortest paths in
a graph� sorting a list of numbers� �nding an occurrence of a given pattern in a
given string� etc�� Furthermore� search problems correspond to the daily notion
of �solving a problem� �e�g�� �nding one
s way between two locations�� and thus a
discussion of the possibility and complexity of solving search problems corresponds
to the natural concerns of most people�

In the following de�nition of solving search problems� the potential solver is a
function �which may be thought of as a solving strategy�� and the sets of possible
solutions associated with each of the various instances are �packed� into a single
binary relation�

De�nition ��� �solving a search problem�� Let R � f	� �g��f	� �g� and R�x� def
�

fy � �x� y� � Rg denote the set of solutions for the instance x� A function f �
f	� �g� f	� �g� � f�g solves the search problem of R if for every x the following
holds� if R�x� �� � then f�x� � R�x� and otherwise f�x� � ��

Indeed� R � f�x� y� � y�R�x�g� and the solver f is required to �nd a solution �i�e��
given x output y � R�x�� whenever one exists �i�e�� the set R�x� is not empty�� It
is also required that the solver f never outputs a wrong solution �i�e�� if R�x� �� �
then f�x� � R�x� and if R�x� � � then f�x� � ��� which in turn means that f
indicates whether x has any solution�

A special case of interest is the case of search problems having a unique solution
�for each possible instance�� that is� the case that jR�x�j � � for every x� In this
case� R is essentially a �total� function� and solving the search problem of R means
computing �or evaluating� the function R �or rather the function R� de�ned by

R��x� def
� y if and only if R�x� � fyg�� Popular examples include sorting a sequence

of numbers� multiplying integers� �nding the prime factorization of a composite
number� etc�

������� Decision problems

A decision problem consists of a speci�cation of a subset of the possible instances�
Given an instance� one is required to determine whether the instance is in the
speci�ed set �e�g�� the set of prime numbers� the set of connected graphs� or the
set of sorted sequences�� For example� consider the problem where one is given a
natural number� and is asked to determine whether or not the number is a prime�
One important case� which corresponds to the aforementioned search problems� is

��	� COMPUTATIONAL TASKS AND MODELS ��

the case of the set of instances having a solution� that is� for any binary relation
R � f	� �g� � f	� �g� we consider the set fx � R�x� �� �g� Indeed� being able
to determine whether or not a solution exists is a prerequisite to being able to
solve the corresponding search problem �as per De�nition ����� In general� decision
problems refer to the natural task of making binary decision� a task that is not
uncommon in daily life �e�g�� determining whether a tra�c light is red�� In any
case� in the following de�nition of solving decision problems� the potential solver
is again a function� that is� in this case the solver is a Boolean function� which is
supposed to indicate membership in the said set�

De�nition ��� �solving a decision problem�� Let S � f	� �g�� A function f �
f	� �g� f	� �g solves the decision problem of S �or decides membership in S� if for
every x it holds that f�x� � � if and only if x � S�

We often identify the decision problem of S with S itself� and identify S with its
characteristic function �i�e�� with �S � f	� �g� f	� �g de�ned such that �S�x� � �
if and only if x � S�� Note that if f solves the search problem of R then the

Boolean function f � � f	� �g� f	� �g de�ned by f ��x� def
� � if and only if f�x� �� �

solves the decision problem of fx � R�x� �� �g�

Re�ection� Most people would consider search problems to be more natural
than decision problems� typically� people seeks solutions more than they stop to
wonder whether or not solutions exist� De�nitely� search problems are not less
important than decision problems� it is merely that their study tends to require
more cumbersome formulations� This is the main reason that most expositions
choose to focus on decision problems� The current book attempts to devote at
least a signi�cant amount of attention also to search problems�

������� Promise problems �an advanced comment�

Many natural search and decision problems are captured more naturally by the
terminology of promise problems� where the domain of possible instances is a subset
of f	� �g� rather than f	� �g� itself� In particular� note that the natural formulation
of many search and decision problems refers to instances of a certain types �e�g�� a
system of equations� a pair of numbers� a graph�� whereas the natural representation
of these objects uses only a strict subset of f	� �g�� For the time being� we ignore
this issue� but we shall revisit it in Section ������ Here we just note that� in typical
cases� the issue can be ignored by postulating that every string represents some
legitimate object �e�g�� each string that is not used in the natural representation of
these objects is postulated as a representation of some �xed object��

����� Uniform Models �Algorithms�

Science is One�

Laci Lov#asz �according to Silvio Micali� ca� ���	��

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

We �nally reach the heart of the current section �Section ����� which is the de�nition
of uniform models of computation� We are all familiar with computers and with
the ability of computer programs to manipulate data� This familiarity seems to
be rooted in the positive side of computing� that is� we have some experience
regarding some things that computers can do� In contrast� complexity theory is
focused at what computers cannot do� or rather with drawing the line between
what can be done and what cannot be done� Drawing such a line requires a precise
formulation of all possible computational processes� that is� we should have a clear
model of all possible computational processes �rather than some familiarity with
some computational processes��

Before being formal� let we o�er a general and abstract description� which
is aimed at capturing any arti�cial as well as natural process� Indeed� arti�cial
processes will be associated with computers� whereas by natural processes we mean
�attempts to model� the �mechanical� aspects the natural reality �be it physical�
biological� or even social��

A computation is a process that modi�es an environment via repeated applica
tions of a predetermined rule� The key restriction is that this rule is simple� in each
application it depends and a�ects only a �small� portion of the environment� called
the active zone� We contrast the a�priori bounded size of the active zone �and of
the modi�cation rule� with the a�priori unbounded size of the entire environment�
We note that� although each application of the rule has a very limited e�ect� the
e�ect of many applications of the rule may be very complex� Put in other words� a
computation may modify the relevant environment in a very complex way� although
it is merely a process of repeatedly applying a simple rule�

As hinted� the notion of computation can be used to model the �mechanical�
aspects of the natural reality� that is� the rules that determine the evolution of
the reality �rather than the speci�c state of the reality at a speci�c time�� In this
case� the starting point of the study is the actual evolution process that takes place
in the natural reality� and the goal of the study is �nding the �computation� rule
that underlies this natural process� In a sense� the goal of Science at large can be
phrased as �nding �simple� rules that govern various aspects of reality �or rather
one
s abstraction of these aspects of reality��

Our focus� however� is on arti�cial computation rules designed by humans in
order to achieve speci�c desired e�ects on a corresponding arti�cial environment�
Thus� our starting point is a desired functionality� and our aim is to design compu
tation rules that e�ect it� Such a computation rule is referred to as an algorithm�
Loosely speaking� an algorithm corresponds to a computer program written in a
highlevel �abstract� programming language� Let us elaborate�

We are interested in the transformation of the environment a�ected by the
computational process �or the algorithm�� Throughout �most of� this book� we
will assume that� when invoked on any �nite initial environment� the computation
halts after a �nite number of steps� Typically� the initial environment to which
the computation is applied encodes an input string� and the end environment �i�e��
at termination of the computation� encodes an output string� We consider the
mapping from inputs to outputs induced by the computation� that is� for each

��	� COMPUTATIONAL TASKS AND MODELS ��

possible input x� we consider the output y obtained at the end of a computation
initiated with input x� and say that the computation maps input x to output y�
Thus� a computation rule �or an algorithm� determines a function �computed by
it�� this function is exactly the aforementioned mapping of inputs to outputs�

In the rest of this book �i�e�� outside the current chapter�� we will also consider
the number of steps �i�e�� applications of the rule� taken by the computation on
each possible input� The latter function is called the time complexity of the com
putational process �or algorithm�� While time complexity is de�ned per input� we
will often considers it per input length� taking the maximum over all inputs of the
same length�

In order to de�ne computation �and computation time� rigorously� one needs
to specify some model of computation� that is� provide a concrete de�nition of
environments and a class of rules that may be applied to them� Such a model
corresponds to an abstraction of a real computer �be it a PC� mainframe or net
work of computers�� One simple abstract model that is commonly used is that of
Turing machines �see� x��������� Thus� speci�c algorithms are typically formalized
by corresponding Turing machines �and their time complexity is represented by the
time complexity of the corresponding Turing machines�� We stress� however� that
most results in the Theory of Computation hold regardless of the speci�c compu
tational model used� as long as it is �reasonable� �i�e�� satis�es the aforementioned
simplicity condition and can perform some obviously simple computations��

What is being computed
 The forgoing discussion has implicitly referred to
algorithms �i�e�� computational processes� as means of computing functions� Specif
ically� an algorithm A computes the function fA � f	� �g� f	� �g� de�ned by
fA�x��y if� when invoked on input x� algorithm A halts with output y� However�
algorithms can also serve as means of �solving search problems� or �making de
cisions� �as in De�nitions ��� and ����� Speci�cally� we will say that algorithm A
solves the search problem of R �resp�� decides membership in S� if fA solves the
search problem of R �resp�� decides membership in S�� In the rest of this exposition
we associate the algorithm A with the function fA computed by it� that is� we write
A�x� instead of fA�x�� For sake of future reference� we summarize the foregoing
discussion�

De�nition ��� �algorithms as problemsolvers�� We denote by A�x� the output
of algorithm A on input x� Algorithm A solves the search problem R �resp�� the
decision problem S� if A� viewed as a function� solves R �resp�� S��

Organization of the rest of Section ������ In x������� we provide a rough
description of the model of Turing machines� This is done merely for sake of pro
viding a concrete model that supports the study of computation and its complexity�
whereas most of the material in this book will not depend on the speci�cs of this
model� In x������� and x������� we discuss two fundamental properties of any rea
sonable model of computation� the existence of uncomputable functions and the
existence of universal computations� The time �and space� complexity of compu

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

tation is de�ned in x�������� We also discuss oracle machines and restricted models
of computation �in x������ and x�������� respectively��

������� Turing machines

The model of Turing machines o�er a relatively simple formulation of the notion
of an algorithm� The fact that the model is very simple complicates the design of
machines that solve problems of interest� but makes the analysis of such machines
simpler� Since the focus of complexity theory is on the analysis of machines and not
on their design� the tradeo� o�ers by this model is suitable for our purposes� We
stress again that the model is merely used as a concrete formulation of the intuitive
notion of an algorithm� whereas we actually care about the intuitive notion and
not about its formulation� In particular� all results mentioned in this book hold for
any other �reasonable� formulation of the notion of an algorithm�

The model of Turing machines is not meant to provide an accurate �or �tight��
model of reallife computers� but rather to capture their inherent limitations and
abilities �i�e�� a computational task can be solved by a reallife computer if and only
if it can be solved by a Turing machine�� In comparison to reallife computers� the
model of Turing machines is extremely oversimpli�ed and abstract away many
issues that are of great concern to computer practice� However� these issues are
irrelevant to the higherlevel questions addressed by complexity theory� Indeed� as
usual� good practice requires more re�ned understanding than the one provided by
a good theory� but one should �rst provide the latter�

Historically� the model of Turing machines was invented before modern com
puters were even built� and was meant to provide a concrete model of computation
and a de�nition of computable functions�	 Indeed� this concrete model clari�ed
fundamental properties of computable functions and plays a key role in de�ning
the complexity of computable functions�

The model of Turing machines was envisioned as an abstraction of the process
of an algebraic computation carried out by a human using a sheet of paper� In
such a process� at each time� the human looks at some location on the paper� and
depending on what he�she sees and what he�she has in mind �which is little�����
he�she modi�es the contents of this location and shifts his�her look to an adjacent
location�

The actual model� Following is a highlevel description of the model of Turing
machines� the interested reader is referred to standard textbooks �e�g�� ��		�� for
further details� Recall that we need to specify the set of possible environments� the
set of machines �or computation rules�� and the e�ect of applying such a rule on
an environment�

� The main component in the environment of a Turing machine is an in�nite
sequence of cells� each capable of holding a single symbol �i�e�� member of
a �nite set � � f	� �g�� In addition� the environment contains the current

�In contrast� the abstract de�nition of �recursive functions� yields a class of �computable�
functions de�ned recursively in terms of the composition of such functions�

��	� COMPUTATIONAL TASKS AND MODELS �

location of the machine on this sequence� and the internal state of the machine
�which is a member of a �nite set Q�� The aforementioned sequence of cells
is called the tape� and its contents combined with the machine
s location and
its internal state is called the instantaneous con�guration of the machine�

� The Turing machine itself consists of a �nite rule �i�e�� a �nite function�� called
the transition function� which is de�ned over the set of all possible symbol
state pairs� Speci�cally� the transition function is a mapping from ��Q to
��Q�f��� 	�$�g� where f���$�� 	g correspond to a movement instruction
�which is either �left� or �right� or �stay�� respectively�� In addition� the
machine
s description speci�es an initial state and a halting state� and the
computation of the machine halts when the machine enters its halting state�

We stress that� in contrast to the �nite description of the machine� the tape
has an a priori unbounded length �and is considered� for simplicity� as being
in�nite��

� A single computation step of such a Turing machine depends on its current
location on the tape� on the contents of the corresponding cell and on the in
ternal state of the machine� Based on the latter two elements� the transition
function determines a new symbolstate pair as well as a movement instruc
tion �i�e�� �left� or �right� or �stay��� The machine modi�es the contents of
the said cell and its internal state accordingly� and moves as directed� That
is� suppose that the machine is in state q and resides in a cell containing the
symbol 	� and suppose that the transition function maps �	� q� to �	�� q�� D��
Then� the machine modi�es the contents of the said cell to 	�� modi�es its
internal state to q�� and moves one cell in direction D� Figure ��� shows a
single step of a Turing machine that� when in state %b
 and seeing a binary
symbol 	� replaces 	 with the symbol 	$�� maintains its internal state� and
moves one position to the right��

Formally� we de�ne the successive con�guration function that maps each in
stantaneous con�guration to the one resulting by letting the machine take a
single step� This function modi�es its argument in a very minor manner� as
described in the foregoing� that is� the contents of at most one cell �i�e�� at
which the machine currently resides� is changed� and in addition the internal
state of the machine and its location may change too�

The initial environment �or con�guration� of a Turing machine consists of the
machine residing in the �rst �i�e�� leftmost� cell and being in its initial state�
Typically� one also mandates that� in the initial con�guration� a pre�x of the tape
s
cells hold bit values� which concatenated together are considered the input� and the
rest of the tape
s cells hold a special symbol �which in Figure ��� is denoted by %
��

�Envisioning the tape as extending from left to right� we also use the convention by which if
the machine tries to move left of the end of the tape then it is considered to have halted�

	Figure ��� corresponds to a machine that� when in the initial state �i�e�� �a��� replaces the
symbol � by ���� modi�es its internal state to �b�� and moves one position to the right� Indeed�
�marking� the leftmost cell �in order to allow for recognizing it in the future�� is a common
practice in the design of Turing machines�

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -

Figure ���� A single step by a Turing machine�

Once the machine halts� the output is de�ned as the contents of the cells that are
to the left of its location �at termination time���� Thus� each machine de�nes a
function mapping inputs to outputs� called the function computed by the machine�

Multi�tape Turing machines� We comment that in most expositions� one
refers to the location of the �head of the machine� on the tape �rather than to
the �location of the machine on the tape��� The standard terminology is more
intuitive when extending the basic model� which refers to a single tape� to a model
that supports a constant number of tapes� In the model of multi�tape machines�
each step of the machine depends and e�ects the cells that are at the head location
of the machine on each tape� As we shall see in Chapter �and in x��������� the
extension of the model to multitape Turing machines is crucial to the de�nition of
space complexity� A less fundamental advantage of the model of multitape Turing
machines is that it facilitates the design of machines that compute functions of
interest�

Teaching note� We strongly recommend avoiding the standard practice of teaching

the student to program with Turing machines� These exercises seem very painful and

pointless� Instead� one should prove that a function can be computed by a Turing

machine if and only if it is computable by a model that is closer to a real�life computer

see the following �sanity check��� For starters� one should prove that a function can be

computed by a single�tape Turing machine if and only if it is computable by a multi�tape

e�g�� two�tape� Turing machine�

The Church�Turing Thesis� The entire point of the model of Turing machines
is its simplicity� That is� in comparison to more �realistic� models of computation�
it is simpler to formulate the model of Turing machines and to analyze machines in
this model� The ChurchTuring Thesis asserts that nothing is lost by considering
the Turing machine model� A function can be computed by some Turing machine

�
By an alternative convention� the machine halts while residing in the left�most cell� and the
output is de�ned as the maximal pre�x of the tape contents that contains only bit values�

��	� COMPUTATIONAL TASKS AND MODELS ��

if and only if it can be computed by some machine of any other �reasonable and
general� model of computation�

This is a thesis� rather than a theorem� because it refers to an intuitive notion
that is left unde�ned on purpose �i�e�� the notion of a reasonable and general model
of computation�� The model should be reasonable in the sense that it should refer
to computation rules that are �simple� in some intuitive sense� On the other hand�
the model should allow to compute functions that intuitively seem computable� At
the very least the model should allow to emulate Turing machines �i�e�� compute
the function that given a description of a Turing machine and an instantaneous
con�guration returns the successive con�guration��

A philosophical comment� The fact that a thesis is used to link an intuitive
concept to a formal de�nition is common practice in any science �or� more broadly�
in any attempt to reason rigorously about intuitive concepts�� The moment an
intuition is rigorously de�ned� it stops being an intuition and becomes a de�nition�
and the question of the correspondence between the original intuition and the
derived de�nition arises� This question can never be rigorously treated� because
it relates to two objects� where one of them is unde�ned� Thus� the question
of correspondence between the intuition and the de�nition always transcends a
rigorous treatment �i�e�� it always belongs to the domain of the intuition��

A sanity check� Turing machines can emulate an abstract RAM� To gain
con�dence in the ChurchTuring Thesis� one may attempt to de�ne an abstract
RandomAccess Machine �RAM�� and verify that it can be emulated by a Turing
machine� An abstract RAM consists of an in�nite number of memory cells� each
capable of holding an integer� a �nite number of similar registers� one designated
as program counter� and a program consisting of instructions selected from a �nite
set� The set of possible instructions includes the following instructions�

� reset�r�� where r is an index of a register� results in setting the value of
register r to zero�

� inc�r�� where r is an index of a register� results in incrementing the content
of register r� Similarly dec�r� causes a decrement�

� load�r�� r��� where r� and r� are indices of registers� results in loading to
register r� the contents of the memory location m� where m is the current
contents of register r��

� store�r�� r��� stores the contents of register r� in the memory� analogously
to load�

� cond�goto�r�
�� where r is an index of a register and
 does not exceed the
program length� results in setting the program counter to
� � if the content
of register r is nonnegative�

The program counter is incremented after the execution of each instruction� and
the next instruction to be executed by the machine is the one to which the program
counter points �and the machine halts if the program counter exceeds the program
s
length�� The input to the machine may be de�ned as the contents of the �rst n

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

memory cells� where n is placed in a special input register� We note that the RAM
model satis�es the ChurchTuring Thesis� but in order to make it closer to real
life computers we may augment the model with additional instructions that are
available on such computers �e�g�� the instruction add�r�� r�� �resp�� mult�r�� r���
that results in adding �resp�� multiplying� the contents of registers r� and r� and
placing the result in register r��� We suggest proving that this abstract RAM can
be emulated by a Turing machine��� �Hint� note that during the emulation� we
only need to hold the input� the contents of all registers� and the contents of the
memory cells that were accessed during the computation����

Observe that the abstract RAM model is signi�cantly more cumbersome than
the Turing machine model� Furthermore� seeking a sound choice of the instruc
tion set �i�e�� the instructions to be allowed in the model� creates a vicious cycle
�because the sound guideline would have been to allow only instructions that corre
spond to �simple� operations� whereas the latter correspond to easily computable
functions����� This vicious cycle was avoided by trusting the reader to consider only
instructions that are available in some reallife computer� �We comment that this
empirical consideration is justi�able in the current context� because our current
goal is merely linking the Turing machine model with the reader
s experience of
reallife computers��

������� Uncomputable functions

Strictly speaking� the current subsection is not necessary for the rest of this book�
but we feel that it provides a useful perspective�

In contrast to what every layman would think� we know that not all functions
are computable� Indeed� an important message to be communicated to the world
is that not every well�de�ned task can be solved by applying a �reasonable� pro
cedure �i�e�� a procedure that has a simple description that can be applied to any
instance of the problem at hand�� Furthermore� not only is it the case that there
exist uncomputable functions� but it is rather the case that most functions are
uncomputable� In fact� only relatively few functions are computable�

Theorem ��	 �on the scarcity of computable functions�� The set of computable
functions is countable� whereas the set of all functions �from strings to string� has
cardinality ��
We stress that the theorem holds for any reasonable model of computation� In
fact� it only relies on the postulate that each machine in the model has a �nite

��We emphasize this direction of the equivalence of the two models� because the RAM model is
introduced in order to convince the reader that Turing machines are not too weak �as a model of
general computation�� The fact that they are not too strong seems self�evident� Thus� it seems
pointless to prove that the RAM model can emulate Turing machines� Still� note that this is
indeed the case� by using the RAM�s memory cells to store the contents of the cells of the Turing
machine�s tape�

��Thus� at each time� the Turning machine�s tape contains a list of the RAM�s memory cells
that were accessed so far as well as their current contents� When we emulate a RAM instruction�
we �rst check whether the relevant RAM cell appears on this list� and augment the list by a
corresponding entry or modify this entry as needed�

��	� COMPUTATIONAL TASKS AND MODELS ��

description �i�e�� can be described by a string��

Proof� Since each computable function is computable by a machine that has
a �nite description� there is a �� correspondence between the set of computable
functions and the set of strings �which in turn is in �� correspondence to the
natural numbers�� On the other hand� there is a �� correspondence between the
set of Boolean functions �i�e�� functions from strings to a bit� and the set of real
number in �	� ��� This correspondence associates each real r � �	� �� to the function
f � N f	� �g such that f�i� is the ith bit in the binary expansion of r�

The Halting Problem� In contrast to the preliminary discussion� at this point
we consider also machines that may not halt on some inputs� �The functions
computed by such machines are partial functions that are de�ned only on inputs
on which the machine halts�� Again� we rely on the postulate that each machine
in the model has a �nite description� and denote the description of machine M by
hMi � f	� �g�� The halting function� h � f	� �g� � f	� �g� f	� �g� is de�ned such

that h�hMi� x� def
� � if and only if M halts on input x� The following result goes

beyond Theorem ��� by pointing to an explicit function �of natural interest� that
is not computable�

Theorem ��� �undecidability of the halting problem�� The halting function is not
computable�

The term undecidability means that the corresponding decision problem cannot be
solved by an algorithm� That is� Theorem �� asserts that the decision problem
associated with the set h����� � f�hMi� x� � h�hMi� x� � �g is not solvable by
an algorithm �i�e�� there exists no algorithm that� given a pair �hMi� x�� decides
whether or not M halts on input x�� Actually� the following proof shows that there
exists no algorithm that� given hMi� decides whether or not M halts on input hMi�
Proof� We will show that even the restriction of h to its �diagonal� �i�e�� the

function d�hMi� def� h�hMi� hMi�� is not computable� Note that the value of d�hMi�
refers to the question of what happens when we feed M with its own description�
which is indeed a �nasty� �but legitimate� thing to do� We will actually do worse�
towards the contradiction� we will consider the value of d when evaluated at a
�machine that is related to a� machine that supposedly computes d�

We start by considering a related function� d�� and showing that this function
is uncomputable� This function is de�ned on purpose so to foil any attempt to
compute it� that is� for every machine M � the value d��hMi� is de�ned to di�er
from M�hMi�� Speci�cally� the function d� � f	� �g� f	� �g is de�ned such

that d��hMi� def
� � if and only if M halts on input hMi with output 	� �That is�

d��hMi� � 	 if either M does not halt on input hMi or its output does not equal
the value 	�� Now� suppose� towards the contradiction� that d� is computable by
some machine� denoted Md� � Note that machine Md� is supposed to halt on every
input� and so Md� halts on input hMd�i� But� by de�nition of d�� it holds that
d��hMd�i� � � if and only if Md� halts on input hMd�i with output 	 �i�e�� if and

�	 CHAPTER �� INTRODUCTION AND PRELIMINARIES

only if Md��hMd�i� � 	�� Thus� Md��hMd�i� �� d��hMd�i� in contradiction to the
hypothesis that Md� computes d��

We next prove that d is uncomputable� and thus h is uncomputable �because
d�z� � h�z� z� for every z�� To prove that d is uncomputable� we show that if d is
computable then so is d� �which we already know not to be the case�� Indeed� let
A be an algorithm for computing d �i�e�� A�hMi� � d�hMi� for every machine M��
Then we construct an algorithm for computing d�� which given hM �i� invokes A on
hM ��i� where M �� is de�ned to operate as follows�

�� On input x� machine M �� emulates M � on input x�

�� If M � halts on input x with output 	 then M �� halts�

�� If M � halts on input x with an output di�erent from 	 then M �� enters an
in�nite loop �and thus does not halt��

�� Otherwise �i�e�� M � does not halt on input x�� then machine M �� does not
halt �because it just stays stuck in Step � forever��

Note that the mapping from hM �i to hM ��i is easily computable �by augmenting
M � with instructions to test its output and enter an in�nite loop if necessary�� and
that d�hM ��i� � d��hM �i�� because M �� halts on x if and only if M �� halts on x with
output 	� We thus derived an algorithm for computing d� �i�e�� transform the input
hM �i into hM ��i and output A�hM ��i��� which contradicts the already established
fact by which d� is uncomputable�

Turing�reductions� The core of the second part of the proof of Theorem �� is
an algorithm that solves one problem �i�e�� computes d�� by using as a subroutine
an algorithm that solves another problem �i�e�� computes d �or h��� In fact� the
�rst algorithm is actually an algorithmic scheme that refers to a �functionally spec
i�ed� subroutine rather than to an actual �implementation of such a� subroutine�
which may not exist� Such an algorithmic scheme is called a Turingreduction �see
formulation in x������ �� Hence� we have Turingreduced the computation of d� to
the computation of d� which in turn Turingreduces to h� The �natural� ��posi
tive�� meaning of a Turingreduction of f � to f is that when given an algorithm for
computing f we obtain an algorithm for computing f �� In contrast� the proof of
Theorem �� uses the �unnatural� ��negative�� counterpositive� if �as we know�
there exists no algorithm for computing f � � d� then there exists no algorithm for
computing f � d �which is what we wanted to prove�� Jumping ahead� we mention
that resourcebounded Turingreductions �e�g�� polynomialtime reductions� play a
central role in complexity theory itself� and again they are used mostly in a �nega
tive� way� We will de�ne such reductions and extensively use them in subsequent
chapters�

Rice�s Theorem� The undecidability of the halting problem �or rather the fact
that the function d is uncomputable� is a special case of a more general phe
nomenon� Every nontrivial decision problem regarding the function computed by

��	� COMPUTATIONAL TASKS AND MODELS ��

a given Turing machine has no algorithmic solution� We state this fact next� clar
ifying what is the aforementioned class of problems� �Again� we refer to Turing
machines that may not halt on all inputs��

Theorem ��� �Rice
s Theorem�� Let F be a non�trivial subset�� of the set of all
computable partial functions� and let SF be the set of strings that describe machines
that compute functions in F � Then deciding membership in SF cannot be solved by
an algorithm�

Theorem ��� can be proved by a Turingreduction from d� We do not provide
a proof because this is too remote from the main subject matter of the book�
We stress that Theorems �� and ��� hold for any reasonable model of computation
�referring both to the potential solvers and to the machines the description of which
is given as input to these solvers�� Thus� Theorem ��� means that no algorithm can
determine any non�trivial property of the function computed by a given computer
program �written in any programming language�� For example� no algorithm can
determine whether or not a given computer program halts on each possible input�
The relevance of this assertion to the project of program veri�cation is obvious�

The Post Correspondence Problem� We mention that undecidability arises
also outside of the domain of questions regarding computing devices �given as
input�� Speci�cally� we consider the Post Correspondence Problem in which the
input consists of two sequences of strings� ���� ���� �k� and ���� ���� �k�� and the
question is whether or not there exists a sequence of indices i�� ���� i� � f�� ���� kg
such that �i� � � ��i� � �i� � � ��i� � �We stress that the length of this sequence is not
bounded����

Theorem �� The Post Correspondence Problem is undecidable�

Again� the omitted proof is by a Turingreduction from d �or h����

������� Universal algorithms

So far we have used the postulate that� in any reasonable model of computation�
each machine �or computation rule� has a �nite description� Furthermore� we
also used the fact that such model should allow for the easy modi�cation of such
descriptions such that the resulting machine computes an easily related function
�see the proof of Theorem �� �� Here we go one step further and postulate that the
description of machines �in this model� is �e�ective� in the following natural sense�
there exists an algorithm that� given a description of a machine �resp�� computation

��The set S is called a non�trivial subset of U if both S and U n S are non�empty� Clearly� if F
is a trivial set of computable functions then the corresponding decision problem can be solved by
a �trivial� algorithm that outputs the corresponding constant bit�

��In contrast� the existence of an adequate sequence of a speci�ed length can be determined in
time that is exponential in this length�

��We mention that the reduction maps an instance �hMi� x� of h to a pair of sequences such
that only the �rst string in each sequence depends on x� whereas the other strings as well as their
number depend only on M �

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

rule� and a corresponding environment� determines the environment that results
from performing a single step of this machine on this environment �resp� the e�ect
of a single application of the computation rule�� This algorithm can� in turn� be
implemented in the said model of computation �assuming this model is general� see
the ChurchTuring Thesis�� Successive applications of this algorithm leads to the
notion of a universal machine� which �for concreteness� is formulated next in terms
of Turing machines�

De�nition ��� �universal machines�� A universal Turing machine is a Turing ma�
chine that on input a description of a machine M and an input x returns the value
of M�x� if M halts on x and otherwise does not halt�

That is� a universal Turing machine computes the partial function u that is de�ned
over pairs �hMi� x� such that M halts on input x� in which case it holds that
u�hMi� x� � M�x�� We note that if M halts on all possible inputs then u�hMi� x�
is de�ned for every x� We stress that the mere fact that we have de�ned something
does not mean that it exists� Yet� as hinted in the foregoing discussion and obvious
to anyone who has written a computer program �and thought about what he�she
was doing�� universal Turing machines do exist�

Theorem ��� There exists a universal Turing machine�

Theorem ��� asserts that the partial function u is computable� In contrast� it can
be shown that any extension of u to a total function is uncomputable� That is� for
any total function &u that agrees with the partial function u on all the inputs on
which the latter is de�ned� it holds that &u is uncomputable���

Proof� Given a pair �hMi� x�� we just emulate the computation of machine M
on input x� This emulation is straightforward� because �by the e�ectiveness of the
description ofM� we can iteratively determine the next instantaneous con�guration
of the computation of M on input x� If the said computation halts then we will
obtain its output and can output it �and so� on input �hMi� x�� our algorithm
returns M�x��� Otherwise� we turn out emulating an in�nite computation� which
means that our algorithm does not halt on input �hMi� x�� Thus� the foregoing
emulation procedure constitutes a universal machine �i�e�� yields an algorithm for
computing u��

As hinted already� the existence of universal machines is the fundamental fact
underlying the paradigm of generalpurpose computers� Indeed� a speci�c Turing
machine �or algorithm� is a device that solves a speci�c problem� A priori� solving
each problem would have required building a new physical device that allows for this
problem to be solved in the physical world �rather than as a thought experiment��

��The claim is easy to prove for the total function �u that extends u and assigns the special

symbol � to inputs on which u is unde�ned �i�e�� �u�hMi� x� def
� � if u is not de�ned on �hMi� x�

and �u�hMi� x� def
� u�hMi� x� otherwise�� In this case h�hMi� x� � � if and only if �u�hMi� x� �� ��

and so the halting function h is Turing�reducible to �u� In the general case� we may adapt the
proof of Theorem ��� by using the fact that� for a machine M that halts on every input� it holds
that �u�hMi� x� � u�hMi� x� for every x �and in particular for x � hMi��

��	� COMPUTATIONAL TASKS AND MODELS ��

The existence of a universal machine asserts that it is enough to build one physical
device� that is� a general purpose computer� Any speci�c problem can then be
solved by writing a corresponding program to be executed �or emulated� by the
general purpose computer� Thus� universal machines correspond to general purpose
computers� and provide the basis for separating hardware from software� In other
words� the existence of universal machines says that software can be viewed as
�part of the� input�

In addition to their practical importance� the existence of universal machines
�and their variants� has important consequences in the theories of computability
and computational complexity� Here we merely note that Theorem ��� implies that
many questions about the behavior of a universal machine on certain input types are
undecidable� For example� it follows that� for some �xed machines �i�e�� universal
ones�� there is no algorithm that determines whether or not the ��xed� machine
halts on a given input� Revisiting the proof of Theorem ��� �see Footnote � ��
it follows that the Post Correspondence Problem remains undecidable even if the
input sequences are restricted to have a speci�c length �i�e�� k is �xed�� A more
important application of universal machines to the theory of computability follows�

A detour� Kolmogorov Complexity� The existence of universal machines�
which may be viewed as universal languages for writing e�ective and succinct
descriptions of objects� plays a central role in Kolmogorov Complexity� Loosely
speaking� the latter theory is concerned with the length of �e�ective� descriptions
of objects� and views the minimum such length as the inherent �complexity� of the
object� that is� �simple� objects �or phenomena� are those having short description
�resp�� short explanation�� whereas �complex� objects have no short description�
Needless to say� these �e�ective� descriptions have to refer to some �xed �language�
�i�e�� to a �xed machine that� given a succinct description of an object� produces
its explicit description�� Fixing any machine M � a string x is called a description
of s with respect to M if M�x� � s� The complexity of s with respect to M � de
noted KM �s�� is the length of the shortest description of s with respect to M �
Certainly� we want to �x M such that every string has a description with respect
to M � and furthermore such that this description is not �signi�cantly� longer than
the description with respect to a di�erent machine M �� The following theorem
make it natural to use a universal machine as the �point of reference� �i�e�� as the
aforementioned M��

Theorem ���� �complexity w�r�t a universal machine�� Let U be a universal ma�
chine� Then� for every machine M �� there exists a constant c such that KU �s� �
KM ��s� $ c for every string s�

The theorem follows by �setting c � O�jhM �ij� and� observing that if x is a de
scription of s with respect to M � then �hM �i� x� is a description of s with respect
to U � Here it is important to use an adequate encoding of pairs of strings �e�g��
the pair �	� � � �	k � � � � � �� is encoded by the string 	�	� � � �	k	k	�� � � � ��� Fix
ing any universal machine U � we de�ne the Kolmogorov Complexity of a string s as

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

K�s�
def
� KU �s�� The reader may easily verify the following facts�

�� K�s� � jsj$O���� for every s�

�Hint� apply Theorem ���	 to a machine that computes the identity map
ping��

�� There exist in�nitely many strings s such that K�s� � jsj�
�Hint� consider s � �n� Alternatively� consider any machine M such that
jM�x�j � jxj for every x��

�� Some strings of length n have complexity at least n� Furthermore� for every
n and i�

jfs � f	� �gn � K�s� � n� igj � �n�i��

�Hint� di�erent strings must have di�erent descriptions with respect to U ��

It can be shown that the function K is uncomputable� The proof is related to the
paradox captured by the following �description� of a natural number� the largest

natural number that can be described by an English sentence of up�to a

thousand letters� �The paradox amounts to observing that if the above num
ber is wellde�ned then so is the integer�successor of the largest natural

number that can be described by an English sentence of up�to a thousand

letters�� Needless to say� the foregoing sentences presuppose that any English sen
tence is a legitimate description in some adequate sense �e�g�� in the sense captured
by Kolmogorov Complexity�� Speci�cally� the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number� and fur
thermore that we can e�ectively produce the largest number that has Kolmogorov
Complexity not exceeding some threshold� Indeed� the paradox provides a proof
to the fact that the latter task cannot be performed� that is� there exists no algo
rithm that given t produces the lexicographically last string s such that K�s� � t�
because if such an algorithm A would have existed then K�s� � O�jhAij� $ log t
and K�s	� � K�s� $O��� � t in contradiction to the de�nition of s�

������	 Time and space complexity

Fixing a model of computation �e�g�� Turing machines� and focusing on algorithms
that halt on each input� we consider the number of steps �i�e�� applications of
the computation rule� taken by the algorithm on each possible input� The latter
function is called the time complexity of the algorithm �or machine�� that is� tA �
f	� �g� N is called the time complexity of algorithm A if� for every x� on input
x algorithm A halts after exactly tA�x� steps�

We will be mostly interested in the dependence of the time complexity on the
input length� when taking the maximum over all inputs of the relevant length�

That is� for tA as above� we will consider TA � N N de�ned by TA�n�
def
�

maxx�f���gnftA�x�g� Abusing terminology� we sometimes refer to TA as the time
complexity of A�

��	� COMPUTATIONAL TASKS AND MODELS �

The time complexity of a problem� As stated in the preface and in the intro
duction� typically is complexity theory not concerned with the �time� complexity
of a speci�c algorithm� It is rather concerned with the �time� complexity of a
problem� assuming that this problem is solvable at all �by some algorithm�� Intu
itively� the time complexity of such a problem is de�ned as the time complexity
of the fastest algorithm that solves this problem �assuming that the latter term is
wellde�ned���	 Actually� we shall be interested in upper and lower bounds on the
�time� complexity of algorithms that solve the problem� However� the complexity
of a problem may depend on the speci�c model of computation in which algorithms
that solve it are implemented� The following CobhamEdmonds Thesis asserts that
the variation �in the time complexity� is not too big� and in particular is irrelevant
to much of the current focus of complexity theory �e�g�� for the PvsNP Question��

The Cobham�Edmonds Thesis� As just stated� the time complexity of a prob
lem may depend on the model of computation� For example� deciding membership
in the set fxx � x � f	� �g�g can be done in lineartime on a twotape Turing ma
chine� but requires quadratictime on a singletape Turing machine��
 On the other
hand� any problem that has time complexity t in the model of multitape Turing
machines� has complexity O�t�� in the model of singletape Turing machines� The
CobhamEdmonds Thesis asserts that the time complexities in any two �reasonable
and general� models of computation are polynomially related� That is� a problem
has time complexity t in some �reasonable and general� model of computation if
and only if it has time complexity poly�t� in the model of �singletape� Turing
machines�

Indeed� the CobhamEdmonds Thesis strengthens the ChurchTuring Thesis�
It asserts not only that the class of solvable problems is invariant as far as �rea
sonable and general� models of computation are concerned� but also that the time
complexity �of the solvable problems� in such models is polynomially related�

E�cient algorithms� As hinted in the foregoing discussions� much of complexity
theory is concerned with e�cient algorithms� The latter are de�ned as polynomial
time algorithms �i�e�� algorithms that have a time complexity that is bounded by
a polynomial in the length of the input�� By the CobhamEdmonds Thesis� the
choice of a �reasonable and general� model of computation is irrelevant to the

��Advanced comment� As we shall see in Section ����� �cf� Theorem ��
�� the naive assump�
tion that a �fastest algorithm� for solving a problem exists is not always justi�ed� On the other
hand� the assumption is essentially justi�ed in some important cases �see� e�g�� Theorem ������
But even in these case the said algorithm is �fastest� �or �optimal�� only up to a constant factor�

��Proving the latter fact is quite non�trivial� One proof is by a �reduction� from a communica�
tion complexity problem ����� Sec� ������ Intuitively� a single�tape Turing machine that decides
membership in the aforementioned set can be viewed as a channel of communication between the
two parts of the input� Focusing our attention on inputs of the form y�nz�n� for y� z � f�� �gn�
each time the machine passes from the �rst part to the second part it carries O��� bits of infor�
mation �in its internal state� while making at least n steps� The proof is completed by invoking
the linear lower bound on the communication complexity of the �two�argument� identity function
�i�e� id�y� z� � � if y � z and id�y� z� � � otherwise� cf� ����� Chap� ����

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

de�nition of this class� The association of e�cient algorithms with polynomial
time computation is grounded in the following two considerations�

� Philosophical consideration� Intuitively� e�cient algorithms are those that
can be implemented within a number of steps that is a moderately growing
function of the input length� To allow for reading the entire input� at least
linear time complexity should be allowed� whereas exponential time �as in
�exhaustive search�� must be avoided� Furthermore� a good de�nition of
the class of e�cient algorithms should be closed under natural composition
of algorithms �as well as be robust with respect to reasonable models of
computation and with respect to simple changes in the encoding of problems

instances��

Selecting polynomials as the set of timebounds for e�cient algorithms sat
isfy all the foregoing requirements� polynomials constitute a �closed� set of
moderately growing functions� where �closure� means closure under addition�
multiplication and functional composition� These closure properties guaran
tee the closure of the class of e�cient algorithm under natural composition
of algorithms �as well as its robustness with respect to any reasonable and
general model of computation�� Furthermore� polynomialtime algorithms
can conduct computations that are intuitively simple �although not necessar
ily trivial�� and on the other hand they do not include algorithms that are
intuitively ine�cient �like exhaustive search��

� Empirical consideration� It is clear that algorithms that are considered e�
cient in practice have runningtime that is bounded by a small polynomial
�at least on the inputs that occur in practice�� The question is whether any
polynomialtime algorithm can be considered e�cient in an intuitive sense�
The belief� which is supported by past experience� is that every natural prob
lem that can be solved in polynomialtime also has �reasonably e�cient�
algorithms�

We stress that the association of e�cient algorithms with polynomialtime compu
tation is not essential to most of the notions� results and questions of complexity
theory� Any other class of algorithms that supports the aforementioned closure
properties and allows to conduct some simple computations but not overly com
plex ones gives rise to a similar theory� albeit the formulation of such a theory may
be much more complicated� Speci�cally� all results and questions treated in this
book are concerned with the relation among the complexities of di�erent computa
tional tasks �rather than with providing absolute assertions about the complexity
of some computational tasks�� These relations can be stated explicitly� by stating
how any upperbound on the time complexity of one task gets translated to an
upperbound on the time complexity of another task��� Such cumbersome state

�	For example� the NP�completeness of SAT �cf� Theorem ����� implies that any algorithm
solving SAT in time T yields an algorithm that factors composite numbers in time T � such that
T ��n� � poly�n� � �� � T �poly�n���� �More generally� if the correctness of solutions for n�bit
instances of some search problem can be veri�ed in time t�n� then such solutions can be found in
time T � such that T ��n� � t�n� � �� � T �O�t�n�������

��	� COMPUTATIONAL TASKS AND MODELS ��

ments will maintain the contents of the standard statements� they will merely be
much more complicated� Thus� we follow the tradition of focusing on polynomial
time computations� while stressing that this focus is both natural and provides the
simplest way of addressing the fundamental issues underlying the nature of e�cient
computation�

Universal machines� revisited� The notion of time complexity gives rise to a
timebounded version of the universal function u �presented in x��������� Speci�

cally� we de�ne u��hMi� x� t� def
� y if on input x machine M halts within t steps and

outputs the string y� and u��hMi� x� t� def
� � if on input x machine M makes more

than t steps� Unlike u� the function u� is a total function� Furthermore� unlike
any extension of u to a total function the function u� is computable� Moreover� u�

is computable by a machine U � that on input X � �hMi� x� t� halts after poly�t�
steps� Indeed� machine U � is a variant of a universal machine �i�e�� on input X � ma
chine U � merely emulates M for t steps rather than emulating M till it halts �and
potentially inde�nitely��� Note that the number of steps taken by U � depends on
the speci�c model of computation �and that some overhead is unavoidable because
emulating each step of M requires reading the relevant portion of the description
of M��

Space complexity� Another natural measure of the �complexity� of an algo
rithm �or a task� is the amount of memory consumed by the computation� We
refer to the memory used for storing some intermediate results of the computation�
Since much of our focus will be on using memory that is sublinear in the input
length� it is important to use a model in which one can di�erentiate memory used
for computation from memory used for storing the initial input or the �nal output�
In the context of Turing machines� this is done by considering multitape Turing
machines such that the input is presented on a special readonly tape �called the
input tape�� the output is written on a special writeonly tape �called the output
tape�� and intermediate results are stored on a worktape� Thus� the input and
output tapes cannot be used for storing intermediate results� The space complexity
of such a machine M is de�ned as a function sM such that sM �x� is the number of
cells of the worktape that are scanned by M on input x� As in the case of time

complexity� we will usually refer to SA�n�
def
� maxx�f���gnfsA�x�g�

������� Oracle machines

The notion of Turingreductions� which was discussed in x�������� is captured by
the following de�nition of socalled oracle machines� Loosely speaking� an oracle
machine is a machine that is augmented such that it may pose questions to the
outside� �A rigorous formulation of this notion is provided below�� We consider
the case in which these questions� called queries� are answered consistently by some
function f � f	� �g� f	� �g�� called the oracle� That is� if the machine makes a
query q then the answer it obtains is f�q�� In such a case� we say that the oracle
machine is given access to the oracle f � For an oracle machine M � a string x and a

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

function f � we denote by Mf �x� the output of M on input x when given access to
the oracle f � �Reexamining the second part of the proof of Theorem �� � observe
that we have actually described an oracle machine that computes d� when given
access to the oracle d��

The notion of an oracle machine extends the notion of a standard computing
device �machine�� and thus a rigorous formulation of the former extends a formal
model of the latter� Speci�cally� extending the model of Turing machines� we derive
the following model of oracle Turing machines�

De�nition ���� �using an oracle��

� An oracle machine is a Turing machine with an additional tape� called the
oracle tape� and two special states� called oracle invocation and oracle spoke�

� The computation of the oracle machine M on input x and access to the oracle
f � f	� �g� f	� �g� is de�ned based on the successive con�guration function�
For con�gurations with state di�erent from oracle invocation the next con�g�
uration is de�ned as usual� Let � be a con�guration in which the machine	s
state is oracle invocation and suppose that the actual contents of the oracle
tape is q
i�e�� q is the contents of the maximal pre�x of the tape that holds bit
values���� Then� the con�guration following � is identical to �� except that
the state is oracle spoke� and the actual contents of the oracle tape is f�q��
The string q is called M 	s query and f�q� is called the oracle�s reply�

� The output of M on input x when given oracle access to f is denote Mf �x��

We stress that the running time of an oracle machine is the number of steps made
during its computation� and that the oracle
s reply on each query is obtained in a
single step�

������� Restricted models

We mention that restricted models of computation are often mentioned in the
context of a course on computability� but they will play no role in the current book�
One such model is the model of �nite automata� which in some variant coincides
with Turing machines that have spacecomplexity zero �equiv�� constant��

In our opinion� the most important motivation for the study of these restricted
models of computation is that they provide simple models for some natural �or
arti�cial� phenomena� This motivation� however� seems only remotely related to
the study of the complexity of various computational tasks� Thus� in our opinion�
the study of these restricted models �e�g�� any of the lower levels of Chomsky
s
Hierarchy ����� Chap� ��� should be decoupled from the study of computability
theory �let alone the study of complexity theory��

�
This �ts the de�nition of the actual contents of a tape of a Turing machine �cf� x���������
A common convention is that the oracle can be invoked only when the machine�s head resides at
the left�most cell of the oracle tape� We comment that� in the context of space complexity� one
uses two oracle tapes� a write�only tape for the query and a read�only tape for the answer�

��	� COMPUTATIONAL TASKS AND MODELS ��

Teaching note� Indeed� we reject the common coupling of computability theory with

the theory of automata and formal languages� Although the historical links between

these two theories
at least in the West� can not be denied� this fact cannot justify

coupling two fundamentally di�erent theories
especially when such a coupling promotes

a wrong perspective on computability theory��

����� Non	uniform Models �Circuits and Advice�

By a nonuniform model of computation we mean a model in which for each possible
input length one considers a di�erent computing device� That is� there is no �uni
formity� requirement relating devices that correspond to di�erent input lengths�
Furthermore� this collection of devices is in�nite by nature� and �in absence of
a uniformity requirement� this collection may not even have a �nite description�
Nevertheless� each device in the collection has a �nite description� In fact� the
relationship between the size of the device �resp�� the length of its description� and
the length of the input that it handles will be of major concern� The hope is that
the �niteness of all parameters �which refer to a single device in such a collection�
will allow for the application of combinatorial techniques to analyze the limitations
of certain settings of parameters�

In complexity theory� nonuniform models of computation are studied either
towards the development of lowerbound techniques or as simpli�ed upperbounds
on the ability of e�cient algorithms��� In both cases� the uniformity condition is
eliminated in the interest of simplicity and with the hope �and belief� that nothing
substantial is lost as far as the issues at hand are concerned�

We will focus on two related models of nonuniform computing devices� Boolean
circuits �x�������� and �machines that take advice� �x��������� The former model is
more adequate for the study of the evolution of computation �i�e�� development of
lowerbound techniques�� whereas the latter is more adequate for modeling purposes
�e�g�� upperbounding the ability of e�cient algorithms�� �These models will be
further studied in Sections ��� and �����

����	�� Boolean Circuits

The most popular model of nonuniform computation is the one of Boolean circuits�
Historically� this model was introduced for the purpose of describing the �logic
operation� of reallife electronic circuits� Ironically� nowadays this model provides
the stage for some of the most practically removed studies in complexity theory
�which aim at developing methods that may eventually lead to an understanding
of the inherent limitations of e�cient algorithms��

A Boolean circuit is a directed acyclic graph�� with labels on the vertices� to be
discussed shortly� For sake of simplicity� we disallow isolated vertices �i�e�� vertices

��The second case includes also the case of e�cient algorithms that are invoked on arbitrary
inputs �as considered in the context of de�randomization �cf� Section
��� and zero�knowledge �cf�
Section 	�����

��See Appendix G���

�	 CHAPTER �� INTRODUCTION AND PRELIMINARIES

with no ingoing or outgoing edges�� and thus the graph
s vertices are of three
types� sources� sinks� and internal vertices�

�� Internal vertices are vertices having incoming and outgoing edges �i�e�� they
have indegree and outdegree at least ��� In the context of Boolean cir
cuits� internal vertices are called gates� Each gate is labeled by a Boolean
operation� where the operations that are typically considered are
� � and
� �corresponding to and� or and neg�� In addition� we require that gates
labeled � have indegree �� �The incoming degree of
gates and �gates
may be any number greater than zero� and the same holds for the outdegree
of any gate��

�� The graph sources �i�e�� vertices with no ingoing edges� are called input ter�
minals� Each input terminal is labeled by a natural number �which is to be
thought of the index of an input variable�� �For sake of de�ning formulae
�see x��������� we allow di�erent input terminals to be labeled by the same
number����

�� The graph sinks �i�e�� vertices with no outgoing edges� are called output ter�
minals� and we require that they have indegree �� Each output terminal is
labeled by a natural number such that if the circuit has m output terminals
then they are labeled �� �� ����m� That is� we disallow di�erent output ter
minals to be labeled by the same number� and insist that the labels of the
output terminals are consecutive numbers� �Indeed� the labels of the output
terminals will correspond to the indices of locations in the circuit
s output��

For sake of simplicity� we also mandate that the labels of the input terminals are
consecutive numbers���

A Boolean circuit with n di�erent input labels and m output terminals induces
�and indeed computes� a function from f	� �gn to f	� �gm de�ned as follows� For
any �xed string x � f	� �gn� we iteratively de�ne the value of vertices in the circuit
such that the input terminals are assigned the corresponding bits in x � x� � � �xn
and the values of other vertices are determined in the natural manner� That is�

� An input terminal with label i � f�� ���� ng is assigned the ith bit of x �i�e��
the value xi��

� If the children of a gate �of indegree d� that is labeled
 have values v�� v�� ���� vd�
then the gate is assigned the value
di��vi� The value of a gate labeled � �or
�� is determined analogously�

��This is not needed in case of general circuits� because we can just feed out�going edges of the
same input terminal to many gates� Note� however� that this is not allowed in case of formulae�
where all non�sinks are required to have out�degree exactly ��

��This convention slightly complicates the construction of circuits that ignore some of the input
values� Speci�cally� we use arti�cial gadgets that have in�coming edges from the corresponding
input terminals� and compute an adequate constant� To avoid having this constant as an output
terminal� we feed it into an auxiliary gate such that the value of the latter is determined by the
other in�going edge �e�g�� a constant � fed into an ��gate�� See example of dealing with x� in
Figure ����

��	� COMPUTATIONAL TASKS AND MODELS ��

1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure ���� A circuit computing f�x�� x�� x�� x�� � �x� 	 x�� x�
 �x�
 x���

Indeed� the hypothesis that the circuit is acyclic implies that the process
of determining values for the circuit
s vertices is wellde�ned� As long as the
value of some vertex is undetermined� there exists a vertex such that its value
is undetermined but the values of all its children are determined� Thus� the
process can make progress� and terminates when the values of all vertices
�including the output terminals� are determined�

The value of the circuit on input x �i�e�� the output computed by the circuit on
input x� is y � y� � � � ym� where yi is the value assigned by the foregoing process
to the output terminal labeled i� We note that there exists a polynomial�time
algorithm that� given a circuit C and a corresponding input x� outputs the value of
C on input x� This algorithm determines the values of the circuit
s vertices� going
from the circuit
s input terminals to its output terminals�

We say that a family of circuits �Cn�n�N computes a function f � f	� �g� f	� �g�
if for every n the circuit Cn computes the restriction of f to strings of length n� In
other words� for every x � f	� �g�� it must hold that Cjxj�x� � f�x��

Bounded and unbounded fan�in� We will be most interested in circuits in
which each gate has at most two incoming edges� In this case� the types of �two
argument� Boolean operations that we allow is immaterial �as long as we consider
a �full basis� of such operations� i�e�� a set of operations that can implement any
other twoargument Boolean operation�� Such circuits are called circuits of bounded
fan�in� In contrast� other studies are concerned with circuits of unbounded fan�in�
where each gate may have an arbitrary number of ingoing edges� Needless to say�
in the case of circuits of unbounded fanin� the choice of allowed Boolean operations
is important and one focuses on operations that are �uniform� �across the number
of operants� e�g��
 and ���

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

Circuit size as a complexity measure� The size of a circuit is the number of
its edges� When considering a family of circuits �Cn�n�N that computes a function
f � f	� �g� f	� �g�� we are interested in the size of Cn as a function of n�
Speci�cally� we say that this family has size complexity s � N N if for every n the
size of Cn is s�n�� The circuit complexity of a function f � denoted sf � is the in�mum
of the size complexity of all families of circuits that compute f � Alternatively� for
each n we may consider the size of the smallest circuit that computes the restriction
of f to nbit strings �denoted fn�� and set sf �n� accordingly� We stress that non
uniformity is implicit in this de�nition� because no conditions are made regarding
the relation between the various circuits used to compute the function on di�erent
input lengths�

The circuit complexity of functions� We highlight some simple facts about
the circuit complexity of functions� �These facts are in clear correspondence to
facts regarding Kolmogorov Complexity mentioned in x���������

�� Most importantly� any Boolean function can be computed by some family
of circuits� and thus the circuit complexity of any function is wellde�ned�
Furthermore� each function has at most exponential circuit complexity�

�Hint� fn � f	� �gn f	� �g can be computed by a circuit of size O�n�n� that
implements a lookup table��

�� Some functions have polynomial circuit complexity� In particular� any func
tion that has time complexity t �i�e�� is computed by an algorithm of time
complexity t� has circuit complexity poly�t�� Furthermore� the correspond
ing circuit family is uniform �in a natural sense to be discussed in the next
paragraph��

�Hint� consider a Turing machine that computes the function� and consider
its computation on a generic nbit long input� The corresponding compu
tation can be emulated by a circuit that consists of t�n� layers such that
each layer represents an instantaneous con�guration of the machine� and the
relation between consecutive con�gurations is captured by ��uniform�� local
gadgets in the circuit� For further details see the proof of Theorem ���	�
which presents a similar emulation��

�� Almost all Boolean functions have exponential circuit complexity� Speci�
cally� the number of functions mapping f	� �gn to f	� �g that can be computed
by some circuit of size s is at most s�s�

�Hint� the number of circuits having v vertices and s edges is at most �v ��v��s��
Note that the �rst fact implies that families of circuits can compute functions that
are uncomputable by algorithms� Furthermore� this phenomenon occurs also when
restricting attention to families of polynomialsize circuits� See further discussion
in x��������

��	� COMPUTATIONAL TASKS AND MODELS ��

Uniform families� A family of polynomialsize circuits �Cn�n�N is called uniform
if given n one can construct the circuit Cn in poly�n�time� Note that if a function
is computable by a uniform family of polynomial�size circuits then it is computable
by a polynomial�time algorithm� This algorithm �rst constructs the adequate cir
cuit �which can be done in polynomialtime by the uniformity hypothesis�� and
then evaluate this circuit on the given input �which can be done in time that is
polynomial in the size of the circuit��

Note that limitations on the computing power of arbitrary families of polynomial
size circuits certainly hold for uniform families �of polynomialsize�� which in turn
yield limitations on the computing power of polynomialtime algorithms� Thus�
lower bounds on the circuit complexity of functions yield analogous lower bounds
on their time complexity� Furthermore� as is often the case in mathematics and
Science� disposing of an auxiliary condition that is not wellunderstood �i�e�� uni
formity� may turn out fruitful� Indeed� this has occured in the study of classes of
restricted circuits� which is reviewed in x������� �and Appendix B��

����	�� Machines that take advice

General �nonuniform� circuit families and uniform circuit families are two extremes
with respect to the �amounts of nonuniformity� in the computing device� Intu
itively� in the former� nonuniformity is only bounded by the size of the device�
whereas in the latter the amounts of nonuniformity is zero� Here we consider a
model that allows to decouple the size of the computing device from the amount
of nonuniformity� which may range from zero to the device
s size� Speci�cally� we
consider algorithms that �take a nonuniform advice� that depends only on the
input length� The amount of nonuniformity will be de�ned to equal the length of
the corresponding advice �as a function of the input length��

De�nition ���� �taking advice�� We say that algorithm A computes the function
f using advice of length
 � N N if there exists an in�nite sequence �an�n�N such
that

�� For every x � f	� �g�� it holds that A�ajxj� x� � f�x��

� For every n � N � it holds that janj �
�n��

The sequence �an�n�N is called the advice sequence�

Note that any function having circuit complexity s can be computed using advice
of length O�s log s�� where the log factor is due to the fact that a graph with v
vertices and e edges can be described by a string of length �e log� v� Note that the
model of machines that use advice allows for some sharper bounds than the ones
stated in x�������� every function can be computed using advice of length
 such
that
�n� � �n� and some uncomputable functions can be computed using advice
of length ��

Theorem ���� �the power of advice�� There exist functions that can be computed
using one�bit advice but cannot be computed without advice�

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

Proof� Starting with any uncomputable Boolean function f � N f	� �g� consider
the function f � de�ned as f ��x� � f�jxj�� Note that f is Turingreducible to f � �e�g��
on input nmake any nbit query to f �� and return the answer���� Thus� f � cannot be
computed without advice� On the other hand� f � can be easily computed by using
the advice sequence �an�n�N such that an � f�n�� that is� the algorithm merely
outputs the advice bit �and indeed ajxj � f�jxj� � f ��x�� for every x � f	� �g���

����	�� Restricted models

As noted in x�������� the model of Boolean circuits allows for the introduction of
many natural subclasses of computing devices� Following is a laconic review of a
few of these subclasses� For more detail� see Appendix B��� Since we shall refer to
various types of Boolean formulae in the rest of this book� we suggest not to skip
the following two paragraphs�

Boolean formulae� In general Boolean circuits the nonsink vertices are allowed
arbitrary outdegree� This means that the same intermediate value can be reused
�without being recomputed �and while increasing the size complexity by only one
unit��� Such �free� reusage of intermediate values is disallowed in Boolean formu
lae� which corresponds to a Boolean expression over Boolean variables� Formally�
a Boolean formula is a circuit in which all nonsink vertices have outdegree ��
which means that the underlying graph is a tree �see xG��� and the formula as
an expression can be read by traversing the tree �and registering the vertices
 la
bels in the order traversed�� Indeed� we have allowed di�erent input terminals to
be assigned the same label in order to allow formulae in which the same variable
occurs multiple times� As in case of general circuits� one is interested in the size
of these restricted circuits �i�e�� the size of families of formulae computing various
functions�� We mention that quadratic lower bounds are known for the formula
size of simple functions �e�g�� parity�� whereas these functions have linear circuit
complexity� This discrepancy is depicted in Figure ����

Formulae in CNF and DNF� A restricted type of Boolean formulae consists
of formulae that are in conjunctive normal form �CNF�� Such a formula consists of
a conjunction of clauses� where each clause is a disjunction of literals each being
either a variable or its negation� That is� such formulae are represented by layered
circuits of unbounded fanin in which the �rst layer consists of neggates that
compute the negation of input variables� the second layer consist of orgates that
compute the logicalor of subsets of inputs and negated inputs� and the third layer
consists of a single andgate that computes the logicaland of the values computed
in the second layer� Note that each Boolean function can be computed by a family
of CNF formulae of exponential size� and that the size of CNF formulae may be
exponentially larger than the size of ordinary formulae computing the same function

��Indeed� this Turing�reduction is not e�cient �i�e�� it runs in exponential time in jnj � log� n��
but this is immaterial in the current context�

��	� COMPUTATIONAL TASKS AND MODELS �

1 n
of x x

1 n
of x x

1 n
of x x

2n
of x ...x

n+1 2n
of x ...x

n+12n
of x ...x

n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure ���� Recursive construction of parity circuits and formulae�

�e�g�� parity�� For a constant k� a formula is said to be in k�CNF if its CNF has
disjunctions of size at most k� An analogous restricted type of Boolean formulae
refers to formulae that are in disjunctive normal form �DNF�� Such a formula consists
of a disjunction of a conjunctions of literals� and when each conjunction has at most
k literals we say that the formula is in k�DNF�

Constant�depth circuits� Circuits have a �natural structure� �i�e�� their struc
ture as graphs�� One natural parameter regarding this structure is the depth of a
circuit� which is de�ned as the longest directed path from any source to any sink� Of
special interest are constantdepth circuits of unbounded fanin� We mention that
subexponential lower bounds are known for the size of such circuits that compute
a simple function �e�g�� parity��

Monotone circuits� The circuit model also allows for the consideration of mono
tone computing devices� a monotone circuit is one having only monotone gates
�e�g�� gates computing
 and �� but no negation gates �i�e�� �gates��� Needless
to say� monotone circuits can only compute monotone functions� where a function
f � f	� �gn f	� �g is called monotone if for any x � y it holds that f�x� � f�y�
�where x� � � �xn � y� � � � yn if and only if for every bit position i it holds that
xi � yi�� One natural question is whether� as far as monotone functions are con
cerned� there is a substantial loss in using only monotone circuits� The answer is
yes� there exist monotone functions that have polynomial circuit complexity but
require subexponential size monotone circuits�

����� Complexity Classes

Complexity classes are sets of computational problems� Typically� such classes are
de�ned by �xing three parameters�

�� A type of computational problems �see Section ������� Indeed� most classes
refer to decision problems� but classes of search problems� promise problems�
and other types of problems will also be considered�

�� CHAPTER �� INTRODUCTION AND PRELIMINARIES

�� A model of computation� which may be either uniform �see Section ������ or
nonuniform �see Section �������

�� A complexity measure and a function �or a set of functions�� which put to
gether limit the class of computations of the previous item� that is� we refer
to the class of computations that have complexity not exceeding the speci
�ed function �or set of functions�� For example� in x�������� we mentioned
time complexity and space complexity� which apply to any uniform model of
computation� We also mentioned polynomialtime computations� which are
computations in which the time complexity �as a function� does not exceed
some polynomial �i�e�� a member of the set of polynomial functions��

The most common complexity classes refer to decision problems� and are sometimes
de�ned as classes of sets rather than classes of the corresponding decision problems�
That is� one often says that a set S � f	� �g� is in the class C rather than saying
that the problem of deciding membership in S is in the class C� Likewise� one talks
of classes of relations rather than classes of the corresponding search problems �i�e��
saying that R � f	� �g��f	� �g� is in the class C means that the search problem of
R is in the class C��

Chapter Notes

It is quite remarkable that the theories of uniform and nonuniform computational
devices have emerged in two single papers� We refer to Turing
s paper ������ which
introduced the model of Turing machines� and to Shannon
s paper ������ which
introduced Boolean circuits�

In addition to introducing the Turing machine model and arguing that it cor
responds to the intuitive notion of computability� Turing
s paper ����� introduces
universal machines and contains proofs of undecidability �e�g�� of the Halting Prob
lem��

The ChurchTuring Thesis is attributed to the works of Church � �� and Tur
ing ������ In both works� this thesis is invoked for claiming that the fact that
Turing machines cannot solve some problem implies that this problem cannot be
solved in any �reasonable� model of computation� The RAM model is attributed
to von Neumann
s report ������

The association of e�cient computation with polynomialtime algorithms is
attributed to the papers of Cobham � �� and Edmonds ����� It is interesting to
note that Cobham
s starting point was his desire to present a philosophically sound
concept of e�cient algorithms� whereas Edmonds
s starting point was his desire to
articulate why certain algorithms are �good� in practice�

Rice
s Theorem is proven in ��� �� and the undecidability of the Post Correspon
dence Problem is proven in ������ The formulation of machines that take advice
�as well as the equivalence to the circuit model� originates in ������

Chapter �

P� NP and

NP�Completeness

Forasmuch as many have taken in hand to set forth in order a
declaration of those things which are most surely believed among
us� Even as they delivered them unto us� who from the beginning
were eyewitnesses� and ministers of the word� It seems good to
me also� having had perfect understanding of all things from the
very �rst� to write unto thee in order� most excellent Theophilus�
That thou mightest know the certainty of those things� wherein
thou hast been instructed�

Luke� �����

The main focus of this chapter is the PvsNP Question and the theory of NP
completeness� Additional topics covered in this chapter include the general notion
of a polynomialtime reduction �with a special emphasis on selfreducibility�� the
existence of problems in NP that are neither NPcomplete nor in P� the class coNP�
optimal search algorithms� and promise problems�

Summary� Loosely speaking� the PvsNP Question refers to search
problems for which the correctness of solutions can be e�ciently checked
�i�e�� there is an e�cient algorithm that given a solution to a given
instance determines whether or not the solution is correct�� Such search
problems correspond to the class NP� and the question is whether or
not all these search problems can be solved e�ciently �i�e�� is there
an e�cient algorithm that given an instance �nds a correct solution��
Thus� the PvsNP Question can be phrased as asking whether or not
�nding solutions is harder than checking the correctness of solutions�

An alternative formulation� in terms of decision problems� refers to as
sertions that have e�ciently veri�able proofs �of relatively short length��
Such sets of assertions correspond to the class NP� and the question is

��

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

whether or not proofs for such assertions can be found e�ciently �i�e��
is there an e�cient algorithm that given an assertion determines its va
lidity and�or �nds a proof for its validity�� Thus� the PvsNP Question
can be phrased as asking whether or not discovering proofs is harder
than verifying their correctness� that is� is proving harder than verifying
�or are proofs valuable at all��

Indeed� it is widely believed that the answer to the two equivalent
formulations is that �nding �resp�� discovering� is harder than checking
�resp�� verifying�� that is� that P is di�erent than NP� The fact that
this natural conjecture is unsettled seems to be one of the big sources
of frustration of complexity theory� The author
s opinion� however� is
that this feeling of frustration is out of place� In any case� at present�
when faced with a hard problem in NP� we cannot expect to prove that
the problem is not in P �unconditionally�� The best we can expect
is a conditional proof that the said problem is not in P� based on the
assumption that NP is di�erent from P� The contrapositive is proving
that if the said problem is in P� then so is any problem in NP �i�e�� NP
equals P�� This is where the theory of NPcompleteness comes into the
picture�

The theory of NPcompleteness is based on the notion of a reduction�
which is a relation between computational problems� Loosely speaking�
one computational problem is reducible to another problem if it is pos
sible to e�ciently solve the former when provided with an �e�cient�
algorithm for solving the latter� Thus� the �rst problem is not harder
to solve than the second one� A problem �in NP� is NPcomplete if any
problem in NP is reducible to it� Thus� the fate of the entire class NP
�with respect to inclusion in P� rests with each individual NPcomplete
problem� In particular� showing that a problem is NPcomplete implies
that this problem is not in P unless NP equals P� Amazingly enough�
NPcomplete problems exist� and furthermore hundreds of natural com
putational problems arising in many di�erent areas of mathematics and
science are NPcomplete�

We stress that NPcomplete problems are not the only hard problems
in NP �i�e�� if P is di�erent than NP then NP contains problems that
are neither NPcomplete nor in P�� We also note that the PvsNP
Question is not about inventing sophisticated algorithms or ruling out
their existence� but rather boils down to the analysis of a single known
algorithm� that is� we will present an optimal search algorithm for any
problem in NP� while having not clue about its time complexity�

Teaching note� Indeed� we suggest presenting the P�vs�NP Question both in terms

of search problems and in terms of decision problems� Furthermore� in the latter case�

we suggest introducing NP by explicitly referring to the terminology of proof systems�

As for the theory of NP�completeness� we suggest emphasizing the mere existence of

NP�complete problems�

	��� THE P VERSUS NP QUESTION ��

Prerequisites� We assume familiarity with the notions of search and decision
problems �see Section ������� algorithms �see Section ������ and their time com
plexity �see x��������� We will also refer to the notion of an oracle machine �see
x������ ��

Organization� In Section ��� we present the two formulations of the PvsNP
Question� The general notion of a reduction is presented in Section ���� where we
highlight its applicability outside the domain of NPcompleteness� Section ���
is devoted to the theory of NPcompleteness� whereas Section ��� treats three
relatively advanced topics �i�e�� the framework of promise problems� the existence
of optimal search algorithms for NP� and the class coNP��

Teaching note� This chapter has more teaching notes than any other chapter in the

book� This re�ects the author�s concern regarding the way in which this fundamental

material is often taught� Speci�cally� it is the author�s impression that the material

covered in this chapter is often taught in wrong ways� which fail to communicate its

fundamental nature�

��� The P versus NP Question

Our daily experience is that it is harder to solve a problem than it is to check the
correctness of a solution� Is this experience merely a coincidence or does it represent
a fundamental fact of life �or a property of the world�! This is the essence of the P
versus NP Question� where P represents search problems that are e�ciently solvable
and NP represents search problems for which solutions can be e�ciently checked�

Another natural question captured by the P versus NP Question is whether
proving theorems is harder that verifying the validity of these proofs� In other
words� the question is whether deciding membership in a set is harder than being
convinced of this membership by an adequate proof� In this case� P represents
decision problems that are e�ciently solvable� whereas NP represents sets that have
e�ciently checkable proofs of membership�

These two meanings of the P versus NP Question are rigorously presented and
discussed in Sections ����� and ������ respectively� The equivalence of the two
formulations is shown in Section ������ and the common belief that P is di�erent
from NP is further discussed in Section ���� � Let us start by recalling the notion
of e�cient computation�

Teaching note� Most students have heard of P and NP before� but we suspect that

many have not obtained a good explanation of what the P vs NP Question actually

represents� This unfortunate situation is due to using the standard technical de�nition

of NP
which refers to the �ctitious and confusing device called a non�deterministic

polynomial�time machine�� Instead� we advocate the use of the more cumbersome de��

nitions sketched in the forgoing paragraphs
and elaborated in Sections ����� and �������

which clearly capture the fundamental nature of NP�

 	 CHAPTER 	� P� NP AND NPCOMPLETENESS

The notion of e�cient computation� Recall that we associate e�cient com
putation with polynomialtime algorithms�� This association is justi�ed by the fact
that polynomials are a class of moderately growing functions that is closed under
operations that correspond to natural composition of algorithms� Furthermore� the
class of polynomialtime algorithms is independent of the speci�c model of com
putation� as long as the latter is �reasonable� �cf� the CobhamEdmonds Thesis��
Both issues are discussed in x��������

Advanced note on the representation of problem instances� As noted
in Section ������ many natural �search and decision� problems are captured more
naturally by the terminology of promise problems �cf� Section ������� where the
domain of possible instances is a subset of f	� �g� rather than f	� �g� itself� For ex
ample� computational problems in graph theory presume some simple encoding of
graphs as strings� but this encoding is typically not onto �i�e�� not all strings encode
graphs�� and thus not all strings are legitimate instances� However� in these cases�
the set of legitimate instances �e�g�� encodings of graphs� is e�ciently recognizable
�i�e�� membership in it can be decided in polynomialtime�� Thus� arti�cially ex
tending the set of instances to the set of all possible strings �and allowing trivial
solutions for the corresponding dummy instances� does not change the complexity
of the original problem� We further discuss this issue in Section ������

����� The search version
 �nding versus checking

Teaching note� Complexity theorists are so accustomed to focus on decision problem

that they seem to forget that search problems are at least as natural as decision prob�

lems� Furthermore� to many non�experts� search problems may seem even more natural

than decision problems� Typically� people seeks solutions more than they pause to won�

der whether or not solutions exist� Thus� we recommend starting with a formulation

of the P�vs�NP Question in terms of search problems� Admittingly� the cost is more

cumbersome formulations� but it is more than worthwhile�

Much of computer science is concerned with solving various search problems �as in
De�nition ����� Examples of such problems include �nding a solution to a system of
linear �or polynomial� equations� �nding a prime factor of a given integer� �nding a
spanning tree in a graph� �nding a short traveling salesman tour in a metric space�
and �nding a scheduling of jobs to machines such that various constraints are
satis�ed� Furthermore� search problems correspond to the daily notion of �solving
problems� and thus are of natural general interest� In the current section� we will
consider the question of which search problems can be solved e�ciently�

One type of search problems that cannot be solved e�ciently consists of search
problems for which the solutions are too long in terms of the problem
s instances�

�
Advanced comment� In this chapter� we consider deterministic �polynomial�time� algo�

rithms as the basic model of e�cient computation� A more liberal view� which includes also
probabilistic �polynomial�time� algorithms is presented in Chapter �� We stress that the most
important facts and questions that are addressed in the current chapter hold also with respect to
probabilistic polynomial�time algorithms�

	��� THE P VERSUS NP QUESTION �

In such a case� merely typing the solution amounts to an activity that is deemed
ine�cient� Thus� we focus our attention on search problems that are not in this
class� That is� we consider only search problems in which the length of the solution
is bounded by a polynomial in the length of the instance� Recalling that search
problems are associated with binary relations �see De�nition ����� we focus our
attention on polynomially bounded relations�

De�nition ��� �polynomially bounded relations�� We say that R � f	� �g� �
f	� �g� is polynomially�bounded if there exists a polynomial p such that for every
�x� y� � R it holds that jyj � p�jxj��

Recall that �x� y� � R means that y is a solution to the problem instance x� where
R represents the problem itself� For example� in the case of �nding a prime factor
of a given integer� we refer to a relation R such that �x� y� � R if the integer y is a
prime factor of the integer x�

For a polynomially bounded relation R it makes sense to ask whether or not�
given a problem instance x� one can e�ciently �nd an adequate solution y �i�e��
�nd y such that �x� y� � R�� The polynomial bound on the length of the solution
�i�e�� y� guarantees that a negative answer is not merely due to the length of the
required solution�

������� The class P as a natural class of search problems

Recall that we are interested in the class of search problems that can be solved
e�ciently� that is� problems for which solutions �whenever they exist� can be found
e�ciently� Restricting our attention to polynomially bounded relations� we identify
the corresponding fundamental class of search problem �or binary relation�� denoted
PF �standing for �Polynomialtime Find��� �The relationship between PF and
the standard de�nition of P will be discussed in Sections ����� and ������� The
following de�nition refers to the formulation of solving search problems provided
in De�nition ����

De�nition ��� �e�ciently solvable search problems��

� The search problem of a polynomially bounded relation R � f	� �g� � f	� �g�
is e�ciently solvable if there exists a polynomial time algorithm A such that�

for every x� it holds that A�x� � R�x�
def
� fy � �x� y� � Rg if and only if R�x�

is not empty� Furthermore� if R�x� � � then A�x� � �� indicating that x has
no solution�

� We denote by PF the class of search problems that are e�ciently solvable
�and correspond to polynomially bounded relations�� That is� R � PF if
R is polynomially bounded and there exists a polynomial time algorithm that
given x �nds y such that �x� y� � R �or asserts that no such y exists��

Note that R�x� denotes the set of valid solutions for the problem instance x� Thus�
the solver A is required to �nd a valid solution �i�e�� satisfy A�x� � R�x�� whenever

 � CHAPTER 	� P� NP AND NPCOMPLETENESS

such a solution exists �i�e�� R�x� is not empty�� On the other hand� if the instance
x has no solution �i�e�� R�x� � �� then clearly A�x� �� R�x�� The extra condition
�also made in De�nition ���� requires that in this case A�x� � �� Thus� algorithm
A always outputs a correct answer� which is a valid solution in the case that such
a solution exists and otherwise provides an indication that no solution exists�

We have de�ned a fundamental class of problems� and we do know of many
natural problems in this class �e�g�� solving linear equations over the rationals�
�nding a perfect matching in a graph� etc�� However� we must admit that we do
not have a good understanding regarding the actual contents of this class �i�e�� we
are unable to characterize many natural problems with respect to membership in
this class�� This situation is quite common in complexity theory� and seems to
be a consequence of the fact that complexity classes are de�ned in terms of the
�external behavior� �of potential algorithms� rather than in terms of the �internal
structure� �of the problem�� Turning back to PF � we note that� while it contains
many natural search problems� there are also many natural search problems that
are not known to be in PF � A natural class containing a host of such problems is
presented next�

������� The class NP as another natural class of search problems

Natural search problems have the property that valid solutions can be e�ciently
recognized� That is� given an instance x of the problem R and a candidate solution
y� one can e�ciently determine whether or not y is a valid solution for x �with
respect to the problem R� i�e�� whether or not y � R�x��� The class of all such
search problems is a natural class per se� because it is not clear why one should care
about a solution unless one can recognize a valid solution once given� Furthermore�
this class is a natural domain of candidates for PF � because the ability to e�ciently
recognize a valid solution seems to be a natural �albeit not absolute� prerequisite
for a discussion regarding the complexity of �nding such solutions�

We restrict our attention again to polynomially bounded relations� and consider
the class of relations for which membership of pairs in the relation can be decided
e�ciently� We stress that we consider deciding membership of given pairs of the
form �x� y� in a �xed relation R� and not deciding membership of x in the set

SR
def
� fx � R�x� �� �g� �The relationship between the following de�nition and the

standard de�nition of NP will be discussed in Sections ����������� and �������

De�nition ��� �search problems with e�ciently checkable solutions��

� The search problem of a polynomially bounded relation R � f	� �g� � f	� �g�
has e�ciently checkable solutions if there exists a polynomial time algorithm A
such that� for every x and y� it holds that A�x� y� � � if and only if �x� y� � R�

� We denote by PC �standing for �Polynomialtime Check�� the class of search
problems that correspond to polynomially�bounded binary relations that have
e�ciently checkable solutions� That is� R � PC if the following two conditions
hold�

	��� THE P VERSUS NP QUESTION �

�� For some polynomial p� if �x� y� � R then jyj � p�jxj��
� There exists a polynomial�time algorithm that given �x� y� determines

whether or not �x� y� � R�

The class PC contains thousands of natural problems �e�g�� �nding a traveling
salesman tour of length that does not exceed a given threshold� �nding the prime
factorization of a given composite� etc�� In each of these natural problems� the
correctness of solutions can be checked e�ciently �e�g�� given a traveling salesman
tour it is easy to compute its length and check whether or not it exceeds the given
threshold���

The class PC is the natural domain for the study of which problems are in PF �
because the ability to e�ciently recognize a valid solution is a natural prerequisite
for a discussion regarding the complexity of �nding such solutions� We warn� how
ever� that PF contains �unnatural� problems that are not in PC �see Exercise �����

������� The P versus NP question in terms of search problems

Is it the case that every search problem in PC is in PF� That is� if one can
e�ciently check the correctness of solutions with respect to some �polynomially
bounded� relation R� then is it necessarily the case that the search problem of R
can be solved e�ciently! In other words� if it is easy to check whether or not a
given solution for a given instance is correct� then is it also easy to �nd a solution
to a given instance!

If PC � PF then this would mean that whenever solutions to given instances
can be e�ciently checked �for correctness� it is also the case that such solutions
can be e�ciently found �when given only the instance�� This would mean that all
reasonable search problems �i�e�� all problems in PC� are easy to solve� Needless to
say� such a situation would contradict the intuitive feeling �and the daily experience�
that some reasonable search problems are hard to solve� Furthermore� in such a
case� the notion of �solving a problem� will lose its meaning �because �nding a
solution will not be signi�cantly more di�cult than checking its validity��

On the other hand� if PC nPF �� � then there exist reasonable search problems
�i�e�� some problems in PC� that are hard to solve� This conforms with our basic
intuition by which some reasonable problems are easy to solve whereas others are
hard to solve� Furthermore� it recon�rms the intuitive gap between the notions of
solving and checking �asserting that in some cases �solving� is signi�cantly harder
than �checking���

����� The decision version
 proving versus verifying

As we shall see in the sequel� the study of search problems �e�g�� the PCvsPF
Question� can be �reduced� to the study of decision problems� Since the latter

�In the traveling salesman problem �TSP�� the instance is a matrix of distances between cities
and a threshold� and the task is to �nd a tour that passes all cities and covers a total distance
that does not exceed the threshold�

 � CHAPTER 	� P� NP AND NPCOMPLETENESS

problems have a less cumbersome terminology� complexity theory tends to focus
on them �and maintains its relevance to the study of search problems via the afore
mentioned reduction�� Thus� the study of decision problems provides a convenient
way for studying search problems� For example� the study of the complexity of de
ciding the satis�ability of Boolean formulae provides a convenient way for studying
the complexity of �nding satisfying assignments for such formulae�

We wish to stress� however� that decision problems are interesting and natural
per se �i�e�� beyond their role in the study of search problems�� After all� some
people do care about the truth� and so determining whether certain claims are true
is a natural computational problem� Speci�cally� determining whether a given ob
ject �e�g�� a Boolean formula� has some predetermined property �e�g�� is satis�able�
constitutes an appealing computational problem� The PvsNP Question refers to
the complexity of solving such problems for a wide and natural class of properties
associated with the class NP� The latter class refers to properties that have �e�
cient proof systems� allowing for the veri�cation of the claim that a given object
has a predetermined property �i�e�� is a member of a predetermined set�� Jumping
ahead� we mention that the PvsNP Question refers to the question of whether
properties that have e�cient proof systems can also be decided e�ciently �without
proofs�� Let us clarify all these notions�

Properties of objects are modeled as subsets of the set of all possible objects �i�e��
a property is associated with the set of objects having this property�� For example�
the property of being a prime is associated with the set of prime numbers� and
the property of being connected �resp�� having a Hamiltonian path� is associated
with the set of connected �resp�� Hamiltonian� graphs� Thus� we focus on deciding
membership in sets �as in De�nition ����� The standard formulation of the Pvs
NP Question refers to the questionable equality of two natural classes of decision
problems� denoted P and NP �and de�ned in x������� and x�������� respectively��

������� The class P as a natural class of decision problems

Needless to say� we are interested in the class of decision problems that are e�ciently
solvable� This class is traditionally denoted P �standing for Polynomialtime�� The
following de�nition refers to the formulation of solving decision problems �provided
in De�nition �����

De�nition ��	 �e�ciently solvable decision problems��

� A decision problem S � f	� �g� is e�ciently solvable if there exists a polyno�
mial time algorithm A such that� for every x� it holds that A�x� � � if and
only if x � S�

� We denote by P the class of decision problems that are e�ciently solvable�

As in De�nition ���� we have de�ned a fundamental class of problems� which con
tains many natural problems �e�g�� determining whether or not a given graph is
connected�� but we do not have a good understanding regarding its actual contents
�i�e�� we are unable to characterize many natural problems with respect to mem
bership in this class�� In fact� there are many natural decision problems that are

	��� THE P VERSUS NP QUESTION

not known to reside in P � and a natural class containing a host of such problems
is presented next� This class of decision problems is denoted NP �for reasons that
will become evident in Section �������

������� The class NP and NP�proof systems

We view NP as the class of decision problems that have e�ciently veri�able proof
systems� Loosely speaking� we say that a set S has a proof system if instances
in S have valid proofs of membership �i�e�� proofs accepted as valid by the sys
tem�� whereas instances not in S have no valid proofs� Indeed� proofs are de�ned
as strings that �when accompanying the instance� are accepted by the �e�cient�
veri�cation procedure� We say that V is a veri�cation procedure for membership
in S if it satis�es the following two conditions�

�� Completeness� True assertions have valid proofs� that is� proofs accepted as
valid by V � Bearing in mind that assertions refer to membership in S� this
means that for every x � S there exists a string y such that V �x� y� � � �i�e��
V accepts y as a valid proof for the membership of x in S��

�� Soundness� False assertions have no valid proofs� That is� for every x �� S
and every string y it holds that V �x� y� � 	� which means that V rejects y as
a proof for the membership of x in S�

We note that the soundness condition captures the �security� of the veri�cation
procedure� that is� its ability not to be fooled by anything into proclaiming a wrong
assertion� The completeness condition captures the �viability� of the veri�cation
procedure� that is� its ability to be convinced of any valid assertion� when presented
with an adequate proof� �We stress that� in general� proof systems are de�ned in
terms of their veri�cation procedures� which must satisfy adequate completeness
and soundness conditions�� Our focus here is on e�cient veri�cation procedures
that utilize relatively short proofs �i�e�� proofs that are of length that is polynomially
bounded by the length of the corresponding assertion���

Let us consider a couple of examples before turning to the actual de�nition� For
example� the set of Hamiltonian graphs has a veri�cation procedure that� given
a pair �G�P �� accepts if and only if P is a Hamiltonian path in the graph G�
In this case P serves as a proof that G is Hamiltonian� Note that such proofs
are relatively short �i�e�� the path is actually shorter than the description of the
graph� and are easy to verify� Needless to say� this proof system satis�es the

�Advanced comment� In continuation to Footnote �� we note that in this chapter we consider
deterministic �polynomial�time� veri�cation procedures� and consequently the completeness and
soundness conditions that we state here are error�less� In contrast� in Chapter 	� we will consider
various types of probabilistic �polynomial�time� veri�cation procedures as well as probabilistic
completeness and soundness conditions� A common theme that underlies both treatments is
that e�cient veri�cation is interpreted as meaning veri�cation by a process that runs in time
that is polynomial in the length of the assertion� In the current chapter� we use the equivalent
formulation that considers the running time as a function of the total length of the assertion and
the proof� but require that the latter has length that is polynomially bounded by the length of
the assertion�

 � CHAPTER 	� P� NP AND NPCOMPLETENESS

aforementioned completeness and soundness conditions� In the case of satis�able
Boolean formulae� given a formula � and a truth assignment � the veri�cation
procedure instantiates � �according to �� and accepts if and only if simplifying the
resulting Boolean expression yields the value true� In this case serves as a proof
that � is satis�able� and the alleged proofs are indeed relatively short and easy to
verify�

De�nition ��� �e�ciently veri�able proof systems��

� A decision problem S � f	� �g� has an e�ciently veri�able proof system if
there exists a polynomial p and a polynomial�time �veri�cation� algorithm V
such that the following two conditions hold�

�� Completeness� For every x � S� there exists y of length at most p�jxj�
such that V �x� y� � ��

�Such a string y is called an NP�witness for x � S��

� Soundness� For every x �� S and every y� it holds that V �x� y� � 	�

Thus� x � S if and only if there exists y of length at most p�jxj� such that
V �x� y� � ��

In such a case� we say that S has an NP�proof system� and refer to V as its
veri�cation procedure �or as the proof system itself��

� We denote by NP the class of decision problems that have e�ciently veri�able
proof systems�

We note that the term NP�witness is commonly used� although in most cases V is
not called a proof system �nor a veri�cation procedure of such a system�� In some
cases� V �or the set of pairs accepted by V � is called a witness relation of S� We stress
that the same set S may have many di�erent NPproof systems �see Exercise �����
and that in some cases the di�erence is not arti�cial �see Exercise �����

Teaching note� Using De�nition ��� it is typically easy to show that natural decision

problems are in NP� All that is needed is designing adequate NP�proofs of membership�

which is typically quite straightforward and natural� because natural decision problems

are typically phrased as asking about the existence of a structure
or object� that can

be easily veri�ed as valid� For example� SAT is de�ned as the set of satis�able Boolean

formulae� which means asking about the existence of satisfying assignments� Indeed� we

can e�ciently check whether a given assignment satis�es a given formula� which means

that we have
a veri�cation procedure for� an NP�proof system for SAT�

Note that for any search problem R in PC� the set of instances that have a so

lution with respect to R �i�e�� the set SR
def
� fx � R�x� �� �g� is in NP � Speci�cally�

for any R � PC� consider the veri�cation procedure V such that V �x� y�
def
� � if and

only if �x� y� �R� and note that the latter condition can be decided in poly�jxj�
time� Thus� any search problem in PC can be viewed as a problem of searching

	��� THE P VERSUS NP QUESTION �

for �e�ciently veri�able� proofs �i�e�� NPwitnesses for membership in the set of
instances having solutions�� On the other hand� any NPproof system gives rise to
a natural search problem in PC� that is� the problem of searching for a valid proof
�i�e�� an NPwitness� for the given instance �i�e� the veri�cation procedure V yields
the search problem that corresponds to R � f�x� y� � V �x� y���g�� Thus� S � NP
if and only if there exists R � PC such that S � fx � R�x� �� �g�

Teaching note� The last paragraph suggests another easy way of showing that natural

decision problems are in NP� just thinking of the corresponding natural search problem�

The point is that natural decision problems
in NP� are phrased as referring to whether

a solution exists
for the corresponding natural search problem�� For example� in the

case of SAT� the question is whether there exists a satisfying assignment to given Boolean

formula� and the corresponding search problem is �nding such an assignment� But in

all these cases� it is easy to check the correctness of solutions� that is� the corresponding

search problem is in PC� which implies that the decision problem is in NP�

Observe that P � NP holds� A veri�cation procedure for claims of member
ship in a set S � P may just ignore the alleged NPwitness and run the decision
procedure that is guaranteed by the hypothesis S � P � that is� V �x� y� � A�x��
where A is the aforementioned decision procedure� Indeed� the latter veri�cation
procedure is quite an abuse of the term �because it makes no use of the proof��
however� it is a legitimate one� As we shall shortly see� the PvsNP Question refers
to the question of whether such proofoblivious veri�cation procedures can be used
for every set that has some e�ciently veri�able proof system� �Indeed� given that
P � NP � the PvsNP Question is whether NP � P ��

������� The P versus NP question in terms of decision problems

Is it the case that NP�proofs are useless� That is� is it the case that for every ef
�ciently veri�able proof system one can easily determine the validity of assertions
without looking at the proof! If that were the case� then proofs would be meaning
less� because they would have no fundamental advantage over directly determining
the validity of the assertion� The conjecture P �� NP asserts that proofs are useful�
there exists sets in NP that cannot be decided by a polynomialtime algorithm�
and so for these sets obtaining a proof of membership �for some instances� is useful
�because we cannot e�ciently determine membership by ourselves��

In the foregoing paragraph we viewed P �� NP as asserting the advantage of
obtaining proofs over deciding the truth by ourselves� That is� P �� NP asserts that
�in some cases� verifying is easier than deciding� A slightly di�erent perspective
is that P �� NP asserts that �nding proofs is harder than verifying their validity�
This is the case because� for any set S that has an NPproof system� the ability to
e�ciently �nd proofs of membership with respect to this system �i�e�� �nding an
NPwitness of membership in S for any given x � S�� yields the ability to decide
membership in S� Thus� for S � NP n P � it must be harder to �nd proofs of
membership in S than to verify the validity of such proofs �which can be done in
polynomialtime��

 � CHAPTER 	� P� NP AND NPCOMPLETENESS

����� Equivalence of the two formulations

As hinted several times� the two formulations of the P�vs�NP Questions are equiva�
lent� That is� every search problem having e�ciently checkable solutions is solvable
in polynomial time �i�e�� PC � PF� if and only if membership in any set that has
an NPproof system can be decided in polynomial time �i�e�� NP � P�� Recalling
that P � NP �whereas PF is not contained in PC �Exercise ������ we prove the
following�

Theorem ��� PC � PF if and only if P � NP�
Proof� Suppose� on the one hand� that the inclusion holds for the search version
�i�e�� PC � PF�� We will show that this implies the existence of an e�cient algo
rithm for �nding NPwitnesses for any set in NP � which in turn implies that this
set is in P � Speci�cally� let S be an arbitrary set in NP � and V be the correspond
ing veri�cation procedure �i�e�� satisfying the conditions in De�nition �� �� Then

R
def
� f�x� y� � V �x� y� � �g is a polynomially bounded relation in PC� and by the

hypothesis its search problem is solvable in polynomial time �i�e�� R � PC � PF��
Denoting by A the polynomialtime algorithm solving the search problem of R� we
decide membership in S in the obvious way� That is� on input x� we output � if
and only if A�x� �� �� where the latter event holds if and only if A�x� � R�x��
which in turn occurs if and only if R�x� �� � �equiv�� x � S�� Thus� NP � P �and
NP � P� follows�

Suppose� on the other hand� that NP � P � We will show that this implies
an e�cient algorithm for determining whether a given string y� is a pre�x of some
solution to a given instance x of a search problem in PC� which in turn yields an
e�cient algorithm for �nding solutions� Speci�cally� let R be an arbitrary search

problem in PC� Then the set S�R
def
� fhx� y�i � �y�� s�t� �x� y�y��� � Rg is in NP

�because R � PC�� and hence S�R is in P �by the hypothesis NP � P�� This yields
a polynomialtime algorithm for solving the search problem of R� by extending
a pre�x of a potential solution bitbybit �while using the decision procedure to
determine whether or not the current pre�x is valid�� That is� on input x� we
�rst check whether or not �x� �� � S�R and output � �indicating R�x� � �� in
case �x� �� �� S�R� Next� we proceed in iterations� maintaining the invariant that
�x� y�� � S�R� In each iteration� we set y� � y�	 if �x� y�	� � S�R and y� � y��
if �x� y��� � S�R� If none of these conditions hold �which happens after at most
polynomially many iterations� then the current y� satis�es �x� y�� � R� Thus� for
an arbitrary R � PC we obtain that R � PF � and PC � PF follows�

Re�ection� The �rst part of the proof of Theorem ��� associates with each set
S in NP a natural relation R �in PC�� Speci�cally� R consists of all pairs �x� y�
such that y is an NPwitness for membership of x in S� Thus� the search problem
of R consists of �nding such an NPwitness� when given x as input� Indeed� R
is called the witness relation of S� and solving the search problem of R allows to
decide membership in S� Thus� R � PC � PF implies S � P � In the second part
of the proof� we associate with each R � PC a set S�R �in NP�� but S�R is more

	��� THE P VERSUS NP QUESTION �

�expressive� than the set SR
def
� fx � �y s�t� �x� y��Rg �which gives rise to R as its

witness relation�� Speci�cally� S�R consists of strings that encode pairs �x� y�� such
that y� is a pre�x of some string in R�x� � fy � �x� y� � Rg� The key observation
is that deciding membership in S�R allows to solve the search problem of R� that
is� S�R � P implies R � PF �

Conclusion� Theorem ��� justi�es the traditional focus on the decision version
of the PvsNP Question� Indeed� given that both formulations of the question are
equivalent� we may just study the less cumbersome one�

����� The traditional de�nition of NP

Unfortunately� De�nition �� is not the commonly used de�nition of NP � Instead�
traditionally� NP is de�ned as the class of sets that can be decided by a �cti�
tious device called a nondeterministic polynomialtime machine �which explains
the source of the notation NP�� The reason that this class of �ctitious devices is in
teresting is due to the fact that it captures �indirectly� the de�nition of NPproofs�
Since the reader may come across the traditional de�nition of NP when studying
di�erent works� the author feels obliged to provide the traditional de�nition as well
as a proof of its equivalence to De�nition �� �

De�nition �� �nondeterministic polynomialtime Turing machines��

� A non�deterministic Turing machine is de�ne as in x������� except that the
transition function maps symbol�state pairs to subsets of triples �rather than
to a single triple� in � � Q � f��� 	�$�g� Accordingly� the con�guration
following a speci�c instantaneous con�guration may be one of several possi�
bilities� each determine by a di�erent possible triple� Thus� the computations
of a non�deterministic machine on a ��xed� given input may result in di�erent
outputs�

In the context of decision problems one typically considers the question of
whether or not there exists a computation that starting with a �xed input
halts with output �� We say that the non�deterministic machine M accept x if
there exists a computation of M � on input x� that halts with output �� The set
accepted by a non�deterministic machine is the set of inputs that are accepted
by the machine�

� A non�deterministic polynomial�time Turing machine is de�ned as one that
makes a number of steps that is polynomial in the length of the input� Tra�
ditionally� NP is de�ned as the class of sets that are accepted by some non�
deterministic polynomial�time Turing machine�

We stress that De�nition ��� refers to a �ctitious model of computation� Specif
ically� De�nition ��� makes no reference to the number �or fraction� of possible

�	 CHAPTER 	� P� NP AND NPCOMPLETENESS

computations of the machine �on a speci�c input� that yield a speci�c output��

De�nition ��� only refers to whether or not computations leading to a certain out
put exist �for a speci�c input�� The question of what does the mere existence of
such possible computations mean in terms of reallife is not addressed� because the
model of a nondeterministic machine is not meant to provide a reasonable model of
a reallife computer� The model is meant to capture something completely di�erent
�i�e�� it is meant to provide an elegant de�nition of the class NP � while relying on
the fact that De�nition ��� is equivalent to De�nition �� ��

Teaching note� Whether or not De�nition ��� is elegant is a matter of taste� For sure�

many students �nd De�nition ��� quite confusing� possibly because they assume that it

represents some natural model of computation and consequently they allow themselves

to be fooled by their intuition regarding such models�
Needless to say� the students�

intuition regarding computation is irrelevant when applied to a �ctitious model��

Note that� unlike other de�nitions in this chapter� De�nition ��� makes explicit
reference to a speci�c model of computation� Still� a similar extension can be
applied to other models of computation by considering adequate nondeterministic
computation rules� Also note that� without loss of generality� we may assume that
the transition function maps each possible symbolstate pair to exactly two triples
�cf� Exercise �����

Theorem ��� De�nition �� is equivalent to De�nition ��� That is� a set S has
an NP�proof system if and only if there exists a non�deterministic polynomial�time
machine that accepts S�

Proof Sketch� Suppose� on one hand� that the set S has an NPproof system�
and let us denote the corresponding veri�cation procedure by V � Consider the
following nondeterministic polynomialtime machine� denoted M � On input x�
machine M makes an adequate m � poly�jxj� number of nondeterministic steps�
producing �nondeterministically� a string y � f	� �gm� and then emulates V �x� y��
We stress that these nondeterministic steps may result in producing any mbit
string y� Recall that x � S if and only if there exists y of length at most poly�jxj�
such that V �x� y� � �� This implies that the set accepted by M equals S�

Suppose� on the other hand� that there exists a nondeterministic polynomial
time machine M that accepts the set S� Consider a deterministic machine M � that
on input �x� y�� where y has adequate length� emulates a computation of M on
input x while using y to determine the nondeterministic steps of M � That is� the
ith step of M on input x is determined by the ith bit of y �which indicates which
of the two possible moves to make at the current step�� Note that x � S if and
only if there exists y of length at most poly�jxj� such that M ��x� y� � �� Thus� M �

gives rise to an NPproof system for S�

�
Advanced comment� In contrast� the de�nition of a probabilistic machine refers to this

number �or� equivalently� to the probability that the machine produces a speci�c output� when the
probability is essentially taken uniformly over all possible computations�� Thus� a probabilistic
machine refers to a natural model of computation that can be realized provided we can equip the
machine with a source of randomness� For details� see Section ����

	��� THE P VERSUS NP QUESTION ��

����� In support of P di�erent from NP

Intuition and concepts constitute��� the elements of all our knowl
edge� so that neither concepts without an intuition in some way
corresponding to them� nor intuition without concepts� can yield
knowledge�

Immanuel Kant ��������	��

Kant talks on the importance of both philosophical considerations �referred to as
�concepts�� and empirical considerations �referred to as �intuition�� to science
�referred to as �sound� �knowledge���

It is widely believed that P is di�erent than NP� that is� that PC contains
search problems that are not e�ciently solvable� and that there are NPproof sys
tems for sets that cannot be decided e�ciently� This belief is supported by both
philosophical and empirical considerations�

� Philosophical considerations� Both formulations of the PvsNP Question re
fer to natural questions about which we have strong intuition� The notion of
solving a �search� problem seems to presume that� at least in some cases �if not
in general�� �nding a solution is signi�cantly harder than checking whether
a presented solution is correct� This translates to PC n PF �� �� Likewise�
the notion of a proof seems to presume that� at least in some cases �if not in
general�� the proof is useful in determining the validity of the assertion� that
is� that deciding the validity of an assertion may be made signi�cantly easier
when provided with a proof� This translates to P �� NP � which also implies
that it is signi�cantly harder to �nd proofs than to verify their correctness�
which again coincides with the daily experience of researchers and students�

� Empirical considerations� The class NP �or rather PC� contains thousands of
di�erent problems for which no e�cient solving procedure is known� Many
of these problems have arisen in vastly di�erent disciplines� and were the
subject of extensive research of numerous di�erent communities of scientists
and engineers� These essentially independent studies have all failed to provide
e�cient algorithms for solving these problems� a failure that is extremely hard
to attribute to sheer coincidence or a stroke of bad luck�

Throughout the rest of this book� we will adopt the common belief that P is
di�erent from NP� At some places� we will explicitly use this conjecture �or even
stronger assumptions�� whereas in other places we will present results that are
interesting �if and� only if P �� NP �e�g�� the entire theory of NPcompleteness
becomes uninteresting if P � NP��

The P �� NP conjecture is indeed very appealing and intuitive� The fact that
this natural conjecture is unsettled seems to be one of the sources of frustration of
complexity theory� The author
s opinion� however� is that this feeling of frustration
is not in place� In contrast� the fact that complexity theory evolves around natural
and simplystated questions that are so di�cult to resolve makes its study very
exciting�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

���� Two technical comments regarding NP

Recall that when de�ning PC �resp�� NP� we have explicitly con�ned our atten
tion to search problems of polynomially bounded relations �resp�� NPwitnesses of
polynomial length�� An alternative formulation may allow a binary relation R to
be in PC �resp�� S � NP� if membership of �x� y� in R can be decided in time
that is polynomial in the length of x �resp�� the veri�cation of a candidate NP
witness y for membership of x in S is required to be performed in poly�jxj�time��
Indeed� this mean that the validity of y can be determined without reading all of it
�which means that some substring of y can be used as the e�ective y in the original
de�nitions��

We comment that problems in PC �resp�� NP� can be solved in exponential
time �i�e�� time exp�poly�jxj�� for input x�� This can be done by an exhaustive
search among all possible candidate solutions �resp�� all possible candidate NP
witnesses�� Thus� NP � EXP � where EXP denote the class of decision problems
that can be solved in exponentialtime �i�e�� time exp�poly�jxj�� for input x��

��� Polynomial�time Reductions

We present a general notion of �polynomialtime� reductions among computational
problems� and view the notion of a �Karpreduction� as an important special case
that su�ces �and is more convenient� in many cases� Reductions play a key role
in the theory of NPcompleteness� which is the topic of Section ���� but we stress
the fundamental nature of the notion of a reduction and highlight two speci�c
applications �i�e�� reducing search and optimization problems to decision problems��
Furthermore� in the latter applications� it will be important to use the general
notion of a reduction �i�e�� �Cookreduction� rather than �Karpreduction���

Teaching note� We assume that many students have heard of reductions� but we fear

that most have obtained a conceptually poor view of their fundamental nature� In

particular� we fear that reductions are identi�ed with the theory of NP�completeness�

while reductions have numerous other important applications that have little to do with

NP�completeness
or completeness with respect to some other class�� Furthermore� we

believe that it is important to show that natural search and optimization problems can

be reduced to decision problems�

����� The general notion of a reduction

Reductions are procedures that use �functionally speci�ed� subroutines� That is�
the functionality of the subroutine is speci�ed� but its operation remains unspeci�ed
and its runningtime is counted at unit cost� Analogously to algorithms� which
are modeled by Turing machines� reductions can be modeled as oracle �Turing�
machines� A reduction solves one computational problem �which may be either
a search or a decision problem� by using oracle �or subroutine� calls to another
computational problem �which again may be either a search or a decision problem��

	�	� POLYNOMIALTIME REDUCTIONS ��

The notion of a general algorithmic reduction was discussed in x������� and
x������ � These reductions� called Turingreductions �cf� x�������� and modeled by
oracle machines �cf� x������ �� made no reference to the time complexity of the main
algorithm �i�e�� the oracle machine�� Here� we focus on e�cient �i�e�� polynomial
time� reductions� which are often called Cook reductions� That is� we consider
oracle machines �as in De�nition ����� that run in time polynomial in the length
of their input� We stress that the running time of an oracle machine is the number
of steps made during its computation� and that the oracle
s reply on each query is
obtained in a single step�

The key property of e�cient reductions is that they allow for the transformation
of e�cient implementations of the subroutine into e�cient implementations of the
task reduced to it� That is� as we shall see� if one problem is Cookreducible to
another problem and the latter is polynomialtime solvable then so is the former�

The most popular case is that of reducing decision problems to decision prob
lems� but we will also consider reducing search problems to search problems and
reducing search problems to decision problems� Note that when reducing to a de
cision problem� the oracle is determined as the single valid solver of the decision
problem �i�e�� the function f � f	� �g� f	� �g solves the decision problem of mem
bership in S if� for every x� it holds that f�x� � � if x � S and f�x� � 	 otherwise��
In contrast� when reducing to a search problem� there may be many di�erent valid
solvers �i�e�� each function f that satis�es �x� f�x�� � R for every �x� y� � R is a
valid solver of the search problem of R�� We capture both cases in the following
de�nition�

De�nition ��� �Cook reduction�� A problem ' is Cook�reducible to a problem '�

if there exists a polynomial�time oracle machine M such that for every function f
that solves '� it holds that Mf solves '� where Mf �x� denotes the output of M on
input x when given oracle access to f �

Note that ' �resp�� '�� may be either a search problem or a decision problem �or
even a yet unde�ned type of a problem�� At this point the reader should verify
that if ' is Cookreducible to '� and '� is solvable in polynomialtime then so
is '� �See Exercise �� for other properties of Cookreductions�� Also observe
that the second part of the proof of Theorem ��� is actually a Cookreduction of
the search problem of any R in PC to a decision problem regarding a related set
S�R � f�x� y�� � �y�� s�t� �x� y�y����Rg� which in NP � Thus� that proof establishes
that any search problem in PC is Cook�reducible to some decision problem in NP �
We shall see a tighter relation between search and decision problems in Section �����
�i�e�� in some cases� R will be reduced to SR � fx � �y s�t� �x� y��Rg rather than
to S�R��

A Karpreduction is a special case of a reduction �from a decision problem to
a decision problem�� Speci�cally� for decision problems S and S�� we say that S is
Karp�reducible to S� if there is a reduction of S to S� that operates as follows� On
input x �an instance for S�� the reduction computes x�� makes query x� to the oracle
S� �i�e�� invokes the subroutine for S� on input x��� and answers whatever the latter
returns� This reduction is often represented by the polynomialtime computable

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

mapping of x to x�� that is� the standard de�nition of a Karpreduction is actually
as follows�

De�nition ���� �Karp reduction�� A polynomial�time computable function f is
called a Karp�reduction of S to S� if� for every x� it holds that x � S if and only if
f�x� � S��

Thus� syntactically speaking� a Karpreduction is not a Cookreduction� but it
trivially gives rise to one �i�e�� on input x� the oracle machine makes query f�x��
and returns the oracle answer�� Being slightly inaccurate but essentially correct�
we shall say that Karpreductions are special cases of Cookreductions� Needless
to say� Karpreductions constitute a very restricted case of Cookreductions� Still�
this restricted case su�ces for many applications �e�g�� most importantly for the
theory of NPcompleteness �when developed for decision problems��� but not for
reducing a search problem to a decision problem� Furthermore� whereas each deci
sion problem is Cookreducible to its complement� some decision problems are not
Karpreducible to their complement �see Exercises ��� and ������

We comment that Karpreductions may �and should� be augmented in order
to handle reductions of search problems to search problems� Such an augmented
Karpreduction of the search problem of R to the search problem of R� operates
as follows� On input x �an instance for R�� the reduction computes x�� makes
query x� to the oracle R� �i�e�� invokes the subroutine for searching R� on input
x�� obtaining y� such that �x�� y�� � R�� and uses y� to compute a solution y to x
�i�e�� y � R�x��� Thus� such a reduction can be represented by two polynomial
time computable mappings� f and g� such that �x� g�x� y��� � R for any y� that
solves f�x� �i�e�� for y� that satis�es �f�x�� y�� � R��� �Indeed� in general� unlike
in the case of decision problems� the reduction cannot just return y� as an answer
to x�� This augmentation is called a Levin�reduction and� analogously to the case
of a Karpreduction� is often represented by the two polynomialtime computable
mappings �i�e�� of x to x�� and of �x� y�� to y��

De�nition ���� �Levin reduction�� A pair of polynomial�time computable func�
tions� f and g� is called a Levin�reduction of R to R� if f is a Karp reduction of
SR � fx � �y s�t� �x� y� � Rg to SR� � fx� � �y� s�t� �x�� y�� � R�g and for every
x � SR and y� � R��f�x�� it holds that �x� g�x� y��� � R� where R��x�� � fy� �
�x�� y���R�g�
Indeed� the function f preserves the existence of solutions� that is� for any x� it
holds that R�x� �� � if and only if R��f�x�� �� �� As for the second function �i�e��
g�� it maps any solution y� for the reduced instance f�x� to a solution for the
original instance x �where this mapping may also depend on x�� It is natural to
consider also a third function� which maps solutions for R to solutions for R� �see
Exercise ������

Terminology� In the sequel� whenever we neglect to mention the type of a reduc
tion� we refer to a Cookreduction� Two additional terms� which will be particularly
useful in the advanced chapters� are presented next�

	�	� POLYNOMIALTIME REDUCTIONS �

� We say that two problems are computationally equivalent if they are reducible
to one another� This means that the two problems are essentially as hard
�or as easy�� Note that� for various complexity classes �e�g�� NP and PC��
computationally equivalent problems need not reside in the same class� since
the reductions allowed here are Cookreductions� For example� as we shall
see in Section ������ there exist many natural R � PC such that the search
problem of R and the decision problem of SR � fx � �y s�t� �x� y��Rg are
computationally equivalent� although �even syntactically� the two problems
do not belong to the same class� Also� each decision problem is computa
tionally equivalent to its complement� although the two problems may not
belong to the same class �see Section �������

� We say that a class of problems� C� is reducible to a problem '� if every
problem in C� is reducible to '�� We say that the class C is reducible to the
class C� if for every ' � C there exists '� � C� such that ' is reducible to '��
For example� recall that PC is reducible to NP �

The fact that we allow Cookreductions is essential to various important connec
tions between decision problems and other computational problems� Speci�cally�
as shown in Section ������ a natural class of optimization problems is reducible to
NP � Recall that PC is reducible to NP �as shown implicitly in the proof of Theo
rem ����� Furthermore� as shown in Section ������ many natural search problems in
PC are reducible to a corresponding natural decision problem in NP �rather than
merely to some problem in NP��

����� Reducing optimization problems to search problems

Many search problems refer to a set of potential solutions� per each problem in
stance� such that di�erent solutions are assigned di�erent �values� �resp�� �costs���
In such a case� one may be interested in �nding a solution that has value exceeding
some threshold �resp�� cost below some threshold�� or �even better� �nding a solu
tion of maximum value �resp�� minimum cost�� For simplicity� let us focus on the
case of a value that we wish to maximize� Still� there are two di�erent objectives
�i�e�� exceeding a threshold and optimizing�� giving rise to two di�erent �auxiliary�
search problems related to the same relation R� Speci�cally� for a binary relation
R and a value function f � f	� �g��f	� �g� R� we consider two search problems�

�� Exceeding a threshold� Given a pair �x� v� the task is to �nd y � R�x� such
that f�x� y� � v� where R�x� � fy � �x� y� � Rg� That is� we are actually
referring to the search problem of the relation

Rf
def
� f�hx� vi� y� � �x� y��R
 f�x� y� � vg� �����

where hx� vi denotes a string that encodes the pair �x� v��

�� Maximization� Given x the task is to �nd y � R�x� such that f�x� y� � vx�
where vx is the maximum value of f�x� y�� over all y� � R�x�� That is� we are

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

actually referring to the search problem of the relation

R�f
def
� f�x� y��R � f�x� y� � max

y��Rx�
ff�x� y��gg� �����

Examples of value functions include the size of a clique in a graph� the amount of
�ow in a network �with link capacities�� etc� The task may be to �nd a clique of
size exceeding a given threshold in a given graph or to �nd a maximumsize clique
in a given graph� Note that� in these examples� the �base� search problem �i�e��
the relation R� is quite easy to solve� and the di�culty arises from the auxiliary
condition on the value of a solution �presented in Rf and R�f �� Indeed� one may

trivialize R �i�e�� let R�x� � f	� �gpolyjxj� for every x�� and impose all necessary
structure by the function f �see Exercise �����

We con�ne ourselves to the case that f is polynomialtime computable� which
in particular means that f�x� y� can be represented by a rational number of length
polynomial in jxj$jyj� We will show next that� in this case� the two aforementioned
search problems �i�e�� of Rf and R�f � are computationally equivalent�

Theorem ���� For any polynomial�time computable f � f	� �g��f	� �g�R and
a polynomially bounded binary relation R� let Rf and R�f be as in Eq� ����� and
Eq� ������ respectively� Then the search problems of Rf and R�f are computationally
equivalent�

It follows that� for R � PC and polynomial�time computable f � both the Rf and R�f
are reducible to NP � We note� however� that� while Rf � PC always holds� it is
not necessarily the case that R�f � PC� See further discussion following the proof�

Proof� The search problem of Rf is reduced to the search problem of R�f by
�nding an optimal solution �for the given instance� and comparing its value to the
given threshold value� That is� we construct an oracle machine that solves Rf by
making a single query to R�f � Speci�cally� on input �x� v�� the machine issues the
query x �to a solver for R�f �� obtaining the optimal solution y �or an indication �
that R�x� � ��� computes f�x� y�� and returns y if f�x� y� � v� Otherwise �i�e��
either y � � or f�x� y� � v�� the machine returns an indication that Rf �x� v� � ��

Turning to the opposite direction� we reduce the search problem of Rf to the
search problem of R�f by �rst �nding the optimal value vx � maxy�Rx�ff�x� y�g
�by binary search on its possible values�� and next �nding a solution of value vx�
In both steps� we use oracle calls to Rf � For simplicity� we assume that f assigns
positive integer values� and let
 � poly�jxj� be such that f�x� y� � ��� � for every
y � R�x�� Then� on input x� we �rst �nd vx � maxff�x� y� � y�R�x�g� by making
oracle calls of the form hx� vi� The point is that vx � v if any only if Rf �hx� vi� � ��
which in turn is indicated by the oracle answer � �to the query hx� vi�� Making

queries� we determine vx �see Exercise ����� Note that in case R�x� � �� all answers
will indicate that Rf �hx� vi� � �� which we treat as if vx � 	� Finally� we make the
query �x� vx�� and halt returning the oracle
s answer �which is y � R�x� such that
f�x� y� � vx if vx � 	 and an indication that R�x� � � otherwise��

	�	� POLYNOMIALTIME REDUCTIONS ��

Proof�s digest� Note that the �rst direction uses the hypothesis that f is polynomial
time computable� whereas the opposite direction only used the fact that the optimal
value lies in a �nite space of exponential size that can be �e�ciently searched��
Whereas the �rst direction can be proved using a Levinreduction� this seems im
possible for the opposite direction �in general��

On the complexity of Rf and R�f � We focus on the natural case in which
R � PC and f is polynomialtime computable� In this case� Theorem ���� implies
that Rf and R�f are computationally equivalent� A closer look reveals� however�
that Rf � PC always holds� whereas R�f � PC does not necessarily hold� That
is� the problem of �nding a solution �for a given instance� that exceeds a given
threshold is in the class PC� whereas the problem of �nding an optimal solution
is not necessarily in the class PC� For example� the problem of �nding a clique
of a given size K in a given graph G is in PC� whereas the problem of �nding a
maximum size clique in a given graph G is not known �and is quite unlikely� to be
in PC �although it is Cookreducible to PC�� Indeed� the class of problems that
are reducible to PC is a natural and interesting class �see the ending paragraph of
Section ������� indeed� for every R � PC and polynomialtime computable f � the
former class contains R�f �

����� Self	reducibility of search problems

The results presented in this section further justify the focus on decision problems�
Loosely speaking� these results show that for many natural relationsR� the question
of whether or not the search problem of R is e�ciently solvable �i�e�� is in PF� is
determined by the question of whether or not the �decision problem implicit in R�
�i�e�� SR � fx � �y s�t� �x� y��Rg� is e�ciently solvable �i�e�� is in P�� Note that
the latter decision problem is easily reducible to the search problem of R� and so
our focus is on the other direction� That is� we are interested in relations R for
which the search problem of R is reducible to the decision problem of SR�

Teaching note� Our usage of the term self�reducibility di�ers from the traditional

one� Traditionally� a decision problem is called
downwards� self�reducible if it is Cook�

reducible to itself via a reduction that on input x only makes queries that are smaller

than x
according to some appropriate measure on the size of strings�� Under some

natural restrictions
i�e�� the reduction takes the disjunction of the oracle answers� such

reductions yield reductions of search to decision
as discussed in the main text�� For

further details� see Exercise �����

De�nition ���� �the decision implicit in a search and selfreducibility�� The de�
cision problem implicit the search problem of R is deciding membership in the set
SR � fx � R�x� �� �g� where R�x� � fy � �x� y� � Rg� The search problem of R is
called self�reducible if it can be reduced to the decision problem of SR�

Note that the search problem of R and the problem of deciding membership in
SR refer to the same instances� The search problem requires �nding an adequate

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

solution �i�e�� given x �nd y � R�x��� whereas the decision problem refers to the
question of whether such solutions exist �i�e�� given x determine whether or not
R�x� is nonempty�� Thus� SR is really the �decision problem implicit in R��
because it is a decision problem that one implicitly solves when solving the search
problem of R� Indeed� for any R� the decision problem of SR is easily reducible to
the search problem for R �and if R is in PC then SR is in NP��� It follows that
if a search problem R is self�reducible then it is computationally equivalent to the
decision problem SR�

Note that the general notion of a reduction �i�e�� Cookreduction� seems inher
ent to the notion of selfreducibility� This is the case not only due to syntactic
considerations� but rather due to the following inherent reason� An oracle to any
decision problem returns a single bit per invocation� while the intractability of a
search problem in PC must be due to lacking more than a �single bit of information�
�see Exercise ���	��

We shall see that selfreducibility is a property of many natural search problems
�including all NPcomplete search problems�� This justi�es the relevance of decision
problems to search problems in a stronger sense than established in Section ������
Recall that in Section ����� we showed that the fate of the search problem class PC
�w�r�t PF� is determined by the fate of the decision problem class NP �w�r�t P��
Here we show that� for many natural search problems in PC �i�e�� selfreducible
ones�� the fate of such a problem R �w�r�t PF� is determined by the fate of the
decision problem SR �w�r�t P�� where SR is the decision problem implicit in R�

We now present a few search problems that are selfreducible� We start with SAT

�see Section G���� the set of satis�able Boolean formulae �in CNF�� and consider
the search problem in which given a formula one should provide a truth assignment
that satis�es it� The corresponding relation is denoted RSAT� that is� ��� � � RSAT
if is a satisfying assignment to the formulae �� The decision problem implicit
in RSAT is indeed SAT� Note that RSAT is in PC �i�e�� it is polynomiallybounded
and membership of ��� � in RSAT is easy to decide �by evaluating a Boolean
expression���

Proposition ���	 �RSAT is selfreducible�� The search problem of RSAT is re�
ducible to SAT�

Thus� the search problem of RSAT is computationally equivalent to deciding mem
bership in SAT� Hence� in studying the complexity of SAT� we also address the
complexity of the search problem of RSAT�

Proof� We present an oracle machine that solves the search problem of RSAT by
making oracle calls to SAT� Given a formula �� we �nd a satisfying assignment to �
�in case such an assignment exists� as follows� First� we query SAT on � itself� and
return an indication that there is no solution if the oracle answer is 	 �indicating
� �� SAT�� Otherwise� we let � initiated to the empty string� denote a pre�x of a
satisfying assignment of �� We proceed in iterations� where in each iteration we

�For example� the reduction invokes the search oracle and answer � if and only if the oracle
returns some string �rather than the �no solution� symbol��

	�	� POLYNOMIALTIME REDUCTIONS ��

extend by one bit� This is done as follows� First we derive a formula� denoted ���
by setting the �rst j j$� variables of � according to the values 	� We then query
SAT on �� �which means that we ask whether or not 	 is a pre�x of a satisfying
assignment of ��� If the answer is positive then we set � 	 else we set � ��
This procedure relies on the fact that if is a pre�x of a satisfying assignment of
� and 	 is not a pre�x of a satisfying assignment of � then � must be a pre�x of
a satisfying assignment of ��

We wish to highlight a key point that has been blurred in the foregoing de
scription� Recall that the formula �� is obtained by replacing some variables by
constants� which means that �� per se contains Boolean variables as well as Boolean
constants� However� the standard de�nition of SAT disallows Boolean constants in
its instances�� Nevertheless� �� can be simpli�ed such that the resulting formula
contains no Boolean constants� This simpli�cation is performed according to the
straightforward Boolean rules� That is� the constant false can be omitted from
any clause� but if a clause contains only occurrences of the constant false then
the entire formula simpli�es to false� Likewise� if the constant true appears in
a clause then the entire clause can be omitted� but if all clauses are omitted then
the entire formula simpli�es to true� Needless to say� if the simpli�cation process
yields a Boolean constant then we may skip the query� and otherwise we just use
the simpli�ed form of �� as our query�

Reductions analogous to the one used in the proof of Proposition ���� can be
presented also for other search problems �and not only for NPcomplete ones�� Two
such examples are searching for a �coloring of a given graph and searching for an
isomorphism between a given pair of graphs �where the �rst problem is known
to be NPcomplete and the second problem is believed not to be NPcomplete��
In both cases� the reduction of the search problem to a decision problem involves
extending a pre�x of a valid solution by making suitable queries in order to decide
which extension to use� Note� however� that in these cases the process of getting
rid of constants �representing partial solutions� is more involved� For example� in
the case of Graph �Colorability �resp�� Graph Isomorphism� we need to enforce a
partial coloring of a given graph �resp�� a partial isomorphism between a given pair
of graphs�� see Exercises ���� and ����� respectively�

Re�ection� The proof of Proposition ���� �as well as the proofs of similar results�
consists of two observations�

�� For every relation R in PC� it holds that the search problem of R is reducible
to the decision problem of S�R � f�x� y�� � �y�� s�t� �x� y�y��� � Rg� Such a
reduction is explicit in the proof of Theorem ��� and is implicit in the proof
of Proposition �����

�� For speci�c R � PC �e�g�� SSAT�� deciding membership in S�R is reducible to
deciding membership in SR � fx � �y s�t� �x� y� � Rg� This is where the

�While the problem seems rather technical at the current setting �as it merely amounts to
whether or not the de�nition of SAT allows Boolean constants in its instances�� it is far from being
so technical in other cases �see Exercises ���� and ������

�	 CHAPTER 	� P� NP AND NPCOMPLETENESS

speci�c structure of SAT was used� allowing for a direct and natural transfor
mation of instances of S�R to instances of SR�

�We comment that if SR is NPcomplete then S�R� which is always in NP � is
reducible to SR by the mere fact that SR is NPcomplete� this comment is
related to the following advanced comment��

For an arbitrary R � PC� deciding membership in S�R is not necessarily reducible to
deciding membership in SR� Furthermore� deciding membership in S�R is not nec
essarily reducible to the search problem of R� �See Exercises ����� ��� � and ������

In general� selfreducibility is a property of the search problem and not of the
decision problem implicit in it� Furthermore� under plausible assumptions �e�g��
the intractability of factoring�� there exists relations R�� R� � PC having the same
implicitdecision problem �i�e�� fx � R��x� �� �g � fx � R��x� �� �g� such that R� is
selfreducible but R� is not �see Exercise ������ However� for many natural decision
problems this phenomenon does not arise� that is� for many natural NP�decision
problems S� any NP�witness relation associated with S �i�e�� R � PC such that
fx � R�x� �� �g � S� is self�reducible� Indeed� see the discussion following the proof
of Proposition ���� as well as the subsequent comment�

Teaching note� Towards the following advanced comment� we assume that the stu�

dents have heard of NP�completeness� Actually� we only need the students to know the

de�nition of NP�completeness
i�e�� a set S is NP�complete if S � NP and every set in

NP is reducible to S�� Yet� the teacher may prefer postponing the presentation of the

following advanced comment to Section �����
or even to a later stage��

Advanced comment� Recall that� in general� selfreducibility is a property
of the search problem R and not of the decision problem implicit in it �i�e��
SR � fx � R�x� �� �g�� In contrast� in the special case of NPcomplete problems�
selfreducibility holds for any witness relation associated with the �NPcomplete�
decision problem� That is� all search problems that refer to �nding NP�witnesses
for any NP�complete decision problem are self�reducible�

Theorem ���� For every R in PC such that SR is NP�complete� the search prob�
lem of R is reducible to deciding membership in SR�

In many cases� as in the proof of Proposition ����� the reduction of the search
problem to the corresponding decision problem is quite natural� The following
proof presents a generic reduction �which may be �unnatural� in some cases��

Proof� In order to reduce the search problem of R to deciding SR� we compose
the following two reductions�

�� A reduction of the search problem of R to deciding membership in S�R �
f�x� y�� � �y�� s�t� �x� y�y����Rg�
As stated in the foregoing paragraph �titled �re�ection��� such a reduction
is implicit in the proof of Proposition ���� �as well as being explicit in the
proof of Theorem �����

	��� NPCOMPLETENESS ��

�� A reduction of S�R to SR�

This reduction exists by the hypothesis that SR is NPcomplete and the
fact that S�R � NP � �Note that we do not assume that this reduction is a
Karpreduction� and furthermore it may be a �unnatural� reduction��

The theorem follows�

��� NP�Completeness

In light of the di�culty of settling the PvsNP Question� when faced with a hard
problem H in NP� we cannot expect to prove that H is not in P �unconditionally��
The best we can expect is a conditional proof that H is not in P� based on the
assumption that NP is di�erent from P� The contrapositive is proving that if H is
in P� then so is any problem in NP �i�e�� NP equals P�� One possible way of proving
such an assertion is showing that any problem in NP is polynomialtime reducible
to H� This is the essence of the theory of NPcompleteness�

Teaching note� Some students heard of NP�completeness before� but we suspect that

many have missed important conceptual points� Speci�cally� we fear that they missed

the point that the mere existence of NP�complete problems is amazing
let alone that

these problems include natural ones such as SAT�� We believe that this situation is a

consequence of presenting the detailed proof of Cook�s Theorem as the very �rst thing

right after de�ning NP�completeness�

����� De�nitions

The standard de�nition of NPcompleteness refers to decision problems� Below
we will also present a de�nition of NPcomplete �or rather PCcomplete� search
problems� In both cases� NPcompleteness of a problem ' combines two conditions�

�� ' is in the class �i�e�� ' being in NP or PC� depending on whether ' is a
decision or a search problem��

�� Each problem in the class is reducible to '� This condition is called NP�
hardness�

Although a perfectly good de�nition could have allowed arbitrary Cookreductions
�for establishing NPhardness�� it turns out that Karpreductions �resp�� Levin
reductions� su�ce for establishing the NPhardness of all natural NPcomplete de
cision �resp�� search� problems� Consequently� NPcompleteness is usually de�ned
using this restricted notion of a polynomialtime reduction�

De�nition ���� �NPcompleteness of decision problems� restricted notion�� A set
S is NP�complete if it is in NP and every set in NP is Karp�reducible to S�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

A set is NP�hard if every set in NP is Karpreducible to it� Indeed� there is no
reason to insist on Karpreductions �rather than using arbitrary Cookreductions��
except that the restricted notion su�ces for all known demonstrations of NP
completeness and is easier to work with� An analogous de�nition applies to search
problems�

De�nition ��� �NPcompleteness of search problems� restricted notion�� A bi�
nary relation R is PC�complete if it is in PC and every relation in PC is Levin�
reducible to R�

In the sequel� we will sometimes abuse the terminology and refer to search problems
as NPcomplete �rather than PCcomplete�� Likewise� we will say that a search
problem is NP�hard �rather than PC�hard� if every relation in PC is Levinreducible
to it�

We stress that the mere fact that we have de�ned a property �i�e�� NPcompleteness�
does not mean that there exist objects that satisfy this property� It is indeed re�
markable that NP�complete problems do exist� Such problems are �universal� in
the sense that solving them allows to solve any other �reasonable� problem �i�e��
problems in NP��

����� The existence of NP	complete problems

We suggest not to confuse the mere existence of NPcomplete problems� which
is remarkable by itself� with the even more remarkable existence of �natural� NP
complete problems� The following proof delivers the �rst message as well as focuses
on the essence of NPcompleteness� rather than on more complicated technical
details� The essence of NPcompleteness is that a single computational problem
may �e�ectively encode� a wide class of seemingly unrelated problems�

Theorem ���� There exist NP�complete relations and sets�

Proof� The proof �as well as any other NPcompleteness proof� is based on the
observation that some decision problems in NP �resp�� search problems in PC� are
�rich enough� to encode all decision problems in NP �resp�� all search problems
in PC�� This fact is most obvious for the �generic� decision and search problems�
denoted Su and Ru �and de�ned next�� which are used to derive the simplest proof
of the current theorem�

We consider the following relation Ru and the decision problem Su implicit in
Ru �i�e�� Su � fx � �y s�t� �x� y��Rug�� Both problems refer to the same type of
instances� which in turn have the form x � hM�x� �ti� where M is a description
of a �deterministic� Turing machine� x is a string� and t is a natural number�
The number t is given in unary �rather than in binary� in order to allow various
complexity measures� which depend on the instance length� to be polynomial in t
�rather than polylogarithmic in t��

	��� NPCOMPLETENESS ��

De�nition� The relation Ru consists of pairs �hM�x� �ti� y� such that M accepts the

input pair �x� y� within t steps� where jyj � t�	 The corresponding set Su
def
� fx �

�y s�t� �x� y� � Rug consists of triples hM�x� �ti such that machine M accepts
some input of the form �x� �� within t steps�

It is easy to see that Ru is in PC and that Su is in NP � Indeed� Ru is
recognizable by a universal Turing machine� which on input �hM�x� �ti� y� emulates
�t steps of� the computation of M on �x� y�� �The fact that Su � NP follows
similarly�� We comment that u indeed stands for universal �i�e�� universal machine��
and the proof extends to any reasonable model of computation �which has adequate
universal machines��

We now turn to show that Ru and Su are NPhard in the adequate sense �i�e��
Ru is PChard and Su is NPhard�� We �rst show that any set in NP is Karp
reducible to Su� Let S be a set in NP and let us denote its witness relation by
R� that is� R is in PC and x � S if and only if there exists y such that �x� y� � R�
Let pR be a polynomial bounding the length of solutions in R �i�e�� jyj � pR�jxj�
for every �x� y� � R�� let MR be a polynomialtime machine deciding membership
�of alleged �x� y� pairs� in R� and let tR be a polynomial bounding its running
time� Then� the desired Karpreduction maps an instance x �for S� to the instance
hMR� x� �

tRjxj�pRjxj��i �for Su�� that is�

x � f�x�
def
� hMR� x� �

tRjxj�pRjxj��i� �����

Note that this mapping can be computed in polynomialtime� and that x � S if
and only if f�x� � hMR� x� �

tRjxj�pRjxj��i � Su� Details follow�

First� note that the mapping f does depend �of course� on S� and so it may
depend on the �xed objectsMR� pR and TR �which depend on S�� Thus� computing
f on input x calls for printing the �xed stringMR� copying x� and printing a number
of �
s that is a �xed polynomial in the length of x� Hence� f is polynomialtime
computable� Second� recall that x � S if and only if there exists y such that
jyj � pR�jxj� and �x� y� � R� Since MR accepts �x� y� � R within tR�jxj $ jyj�
steps� it follows that x � S if and only if there exists y such that jyj � pR�jxj� and
MR accepts �x� y� within tR�jxj $ jyj� steps� It follows that x � S if and only if
f�x� � Su�

We now turn to the search version� For reducing the search problem of any
R � PC to the search problem of Ru� we use essentially the same reduction� On
input an instance x �for R�� we make the query hMR� x� �

tRjxj�pRjxj��i to the
search problem of Ru and return whatever the latter returns� Note that if x �� S
then the answer will be �no solution�� whereas for every x and y it holds that
�x� y� � R if and only if �hMR� x� �

tRjxj�pRjxj��i� y� � Ru� Thus� a Levinreduction
of R to Ru consists of the pair of functions �f� g�� where f is the foregoing Karp
reduction and g�x� y� � y� Note that indeed� for every �f�x�� y� � Ru� it holds that
�x� g�x� y�� � �x� y� � R�

�Instead of requiring that jyj � t� one may require that M is �canonical� in the sense that it
reads its entire input before halting�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

Advanced comment� Note that the role of �t in the de�nition of Ru is to allow
placing Ru in PC� In contrast� consider the relation R�u that consists of pairs
�hM�x� ti� y� such that M accepts xy within t steps� Indeed� the di�erence is that
in Ru the timebound t appears in unary notation� whereas in R�u it appears in
binary� Then� as will become obvious in x�������� membership in R�u cannot be
decided in polynomial time �even in the special case where x and y are �xed��
Going even further� we note that omitting t altogether from the problem instance
yields a search problem that is not solvable at all� That is� consider the relation

RH
def
� f�hM�xi� y� � M�xy� � �g �which is related to the halting problem�� Indeed�

the search problem of any relation �an in particular of any relation in PC� is Karp
reducible to the search problem of RH � but the latter is not solvable at all �i�e��
there exists no algorithm that halts on every input and on input x � hM�xi outputs
y such that �x� y� � RH if and only such a y exists��

Bounded Halting and Non�Halting

We note that the problem shown to be NPcomplete in the proof of Theorem ����
is related to the following two problems� called Bounded Halting and Bounded

Non�Halting� Fixing any programming language� the instance to each of these
problems consists of a program � and a time bound t �presented in unary�� The
decision version of Bounded Halting �resp�� Bounded Non�Halting� consists of
determining whether or not there exists an input �of length at most t� on which
the program � halts in t steps �resp�� does not halt in t steps�� whereas the search
problem consists of �nding such an input�

The decision version of Bounded Non�Halting refers to a fundamental compu
tational problem in the area of program veri�cation� speci�cally� the question of
whether a given program halts within a given timebound on all inputs of a given
length�
 We mention the Bounded Halting problem because it is often referred
to in the literature� but we believe that Bounded Non�Halting is more relevant to
the project of program veri�cation �because one seeks programs that halt on all
inputs rather than programs that halt on some input��

It is easy to prove that both problems are NPcomplete �see Exercise ������
Note that the two �decision� problems are not complementary �i�e�� �M� �t� may be
a yesinstance of both decision problems���

�The length parameter need not equal the time�bound� Indeed� a more general version of the
problem refers to two bounds� � and t� and to whether the given program halts within t steps on
each possible ��bit input� It is easy to prove that the problem remains NP�complete also in the
case that the instances are restricted to have parameters � and t such that t � p���� for any �xed
polynomial p �e�g�� p�n� � n�� rather than p�n� � n as used in the main text��

	Indeed� �M� �t� can not be a no�instance of both decision problems� but this does not make
the problems complementary� In fact� the two decision problems yield a three�way partition of
the instances �M� �t�� ��� pairs �M� �t� such that for every input x �of length at most t� the
computation of M�x� halts within t steps� ��� pairs �M� �t� for which such halting occurs on some

inputs but not on all inputs� and ��� pairs �M� �t� such that there exists no input �of length at
most t� on which M halts in t steps� Note that instances of type ��� are no�instances of Bounded
Non�Halting� whereas instances of type ��� are no�instances of Bounded Halting� It follows that
recognizing each of these three sets of instances is NP�hard under Cook�reductions�

	��� NPCOMPLETENESS �

The fact that Bounded Non�Halting is probably intractable �i�e�� is intractable
provided that P �� NP� is even more relevant to the project of program veri�cation
than the fact that the Halting Problem is undecidable� The reason being that the
latter problem �as well as other related undecidable problems� refers to arbitrarily
long computations� whereas the former problem refers to computations of explicitly
bounded number of steps� Speci�cally� Bounded Non�Halting is concerned with
the existence of an input that causes the program to violate a certain condition
�i�e�� halting� within a given timebound�

In light of the above� the common practice of bashing Bounded �Non�Halting
as an �unnatural� problem seems very odd at an age in which computer programs
plays such a central role� �Nevertheless� we will use the term �natural� in this
traditionally and odd sense in the next title� which refers to natural computational
problems that seem unrelated to computation��

����� Some natural NP	complete problems

Having established the mere existence of NPcomplete problems� we now turn to
prove the existence of NPcomplete problems that do not �explicitly� refer to com
putation in the problem
s de�nition� We stress that thousands of such problems
are known �and a list of several hundreds can be found in ������

We will prove that deciding the satis�ability of propositional formulae is NP
complete �i�e�� Cook
s Theorem�� and also present some combinatorial problems
that are NPcomplete� This presentation is aimed at providing a �small� sample
of natural NPcompleteness results as well as some tools towards proving NP
completeness of new problems of interest� We start by making a comment regarding
the latter issue�

The reduction presented in the proof of Theorem ���� is called �generic� because
it �explicitly� refers to any �generic� NPproblem� That is� we actually presented
a scheme for the design of reductions from any desired NPproblem to the single
problem proved to be NPcomplete� Indeed� in doing so� we have followed the def
inition of NPcompleteness� However� once we know some NPcomplete problems�
a di�erent route is open to us� We may establish the NPcompleteness of a new
problem by reducing a known NPcomplete problem to the new problem� This
alternative route is indeed a common practice� and it is based on the following
simple proposition�

Proposition ���� If an NP�complete problem ' is reducible to some problem '� in
NP then '� is NP�complete� Furthermore� reducibility via Karp�reductions �resp��
Levinreductions� is preserved�

Proof� The proof boils down to asserting the transitivity of reductions� Specif
ically� the NPhardness of ' means that every problem in NP is reducible to '�
which in turn is reducible to '�� Thus� by transitivity of reduction �see Exer
cise ����� every problem in NP is reducible to '�� which means that '� is NPhard
and the proposition follows�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

������� Circuit and formula satis�ability� CSAT and SAT

We consider two related computational problems� CSAT and SAT� which refer �in
the decision version� to the satis�ability of Boolean circuits and formulae� respec
tively� �We refer the reader to the de�nition of Boolean circuits� formulae and CNF
formulae that appear in x���������

Teaching note� We suggest to establish the NP�completeness of SAT by a reduction

from the circuit satisfaction problem
CSAT�� after establishing the NP�completeness

of the latter� Doing so allows to decouple two important parts of the proof of the NP�

completeness of SAT� the emulation of Turing machines by circuits� and the emulation

of circuits by formulae with auxiliary variables�

CSAT� Recall that Boolean circuits are directed acyclic graphs with internal
vertices� called gates� labeled by Boolean operations �of arity either � or ��� and
external vertices called terminals that are associated with either inputs or outputs�
When setting the inputs of such a circuit� all internal nodes are assigned values in
the natural way� and this yields a value to the output�s�� called an evaluation of the
circuit on the given input� The evaluation of circuit C on input z is denoted C�z��
We focus on circuits with a single output� and let CSAT denote the set of satis�able
Boolean circuits �i�e�� a circuit C is in CSAT if there exists an input z such that
C�z� � ��� We also consider the related relation RCSAT � f�C� z� � C�z� � �g�

Theorem ���� �NPcompleteness of CSAT�� The set �resp�� relation� CSAT �resp��
RCSAT� is NP�complete �resp�� PCcomplete��

Proof� As usual it is easy to see that CSAT � NP �resp�� RCSAT � PC�� Thus� we
turn to showing that these problems are NPhard� We will focus on the decision
version �but also discuss the search version��

We will present �again� but for the last time in this book� a generic reduction�
this time of any NPproblem to CSAT� The reduction is based on the observation�
mentioned in x�������� that the computation of polynomialtime algorithms can be
emulated by polynomialsize circuits� In the current context� we wish to emulate
the computation of a �xed machine M on input �x� y�� where x is �xed and y
varies �but jyj � poly�jxj� and the total number of steps of M�x� y� is polynomial
in jxj$ jyj�� Thus� x will be �hardwired� into the circuit� whereas y will serve as
the input to the circuit� The circuit itself� denoted Cx� will consists of �layers� such
that each layer represents an instantaneous con�guration of the machine M � and
the relation between consecutive con�gurations in a computation of this machine
is captured by ��uniform�� local gadgets in the circuit� The number of layers
will depend on the polynomial that upperbounds the runningtime of M � and an
additional gadget will be used to detect whether the last con�guration is accepting�
Thus� only the �rst layer of the circuit Cx will depend on x� The punchline is that
determining whether� for a given x� there exists a y �jyj � poly�jxj�� such that
M�x� y� � � �in a given number of steps� reduces to the question of whether there
exists a y such that Cx�y� � �� Performing this reduction for any machine MR

	��� NPCOMPLETENESS ��

that corresponds to any R � PC �as in the proof of Theorem ������ we establish
the fact that CSAT is NPcomplete� Details follow�

Recall that we wish to reduce an arbitrary set S � NP to CSAT� Let R� pR�
MR and tR be as in the proof of Theorem ���� �i�e�� R is the witness relation of
S� whereas pR bounds the length of the NPwitnesses� MR is the machine deciding
membership in R� and tR is its polynomial timebound�� Without loss of generality
�and for simplicity�� suppose that MR is a onetape Turing machine� We will
construct a Karpreduction that maps an instance x �for S� to a circuit� denoted

f�x�
def
� Cx� such that Cx�y� � � if and only if MR accepts the input �x� y� within

tR�jxj $ pR�jxj�� steps� Thus� it will follow that x � S if and only if there exists
y � f	� �gpRjxj� such that Cx�y� � � �i�e�� if and only if Cx � CSAT�� The circuit
Cx will depend on x as well as on MR� pR and tR� �We stress that MR� pR and tR
are �xed� whereas x is varies and thus explicit in our notation��

Before describing the circuit Cx� let us consider a possible computation of MR

on input �x� y�� where x is �xed and y represents a generic string of length at
most pR�jxj�� Such a computation proceeds for t � tR�jxj $ pR�jxj�� steps� and
corresponds to a sequence of t $ � instantaneous con�gurations� each of length
t� Each such con�guration can be encoded by t pairs of symbols� where the �rst
symbol in each pair indicates the contents of a cell and the second symbol indicates
either a state of the machine or the fact that the machine is not located in this
cell� Thus� each pair is a member of � � �Q � f�g�� where � is the �nite �work
alphabet� of MR� Q is its �nite set of internal states� and � is an indication
that the machine is not present at a cell� The initial con�guration includes xy as
input� and the decision of MR�x� y� can be read from �the leftmost cell of� the last
con�guration��� With the exception of the �rst row� the values of the entries in each
row are determined by the entries of the row just above it� where this determination
re�ects the transition function of MR� Furthermore� the value of each entry in the
said array is determined by the values of �up to� three entries that reside in the row
above it �see Exercise ���	�� Thus� the aforementioned computation is represented
by a �t $ �� � t array� where each entry encodes one out of a constant number of
possibilities� which in turn can be encoded by a constantlength bit string� See
Figure ����

The circuit Cx has a structure that corresponds to the aforementioned array�
Each entry in the array is represented by a constant number of gates such that when
Cx is evaluated at y these gates will be assigned values that encode the contents of
the said entry� In particular� the entries of the �rst row of the array are �encoded�
by hardwiring the reduction
s input �i�e�� x�� and feeding the circuit
s input �i�e��
y� to the adequate input terminals� That is� the circuit has pR�jxj� ��real�� in
put terminals� and the hardwiring of constants to the other O�t � pR�jxj�� gates
that represent the �rst row is done by simple gadgets �as in Figure ����� Indeed�
additional hardwiring in the �rst row corresponds to the other �xed elements of
the initial con�guration �i�e�� the blank symbols� and the encoding of the initial
state and of the initial location� cf� Figure ����� The entries of subsequent rows

�
We refer to the output convention presented in x�������� by which the output is written in
the leftmost cells and the machine halts at the cell to its right�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

last configuration

initial configuration (1,a) (1,-) (0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(-,-) (-,-) (-,-)(-,-) (-,-)

(1,b)

(0,b)(1,-)

(3,-)

(3,-)

(0,-)(1,c)(3,-)

(0,-)

(0,-)

(1,-)(3,c)

(y ,-)1

(y ,-)1

(y ,-)1 (y ,-)2

(y ,-)2

(y ,-)2

(with input 110 2 y 1) y

(1,-) (1,f)

Blank characters as well as the indication that the machine is not present in the
cell are marked by a hyphen ��� The three arrows represent the determination
of an entry by the three entries that reside above it� The machine underlying
this example accepts the input if and only if the input contains a zero�

Figure ���� An array representing ten computation steps on input ��	y�y��

will be �encoded� �or rather computed at evaluation time� by using constant�size
circuits that determine the value of an entry based on the three relevant entries
in the row above it� Recall that each entry is encoded by a constant number of
gates� and thus these constantsize circuits merely compute the constantsize func
tion described in Exercise ���	� In addition� the circuit will have a few extra gates
that check the values of the entries of the last row in order to determine whether
or not it encodes an accepting con�guration��� Note that the circuit Cx can be
constructed in polynomial time from the string x� because we just need to encode
x in an appropriate manner as well as generate a �highly uniform� gridlike circuit
of size O�tR�jxj $ pR�jxj�������

Although the foregoing construction of Cx capitalizes on various speci�c details
of the �onetape� Turing machine model� it can be adapted to any other �rea

��In continuation to Footnote ��� we note that it su�ces to check the values of the two leftmost
entries of the last row� We assumed here that the circuit propagates a halting con�guration to
the last row� Alternatively� we may check for the existence of an accepting halting con�guration
in the entire array� since this condition is quite simple�

��Advanced comment� A more e�cient construction� which generate almost�linear sized

circuits �i�e�� circuits of size eO�tR�jxj� pR�jxj���� is known see ������

	��� NPCOMPLETENESS ��

sonable� model of e�cient computation��� Alternatively� we recall the Cobham
Edmonds Thesis asserting that any problem that is solvable in polynomialtime
�on some �reasonable� model� can be solved in polynomialtime by a �onetape�
Turing machine�

Turning back to the circuit Cx� we observe that indeed Cx�y� � � if and only
if MR accepts the input �x� y� while making at most t � tR�jxj $ pR�jxj�� steps�
Recalling that S � fx � �y s�t� jyj � pR�jxj�
 �x� y� � Rg and that MR decides
membership in R in time tR� we infer that x � S if and only if f�x� � Cx � CSAT�
Furthermore� �x� y� � R if and only if �f�x�� y� � RCSAT� It follows that f is a

Karpreduction of S to CSAT� and� for g�x� y�
def
� y it holds that �f� g� is a Levin

reduction of R to RCSAT� The theorem follows�

SAT� Recall that Boolean formulae are special types of Boolean circuits �i�e��
circuits having a tree structure���� We further restrict our attention to formulae
given in conjunctive normal form �CNF�� We denote by SAT the set of satis�able
CNF formulae �i�e�� a CNF formula � is in SAT if there exists an truth assignment
such that ��� � ��� We also consider the related relation RSAT � f��� � � ��� �
�g�

Theorem ���� �NPcompleteness of SAT�� The set �resp�� relation� SAT �resp��
RSAT� is NP�complete �resp�� PCcomplete��

Proof� Since the set of possible instances of SAT is a subset of the set of instances
of CSAT� it is clear that SAT � NP �resp�� RSAT � PC�� To prove that SAT
is NPhard� we reduce CSAT to SAT �and use Proposition ������ The reduction
boils down to introducing auxiliary variables in order to �cut� the computation of
an arbitrary ��deep�� circuit into a conjunction of related computations of �shal
low� circuits �i�e�� depth� circuits� of unbounded fanin� which in turn may be
presented as a CNF formula� The aforementioned auxiliary variables hold the pos�
sible values of the internal gates of the original circuit� and the clauses of the CNF
formula enforce the consistency of these values with the corresponding gate oper
ation� For example� if gatei and gatej feed into gatek� which is a
gate� then
the corresponding auxiliary variables gi� gj � gk should satisfy the Boolean condition
gk � �gi
 gj�� which can be written as a �CNF with four clauses� Details follow�

We start by Karpreducing CSAT to SAT� Given a Boolean circuit C� with n
input terminals and m gates� we �rst construct m constant�size formulae on n$m
variables� where the �rst n variables correspond to the input terminals of the circuit�
and the other m variables correspond to its gates� The ith formula will depend on
the variable that correspond to the ith gate and the �� variables that correspond to

��Advanced comment� Note that it is actually inessential that each entry in each con�
�guration is determined by a constant number of entries in the previous con�guration� Any
polynomial�time computable transformation of con�gurations will do� since we can emulate such
a transformation by a polynomial�size circuit� Indeed� this emulation will be based on presenting
the said transformation in some concrete model of computation� which brings us to the next
comment �invoking the Cobham�Edmonds Thesis��

��For an alternative de�nition� see Section G���

�	 CHAPTER 	� P� NP AND NPCOMPLETENESS

1 2 3

or

and

and

1 2

g1

3

g2g1 g2

and

g3

eq

or

eq
eq

g4

eq

gate1

gate2

gate3
and

3

gate4 neg

neg

g3 g4
and

Using auxiliary variables �i�e�� the gi�s� to �cut� a depth� circuit �into a CNF��
The dashed regions will be replaced by equivalent CNF formulae� The dashed cy
cle representing an unbounded fanin andgate is the conjunction of all constant
size circuits �which enforce the functionalities of the original gates� and the vari
able that represents the gate that feed the output terminal in the original circuit�

Figure ���� The idea underlying the reduction of CSAT to SAT�

the vertices that feed into this gate �i�e�� � vertices in case of
gate or �gate and a
single vertex in case of a �gate� where these vertices may be either input terminals
or other gates�� This �constantsize� formula will be satis�ed by a truth assignment
if and only if this assignment matches the gate
s functionality �i�e�� feeding this gate
with the corresponding values result in the corresponding output value�� Note that
these constant�size formulae can be written as constantsize CNF formulae �in fact�
as �CNF formulae���� Taking the conjunction of these m formulae as well as the
variable associated with the gate that feeds into the output terminal� we obtain a
formula � in CNF �see Figure ���� where n � � and m � ���

Note that � can be constructed in polynomialtime from the circuit C� that is�
the mapping of C to � � f�C� is polynomialtime computable� We claim that C
is in CSAT if and only if � is in SAT�

�� Suppose that for some string s it holds that C�s� � �� Then� assigning the
ith auxiliary variable the value that is assigned to the ith gate of C when
evaluated on s� we obtain �together with s� a truth assignment that satis�es
�� This is the case because such an assignment satis�es all m constantsize
CNFs as well as the variable associated with the output of C�

�� On the other hand� if satis�es � then the �rst n bits in correspond to an
input on which C evaluates to �� This is the case because the m constantsize
CNFs guarantee that the variables of � are assigned values that correspond

��Recall that any Boolean function can be written as a CNF formula having size that is expo�
nential in the length of its input� which in this case is a constant �i�e�� either � or ��� Furthermore�
note that the Boolean functions that we refer to here depends on ��� Boolean variables �since
they indicate whether or not the corresponding values respect the gate�s functionality��

	��� NPCOMPLETENESS ��

to the evaluation of C on the �rst n bits of � while the fact that the variable
associated with the output of C has value true guarantees that this evaluation
of C yields the value ��

Note that the latter mapping �of to its nbit pre�x� is the second mapping
required by the de�nition of a Levinreduction�

Thus� we have established that f is a Karpreduction of CSAT to SAT� and that
augmenting f with the aforementioned second mapping yields a Levinreduction
of RCSAT to RSAT�

Comment� The fact that the second mapping required by the de�nition of a
Levinreduction is explicit in the proof of the validity of the corresponding Karp
reduction is a fairly common phenomenon� Actually �see Exercise ������ typical pre
sentations of Karpreductions provide two auxiliary polynomialtime computable
mappings �in addition to the main mapping of instances from one problem �e�g��
CSAT� to instances of another problem �e�g�� SAT��� The �rst auxiliary mapping
is of solutions for the preimage instance �e�g�� of CSAT� to solutions for the image
instance of the reduction �e�g�� of SAT�� whereas the second mapping goes the other
way around� �Note that only the main mapping and the second auxiliary mapping
are required in the de�nition of a Levinreduction�� For example� the proof of the
validity of the Karpreduction of CSAT to SAT� denoted f � speci�ed two additional
mappings h and g such that �C� s� � RCSAT implies �f�C�� h�C� s�� � RSAT and
�f�C�� � � RSAT implies �C� g�C� �� � RCSAT� Speci�cally� in the proof of Theo
rem ����� we used h�C� s� � �s� a�� ���� am� where ai is the value assigned to the ith

gate in the evaluation of C�s�� and g�C� � being the nbit pre�x of �

�SAT� Note that the formulae resulting from the Karpreduction presented in
the proof of Theorem ���� are in conjunctive normal form �CNF� with each clause
referring to at most three variables� Thus� the above reduction actually establishes
the NPcompleteness of �SAT �i�e�� SAT restricted to CNF formula with up to three
variables per clause�� Alternatively� one may Karpreduce SAT �i�e�� satis�ability
of CNF formula� to �SAT �i�e�� satis�ability of �CNF formula�� by replacing long
clauses with conjunctions of threevariable clauses using auxiliary variables �see
Exercise ������ Either way� we get the following result� where the furthermore part
is proved by an additional reduction�

Proposition ���� �SAT is NP�complete� Furthermore� the problem remains NP�
complete also if we restrict the instances such that each variable appears in at most
three clauses�

Proof Sketch� The furthermore part is proved by reduction from �SAT� We just
replace each occurrence of each Boolean variable by a new copy of this variable� and
add clauses to enforce that all these copies are assigned the same value� Speci�cally�
replacing the variable z by copies z��� ���� zm�� we add the clauses zi�����zi� for
i � �����m �where m$ � is understood as ���

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

Related problems� Note that instances of SAT can be viewed as systems of
Boolean conditions over Boolean variables� Such systems can be emulated by vari
ous types of systems of arithmetic conditions� implying the NPhardness of solving
the latter types of systems� Examples include systems of integer linear inequalities
�see Exercise ������ and systems of quadratic equalities �see Exercise ��� ��

������� Combinatorics and graph theory

Teaching note� The purpose of this subsection is to expose the students to a sample of

NP�completeness results and proof techniques
i�e�� the design of reductions among com�

putational problems�� The author believes that this traditional material is insightful�

but one may skip it in the context of a complexity class�

We present just a few of the many appealing combinatorial problems that are known
to be NPcomplete� Throughout this section� we focus on the decision versions of
the various problems� and adopt a more informal style� Speci�cally� we will present
a typical decision problem as a problem of deciding whether a given instance� which
belongs to a set of relevant instances� is a �yesinstance� or a �noinstance� �rather
than referring to deciding membership of arbitrary strings in a set of yesinstances��
For further discussion of this style and its rigorous formulation� see Section ������
We will also neglect to show that these decision problems are in NP�

We start with the set cover problem� in which an instance consists of a collection
of �nite sets S�� ���� Sm and an integer K and the question �for decision� is whether
or not there exist �at most��� K sets that cover

Sm
i�� Si �i�e�� indices i�� ���� iK such

that
SK
j�� Sij �

Sm
i�� Si��

Proposition ���� Set Cover is NP�complete�

Proof Sketch� We sketch a reduction of SAT to Set Cover� For a CNF formula
� with m clauses and n variables� we consider the sets S��t� S��f� ��� Sn�t� Sn�f �
f�� ����mg such that Si�t �resp�� Si�f� is the set of the indices of the clauses �of ��

that are satis�ed by setting the ith variable to true �resp�� false�� That is� if
the ith variable appears unnegated �resp�� negated� in the jth clause then j � Si�t
�resp�� j � Si�f�� Note that the union of these �n sets equals f�� ����mg� Now�

on input �� the reduction outputs the Set Cover instance f���
def
� ��S�� ��� S�n�� n��

where S�i�� � Si�t � fm$ ig and S�i � Si�f � fm$ ig for i � �� ���� n�
Note that f is computable in polynomialtime� and that if � is satis�ed by

� � � � n then the collection fS�i��i � i � �� ���� ng covers f�� ����m $ ng� Thus�
� � SAT implies that f��� is a yesinstance of Set Cover� On the other hand�
each cover of fm$ �� ����m$ ng � f�� ����m$ ng must include either S�i�� or S�i
for each i� Thus� a cover of f�� ����m $ ng using n of the Sj
s must contain� for
every i� either S�i�� or S�i but not both� Setting i accordingly �i�e�� i � � if and
only if S�i�� is in the cover� implies that fS�i��i � i � �� ���� ng covers f�� ����mg�

��Clearly� in case of Set Cover� the two formulations �i�e�� asking for exactly K sets or at most
K sets� are computationally equivalent�

	��� NPCOMPLETENESS ��

which in turn implies that � � � � n satis�es �� Thus� if f��� is a yesinstance of
Set Cover then � � SAT�

Exact Cover and �XC� The exact cover problem is similar to the set cover prob
lem� except that here the sets that are used in the cover are not allowed to intersect�
That is� each element in the universe should be covered by exactly one set in the
cover� Restricting the set of instances to sequences of subsets each having exactly
three elements� we get the restricted problem ��Exact Cover ��XC�� where it is un
necessary to specify the number of sets to be used in the cover� The problem �XC

is rather technical� but it is quite useful for demonstrating the NPcompleteness of
other problems �by reducing �XC to them��

Proposition ���	 ��Exact Cover is NP�complete�

Indeed� it follows that the Exact Cover �in which sets of arbitrary size are allowed�
is NPcomplete� This follows both for the case that the number of sets in the desired
cover is unspeci�ed and for the various cases in which this number is bounded �i�e��
upperbounded or lowerbounded or both��

Proof Sketch� The reduction is obtained by composing three reductions� We �rst
reduce a restricted case of �SAT to a restricted version of Set Cover� denoted �SC�
in which each set has at most three elements �and an instance consists� as in the
general case� of a sequence of �nite sets as well as an integer K�� Speci�cally�
we refer to �SAT instances that are restricted such that each variable appears in
at most three clauses� and recall that this restricted problem is NPcomplete �see
Proposition ������ Actually� we further reduce this special case of �SAT to one
in which each literal appears in at most two clauses��	 Now� we reduce the new
version of �SAT to �SC by using the �very same� reduction presented in the proof of
Proposition ����� and observing that the size of each set in the reduced instance is
at most three �i�e�� one more than the number of occurrences of the corresponding
literal��

Next� we reduce �SC to the following restricted case of Exact Cover� denoted
�XC
� in which each set has at most three elements� an instance consists of a sequence
of �nite sets as well as an integer K� and the question is whether there exists an
exact cover with at most K sets� The reduction maps an instance ��S�� ���� Sm��K�
of �SC to the instance �C ��K� such that C � is a collection of all subsets of each of the
sets S�� ���� Sm� Since each Si has size at most �� we introduce at most � nonempty
subsets per each such set� and the reduction can be computed in polynomialtime�
The reader may easily verify the validity of this reduction�

��This can be done by observing that if all three occurrences of a variable are of the same
type �i�e�� they are all negated or all non�negated� then this variable can be assigned a value that
satis�es all clauses in which it appears� and so the variable and the clauses in which it appear can
be omitted from the instance� This yields a reduction of �SAT instances in which each variable
appears in at most three clauses to �SAT instances in which each literal appears in at most two
clauses� Actually� a closer look at the proof of Proposition ���� reveals the fact that the reduced
instances satisfy the latter property anyhow�

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

Finally� we reduce �XC
 to �XC� Consider an instance ��S�� ���� Sm��K� of �XC
�
and suppose that

Sm
i�� Si � �n�� If n � �K then this is de�nitely a noinstance�

which can be mapped to a dummy noinstance of �XC� and so we assume that

x
def
� �K � n � 	� Note that x represents the �excess� covering ability of an

exact cover having K sets� each having three elements� Thus� we augment the set
system with x new elements� denoted n$ �� ���� �K� and replace each Si such that
jSij � � by a subcollection of �sets that cover Si as well as arbitrary elements
from fn $ �� ���� �Kg� That is� in case jSij � �� the set Si is replaced by the sub
collection �Si�fn$�g� ���� Si�f�Kg�� whereas a singleton Si is replaced by the sets
Si � fj�� j�g for every j� � j� in fn $ �� ���� �Kg� In addition� we add all possible
�subsets of fn$�� ���� �Kg� This completes the description of the third reduction�
the validity of which is left as an exercise�

Vertex Cover� Independent Set� and Clique� Turning to graph theoretic
problems �see Section G���� we start with the Vertex Cover problem� which is
a special case of the Set Cover problem� The instances consists of pairs �G�K��
where G � �V�E� is a simple graph andK is an integer� and the problem is whether
or not there exists a set of �at most� K vertices that is incident to all graph edges
�i�e�� each edge in G has at least one endpoint in this set�� Indeed� this instance
of Vertex Cover can be viewed as an instance of Set Cover by considering the
collection of sets �Sv�v�V � where Sv denotes the set of edges incident at vertex v
�i�e�� Sv � fe � E � v � eg�� Thus� the NPhardness of Set Cover follows from the
NPhardness of Vertex Cover �but this implication is unhelpful for us here� we
already know that Set Cover is NPhard and we wish to prove that Vertex Cover

is NPhard�� We also note that the Vertex Cover problem is computationally
equivalent to the Independent Set and Clique problems �see Exercise ������ and
thus it su�ces to establish the NPhardness of one of these problems�

Proposition ���� The problems Vertex Cover� Independent Set and Clique

are NP�complete�

Teaching note� The following reduction is not the �standard� one
see Exercise ������

It is rather adapted from the FGLSS�reduction
see Exercise ������ and is used here

in anticipation of the latter� Furthermore� although the following reduction tends to

create a larger graph� the author �nds it more clear than the �standard� reduction�

Proof Sketch� We show a reduction from �SAT to Independent Set� On input
a �CNF formula � with m clauses and n variables� we construct a graph with �m
vertices� denoted G�� The vertices are grouped in m cliques� each corresponding
to one of the clauses and containing � vertices that correspond to the � truth
assignments �to the � variables in the clause� that satisfy the clause� In addition to
the internal edges of these m cliques� we add an edge between each pair of vertices
that correspond to partial assignments that are mutually inconsistent� That is� if a
speci�c �satisfying� assignment to the variables of the ith clause is inconsistent with
some �satisfying� assignment to the variables of the jth clause then we connect the

	��� NPCOMPLETENESS �

corresponding vertices by an edge� �Note that the internal edges of the m cliques
may be viewed as a special case of the edges connecting mutually inconsistent
partial assignments�� Thus� on input �� the reduction outputs the pair �G��m��

Note that if � is satis�able by a truth assignment then there are no edges
between the m vertices that correspond to the partial satisfying assignment derived
from � �We stress that any truth assignment to � yields an independent set� but
only a satisfying assignment guarantees that this independent set contains a vertex
from each of the m cliques�� Thus� � � SAT implies that G� has an independent
set of size m� On the other hand� an independent set of size m in G� must contain
exactly one vertex in each of the m cliques� and thus induces a truth assignment
that satis�es �� �We stress that each independent set induces a consistent truth
assignment to �� because the partial assignments selected in the various cliques
must be consistent� and that an independent set containing a vertex from a speci�c
clique induces an assignment that satis�es the corresponding clause�� Thus� if G�

has an independent set of size m then � � SAT�

Graph ��Colorability �G�C�� In this problem the instances are graphs and the
question is whether or not the graph can be colored using three colors �such that
neighboring vertices are not assigned the same color��

Proposition ���� Graph ��Colorability is NP�complete�

Proof Sketch� We reduce �SAT to G�C by mapping a �CNF formula � to the
graph G�� which consists of two special ��designated�� vertices� a gadget per each
variable of �� a gadget per each clause of �� and edges connecting some of these
components�

� The two designated vertices are called ground and false� and are connected
by an edge that ensures that they must be given di�erent colors in any �
coloring of G�� We will refer to the color assigned to the vertex ground �resp��
false� by the name ground �resp�� false�� The third color will be called
true�

� The gadget associated with variable x is a pair of vertices� associated with
the two literals of x �i�e�� x and �x�� These vertices are connected by an
edge� and each of them is also connected to the vertex ground� Thus� in a
�coloring of G� one of the vertices associated with the variable is colored
true and the other is colored false�

� The gadget associated with a clause C is depicted in Figure ���� It contains
a master vertex� denoted M� and three terminal vertices� denoted T�� T�
and T�� The master vertex is connected by edges to the vertices ground

and false� and thus in a �coloring of G� the master vertex must be colored
true� The gadget has the property that it is possible to color the terminals
with any combination of the colors true and false� except for coloring all
terminals with false� The terminals of the gadget associated with clause C
will be identi�ed with the vertices that are associated with the corresponding

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

1

2

3

x

y
M

T1

T2

T3

In a generic �coloring of the subgadget it must hold that if x � y
then x � y � �� Thus� if the three terminals of the gadget are
assigned the same color� �� then M is also assigned the color ��

Figure ���� The reduction to G�C � the clause gadget and its subgadget�

literals appearing in C� This means that the various clausegadgets are not
vertexdisjoint but may rather share some terminals �with the vertexgadgets
as well as among themselves���
 See Figure ����

Verifying the validity of the reduction is left as an exercise�

����� NP sets that are neither in P nor NP	complete

As stated in Section ������ thousands of problems have been shown to be NP
complete �cf�� ���� Apdx��� which contains a list of more than three hundreds main
entries�� Things reached a situation in which people seem to expect any NPset to
be either NPcomplete or in P � This naive view is wrong� Assuming NP �� P� there
exist sets in NP that are neither NP�complete nor in P� where here NP�hardness
allows also Cook�reductions�

Theorem ��� Assuming NP �� P� there exist a set T in NP nP such that some
sets in NP are not Cook�reducible to T �

Theorem ���� asserts that if NP �� P then NP is partitioned into three nonempty
classes� the class P � the class of problems to which NP is Cookreducible� and the
rest� denote NPI� We already know that the �rst two classes are not empty�
and Theorem ���� establishes the nonemptiness of NPI under the condition that
NP �� P � which is actually a necessary condition �because if NP � P then every
set in NP is Cookreducible to any other set in NP��

The following proof of Theorem ���� presents an unnatural decision problem
in NPI� We mention that some natural problems �e�g�� factoring� are conjectured
to be neither solvable in polynomialtime nor NPhard� In particular� assuming
that factoring is intractable� there exist rather natural decision problems in NPI�
Furthermore� if NP �� coNP � where coNP � ff	� �g� n S � S � NPg� then (

def
�

��Alternatively� we may use disjoint gadgets and �connect� each terminal with the correspond�
ing literal �in the corresponding vertex gadget�� Such a connection �i�e�� an auxiliary gadget�
should force the two end�points to have the same color in any ��coloring of the graph�

	��� NPCOMPLETENESS ��

variable gadgets

clause gadgets

GROUND FALSE
the two designated verices

A single clause gadget and the relevant variables gadgets�

Figure ���� The reduction to G�C � connecting the gadgets�

NP � coNP � P � NPI holds �as a corollary to Theorem ������ In other words�
if NP �� coNP then (n P is a �natural� subset of NPI� and the nonemptiness
of NPI follows provided that (�� P � Recall that Theorem ���� establishes the
nonemptiness of NPI under the seemingly weaker assumption that NP �� P �

Teaching note� We recommend either stating Theorem ���� without a proof or merely

providing the proof idea�

Proof Sketch� The basic idea is modifying an arbitrary set in NP n P so as to
fail all possible reductions �from NP to the modi�ed set� as well as all possible
polynomialtime decision procedures �for the modi�ed set�� Speci�cally� starting
with S � NP nP � we derive S� � S such that on one hand there is no polynomial
time reduction of S to S� while on the other hand S� � NP n P � The process of
modifying S into S� proceeds in iterations� alternatively failing a potential reduction
�by dropping su�ciently many strings from the rest of S� and failing a potential
decision procedure �by including su�ciently many strings from the rest of S��
Speci�cally� each potential reduction of S to S� can be failed by dropping �nitely
many elements from the current S�� whereas each potential decision procedure can
be failed by keeping �nitely many elements of the current S�� These two assertions
are based on the following two corresponding facts�

�� Any polynomialtime reduction �of any set not in P� to any �nite set �e�g��
a �nite subset of S� must fail� because only sets in P are Cookreducible

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

to a �nite set� Thus� for any �nite set F and any potential reduction �i�e��
a polynomialtime oracle machine�� there exists an input x on which this
reduction to F fails�

We stress that the aforementioned reduction fails while the only queries that
are answered positively are those residing in F � Furthermore� the aforemen
tioned failure is due to a �nite set of queries �i�e�� the set of all queries made
by the reduction when invoked on an input that is smaller or equal to x��
Thus� for every �nite set F � S� � S� any reduction of S to S� can be
failed by dropping a �nite number of elements from S� and without dropping
elements of F �

�� For every �nite set F � any polynomialtime decision procedure for S nF must
fail� because S is �trivially� Cookreducible to S nF � Thus� for any potential
decision procedure �i�e�� a polynomialtime algorithm�� there exists an input
x on which this procedure fails�

We stress that this failure is due to a �nite �pre�x� of S n F �i�e�� the set
fz � S n F � z � xg�� Thus� for every �nite set F � any polynomialtime
decision procedure for S nF can be failed by keeping a �nite subset of S nF �

As stated� the process of modifying S into S� proceeds in iterations� alternatively
failing a potential reduction �by dropping �nitely many strings from the rest of S�
and failing a potential decision procedure �by including �nitely many strings from
the rest of S�� This can be done e�ciently because it is inessential to determine the
�rst possible points of alternation �in which su�ciently many strings were dropped
�resp�� included� to fail the next potential reduction �resp�� decision procedure��� It
su�ces to guarantee that adequate points of alternation �albeit highly nonoptimal
ones� can be e�ciently determined� Thus� S� is the intersection of S and some set
in P � which implies that S� � NP � Following are some comments regarding the
implementation of the foregoing idea�

The �rst issue is that the foregoing plan calls for an ��e�ective�� enumeration of
all polynomialtime oracle machines �resp�� polynomialtime algorithms�� However�
none of these sets can be enumerated �by an algorithm�� Instead� we enumerate
all corresponding machines along with all possible polynomials� and for each pair
�M�p� we consider executions of machine M with time bound speci�ed by the
polynomial p� That is� we use the machine Mp obtained from the pair �M�p� by
suspending the execution of M on input x after p�jxj� steps� We stress that we do
not know whether machine M runs in polynomialtime� but the computations of
any polynomialtime machine is �covered� by some pair �M�p��

Next� let us clarify the process in which reductions and decision procedures are
ruled out� We present a construction of a ��lter� set F in P such that the �nal set
S� will equal S � F � Recall that we need to select F such that each polynomial
time reduction of S to S�F fails� and each polynomialtime procedure for deciding
S � F fails� The key observation is that for every �nite F each polynomialtime
reduction of S to S � F fails� whereas for every co�nite F �i�e�� �nite f	� �g� n F �
each polynomialtime procedure for deciding S � F fails� Furthermore� each of
these failures occur on some input� and this input is determined by �nite portions

	��� NPCOMPLETENESS ��

of S and F � Thus� we alternate between failing possible reductions and decision
procedures� while not trying to determine the �optimal� points of alternation but
rather determining points of alternation in a way that allows for e�ciently deciding
membership in F � Speci�cally� we let F � fx � f�jxj� � � mod �g� where f � N
f	g � N is de�ned next such that f�n� can be computed in time poly�n��

The value of f�n� is de�ned by the the following experiment that consists of
exactly n� computation steps �where cubic time is selected to allow for some non
trivial manipulations of data as conducted next�� For i � 	� �� ���� we scan all inputs
in lexicographic order trying to �nd an input on which the i$�st �modi�ed� machine
fails� where this machine is an oracle machine if i$� is odd and a standard machine
otherwise� In order to determine whether or not a failure occurs on a particular
input x� we may need to know whether or not x is in the set S� � S � F as well
as whether some other strings �which may appear as queries� are in S�� Deciding
membership in S � NP can be done in exponentialtime �by using the exhaustive
search algorithm that tries all possible NPwitnesses�� Indeed� this means that
when computing f�n� we may only complete the treatment of inputs that are of
logarithmic �in n� length� but anyhow in n� steps we can not hope to reach �in
our lexicographic scanning� strings of length � log� n� As for deciding membership
in F � this requires ability to compute f on adequate integers� That is� we may
need to compute the value of f�n�� for various integers n�� but as noted n� will be
much smaller than n� Thus� the value of f�n�� is just computed recursively �while
counting the recursive steps in our total number of steps���� The point is that� when
considering an input x� we may need the values of f only on f�� ���� pi���jxj�g� where
pi�� is the polynomial bounding the runningtime of the i$�st �modi�ed� machine�
and obtaining such a value takes at most pi���jxj�� steps� Finally� if we detect a
failure of the i$�st machine� then we increase i and proceed to the next iteration�
When we reach the allowed number of steps �i�e�� n� steps�� we halt outputting the
current value of i �i�e�� the current i is output as the value of f�n���

As hinted in the foregoing� it is most likely that we will complete n� steps much
before examining inputs of length � log� n� but this does not matter� What matters
is that f is monotonically non�decreasing �because more steps allow to fail at least
as many machines� and that f is unbounded �see Exercise ������ Furthermore� by
construction� f�n� is computed in poly�n� time�

Comment� The proof of Theorem ���� actually establishes that for every S �� P
there exists S� �� P such that S� is Karp�reducible to S but S is not Cook�reducible
to S���� Thus� if P �� NP then there exists an in�nite sequence of sets S�� S�� ���
in NP n P such that Si�� is Karpreducible to Si but Si is not Cookreducible
to Si��� That is� there exists an in�nite hierarchy of problems �albeit unnatural
ones�� all in NP � such that each problem is �easier� than the previous ones �in the
sense that it can be reduced to the previous problems while these problems cannot

�	We do not bother to present a more e�cient implementation of this process� That is� we may
a�ord to recompute f�n�� every time we need it �rather than store it for later use��

�
The said Karp�reduction �of S� to S� maps x to itself if x � F and otherwise maps x to a
�xed no�instance of S�

�	 CHAPTER 	� P� NP AND NPCOMPLETENESS

be reduced to it��

��� Three relatively advanced topics

In this section we discuss three relatively advanced topics� The �rst topic� which
was eluded to in previous sections� is the notion of promise problems �Section �������
Next we present an optimal search algorithm for NP �Section ������� and discuss
the class �coNP� of sets that are complements of sets in NP�

Teaching note� These topics are typically not mentioned in a basic course on com�

plexity� Still� pending on time constraints� we suggest discussing them at least at a high

level�

����� Promise Problems

Promise problems are a natural generalization of search and decision problems�
where one explicitly considers a set of legitimate instances �rather than considering
any string as a legitimate instance�� As noted before� this provides a more adequate
formulation of natural computational problems �and indeed this formulation is used
in all informal discussions�� For example� in x������� we presented such problems
using phrases like �given a graph and an integer���� �or �given a collection of
sets������ In other words� we assumed that the input instance has a certain format
�or rather we �promised the solver� that this is the case�� Indeed� we claimed that
in these cases the assumption can be removed without a�ecting the complexity of
the problem� but we avoided providing a formal treatment of this issue� which is
done next�

Teaching note� The notion of promise problems was originally introduced in the

context of decision problems� and is typically used only in that context� However� we

believe that promise problems are as natural in the context of search problems�

��	���� De�nitions

In the context of search problems� a promise problem is a relaxation in which one
is only required to �nd solutions to instances in a predetermined set� called the
promise� The requirement regarding e�cient checkability of solutions is adapted in
an analogous manner�

De�nition ���� �search problems with a promise�� A search problem with a promise
consists of a binary relation R � f	� �g� � f	� �g� and a promise set P � Such a
problem is also referred to as the search problem R with promise P �

� The search problem R with promise P is solved by algorithm A if for every
x � P it holds that �x�A�x�� � R if x � SR � fx � R�x� �� �g and A�x� � �
otherwise� where R�x� � fy � �x� y� � Rg�
The time complexity of A on inputs in P is de�ned as TAjP �n�

def
� maxx�P�f���gnftA�x�g�

where tA�x� is the running time of A�x� and TAjP �n� � 	 if P � f	� �gn � ��

	��� THREE RELATIVELY ADVANCED TOPICS ��

� The search problem R with promise P is in the promise problem extension of
PF if there exists a polynomial�time algorithm that solves this problem���

� The search problem R with promise P is in the promise problem extension of
PC if there exists a polynomial T and an algorithm A such that� for every
x � P and y � f	� �g�� algorithm A makes at most T �jxj� steps and it holds
that A�x� y� � � if and only if �x� y� � R�

We stress that nothing is required of the solver in the case that the input violates
the promise �i�e�� x �� P �� in particular� in such a case the algorithm may halt with
a wrong output� �Indeed� the standard formulation of search problems is obtained
by considering the trivial promise P � f	� �g����� In addition to the foregoing
motivation for promise problems� we mention one natural class of search problems
with a promise� These are search problem in which the promise is that the instance
has a solution �i�e�� in terms of the foregoing notation P � SR�� We refer to such
search problems by the name candid search problems�

De�nition ���� �candid search problems�� An algorithm A solves the candid

search problem of the binary relation R if for every x � SR
def
� fx � �y s�t� �x� y� � Rg

it holds that �x�A�x�� � R� The time complexity of such an algorithm is de�ned as

TAjSR�n�
def
� maxx�P�f���gnftA�x�g� where tA�x� is the running time of A�x� and

TAjSR�n� � 	 if P � f	� �gn � ��
Note that nothing is required when x �� SR� In particular� algorithm A may ei
ther output a wrong solution �although no solutions exist� or run for more than
TAjSR�jxj� steps� The �rst case can be essentially eliminated whenever R � PC�
Furthermore� for R � PC� if we �know� the time complexity of algorithm A �e�g��
if we can compute TAjSR�n� in poly�n�time�� then we may modify A into an algo
rithm A� that solves the �general� search problem of R �i�e�� halts with a correct
output on each input� in time TA��n� � TAjSR�n� $ poly�n�� However� as we shall
see in Section ������ the naive assumption by which we always know the running
time of an algorithm that we design is not necessarily valid�

Decision problems with a promise� In the context of decision problems� a
promise problem is a relaxation in which one is only required to determine the
status of instances that belong to a predetermined set� called the promise� The
requirement of e�cient veri�cation is adapted in an analogous manner� In view
of the standard usage of the term� we refer to decision problems with a promise
by the name promise problems� Formally� promise problems refer to a threeway
partition of the set of all strings into yesinstances� noinstances and instances that

��In this case it does not matter whether the time complexity of A is de�ned on inputs in P
or on all possible strings� Suppose that A has �polynomial� time complexity T on inputs in P �
then we can modify A to halt on any input x after at most T �jxj� steps� This modi�cation may
only e�ects the output of A on inputs not in P �which is OK by us�� The modi�cation can be
implemented in polynomial�time by computing t � T �jxj� and emulating the execution of A�x�
for t steps� A similar comment applies to the de�nition of PC� P and NP�

��Here we refer to the formulation presented in Section ������

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

violate the promise� Standard decision problems are obtained as a special case by
insisting that all inputs are allowed �i�e�� the promise is trivial��

De�nition ���� �promise problems�� A promise problem consists of a pair of non�
intersecting sets of strings� denoted �Syes� Sno�� and Syes�Sno is called the promise�

� The promise problem �Syes� Sno� is solved by algorithm A if for every x � Syes
it holds that A�x� � � and for every x � Sno it holds that A�x� � 	� The
promise problem is in the promise problem extension of P if there exists a
polynomial�time algorithm that solves it�

� The promise problem �Syes� Sno� is in the promise problem extension of NP if
there exists a polynomial p and a polynomial�time algorithm V such that the
following two conditions hold�

�� Completeness� For every x � Syes� there exists y of length at most p�jxj�
such that V �x� y� � ��

� Soundness� For every x � Sno and every y� it holds that V �x� y� � 	�

We stress that for algorithms of polynomialtime complexity� it does not matter
whether the time complexity is de�ned only on inputs that satisfy the promise or
on all strings �see Footnote ���� Thus� the extended classes P and NP �like PF
and PC� are invariant under this choice�

Reducibility among promise problems� The notion of a Cookreduction ex
tend naturally to promise problems� when postulating that a query that violates
the promise �of the problem at the target of the reduction� may be answered
arbitrarily��� That is� the oracle machine should solve the original problem no
matter how queries that violate the promise are answered� The latter requirement
is consistent with the conceptual meaning of reductions and promise problems� Re
call that reductions captures procedures that make subroutine calls to an arbitrary
procedure that solves the reduced problem� But� in the case of promise problems�
such a solver may behave arbitrarily on instances that violate the promise� We
stress that the main property of a reduction is preserved �see Exercise ��� �� if
the promise problem ' is Cook�reducible to a promise problem that is solvable in
polynomial�time� then ' is solvable in polynomial�time�

We warn that the extension of a complexity class to promise problems does not
necessarily inherit the �structural� properties of the standard class� For example�
in contrast to Theorem ����� there exists promise problems in NP � coNP such
that every set in NP can be Cookreduced to them� see Exercise ����� Needless
to say� NP � coNP does not seem to follow from Exercise ����� See further
discussion at the end of x��������

��It follows that Karp�reductions among promise problems are not allowed to make queries
that violate the promise� Speci�cally� we say that the promise problem ! � �!yes�!no� is Karp�
reducible to the promise problem !� � �!�yes �!

�
no� if there exists a polynomial�time mapping f

such that for every x � !yes �resp�� x � !no� it holds that f�x� � !�yes �resp�� f�x� � !�no��

	��� THREE RELATIVELY ADVANCED TOPICS ��

��	���� Discussion

The following discussion refers both to the decision and search versions of promise
problems� Recall that promise problems o�er the most direct way of capturing
natural computational problems �e�g�� when referring to computational problems
regarding graphs� the promise mandates that the input is a graph��

Restricting a computational problem� In addition to the foregoing motiva
tion to promise problems� we mention their use in formulating the natural notion of
a restriction of a computational problem to a subset of the instances� Speci�cally�
such a restriction means that the promise set of the restricted problem is a subset of
the promise set of the unrestricted problem� For example� when we say that �SAT
is a restriction of SAT� we refer to the fact that the set of allowed instances is now
restricted to �CNF formulae �rather than to arbitrary CNF formulae�� In both
cases� the natural computational problem is to determine satis�ability �or to �nd
a satisfying assignment�� but the set of instances �i�e�� the promise set� is further
restricted in the case of �SAT� The fact that a restricted problem is never harder
than the original problem is captured by the fact that the restricted problem is
reducible to the original one �via the identity mapping��

The standard convention of avoiding promise problems� Recall that� al
though promise problems provide a good framework for presenting natural compu
tational problems� we managed to avoid this formulation in previous sections� This
was done by relying on the fact that for all the �natural� problems considered in
the previous sections� it is easy to decide whether or not a given instance satis�es
the promise� For example� given a formula it is easy to decide whether or not it is
in CNF �or �CNF�� Actually� the issue arises already when talking about formulae�
What we are actually given is a string that is supposed to encode a formula �under
some predetermined encoding scheme�� and so the promise �which is easy to decide
for natural encoding schemes� is that the input string is a valid encoding of some
formula� In any case� if the promise is e�ciently recognizable �i�e�� membership in
it can be decided in polynomialtime� then we may avoid mentioning the promise
by using one of the following two �nasty� conventions�

�� Extending the set of instances to the set of all possible strings �and allowing
trivial solutions for the corresponding dummy instances�� For example� in
the case of a search problem� we may either de�ne all instance that violate
the promise to have no solution or de�ne them to have a trivial solution �e�g��
be a solution for themselves�� that is� for a search problem R with promise
P � we may consider the �standard� search problem of R where R is modi�ed
such that R�x� � � for every x �� P �or� say� R�x� � fxg for every x �� P ��
In the case of a promise �decision� problem �Syes� Sno�� we may consider the
problem of deciding membership in Syes� which means that instances that
violate the promise are considered as noinstances�

�� Considering every string as a valid encoding of an object that satis�es the
promise� That is� �xing any string x� that satis�es the promise� we consider

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

every string that violates the promise as if it were x�� In the case of a search
problem R with promise P � this means considering the �standard� search
problem of R where R is modi�ed such that R�x� � R�x�� for every x �� P �
Similarly� in the case of a promise �decision� problem �Syes� Sno�� we consider
the problem of deciding membership in Syes �provided x� � Sno and otherwise
we consider the problem of deciding membership in f	� �g� n Sno��

We stress that in the case that the promise is e�ciently recognizable the aforemen
tioned conventions �or modi�cations� do not e�ect the complexity of the relevant
�search or decision� problem� That is� rather that considering the original promise
problem� we consider a �search or decision� problem �without a promise� that is
computational equivalent to the original one� Thus� in some sense we loss nothing
by studying the latter problem rather than the original one� On the other hand�
even in the case that these two problems are computationally equivalent� it is useful
to have a formulation that allows to distinguish between them �as we do distinguish
between the di�erent NPcomplete problems although they are all computationally
equivalent�� This conceptual concern becomes of crucial importance in the case �to
be discussed next� that the promise is not e�ciently recognizable�

The foregoing transformations of promise problems into computationally equiv
alent standard �decision and search� problems does not necessarily preserve the
complexity of the problem in the case that the promise is not e�ciently recogniz
able� In this case� the terminology of promise problems is unavoidable� Consider�
for example� the problem of deciding whether a Hamiltonian graph is �colorable�
On the face of it� such a problem may have fundamentally di�erent complexity than
the problem of deciding whether a given graph is both Hamiltonian and �colorable�

Other uses and some reservations� As mentioned in the foregoing� the notion
of a promise problem provides good formulations of many natural computational
problems� In addition� this notion of provides adequate formulations for a variety
of computational complexity notions and results� Examples include the notion of
�unique solutions� �see Section ������ and the formulation of �gap problems� as
capturing various approximation tasks �see Section �	���� In all these cases� promise
problems allow to discuss natural computational problems and make statements
about their inherent complexity� Thus� the complexity of promise problems �and
classes of such problems� addresses natural questions and concerns� Consequently�
demonstrating the intractability of a promise problem in some class �e�g�� saying
that some promise problem in NP cannot be solved by a polynomialtime algo
rithm� carries the same conceptual message as demonstrating the intractability of
a standard problem in the corresponding class� In contrast� as indicated at the
end of x�������� structural properties of promise problems may not hold for the
corresponding classes of standard problems �e�g�� see Exercise ������ Indeed� we do
distinguish here between the inherent �or absolute� properties such as intractability
and structural �or relative� properties such as reducibility�

	��� THREE RELATIVELY ADVANCED TOPICS �

��	���� The common convention

In spite of the foregoing opinions� we adopt the common convention of focusing on
standard decision and search problems� That is� by default� all complexity classes
refer to standard decision and search problems� and the exceptions in which we
refer to promise problems are stated explicitly as such� Such exceptions appear in
Sections ������ ������ ������ and �	���

����� Optimal search algorithms for NP

We refer to the candid search problem of any relation in PC� Recall that PC is
the class of search problems that allow for e�cient checking of the correctness of
candidate solutions �see De�nition ����� and that the candid search problem is
a search problem in which the solver is promised that the given instance has a
solution �see De�nition ������

We claim the existence of an optimal algorithm for solving the candid search
problem of any relation in PC� Furthermore� we will explicitly present such an
algorithm� and prove that it is optimal in a very strong sense� for any algorithm
solving the candid search problem of R � PC� our algorithm solves the same
problem in time that is at most a constant factor slower �ignoring a �xed additive
polynomial term� which may be disregarded in the case that the problem is not
solvable in polynomialtime�� Needless to say� we do not know the time complexity
of the aforementioned optimal algorithm �indeed if we knew it then we would have
resolved the PvsNP Question�� In fact� the PvsNP Question boils down to
determining the time complexity of a single explicitly presented algorithm �i�e�� the
optimal algorithm claimed in Theorem ������

Theorem ���� For every binary relation R � PC there exists an algorithm A that
satis�es the following�

�� A solves the candid search problem of R�

� There exists a polynomial p such that for every algorithm A� that solves the
candid search problem of R and for every x � SR

def
� fx � R�x� �� �g it holds

that tA�x� � O�tA��x� $ p�jxj��� where tA �resp�� tA�� denotes the number of
steps taken by A �resp�� A�� on input x�

Interestingly� we establish the optimality of A without knowing what its �optimal�
runningtime is� Furthermore� the optimality claim is �pointwise� �i�e�� it refers to
any input� rather than �global� �i�e�� referring to the �worst case� time complexity
as a function of the input length��

We stress that the hidden constant in the Onotation depends only on A�� but
in the following proof the dependence is exponential in the length of the description
of algorithm A� �and it is not known whether a better dependence can be achieved��
Indeed� this dependence as well as the idea underlying it constitute one negative
aspect of this otherwise amazing result� Another negative aspect is that the opti
mality of algorithm A refers only to inputs that have a solution �i�e�� inputs in SR��

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

Finally� we note that the theorem as stated refers only to models of computation
that have machines that can emulate a given number of steps of other machines
with a constant overhead� We mention that in most natural models the overhead
of such emulation is at most polylogarithmic in the number of steps� in which case
it holds that tA�x� � eO�tA��x� $ p�jxj���
Proof Sketch� Fixing R� we let M be a polynomialtime algorithm that decides
membership in R� and let p be a polynomial bounding the runningtime of M �as
a function of the length of the �rst element in the input pair�� We present the
following algorithm A that merely emulates all possible search algorithms �in par
allel� and checks the result provided by each of them �using M�� halting whenever
it obtains a correct solution�

Since there are in�nitely many possible algorithms� it may not be clear what
we mean by the expression �emulating all possible algorithms in parallel�� What
we mean is emulating them at di�erent �rates� such that the in�nite sum of these
rates converges to � �or to any other constant�� Speci�cally� we will emulate the ith

possible algorithm at rate ���i$ ���� which means emulating a single step of this
algorithm per �i $ ��� emulation steps �performed for all algorithms�� Note that
a straightforward implementation of this idea may create a signi�cant overhead�
involved in switching frequently from the emulation of one machine to the emulation
of another� Instead� we present an alternative implementation that proceeds in
iterations�

In the jth iteration� for i � �� ���� �j����� algorithm A emulates �j��i$��� steps
of the ith machine �where the machines are ordered according to the lexicographic
order of their descriptions�� Each of these emulations is conducted in one chunk�
and thus the overhead of switching between the various emulations is insigni�cant
�in comparison to the total number of steps being emulated�� In the case that some
of these emulations halts with output y� algorithm A invokes M on input �x� y�
and output y if and only if M�x� y� � �� Furthermore� the veri�cation of a solution
provided by a candidate algorithm is also emulated at the expense of its stepcount�
�Put in other words� we augment each algorithm with a canonical procedure �i�e��
M� that checks the validity of the solution o�ered by the algorithm��

By its construction� whenever A�x� outputs a string y �i�e�� y �� �� it must hold
that �x� y� � R� To show the optimality of A� we consider an arbitrary algorithm
A� that solves the candid search problem of R� Our aim is to show that A is
not much slower than A�� Intuitively� this is the case because the overhead of A
results from emulating other algorithms �in addition to A��� but the total number
of emulation steps wasted �due to these algorithms� is inversely proportional to
the rate of algorithm A�� which in turn is exponentially related to the length of
the description of A�� The punchline is that since A� is �xed� the length of its
description is a constant� Details follow�

For every x� let us denote by t��x� the number of steps taken by A� on input x�
where t��x� also accounts for the running time of M�x� ��� that is� t��x� � tA��x� $
p�jxj�� where tA��x� is the number of steps taken by A��x�� Then� the emulation of
t��x� steps of A� on input x is �covered� by the jth iteration of A� provided that
�j���jA

�j���� � t��x� where jA�j denotes the length of the description of A�� �Indeed�

	��� THREE RELATIVELY ADVANCED TOPICS ��

we use the fact that the algorithms are emulated in lexicographic order� and note
that there are at most �jA

�j�� � � algorithms that precede A� in lexicographic
order�� Thus� on input x� algorithm A halts after at most jA��x� iterations� where
jA��x� � ��jA�j$��$ log��tA��x�$ p�jxj��� after emulating a total number of steps
that is at most

t�x�
def
�

jA� x�X
j��

�j����X
i��

�j

�i$ ���
� �jA� x��� � ��jA

�j�� � �tA��x� $ p�jxj���

The question of how much time is required for emulating these many steps depends
on the speci�c model of computation� In many models of computation� the em
ulation of t steps of one machine by another machine requires eO�t� steps of the
emulating machines� and in some models this emulation can even be performed
with constant overhead� The theorem follows�

Comment� By construction� the foregoing algorithm A does not halt on input
x �� SR� This can be easily recti�ed by letting A emulate a straightforward ex
haustive search for a solution� and halt with output � if this this exhaustive search
indicates that there is no solution to the current input� This extra emulation can
be performed in parallel to all other emulations �e�g�� at a rate of one step for the
extra emulation per each step of everything else��

����� The class coNP and its intersection with NP

By prepending the name of a complexity class �of decision problems� with the pre�x
�co� we mean the class of complement sets� that is�

coC def
� ff	� �g� n S � S � Cg� �����

Speci�cally� coNP � ff	� �g� n S � S � NPg is the class of sets that are comple
ments of sets in NP �

Recalling that sets in NP are characterized by their witness relations such that
x � S if and only if there exists an adequate NPwitness� it follows that their
complement sets consists of all instances for which there are no NPwitness �i�e��
x � f	� �g� nS if there is no NPwitness for x being in S�� For example� SAT � NP
implies that the set of unsatis�able CNF formulae is in coNP � Likewise� the set
of graphs that are not �colorable is in coNP � �Jumping ahead� we mention that
it is widely believed that these sets are not in NP ��

Another perspective on coNP is obtained by considering the search problems
in PC� Recall that for such R � PC� the set of instances having a solution �i�e��
SR � fx � �y s�t� �x� y��Rg� is in NP � It follows that the set of instances having
no solution �i�e�� f	� �g� n SR � fx � �y �x� y� ��Rg� is in coNP �

It is widely believed that NP �� coNP �which means that NP is not closed
under complementation�� Indeed� this conjecture implies P �� NP �because P is
closed under complementation�� The conjecture NP �� coNP means that some

�� CHAPTER 	� P� NP AND NPCOMPLETENESS

sets in coNP do not have NPproof systems �because NP is the class of sets having
NPproof systems�� As we will show next� under this conjecture� the complements
of NPcomplete sets do not have NPproof systems� for example� there exists no
NPproof system for proving that a given CNF formula is not satis�able� We �rst
establish this fact for NPcompleteness in the standard sense �i�e�� under Karp
reductions� as in De�nition ������

Proposition ���� Suppose that NP �� coNP and let S � NP such that every set

in NP is Karp�reducible to S� Then S
def
� f	� �g� n S is not in NP�

Proof Sketch� We �rst observe that the fact that every set in NP is Karp
reducible to S implies that every set in coNP is Karpreducible to S� We next
claim that if S� is in NP then every set that is Karp�reducible to S� is also in NP �
Applying the claim to S� � S� we conclude that S � NP implies coNP � NP �
which in turn implies NP � coNP in contradiction to the main hypothesis�

We now turn to prove the foregoing claim� that is� we prove that if S� has an NP
proof system and S�� is Karpreducible to S� then S�� has an NPproof system� Let
V � be the veri�cation procedure associated with S�� and let f be a Karpreduction
of S�� to S�� Then� we de�ne the veri�cation procedure V �� �for membership in S���
by V ���x� y� � V ��f�x�� y�� That is� any NPwitness that f�x� � S� serves as an
NPwitness for x � S�� �and these are the only NPwitnesses for x � S���� This may
not be a �natural� proof system �for S���� but it is de�nitely an NPproof system
for S���

Assuming that NP �� coNP � Proposition ���� implies that sets in NP � coNP
cannot be NPcomplete with respect to Karpreductions� In light of other limita
tions of Karpreductions �see� e�g�� Exercise ����� one may wonder whether or not
the exclusion of NPcomplete sets from the class NP � coNP is due to the use
of a restricted notion of reductions �i�e�� Karpreductions�� The following theorem
asserts that this is not the case� some sets in NP cannot be reduced to sets in the
intersection NP � coNP even under general reductions �i�e�� Cookreductions��

Theorem ���� If every set in NP can be Cook�reduced to some set in NP�coNP
then NP � coNP�

In particular� assuming NP �� coNP � no set in NP � coNP can be NPcomplete�
even when NPcompleteness is de�ned with respect to Cookreductions� Since
NP � coNP is conjectured to be a proper superset of P � it follows �assuming
NP �� coNP� that there are decision problems in NP that are neither in P
nor NPhard �i�e�� speci�cally� the decision problems in �NP � coNP� n P�� We
stress that Theorem ���� refers to standard decision problems and not to promise
problems �see Section ����� and Exercise ������

Proof� Analogously to the proof of Proposition ���� � the current proof boils down
to proving that if S is Cook�reducible to a set in NP�coNP then S � NP�coNP �
Using this claim� the theorem
s hypothesis implies that NP � NP � coNP � which
in turn implies NP � coNP and NP � coNP �

	��� THREE RELATIVELY ADVANCED TOPICS ��

Fixing any S and S� � NP � coNP such that S is Cookreducible to S�� we
prove that S � NP �and the proof that S � coNP is similar���� Let us denote by
M the oracle machine reducing S to S�� That is� on input x� machine M makes
queries and decides whether or not to accept x� and its decision is correct provided
all queries are answered according to S�� To show that S � NP � we will present
an NPproof system for S� This proof system �or rather its veri�cation procedure��
denoted V � accepts a pair of the form �x� ��z�� 	�� w��� ���� �zt� 	t� wt�� if the following
two conditions hold�

�� On input x� machine M accepts after making the queries z�� ���� zt� and ob
taining the corresponding answers 	�� ���� 	t�

That is� V check that� on input x� after obtaining the answers 	�� ���� 	i�� to
the �rst i � � queries� the ith query made by M equals zi� In addition� V
checks that M outputs � �indicating acceptance�� while making the queries
z�� ���� zt and receiving the answers 	�� ���� 	t� respectively�

Note that V does not have oracle access to S�� The procedure V rather
emulates the computation of M�x� by using� for each i� the bit 	i �provided
to V as part of its input� as an answer to the ith query of M�x�� The
correctness of these answers will be veri�ed �by V � separately �i�e�� see the
next item��

�� For every i� it holds that if 	i � � then wi is an NPwitness for zi � S��
whereas if 	i � 	 then wi is an NPwitness for zi � f	� �g� n S��
Thus� if this condition holds then it is the case that each 	i indicates the
correct status of zi with respect to S� �i�e�� 	i � � if and only if zi � S���

We stress that we use the fact that both S� and S
� def
� f	� �g� n S have NPproof

systems� and refer to the corresponding NPwitnesses�
Note that V is indeed an NPproof system for S� Firstly� the length of the

corresponding witnesses is bounded by the runningtime of the reduction �and the
length of the NPwitnesses supplied for the various queries�� Next note that V
runs in polynomial time �i�e�� verifying the �rst condition requires an emulation of
the polynomialtime execution of M on input x when using the 	i
s to emulate the
oracle� whereas verifying the second condition is done by invoking the relevant NP
proof systems�� Finally� observe that x � S if and only if there exists a sequence

y
def
� ��z�� 	�� w��� ���� �zt� 	t� wt�� such that V �x� y� � �� In particular� V �x� y� � �

holds only if y contains a valid sequence of queries and answers made by M�x� and
answered by the oracle S�� and M accepts based on that sequence�

The world view � a digest� Recall that on top of the P �� NP conjecture� we
mentioned two other conjectures �which clearly imply P �� NP��

��Alternatively� we show that S � coNP by applying the following argument to S
def
� f�� �g� nS

and noting that S is Cook�reducible to S� �via S� or alternatively that S is Cook�reducible to
f�� �g� n S� � NP � coNP��

�		 CHAPTER 	� P� NP AND NPCOMPLETENESS

�� The conjecture that NP �� coNP �equivalently� NP � coNP �� NP��

This conjecture is equivalent to the conjecture that CNF formulae have no
short proofs of unsatis�ability �i�e�� the set f	� �g� n SAT has no NPproof
system��

�� The conjecture that NP � coNP �� P �

Notable candidates for the class NP � coNP �� P include decision problems
that are computationally equivalent to the integer factorization problem �i�e��
the search problem �in PC� in which� given a composite number� the task is
to �nd its prime factors��

Combining these conjectures� we get the world view depicted in Figure �� � which
also shows the class of coNPcomplete sets �de�ned next��

P

NPC

coNP

NP

coNPC

Figure �� � The world view under P �� coNP �NP �� NP �

De�nition ���	 A set S is called coNP�hard if every set in coNP is Karp�
reducible to S� A set is called coNP�complete if it is both in coNP and coNP�hard�

Indeed� insisting on Karpreductions is essential for a distinction between NP
hardness and coNPhardness�

Chapter Notes

Many sources provide historical accounts of the developments that led to the formu
lation of the P vs NP Problem and to the discovery of the theory of NPcompleteness
�see� e�g�� ���� Sec� �� � and ������� Still� we feel that we should not refrain from
o�ering our own impressions� which are based on the texts of the original papers�

Nowadays� the theory of NPcompleteness is commonly attributed to Cook � ��
Karp ������ and Levin ������ It seems that Cook
s starting point was his interest

	��� THREE RELATIVELY ADVANCED TOPICS �	�

in theorem proving procedures for propositional calculus � � P� � ��� Trying to
provide evidence to the di�culty of deciding whether or not a given formula is a tau
tology� he identi�ed NP as a class containing �many apparently di�cult problems�
�cf� e�g�� � � P� � ���� and showed that any problem in NP is reducible to deciding
membership in the set of �DNF tautologies� In particular� Cook emphasized the
importance of the concept of polynomialtime reductions and the complexity class
NP �both explicitly de�ned for the �rst time in his paper�� He also showed that
CLIQUE is computationally equivalent to SAT� and envisioned a class of problems of
the same nature�

Karp
s paper ����� can be viewed as ful�lling Cook
s prophecy� Stimulated by
Cook
s work� Karp demonstrated that a �large number of classic di�cult computa
tional problems� arising in �elds such as mathematical programming� graph theory�
combinatorics� computational logic and switching theory� are �NP�complete �and
thus equivalent�� ����� P� ���� Speci�cally� his list of twentyone NPcomplete prob
lems includes Integer Linear Programming� Hamilton Circuit� Chromatic Number�
Exact Set Cover� Steiner Tree� Knapsack� Job Scheduling� and Max Cut� Interest
ingly� Karp de�ned NP in terms of veri�cation procedures �i�e�� De�nition �� ��
pointed to its relation to �backtrack search of polynomial bounded depth� �����
P� ���� and viewed NP as the residence of a �wide range of important computa
tional problems� �which are not in P��

Independently of these developments� while being in the USSR� Levin proved the
existence of �universal search problems� �where universality meant NPcompleteness��
The starting point of Levin
s work ����� was his interest in the �perebor� conjec
ture asserting the inherent need for bruteforce in some search problems that have
e�ciently checkable solutions �i�e�� problems in PC�� Levin emphasized the impli
cation of polynomialtime reductions on the relation between the time complexity
of the related problem �for any growth rate of the time complexity�� asserted the
NPcompleteness of six �classical search problems�� and claimed that the underly
ing method �provides a mean for readily obtaining� similar results for �many other
important search problems��

It is interesting to note that although the works of Cook � �� Karp ������ and
Levin ����� were received with di�erent levels of enthusiasm� none of the con
temporaries realized the depth of the discovery and the di�culty of the question
posed �i�e�� the PvsNP Question�� This fact is evident in every account from the
early ���	
s� and may explain the frustration of the corresponding generation of
researchers� which expected the PvsNP Question to be resolved in their lifetime
�if not in a matter of years�� Needless to say� the author
s opinion is that there
was absolutely no justi�cation for these expectations� and that one should have
actually expected quite the opposite�

We mention that the three �founding papers� of the theory of NPcompleteness
�i�e�� Cook � �� Karp ������ and Levin ������ use the three di�erent types of reduc
tions used in this chapter� Speci�cally� Cook uses the general notion of polynomial
time reduction � �� often referred to as Cookreductions �De�nition ����� The
notion of Karpreductions �De�nition ���	� originates from Karp
s paper ������
whereas its augmentation to search problems �i�e�� De�nition ����� originates from

�	� CHAPTER 	� P� NP AND NPCOMPLETENESS

Levin
s paper ������ It is worth noting that unlike Cook and Karp
s works� which
treat decision problems� Levin
s work is stated in terms of search problems�

The reductions presented in x������� are not necessarily the original ones� Most
notably� the reduction establishing the NPhardness of the Independent Set prob
lem �i�e�� Proposition ��� � is adapted from ��	� �see also Exercise ������ In contrast�
the reductions presented in x������� are merely a reinterpretation of the original
reduction as presented in � �� The equivalence of the two de�nitions of NP �i�e��
Theorem ���� was proved in ������

The existence of NPsets that are neither in P nor NPcomplete �i�e�� Theo
rem ����� was proven by Ladner ������ Theorem ���� was proven by Selman ������
and the existence of optimal search algorithms for NPrelations �i�e�� Theorem �����
was proven by Levin ������ �Interestingly� the latter result was proved in the same
paper in which Levin presented the discovery of NPcompleteness� independently
of Cook and Karp�� Promise problems were explicitly introduced by Even� Selman
and Yacobi ����� see ��	� for a survey of their numerous applications�

We mention that the standard reductions used to establish natural NPcompleteness
results have several additional properties or can be modi�ed to have such properties�
These properties include an e�cient transformation of solutions in the direction of
the reduction �see Exercise ������ the preservation of the number of solutions �see
Exercise ������ being computable by a logspace algorithm �see Section ������ and
being invertible in polynomialtime �see Exercise ���	�� We also mention the fact
that all known NPcomplete sets are �e�ectively� isomorphic �see Exercise ������

Exercises

Exercise ��� �PF contains problems that are not in PC� Show that PF con
tains some �unnatural� problems that are not in PC�
Guideline� Consider the relation R � f
x� �� � x � f�� �g�g � f
x� �� � x � Sg� where S is

some undecidable set� Note that R is the disjoint union of two binary relations� denoted

R� and R�� where R� is in PF whereas R� is not in PC� Furthermore� for every x it holds

that R�
x� �� ��

Exercise ��� Show that any S � NP has many di�erent NPproof systems �i�e��
veri�cation procedures V�� V�� ��� such that Vi�x� y� � � does not imply Vj�x� y� � �
for i �� j��

Guideline� For V and p be as in De�nition ��� de�ne Vi
x� y� � � if jyj � p
jxj� � i and

there exists a pre�x y� of y such that V
x� y�� � ��

Exercise ��� Relying on the fact that primality is decidable in polynomialtime
and assuming that there is no polynomialtime factorization algorithm� present two
�natural but fundamentally di�erent� NPproof systems for the set of composite
numbers�

Guideline� Consider the following veri�cation procedures V� and V� for the set of com�

posite numbers� Let V�
n� y� � � if and only if y � n and n is not a prime� and

	��� THREE RELATIVELY ADVANCED TOPICS �	�

V�
n�m� � � if and only if m is a non�trivial divisor of n� Show that valid proofs with

respect to V� are easy to �nd� whereas valid proofs with respect to V� are hard to �nd�

Exercise ��	 Regarding De�nition ���� show that if S is accepted by some non
deterministic machine of time complexity t then it is accepted by a nondeterministic
machine of time complexity O�t� that has a transition function that maps each pos
sible symbolstate pair to exactly two triples�

Exercise ��� Verify the following properties of Cookreductions�

�� If ' is Cookreducible to '� and '� is solvable in polynomialtime then so is
'�

�� Cookreductions are transitive �i�e�� if ' is Cookreducible to '� and '� is
Cookreducible to '�� then ' is Cookreducible to '����

�� If ' is solvable in polynomialtime then it is Cookreducible to any problem
'��

In continuation to the last item� show that a problem ' is solvable in polynomial
time if and only if it is Cookreducible to a trivial problem �e�g�� deciding member
ship in the empty set��

Exercise ��� Show that Karpreductions �and Levinreductions� are transitive�

Exercise �� Show that some decision problems are not Karpreducible to their
complement �e�g�� the empty set is not Karpreducible to f	� �g���
A popular exercise of dubious nature is showing that any decision problem in P
is Karpreducible to any non�trivial decision problem� where the decision problem
regarding a set S is called nontrivial if S �� � and S �� f	� �g�� It follows that
every nontrivial set in P is Karpreducible to its complement�

Exercise ��� �reducing search problems to optimization problems� For ev
ery polynomially bounded relation R �resp�� R � PC�� present a function f �resp��
a polynomialtime computable function f� such that the search problem of R is
computationally equivalent to the search problem in which given �x� v� one has to
�nd a y � f	� �gpolyjxj� such that f�x� y� � v�

Hint� use a Boolean function��

Exercise ��� �binary search� Show that using
 binary queries of the form �is
z � v� it is possible to determine the value of an integer z that is a priori known
to reside in the interval �	� �� � ���

Guideline� Consider a process that iteratively halves the interval in which z is known

to reside in�

Exercise ���� Show that if R � PC nPF is selfreducible then the relevant Cook
reduction makes more than a logarithmic number of queries to SR� More generally�
show that if R � PC n PF is Cookreducible to any decision problem� then this
reduction makes more than a logarithmic number of queries�

Guideline� Note that the oracle answers can be emulated by trying all possibilities� and

that the correctness of the output of the oracle machine can be e�ciently tested�

�	� CHAPTER 	� P� NP AND NPCOMPLETENESS

Exercise ���� Show that the standard search problem of Graph �Colorability is
selfreducible� where this search problem consists of �nding a �coloring for a given
input graph�

Hint� Iteratively extend the current pre�x of a ��coloring of the graph by making adequate

oracle calls to the decision problem of Graph ��Colorability� Speci�cally� encode the question

of whether or not ���� ���� �t� � f�� �� �gt is a pre�x of a ��coloring of the graph G as a query

regarding the ��colorability of an auxiliary graph G�����

Exercise ���� Show that the standard search problem of Graph Isomorphism
is selfreducible� where this search problem consists of �nding an isomorphism
between a given pair of graphs�

Hint� Iteratively extend the current pre�x of an isomorphism between the two N�vertex graphs

by making adequate oracle calls to the decision problem of Graph Isomorphism� Speci�cally�

encode the question of whether or not ���� ���� �t� � �N �t is a pre�x of an isomorphism between

G� � ��N �� E�� and G� � ��N �� E�� as a query regarding isomorphism between two auxiliary

graphs G�� and G����
��

Exercise ���� �downwards self�reducibility� We say that S is downwards self�
reducible if there exists a Cookreduction of S to itself that only makes queries that
are each shorter than the reduction
s input �i�e�� if on input x the reduction makes
the query q then jqj � jxj���	

�� Show that SAT is downwards selfreducible with respect to a natural encoding
of CNF formulae� Note that this encoding should have the property that
instantiating a variable in a formula results in a shorter formula�

A harder exercise consists of showing that Graph �Colorability is downwards
selfreducible with respect to some reasonable encoding of graphs� Note that
this encoding has to be selected carefully �if it is to work for a process anal
ogous to the one used in Exercise ������

�� Suppose that S is downwards selfreducible by a reduction that outputs the
disjunction of the oracle answers� �Note that this is the case for SAT�� Show
that in this case� S is characterized by a witness relation R � PC �i�e��
S � fx � R�x� �� �g� that is selfreducible �i�e�� the search problem of R is
Cookreducible to S�� Needless to say� it follows that S � NP �

Guideline� Include
x
� hx�� ���� xti� in R if xt � S � f�� �gO��� and� for every

i � f�� �� ���� t��g� on input xi the self�reduction makes a set of queries that contains

xi�� Prove that� indeed� R � PC and S � fx � R
x� �� �g�
��Note that we merely need to check whether G has a ��coloring in which the equalities and

inequalities induced by ���� ���� �t� hold� This can be done by adequate gadgets �e�g�� inequality
is enforced by an edge between the corresponding vertices� whereas equality is enforced by an
adequate subgraph that includes the relevant vertices as well as auxiliary vertices�� For Part � of
Exercise ����� equality is better enforced by combining the two vertices�

��This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mapped
to one another �by the isomorphism�� For example� we may connect the vertices in the ith pair
to an auxiliary star consisting of �N � i� vertices�

��Note that on some instances the reduction may make no queries at all� �This prevent a
possible non�viability of the de�nition due to very short instances��

	��� THREE RELATIVELY ADVANCED TOPICS �	

Note that the notion of downwards selfreducibility may be generalized in some
natural ways� For example� we may say that S is downwards selfreducible also in
case it is computationally equivalent to some set that is downwards selfreducible
�in the foregoing strict sense�� Note that Part � still holds�

Exercise ���	 �NP problems that are not self�reducible� Assuming that P ��
NP � coNP � show that there exists a search problem R in PC that is not self
reducible �i�e�� the search problem of R is not Cookreducible to the decision prob
lem SR implicit in R�� Prove that it follows that S�R � f�x� y�� � �y�� s�t� �x� y�y����
Rg is not Cookreducible to SR � fx � �y s�t� �x� y��Rg�
Guideline� Given S � NP � coNP n P� present relations R�� R� � PC such that S �

fx � R�
x� �� �g � fx � R�
x� � �g� Then� consider the relation R � f
x� �y� �
x� y� �
R�g � f
x� �y� �
x� y� � R�g� and prove that R �� PF but SR � f�� �g��

Exercise ���� In continuation to Exercise ���� and assuming that P �� NP �
present a search problem R in PC such that deciding S�R is not reducible to the
search problem of R�

Guideline� Consider the relation R � f
x� �x� � x � f�� �g�g � f
x� �y� �
x� y� � R�g�
where R� is an arbitrary relation in PC n PF � and prove that R � PF but S�R �� P�

Exercise ���� In continuation to Exercise ����� present a natural search problem
R in PC such that if factoring integers is intractable then the search problem R
�and so also S�R� is not reducible to SR�

Guideline� Consider the relation R such that
N�Q� � R if the integer Q is a non�trivial

divisor of the integer N � Use the fact that the set of prime numbers is in P�

Exercise ��� In continuation to Exercises ���� and ����� show that under suit
able assumptions there exists relations R�� R� � PC having the same implicit
decision problem �i�e�� fx � R��x� �� �g � fx � R��x� �� �g� such that R� is
selfreducible but R� is not�

Exercise ���� Provide an alternative proof of Theorem ��� without referring to
the set S�R � f�x� y�� � �y�� s�t� �x� y�y����Rg� Hint� use Proposition �����

Guideline� Reduce the search problem of R to the search problem of RSAT� next reduce

RSAT to SAT� and �nally reduce SAT to SR� Justify the existence of each of these three

reductions�

Exercise ���� Prove that Bounded Halting and Bounded Non�Halting are NP
complete� where the problems are de�ned as follows� The instance consists of a pair
�M� �t�� where M is a Turing machine and t is an integer� The decision version of
Bounded Halting �resp�� Bounded Non�Halting� consists of determining whether
or not there exists an input �of length at most t� on which M halts �resp�� does not
halt� in t steps� whereas the search problem consists of �nding such an input�

Hint� Either modify the proof of Theorem ���
 or present a reduction of �say� the search

problem of Ru to the search problem of Bounded �Non��Halting� Indeed� the exercise is more

straightforward in the case of Bounded Halting��

�	� CHAPTER 	� P� NP AND NPCOMPLETENESS

Exercise ���� In the proof of Theorem ���	� we claimed that the value of each
entry in the �array of con�gurations� of a machine M is determined by the values
of the three entries that reside in the row above it �as in Figure ����� Present a
function fM �)�)� where) � �� �Q � f�g�� that substantiates this claim�

Guideline� For example� for every ��� ��� �� � �� it holds that fM

������
������
������ �

������ More interestingly� if the transition function of M maps
�� q� to
�� p����

then� for every ��� ��� �� � Q� it holds that fM

�� q��
������
������ �
��� p� and

fM

������
�� q��
������ �
�����

Exercise ���� Present and analyze a reduction of SAT to �SAT�

Guideline� For a clause C� consider auxiliary variables such that the ith variable indicates

whether one of the �rst i literals is satis�ed� and replace C by a �CNF that uses the

original variables of C as well as the auxiliary variables� For example� the clause 	ti��xi
is replaced by the conjunction of �CNFs that are logically equivalent to the formulae

y�

x� 	 x����
yi

yi�� 	 xi�� for i � �� ���� t� and yt� We comment that this is not

the standard reduction� but we �nd it more appealing conceptually���

Exercise ���� �e�cient solveability of �SAT� In contrast to Exercise �����
prove that �SAT �i�e�� the satis�ability of �CNF formulae� is in P �

Guideline� Consider the following �forcing process� for CNF formulae� If the formula
contains a singleton clause
i�e�� a clause having a single literal�� then the corresponding
variable is assigned the only value that satis�es the clause� and the formula is simpli�ed
accordingly
possibly yielding a constant� which is either true or false�� The process
is repeated until the formula is either a constant or contains only ��literal clauses� Note
that a formula � is satis�able if and only if the formula obtained from � by the forcing
process is satis�able�

�� Prove that a �CNF formula is unsatis�able if and only if there exists a variable such
that any truth assignment to this variable yields a formula that the forcing process
maps to the constant false�

Extra hint� Applying the forcing process to a �CNF formula we obtain a sub�formula of

it that is� each clause of the resulting formula is a clause �rather than a sub�clause� of the

original formula��

�� Using Part �� present a polynomial�time algorithm for solving the search problem
of �SAT�

Exercise ���� �Integer Linear Programming� Prove that the following prob
lem is NPcomplete� An instance of the problem is a systems of linear inequalities
�say with integer constants�� and the problem is to determine whether the system
has an integer solution� A typical instance of this decision problem follows�

x$ �y � z � �

��x� z � �

x � 	

�x � ��

��The standard reduction replaces the clause �ti��xi by the conjunction of the �CNFs �x� �
x� � z��� ��	zi��� � xi � zi� for i � �� ���� t� and 	zt�

	��� THREE RELATIVELY ADVANCED TOPICS �	�

Guideline� Reduce from SAT� Speci�cally� consider an arithmetization of the input CNF

by replacing 	 with addition and �x by ��x� Thus� each clause gives rise to an inequality

e�g�� the clause x 	 �y is replaced by the inequality x �
� � y� � �� which simpli�es

to x � y � ��� Enforce a ��� solution by introducing inequalities of the form x � � and

�x � ��� for every variable x�

Exercise ���	 �Maximum Satis�ability of Linear Systems over GF���� Prove
that the following problem is NPcomplete� An instance of the problem consists of
a systems of linear equations over GF��� and an integer k� and the problem is to
determine whether there exists an assignment that satis�es at least k equations�
�Note that the problem of determining whether there exists an assignment that
satis�es all the equations is in P ��

Guideline� Reduce from �SAT� using an arithmetization similar to the one in Exer�

cise ����� Speci�cally� replace each clause that contains t � literals by �t � � linear

GF
�� equations that correspond to the di�erent non�empty subsets of these literals� and

assert that their sum
modulo �� equals one� for example� the clause x 	 �y is replaced

by the equations x �
� � y� � �� x � �� and � � y � �� Identifying ffalse� trueg with

f�� �g� prove that if the original clause is satis�ed by a Boolean assignment v then exactly

�t�� of the corresponding equations are satis�ed by v� whereas if the original clause is

unsatis�ed by v then none of the corresponding equations is satis�ed by v�

Exercise ���� �Satis�ability of Quadratic Systems over GF���� Prove that
the following problem is NPcomplete� An instance of the problem consists of a sys
tem of quadratic equations over GF���� and the problem is to determine whether
there exists an assignment that satis�es all the equations� Note that the result
holds also for systems of quadratic equations over the reals �by adding conditions
that enforce a value in f	� �g��
Guideline� Start by showing that the corresponding problem for cubic equations is NP�

complete� by a reduction from �SAT that maps the clause x 	 �y 	 z to the equation

� � x� � y �
� � z� � �� Reduce the problem for cubic equations to the problem for

quadratic equations by introducing auxiliary variables� that is� given an instance with

variables x�� ���� xn� introduce the auxiliary variables xi�j �s and add equations of the form

xi�j � xi � xj �

Exercise ���� �Clique and Independent Set� The instance of the Independent
Set problem consists of a pair �G�K�� where G is a graph and K is an integer� and
the question is whether or not the graph G contains an independent set �i�e�� a set
with no edges between its members� of size �at least� K� The Clique problem is
analogous� Prove that both problems are computationally equivalent to the Vertex
Cover problem�

Exercise ��� �an alternative proof of Proposition ����� Consider the fol
lowing sketch of a reduction of �SAT to Independent Set� On input a �CNF
formula � with m clauses and n variables� we construct a graph G� consisting of m
triangles �corresponding to the m clauses� augmented with edges that link con�ict
ing literals� That is� if x appears as the ith� literal of the jth� clause and �x appears

�	� CHAPTER 	� P� NP AND NPCOMPLETENESS

as the ith� literal of the jth� clause� then we draw an edge between the ith� vertex of
the jth� triangle and the ith� vertex of the jth� triangle� Prove that � � �SAT if and
only if G� has an independent set of size m�

Exercise ���� �additional properties of standard reductions� In continua
tion to the discussion in the main text� consider the following augmented form of
Karpreductions� Such a reduction of R to R� consists of three polynomialtime
mappings �f� h� g� such that f is a Karpreduction of SR to SR� and the following
two conditions hold�

�� For every �x� y� � R it holds that �f�x�� h�x� y�� � R��
�� For every �f�x�� y�� � R� it holds that �x� g�x� y��� � R�

�We note that this de�nition is actually the one used by Levin in ������ except that
he restricted h and g to only depend on their second argument��
Prove that such a reduction implies both a Karpreduction and a LevinReduction�
and show that all reductions presented in this chapter satisfy this augmented re
quirement� Furthermore� prove that in all these cases the main mapping �i�e�� f�
is �� and polynomialtime invertible�

Exercise ���� �parsimonious reductions� Let R�R� � PC and let f be a Karp
reduction of SR � fx � R�x� ���g to SR� � fx � R��x� ���g� We say that f is parsi�
monious �with respect to R and R�� if for every x it holds that jR�x�j � jR��f�x��j�
For each of the reductions presented in this chapter� checked whether or not it
is parsimonious� For the reductions that are not parsimonious� �nd alternative
reductions that are parsimonious �cf� ���� Sec� ������

Exercise ���� �on polynomial�time invertible reductions �following ������
We say that a set S is markable if there exists a polynomialtime �marking� algo
rithm M such that

�� For every x� � � f	� �g� it holds that

�a� M�x� �� � S if and only if x � S�

�b� jM�x� ��j � jxj�
�� There exists a polynomialtime �demarking� algorithmD such that� for every

x� � � f	� �g�� it holds that D�M�x� ��� � ��

Note that all natural NPsets �e�g�� those considered in this chapter� are markable
�e�g�� for SAT� one may mark a formula by augmenting it with additional satis�
able clauses that use specially designated auxiliary variables�� Prove that if S� is
Karp�reducible to S and S is markable then S� is Karp�reducible to S by a length�
increasing� one�to�one� and polynomial�time invertible mapping��� Infer that for
any natural NPcomplete problem S� any set in NP is Karpreducible to S by a
lengthincreasing� onetoone� and polynomialtime invertible mapping�

Guideline� Let f be a Karp�reduction of S� to S� and let M be the guaranteed marking

algorithm� Consider the reduction that maps x to M
f
x�� x��

�	When given a string that is not in the image of the mapping� the inverting algorithm returns
a special symbol�

	��� THREE RELATIVELY ADVANCED TOPICS �	�

Exercise ���� �on the isomorphism of NP�complete sets �following ������
Suppose that S and T are Karpreducible to one another by lengthincreasing� one
toone� and polynomialtime invertible mappings� denoted f and g respectively�
Using the following guidelines� prove that S and T are �e�ectively� isomorphic�
that is� present a polynomialtime computable and invertible onetoone mapping

� such that T � ��S�
def
� f��x� � x�Sg�

�� Let F
def
� ff�x� � x � f	� �g�g and G

def
� fg�x� � x � f	� �g�g� Using the

lengthpreserving condition of f �resp�� g�� prove that F �resp�� G� is a proper
subset of f	� �g�� Prove that for every y � f	� �g� there exists a unique triple
�j� x� i� � f�� �g�f	� �g��N that satis�es one of the following two conditions�

�a� j � �� x � G
def
� f	� �g� nG� and y � �g f�i�x��

�b� j � �� x � F
def
� f	� �g� n F � and y � �g f�i�g�x���

�In both cases i � 	 is allowed� h��z� � z� hi�z� � h�hi���z��� and �g
f��z� � g�f�z��� Hint� consider the maximal sequence of inverse operations
g��� f��� g��� ��� that can be applied to y� and note that each inverse shrinks
the current string��

�� Let U�
def
� f�g f�i�x� � x�G
 i�	g and U�

def
� f�g f�i�g�x�� � x�F
 i�	g�

Prove that �U�� U�� is a partition of f	� �g�� Using the fact that f and g are
length increasing and polynomialtime invertible� present a polynomialtime
procedure for deciding membership in the set U��

Prove the same for the sets V� � f�f g�i�x� � x � F
 i � 	g and V� �
f�f g�i�f�x�� � x�G
 i�	g�

�� Note that U� � G� and de�ne ��x�
def
� f�x� if x � U� and ��x�

def
� g���x�

otherwise�

�a� Prove that � is a Karpreduction of S to T �

�b� Note that � maps U� to f�U�� � ff�x� � x � U�g � V� and U� to
g���U�� � fg���x� � x�U�g � V�� Prove that � is onetoone and onto�

Observe that ����x� � f���x� if x � f�U�� and ����x� � g�x� otherwise�
Prove that ��� is a Karpreduction of T to S� Infer that ��S� � T �

Using Exercise ���	� infer that all natural NPcomplete sets are isomorphic�

Exercise ���� Prove that a set S is Karpreducible to some set in NP if and only
if S is in NP �

Hint� For the non�trivial direction� see the proof of Proposition ������

Exercise ���� Recall that the empty set is not Karpreducible to f	� �g�� whereas
any set is Cookreducible to its complement� Thus our focus here is on the Karp�
reducibility of non�trivial sets to their complements� where a set is nontrivial if it
is neither empty nor contains all strings� Furthermore� since any nontrivial set in
P is Karpreducible to its complement �see Exercise ����� we assume that P �� NP
and focus on sets in NP n P �

��	 CHAPTER 	� P� NP AND NPCOMPLETENESS

�� Prove that NP � coNP implies that some sets in NPnP are Karpreducible
to their complements�

�� Prove that NP �� coNP implies that some sets in NP n P are not Karp
reducible to their complements�

Hint� Use NP�complete sets in both parts� and Exercise ���� in the second part��

Exercise ���	 Referring to the proof of Theorem ����� prove that the function f
is unbounded �i�e�� for every i there exists an n such that n� steps of the process
de�ned in the proof allow for failing the i$ �st machine��

Guideline� Assume� towards the contradiction that f is bounded� Let i � supn�Nff
n�g
and n� be the smallest integer such that f
n�� � i� If i is odd then the set F determined

by f is co��nite
because F � fx � f
jxj�
�
mod ��g � fx � jxj�n�g�� In this case� the

i� �st machine tries to decide S � F
which di�ers from S on �nitely many strings�� and

must fail on some x� Derive a contradiction by showing that the number of steps taken

till reaching and considering this x is at most exp
poly
jxj��� which is smaller than n� for

some su�ciently large n� A similar argument applies to the case that i is even� where we

use the fact that F � fx � jxj�n�g is �nite and so the relevant reduction of S to S � F

must fail on some input x�

Exercise ���� Prove that if the promise problem ' is Cookreducible to a promise
problem that is solvable in polynomialtime� then ' is solvable in polynomialtime�
Note that the solver may not halt on inputs that violate the promise�

Guideline� Any polynomial�time algorithm solving any promise problem can be modi�ed

such that it halts on all inputs�

Exercise ���� �NP�complete promise problems in coNP �following ������
Consider the promise problem xSAT� having instances that are pairs of CNF formu
lae� The yesinstances consists of pairs ���� ��� such that �� is satis�able and �� is
unsatis�able� whereas the noinstances consists of pairs such that �� is unsatis�able
and �� is satis�able�

�� Show that xSAT is in the intersection of �the promise problem classes that
are analogous to� NP and coNP �

�� Prove that any promise problem in NP is Cookreducible to xSAT� In de
signing the reduction� recall that queries that violate the promise may be
answered arbitrarily�

Guideline� Show a reduction of SAT to xSAT� Speci�cally� show that the search

problem associated with SAT is Cook�reducible to xSAT� by following the ideas of

the proof of Proposition ����� Actually� we need a more careful implementation

of the search process� Suppose that we know
or assume� that � is a pre�x of a

satisfying assignment to �� and we wish to extend � by one bit� Then� for each

� � f�� �g� we construct a formula� denoted ���� by setting the �rst j� j� � variables

of � according to the values ��� We query the oracle about the pair
���� �
�

�� and

extend � accordingly
i�e�� we extend � by the value � if and only if the answer is

	��� THREE RELATIVELY ADVANCED TOPICS ���

positive�� Note that if both ��� and ��
 are satis�able then it does not matter which

bit we use in the extension� whereas if exactly one formula is satis�able then the

oracle answer is reliable�

�� Pinpoint the source of failure of the proof of Theorem ���� when applied to
the reduction provided in the previous item�

��� CHAPTER 	� P� NP AND NPCOMPLETENESS

Chapter �

Variations on P and NP

Cast a cold eye
On life� on death�
Horseman� pass by�

W�B� Yeats� Under Ben Bulben

In this chapter we consider variations on the complexity classes P and NP� We
refer speci�cally to the nonuniform version of P� and to the Polynomialtime Hier
archy �which extends NP�� These variations are motivated by relatively technical
considerations� still� the resulting classes are referred to quite frequently in the
literature�

Summary� Nonuniform polynomialtime �P�poly� captures e�cient
computations that are carried out by devices that can each only handle
inputs of a speci�c length� The basic formalism ignore the complexity
of constructing such devices �i�e�� a uniformity condition�� A �ner for
malism that allows to quantify the amount of nonuniformity refers to
so called �machines that take advice��

The Polynomialtime Hierarchy �PH� generalizes NP by considering
statements expressed by quanti�ed Boolean formulae with a �xed num
ber of alternations of existential and universal quanti�ers� It is widely
believed that each quanti�er alternation adds expressive power to the
class of such formulae�

The two di�erent classes are related by showing that if NP is contained
in P�poly then the Polynomialtime Hierarchy collapses to its second
level� This result is commonly interpreted as supporting the common
belief that nonuniformity is irrelevant to the PvsNP Question� that is�
although P�poly extends beyond the class P� is is believed that P�poly
does not contain NP�

Except for the latter result� which is presented in Section ������ the treatments of
P�poly �in Section ���� and of the Polynomialtime Hierarchy �in Section ���� are
independent of one another�

���

��� CHAPTER �� VARIATIONS ON P AND NP

��� Non�uniform polynomial�time �P	poly

In this section we consider two formulations of the notion of nonuniform polynomial
time� based on the two models of nonuniform computing devices that were pre
sented in Section ������ That is� we specialize the treatment of nonuniform com
puting devices� provided in Section ������ to the case of polynomially bounded
complexities� It turns out that both �polynomially bounded� formulations allow
for solving the same class of computational problems� which is a strict superset of
the class of problems solvable by polynomialtime algorithms�

The two models of nonuniform computing devices are Boolean circuits and
�machines that take advice� �cf� x������� and x�������� respectively�� We will focus
on the restriction of both models to the case of polynomial complexities� considering
�nonuniform� polynomialsize circuits and polynomialtime algorithms that take
�nonuniform� advice of polynomially bounded length�

The main motivation for considering nonuniform polynomialsize circuits is
that their computational limitations imply analogous limitations on polynomial
time algorithms� The hope is that� as is often the case in mathematics and Science�
disposing of an auxiliary condition �i�e�� uniformity� that seems secondary� and is
not wellunderstood may turn out fruitful� In particular� the �nonuniform� circuit
model facilitates a lowlevel analysis of the evolution of a computation� and allow
for the application of combinatorial techniques� The bene�t of this approach has
been demonstrated in the study of restricted classes of circuits �see Sections B����
and B������

The main motivation for considering polynomialtime algorithms that take poly
nomially bounded advice is that such devices are useful in modeling auxiliary in
formation that is available to possible e�cient strategies that are of interest to us�
We mention two such settings� In cryptography �see Appendix C�� the advice is
used for accounting for auxiliary information that is available to an adversary� In
the context of derandomization �see Section ����� the advice is used for account
ing for the main input to the randomized algorithm� In addition� the model of
polynomialtime algorithms that take advice allows for a quantitative study of the
amount of nonuniformity� ranging from zero to polynomial�

����� Boolean Circuits

We refer the reader to x������� for a de�nition of �families of� Boolean circuits
and the functions computed by them� For concreteness and simplicity� we assume
throughout this section that all circuits has bounded fanin� We highlight the
following result stated in x��������

Theorem ��� �circuit evaluation�� There exists a polynomial�time algorithm that�
given a circuit C � f	� �gn f	� �gm and an n�bit long string x� returns C�x��

�The common belief is that the issue of non�uniformity is irrelevant to the P�vs�NP Question
that is� that resolving the latter question by proving that P �� NP is not easier than proving
that NP does not have polynomial�size circuits� For further discussion see Appendix B�� and
Section ������

���� NONUNIFORM POLYNOMIALTIME �P�POLY� ��

Recall that the algorithm works by performing the �valuedetermination� process
that underlies the de�nition of the computation of the circuit on a given input�
This process assigns values to each of the circuit vertices based on the values of
its children �or the values of the corresponding bit of the input� in the case of an
inputterminal vertex��

Circuit size as a complexity measure� We recall the de�nitions of circuit
complexity presented in to x�������� The size of a circuit is de�ned as the number
of edges� and the length of its description is almost linear in the latter� that is� a
circuit of size s is commonly described by the list of its edges and the labels of its
vertices� which means that its description length is O�s log s�� We are interested
in families of circuits that solve computational problems� and thus we say that the
circuit family �Cn�n�N computes the function f � f	� �g� f	� �g� if for every
x � f	� �g� it holds that Cjxj�x� � f�x�� The size complexity of this family is the
function s � N N such that s�n� is the size of Cn� The circuit complexity of a
function f � denoted sf � is the size complexity of the smallest family of circuits that
computes f � An equivalent alternative follows�

De�nition ��� �circuit complexity�� The circuit complexity of f � f	� �g� f	� �g�
is the function sf � N N such that sf �n� is the size of the smallest circuit that
computes the restriction of f to n�bit strings�

We stress that nonuniformity is implicit in this de�nition� because no conditions
are made regarding the relation between the various circuits used to compute the
function on di�erent input lengths�

An interesting feature of De�nition ��� is that� unlike in the case of uniform
model of computation� circuit complexity is the actual complexity of the function
rather than an upperbound on its complexity �cf� x������� and Section ������� This
is a consequence of the fact that the circuit model has no �free parameters� �e�g��
the �nite algorithm in use�� and that the issue of constructibility of complexity
measures �cf�� e�g�� De�nition ���� is irrelevant to it�

We will be interested in the class of problems that are solvable by families of
polynomialsize circuits� That is� a problem is solvable by polynomial�size circuits if
it can be solved by a function f that has polynomial circuit complexity �i�e�� there
exists a polynomial p such that sf �n� � p�n�� for every n � N��

A detour� uniform families� A family of polynomial�size circuits �Cn�n is
called uniform if given n one can construct the circuit Cn in poly�n�time� More
generally�

De�nition ��� �uniformity�� A family of circuits �Cn�n is called uniform if there
exists an algorithm A that on input n outputs Cn within a number of steps that is
polynomial in the size of Cn�

�Advanced comment� Note that such �free parameters� underly linear speedup results such
as Exercise ���� which in turn prevent the speci�cation of the exact complexities of functions�

��� CHAPTER �� VARIATIONS ON P AND NP

We note that stronger notions of uniformity have been considered� For example�
one may require the existence of a polynomialtime algorithm that on input n and
v� returns the label of vertex v as well as the list of its children �or an indication
that v is not a vertex in Cn�� For further discussion see Section �����

Proposition ��	 If a problem is solvable by a uniform family of polynomial�size
circuits then it is solvable by a polynomial�time algorithm�

As was hinted in x�������� the converse holds as well� The latter fact follows easily
from the proof of Theorem ���	 �see also the proof of Theorem �����

Proof� On input x� the algorithm operates in two stages� In the �rst stage�

it invokes the algorithm guaranteed by the uniformity condition� on input n
def
�

jxj� and obtains the circuit Cn� Next� it invokes the circuit evaluation algorithm
�asserted in Theorem ���� on input Cn and x� and obtains Cn�x�� Since the size
and the description length of Cn are polynomial in n� it follows that each stage
of our algorithm runs in polynomial time �i�e�� polynomial in n � jxj�� Thus� the
algorithm emulates the computation of Cjxj�x�� and does so in time polynomial in
the length of its own input �i�e�� x��

����� Machines that take advice

General �nonuniform� families of polynomialsize circuits and uniform families of
polynomialsize circuits are two extremes with respect to the �amounts of non
uniformity� in the computing device� Intuitively� in the former� nonuniformity
is only bounded by the size of the device� whereas in the latter the amounts of
nonuniformity is zero� Here we consider a model that allows to decouple the size
of the computing device from the amount of nonuniformity� which may indeed
range from zero to the device
s size� Speci�cally� we consider algorithms that �take
a nonuniform advice� that depends only on the input length� The amount of
nonuniformity will be de�ned to equal the length of the corresponding advice �as
a function of the input length�� Thus� we specialize De�nition ���� to the case of
polynomialtime algorithms�

De�nition ��� �nonuniform polynomialtime and P�poly�� We say that a func�
tion f is computed in polynomial�time with advice of length
 � N N if these exists
a polynomial�time algorithm A and an in�nite advice sequence �an�n�N such that

�� For every x � f	� �g�� it holds that A�ajxj� x� � f�x��

� For every n � N � it holds that janj �
�n��

We say that a computational problem can be solved in polynomial�time with ad�
vice of length
 if a function solving this problem can be computed within these
resources� We denote by P�
 the class of decision problems that can be solved in
polynomial�time with advice of length
� and by P�poly the union of P�p taken
over all polynomials p�

���� NONUNIFORM POLYNOMIALTIME �P�POLY� ���

Clearly� P�	 � P � But allowing some �nonempty� advice increases the power of
the class �see Theorem ����� and allowing advice of length comparable to the time
complexity yields a formulation equivalent to circuit complexity �see Theorem �����
We highlight the greater �exibility available by the formalism of machines that take
advice� which allows for separate speci�cation of time complexity and advice length�
�Indeed� this comes at the expense of a more cumbersome formulation� when we
wish to focus on the case that both measures are equal��

Relation to families of polynomial�size circuits� As hinted before� the class
of problems solvable by polynomialtime algorithms with polynomially bounded
advice equals the class of problems solvable by families of polynomialsize circuits�
For concreteness� we state this fact for decision problems�

Theorem ��� A decision problem is in P�poly if and only if it can be solved by a
family of polynomial�size circuits�

More generally� for any function t� the following proof establishes that equivalence
of the power of machines having time complexity t and taking advice of length t
versus families of circuits of size polynomially related to t�

Proof Sketch� Suppose that a problem can be solved by a polynomialtime al
gorithm A using the polynomially bounded advice sequence �an�n�N� We obtain
a family of polynomialsize circuits that solves the same problem by adapting the
proof of Theorem ���	� Speci�cally� we observe that the computation of A�ajxj� x�
can be emulated by a circuit of poly�jxj�size� which incorporates ajxj and is given
x as input� That is� we construct a circuit Cn such that Cn�x� � A�an� x� holds
for every x � f	� �gn �analogously to the way Cx was constructed in the proof
of Theorem ���	� where it holds that Cx�y� � MR�x� y� for every y of adequate
length��

On the other hand� given a family of polynomialsize circuits� we obtain a
polynomialtime algorithm for emulating this family using advice that provide the
description of the relevant circuits� Speci�cally� we use the evaluation algorithm
asserted in Theorem ���� while using the circuit
s description as advice� That is� we
use the fact that a circuit of size s can be described by a string of length O�s log s��
where the log factor is due to the fact that a graph with v vertices and e edges can
be described by a string of length �e log� v�

Another perspective� A set S is called sparse if there exists a polynomial p such
that for every n it holds that jS �f	� �gnj � p�n�� We note that P�poly equals the
class of sets that are Cookreducible to a sparse set �see Exercise ����� Thus� SAT
is Cookreducible to a sparse set if and only if NP � P�poly� In contrast� SAT is
Karpreducible to a sparse set if and only if NP � P �see Exercise ������

The power of P�poly� In continuation to Theorem ���� �which focuses on advice
and ignores the time complexity of the machine that takes this advice�� we prove
the following �stronger� result�

��� CHAPTER �� VARIATIONS ON P AND NP

Theorem �� �the power of advice� revisited�� The class P�� � P�poly contains
P as well as some undecidable problems�

Actually� P�� � P�poly� Furthermore� by using a counting argument� one can
show that for any two polynomially bounded functions
��
� � N N such that

� �
� � 	 is unbounded� it holds that P�
� is strictly contained in P�
�� see
Exercise ����

Proof� Clearly� P � P�	 � P�� � P�poly� To prove that P�� contains some
undecidable problems� we review the proof of Theorem ����� The latter proof
established the existence of uncomputable Boolean function that only depend on
their input length� That is� there exists an undecidable set S � f	� �g� such that
for every pair of equal length strings �x� y� it holds that x � S if and only if y � S�
In other words� for every x � f	� �g� it holds that x � S if and only if �jxj � S� But
such a set is easily decidable in polynomialtime by a machine that takes one bit
of advice� that is� consider the algorithm A and the advice sequence �an�n�N such
that an � � if and only if �n � S and A�a� x� � a �for a � f	� �g and x � f	� �g���
Note that indeed A�ajxj� x� � � if and only if x � S�

��� The Polynomial�time Hierarchy �PH

We start with an informal motivating discussion� which will be made formal in
Section ������

Sets in NP can be viewed as sets of valid assertions that can be expressed as
quanti�ed Boolean formulae using only existential quanti�ers� That is� a set S is
in NP if there is a Karpreduction of S to the problem of deciding whether or not
an existentially quanti�ed Boolean formula is valid �i�e�� an instance x is mapped
by this reduction to a formula of the form �y� � � � �ymx��x�y�� ���� ymx����

The conjectured intractability of NP seems due to the long sequence of exis
tential quanti�ers� Of course� if somebody else �i�e�� a �prover�� were to provide
us with an adequate assignment �to the yi
s� whenever such an assignment exists
then we would be in good shape� That is� we can e�ciently verify proofs of validity
of existentially quanti�ed Boolean formulae�

But what if we want to verify the validity of a universally quanti�ed Boolean
formulae �i�e�� formulae of the form �y� � � � �ym��y�� ���� ym��� Here we seem to
need the help of a totally di�erent entity� we need a �refuter� that is guaranteed
to provide us with a refutation whenever such exist� and we need to believe that if
we were not presented with such a refutation then it is the case that no refutation
exists �and hence the universally quanti�ed formulae is valid�� Indeed� this new
setting �of a �refutation system�� is fundamentally di�erent from the setting of a
proof system� In a proof system we are only convinced by proofs �to assertions�
that we have veri�ed by ourselves� whereas in the �refutation system� we trust the
�refuter� to provide evidence against false assertions�� Furthermore� there seems

�More formally� in proof systems the soundness condition relies only on the actions of the
veri�er� whereas completeness also relies on the prover using an adequate strategy� In contrast� in

��	� THE POLYNOMIALTIME HIERARCHY �PH� ���

to be no way of converting one setting �e�g�� the proof system� into another �resp��
the refutation system��

Taking an additional step� we may consider a more complicated system in which
we use two agents� a �supporter� that tries to provide evidence in favor of an
assertion and an �objector� that tries to refute it� These two agents conduct a
debate �or an argument� in our presence� exchanging messages with the goal of
making us �the referee� rule their way� The assertions that can be proven in this
system take the form of general quanti�ed formulae with alternating sequences
of quanti�ers� where the number of alternations equals the number of rounds of
interaction in the said system� We stress that the exact length of each sequence
of quanti�ers of the same type does not matter� what matters is the number of
alternations� denoted k�

The aforementioned system of alternations can be viewed as a twoparty game�
and we may ask ourselves which of the two parties has a kmove winning strategy�
In general� we may consider any �	� zerosum� twoparty game� in which the game
s
position can be e�ciently updated �by any given move� and e�ciently evaluated�
For such a �xed game� given an initial position� we may ask whether the �rst party
has a �kmove� winning strategy� It seems that answering this type of question for
some �xed k does not necessarily allow answering it for k $ �� We now turn to
formalize the foregoing discussion�

����� Alternation of quanti�ers

In the following de�nition� the aforementioned propositional formula �x is replaced
by the input x itself� �Correspondingly� the combination of the Karpreduction and
a formula evaluation algorithm are replaced by the veri�cation algorithm V �see
Exercise ������ This is done in order to make the comparison to the de�nition
of NP more transparent �as well as to �t the standard presentations�� We also
replace a sequence of Boolean quanti�ers of the same type by a single corresponding
quanti�er that quanti�es over all strings of the corresponding length�

De�nition ��� �the class �k�� For a natural number k� a decision problem S �
f	� �g� is in �k if there exists a polynomial p and a polynomial time algorithm V
such that x � S if and only if

�y��f	� �gpjxj��y��f	� �gpjxj��y��f	� �gpjxj� � � �Qkyk�f	� �gpjxj�
s�t� V �x� y�� ���� yk� � �

where Qk is an existential quanti�er if k is odd and is a universal quanti�er oth�
erwise�

Note that �� � NP and �� � P � The Polynomial�time Hierarchy� denoted PH�
is the union of all the aforementioned classes �i�e�� PH � �k�k�� and �k is often
referred to as the kth level of PH� The levels of the Polynomialtime Hierarchy

�refutation system� the soundness condition relies on the proper actions of the refuter� whereas
completeness does not depend on the refuter�s actions�

��	 CHAPTER �� VARIATIONS ON P AND NP

can also be de�ned inductively� by de�ning �k�� based on 'k
def
� co�k� where

co�k
def
� ff	� �g� n S � S � �kg �cf� Eq� �������

Proposition ��� For every k � 	� a set S is in �k�� if and only if there exists a
polynomial p and a set S� � 'k such that S � fx � �y�f	� �gpjxj� s�t� �x� y��S�g�
Proof� Suppose that S is in �k�� and let p and V be as in De�nition ���� Then
de�ne S� as the set of pairs �x� y� such that jyj � p�jxj� and
�z��f	� �gpjxj��z��f	� �gpjxj� � � �Qkzk�f	� �gpjxj� s�t� V �x� y� z�� ���� zk� � � �

Note that x � S if and only if there exists y � f	� �gpjxj� such that �x� y� � S�� and
that S� � 'k �see Exercise �����

On the other hand� suppose that for some polynomial p and a set S� � 'k it
holds that S � fx � �y�f	� �gpjxj� s�t� �x� y��S�g� Then� for some p� and V �� it
holds that �x� y� � S� if and only if jyj � p�jxj� and

�z��f	� �gp�jxj��z��f	� �gp�jxj� � � �Qkzk�f	� �gp�jxj� s�t� V ��x� y� z�� ���� zk� �� �

�see Exercise ��� again�� By suitable encoding �of y and the zi
s as strings of length
max�p�jxj�� p��jxj��� and a trivial modi�cation of V �� we conclude that S � �k���

Determining the winner in k�move games� De�nition ��� can be interpreted
as capturing the complexity of determining the winner in certain e�cient two�party
game� Speci�cally� we refer to twoparty games that satisfy the following three
conditions�

�� The parties alternate in taking moves that e�ect the game
s �global� position�
where each move has a description length that is bounded by a polynomial
in the length of the current position�

�� The current position can be updated in polynomialtime based on the previ
ous position and the current party
s move��

�� The winner in each position can be determined in polynomialtime�

A set S � �k can be viewed as the set of initial positions �in a suitable game� for
which the �rst party has a kmove winning strategy� Speci�cally� x�S if starting at
the initial position x� there exists a move y� for the �rst party� such that for every
response move y� of the second party� there exists a move y� for the �rst party� etc�
such that after k moves the parties reach a position in which the �rst party wins�

�Note that� since we consider a constant number of moves� the length of all possible �nal
positions is bounded by a polynomial in the length of the initial position� and thus all items have
an equivalent form in which one refers to the complexity as a function of the length of the initial
position� The latter form allows for a smooth generalization to games with a polynomial number
of moves �as in Section ����� where it is essential to state all complexities in terms of the length
of the initial position�

��	� THE POLYNOMIALTIME HIERARCHY �PH� ���

where the �nal position as well as which party wins in it are determined by the
predicate V �in De�nition ����� That is� V �x� y�� ���� yk� � � if the position that is
reached when starting from position x and taking the move sequence y�� ���� yk is a
winning position for the �rst party�

The collapsing e�ect of some equalities� Extending the intuition that un
derlies the NP �� coNP conjecture� it is commonly conjectured that �k �� 'k for
every k � N � The failure of this conjecture causes the collapse of the Polynomial
time Hierarchy to the corresponding level�

Proposition ���� For every k � �� if �k � 'k then �k�� � �k� which in turn
implies PH � �k�

The converse also holds �i�e�� PH � �k implies �k�� � �k and �k � 'k�� Needless
to say� Proposition ���	 does not seem to hold for k � 	�

Proof� Assuming that �k � 'k� we �rst show that �k�� � �k� For any set S
in �k��� by Proposition ���� there exists a polynomial p and a set S� � 'k such
that S � fx � �y�f	� �gpjxj� s�t� �x� y��S�g� Using the hypothesis� we infer that
S� � �k� and so �using Proposition ��� and k � �� there exists a polynomial p� and
a set S�� � 'k�� such that S� � fx� � �y��f	� �gp�jx�j� s�t� �x�� y���S��g� It follows
that

S � fx � �y�f	� �gpjxj��z�f	� �gp�jx�y�j� s�t� ��x� y�� z��S��g�
By collapsing the two adjacent existential quanti�ers �and using Proposition ���
yet again�� we conclude that S � �k� This proves the �rst part of the proposition�

Turning to the second part� we note that �k�� � �k �or� equivalently� 'k�� �
'k� implies �k�� � �k�� �again by using Proposition ����� and similarly �j�� �
�j�� for any j � k� Thus� �k�� � �k implies PH � �k�

Decision problems that are Cook�reductions to NP� The Polynomialtime
Hierarchy contains all decision problems that are Cookreductions to NP �see
Exercise ����� As shown next� the latter class contains many natural problems�
Recall that in Section ����� we de�ned two types of optimization problems and
showed that under some natural conditions these two types are computationally
equivalent �under Cook reductions�� Speci�cally� one type of problems referred
to �nding solutions that have a value exceeding some given threshold� whereas the
second type called for �nding optimal solutions� In Section ��� we presented several
problems of the �rst type� and proved that they are NPcomplete� We note that
corresponding versions of the second type are believed not to be in NP� For example�
we discussed the problem of deciding whether or not a given graph G has a clique
of a given size K� and showed that it is NPcomplete� In contract� the problem of
deciding whether or not K is the maximum clique size of the graph G is not known
�and quite unlikely� to be in NP � although it is Cookreducible to NP � Thus� the
class of decision problems that are Cookreducible to NP contains many natural
problems that are unlikely to be in NP � The Polynomialtime Hierarchy contains
all these problems�

��� CHAPTER �� VARIATIONS ON P AND NP

Complete problems and a relation to AC�� We note that quanti�ed Boolean
formulae with a bounded number of quanti�er alternation provide complete prob
lems for the various levels of the Polynomialtime Hierarchy �see Exercise �����
We also note the correspondence between these formulae and �highly uniform�
constantdepth circuits of unbounded fanin that get as input the truthtable of
the underlying �quanti�erfree� formula �see Exercise �����

����� Non	deterministic oracle machines

The Polynomialtime Hierarchy is commonly de�ned in terms of nondeterministic
polynomialtime �oracle� machines that are given oracle access to a set in the lower
level of the same hierarchy� Such machines are de�ned by combining the de�nitions
of nondeterministic �polynomialtime� machines �cf� De�nition ���� and oracle
machines �cf� De�nition ������ Speci�cally� for an oracle f � f	� �g� f	� �g�� a
nondeterministic oracle machine M � and a string x� one considers the question of
whether or not there exists an accepting �nondeterministic� computation of M on
input x and access to the oracle f � The class of sets that can be accepted by non
deterministic polynomialtime �oracle� machines with access to f is denoted NPf �
�We note that this notation makes sense because we can associate the class NP
with a collection of machines that lends itself to be extended to oracle machines��
For any class of decision problems C� we denote by NPC the union of NPf taken
over all decision problems f in C� The following result provides an alternative
de�nition of the Polynomialtime Hierarchy�

Proposition ���� For every k � �� it holds that �k�� � NP�k �

Proof� The �rst direction �i�e�� �k�� � NP�k� is almost straightforward� For
any S � �k��� let S� � 'k and p be as in Proposition ���� that is� S � fx �
�y � f	� �gpjxj� s�t� �x� y� � S�g� Consider the nondeterministic oracle machine
that� on input x� nondeterministically generates y � f	� �gpjxj� and accepts if and
only if �the oracle indicates that� �x� y� � S�� This machine demonstrates that
S � NP�k � NP�k � where the equality holds by letting the oracle machine �ip
each �binary� answer that is provided by the oracle��

For the opposite direction �i�e�� NP�k � �k���� let M be a nondeterministic
polynomialtime oracle machine that accepts S when given oracle access to S� � �k�
Note that �unlike the machine constructed in the foregoing argument� machine M
may issue several queries to S�� and these queries may be determined based on
previous oracle answers� To simplify the argument� we assume� without loss of
generality� that at the very beginning of its execution machine M guesses �non
deterministic� all oracle answers and accepts only if the actual answers match its
guesses� Thus� M
s queries to the oracle are determined by its input� denoted x�
and its nondeterministic choices� denoted y� We denote by qi��x� y� the ith query
made by M �on input x and nondeterministic choices y�� and by ai��x� y� the

�Do not get confused by the fact that the class of oracles may not be closed under comple�
mentation� From the point of view of the oracle machine� the oracle is merely a function� and the
machine may do with its answer whatever it pleases �and in particular negate it��

��	� THE POLYNOMIALTIME HIERARCHY �PH� ���

corresponding �a priori� guessed answer �which is a bit in y�� Thus� M accepts x
if and only if there exists y � f	� �gpolyjxj� such that the following two conditions
hold�

�� Machine M accepts x� on input x and nondeterministic choices y� when for
every i it holds that the ith oracle query made by M is answered by the
value ai��x� y�� We stress that we do not assume here that these answers are
consistent with S�� we merely refer to the decision of M on a given input�
when it makes a speci�c sequence of nondeterministic choices� and is given
speci�c oracle answers�

�� Each bit ai��x� y� is consistent with S�� that is� for every i� it holds that
ai��x� y��� if and only if qi��x� y��S��

Denoting the �rst event by A�x� y� and letting q�x� y� � poly�jxj� denote the num
ber of queries made by M � it follows that x � S if and only if

�y
��A�x� y�

qx�y��
i��

�
�ai��x� y���� ! �qi��x� y��S��

�	A
�

Denoting the veri�cation algorithm of S� by V �� it holds that x � S if and only if

�y
��A�x� y�

qx�y��
i��

�
�ai��x� y���� ! �yi�� �yi�� � � �Qky

i�
k V ��qi��x� y�� yi�� � ���� y

i�
k ���

�	A
�

The proof is completed by observing that the foregoing expression can be rear
ranged to �t the de�nition of �k��� Details follow�

Starting with the foregoing expression� we �rst pull all quanti�ers outside� and
obtain a quanti�ed expression with k $ � alternations� starting with an existential
quanti�er�� �We get k $ � alternations rather than k� because ai��x� y��	 intro

duces an expression of the form ��yi�� �yi�� � � �Qky
i�
k V ��qi��x� y�� yi�� � ���� y

i�
k ����

which in turn is equivalent to the expression �yi�� �yi�� � � �Qky
i�
k �V ��qi��x� y�� yi�� � ���� y

i�
k ��

���� Once this is done� we may incorporate the computation of all the qi��x� y�
s
�and ai��x� y�
s� as well as the polynomial number of invocations of V � �and other
logical operations� into the new veri�cation algorithm V � It follows that S � �k���

A general perspective � what does C�C� mean
 By the foregoing discussion
it should be clear that the class C�C� can be de�ned for two complexity classes C�
and C�� provided that C� is associated with a class of machines that extends naturally

�For example� note that for predicates P� and P�� the expression
y �P��y� �
z P��y� z�� is
equivalent to the expression
y ��P��y� �
z P��y� z�� � ��	P��y� � 	
z P��y� z���� which in turn
is equivalent to the expression
y
z�z�� ��P��y� � P��y� z��� � ��	P��y� � 	P��y� z������ Note
that pulling the quanti�ers outside in �ti��
y�i�z�i�P �y�i�� z�i�� yields an expression of the type

y���� ���� y�t�z���� ���� z�t� �ti�� P �y�i�� z�i���

��� CHAPTER �� VARIATIONS ON P AND NP

in a way that allows for oracle access� Actually� the class C�C� is not de�ned based
on the class C� but rather by analogy to it� Speci�cally� suppose that C� is the
class of sets that are recognizable �or rather accepted� by machines of certain type
�e�g�� deterministic or nondeterministic� with certain resource bounds �e�g�� time
and�or space bounds�� Then� we consider analogous oracle machines �i�e�� of the
same type and with the same resource bounds�� and say that S � C�C� if there
exists an adequate oracle machine M� �i�e�� of this type and resource bounds� and
a set S� � C� such that MS�

� accepts the set S�

Decision problems that are Cook�reductions to NP� revisited� Using the
foregoing notation� the class of decision problems that are Cookreductions to NP
is denoted PNP � and thus is a subset of NPNP � �� �see Exercise ����� In
contrast� recall that the class of decision problems that are Karpreductions to NP
equals NP �

����� The P�poly	versus	NP Question and PH

As stated in Section ���� a main motivation for the de�nition of P�poly is the
hope that it can serve to separate P from NP �by showing that NP is not even
contained in P�poly� which is a �strict� superset of P�� In light of the fact that
P�poly extends far beyond P �and in particular contains undecidable problems��
one may wonder if this approach does not run the risk of asking too much �because
it may be that NP is in P�poly even if P �� NP�� The common feeling is that the
added power of nonuniformity is irrelevant with respect to the PvsNP Question�
Ideally� we would like to know that NP � P�poly may occur only if P � NP
�which may be phrased as saying that the Polynomialtime Hierarchy collapses
to its zero level�� The following result seems to get close to such an implication�
showing that NP � P�poly may occur only if the Polynomialtime Hierarchy
collapses to its second level�

Theorem ���� If NP � P�poly then �� � '��

Recall that �� � '� implies PH � �� �see Proposition ���	�� Thus� an unexpected
behavior of the nonuniform complexity class P�poly implies an unexpected be
havior in the world of uniform complexity �i�e�� the ability to reduce any constant
number of quanti�er alternations to two quanti�er alternations��

Proof� Using the hypothesis �i�e�� NP � P�poly� and starting with an arbitrary
set S � '�� we shall show that S � ��� Loosely speaking� S � '� means that
x � S if and only if for all y there exists a z such that some ��xed� polynomial
time veri�able condition regarding �x� y� z� holds� Note that the residual condition
regarding �x� y� is of the NPtype� and thus �by the hypothesis� it can be veri�ed
by a polynomialsize circuit� This suggests saying that x � S if and only if there
exists an adequate circuit C such that for all y it holds that C�x� y� � �� Thus� we
managed to switch the order of the universal and existential quanti�ers� Speci�
cally� the resulting assertion is of the desired ��type provided that we can either
verify the adequacy condition in coNP �or even in ��� or keep out of trouble even

��	� THE POLYNOMIALTIME HIERARCHY �PH� ��

in the case that x �� S and C is inadequate� In the following proof we implement
the latter option by observing that the hypothesis yields small circuits for NP
search problems �and not only for NPdecision problems�� Speci�cally� we obtain
�small� circuits that� given �x� y�� �nd an NPwitness for �x� y� �whenever such a
witness exists�� and rely on the fact that we can e�ciently verify the correctness of
NPwitnesses� �The alternative approach of providing a coNPtype procedure for
verifying the adequacy of the circuit is pursued in Exercise ������

Let S be an arbitrary set in '�� Then� by Proposition ���� there exists a
polynomial p and a set S� � NP such that S � fx � �y � f	� �gpjxj� �x� y� � S�g�
Let R� � PC be the witnessrelation corresponding to S�� that is� there exists a
polynomial p�� such that x� � hx� yi � S� if and only if there exists z�f	� �gp�jx�j�
such that �x�� z� � R�� It follows that

S � fx � �y�f	� �gpjxj��z�f	� �gp�jhx�yij� �hx� yi� z� � R�g�
By the reduction of PC to NP �see the proof of Theorem ��� and further discus
sion in Section ������� the theorem
s hypothesis �i�e�� NP � P�poly� implies the
existence of polynomialsize circuits for solving the search problem of R�� Using
the existence of these circuits� it follows that for any x � S there exists a small
circuit C � such that for every y it holds that C ��x� y� � R��x� y�� whereas for any
x �� S there exists a y such that hx� yi �� S� and hence C ��x� y� �� R��x� y� for any
circuit C � �for the trivial reason that R��x� y� � ��� But let us �rst spellout what
we mean by polynomialsize circuits for solving a search problem as well as further
justify their existence for the search problem of R��

In Section ���� we have focused on polynomialsize circuits that solve decision
problems� However� the de�nition sketched in Section ����� also applies to solving
search problems� provided that an appropriate encoding is used for allowing so
lutions of possibly varying lengths �for instances of �xed length� to be presented
as strings of �xed length� Next observe that combining the Cookreduction of PC
to NP with the hypothesis NP � P�poly� implies that PC is Cookreducible to
P�poly� In particular� this implies that any search problem in PC can be solved by
a family of polynomialsize circuits� Note that the resulting circuit that solves nbit
long instances of such a problem may incorporate polynomially �in n� many circuits�
each solving a decision problem for mbit long instances� where m � �poly�n���
Needless to say� the size of the resulting circuit that solves the search problem
of the aforementioned R� � PC �for instances of length n� is upperbounded by

poly�n� �Ppolyn�
m�� poly�m��

It follows that x � S if and only if there exists a poly�jxj $ p�jxj���size circuit
C � such that for all y�f	� �gpjxj� it holds that �hx� yi� C ��x� y�� � R�� Note that in
the case that x � S we use the circuit C � that is guaranteed for inputs of length
jxj$ p�jxj� by the foregoing discussion	� whereas in the case that x �� S it does not
matter which circuit C � is used �because in that case there exists a y such that for
all z it holds that �hx� yi� z�� �� R���

The key observation regarding the foregoing condition �i�e�� �C ��y �hx� yi� C ��x� y�� �
R�� is that it is of the desired form �of a �� statement�� Speci�cally� consider

�Thus� C� may actually depend only on jxj� which in turn determines p�jxj��

��� CHAPTER �� VARIATIONS ON P AND NP

the polynomialtime veri�cation procedure V that given x� y and the descrip
tion of the circuit C �� �rst computes z � C ��x� y� and accepts if and only if
�hx� yi� z� � R�� where the latter condition can be veri�ed in polynomialtime �be
cause R� � PC�� Denoting the description of a potential circuit by hC �i� the
aforementioned �polynomialtime� computation of V is denoted V �x� hC �i� y�� and
indeed x � S if and only if

�hC �i�f	� �gpolyjxj�pjxj���y�f	� �gpjxj� V �x� hC �i� y� � ��

Having established that S � �� for an arbitrary S � '�� we conclude that '� � ���
The theorem follows �by applying Exercise �������

Chapter Notes

The class P�poly was de�ned by Karp and Lipton ����� as part of a general for
mulation of �machines which take advice� ������ They also noted the equivalence
to the traditional formulation of polynomialsize circuits as well as the e�ect of
uniformity �Proposition �����

The PolynomialTime Hierarchy �PH� was introduced by Stockmeyer ��	 �� A
third equivalent formulation of PH �via socalled �alternating machines�� can be
found in �����

The implication of the failure of the conjecture that NP is not contained in
P�poly on the Polynomialtime Hierarchy �i�e�� Theorem ����� was discovered by
Karp and Lipton ������ This interesting connection between nonuniform and uni
form complexity provides the main motivation for presenting P�poly and PH in
the same chapter�

Exercises

Exercise ��� �a small variation on the de�nitions of P�poly� Using an ad
equate encoding of strings of length smaller than n as nbit strings �e�g�� x �
�i�nf	� �gi is encoded as x	�n�jxj���� de�ne circuits �resp�� machines that take
advice� as devices that can handle inputs of various lengths up to a given bound
�rather than as devices that can handle inputs of a �xed length�� Show that the
class P�poly remains invariant under this change �and Theorem ��� remains valid��

Exercise ��� �sparse sets� A set S � f	� �g� is called sparse if there exists a
polynomial p such that jS � f	� �gnj � p�n� for every n�

�� Prove that any sparse set is in P�poly� Note that a sparse set may be
undecidable�

�� Prove that a set is in P�poly if and only if it is Cookreducible to some sparse
set�

Guideline� For the forward direction of Part �� encode the advice sequence
an�n�N
as a sparse set f
�n� i� �n�i� � n �N � i janjg� where �n�i is the ith bit of an� For the

��	� THE POLYNOMIALTIME HIERARCHY �PH� ���

opposite direction� note that on input x the Cook�reduction makes queries of length at

most poly
jxj�� and so emulating the reduction on an input of length n only requires

knowledge of all the strings that are in the sparse set and have length at most poly
n��

Exercise ��� �advice hierarchy� Prove that for any two functions
� � � N N

such that
�n� � �n�� and � is unbounded� it holds that P�
 is strictly contained
in P��
$ ���

Guideline� For every sequence a �
an�n�N such that janj � �
n� � 	
n�� consider the

set Sa that encodes a such that x � Sa � f�� �gn if and only if the idx
x�th bit in an
equals �
and idx
x� janj�� where idx
x� denotes the index of x in f�� �gn� For more

details see Section ����

Exercise ��	 Prove that �� contains all sets that are Cookreducible to NP �

Guideline� This is quite obvious when using the de�nition of �� as presented in Sec�

tion ������ see Exercise ���� Alternatively� the fact can be proved by using some of the

ideas that underlie the proof of Theorem ����� while noting that a conjunction of NP and

coNP assertions forms an assertion of type ��
see also the second part of the proof of

Proposition ������

Exercise ��� Let (� NP � coNP � Prove that (equals the class of decision
problems that are Cookreducible to (�i�e�� (� P���

Guideline� See proof of Theorem �����

Exercise ��� �the class 'i� Recall that 'k is de�ned to equal co�k� which in
turn is de�ned to equal ff	� �g� n S � S � �kg� Prove that for any natural number
k� a decision problem S � f	� �g� is in 'k if there exists a polynomial p and a
polynomial time algorithm V such that x � S if and only if

�y��f	� �gpjxj��y��f	� �gpjxj��y��f	� �gpjxj� � � �Qkyk�f	� �gpjxj�
s�t� V �x� y�� ���� yk� � �

where Qk is a universal quanti�er if k is odd and is an existential quanti�er other
wise�

Exercise �� �complete problems for the various levels of PH� A k�alternating
quanti�ed Boolean formula is a quanti�ed Boolean formula with up to k alternations
between existential and universal quanti�ers� starting with an existential quanti
�er� For example� �z��z��z���z�� z�� z�� �where the zi
s are Boolean variables� is
a �alternating quanti�ed Boolean formula� Prove that the problem of deciding
whether or not a k�alternating quanti�ed Boolean formula is valid is �kcomplete
under Karpreductions� That is� denoting the aforementioned problem by kQBF�
prove that kQBF is in �k and that every problem in �k is Karpreducible to kQBF�

Exercise ��� �on the relation between PH and AC�� Note that there is an
obvious analogy between PH and constantdepth polynomialsize circuits of un
bounded fanin� where existential �resp�� universal� quanti�ers are represented by
�large�

W
�resp��

V
� gates� To articulate this relationship� consider the following

de�nitions�

��� CHAPTER �� VARIATIONS ON P AND NP

� A family of circuits fCNg is called highly uniform if there exists a polynomial
time algorithm that answers local queries regarding the structure of the rel
evant circuit� Speci�cally� on input �N� u� v�� the algorithm determines the
type of gates represented by the vertices u and v in CN as well as whether
there exists a directed edge from u to v� Note that this algorithm operates
in time that polylogarithmic in the size of CN �

We focus on family of polynomialsize circuits� meaning that the size of CN
is polynomial in N � which in turn represents the number of inputs to CN �

� Fixing a polynomial p� a p�succinctly represented input Z � f	� �gN is a circuit
cZ of size at most p�log�N� such that for every i � �N � it holds that cZ�i�
equals the ith bit of Z�

� For a �xed family of highly uniform circuits fCNg and a �xed polynomial p�
the problem of evaluating a succinctly represented input is de�ned as follows�
Given p�succinct representation of an input Z � f	� �gN � determine whether
or not CN �Z� � ��

For every k and every S � �k� show that there exists a family of highly uniform
unbounded fanin circuits of depth k and polynomialsize such that S is Karp
reducible to evaluating a succinctly represented input �with respect to that family of
circuits�� That is� the reduction should map an instance x � f	� �gn to a psuccinct
representation of some Z � f	� �gN such that x � S if and only if CN �Z� � ��
�Note that Z is represented by a circuit cZ of size at most p�log�N�� and that it
follows that jcZ j � poly�n� and thus N � exp�poly�n����

Guideline� Let S � �k and let V be the corresponding veri�cation algorithm as in

De�nition ���� That is� x � S if and only if �y��y� � � �Qkyk� where each yi�f�� �gpoly�jxj�
such that V
x� y�� ���� yk� � �� Then� for m � poly
jxj� and N � �k�m� consider the �xed

circuit CN
Z� �
W
i����m�

V
i����m�

� � �Q�
ik���

m�Zi��i������ik � and the problem of evaluating

CN at an input consisting of the truth�table of V
x� � � ��
i�e�� when setting Zi��i������ik �

V
x� i�� ���� ik�� where ��m
 f�� �gm�� Note that the size of CN is O
N��	

Exercise ��� Verify the following facts�

�� For every k � �� it holds that �k � P�k � �k���

�Note that� for any complexity class C� the class PC is the class of sets that
are Cookreducible to some set in C� In particular� PP � P ��

�Assuming P �� NP� it cannot be that N � poly�n� �because circuit evaluation can be
performed in time polynomial in the size of the circuit��

	Advanced comment� the computational limitations of AC
 circuits �see� e�g�� ��	� �����
imply limitations on the functions of a generic input Z that the aforementioned circuits CN

can compute� Actually� these limitations apply also to Z � h�Z��� where Z� � f�� �gN����
is

generic and each bit of Z equals either some �xed bit in Z� or its negation� Unfortunately�
these computational limitations do not seem to provide useful information on the limitations
of functions of inputs Z that have succinct representation �as obtained by setting Zi��i������ik �

V �x� i�� ���� ik�� where V is a �xed polynomial�time algorithm and only x � f�� �gpoly�logN� varies��
This fundamental problem is �resolved� in the context of �relativization� by providing V with
oracle access to an arbitrary input of length N �or so� cf� ��	��

��	� THE POLYNOMIALTIME HIERARCHY �PH� ���

�� For every k � �� 'k � P�k � 'k���

Hint� For any complexity class C� it holds that PC � PcoC and PC � coPC ��
�� For every k � �� it holds that �k � 'k�� and 'k � �k��� Thus� PH � �k'k�

�� For every k � �� if �k � 'k �resp�� 'k � �k� then �k � 'k�

Hint� For any S � !k �resp�� S � "k�� apply the hypothesis to f�� �g� n S��

Exercise ���� In continuation to Exercise ���� prove that following claims�

�� SAT is computationally equivalent to �QBF�

�� For every k � �� it holds that P�k � PkQBF and �k�� � NPkQBF�
Guideline� Prove that if S is C�complete then PC � PS� Note that PC � PS

uses the polynomial�time reductions of C to S� whereas PS � PC uses S � C�

Exercise ���� �an alternative proof of Theorem ����� In continuation to the
discussion in the proof of Theorem ����� use the following guidelines to provide an
alternative proof of Theorem �����

�� First� prove that if S� is downwards selfreducible �as de�ned in Exercise �����
then the correctness of circuits deciding S� can be decided in coNP � Specif
ically� denoting by � the characteristic function of S�� show that the set

ckt	
def
� f��n� hCi� � �w � f	� �gn C�w� � ��w�g

is in coNP �

Guideline� Using the more �exible formulation suggested in Exercise ���� it suf�

�ces to verify that� for every i � n and every i�bit string w� the value C
w� equals

the output of the downwards self�reduction on input w when obtaining answers

according to C� Thus� for every i � n� the correctness of C on inputs of length

i follows from its correctness on inputs of length less than i� Needless to say� the

correctness of C on the empty string
or on all inputs of some constant length� can

be veri�ed by comparison to the �xed value of
 on the empty string
resp�� the

values of
 on a constant number of strings��

�� Recalling that SAT is downwards selfreducible and that NP reduces to SAT�
derive Theorem ���� as a corollary of Part ��

Exercise ���� In continuation to Part � of Exercise ���� we consider the class
of sets that are Karpreducible to a sparse set� It can be proved that this class
contains SAT if and only if P � NP �see ������ Here� we only consider the special
case in which the sparse set is contained in a polynomialtime decidable set that is
itself sparse �e�g�� the latter set may be f�g�� in which case the former set may be
an arbitrary unary set�� Actually� prove the following seemingly stronger claim�

if SAT is Karp�reducible to a set S � G such that G � P and G n S is
sparse then SAT � P �

��	 CHAPTER �� VARIATIONS ON P AND NP

Using the hypothesis� we outline a polynomialtime procedure for solving the search
problem of SAT� and leave the task of providing the details as an exercise� The
procedure conducts a DFS on the tree of all possible partial truth assignment to the
input formula� while truncating the search at nodes that are roots of subtrees that
were already demonstrated to contain no satisfying assignment �at the leaves����

Guideline� The key observation is that each internal node
which yields a formula derived
from the initial formulae by instantiating the corresponding partial truth assignment� is
mapped by the Karp�reduction either to a string not in G
in which case we conclude
that the sub�tree contains no satisfying assignments and backtrack from this node� or
to a string in G� In the latter case� unless we already know that this string is not in
S� we start a scan of the sub�tree rooted at this node� However� once we backtrack from
this internal node� we know that the corresponding element of G is not in S� and we will
never scan again a sub�tree rooted at a node that is mapped to this element� Also note
that once we reach a leaf� we can check by ourselves whether or not it corresponds to a
satisfying assignment to the initial formula�

Hint� When analyzing the forgoing procedure� note that on input an n�variable formulae � the

number of times we start to scan a sub�tree is at most n � j �poly�j�j�i�� f�� �gi � �G n S�j��

�
For an n�variable formulae� the leaves of the tree correspond to all possible n�bit long strings�
and an internal node corresponding to � is the parent of nodes corresponding to �� and ���

Chapter �

More Resources� More

Power�

More electricity� less toil�

The Israeli Electricity Company� ���	s

Is it indeed the case that the more resources one has� the more one can achieve�
The answer may seem obvious� but the obvious answer �of yes� actually presumes
that the worker knows how much resources are at his�her disposal� In this case�
when allocated more resources� the worker �or computation� can indeed achieve
more� But otherwise� nothing may be gained by adding resources�

In the context of computational complexity� an algorithm knows the amount of
resources that it is allocated if it can determine this amount without exceeding the
corresponding resources� This condition is satis�es in all �reasonable� cases� but it
may not hold in general� The latter fact should not be that surprising� we already
know that some functions are not computable and if these functions are used to
determine resources then the algorithm may be in trouble� Needless to say� this
discussion requires some formalization� which is provided in the current chapter�

Summary� When using �nice� functions to determine the algorithm
s
resources� it is indeed the case that more resources allow for more tasks
to be performed� However� when �ugly� functions are used for the same
purpose� increasing the resources may have no e�ect� By nice functions
we mean functions that can be computed without exceeding the amount
of resources that they specify �e�g�� t�n� � n� or t�n� � �n�� Naturally�
�ugly� functions do not allow to present themselves in such nice forms�

The forgoing discussion refers to a uniform model of computation and to
�natural� resources such as time and space complexities� Thus� we get
results asserting� for example� that there are problems that are solvable
in cubictime but not in quadratictime� In case of nonuniform models

���

��� CHAPTER �� MORE RESOURCES� MORE POWER�

of computation� the issue of �nicety� does not arise� and it is easy to
establish separations between levels of circuit complexity that di�er by
any unbounded amount�

Results that separate the class of problems solvable within one resource
bound from the class of problems solvable within a larger resource
bound are called hierarchy theorems� Results that indicate the non
existence of such separations� hence indicating a �gap� in the growth
of computing power �or a �gap� in the existence of algorithms that uti
lize the added resources�� are called gap theorems� A somewhat related
phenomenon� called speed�up theorems� refers to the inability to de�ne
the complexity of some problems�

Caveat� Uniform complexity classes based on speci�c resource bounds �e�g��
cubictime� are model dependent� Furthermore� the tightness of separation re
sults �i�e�� how much more time is required to solve an additional computational
problem� is also model dependent� Still the existence of such separations is a
phenomenon common to all reasonable and general models of computation �as re
ferred to in the CobhamEdmonds Thesis�� In the following presentation� we will
explicitly di�erentiate modelspeci�c e�ects from generic ones�

Organization� We will �rst demonstrate the �more resources yield more power�
phenomenon in the context of nonuniform complexity� In this case the issue of
�knowing� the amount of resources allocated to the computing device does not
arise� because each device is tailored to the amount of resources allowed for the
input length that it handles �see Section ����� We then turn to the time complexity
of uniform algorithms� indeed� hierarchy and gap theorems for timecomplexity�
presented in Section ���� constitute the main part of the current chapter� We end
by mentioning analogous results for spacecomplexity �see Section ���� which may
also be read after Section ����

��� Non�uniform complexity hierarchies

The model of machines that use advice �cf� x������� and Section ������ o�ers a very
convenient setting for separation results� We refer speci�cally� to classes of the form
P�
� where
 � N N is an arbitrary function �see De�nition �� �� Recall that
every Boolean function is in P��n� by virtue of a trivial algorithm that is given as
advice the truthtable of the function restricted to the relevant input length� An
analogous algorithm underlies the following separation result�

Theorem 	�� For any two functions
�� � � N N such that
��n� $ ��n� � �n

and � is unbounded� it holds that P�
� is strictly contained in P��
� $ ���

Proof� Let

def
�
� $ �� and consider the algorithm A that given advice an �

f	� �g�n� and input i � f�� ���� �ng �viewed as an nbit long string�� outputs the ith

bit of an if i � janj and zero otherwise� Clearly� for any a � �an�n�N such that

��	� TIME HIERARCHIES AND GAPS ���

janj �
�n�� it holds that the function fa�x�
def
� A�ajxj� x� is in P�
� Furthermore�

di�erent sequences a yield di�erent functions fa� We claim that some of these
functions fa are not in P�
�� thus obtaining a separation�

The claim is proved by considering all possible �polynomialtime� algorithms
A� and all possible sequences a� � �a�n�n�N such that ja�nj �
��n�� Fixing any
algorithm A�� we consider the number of nbit long functions that are correctly
computed by A��a�n� ��� Clearly� the number of these functions is at most ��

�n��
and thus A� may account for at most ��
n� fraction of the functions fa �even
when restricted to nbit strings�� This consideration holds for every n and every
possible A�� and thus the measure of the set of functions that are computable by
algorithms that take advice of length
� is zero��

A somewhat less tight bound can be obtained by using the model of Boolean
circuits� In this case some slackness is needed in order to account for the gap
between the upper and lower bounds regarding the number of Boolean functions
over f	� �gn that are computed by Boolean circuits of size s � �n� Speci�cally
�see Exercise ����� an obvious lowerbound on this number is �s�Olog s� whereas
an obvious upperbound is s�s � ��s log� s� �Compare these bounds to the lower
bound ��

�n� and the upperbound ��
�n��
n�������� which were used in the proof

of Theorem �����

��� Time Hierarchies and Gaps

In this section we show that in the �reasonable cases� increasing timecomplexity
allows for more problems to be solved� whereas in �pathological cases� it may
happen that even a dramatic increase in the timecomplexity provides no additional
computing power� As hinted in the introductory comments to the current chapter�
the �reasonable cases� correspond to time bounds that can be determined by the
algorithm itself within the speci�ed time complexity�

We stress that also in the aforementioned �reasonable cases�� the added power
does not necessarily refer to natural computational problems� That is� like in
the case of nonuniform complexity �i�e�� Theorem ����� the hierarchy theorems
are proved by introducing arti�cial computational problems� Needless to say� we
do not know of natural problems in P that are provably unsolvable in cubic �or
some other �xed polynomial� time �on� say� a twotape Turing machine�� Thus�
although P contains an in�nite hierarchy of computational problems� each requiring
signi�cantly more time than the other� we know of no such hierarchy of natural
computational problems� In contrast� so far it has been the case that any natural
problem that was shown to be solvable in polynomialtime was eventually followed
by algorithms having runningtime that is bounded by a moderate polynomial�

�It su�ces to show that this measure is strictly less than one� This is easily done by considering�
for every n� the performance of any algorithm A� having description of length shorter than �	�n��
��
� on all inputs of length n�

��� CHAPTER �� MORE RESOURCES� MORE POWER�

����� Time Hierarchies

Note that the nonuniform computing devices� considered in Section ���� were ex
plicitly given the relevant resource bounds �e�g�� the length of advice�� Actually�
they were given the resources themselves �e�g�� the advice itself� and did not need
to monitor their usage of these resources� In contrast� when designing algorithms
of arbitrary timecomplexity t � N N � we need to make sure that the algo
rithm does not exceed the time bound� Furthermore� when invoked on input x�
the algorithm is not given the time bound t�jxj� explicitly� and a reasonable design
methodology is to have the algorithm compute this bound �i�e�� t�jxj�� before doing
anything else� This� in turn� requires the algorithm to read the entire input �see
Exercise ���� as well as to compute t�n� using O�t�n�� �or so� time� The latter
requirement motivates the following de�nition �which is related to the standard
de�nition of �fully time constructibility� �cf� ����� Sec� ��������

De�nition 	�� �time constructible functions�� A function t � N N is called
time constructible if there exists an algorithm that on input n outputs t�n� using at
most t�n� steps�

Equivalently� we may require that the mapping �n � t�n� be computable within
time complexity t� We warn that the foregoing de�nition is model dependent�
however� typically nice functions are computable even faster �e�g�� in poly�log t�n��
steps�� in which case the modeldependency is irrelevant �for reasonable and general
models of computation� as referred to in the CobhamEdmonds Thesis�� For ex
ample� in any reasonable and general model� functions like t��n� � n�� t��n� � �n�
and t��n� � ��

n

are computable in poly�log ti�n�� steps�
Likewise� for a �xed model of computation �to be understood from the context�

and for any function t � N N � we denote by Dtime�t� the class of decision
problems that are solvable in time complexity t� We call the reader
s attention to
Exercise ��� that asserts that in many cases Dtime�t� � Dtime�t����

	������ The Time Hierarchy Theorem

In the following theorem� we refer to the model of twotape Turing machines� In
this case we obtain quite a tight hierarchy in terms of the relation between t� and
t�� We stress that� using the CobhamEdmonds Thesis� this results yields �possibly
less tight� hierarchy theorems for any reasonable and general model of computation�

Teaching note� The standard statement of Theorem ��� asserts that for any time

constructible function t� and every function t� such that t� � �
t� log t�� and t�
n� � n

it holds that Dtime
t�� is strictly contained in Dtime
t��� The current version is only

slightly weaker� but it allows a somewhat simpler and more intuitive proof� We comment

on the proof of the standard version of Theorem ��� after proving the current version�

Theorem 	�� �time hierarchy for twotape Turing machines�� For any time con�
structible function t� and every function t� such that t��n� � �log t��n��

� � t��n�
and t��n� � n it holds that Dtime�t�� is strictly contained in Dtime�t���

��	� TIME HIERARCHIES AND GAPS ��

As will become clear from the proof� an analogous result holds for any model in
which a universal machine can emulate t steps of another machine in O�t log t� time�
where the constant in the Onotation depends on the emulated machine� Before
proving Theorem ���� we derive the following corollary�

Corollary 	�	 �time hierarchy for any reasonable and general model�� For any
reasonable and general model of computation there exists a positive polynomial p
such that for any time�computable function t� and every function t� such that
t� � p�t�� and t��n� � n it holds that Dtime�t�� is strictly contained in Dtime�t���

It follows that� for every such model and every polynomial t �such that t�n� � n��
there exist problems in P that are not in Dtime�t�� It also follows that P is a strict
subset of E and even of �quasipolynomial time�� moreover� P is a strict subset of
Dtime�q�� where q�n� � nlog� n �and even q�n� � nlog� log� n��

Proof of Corollary 	�	� Letting Dtime� denote the classes that correspond to
twotape Turing machines� we note thatDtime�t�� � Dtime��t

�
�� andDtime�t�� �

Dtime��t
�
��� where t

�
� � poly�t�� and t�� is de�ned such that t��n� � poly�t���n���

The latter unspeci�ed polynomials� hereafter denoted p� and p� respectively� are
the ones guaranteed by the CobhamEdmonds Thesis� Also� the hypothesis that
t� is timecomputable implies that t�� � p��t�� is timeconstructible with respect to
the twotape Turing machine model� Thus� for a suitable choice of the polynomial
p �i�e�� p�p��� �m�� � p��m

���� it holds that

t���n� � p��� �t��n�� � p��� �p�t��n��� � p��� �p�p��� �t���n���� � t���n�
� �

where the last inequality holds by the choice of p and the �rst inequality holds by
the corollary
s hypothesis �i�e�� t� � p�t���� Invoking Theorem ��� �while noting
that t���n� � t���n���� we have Dtime��t��� � Dtime��t

�
��� Combining this with the

aforementioned relations between Dtime and Dtime�� the corollary follows�

Proof of Theorem 	��� The idea is constructing a Boolean function f such
that all machines having time complexity t� fail to compute f � This is done by
associating each possible machine M a di�erent input xM �e�g�� xM � hMi� and
making sure that f�xM � �� M ��xM �� where M ��x� denotes an emulation of M�x�
that is suspended after t��jxj� steps� For example� we may de�ne f�xM � � � �
M ��xM �� We note that M � is used instead of M in order to allow computing f in
time that is related to t�� The point is that M is just an arbitrary machine that is
associated to the input xM � and so M does not necessarily run in time t� �but� by
construction� the corresponding M � does run in time t���

Implementing the foregoing idea calls for an e�cient association of machines to
inputs as well as for a relatively e�cient emulation of t� steps of an arbitrary ma
chine� As shown next� both requirements can be met easily� Actually� we are going
to use a mapping � of inputs to machines �i�e�� � will map the aforementioned xM
to M� such that each machine is in the range of � and � is very easy to compute
�e�g�� indeed� for starters� assume that � is the identity mapping�� Thus� by con
struction� f �� Dtime�t��� The issue is presenting a relatively e�cient algorithm
for computing f � that is� showing that f � Dtime�t���

��� CHAPTER �� MORE RESOURCES� MORE POWER�

The algorithm for computing f as well as the de�nition of f �sketched in the �rst
paragraph� are straightforward� On input x� the algorithm computes t � t��jxj��
determines the machine M � ��x� that corresponds to x �outputting a default
value of no such machine exists�� emulates M�x� for t steps� and returns the value
��M ��x�� Recall that M ��x� denotes the timetruncated emulation of M�x� �i�e��
this emulation suspended after t steps�� Thus� f�x� � ��M ��x� if M � ��x� and
�say� f�x� � 	 otherwise�

Using the timeconstructability of t� and ignoring the easy computation of ��
we focus on the question of how much time is required for emulating t steps of
machine M �on input x�� We should bear in mind that the timecomplexity of our
algorithm needs to be analyzed in the twotape Turingmachine model� whereas
M itself is a twotape Turingmachine� We start by implementing our algorithm
on a threetape Turingmachine� and next emulate this machine on a twotape
Turingmachine�

The obvious implementation of our algorithm on a threetape Turingmachine
uses two tapes for the emulation itself and designates the third tape for the actions
of the emulation procedure �e�g�� storing the code of the emulated machine and
maintaining a stepcounter�� Thus� each step of the the twotape machine M is
emulated using O�jhMij� steps on the threetape machine�� This includes also
the amortized complexity of maintaining a stepcounter for the emulation �see
Exercise �����

Next� we need to emulate the foregoing threetape machine on a twotape ma
chine� This is done by using the fact �cf�� e�g�� ����� Thm� ������ that t� steps
of a threetape machine can be emulated on a twotape machine in O�t� log t��
steps� Thus� the complexity of computing f on input x is upperbounded by
O�T�x��jxj� log T�x��jxj��� where TM �n� � O�jhMij � t��n�� represents the cost of
emulating t��n� steps of the twotape machine M on a threetape machine �as in
the foregoing discussion��

It turns out that the quality of the result we obtain depends on the choice of
the mapping � �of inputs to machines�� Using the naive �identity� mapping �i�e��

��x� � x� we can only establish the theorem for t��n� � eO�n � t��n�� rather than
t��n� � eO�t��n��� because in this case T�x��jxj� � O�jxj � t��jxj��� �Note that in
this case xM � hMi is a description of ��xM � � M �� The theorem follows by
associating the machine M with the input xM � hMi	�m� where m � �jhMij� that
is� we may use the mapping � such that ��x� � M if x � hMi	��jhMij

and ��x�
equals some �xed machine otherwise� In this case j��x�j � log� jxj � log t��jxj�
and so T�x��jxj� � O��log t��jxj�� � t��jxj��� The theorem follows�

�This overhead accounts both for searching the code of M for the adequate action and for the
e�ecting of this action �which may refer to a larger alphabet than the one used by the emulator��

��	� TIME HIERARCHIES AND GAPS ���

Teaching note� Proving the standard version of Theorem ��� cannot be done by

associating a su�ciently long input xM with each machine M � because this does not

allow to get rid from an additional unbounded factor in T��x�
jxj�
i�e�� the j
x�j factor

that multiplies t�
jxj��� Note that the latter factor needs to be computable
at the

very least� and thus cannot be accounted for by the generic ��notation that appears in

the standard version
cf� ����� Thm� ���� �� Instead� a di�erent approach is taken
see

Footnote ���

Technical Comments� The proof of Theorem ��� associates with each potential
machine an input and makes this machine err on this input� The aforementioned
association is rather �exible� it should merely be e�ciently computed �in the di
rection from the input to a possible machine� and should be su�ciently shrinking
�in that direction�� Speci�cally� we used the mapping � such that ��x� � M if

x � hMi	��jhMij

and ��x� equals some �xed machine otherwise� We comment that
each machine can be made to err on in�nitely many inputs by rede�ning � such

that ��x� �M if hMi	��jhMij

is a su�x of x �and ��x� equals some �xed machine
otherwise�� We also comment that� in contrast to the proof of Theorem ���� the
proof of Theorem �� utilizes a rigid mapping of inputs to machines �i�e�� there
��x� � M if x � hMi��

Digest� Diagonalization� The last comment highlights the fact that the proof
of Theorem ��� is merely a sophisticated version of the proof of Theorem �� � Both
proofs refer to versions of the universal function� which in the case of the proof of
Theorem ��� is �implicitly� de�ned such that its value at �hMi� x� equals M ��x��
where M ��x� denotes an emulation of M�x� that is suspended after t��jxj� steps��
Actually� both proofs refers to the �diagonal� of the aforementioned function� which
in the case of the proof of Theorem ��� is only de�ned implicitly� That is� the
value of the diagonal function at x� denoted d�x�� equals the value of the universal
function at �h��x�i� x�� This is actually a de�nitional schema� as the choice of the
function � remains unspeci�ed� Indeed� setting ��x� � x corresponds to a �real�
diagonal in the matrix depicting the universal function� but any other choice of a
�� mappings � also yields a �kind of diagonal� of the universal function� Either
way� the function f is de�ned such that for every x it holds that f�x� �� d�x��
This guarantees that no machine of timecomplexity t� can compute f � and the
focus is on presenting an algorithm that computes f �which� needless to say� has
timecomplexity greater than t��� Part of the proof of Theorem ��� is devoted to

�In the standard proof the function f is not de�ned with reference to t��jxM j� steps ofM�xM ��
but rather with reference to the result of emulating M�xM � while using a total of t��jxM j� steps
in the emulation process �i�e�� in the algorithm used to compute f�� This guarantees that f is in
Dtime�t��� and �pushes the problem� to showing that f is not in Dtime�t��� It also explains why
t� �rather than t�� is assumed to be time constructible� As for the foregoing problem� it is resolved
by observing that for each relevant machine �i�e�� having time complexity t�� the executions on
any su�ciently long input will be fully emulated� Thus� we merely need to associate with each
M a disjoint set of in�nitely many inputs and make sure that M errs on each of these inputs�

�Needless to say� in the proof of Theorem ���� M � �M �

��� CHAPTER �� MORE RESOURCES� MORE POWER�

selecting � in a way that minimizes the timecomplexity of computing f � whereas
in the proof of Theorem �� we merely need to guarantee that f is computable�

	������ Impossibility of speed�up for universal computation

The Time Hierarchy Theorem �Theorem ���� implies that the computation of a
universal machine cannot be signi�cantly spedup� That is� consider the function

u��hMi� x� t� def
� y if on input x machine M halts within t steps and outputs the

string y� and u��hMi� x� t� def
� � if on input x machine M makes more than t steps�

Recall that the value of u��hMi� x� t� can be computed in eO�jxj $ jhMij � t� steps�
Theorem ��� implies that this value cannot be computed within signi�cantly less
steps�

Theorem 	�� There exists no two�tape Turing machine that� on input hMi� x and
t� computes u��hMi� x� t� in o��t $ jxj� � f�M�� log��t $ jxj�� steps� where f is an
arbitrary function�

A similar result holds for any reasonable and general model of computation �cf��
Corollary ����� In particular� it follows that u� is not computable in polynomial
time �because the input t is presented in binary�� In fact� one can show that
deciding whether or not M halts on input x in t steps �i�e�� membership in the set
f�hMi� x� t� � u��hMi� x� t� �� �g� is not in P � see Exercise �� �

Proof� Suppose �towards the contradiction� that� for every �xed M � given x
and t � jxj� the value of u��hMi� x� t� can be computed in o�t� log� t� steps� where
the onotation hides a constant that may depend on M � Consider an arbitrary
time constructible t� �s�t� t��n� � n� and an arbitrary set S � Dtime�t��� where
t��n� � t��n� � log� t��n�� Let M be a machine of time complexity t� that decides
membership in S� and consider an algorithm that� on input x� �rst computes
t � t��jxj�� and then computes �and outputs� the value u��hMi� x� t log� t�� By
the time constructibility of t�� the �rst computation can be implemented in t steps�
and by the contradiction hypothesis the same holds for the second computation�
Thus� S can be decided in Dtime��t�� � Dtime�t��� implying that Dtime�t�� �
Dtime�t��� which in turn contradicts Theorem ����

	������ Hierarchy theorem for non�deterministic time

Analogously to Dtime� for a �xed model of computation �to be understood from
the context� and for any function t � N N � we denote by Ntime�t� the class
of sets that are accepted by some non�deterministic machine of time complexity t�
Alternatively� analogously to the de�nition of NP� a set S � f	� �g� is in Ntime�t�
if there exists a linear�time algorithm V such that the two conditions hold

�� For every x � S there exists y � f	� �gtjxj� such that V �x� y� � ��

�� For every x �� S and every y � f	� �g� it holds that V �x� y� � 	�

��	� TIME HIERARCHIES AND GAPS ���

We warn that the two formulations are not identical� but in su�ciently strong mod
els �e�g�� twotape Turing machines� they are related up to logarithmic factors �see
Exercise ����� The hierarchy theorem itself is similar to the one for deterministic
time� except that here we require that t��n� � �log t��n $ ���� � t��n $ �� �rather
than t��n� � �log t��n��

� � t��n��� That is�

Theorem 	�� �nondeterministic time hierarchy for twotape Turing machines��
For any time�constructible and monotonicly non�decreasing function t� and every
function t� such that t��n� � �log t��n$���� � t��n$�� and t��n� � n it holds that
Ntime�t�� is strictly contained in Ntime�t���

Proof� We cannot just apply the proof of Theorem ���� because the Boolean
function f de�ned there requires the ability to determine whether there exists a
computation of M that accepts the input xM in t��jxM j� steps� In the current
context� M is a nondeterministic machine and so the only way we know how
to determine this question �both for a �yes� and �no� answers� is to try all the
��t�jxM j�� relevant executions�� But this would put f in Dtime��t��� rather than

in Ntime� eO�t���� and so a di�erent approach is needed�
We associate with each �nondeterministic� machine M � a large interval of

strings �viewed as integers�� denoted IM � ��M � �M �� such that the various inter
vals do not intersect and such that it is easy to determine for each string x in which
interval it resides� For each x � ��M � �M���� we de�ne f�x� � � if and only if there

exists a nondeterministic computation of M that accepts the input x� def� x$ � in
t��jx�j� � t��jxj $ �� steps� Thus� unless either M �nondeterministically� accepts
each string in the interval IM or M �nondeterministically� accepts no such string�
it �i�e�� M� fails to �nondeterministically� accept fx � f�x���g �because M must
nondeterministically accept x� � x $ � if and only if it nondeterministically ac
cepts x�� So it is left to deal with the case that M is invariant on IM � which is
where the de�nition of the value of f��M � comes into play� We de�ne f��M � to
equal zero if and only if there exists a nondeterministic computation of M that
accepts the input �M in t��j�M j� steps� We shall select �M to be large enough
relative to �M such that we can a�ord to try all possible computations of M on
input �M � Details follow�

We present the following nondeterministic machine for accepting the set fx �
f�x� � �g� We assume that� on input x� it is easy to determine the machineM that
corresponds to the interval ��M � �M � in which x reside�� On input x � ��M � �M����
this nondeterministic machine emulates a �single� nondeterministic computation
of M on input x� � x $ �� and decides accordingly� Indeed� this emulation can
be performed in time �log t��jx $ �j��� � t��jx $ �j� � t��jxj�� On input x � �M �
our machine just tries all �t�j�M j� executions of M on input �M and decides in a
suitable manner� that is� our machine emulates all �t�j�M j� possible executions of

�Indeed� we can non�deterministically recognize �yes� answers in eO�t��jxM j�� steps� but we
cannot do so for �no� answers�

�For example� we may partition the strings to consequetive intervals such that the ith interval�
denoted ��i� �i�� corresponds to the ith machine and for T��m� � ��t��m� it holds that �i �
�T��j�ij� and �i� � �T��j�ij��� Note that j�ij � T��j�ij�� and thus t��j�ij� t��j�ij� ��t��j�ij��

��	 CHAPTER �� MORE RESOURCES� MORE POWER�

M��M � and accepts �M if and only if all the emulated executions ended rejecting
�M � Note that this part of the emulation is deterministic� and it amounts to

emulating TM
def
� �t�j�M j� � t��j�M j� steps of M � By a suitable choice of the

interval ��M � �M �� this number �i�e�� TM � is smaller than t��j�M j� �e�g�� j�M j � TM
implies TM � t��j�M j��� and it follows that TM steps of M can be emulated in
time �log� t��j�M j��� � t��j�M j� � t��j�M j�� Thus� f is in Ntime�t���

Finally� we show that de�ning f as in the foregoing indeed guarantees that
f is not in Ntime�t��� Suppose on the contrary� that some nondeterministic
machine M of timecomplexity t� accepts the set fx � f�x� � �g� We de�ne a
Boolean function AM such that AM �x� � � if and only if there exists a non
deterministic computation of M that accepts the input x� and note that by the
contradiction hypothesis AM �x� � f�x�� Focusing on the interval ��M � �M �� we
have AM �x� � f�x� for every x � ��M � �M �� which �combined with the de�nition
of f� implies that AM �x� � f�x� � AM �x $ �� for every x � ��M � �M � �� and
AM ��M � � f��M � � � � AM ��M �� Thus� we reached a contraction �because we
got AM ��M � � � � � � AM ��M � � ��AM ��M ���

����� Time Gaps and Speed	Up

In contrast to Theorem ���� there exists functions t � N N such that Dtime�t� �
Dtime�t�� �or even Dtime�t� � Dtime��t��� Needless to say� these functions
are not timeconstructible �and thus the aforementioned fact does not contradict
Theorem ����� The reason for this phenomenon is that� for such functions t� there
exists not algorithms that have time complexity above t but below t� �resp�� �t��

Theorem 	� �the time gap theorem�� For every non�decreasing computable func�
tion g � N N there exists a non�decreasing computable function t � N N such
that Dtime�t� � Dtime�g�t���

The forgoing examples referred to g�m� � m� and g�m� � �m� Since we are
mainly interested in dramatic gaps �i�e�� superpolynomial functions g�� the model
of computation does not matter here �as long as it is reasonable and general��

Proof� Consider an enumeration of all possible algorithms �or machines�� which
also includes machines that do not halt on some inputs� �Recall that we cannot
enumerate only all machines that halt on every input�� Let ti denote the time
complexity of the ith algorithm� that is� ti�n� � " if the ith machine does not halt
on some nbit long input and otherwise ti�n� � maxx�f���gnfTi�x�g� where Ti�x�
denotes the number of steps taken by the ith machine on input x�

The basic idea is to de�ne t such that no ti is �sandwiched� between t and g�t��
and thus no algorithm will have time complexity between t and g�t�� Intuitively� if
ti�n� is �nite� then we may de�ne t such that t�n� � ti�n� and thus guarantee that
ti�n� �� �t�n�� g�t�n���� whereas if ti�n� � " then any �nite value of t�n� will do
�because then ti�n� � g�t�n���� Thus� for every m and n� we can de�ne t�n� such
that ti�n� �� �t�n�� g�t�n��� for every i � �m� �e�g�� t�n� � maxi��m��tin����fti�n�g$

��	� TIME HIERARCHIES AND GAPS ���

���	 This yields a weaker version of the theorem� in which the function t is not
computable�

The problem is that we want t to be computable� whereas given n we cannot
tell whether or not ti�n� is �nite� However� we do not really need to make the latter
decision� for each candidate value v of t�n�� we should just determine whether or
not ti�n� � �v� g�v��� which can be decided by running the ith machine for at most
g�v� $ � steps �on each nbit long string�� That is� as far as the ith machine is
concerned� we should just �nd a value v such that either v � ti�n� or g�v� � ti�n�
�which includes the case ti�n� � "�� This can be done by starting with v � v�
�where� say� v� � n $ ��� and increasing v until either v � ti�n� or g�v� � ti�n��
The point is that if ti�n� is in�nite then we we output v � v� after emulating
�n ��g�v��$�� steps� and otherwise we output output v � ti�n�$� after performing

at most
Ptin�

j�v�
�n � j emulation steps� Bearing in mind that we should deal with

all possible machines� we obtain the following procedure for setting t�n��
Let � � N N be any unbounded and computable function �e�g�� ��n� � n will

do�� Starting with v � n $ �� we keep incrementing v until v satis�es� for every
i � f�� ���� ��n�g� either ti�n� � v or ti�n� � g�v�� This condition can be veri�ed
by computing ��n� and g�v�� and emulating the execution of each of the �rst ��n�
machines on each of the nbit long strings for g�v� $ � steps� The procedure sets
t�n� to equal the �rst value v satisfying the aforementioned condition� and halts�

To show that the foregoing procedure halts on every n� consider the set Hn �
f�� ���� ��n�g of the indices of the �relevant� machines that halt on all inputs of length
n� Then� the procedure de�nitely halts before reaching the value v � Tn$�� where
Tn � maxi�Hnfti�n�g� �Indeed� the procedure may halt with a value v � Tn� but
this will happen only if g�v� � Tn��

Finally� for the foregoing function t� we prove that Dtime�t� � Dtime�g�t��
holds� Indeed� let S � Dtime�g�t�� and suppose that the ith algorithm decides S
in time at most g�t�� that is� for every n� it holds that ti�n� � g�t�n��� Then �by
the construction of t�� for every n satisfying ��n� � i� it holds that ti�n� � t�n�� It
follows that the ith algorithm decides S in time at most t on all but �nitely many
inputs� Combining this algorithm with a �lookup table� machine that handles the
exceptional inputs� the theorem follows�

Comment� The function t de�ned by the foregoing proof is computable in time
that exceeds g�t�� Speci�cally� the presented procedure computes t�n� �as well as

g�f�n��� in time eO��n � g�t�n�� $ Tg�t�n���� where Tg�m� denotes the number of
steps required to compute g�m� on input m�

Speed�up Theorems� Theorem ��� can be viewed as asserting that some time
complexity classes �i�e�� Dtime�g�t�� in the theorem� collapse to lower classes �i�e��
to Dtime�t��� A conceptually related phenomenon is of problems that have no
optimal algorithm �not even in a very mild sense�� that is� every algorithm for

�We may assume� without loss of generality� that t��n� � � for every n e�g�� by letting the
machine that always halts after a single step be the �rst machine in our enumeration�

��� CHAPTER �� MORE RESOURCES� MORE POWER�

these ��pathological�� problems can be drastically spedup� It follows that the
complexity of these problems can not be de�ned �i�e�� as the complexity of the best
algorithm solving this problem�� The following drastic speedup theorem should
not be confused with the linear speedup that is an artifact of the de�nition of a
Turing machine �see Exercise �����

Theorem 	�� �the time speedup theorem�� For every computable �and super
linear� function g there exists a decidable set S such that if S � Dtime�t� then
S � Dtime�t�� for t� satisfying g�t��n�� � t�n��

Taking g�n� � n� �or g�n� � �n�� the theorem asserts that� for every t� if S �
Dtime�t� then S � Dtime�

p
t� �resp�� S � Dtime�log t��� Note that Theorem ���

can be applied any �constant� number of times� which means that we cannot give
a reasonable estimate to the complexity of deciding membership in S� In contrast�
recall that in some important cases� optimal algorithms for solving computational
problems do exist� Speci�cally� algorithms solving �candid� search problems in NP
cannot be speedup �see Theorem ������ nor can the computation of a universal
machine �see Theorem �� ��

We refrain from presenting a proof of Theorem ���� but comment on the com
plexity of the sets involved in this proof� The proof �presented in ����� Sec� ������
provides a construction of a set S in Dtime�t��nDtime�t��� for t��n� � h�n�O����
and t���n� � h�n � ������ where h�n� denoted g iterated n times on � �i�e��
h�n� � gn����� where gi����m� � g�gi��m�� and g�� � g�� The set S is con
structed such that for every i � 	 there exists a j � i and an algorithm that
decides S in time ti but not in time tj � where tk�n� � h�n� k��

��� Space Hierarchies and Gaps

Hierarchy and Gap Theorems analogous to Theorem ��� and Theorem ���� respec
tively� are known for space complexity� In fact� since spacee�cient emulation of
spacebounded machines is simpler than timee�cient emulations of timebounded
machines� the results tend to be sharper� This is most conspicuous in the case of
the separation result �stated next�� which is optimal �in light of linear speedup
results� see Exercise �����

Before stating the result� we need a few preliminaries� We refer the reader to
x������� for a de�nition of space complexity �and to Chapter for further discus
sion�� As in case of time complexity� we consider a speci�c model of computation�
but the results hold for any other reasonable and general model� Speci�cally� we
consider threetape Turing machines� because we designate two special tapes for
input and output� For any function s � N N � we denote by Dspace�s� the
class of decision problems that are solvable in space complexity s� Analogously to
De�nition ���� we call a function s � N N space constructible if there exists

�We note that the linear speed�up phenomenon was implicitly addressed in the proof of Theo�
rem ���� by allowing an emulation overhead that depends on the length of the description of the
emulated machine�

���� SPACE HIERARCHIES AND GAPS ���

an algorithm that on input n outputs s�n� using at most s�n� cells of the work
tape� Actually� functions like s��n� � logn� s��n� � �logn��� and s��n� � �n are
computable using log si�n� space�

Theorem 	�� �space hierarchy for threetape Turing machines�� For any space
constructible function s� and every function s� such that s� � ��s�� and s��n� �
logn it holds that Dspace�s�� is strictly contained in Dspace�s���

Theorem ��� is analogous to the traditional version of Theorem ��� �rather to
the one we presented�� and is proven using the alternative approach sketched in
Footnote �� The details are left as an exercise �see Exercise �����

Chapter Notes

The material presented in this chapter predates the theory of NPcompleteness and
the dominant stature of the PvsNP Question� At these early days� the �eld �to be
known as complexity theory� did not yet develop an independent identity and its
perspectives were dominated by two classical theories� the theory of computability
�and recursive function� and the theory of formal languages� Nevertheless� we
believe that the results presented in this chapter are interesting for two reasons�
Firstly� as stated upfront� these results address the natural question of under
what conditions is it the case that more computational resources help� Secondly�
these results demonstrate how far one can get with respect to �generic� questions
regarding an arbitrary complexity measure� that is� questions that refer to arbitrary
resource bounds �e�g�� the relation between Dtime�t�� and Dtime�t�� for arbitrary
t� and t��� We note that the PvsNP Question as well as the related questions
that will be addressed in the rest of this book are not �generic� since they refer
to speci�c classes �which capture natural computational issues�� The foregoing
comment many be clari�ed by the concrete discussion in Section �����

The hierarchy theorems �e�g�� Theorem ���� were proved by Hartmanis and
Stearns ���	�� Gap theorems �e�g�� Theorem ���� often referred to as Borodin
s
Gap Theorem� were proven by Borodin ����� A axiomatic treatment of complexity
measures and corresponding speedup theorems �e�g�� Theorem ���� often referred
to as Blum
s Speedup Theorem� are due to Blum �����

Exercises

Exercise 	�� Let Fn�s� denote the number of di�erent Boolean functions over
f	� �gn that are computed by Boolean circuits of size s� Prove that� for any s � �n�
it holds that Fn�s� � �s�Olog s� and Fn�s� � s�s�

Guideline� Any Boolean function f � f�� �g� � f�� �g can be computed by a circuit of

size s� � O
� � ���� Thus� for every � n� it holds that Fn
s�� � ��
�

� �s�	O�log s��� On

the other hand� the number of circuits of size s is less than �s �
�
s�

s

�
� where the second

factor represents the number of possible choices of pair of gates that feed any gate in the

circuit�

��� CHAPTER �� MORE RESOURCES� MORE POWER�

Exercise 	�� �advice can speed�up computation� For every time constructible
function t� show that there exists a set S in Dtime�t�� nDtime�t� that can be de
cided in lineartime using an advice of linear length �i�e�� S � Dtime�
��
 where

�n� � O�n���

Guideline� Starting with a set S� � Dtime
T �� n Dtime
T �� where T
m� � t
�m��

consider the set S � fx��
jxj�jxj � x�S�g�

Exercise 	�� Referring to a reasonable model of computation �and assuming that
the input length is not given explicitly �e�g�� as in De�nition �	��	��� prove that
any algorithm that has sublinear timecomplexity actually has constant time
complexity�

Guideline� Consider the question of whether or not there exists an in�nite set of strings

S such that when invoked on any input x � S the algorithm reads all of x� Note that if

S is in�nite then the algorithm cannot have sub�linear time�complexity� and prove that if

S is �nite then the algorithm has constant time�complexity�

Exercise 	�	 �constant amortized time step�counter� A step�counter is an
algorithm that runs for a number of steps that is speci�ed in its input� Actu
ally� such an algorithm may run for a somewhat larger number of steps but halt
after issuing a number of �signals� as speci�ed in its input� where these signals
are de�ned as entering �and leaving� a designated state �of the algorithm�� A
stepcounter may be run in parallel to another procedure in order to suspend the
execution after a desired number of steps �of the other procedure� has elapsed�
Show that there exists a simple deterministic machine that� on input n� halts after
issuing n signals while making O�n� steps�

Guideline� A slightly careful implementation of the straightforward algorithm will do�

when coupled with an �amortized� time�complexity analysis�

Exercise 	�� �a natural set in E n P� In continuation to the proof of Theorem �� �

prove that the set f�hMi� x� t� � u��hMi� x� t� �� �g is in E n P � where E def
�

�cDtime�ec� and ec�n� � �cn�

Exercise 	�� Prove that the two de�nitions of Ntime� presented in x�������� are
related up to logarithmic factors� Note the importance of condition that V has
linear �rather than polynomial� timecomplexity�

Guideline� When emulating a non�deterministic machine by the veri�cation procedure

V � encode the non�deterministic choices in y such that jyj is slightly larger than the

number of steps taken by the original machine� Speci�cally� having jyj � O
t log t�� where

t denotes the number of steps taken by the original machine� allows to emulate the latter

in linear time
i�e�� linear in jyj��

Exercise 	� �linear speed�up of Turing machine� Prove that any problem
that can be solved by a twotape Turing machine that has timecomplexity t can
be solved by another twotape Turing machine having timecomplexity t�� where
t��n� � O�n� $ �t�n�����

���� SPACE HIERARCHIES AND GAPS ��

Guideline� Consider a machine that uses a larger alphabet� capable of encoding a con�

stant
denoted c� number of symbols of the original machine� and thus capable of emu�

lating c steps of the original machine in O
�� steps� where the constant in the O�notation

is a universal constant
independent of c�� Note that the O
n� term accounts to a pre�

processing that converts the binary input to work�alphabet of the new machine
which

encoding c input bits in one alphabet symbol�� Thus� a similar result for one�tape Turing

machine seems to require a O
n�� term�

Exercise 	�� In continuation to Exercise ���� state and prove an analogous result
for space complexity� when using the standard de�nition of space as recalled in
Section ���� �Note that this result does not hold with respect to �binary space
complexity� as de�ned in Section ������

Exercise 	�� Prove Theorem ���� As a warmup� assume that s� �rather than s��
is space constructible�

Guideline� Note that providing a space�e�cient emulation of one machine by another

machine is easier than providing an analogous time�e�cient emulation�

��� CHAPTER �� MORE RESOURCES� MORE POWER�

Chapter �

Space Complexity

Open are the double doors of the horizon� unlocked
are its bolts�

Philip Glass� Akhnaten� Prelude

Whereas the number of steps taken during a computation is the primary measure
of its e�ciency� the amount of temporary storage used by the computation is also
a major concern� Furthermore� in some settings� space is even more scarce than
time�

In addition to the intrinsic interest in space complexity� its study provides an
interesting perspective on the study of time complexity� For example� in contrast
to the common conjecture by which NP �� coNP � we shall see that analogous
space complexity classes �e�g�� NL� are closed under complementation �e�g�� NL �
coNL��

Summary� This chapter is devoted to the study of the space complex
ity of computations� while focusing on two rather extreme cases� The
�rst case is that of algorithms having logarithmic space complexity�
We view such algorithms as utilizing the naturally minimal amount of
temporary storage� where the term �minimal� is used here in an intu
itive �but somewhat inaccurate� sense� and note that logarithmic space
complexity seems a more stringent requirement than polynomial time�
The second case is that of algorithms having polynomial space com
plexity� which seems a strictly more liberal restriction than polynomial
time complexity� Indeed� algorithms utilizing polynomial space can per
form almost all the computational tasks considered in this book �e�g��
the class PSPACE contains almost all complexity classes considered in
this book��

We �rst consider algorithms of logarithmic space complexity� Such al
gorithms may be used for solving various natural search and decision

���

��� CHAPTER �� SPACE COMPLEXITY

problems� for providing reductions among such problems� and for yield
ing a strong notion of uniformity for Boolean circuits� The highlight of
this part is a logspace algorithm for exploring �undirected� graphs�

We then turn to nondeterministic computations� focusing on the com
plexity class NL that is captured by the problem of deciding directed
connectivity of �directed� graphs� The highlight of this part is a proof
that NL � coNL� which may be paraphrased as a logspace reduction
of directed unconnectivity to directed connectivity�

We conclude with a short discussion of the class PSPACE� proving that
the set of satis�able quanti�ed Boolean formulae is PSPACEcomplete
�under polynomialtime reductions�� We mention the similarity be
tween this proof and the proof that Nspace�s� � Dspace�O�s����

We stress that� as in the case of time complexity� the main results presented in this
chapter hold for any reasonable model of computation�� In fact� when properly
de�ned� space complexity is even more robust than time complexity� Still� for sake
of clarity� we often refer to the speci�c model of Turing machines�

Organization� Space complexity seems to behave quite di�erently from time
complexity� and seems to require a di�erent mindset as well as auxiliary conven
tions� Some of the relevant issues are discussed in Section ��� We then turn to
the study of logarithmic space complexity �see Section ��� and the corresponding
nondeterministic version �see Section ���� Finally� we consider polynomial space
complexity �see Section ����

��� General preliminaries and issues

We start by discussing several very important conventions regarding space com
plexity �see Section ������ Needless to say� reading Section ���� is essential for
the understanding of the rest of this chapter� We then discuss a variety of is
sues� highlighting the di�erences between spacecomplexity and timecomplexity�
In particular� we call the reader
s attention to the composition lemmas �x �������
and related reductions �x ������� as well as to the obvious simulation result pre
sented in x ������ �i�e�� Dspace�s� � Dtime��Os���� Lastly� in Section ���� we
relate circuit size to space complexity by considering the spacecomplexity of circuit
evaluation �see also x ��������

����� Important conventions

Space complexity is meant to measure the amount of temporary storage �i�e�� com
puter
s memory� used when performing a computational task� Since much of our

�The only exceptions appear in Exercises ��� and ����� which refer to the notion of a crossing

sequence� The use of this notion in these proofs presumes that the machine scans its storage
devices in a serial manner� In contrast� we stress that the various notions of an instantaneous
con�guration do not assume such a machine model�

���� GENERAL PRELIMINARIES AND ISSUES ���

focus will be on using an amount of memory that is sublinear in the input length�
it is important to use a model in which one can di�erentiate memory used for com
putation from memory used for storing the initial input or the �nal output� That
is� we do not want to count the input and output themselves within the space of
computation� and thus formulate that they are delivered on special devices that are
not considered memory� On the other hand� we have to make sure that the input
and output devices cannot be abused for providing work space �which is uncounted
for�� This leads to the convention by which the input device �e�g�� a designated
inputtape of a multitape Turing machine� is readonly� whereas the output de
vice �e�g�� a designated outputtape of a such machine� is writeonly� Thus� space
complexity accounts for the use of space on the other �storage� devices �e�g�� the
worktapes of a multitape Turing machine�

Fixing a concrete model of computation �e�g�� multitape Turing machines��
we denote by Dspace�s� the class of decision problems that are solvable in space
complexity s� The space complexity of search problems is de�ned analogously�
Speci�cally� the standard de�nition of space complexity �see x�������� refers to the
number of cells of the work�tape scanned by the machine on each input� We prefer�
however� an alternative de�nition� which provides a more accurate account of the
actual storage� Speci�cally� the binary space complexity of a computation refers to
the number of bits that can be stored in these cells� thus multiplying the number of
cells by the logarithm of the �nite set of work symbols of the machine��

The di�erence between the two de�nitions is mostly immaterial� since it amounts
to a constant factor and we will discard such factors� Nevertheless� aside from being
conceptually right� using the de�nition of binary space complexity facilitates some
technical details �because the number of possible con�gurations is explicitly upper
bounded in terms of binary space complexity whereas the relation to the standard
de�nition depends on the machine in question�� Towards such applications� we also
count the �nite state of the machine in its space complexity� Furthermore� for sake
of simplicity� we also assume that the machine does not scan the inputtape beyond
the boundaries of the input� which are indicated by special symbols�

We stress that individual locations of the �readonly� inputtape �or device� may
be read several times� This is essential for many algorithms that use a sublinear
amount of space �because such algorithms may need to scan their input more than
once while they cannot a�ord copying their input to their storage device�� In con
trast� rewriting on �the same location of� the writeonly outputtape is inessential�
and in fact can be eliminated at a relatively small cost �see Exercise ����

Summary� Let us compile a list of the foregoing conventions� As stated� the
�rst two items on the list are of crucial importance� while the rest are of technical
nature �but do facilitate our exposition��

�� Space complexity discards the use of the input and output devices�

�We note that� unlike in the context of time�complexity� linear speed�up �as in Exercise ����
does not seem to represent an actual saving in space resources� Indeed� time can be sped�up by
using stronger hardware �i�e�� a Turing machine with a bigger work alphabet�� but the actual
space is not really a�ected by partitioning it into bigger chunks �i�e�� using bigger cells��

� 	 CHAPTER �� SPACE COMPLEXITY

�� The input device is readonly and the output device is writeonly�

�� We will usually refer to the binary space complexity of algorithms� where
the binary space complexity of a machine M that uses the alphabet �� �nite
state set Q� and has standard space complexity SM is de�ned as �log� jQj� $
�log� j�j��SM � �Recall that SM measures the number of cells of the temporary
storage device that are used by M during the computation��

�� We will assume that the machine does not scan the inputdevice beyond the
boundaries of the input�

 � We will assume that the machine does not rewrite to locations of its output
device �i�e�� it write to each cell of the outputdevice at most once��

����� On the minimal amount of useful computation space

Bearing in mind that one of our main objectives is identifying natural subclasses
of P � we consider the question of what is the minimal amount of space that al
lows for meaningful computations� We note that regular sets ����� Chap� �� are
decidable by constantspace Turing machines and that this is all that the latter
can decide �see� e�g�� ����� Sec� ������ It is tempting to say that sublogarithmic
space machines are not more useful than constantspace machines� because it seems
impossible to allocate a sublogarithmic amount of space� This wrong intuition is
based on the presumption that the allocation of a nonconstant amount of space
requires explicitly computing the length of the input� which in turn requires loga
rithmic space� However� this presumption is wrong� the input itself �in case it is
of a proper form� can be used to determine its length �and�or the allowed amount
of space��� In fact� for
�n� � log logn� the class Dspace�O�
�� is a proper su�
perset of Dspace�O����� see Exercise ��� On the other hand� it turns out that
doublelogarithmic space is indeed the smallest amount of space that is more useful
than constant space �see Exercise ���� that is� for
�n� � log logn� it holds that
Dspace�o�
�� � Dspace�O�����

In spite of the fact that some nontrivial things can be done in sublogarithmic
space complexity� the lowest space complexity class that we shall study in depth is
logarithmic space �see Section ���� As we shall see� this class is the natural habitat
of several fundamental computational phenomena�

A parenthetical comment �or a side lesson�� Before proceeding let us high
light the fact that a naive presumption about generic algorithms �i�e�� that the use
of a nonconstant amount of space requires explicitly computing the length of the
input� could have led us to a wrong conclusion� This demonstrates the danger
in making ��reasonably looking�� presumptions about arbitrary algorithms� We
need to be fully aware of this danger whenever we seek impossibility results and�or
complexity lowerbounds�

�Indeed� for this approach to work� we should be able to detect the case that the input is not
of the proper form �and do so within sub�logarithmic space��

���� GENERAL PRELIMINARIES AND ISSUES � �

����� Time versus Space

Space complexity behaves very di�erent from time complexity and indeed di�erent
paradigms are used in studying it� One notable example is provided by the context
of algorithmic composition� discussed next�

������� Two composition lemmas

Unlike time� space can be reused� but� on the other hand� intermediate results
of a computation cannot be recorded for free� These two con�icting aspects are
captured in the following composition lemma�

Lemma ��� �naive composition�� Let f� � f	� �g� f	� �g� and f� � f	� �g� �
f	� �g� f	� �g� be computable in space s� and s�� respectively�

� Then f de�ned

by f�x�
def
� f��x� f��x�� is computable in space s such that

s�n� � max�s��n�� s��n$
�n��� $
�n� $O��� �

where
�n� � maxx�f���gnfjf��x�jg�
That is� f�x� is computed by �rst computing and storing f��x�� and then reusing
the space �used in the �rst computation� when computing f��x� f��x��� The addi
tional term of
�n� is due to storing the intermediate result �i�e�� f��x��� Lemma ��
is useful when
 is relatively small� but in many cases
 � max�s�� s��� In these
cases� the following composition lemma is more useful�

Lemma ��� �emulative composition�� Let f�� f�� s�� s��
 and f be as in Lemma ����
Then f is computable in space s such that

s�n� � s��n� $ s��n$
�n�� $O�log�n$
�n��� $ ��n� �

where ��n� � O�log�s��n� $ s��n$
�n���� � o�s�n���

The alternative compositions are depicted in Figure �� �which also shows the most
straightforward composition of A� and A� that makes no attempt to economize
space��

Proof� The idea is avoiding the storage of the temporary value of f��x�� by
computing each of its bits ��on the �y�� whenever it is needed for the computation
of f�� That is� we do not start by computing f��x�� but rather start by computing
f��x� f��x�� although we do not have some of the bits of the relevant input� The
missing bits will be computed �and recomputed� whenever we need them in the
computation of f��x� f��x��� Details follow�

Let us assume� for simplicity� that algorithm A� never rewrites on �the same
location of� its writeonly outputtape� As shown in Exercise ��� this assumption
can be justi�ed at an additive cost of O�log
�n����

�Here �and throughout the chapter� we assume� for simplicity� that all complexity bounds are
monotonically non�decreasing�

�Alternatively� the idea presented in Exercise ��� can be incorporated directly in the current
proof�

� � CHAPTER �� SPACE COMPLEXITY

x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

The leftmost �gure shows the trivial composition �which just invokes
A� and A� without attempt to economize storage�� the middle �gure
shows the naive composition �of Lemma ����� and the rightmost �g
ure shows the emulative composition �of Lemma ��	�� In all �gures
the �lled rectangles represent designated storage spaces� The dotted
rectangle represents a virtual storage device�

Figure ��� Algorithmic composition for spacebounded computation

Let A� and A� be the algorithms �for computing f� and f�� respectively� guar
anteed in the hypothesis� Then� on input x � f	� �gn� we invoke algorithm A� �for
computing f��� Algorithm A� is invoked on a virtual input� and so when emulating
each of its steps we should provide it with the relevant bit� Thus� we should also
keep track of the location of A� on the imaginary �virtual� input tape� Whenever
A� seeks to read the ith bit of its input� where i � �n$
�n��� we provide A� with
this bit by reading it from x if i � n and invoke A��x� otherwise� When invoking
A��x� we provide it with a virtual output tape� which means that we get the bits
of its output onebyone and do not record them anywhere� Instead� we count
until reaching the �i� n�th output bit� which we then pass to A� �as the ith bit of
hx� f��x�i��

Note that while invoking A��x�� we suspend the execution of A� but keep its
current con�guration such that we can resume the execution �of A�� once we get
the desired bit� Thus� we need to allocate separate space for the computation of A�

and for the computation of A�� In addition� we need to allocate separate storage
for maintaining the aforementioned counters �i�e�� we use log��n$
�n�� bits to hold
the location of the inputbit currently read by A�� and log�
�n� bits to hold the
index of the outputbit currently produced in the current invocation of A���

�

�The additional 	�n� term takes care of the following issue� Our description of the composed
algorithm refers to two storage devices� one for the computation of A� and the other for the
computation of A�� Indeed� we can obtain an algorithm that uses a single storage device and a

���� GENERAL PRELIMINARIES AND ISSUES � �

Re�ection� The algorithm presented in the proof of Lemma �� is wasteful in
terms of time� it recomputes f��x� again and again �i�e�� once per each access of
A� to the second part of its input�� Indeed� our aim was economizing on space and
not on time �and the two goals may be con�icting �see� e�g�� � �� Sec� �������

������� An obvious bound

The time complexity of an algorithm is essentially upperbounded by an exponential
function in its space complexity� This is due to an upperbound on the number
of possible instantaneous �con�gurations� of the algorithm �as formulated in the
proof of Theorem ���� and to the fact that if the computation passes through the
same con�guration twice then it must loop forever�

Theorem ��� If an algorithm A has binary space complexity s and halts on every
input then it has time complexity t such that t�n� � n � �sn��log� sn��

Note that for s�n� � "�logn�� the factor of n can be absorbed by �Osn��� and so
we may just write t�n� � �Osn���

Proof� The proof refers to the notion of an instantaneous con�guration �in a
computation�� Before starting� we warn the reader that this notion may be given
di�erent de�nitions� each tailored to the application at hand� All these de�nitions
share the desire to specify variable information that together with some �xed infor�
mation determines the next step of the computation being analyzed� In the current
proof� we �x an algorithm A and an input x� and consider as variable the contents
of the storage device �e�g�� worktape of a Turing machine as well as its �nite state�
and the machine
s location on the input device and on the storage device� Thus�
an instantaneous con�guration of A�x� consists of the latter three objects �i�e�� the
contents of the storage device and a pair of locations�� and can be encoded by a
binary string of length
�jxj� � s�jxj� $ log� jxj$ log� s�jxj��	

The key observation is that the computation A�x� cannot pass through the same
computation twice� because otherwise the computation A�x� passes through this
con�guration in�nitely many times� which means that it does not halt� Intuitively�
the point is that the �xed information �i�e�� A and x� together with the con�gu
ration� determines the next step of the computation� Thus� whatever happens �i
steps� after the �rst time that the computation A�x� passes through con�guration
�� will also happen �i steps� after the second time that the computation A�x� passes
through ��

By the forgoing observation� we infer that the number of steps taken by A on
input x is at most ��jxj�� because otherwise the same con�guration will appear
twice in the computation �which contradicts the halting hypothesis�� The theorem
follows�

single pointer to locations on this device� but this requires holding the two original pointers in
memory�

�Here we rely on the fact that s is the binary space complexity �and not the standard space
complexity��

� � CHAPTER �� SPACE COMPLEXITY

������� Subtleties regarding space�bounded reductions

Lemmas �� and �� su�ce for the analysis of the a�ect of manytoone reductions
in the context of spacebounded computations� Speci�cally�

�� �In spirit of Lemma ����
 If f is reducible to g via a manytoone reduction
that can be computed in space s�� and g is computable in space s�� then f
is computable in space s such that s�n� � max�s��n�� s��
�n���$
�n�� where

�n� denotes the maximum length of the image of the reduction when applied
to some nbit string�

�� �In spirit of Lemma ���� For f and g as in Item �� it follows that f is
computable in space s such that s�n� � s��n�$ s��
�n��$O�log
�n��$ ��n��
where ��n� � O�log�s��n� $ s��
�n���� � o�s�n���

Note that by Theorem ��� it holds that
�n� � �s�n��log� s�n� � n� We stress the
fact that
 is not bounded by s� itself �as in the analogous case of timebounded
computation�� but rather by exp�s���

Things get much more complicated when we turn to general �spacebounded� re
ductions� especially when referring to general reductions that make a nonconstant
number of queries� A preliminary issue is de�ning the space complexity of gen
eral reductions �i�e�� of oracle machines�� In the standard de�nition� the length of
the queries and answers is not counted in the space complexity� but the queries
of the reduction �resp�� answers given to it� are written on �resp�� read from� a
special device that is writeonly �resp�� readonly� for the reduction �and readonly
�resp�� writeonly� for the invoked oracle�� Note that these convention are analo
gous to the conventions regarding input and output �as well as �t the de�nitions
of spacebounded manytoone reductions �see Section ������� This su�ces for
general reductions that make a single query� but more di�culties arise when the
reduction makes several adaptive queries �i�e�� queries that depend on the answers
to prior queries��

Teaching note� The rest of the discussion is quite advanced and laconic
but is inessen�

tial to the rest of the chapter��

Recall that the complexity of the algorithm resulting from the composition of
an oracle machine and an actual algorithm depends on the length of the queries
made by the oracle machine� The length of the �rst query is upperbounded by
an exponential function in the space complexity of the oracle machine� but the
same does not necessarily hold for subsequent queries� unless some conventions are
added to enforce it� For example� consider a reduction� that on input x and access
to the oracle f such that f�z� � ��jzj� invokes the oracle jxj times� where each time
it uses as a query the answer obtained to the previous query� This reduction uses
constant space� but produces queries that are exponentially longer than the input�
whereas the �rst query of any constantspace reduction has length that is linear in

�Here and in the next item� we refer to the case that f�x� � g�f��x�� rather than to the more
general case where f�x� � g�x� f��x��� Consequently� s� is applied to ��n� rather than to n���n��

���� GENERAL PRELIMINARIES AND ISSUES �

its input� This problem can be resolved by placing explicit bounds on the length
of the queries that spacebounded reductions are allowed to make� for example� we
may bound the length of all queries by the obvious bound that holds for the length
of the �rst query �i�e�� a reduction of space complexity s is allowed to make queries
of length at most �sn��log� sn� � n��

With the aforementioned convention �or restriction� in place� let us consider
the composition of general spacebounded reductions with a spacebounded imple
mentation of the oracle� Speci�cally� we say that a reduction is �
�
���restricted if�
on input x� all oracle queries are of length at most
�jxj� and the corresponding
oracle answers are of length at most
��jxj�� It turns out that naive composition
�in the spirit of Lemma ��� remains valid� whereas the emulative composition of
Lemma �� breaks down �in the sense that it yield very weak results��

�� Following Lemma ��� we claim that if ' can be computed in space s� when
given �
�
���restricted oracle access to '� and '� is solvable is space s�� then
' is solvable in space s such that s�n� � s��n�$s��
�n��$
�n�$
��n�$��n��
where ��n� � O�log�
�n� $
��n� $ s��n� $ s��
�n���� � o�s�n��� The claim
is proved by using a naive emulation that allocates separate space for the
reduction �i�e�� oracle machine� itself� for the emulation of its query and
answer devices� and for the algorithm solving '�� Note that here we cannot
reuse the space of the reduction when running the algorithm that solves
'�� because the reduction
s computation continues after the oracle answer is
obtained� The additional ��n� term accounts for the various pointers of the
oracle machine� which need to be stored when algorithm that solves '� is
invoked �see also Footnote ���

A related composition result is presented in Exercise � � It yields s�n� �
�s��n�$ s��
�n��$�
��n�$O�log�
�n�$ s��n�$ s��
�n����� which for
�n� �
�Os�n�� means s�n� � O�s��n�� $ �� $ o����s��
�n�� $ �
��n��

�� Turning to the approach underlying the proof of Lemma ��� we get into
more serious trouble� Speci�cally� note that recomputing the answer of the
ith query requires recomputing the query itself� which unlike in Lemma ��
is not the input to the reduction but rather depends on the answers to prior
queries� which need to be recomputed as well� Thus� the space required for
such an emulation may be linear in the number of queries� In fact� we should
not expect any better� because any computation of space complexity s can
be performed by a constantspace ��s� �s�restricted reduction to a problem
that is solvable in constantspace �see Exercise ����

An alternative notion of spacebounded reductions is discussed in x ������� This
notion is more cumbersome and more restricted� but it allows recursive composition
with a smaller overhead than the two options explored above�

������	 Complexity hierarchies and gaps

Recall that more space allows for more computation �see Theorem ����� provided
that the spacebounding function is �nice� in an adequate sense� Actually� the

� � CHAPTER �� SPACE COMPLEXITY

proofs of spacecomplexity hierarchies and gaps are simpler than in the analogous
proofs for timecomplexity� because emulations are easier in the context of space
bounded algorithms �cf� Section �����

������� Simultaneous time�space complexity

Recall that� for space complexity that is at least logarithmic� the time of a compu
tation is always upperbounded by an exponential function in the space complexity
�see Theorem ���� Thus� polylogarithmic space complexity may extend beyond
polynomialtime� and it make sense to de�ne a class that consists of all decision
problems that may be solved by a polynomialtime algorithm of polylogarithmic
space complexity� This class� denoted SC� is indeed a natural subclass of P �and
contains the class L� which is de�ned in Section �������

In general� one may de�ne DTiSp�t� s� as the class of decision problems solvable
by an algorithm that has time complexity t and space complexity s� Note that
DTiSp�t� s� � Dtime�t� � Dspace�s� and that a strict containment may hold�
We mention that DTiSp��� �� provides the arena for the only known absolute �and
highly nontrivial� lowerbound regarding NP � see �� �� We also note that lower
bounds on timespace tradeo�s �see� e�g�� � �� Sec� ����� may be stated as referring
to the classes DTiSp��� ���

����� Circuit Evaluation

Recall that Theorem ��� asserts the existence of a polynomialtime algorithm that�
given a circuit C � f	� �gn f	� �gm and an nbit long string x� returns C�x�� For
circuits of bounded fanin� the space complexity of such an algorithm can be made
linear in the depth of the circuit �which may be logarithmic in its size�� This is
obtained by the following DFStype algorithm�

The algorithm �recursively� determines the value of a gate in the circuit by
�rst determining the value of its �rst incoming edge and next determining the
value of the second incoming edge� Thus� the recursive procedure� started at each
output terminal of the circuit� needs only store the path that leads to the currently
processed vertex as well as the temporary values computed for each ancestor� Note
that this path is determined by indicating� for each vertex on the path� whether we
currently process its �rst or second incoming edge� In case we currently process
the vertex
s second incoming edge� we need also store the value computed for its
�rst incoming edge�

The temporary storage used by the foregoing algorithm� on input �C� x�� is thus
�dC $ O�log jxj$ log jC�x�j�� where dC denotes the depth of C� The �rst term in
the spacebound accounts for the core activity of the algorithm �i�e�� the recursion��
whereas the other terms account for the overhead involved in manipulating the
initial input and �nal output �i�e�� assigning the bits of x to the corresponding
input terminals of C and scanning all output terminals of C��

	We also mention that BPL � SC� where BPL is de�ned in x������� and the result is proved
in Section
�� �see Theorem
�����

��	� LOGARITHMIC SPACE � �

��� Logarithmic Space

Although Exercise �� asserts that �there is life below logspace�� logarithmic space
seems to be the smallest amount of space that supports interesting computational
phenomena� In particular� logarithmic space is required for merely maintaining
an auxiliary counter that holds a position in the input� which seems required in
many computations� On the other hand� logarithmic space su�ces for solving many
natural computational problems� for establishing reductions among many natural
computational problems� and for a stringent notion of uniformity �of families of
Boolean circuits�� Indeed� an important feature of logarithmic space computa
tions is that they are a natural subclass of the polynomialtime computations �see
Theorem ����

����� The class L

Focusing on decision problems� we denote by L the class of decision problems
that are solvable by algorithms of logarithmic space complexity� that is� L �

�cDspace�
c�� where
c�n� def
� c log� n� Note that� by Theorem ��� L � P � As

hinted� many natural computational problems are in L �see Exercises �� and ��
as well as Section ������ On the other hand� it is widely believed that L �� P �

����� Log	Space Reductions

Another class of important logspace computations is the class of logarithmic space
reductions� In light of the subtleties discussed in x ������� we con�ne ourselves to the
case of manytoone reductions� Analogously to the de�nition of Karpreductions
�De�nition ���	�� we say that f is a log�space many�to�one reduction of S to S� if f is
logspace computable and� for every x� it holds that x � S if and only if f�x� � S��
Clearly� if S is so reducible to S� � L then S � L� Similarly� one can de�ne a
logspace variant of Levinreductions �De�nition ������ Both types of reductions
are transitive �see Exercise ���� Note that Theorem �� applies in this context
and implies that these reductions run in polynomialtime� Thus� the notion of a
logspace manytoone reduction is a special case of a Karpreduction�

We observe that all known Karpreductions establishing NPcompleteness re
sults are actually logspace reductions� This is easily veri�able in the case of the
reductions presented in Section ����� �as well as in Section ������� For example�
consider the generic reduction to CSAT presented in the proof of Theorem ���	� The
constructed circuit is �highly uniform� and can be easily constructed in logarithmic
space �see also Section ������ A degeneration of this reduction su�ces for proving
that every problem in P is logspace reducible to the problem of evaluating a given
circuit on a given input� Note that the latter problem is in P � and thus we may
say that it is P�complete under log�space reductions�

Theorem ��	 �The complexity of Circuit Evaluation�� Let CEVL denote the set of
pairs �C��� such that C is a Boolean circuit and C��� � �� Then CEVL is in P
and every problem in P is log�space Karp�reducible to CEVL�

� � CHAPTER �� SPACE COMPLEXITY

Proof Sketch� Recall that the observation underlying the proof of Theorem ���	
�as well as the proof of Theorem ���� is that the computation of a Turing machine
can be emulated by a ��highly uniform�� family of circuits� In the proof of The
orem ���	� we hardwired the input to the reduction �denoted x� into the circuit
�denoted Cx� and introduced input terminals corresponding to the bits of the NP
witness �denoted y�� In the current context we leave x as an input to the circuit�
while noting that the auxiliary NPwitness does not exists �or has length zero��
Thus� the reduction from S � P to CEVL maps the instance x �for S� to the pair
�Cjxj� x�� where Cjxj is a circuit that emulates the computation of the machine that
decides membership in S �on any jxjbit long input�� For the sake of future use �in
Section ������ we highlight the fact that Cjxj can be constructed by a logspace

machine that is given the input �jxj�

The impact of P�completeness under log�space reductions� Indeed� The
orem �� implies that L �� P if any only if CEVL �� L� Other natural problems
were proved to have the same property �i�e�� being Pcomplete under logspace
reductions� cf� � ����

Logspace reductions are used to de�ne completeness with respect to other
classes that are assumed to extend beyond L� This restriction of the power of the
reduction is de�nitely needed when the class of interest is contained in P �e�g��
NL� see Section ������ In general� we say that a problem ' is C�complete under
log�space reductions if ' is in C and every problem in C is logspace �manytoone�
reducible to '� In such a case� if ' � L then C � L�

As in the case of polynomialtime reductions� we wish to stress that the relevance
of logspace reductions extends beyond being a tool for de�ning complete problems�

����� Log	Space uniformity and stronger notions

Strengthening De�nition ���� we say that a family of circuits �Cn�n is log�space
uniform if there exists an algorithm A that on input n outputs Cn while using space
that is logarithmic in the size of Cn� As implied by Theorem � �and implicitly
proved in Theorem ���� the computation of any polynomial�time algorithm can be
emulated by a log�space uniform family of �bounded fanin� polynomial�size circuits�
On the other hand� in continuation to Section ����� we note that log�space uniform
circuits of bounded fan�in and logarithmic depth can be emulated by an algorithm
of logarithmic space complexity �i�e�� NC� is in logspace� see Exercise ����

As mentioned in Section ������ stronger notions of uniformity have been consid
ered� Speci�cally� in analogy to the discussion in xE������� we say that �Cn�n has
a strongly explicit construction if there exists an algorithm that runs in polynomial
time and linearspace such that� on input n and v� the algorithm returns the label
of vertex v in Cn as well as the list of its children �or an indication that v is not
a vertex in Cn�� Note that if �Cn�n has a strongly explicit construction then it
is logspace uniform� because the length of the description of a vertex in Cn is

��	� LOGARITHMIC SPACE � �

logarithmic in the size of Cn� The proof of Theorem �� actually establishes the
following�

Theorem ��� �strongly uniform circuits emulating P�� For every polynomial�
time algorithm A there exists a strongly explicit construction of a family of polynomial�
size circuits �Cn�n such that for every x it holds that Cjxj�x� � A�x��

Proof Sketch� As noted already� the circuits �Cjxj�jxj are highly uniform� In
particular� the underlying digraph consists of constantsize gadgets that are ar
ranged in an array and are only connected to adjacent gadgets �see the proof of
Theorem ���	��

����� Undirected Connectivity

Exploring a graph �e�g�� towards determining its connectivity� is one of the most
basic and ubiquitous computational tasks regarding graphs� The standard graph
exploration algorithms �e�g�� BFS and DFS� require temporary storage that is linear
in the number of vertices� In contrast� the algorithm presented in this section uses
temporary storage that is only logarithmic in the number of vertices� In addition
to demonstrating the power of logspace computation� this algorithm �or rather its
actual implementation� provides a taste of the type of issues arising in the design
of sophisticated logspace algorithms�

The intuitive task of �exploring a graph� is captured by the task of deciding
whether a given graph is connected��� In addition to the intrinsic interest in this
natural computational problem� we mention that it is computationally equivalent
�under logspace reductions� to numerous other computational problems �see� e�g��
Exercise ����� We note that some related computational problems seem actually
harder� for example� determining directed connectivity �in directed graphs� cap
tures the essence of the class NL �see Section ������ In view of this state of a�airs�
we emphasize the fact that the computational problem considered here refers to
undirected graphs by calling it undirected connectivity�

Theorem ��� Deciding undirected connectivity �UCONN� is in L

The algorithm is based on the fact that UCONN is easy in the special case that the
graph consists of a collection of constant degree expanders �see Appendix E���� In
particular� if the graph has constant degree and logarithmic diameter then it can
be explored using a logarithmic amount of space �which is used for determining a
generic path from a �xed starting vertex����

Needless to say� the input graph does not necessarily consist of a collection of
constant degree expanders� The main idea is then to transform the input graph into
one that does satisfy the aforementioned condition� while preserving the number

�
See Appendix G�� for basic terminology�
��Indeed� this is analogous to the circuit evaluation algorithm of Section ������ where the circuit

depth corresponds to the diameter and the bounded fan�in corresponds to the constant degree�
For further details� see Exercise ��	�

��	 CHAPTER �� SPACE COMPLEXITY

of connected components of the graph� Furthermore� the key point is performing
such a transformation in logarithmic space� The rest of this section is devoted to
the description of such a transformation� We �rst present the basic approach and
next turn to the highly nontrivial implementation details�

Teaching note� We recommend leaving the actual proof of Theorem ��
i�e�� the

rest of this section� for advanced reading� The main reason is its heavy dependence on

technical material that is beyond the scope of a course in complexity theory�

We �rst note that it is easy to transform the input graph G� � �V�� E�� into a
constantdegree graph G� that preserves the number of connected components in
G�� Speci�cally� each vertex v � V having degree d�v� �in G�� is represented by a
cycle Cv of d�v� vertices �in G��� and each edge fu� vg � E� is replaced by an edge
having one endpoint on the cycle Cv and the other endpoint on the cycle Cu such
that each vertex in G� has degree three �i�e�� has two cycle edges and a single intra
cycle edge�� This transformation can be performed using logarithmic space� and
thus �relying on Lemma ��� we assume throughout the rest of the proof that the
input graph has degree three� Our goal is to transform this graph into a collection
of expanders� while maintaining the number of connected components� In fact�
we shall describe the transformation while pretending that the graph is connected�
while noting that otherwise the transformation acts separately on each connected
component�

A couple of technicalities� For a constant integer d � � determined so as to
satisfy some additional condition� we may assume that the input graph is actually
d�regular �albeit is not necessarily simple�� Furthermore� we shall assume that
this graph is not bipartite� Both assumptions can be justi�ed by augmenting the
aforementioned construction of a �regular graph by adding d� � � selfloops to
each vertex�

Prerequisites� Evidently� the notion of an expander graph plays a key role in
the aforementioned transformation� In particular� we assume familiarity with the
algebraic de�nition of expanders �as presented in xE�������� The transformation re
lies heavily on the zig�zag product� de�ned in xE������� and the following exposition
assume familiarity with this de�nition�

����	�� The basic approach

Recall that our goal is to transform G� into an expander� The transformation is
gradual and consists of logarithmically many iterations� where in each iteration an
adequate expansion parameter doubles while the graph becomes a constant factor
larger and maintains the degree bound� The �expansion� parameter of interest is
the gap between the relative second eigenvalue of the graph and � �see xE�������� A
constant value of this parameter indicates that the graph is an expander� Initially�
this parameter is lowerbounded by ��O�n��� where n is the size of the graph� and

��	� LOGARITHMIC SPACE ���

after logarithmically many iterations this parameter is lowerbounded by a constant
�and the current graph is an expander��

The crux of the aforementioned gradual transformation is the transformation
that takes place in each single iteration� This transformation combines the stan
dard graph powering �to a constant power c� and the zig�zag product presented
in xE������� Speci�cally� for adequate positive integers d and c� we start with the
d�regular graph G� � �V�� E��� and go through a logarithmic number of iterations
letting Gi�� � Gc

i#z G for i � �� ���� t� �� where G is a �xed dregular graph with
d�c vertices� That is� in each iteration� we raise the current graph �i�e�� Gi� to the
power c and combine the resulting graph with the �xed graph G using the zigzag
product� Thus� Gi is a d�regular graph with di�����c � jV�j vertices� where this
invariant is preserved by de�nition of the zigzag product�

The analysis of the improvement in the expansion parameter� denoted ����� def
�

�� *������ relies on Eq� �E��	�� Recall that Eq� �E��	� implies that if *���G� � ���
then � � *���G

�#z G� � �� � *���G
������ Thus� the �xed graph G is selected such

that *���G� � ���� which requires a su�ciently large constant d� Thus� we have

���Gi��� � �� *���G
c
i#z G� �

�� *���G
c
i �

�
�

�� *���Gi�
c

�

whereas� for su�ciently large constant c� it holds that �� *���Gi�
c � max�� � ���

*���Gi��� ����� It follows that that ���Gi��� � max�����Gi�� ����� Thus� setting
t � O�log jV�j� and using ���G�� � ��*���G�� � "�jV�j���� we obtain ���Gt� � ���
as desired�

Needless to say� a �detail� of crucial importance is the ability to transform G�

into Gt via a logspace computation� Indeed� the transformation of Gi to Gi��

can be performed in logarithmic space �see Exercise ��	�� but we need to compose
a logarithmic number of such transformations� Unfortunately� the standard com
position lemmas for spacebounded algorithms involve overhead that we cannot
a�ord��� Still� taking a closer look at the transformation of Gi to Gi��� one may
note that it is highly structured and in some sense it can be implemented in con
stant space and supports a stronger composition result that incurs only a constant
amount of storage per iteration� The resulting implementation �of the iterative
transformation of G� to Gt� and the underlying formalism will be the subject of
x ������� �An alternative implementation� provided in ������ can be obtained by
unraveling the composition��

����	�� The actual implementation

The spacee�cient implementation of the iterative transformation outlined in x ������
is based on the observation that we do not need to explicitly construct the various
graphs but merely provide �oracle access� to them� This observation is crucial

��We cannot a�ord the naive composition �of Lemma ����� because it causes an overhead linear
in the size of the intermediate output� As for the emulative composition �of Lemma ����� it sums
up the space complexities of the composed algorithms �not to mention adding another logarithmic
term�� which would result in a log�squared bound on the space complexity�

��� CHAPTER �� SPACE COMPLEXITY

when applied to the intermediate graphs� that is� rather than constructing Gi���
when given Gi as input� we show how to provide oracle access to Gi�� �i�e�� an
swer �neighborhood queries� regarding Gi��� when given oracle access to Gi �i�e��
an oracle that answers neighborhood queries regarding Gi�� This means that we
view Gi and Gi�� �or rather their incidence lists� as functions �to be evaluated�
rather than as strings �to be printed�� and show how to reduce the task of �nding
neighbors in Gi�� �i�e�� evaluating the �incidence function� at a given vertex� to
the task of �nding neighbors in Gi�

A clarifying discussion� Note that here we are referring to oracle machines
that access a �nite oracle� which represents a �nite variable object �which in turn
is an instance of some computational problem�� Such a machine provides access to
a complex object by using its access to a more basic object� which is represented by
the oracle� Speci�cally� such a machine get an input� which is a �query� regarding
the complex object �i�e� the object that the machine tries to emulate�� and produce
an output �which is the answer to the query�� Analogously� these machines make
queries� which are queries regarding another object �i�e�� the one represented in the
oracle�� and obtain corresponding answers���

Like in x ������� queries are made via a special writeonly device and the answers
are read from a corresponding readonly device� where the use of these devices is
not charged in the space complexity� With these conventions in place� we claim
that neighborhoods in the d�regular graph Gi�� can be computed by a constant
space oracle machine that is given oracle access to the d�regular graph Gi� That
is� letting gi � Vi � �d�� Vi � �d�� �resp�� gi�� � Vi�� � �d�� Vi�� � �d��� denote
the edge rotation function�� of Gi �resp�� Gi���� we have�

Claim �� There exists a constant�space oracle machine that evaluates gi�� when
given oracle access to gi� where the state of the machine is counted in the space
complexity�

Proof Sketch� We �rst show that the two basic operation that underly the def
inition of Gi�� �i�e�� powering and zigzag product with a constant graph� can be
performed in constantspace�

The edge rotation function of G�
i �i�e�� the square of the graph Gi� can be

evaluated at any desired pair� by evaluating the edge rotation function of Gi twice�
and using a constant amount of space� Speci�cally� given v � Vi and j�� j� � �d���
we compute gi�gi�v� j��� j��� which is the edge rotation of �v� hj�� j�i� in G�

i � as

��Indeed� the current setting �in which the oracle represents a �nite variable object� which in
turn is an instance of some computational problem� is di�erent from the standard setting� where
the oracle represents a �xed computational problem� Still the mechanism �and or operations�
of these two types of oracle machines is the same� They both get an input �which here is a
�query� regarding a variable object rather than an instance of a �xed computational problem��
and produce an output �which here is the answer to the query rather than a �solution� for the
given instance�� Analogously� these machines make queries �which here are queries regarding
another variable object rather than queries regarding another �xed computational problem�� and
obtain corresponding answers�

��Recall that the edge rotation function of a graph maps the pair �v� j� to the pair �u� k� if
vertex u is the jth neighbor of vertex v and v is the kth neighbor of u �see xE��������

��	� LOGARITHMIC SPACE ���

follows� First� making the query �v� j��� we obtain the edge rotation of �v� j���
denoted �u� k��� Next� making the query �u� j��� we obtain �w� k��� and �nally we
output �w� hk�� k�i�� We stress that we only use the temporary storage to record
k�� whereas u is directly copied from the oracle answer device to the oracle query
device� Accounting also for a constant number of states needed for the various
stages of the foregoing activity� we conclude that graph squaring can be performed
in constantspace� The argument extends to the task of raising the graph to any
constant power�

Turning to the zigzag product �of an arbitrary regular graph G� with a �xed
graph G�� we note that the corresponding edge rotation function can be evaluated
in constantspace �given oracle access to the edge rotation function of G��� This
follows directly from Eq� �E���� noting that the latter calls for a single evaluation
of the edge rotation function of G� and two simple modi�cations that only depend
on the constantsize graph G �and a�ect a constant number of bits of the relevant
strings�� Again� using the fact that it su�ces to copy vertex names from the input
to the oracle query device �or from the oracle answer device to the output�� we
conclude that the aforementioned activity can be performed using constant space�

The argument extends to a sequential composition of a constant number of
operations of the aforementioned type �i�e�� graph squaring and zigzag product
with a constant graph��

Recursive composition� Using Claim ��� we wish to obtain a logspace oracle
machine that evaluates gt by making oracle calls to g�� where t � O�log jV�j�� Such
an oracle machine will yield a logspace transformation of G� to Gt �by evaluating
gt at all possible values�� It is tempting to hope that an adequate composition
lemma� when applied to Claim ��� will yield the desired logspace oracle machine
�reducing the evaluation of gt to g��� This is indeed the case� except that the
adequate composition lemma is still to be developed �as we do next��

We �rst note that applying a naive composition �as in Lemma ��� amounts
to an additive overhead of O�log jV�j� per each composition� But we cannot a�ord
more than an amortized constant additive overhead per composition� Applying the
emulative composition �as in Lemma ��� causes a multiplicative overhead per each
composition� which is certainly una�ordable� The composition developed next is a
variant of the naive composition� which is bene�cial in the context of recursive calls�
The basic idea is deviating from the paradigm that allocates separate input�output
and query devices to each level in the recursion� and combining all these devices in
a single ��global�� device which will be used by all levels of the recursion� That is�
rather than following the �structured programming� methodology of using locally
designated space for passing information to the subroutine� we use the �bad pro
gramming� methodology of passing information through global variables� As usual�
this notion is formulated by referring to the model of multitape Turing machine�
but it can be formulated in any other reasonable model of computation�

De�nition ��� �globaltape oracle machines�� A global�tape oracle machine is de�
�ned as an oracle machine �cf� De�nition ������ except that the input� output and

��� CHAPTER �� SPACE COMPLEXITY

oracle tapes are replaced by a single global�tape� In addition� the machine has a
constant number of work tapes� called the local�tapes� The machine obtains its input
from the global�tape� writes each query on this very tape� obtains the correspond�
ing answer from this tape��� and writes its �nal output on this tape� The space
complexity of such a machine is stated when referring separately to the use of the
global�tape and to the use of the local�tapes�

Clearly� any ordinary oracle machine can be converted into an equivalent global
tape oracle machine� The resulting machine uses a globaltape of length at most
n $
 $ m� where n denotes the length of the input�
 denote the length of the
longest query or oracle answer� and m denotes the length of the output� However�
combining these three di�erent tapes into one globaltape seems to require holding
separate pointers for each of the original tapes� which means that the localtape has
to store three corresponding counters �in addition to storing the original worktape��
Thus� the resulting machine uses a localtape of length w$log� n$log�
$log�m�
where w denotes the space complexity of the original machine and the additional
logarithmic terms �which are logarithmic in the length of the globaltape� account
for the aforementioned counters�

Fortunately� the aforementioned counters can be avoided in the case that the
original oracle machine can be described as an iterative sequence of transformations
�i�e�� the input is transformed to the �rst query� and the ith answer is transformed
to the i $ �st query or to the output� all while maintaining auxiliary information
on the worktape�� Indeed� the machine presented in the proof of Claim �� has
this form� and thus can be implemented by a globaltape oracle machine that uses
a globaltape not longer than its input and a localtape of constant length �rather
than logarithmic in the length of the globaltape��

Claim ��� �Claim ��� revisited�� There exists a global�tape oracle machine that
evaluates gi�� when given oracle access to gi� while using global�tape of length
log��d

� � jVi��j� and a local�tape of constant length�

Proof Sketch� Following the proof of Claim ��� we merely indicate the exact
use of the two tapes� For example� recall that the edge rotation function of the
square of Gi is evaluated at �v� hj�� j�i� by evaluating the edge rotation function
of the original graph �rst at �v� j�� and then at �u� j��� where �u� k�� � gi�v� j���
This means the globaltape machine �rst reads �v� hj�� j�i� from the globaltape
and replaces it by the query �v� j��� while storing j� on the localtape� Thus�
the machine merely deletes a constant number of bits from the globaltape �and
leaves its pre�x intact�� After invoking the oracle� the machine copies k� from
the globaltape �which currently holds �u� k��� to its localtape� and copies j� from
its localtape to the globaltape �such that it contains �u� j���� After invoking the
oracle for the second time� the globaltape contains �w� k�� � gi�u� j��� and the
machine merely modi�es it to �w� hk�� k�i�� which is the desired output�

��This means that as a result of invoking the oracle f � the contents of the global�tape changes
from q to f�q�� We stress that the prior contents of the global�tape �i�e�� the query q� is lost �i�e��
it is replaced by the answer f�q���

��	� LOGARITHMIC SPACE ��

Similarly� note that the edge rotation function of the zigzag product of the
variable graph G� with the �xed graph G is evaluated at �hu� ii� h�� �i� by querying
G� at �u�E��i�� and outputting �hv� E�j

��i� h�� �i�� where �v� j�� denotes the oracle
answer �see Eq� �E����� This means that the globaltape oracle machine �rst copies
�� � from the globaltape to the localtape� transforms the contents of the global
tape from �hu� ii� h�� �i� to �u�E��i��� and makes an analogous transformation after
the oracle is invoked�

Composing global�tape oracle machines� In the proof of Claim ��� we im
plicitly used sequential composition of computations conducted by globaltape or
acle machines��� In general� when sequentially composing such computations the
length of the globaltape �resp�� localtape� is the maximum among all composed
computations� that is� the current formalism o�ers a tight bound on naive sequential
composition �as opposed to Lemma ���� Furthermore� globaltape oracle machines
are bene�cial in the context of recursive composition� as indicated by Lemma ��	
�which relies on this model in a crucial way�� The key observation is that all levels
in the recursive composition may reuse the same global storage� and only the local
storage gets added� Consequently� we have the following composition lemma�

Lemma ���� �recursive composition in the globaltape model�� Suppose that� for
every i � �� ���� t� �� there exists a globaltape oracle machine that computes fi��
by making oracle calls to fi while using a global�tape of length L and a local�tape
of length li� which also accounts for the machine	s state� Then ft can be computed
by a standard oracle machine that makes calls to f� and uses space L$ �

Pt��
i�� li�

We shall apply this lemma with fi � gi and t � O�log jV�j� � O�log jVtj�� using the
bounds L � log��d

� � jVtj� and li � O��� �as guaranteed by Claim ���� Indeed� in
this application L equals the length of the input to ft � gt�

Proof Sketch� We compute ft by allocating space for the emulation of the global
tape and the localtapes of each level in the recursion� We emulate the recursive
computation by capitalizing on the fact that all recursive levels use the same global
tape �for making queries and receiving answers�� Recall that in the actual recursion�
each level may use the globaltape arbitrarily as long as when it returns control
to the invoking machine the globaltape contains the right answer� Thus� the
emulation may do the same� and emulate each recursive call by using the space
allocated for the globaltape as well as the space designated for the localtape of
this level� The emulation should also store the locations of the other levels of the
recursion on the corresponding localtapes� but the space needed for this is clearly
smaller than the length of the various localtapes�

Conclusion� Combining Claim �� and Lemma ��	� we conclude that the eval
uation of gOlog jV�j� can be reduced to the evaluation of g� in space O�log jV�j��

��A similar composition took place in the proof of Claim ���� but in Claim ��	 we asserted a
stronger feature of this speci�c computation�

��� CHAPTER �� SPACE COMPLEXITY

Recalling that G� can be constructed in logspace �based on the input graph G���
we infer that G� � GOlog jV�j� can be constructed in logspace� Theorem �� follows
by recalling that G� �which has constant degree and logarithmic diameter� can be
tested for connectivity in logspace �see Exercise ���� Using a similar argument�
we can test whether a given pair of vertices are connected in the input graph �see
Exercise �����

��� Non�Deterministic Space Complexity

The di�erence between spacecomplexity and timecomplexity is quite striking in
the context of nondeterministic computations� One phenomenon is the huge gap
between the power of two formulation of nondeterministic spacecomplexity �see
Section ������ which stands in contrast to the fact that the analogous formula
tions are equivalent in the context of timecomplexity� We also highlight the con
trast between various results regarding �the standard model of� nondeterministic
spacebounded computation �see Section ����� and the analogous questions in the
context of timecomplexity� for example� consider the question of complementation
�cf� x ��������

����� Two models

Recall that nondeterministic timebounded computations were de�ned via two
equivalent models� In the o�line model �underlying the de�nition of NP as a
proof system �see De�nition �� �� nondeterminism is captured by reference to the
existential choice of an auxiliary ��nondeterministic�� input� In contrast� in the
online model �underlying the traditional de�nition of NP �see De�nition �����
nondeterminism is captured by reference to the nondeterministic choices of the
machine itself� In the context of timecomplexity� these models are equivalent
because the latter online choices can be recorded �almost� for free �see the proof
of Theorem ����� However� such a recording is not free of charge in the context of
spacecomplexity�

Let us take a closer look at the relation between the o�line and online models�
The fact that the o�line model can emulate the online model is almost generic�
that is� it holds for any reasonable notion of complexity� because it is based on
the fact that the o�line machine can emulate online choices by using its non
deterministic input �and without signi�cantly e�ecting the complexity measure��
In contrast� the emulation of the o�line model by the online model is enabled
by the fact that in the context of time�complexity an online machine may store
�and reuse� a sequence of nondeterministic �online� choices without signi�cantly
e�ecting the runningtime �i�e�� almost �free of charge��� This naive emulation �of
the o�line model on the online model� is not free of charge in the context of space
bounded computation� Furthermore� typically the number of nondeterministic
choices is much larger than the spacebound� and thus the naive emulation is not
possible in the context of space�complexity �because it is prohibitively expensive
in terms of spacecomplexity�� Let us formulate the two models and consider the

���� NONDETERMINISTIC SPACE COMPLEXITY ���

relation between them in the context of spacecomplexity�
In the standard model� called the on�line model� the machine makes nondeterministic

choices �on the �y� �or� alternatively� reads a nondeterministic input from a spe
cial readonly tape that can be read only in a uni�directional way�� Thus� if the
machine needs to refer to such a nondeterministic choice at a latter stage in its
computation� then it must store the choice on its storage device �and be charged
for it�� In contrast� in the socalled o	�line model the nondeterministic choices �or
the bits of the nondeterministic input� are read from a readonly device �or tape�
that can be scanned in both directions like the main input�

We denote by Nspaceon�line�s� �resp�� Nspaceo��line�s�� the class of sets that
are acceptable by an online �resp�� o�line� nondeterministic machine having space
complexity s� We stress that� as in De�nition ���� the set accepted by a non
deterministic machineM is the set of strings x such that there exists a computation
of M�x� that is accepting� Clearly� Nspaceon�line�s� � Nspaceo��line�s�� On
the other hand� not only that Nspaceon�line�s� �� Nspaceo��line�s� but rather
Nspaceon�line�s� � Nspaceo��line�+�log s��� provided that s is at least linear� For
details� see Exercise ����

Before proceeding any further� let us justify the focus on the online model in
the rest of this section� Indeed� the o�line model �ts better the motivations to
NP �as presented in Section ������� but the online model seems more adequate
for the study of nondeterministic in the context of space complexity� One reason
is that an o�line nondeterministic input can be used to code computations �see
Exercise ����� and in a sense allows to �cheat� with respect to the �actual� space
complexity of the computation� This is re�ected in the fact that the o�line model
can emulate the online model while using space that is logarithmic in the space
used by the online model� A related phenomenon is that Nspaceo��line�s� is only
known to be contained in Dtime���

s

�� whereas Nspaceon�line�s� � Dtime��s��
This fact motivates the study of NL � Nspaceon�line�log�� as a study of a �nat
ural� subclass of P � Indeed� the various results regarding NL justify its study in
retrospect�

In light of the foregoing� we adopt the standard conventions and letNspace�s� �
Nspaceon�line�s�� Our main focus will be the study of NL � Nspace�log��

����� NL and directed connectivity

This section is devoted to the study of NL� which we view as the nondeterministic
analogue of L� Speci�cally� NL � �cNspace�
c�� where
c�n� � c log� n� �We refer
the reader to the de�nitional issues pertaining Nspace � Nspaceon�line� which are
discussed in Section ������

We �rst note that the proof of Theorem �� can be easily extended to the
�online� nondeterministic context� The reason being that moving from the de
terministic model to the current model does not a�ect the number of instanta
neous con�gurations �as de�ned in the proof of Theorem ���� whereas this number
bounds the time complexity� Thus� NL � P �

The following problem� called directed connectivity �st�CONN�� captures the
essence of nondeterministic logspace computations �and� in particular� is com

��� CHAPTER �� SPACE COMPLEXITY

plete for NL under logspace reductions�� The input to st�CONN consists of a
directed graph G � �V�E� and a pair of vertices �s� t�� and the task is to determine
whether there exists a directed path from s to t �in G���	 Indeed� the study of
NL is often conducted via st�CONN� For example� note that NL � P follows easily
from the fact that st�CONN is in P �and the fact that NL is logspace reducible to
st�CONN��

������� Completeness and beyond

Clearly� st�CONN is in NL �see Exercise �� �� The NLcompleteness of st�CONN
under logspace reductions follows by noting that the computation of any non
deterministic spacebounded machine yields a directed graph in which vertices cor
respond to possible con�gurations and edges represent the �successive� relation of
the computation� In particular� for logspace computations the graph has polyno
mial size� but in general the relevant graph is strongly explicit �in a natural sense�
see Exercise �����

Theorem ���� Every problem in NL is log�space reducible to st�CONN �via a
manytoone reduction��

Proof Sketch� Fixing a nondeterministic �online� machineM and an input x� we
consider the following directed graphGx � �Vx� Ex�� The vertices of Vx are possible
instantaneous con�gurations of M�x�� where each con�guration consists of the
contents of the worktape �and the machine
s �nite state�� the machine
s location on
it� and the machine
s location on the input� The directed edges represent possible
single moves in such a computation� We stress that such a move depends on the
machine M as well as on the �single� bit of x that resides in the location speci�ed
by the �rst con�guration �i�e�� the con�guration corresponding to the startpoint of
the potential edge���
 Note that �for a �xed machineM�� given x� the graphGx can
be constructed in logspace �by scanning all pairs of vertices and outputting only
the pairs that are valid edges �which� in turn� can be tested in constantspace���

By de�nition� the graph Gx represents the possible computations ofM on input
x� In particular� there exists an accepting computation of M on input x if and only
if there exists a directed path� in Gx� starting at the vertex s that corresponds to
the initial con�guration and ending at the vertex t that corresponds to a canonical
accepting con�guration� Thus� x � S if and only if �Gx� s� t� is a yesinstance of
st�CONN�

Re�ection� We believe that the proof of Theorem ��� �see also Exercise ����
justi�es saying that st�CONN captures the essence of nondeterministic spacebounded

��See Appendix G�� for basic graph theoretic terminology� We note that� here �and in the
sequel�� s stands for start and t stands for terminate�

��Thus� the actual input x only a�ects the set of edges of Gx �whereas the set of vertices is only
a�ected by jxj�� A related construction is obtained by incorporating in the con�guration also the
�single� bit of x that resides in the machine�s location on the input� In the latter case� x itself
also a�ects Vx�

���� NONDETERMINISTIC SPACE COMPLEXITY ���

computations� Note that this �intuitive and informal� statement goes beyond say
ing that st�CONN is NLcomplete under logspace reductions�

We note the discrepancy between the status of undirected connectivity �see
Theorem �� and Exercise ���� and directed connectivity �see Theorem ��� and
Exercise ����� In this context it is worthwhile to note that determining the ex
istence of relatively short paths �rather than arbitrary paths� in undirected �or
directed� graphs is also NLcomplete under logspace reductions� see Exercise ����

������� Relating NSPACE to DSPACE

Recall that in the context of timecomplexity� the only known conversion of non
deterministic computation to deterministic computation comes at the cost of an
exponential blowup in the complexity� In contrast� spacecomplexity allows such
a conversion at the cost of a polynomial blowup in the complexity�

Theorem ���� �Nondeterministic versus deterministic space�� For any space�
constructible s � N N that is at least logarithmic� it holds that Nspace�s� �
Dspace�O�s����

In particular� nondeterministic polynomialspace is contained in deterministic polynomial
space �and nondeterministic polylogarithmic space is contained in deterministic
polylogarithmic space��

Proof Sketch� We focus on the special case of NL and the argument extends
easily to the general case� Alternatively� the general statement can be derived from
the special case by using a suitable upwardstranslation lemma �see� e�g�� �����
Sec� ��� ��� The special case boils down to presenting an algorithm for deciding
directed connectivity that has logsquare spacecomplexity�

The basic idea is that checking whether or not there is a path of length at
most �
 from u to v in G� reduces �in logspace� to checking whether there is an
intermediate vertex w such that there is a path of length at most
 from u to w

and a path of length at most
 from w to v� That is� let �G�u� v�
�
def
� � if there is

a path of length at most
 from u to v in G� and �G�u� v�
�
def
� 	 otherwise� Then

�G�u� v� �
� can be computed by scanning all vertices w in G� and checking for each
w whether both �G�u�w�
� � � and �G�w� v�
� � � hold��� Hence� we can compute
�G�u� v� �
� by a logspace algorithm that makes oracle calls to �G��� ��
�� which in
turn can be computed recursively in the same manner� Note that the original
computational problem �i�e�� st�CONN� can be cast as computing �G�s� t� jV j� �or
�G�s� t� �

dlog� jV je�� for a given directed graph G � �V�E� and a given pair of vertices
�s� t�� Thus� the foregoing recursive procedure yields the theorem
s claim� provided
that we use adequate composition results� We take a technically di�erent approach
by directly analyzing the recursive procedure at hand�

Recall that given a directed graph G � �V�E� and a pair of vertices �s� t�� we
should merely compute �G�s� t� �

dlog� jV je�� This is done by invoking a recursive

�	Similarly� �G�u� v� ��� �� can be computed by scanning all vertices w in G� and checking for
each w whether both �G�u�w� �� �� � � and �G�w� v� �� � � hold�

��	 CHAPTER �� SPACE COMPLEXITY

procedure that computes �G�u� v� �
� by scanning all vertices in G� and computing
for each vertex w the values of �G�u�w�
� and �G�w� v�
�� The punchline is that
all these computations may reuse the same space� while we need only store one
additional bit representing the results of all prior computations� We return the
value � if and only if for some w it holds that �G�u�w�
� � �G�w� v�
� � � �see
Figure ���� Needless to say� �G�u� v� �� can be decided easily in logarithmic space�

Recursive computation of �G�u� v� �
�� for
 � ��

For w � �� ���� jV j do begin �storing the vertex name�
Compute 	 � �G�u�w�
� �by a recursive call�
Compute 	 � 	
 �G�w� v�
� �by a second recursive call�
If 	 � � then return �� �success� an intermediate vertex was found�

End �of scan��
return �� �reached only if the scan was completed without success��

Figure ��� The recursive procedure in NL � Dspace�O�log����

We consider an implementation of the foregoing procedure �of Figure ��� in
which each level of the recursion uses a designated portion of the entire storage for
maintaining the local variables �i�e�� w and 	�� The amount of space taken by each
level of the recursion is essentially log� jV j �for storing the current value of w�� and
the number of levels is log� jV j� We stress that when computing �G�u� v� �
�� we
make many recursive calls� but all these calls reuse the same work space �i�e�� the
portion that is designated to that level�� That is� when we compute �G�u�w�
� we
reuse the space that was used for computing �G�u�w

��
� for the previous w�� and
we reuse the same space when we compute �G�w� v�
�� Thus� the spacecomplexity
of our algorithm is merely the sum of the amount of space used by all recursion
levels� It follows that st�CONN has logsquare �deterministic� spacecomplexity� and
the same follows for all of NL �either by noting that st�CONN actually represents
any NL computation or by using the logspace reductions of NL to st�CONN��

Digest� The proof of Theorem ��� relies on two main observations� The �rst
observation is that an existential claim can be verifying by scanning all possible
values in the relevant domain� which in terms of space complexity has a cost that is
logarithmic in the size of the domain� The second observation is that a disjunction
�resp�� conjunction� of two Boolean conditions can be veri�ed using space s $
O���� where s is the space complexity of verifying a single condition� This follows
by applying naive composition �i�e�� Lemma ���� The proof of Theorem ��� is
facilitated by the fact that we may consider a concrete and simple computational
problem such as st�CONN� Nevertheless� the same ideas can be applied directly to
NL �or any Nspace class��

The simple formulation of st�CONN facilitates placing NL in complexity classes
such as NC� �i�e�� decidability by uniform families of circuits of logsquare depth

���� NONDETERMINISTIC SPACE COMPLEXITY ���

and bounded fanin�� All that is needed is observing that st�CONN can be solved by
raising the adequate matrix �i�e�� the adjacency matrix of the graph augmented with
�entries on the diagonal� to the adequate power �i�e�� its dimension�� Squaring a
matrix can be done by a uniform family circuits of logarithmic depth and bounded
fanin �i�e�� in NC��� and by repeated squaring the nth power of an nbyn matrix
can be computed by a uniform family of bounded fanin circuits of polynomial
size and depth O�log� n�� thus� st�CONN � NC�� Indeed� NL � NC� follows by
noting that st�CONN actually represents any NL computation �or by noting that
any logspace reduction can be computed by a uniform family of logarithmic depth
and bounded fanin circuits��

������� Complementation or NL�coNL

Recall that �reasonable� nondeterministic timecomplexity classes are not known
to be closed under complementation� Furthermore� it is widely believed that NP ��
coNP � In contrast� �reasonable� nondeterministic spacecomplexity classes are
closed under complementation� as captured by the result NL � coNL� where

coNL def
� ff	� �g� n S � S � NLg�

Before proving that NL � coNL� we note that proving this result is equiva
lent to presenting a logspace Karpreduction of st�CONN to its complement �or�
equivalently� a reduction in the opposite direction� see Exercise ����� Our proof
utilizes a di�erent perspective on the NLvscoNL question� by rephrasing this
question as referring to the relation between NL and NL� coNL� and by o�ering
an �operational interpretation� of the class NL � coNL�

Recall that a set S is inNL if there exists a nondeterministic logspace machine
M that accepts S� and that the acceptance condition of nondeterministic machines
is asymmetric in nature� That is� x � S implies the existence of an accepting
computation of M on input x� whereas x �� S implies that all computations of M
on input x are nonaccepting� Thus� the existence of a accepting computation of
M on input x is an absolute indication for x � S� but the existence of a rejecting
computation of M on input x is not an absolute indication for x �� S� In contrast�
for S � NL� coNL� there exist absolute indications both for x � S and for x �� S

�or� equivalently for x � S
def
� f	� �g�nS�� where each of the two types of indication

is provided by a di�erent nondeterministic machine �i�e�� the one accepting S or the
one accepting S�� Combining both machines� we obtain a single nondeterministic
machine that� for every input� sometimes outputs the correct answer and always
outputs either the correct answer or a special ��don
t know�� symbol� This yields
the following de�nition� which refers to Boolean functions as a special case�

De�nition ���� �nondeterministic computation of functions�� We say that a
non�deterministic machine M computes the function f � f	� �g� f	� �g� if for
every x � f	� �g� the following two conditions hold�

�� Every computation of M on input x yields an output in ff�x���g� where
� �� f	� �g� is a special symbol �indicating �don
t know���

� There exists a computation of M on input x that yields the output f�x��

��� CHAPTER �� SPACE COMPLEXITY

Note that S � NL� coNL if and only if there exists a nondeterministic logspace
machine that computes the characteristic function of S �see Exercise ��	�� Recall
that the characteristic function of S� denoted �S � is the Boolean function satisfying
�S�x� � � if x � S and �S�x� � 	 otherwise� It follows that NL � coNL if and
only if for every S � NL there exists a nondeterministic logspace machine that
computes �S �

Theorem ���	 �NL � coNL�� For every S � NL there exists a non�deterministic
log�space machine that computes �S�

As in the case of Theorem ���� the result extends to any spaceconstructible s �
N N that is at least logarithmic� that is� for such s and every S � Nspace�s��
it holds that f	� �g� n S � Nspace�O�s��� This extension can be proved either
by generalizing the following proof or by using an adequate upwardstranslation
lemma�

Proof Sketch� As in the proof of Theorem ���� it su�ces to present a non
deterministic �online� logspace machine that computes the characteristic function
of st�CONN� denoted � �i�e�� ��G� s� t� � � if there is a directed path from s to t in
G and ��G� s� t� � 	 otherwise��

We �rst show that the computation of � is logspace reducible �by two queries���

to determining the number of vertices that are reachable �via a directed path�
from a given vertex in a given graph� On input �G� s� t�� the reduction computes
the number of vertices that are reachable from s in the graph G and compares
this number to the number of vertices reachable from s in the graph obtained by
deleting t from G� Clearly� the two numbers are di�erent if and only if vertex t is
reachable from vertex v �in the graph G�� �An alternative reduction that uses a
single query is presented in Exercise ����� Note that if computing f is logspace
reducible by a constant number of queries to computing some function g and there
exists a nondeterministic logspace machine that computes g� then there exists a
nondeterministic logspace machine that computes f �see Exercise ����� Thus� we
focus on providing a nondeterministic logspace machine that compute the number
of vertices that are reachable from a given vertex in a given graph�

Fixing an nvertex graph G � �V�E� and a vertex v� we consider the set of
vertices that are reachable from v by a path of length at most i� We denote this
set by Ri� and observe that R� � fvg and that for every i � �� �� ���� it holds that

Ri � Ri�� � fu � �w � Ri�� s�t� �w� u� � Eg � ���

Our aim is to compute jRnj� This will be done in n iterations such that at the ith

iteration we compute jRij� When computing jRij we rely on the fact that jRi��j
is known to us� which means that we shall store jRi��j in memory� We stress that
we discard jRi��j from memory as soon as we complete the computation of jRij�

�
We stress the fact that only two queries are used in the reduction� because this avoids the
di�culties �discussed in x�������� regarding emulative composition for general space�bounded re�
duction� Alternatively� we may use a version of the naive composition� while relying on the fact
that the oracle answers have logarithmic length� For details� see Exercises ���� and �����

���� NONDETERMINISTIC SPACE COMPLEXITY ���

which we store instead� Thus� at each iteration i� our record of past iterations only
contains jRi��j�
Computing jRij
 Given jRi��j� we nondeterministically compute jRij by making a
guess �for jRij�� denoted g� and verifying its correctness as follows�

�� We verify that jRij � g in a straightforward manner� That is� scanning V in
some canonical order� we verify for g vertices that they are each in Ri� That
is� during the scan� we select nondeterministically g vertices� and for each
selected vertex w we verify that w is reachable from v by a path of length at
most i� where this veri�cation is performed by just guessing and verifying an
adequate path �see Exercise �� ��

We use log� n bits to store the number of vertices that were already veri�ed
to be in Ri� another log� n bits to store the currently scanned vertex �i�e�� w��
and another O�logn� bits for implementing the veri�cation of the existence
of a path of length at most i from v to w�

�� The veri�cation of the condition jRij � g �equivalently� jV n Rij � n � g�
is the interesting part of the procedure� Indeed� as we saw� demonstrating
membership in Ri is easy� but here we wish to demonstrate nonmembership
in Ri� We do so by relying on the fact that we know jRi��j� which allows
for a nondeterministic enumeration of Ri�� itself� which in turn allows for
proofs of nonmembership in Ri �via the use of Eq� � ����� Details follows
�and an even more structured description is provided in Figure ����

Scanning V �again�� we verify for n�g �guessed� vertices that they are not in
Ri �i�e�� are not reachable from v by paths of length at most i�� By Eq� � ����
verifying that u �� Ri amounts to proving that for every w � Ri��� it holds
that u �� w and �w� u� �� E� As hinted� the knowledge of jRi��j allows for the
enumeration of Ri��� and thus we merely check the aforementioned condition
on each vertex in Ri��� Thus� verifying that u �� Ri is done as follows�

�a� We scan V guessing jRi��j vertices that are in Ri��� and verify each
such guess in the straightforward manner �i�e�� as in Step �����

�b� For each w � Ri�� that was guessed and veri�ed in Step �a� we verify
that both u �� w and �w� u� �� E�

By Eq� � ���� if u passes the foregoing veri�cation then indeed u �� Ri�

We use log� n bits to store the number of vertices that were already veri�ed
to be in V n Ri� another log� n bits to store the current vertex u� another
log� n bits to count the number of vertices that are currently veri�ed to be
in Ri��� another log� n bits to store such a vertex w� and another O�log n�
bits for verifying that w � Ri�� �as in Step ���

If any of the foregoing veri�cations fails� then the procedure halts outputting the
�don
t know� symbol �� Otherwise� it outputs g�

��Note that implicit in Step �a is a non�deterministic procedure that computes the mapping
�G� v� i� jRi��j�� Ri��� where Ri�� denotes the set of vertices that are reachable in G by a path
of length at most i from v�

��� CHAPTER �� SPACE COMPLEXITY

Given jRi��j and a guess g� the claim g � jRij is veri�ed as follows�

Set c � 	� �initializing the main counter�
For u � �� ���� n do begin �the main scan�

Guess whether or not u � Ri�
For a negative guess �i�e�� u �� Ri�� do begin
�Verify that u �� Ri via Eq� � �����

Set c� � 	� �initializing a secondary counter�
For w � �� ���� n do begin �the secondary scan�

Guess whether or not w � Ri���
For a positive guess �i�e�� w � Ri���� do begin

Verify that w � Ri�� �as in Step ���
Verify that u �� w and �w� u� �� E�
If some veri�cation failed
then halt with output � otherwise increment c��

End �of handling a positive guess for w � Ri����
End �of secondary scan�� �c� vertices in Ri�� were checked�
If c� � jRi��j then halt with output ��
Otherwise �c� � jRi��j�� increment c� �u veri�ed to be outside of Ri�

End �of handling a negative guess for u �� Ri��
End �of main scan�� �c vertices were shown outside of Ri�
If c � n� g then halt with output ��
Otherwise n� jRij � c � n� g is veri�ed�

Figure ��� The main step in proving NL � coNL�

It can be veri�ed that� when given the correct value of jRi��j� the foregoing
nondeterministic procedure uses a logarithmic amount of space and computes the
value of jRij� That is� if all veri�cations are satis�ed then it must hold that g � jRij�
and if g � jRij then there are adequate nondeterministic choices that satisfy all
veri�cations�

Recall that Rn is computed iteratively� starting with jR�j � �� and computing
jRij based on jRi��j� Each iteration i � �� ���� n is nondeterministic� and is either
completed with the correct value of jRij �at which point jRi��j is discarded� or
halts in failure �in which case we halt the entire process and output ��� This
yields a nondeterministic logspace machine for computing jRnj� and the theorem
follows�

Digest� Step � is the heart of the proof �of Theorem ����� In this step a
nondeterministic procedure is used to verify nonmembership in an NLtype set�
Indeed� verifying membership in NLtype sets is the archetypical task of non
deterministic procedures �i�e�� they are de�ned so to �t these tasks�� and thus Step �
is straightforward� In contrast� nondeterministic veri�cation of nonmembership

���� NONDETERMINISTIC SPACE COMPLEXITY ��

is not a common phenomenon� and thus Step � is not straightforward at all� In
the current context �of Step ��� the veri�cation of nonmembership is performed
by an iterative �nondeterministic� process that consumes an admissible amount of
resources �i�e�� a logarithmic amount of space��

����� Discussion

The current section may be viewed as a study of the �power of nondeterminism in
computation� �which is a somewhat contradictory term�� Recall that we view non
deterministic processes as �ctitious abstractions aimed at capturing fundamental
phenomena such as the veri�cation of proofs �cf�� Section ������� Since these �cti
tious abstractions are fundamental in the context of timecomplexity� we may hope
to gain some understanding by a comparative study� speci�cally� a study of non
deterministic in the context of spacecomplexity� Furthermore� we may discover
that nondeterministic spacebounded machines give rise to interesting computa
tional phenomena�

The aforementioned hopes seems to come true in the current section� For exam
ple� the fact that NL � coNL� while the common conjecture is that NP �� coNP �
indicates that the latter conjecture is less generic than sometimes stated� It is not
that an existential quanti�er cannot be �feasibly replaced� by a universal quanti
�er� but rather the feasibility of such a replacement depends very much on the type
of the notion of feasibility� Turning to the other type of bene�ts� we learned that
st�CONN can be Karpreduced in logspace to st�unCONN �i�e�� the set of graphs
in which there is no directed path between the two designated vertices� see Exer
cise �����

Still� one may ask what does the class NL actually represent �beyond st�CONN�
which seems actually more than merely a complete problem for this class� see
x �������� Turning back to Section ����� we recall that the class Nspaceo��line
captures the straightforward notion of spacebounded veri�cation� In this model
�called the o�line model�� the alleged proof is written on a special device �similarly
to the claim being established by it�� which is being read freely� In contrast�
underlying the alternative class Nspaceon�line is a notion of proofs that are veri�ed
by reading them sequentially �rather than scanning them back and forth�� In
this case� if the veri�cation procedure needs to relate to the currently read part
of the proof in the future� then it must store the relevant part �and be charged
for this storage�� Thus� the online model underlying Nspaceon�line refers to the
standard process of reading proofs in a sequential manner and taking notes for
future veri�cation� rather than scanning them back and forth all the time� Thus�
the online model re�ects the true spacecomplexity of taking such notes and hence
of sequential veri�cation of proofs� Indeed �as stated in Section ������ our feeling
is that the o�line model allows for an unfair accounting of temporary space as well
as for unintendedly long proofs�

��� CHAPTER �� SPACE COMPLEXITY

��� PSPACE and Games

As stated upfront� we rarely encounter computational problems that require less
than logarithmic space� On the other hand� we will rarely treat computational
problems that require more than polynomial space� The class of decision prob

lems that are solvable in polynomialspace is denoted PSPACE def
� �cDspace�pc��

where pc�n� � nc�
To get a sense of the power of PSPACE � we observe that PH � PSPACE � for

example� a polynomialspace algorithm can easily verify the quanti�ed condition
underlying De�nition ���� In fact� such an algorithm can handle an unbounded
number of alternating quanti�ers �see Theorem �� �� On the other hand� by
Theorem ��� PSPACE � EXP � where EXP � �cDtime��pc� for pc�n� � nc�

The class PSPACE can be interpreted as capturing the complexity of deter
mining the winner in certain e�cient two�party game� speci�cally� the very games
considered in Section ����� �modulo Footnote � there�� Recall that we refer to
twoparty games that satisfy the following three conditions�

�� The parties alternate in taking moves that e�ect the game
s �global� position�
where each move has a description length that is bounded by a polynomial
in the length of the initial position�

�� The current position is updated based on the previous position and the cur
rent party
s move� This updating can be performed in time that is poly
nomial in the length of the initial position� �Equivalently� we may require
a polynomialtime updating procedure and postulate that the length of the
current position be bounded by a polynomial in the length of the initial po
sition��

�� The winner in each position can be determined in polynomialtime�

A set S � PSPACE can be viewed as the set of initial positions �in a suitable game�
for which the �rst party has a winning strategy consisting of a polynomial number
of moves� Speci�cally� x�S if starting at the initial position x� there exists a move
y� for the �rst party� such that for every response move y� of the second party�
there exists a move y� for the �rst party� etc� such that after poly�jxj� many moves
the parties reach a position in which the �rst party wins� where the �nal position
as well as which party wins in it can be computed in polynomialtime �from the
initial position x and the sequence of moves y�� y�� ����� The fact that every set in
PSPACE corresponds to such a game follows from Theorem �� � which refers to
the satis�ability of quanti�ed Boolean formulae �QBF����

Theorem ���� QBF is complete for PSPACE under polynomial�time many�to�one
reductions�

Proof� As note before� QBF is solvable by a polynomialspace algorithm that
just evaluates the quanti�ed formula� Speci�cally� consider a recursive procedure

��See Appendix G���

���� PSPACE AND GAMES ���

that eliminates a Boolean quanti�er by evaluating the value of the two residual
formulae� and note that the space used in the �rst �recursive� evaluation can be
reused in the second evaluation� �Alternatively� consider a DFStype procedure as
in Section ������ Note that the space used is linear in the depth of the recursion�
which in turn is linear in the length of the input formula�

We now turn to show that any set S � PSPACE is manytoone reducible to
QBF� The proof is similar to the proof of Theorem ���� except that here we work
with an implicit graph �rather than with an explicitly given graph�� Speci�cally� we
refer to the directed graph of con�guration �of the algorithm A deciding member
ship in S� as de�ned in Exercise ���� Actually� here we use a di�erent notion of a
con�guration that includes also the input� That is� in the rest of this proof� a con�
�guration consists of the contents of all storage devices of the algorithm �including
the input device� as well as the location of the algorithm on each device�

Recall that for a graph G� we de�ned �G�u� v�
� � � if there is a path of length
at most
 from u to v in G �and �G�u� v�
� � 	 otherwise�� We need to determine
�G�s� t� �

m� for s that encodes the initial con�guration of A�x� and t that encodes
the canonical accepting con�guration� where G depends on the algorithm A and
m � poly�jxj� is such that A�x� uses at mostm space and runs for at most �m steps�
By the speci�c de�nition of a con�guration �which contains all relevant information
including the input x�� the value of �G�u� v� �� can be determined easily based solely
on the �xed algorithm A �i�e�� either u � v or v is a con�guration following u��
Recall that �G�u� v� �
� � � if and only if there exists a con�guration w such that
both �G�u�w�
� � � and �G�w� v�
� � � hold� Thus� we obtain the recursion

�G�u� v� �
� � �w � f	� �gm�G�u�w�
�
 �G�w� v�
�� � ���

where the bottom of the recursion �i�e�� �G�u� v� ��� is a simple propositional formula
�see foregoing discussion�� The problem with Eq� � ��� is that the expression for
�G��� �� �
� involves two occurrences of �G��� ��
�� which doubles the length of the
recursively constructed formula �yielding an exponential blowup��

Our aim is to express �G��� �� �
� while using �G��� ��
� only once� The extra
restriction� which prevents an exponential blowup� corresponds to the re�using of
space in the �two evaluations of �G��� ��
� that take place in the� computation of
�G�u� v� �
�� The main idea is replacing the condition �G�u�w�
� � �G�w� v�
� � �
by the condition ���u�v�� � f�u�w�� �w� v�g�G�u�� v��
�� �where we quantify over
a twoelement set that is not the Boolean set f	� �g�� Next� we reformulate the
nonstandard quanti�er �which ranges over a speci�c pair of strings� by using ad
ditional quanti�ers as well as some simple Boolean conditions� That is� ��u�v�� �
f�u�w�� �w� v�g is replaced by �	 � f	� �g�u�� v� � f	� �gm and the auxiliary condi
tion

��	�	� $ �u��u
 v��w��
 ��	��� $ �u��w
 v��v��� � ���

Thus� �G�u� v� �
� holds if and only if there exist w such that for every 	 there
exists �u�� v�� such that both Eq� � ��� and �G�u

�� v��
� hold� Note that the length
of this expression for �G��� �� �
� equals the length of �G��� ��
� plus an additive
overhead term of O�m�� Thus� using a recursive construction� the length of the
formula grows only linearly in the number of recursion steps�

��� CHAPTER �� SPACE COMPLEXITY

The reduction itself maps an instance x �of S� to the quanti�ed Boolean formula
,�sx� t� �

m�� where sx denotes the initial con�guration of A�x�� �t andm � poly�jxj�
are as above�� and , is recursively de�ned as follows

,�u� v� �
�
def
�

�w�f	� �gm �	�f	� �g�u�� v��f	� �gm
��	�	� $ �u��u
 v��w��

 ��	��� $ �u��w
 v��v��

 ,�u�� v��
�

� ���

with ,�u� v� �� � � if and only if either u � v or there is an edge from u to v� Note
that ,�u� v� �� is a ��xed� propositional formula with Boolean variables representing
the bits of u and v such that ,�u� v� �� is satis�es if and only if either u � v or v
is a con�guration that follows the con�guration u in a computation of A� On the
other hand� note that ,�sx� t� �

m� is a quanti�ed formula in which the quanti�ed
variables are not shown in the notation�

We stress that the mapping of x to ,�sx� t� �
m� can be computed in polynomial

time� Firstly� note that the propositional formula ,�u� v� ��� having Boolean vari
ables representing the bits of u and v� expresses extremely simple conditions and
can certainly be constructed in polynomialtime �i�e�� polynomial in the number of
Boolean variables� which in turn equals �m�� Next note that� given ,�u� v�
�� which
�for
 � �� contains quanti�ed variables that are not shown in the notation� we can
construct ,�u� v� �
� by merely replacing variables names and adding quanti�ers
and Boolean conditions as in the recursive de�nition of Eq� � ���� This is certainly
doable in polynomialtime� Lastly� note that the construction of ,�sx� t� �

m� de
pends mainly on the length of x� where x itself only a�ects sx �and does so in a
trivial manner�� Recalling that m � poly�jxj�� it follows that everything is com
putable in time polynomial in jxj� Thus� given x� the formula ,�sx� t� �

m� can be
constructed in polynomialtime�

Finally� note that x � S if and only if the formula ,�sx� t� �
m� is satis�able�

The theorem follows�

Other PSPACE�complete problems� Several generalizations of natural games
give rise to PSPACEcomplete problems �see ��		� Sec� ������ This further justi�es
the title of the current section�

Chapter Notes

The material presented in the current chapter is based on a mix of �classical� results
�proven in the ���	
s if not earlier� and �modern� results �proven in the late ���	
s
and even later�� We wish to emphasize the time gap between the formulation of
some questions and their resolution� Details follow�

We �rst mention the �classical� results� These include the NLcompleteness
of st�CONN� the emulation of nondeterministic spacebounded machines by deter
ministic spacebounded machines �i�e�� Theorem ��� due to Savitch ���	��� the

���� PSPACE AND GAMES ���

PSPACEcompleteness of QBF� and the connections between circuit depth and
space complexity �see Section ���� and Exercise �� due to Borodin �� ���

Before turning to the �modern� results� we mention that some researchers tend
to be discouraged by the impression that �decades of research have failed to an
swer any of the famous open problems of complexity theory�� In our opinion this
impression is fundamentally mistaken� Speci�cally� in addition to the fact that
substantial progress towards the understanding of many fundamental issues has
been achieved� these researchers tend to forget that some famous open problems
were actually resolved� Two such examples were presented in this chapter�

The question of whether NL � coNL was a famous open problem for almost
two decades� Furthermore� this question is related to an even older open prob
lem dating to the early days of research in the area of formal languages �i�e�� to
the �� 	
s���� This open problem was resolved in ���� by Immerman ����� and
Szelepcsenyi ������ who �independently� proved Theorem ��� �i�e�� NL � coNL��

For more than two decades� undirected connectivity �UCONN� was one of the
most appealing examples of the computational power of randomness� Recall that
the classical lineartime �deterministic� algorithms �e�g�� BFS and DFS� require an
extensive use of temporary storage �i�e�� linear in the size of the graph�� On the
other hand� it was known �since ����� see x�������� that� with high probability�
a random walk of polynomial length visits all vertices �in the corresponding con
nected component�� Thus� the resulting randomized algorithm for UCONN uses a
minimal amount of temporary storage �i�e�� logarithmic in the size of the graph��
In the early ���	
s� this algorithm �as well as the entire class BPL �see De�ni
tion ������ was derandomized in polynomialtime and polylogarithmic space �see
Theorem ������ but despite more than a decade of research attempts� a signi�
cant gap remained between the space complexity of randomized and deterministic
polynomialtime algorithms for this natural and ubiquitous problem� This gap was
closed by Reingold ������ who established Theorem �� in �		���� Our presentation
�in Section ����� follows Reingold
s ideas� but the speci�c formulation in x ������
does not appear in ������

Exercises

Exercise ��� �rewriting on the write�only output�tape� Let A be an arbi
trary algorithm of space complexity s� Show that there exists a functionally
equivalent algorithm A� that never rewrites on �the same location of� its output
device and has space complexity s� such that s��n� � s�n� $ O�log
�n��� where

�n� � maxx�f���gn jA�x�j�
Guideline� Algorithm A� proceeds in iterations� where in the ith iteration it outputs the

ith bit of A
x� by emulating the computation of A on input x� The ith emulation of A

��Speci�cally� the class of sets recognized by linear�space non�deterministic machines equals the
class of context�sensitive languages �see� e�g�� ���	� Sec� 	����� and thus Theorem ���� resolves the
question of whether the latter class is closed under complementation�

��We mention that an almost�logarithmic space algorithm was discovered independently and
concurrently by Trifonov ������ using a very di�erent approach�

��	 CHAPTER �� SPACE COMPLEXITY

avoids printing A
x�� but rather keeps a records of the ith location of A
x��s output�tape

and terminates by outputting the �nal value of this bit�� Indeed� this emulation requires

maintaining the current value of i as well as the current location of emulated machine

i�e�� A� on its output�tape�

Exercise ��� �on the power of double�logarithmic space� For any k � N �
let wk denote the concatenation of all kbit long strings �in lexicographic order�
separated by %
s �i�e�� wk � 	k��		 % 	k��	� % 	k���	 % 	k���� % � � � % �k�� Show

that the set S
def
� fwk � k � Ng � f	� �� %g is not regular and yet is decidable in

doublelogarithmic space�

Guideline� The non�regularity of S can be shown using standard techniques� Towards

developing an algorithm� note that jwkj � �k� and thus O
log k� � O
log log jwkj�� Mem�

bership of x in S is determined by iteratively checking whether x � wi� for i � �� �� ����

while stopping when detecting an obvious case
i�e�� either verifying that x � wi or de�

tecting evidence that x �� wk for every k � i�� By taking advantage of the ��s
in wi�� the

ith iteration can be implemented in space O
log i�� Furthermore� on input x �� S� we halt

and reject after at most log jxj iterations� Actually� it is slightly simpler to handle the

related set fw� � �w� � � � � � � �wk � k � Ng� moreover� in this case the ��s can be omitted

from the wi�s
as well as from between them��

Exercise ��� �on the weakness of less than double�logarithmic space� Prove
that for
�n� � log logn� it holds that Dspace�o�
�� � Dspace�O�����

Guideline� Let s denote the machine�s
binary� space complexity� Show that if s is

unbounded then it must hold that s
n� � !
log log n� in�nitely often� Speci�cally� for

each m� consider a shortest string x such that on input x the machine uses space at least

m� Consider� for each location on the input� the sequence of the residual con�gurations

of the machine
i�e�� the contents of its temporary storage��� such that the ith element

in the sequence represents the residual con�guration of the machine at the ith time that

the machine crosses
or rather passes through� this input location� For starters� note

that the length of this �crossing sequence� is upper�bounded by the number of possible

residual con�gurations� which is at most t
def
� �s�jxj� � s
jxj�� Thus� the number of such

crossing sequences is upper�bounded by tt� Now� if tt � jxj�� then there exist three input

locations that have the same crossing sequence� and two of them hold the same bit value�

Contracting the string at these two locations� we get a shorter input on which the machine

behaves in exactly the same manner� contradicting the hypothesis that x is the shortest

input on which the machine uses space at least m� We conclude that tt � jxj�� must

hold� and s
jxj� � !
log log jxj� holds for in�nitely many x�s�

Exercise ��	 �some log�space algorithms� Present logspace algorithms for the
following computational problems�

�� Addition and multiplication of a given pair of integers�

��Note that� unlike in the proof of Theorem ���� the machine�s location on the input is not part
of the notion of a con�guration used here� On the other hand� although not stated explicitly� the
con�guration also encodes the machine�s location on the storage tape�

���� PSPACE AND GAMES ���

Guideline� Relying on Lemma ��� �rst transform the input to a more convenient

format� then perform the operation� and �nally transform the result to the adequate

format� For example� when adding x �
Pn��

i�

xi�

i and y �
Pn��

i�

yi�

i� a convenient

format is

x
� y
�� ����
xn��� yn�����

�� Deciding whether two given strings are identical�

�� Finding occurrences of a given pattern p � f	� �g� in a given string s � f	� �g��
�� Transforming the adjacency matrix representation of a graph to its incidence

list representation� and vice versa�

 � Deciding whether the input graph is acyclic �i�e�� has no simple cycles��

Guideline� Consider a scanning of the graph that proceeds as follows� Upon

entering a vertex v via the ith edge incident at it� we exit this vertex using its i��st

if v has degree at least i � � and exit via the �rst edge otherwise� Note that when

started at any vertex of any tree� this scanning performs a DFS� On the other hand�

for every cyclic graph there exists a vertex v and an edge e incident to v such that

if this scanning is started by traversing the edge e from v then it returns to v via

an edge di�erent from e�

�� Deciding whether the input graph is a tree�

Guideline� Use the fact that a graph G �
V�E� is a tree if and only if it is

acyclic and jEj � jV j � ��

Exercise ��� �another composition result� In continuation to the discussion
in x ������� prove that if ' can be computed in space s� when given an �
�
���
restricted oracle access to '� and '� is solvable is space s�� then ' is solvable in
space s such that s�n� � �s��n�$s��
�n��$�
��n�$��n�� where ��n� � O�log�
�n�$
s��n� $ s��
�n����� In particular� if s�� s� and
� are at most logarithmic� then
s�n� � O�log n��

Guideline� View the oracle�aided computation of " as consisting of iterations such

that in the ith iteration the ith query
denoted qi� is determined based on the initial

input
denoted x�� the i � �st oracle answer
denoted ai���� and the contents of the

work tape at the time the i � �st answer was given
denoted wi���� Note that the

mapping
x� ai��� wi��� �
qi� wi� can be computed using s
jxj� bits of temporary storage�

Composing each iteration with the computation of "�
using Lemma ���� we conclude that

the mapping
x� ai��� wi��� �
ai� wi� can be computed
without storing the intermediate

qi� in space s�
n� � s�
�
n�� �O
log
�
n� � s�
n� � s�
�
n����� Thus� we can emulate the

entire computation using space s
n�� where the extra space of s�
n� � ���
n� bits is used

for storing the work�tape of the oracle machine and the i� �st and ith oracle answers�

Exercise ��� Referring to the discussion in x ������� prove that any problem hav
ing space complexity s can be solved by a constant�space ��s� �s�restricted reduc
tion to a problem that is solvable in constant�space�

Guideline� The reduction is to the �next con�guration function� associated with the

said algorithm
of space complexity s�� where here the con�guration contains also the

��� CHAPTER �� SPACE COMPLEXITY

single bit of the input that the machine currently examines
i�e�� the value of bit at the

machine�s location on the input device�� To facilitate the computation of this function�

represent each con�guration in a redundant manner
e�g�� as a sequence over a ��ary rather

than a binary alphabet�� The reduction consists of iteratively copying string
with minor

modi�cation� from the
input or� oracle�answer tape to the oracle�query
or output� tape�

Exercise �� �transitivity of log�space reductions� Prove that logspace Karp
reductions are transitive� De�ne logspace Levinreductions and prove that they
are transitive�

Guideline� Use Lemma ��� noting that such reductions are merely log�space computable

functions�

Exercise ��� �log�space uniform NC� is in L� Suppose that a problem ' is
solvable by a family of logspace uniform circuits of bounded fanin and depth d
such that d�n� � log n� Prove that ' is solvable by an algorithm having space
complexity O�d��

Guideline� Combine the algorithm outlined in Section ���� with the de�nition of log�

space uniformity
using Lemma ����

Exercise ��� �UCONN in constant degree graphs of logarithmic diameter�
Present a logspace algorithm for deciding the following promise problem� which
is parameterized by constants c and d� The input graph satis�es the promise if
each vertex has degree at most d and every pair of vertices that reside in the same
connected component is connected by a path of length at most c log� n� where n
denotes the number of vertices in the input graph� The task is to decide whether
the input graph is connected�

Guideline� For every pair of vertices in the graph� we check whether these vertices

are connected in the graph�
Alternatively� we may just check whether each vertex is

connected to the �rst vertex�� Relying on the promise� it su�ces to inspect all paths of

length at most �
def
� c log� n� and these paths can be enumerated using � � dlog� de bits of

storage�

Exercise ���� �warm�up towards x����	��� In continuation to x ������� present
a logspace transformation of Gi to Gi���

Guideline� Given the graph Gi as input� we may construct Gi� by �rst constructing

G� � Gc
i and then constructing G��z G� To construct G�� we scan all vertices of Gi

holding the current vertex in temporary storage�� and for each such vertex construct

its neighborhood in G�
by using O
c� space for enumerating all possible neighbors��

Similarly� we can construct the vertex neighborhoods in G��z G
by storing the current

vertex name and using a constant amount of space for indicating incident edges in G��

Exercise ���� �st�UCONN� In continuation to Section ����� prove that the
following computational problem is in L� Given an undirected graph G � �V�E�
and two designated vertices� s and t� determine whether there is a path from s to
t in G�

���� PSPACE AND GAMES ���

Guideline� Note that the transformation described in Section ���� can be easily ex�

tended such that it maps vertices in G
 to vertices in GO�log jV j� while preserving the

connectivity relation
i�e�� u and v are connected in G
 if and only if their images under

the map are connected in GO�log jV j���

Exercise ���� �Bipartiteness� Prove that the problem of determining whether
or not the input graph is bipartite ��colorable� is computationally equivalent under
logspace reductions to st�UCONN �as de�ned in Exercise �����

Guideline� Both reductions use the mapping of a graph G�
V�E� to a bipartite graph

G� �
V �� E�� such that V � � fv���� v��� � v � V g and E� � ffu���� v���g� fu���� v���g �

fu� vg�Eg� When reducing to st�UCONN note that a vertex v resides on an odd cycle in

G if and only if v��� and v��� are connected in G�� When reducing from st�UCONN note

that s and t are connected in G by a path of even
resp�� odd� length if and only if the

graph G� ceases to be bipartite when augmented with the edge fs���� t���g
resp�� with the

edges fs���� xg and fx� t���g� where x �� V � is an auxiliary vertex��

Exercise ���� ��nding paths in undirected graphs� In continuation to Ex
ercise ���� present a logspace algorithm that given an undirected graphG � �V�E�
and two designated vertices� s and t� �nds a path from s to t in G �in case such a
path exists��

Guideline� In continuation to Exercise ���� we may �nd and
implicitly� store a loga�

rithmic path in GO�log jV j� that connects a representative of s and a representative of t�

Focusing on the task of �nding a path in G
 that corresponds to an edge in GO�log jV j��

we note that such a path can be found by using the reduction underlying the combination

of Claim �� and Lemma ����
An alternative description appears in ���� ��

Exercise ���	 �relating the two models of NSPACE� Referring to the de�
nitions in Section ����� prove that for every function s such that log s is space
constructible and at least logarithmic� it holds thatNspaceon�line�s� � Nspaceo��line�+�log s���

Guideline �for Nspaceon�line
s� � Nspaceo��line
O
log s���� Use the non�deterministic

input of the o��line machine for encoding an accepting computation of the on�line machine�

that is� this input should contain a sequence of consecutive con�gurations leading from the

initial con�guration to an accepting con�guration� where each con�guration contains the

contents of the work�tape as well as the machine�s state and its locations on the work�tape

and on the input�tape� The emulating o��line machine
which veri�es the correctness of

the sequence of con�gurations recorded on its non�deterministic input tape� needs only

store its location within the current pair of consecutive con�gurations that it examines�

which requires space logarithmic in the length of a single con�guration
which in turn

equals s
n� � log� s
n� � log� n � O
����
Note that this veri�cation relies on a two�

directional access to the non�deterministic input��

Guideline �for Nspaceo��line
s�� � Nspaceon�line
exp
s����� Here we refer to the no�

tion of a crossing�sequence� Speci�cally� for each location on the o��line non�deterministic

input� consider the sequence of the residual con�gurations of the machine� where such a

residual con�guration consists of the bit residing in this non�deterministic tape location�

��� CHAPTER �� SPACE COMPLEXITY

the contents of the machine�s temporary storage and the machine�s locations on the input

and storage tapes
but not its location on the non�deterministic tape�� Show that the

length of such a crossing�sequence is exponential in the space complexity of the o��line ma�

chine� and that the time complexity of the o��line machine is at most double�exponential in

its space complexity
see Exercise ���� The on�line machine merely generates a sequence

of crossing�sequences
�on the �y�� and checks that each consecutive pair of crossing�

sequences is consistent� This requires holding two crossing�sequences in storage� which

require space linear in the length of such sequences
which� in turn� is exponential in the

space complexity of the o��line machine��

Exercise ���� �st�CONN and variants of it are in NL� Prove that the fol
lowing computational problem is in NL� The instances have the form �G� v� w�
��
where G��V�E� is a directed graph� v� w � V � and
 is an integer� and the question
is whether G contains a path of length at most
 from v to w�

Guideline� Consider a non�deterministic
on�line� machine that generates and veri�ers

an adequate path on the �y� That is� starting at v
 � v� the machine proceeds in

iterations� such that in the ith iteration it non�deterministically generates vi� veri�ers

that
vi��� vi� � E� and checks whether i � and vi � w� Note that this machine need

only store the last two vertices on the path
i�e�� vi�� and vi� as well as the number of

edges traversed so far
i�e�� i��
Actually� using a careful implementation� it su�ces to

store only one of these two vertices
as well as the current i���

Exercise ���� �NSPACE and directed connectivity� Our aim is to establish
a relation between general nondeterministic spacebounded computation and di
rected connectivity in �strongly constructible� graphs that have size exponential in
the space bound� Let s be space constructible and at least logarithmic� For every
S � Nspace�s�� present a lineartime oracle machine �somewhat as in x �������
that given oracle access to x provides oracle access to a directed graph Gx of size
exp�s�jxj�� such that x � S if and only if there is a directed path between the �rst
and last vertices of Gx� That is� on input a pair �u� v� and oracle access to x� the
machine decides whether or not �u� v� is a directed edge in Gx�

Guideline� Follow the proof of Theorem ����

Exercise ��� �an alternative presentation of the proof of Theorem �����
We refer to directed graphs in which each vertex has a selfloop�

�� Viewing the adjacency matrices of directed graphs as oracles �cf� Exer
cise ����� present a linear space oracle machine that determines whether
a given pair of vertices is connected by a directed path of length two in the
input graph� Note that this machine computes the adjacency relation of the
square of the graph represented in the oracle�

�� Using naive composition �as in Lemma ���� present a quadratic space oracle
machine that determines whether a given pair of vertices is connected by a
directed path in the input graph�

���� PSPACE AND GAMES ��

Note that the machine in Item � implies that st�CONN can be decided in logsquare
space� In particular� justify the selfloop assumption made upfront�

Exercise ���� �deciding strong connectivity� A directed graph is called strongly
connected if there exists a directed path between every ordered pair of vertices in
the graph �or� equivalently� a directed cycle passing through every two vertices��
Prove that the problem of deciding whether a directed graph is strongly connected
is NLcomplete under �manytoone� logspace reductions�

Guideline �for NL�hardness�� Reduce from st�CONN� Note that� for any graph G�

V�E�� it holds that
G� s� t� is a yes�instance of st�CONN if and only if the graph G� �

V�E � f
v� s� � v�V g � f
t� v� � v�V g� is strongly connected�

Exercise ���� ��nding shortest paths in undirected graphs� Prove that the
following computational problem is NLcomplete under �manytoone� logspace
reductions� Given an undirected graph G � �V�E�� two designated vertices� s and
t� and an integer K� determine whether there is a path of length at most �resp��
exactly� K from s to t in G�

Guideline �for NL�hardness�� Reduce from st�CONN� Speci�cally� given a directed

graph G �
V�E� and vertices s� t� consider a
�layered�� graph G� �
V �� E�� such that

V � � �jV j��
i�
 fhi� vi � v�V g and E� � �jV j��

i�
 ffhi� ui� hi � �� vig �
u� v��E 	 u�vg� Note

that there exists a directed path from s to t in G if and only if there exists a path of

length at most
resp�� exactly� jV j � � between h�� si and hjV j � �� ti in G��

Exercise ���� �an operational interpretation of NL � coNL� NP � coNP� etc�
Referring to De�nition ���� prove that S � NL� coNL if and only if there exists
a nondeterministic logspace machine that computes �S � where �S�x� � � if x � S
and �S�x� � 	 otherwise� State and prove an analogous result for NP � coNP �

Guideline� A non�deterministic machine computing any function f yields� for each value

v� a machine of similar complexity that accept fx � f
x� � vg�
Extra hint� Invoke the

machine M that computes f and accept if and only if M outputs v�� On the other hand� for

any function f of �nite range� combining machines that accept the various sets Sv
def
�

fx � f
x� � vg� we obtain a machine of similar complexity that computes f �
Extra hint�

On input x� the combined machine invokes each of the aforementioned machines on input x and

outputs the value v if and only if the machine accepting Sv has accepted� In the case that none

of the machines accepts� the combined machine outputs ���

Exercise ���� �a graph algorithmic interpretation of NL � coNL� Show that
there exists a logspace computable function f such that for every �G� s� t� it holds
that �G� s� t� is a yesinstance of st�CONN if and only if �G�� s�� t�� � f�G� s� t� is a
noinstance of st�CONN�

Exercise ���� As an alternative to the twoquery reduction presented in the proof
of Theorem ���� show that computing the characteristic function of st�CONN is
logspace reducible via a single query to the problem of determining the number of
vertices that are reachable from a given vertex in a given graph�

Hint� On input �G� s� t�� where G � ��N �� E�� consider the number of vertices reachable from s

in the graph G� � ���N �� E � f�t� N � i� � i � �� ����Ng���

��� CHAPTER �� SPACE COMPLEXITY

Exercise ���� �reductions and non�deterministic computations� Suppose that
computing f is logspace reducible by a constant number of queries to computing
some function g� Referring to nondeterministic computations as in De�nition ����
prove that if there exists a nondeterministic logspace machine that computes g
then there exists a nondeterministic logspace machine that computes f �

Guideline� Use the emulative composition
as in Lemma ���� If any of the non�

deterministic computations of g returns the value � then return � as the value of f �

Otherwise� use the non�� values provided by the non�deterministic computations of g to

compute the value of f �

Exercise ���	 �reductions and non�deterministic computations� revisited�
Suppose that computing f is logspace reducible �by any number of queries� to
computing some function g such that for every x it holds that jg�x�j � O�log jxj��
Referring to nondeterministic computations as in De�nition ���� prove that if
there exists a nondeterministic logspace machine that computes g then there ex
ists a nondeterministic logspace machine that computes f � As a warmup consider
the special case in which every query to g is computable in logspace based only
on the input to f �

Guideline� As in Exercise ���� except that here we use di�erent composition techniques�

Speci�cally� in the warm�up we use the naive composition
in the spirit of Lemma ����

whereas in the general case we apply the semi�naive composition result of Exercise ��

Exercise ���� Referring to De�nition ���� prove that there exists a nondeterministic
logspace machine that computes the distance between two given vertices in a given
undirected graph�

Guideline� Relate this computational problem to the decision problem considered in

Exercise ���� and use NL � coNL�

Chapter �

Randomness and Counting

I owe this almost atrocious variety to an institution which other
republics do not know or which operates in them in an imperfect
and secret manner� the lottery�

Jorge Luis Borges� The Lottery In Babylon

So far� our approach to computing devices was somewhat conservative� we thought
of them as executing a deterministic rule� A more liberal and quite realistic ap
proach� which is pursued in this chapter� considers computing devices that use a
probabilistic rule� This relaxation has an immediate impact on the notion of e�
cient computation� which is consequently associated with probabilistic polynomial
time computations rather than with deterministic �polynomialtime� ones� We
stress that the association of e�cient computation with probabilistic polynomial
time computation makes sense provided that the failure probability of the latter is
negligible �which means that it may be safely ignored��

The quantitative nature of the failure probability of probabilistic algorithm
provides one connection between probabilistic algorithms and counting problems�
The latter are indeed a new type of computational problems� and our focus is on
counting e�ciently recognizable objects �e�g�� NPwitnesses for a given instance of
set in NP�� Randomized procedures turn out to play an important role in the
study of such counting problems�

Summary� Focusing on probabilistic polynomialtime algorithms� we
consider various types of probabilistic failure of such algorithms �e�g��
actual error versus failure to produce output�� This leads to the formu
lation of complexity classes such as BPP� RP � and ZPP� The results
presented include the existence of �nonuniform� families of polynomial
size circuits that emulate probabilistic polynomialtime algorithms �i�e��
BPP � P�poly� and the fact that BPP resides in the �second level of
the� Polynomialtime Hierarchy �i�e�� BPP � ����

We then turn to counting problems� speci�cally� counting the number
of solutions for an instance of a search problem in PC �or� equivalently�

���

��� CHAPTER �� RANDOMNESS AND COUNTING

counting the number of NPwitnesses for an instance of a decision prob
lem in NP�� We distinguish between exact counting and approximate
counting �in the sense of relative approximation�� In particular� while
any problem in PH is reducible to the exact counting class �P � ap
proximate counting �for �P� is �probabilisticly� reducible to NP �

Additional related topics include the �Pcompleteness of various count
ing problems �e�g�� counting the number of satisfying assignments to a
given CNF formula and counting the number of perfect matchings in
a given graph�� the complexity of searching for unique solutions� and
the relation between approximate counting and generating random so�
lutions �i�e�� generating almost uniformly distributed solutions��

Prerequisites� We assume basic familiarity with elementary probability theory
�see Appendix D���� In Section ��� we will rely extensively on formulations pre
sented in Section ��� �i�e�� the �NP search problem� class PC as well as the sets

R�x�
def
� fy � �x� y� �Rg� and SR

def
� fX � R�x� �� �g de�ned for every R � PC��

In Sections ����������� we shall extensively use various hashing functions and their
properties� as presented in Appendix D���

��� Probabilistic Polynomial�Time

Considering algorithms that utilize random choices� we extend our notion of ef�
�cient algorithms from deterministic polynomialtime algorithms to probabilistic
polynomialtime algorithms� An immediate question that arises is whether this
extension buys us anything� Although randomization is known to be essential in
several computational settings �e�g�� cryptography �cf�� Appendix C� and sampling
�cf�� Appendix D����� the question is whether randomization is useful in the con
text of solving decision �and search� problems� This is indeed a very good question�
which is further discussed in x�������� In fact� one of the main goals of the cur
rent section is putting this question forward� To demonstrate the potential bene�t
of randomized algorithms� we provide a few examples �cf�� x�������� x������� and
x���������

Rigorous models of probabilistic �or randomized� algorithms are de�ned by nat
ural extensions of the basic machine model� We will exemplify this approach by
describing the model of probabilistic Turing machines� but we stress that �again�
the speci�c choice of the model is immaterial �as long as it is �reasonable��� A
probabilistic Turing machine is de�ned exactly as a nondeterministic machine �see
the �rst item of De�nition ����� but the de�nition of its computation is fundamen�
tally di�erent� Speci�cally� whereas De�nition ��� refers to the question of whether
or not there exists a computation of the machine that �started on a speci�c input�
reaches a certain con�guration� in case of probabilistic Turing machines we refer
to the probability that this event occurs� when at each step a choice is selected uni�
formly among the relevant possible choices available at this step� That is� if the
transition function of the machine maps the current statesymbol pair to several

���� PROBABILISTIC POLYNOMIALTIME ���

possible triples� then in the corresponding probabilistic computation one of these
triples is selected at random �with equal probability� and the next con�guration is
determined accordingly� These random choices may be viewed as the internal coin
tosses of the machine� �Indeed� as in the case of nondeterministic machines� we
may assume without loss of generality that the transition function of the machine
maps each statesymbol pair to exactly two possible triples� see Exercise �����

We stress the fundamental di�erence between the �ctitious model of a non
deterministic machine and the realistic model of a probabilistic machine� In the case
of a nondeterministic machine we consider the existence of an adequate sequence
of choices �leading to a desired outcome�� and ignore the question of how these
choices are actually made� In fact� the selection of such a sequence of choices is
merely a mental experiment� In contrast� in the case of a probabilistic machine� at
each step a real random choice is made �uniformly among a set of predetermined
possibilities�� and we consider the probability of reaching a desired outcome�

In view of the foregoing� we consider the output distribution of such a proba
bilistic machine on �xed inputs� that is� for a probabilistic machine M and string
x � f	� �g�� we denote by M�x� the output distribution of M when invoked on
input x� where the probability is taken uniformly over the machine
s internal coin
tosses� Needless to say� we will consider the probability that M�x� is a �correct�
answer� that is� in the case of a search problem �resp�� decision problem� we will be
interested in the probability that M�x� is a valid solution for the instance x �resp��
represents the correct decision regarding x��

The foregoing description views the internal coin tosses of the machine as taking
place onthe�y� that is� these coin tosses are performed on�line by the machine
itself� An alternative model is one in which the sequence of coin tosses is provided
by an external device� on a special �random input� tape� In such a case� we view
these coin tosses as performed o��line� Speci�cally� we denote by M ��x� r� the
�uniquely de�ned� output of the residual deterministic machineM �� when given the
�primary� input x and random input r� Indeed� M � is a deterministic machine that
takes two inputs �the �rst representing the actual input and the second representing

the �random input��� but we consider the random variable M�x�
def
� M ��x� U�jxj���

where
�jxj� denotes the number of coin tosses �expected� by M ��x� ���
These two perspectives on probabilistic algorithms are closely related� Clearly�

the aforementioned residual deterministic machine M � yields the online machine
M that on input x selects at random a string r of adequate length� and invokes
M ��x� r�� On the other hand� the computation of any online machineM is captured
by the residual machineM � that emulates the actions ofM�x� based on an auxiliary
input r �obtained by M � and representing a possible outcome of the internal coin
tosses of M�� �Indeed� there is no harm in supplying more coin tosses than are
actually used by M � and so the length of the aforementioned auxiliary input may
be set to equal the time complexity of M �� For sake of clarity and future reference�
we state the following de�nition�

De�nition ��� �online and o�line formulations of probabilistic polynomialtime��

� We say that M is a on�line probabilistic polynomial�time machine if there exists

��	 CHAPTER �� RANDOMNESS AND COUNTING

a polynomial p such that when invoked on any input x � f	� �g�� machine M
always halts within at most p�jxj� steps �regardless of the outcome of its
internal coin tosses�� In such a case M�x� is a random variable�

� We say thatM � is a o	�line probabilistic polynomial�time machine if there exists
a polynomial p such that� for every x � f	� �g� and r � f	� �gpjxj�� when
invoked on the primary input x and the random�input sequence r� machine M �

halts within at most p�jxj� steps� In such a case� we will consider the random
variable M ��x� Upjxj���

Clearly� in the context of timecomplexity� the online and o�line formulations are
equivalent �i�e�� given a online probabilistic polynomialtime machine we can derive
a functionally equivalent o�line �probabilistic polynomialtime� machine� and vice
versa�� Thus� in the sequel� we will freely use whichever is more convenient�

Failure probability� A major aspect of randomized algorithms �probabilistic
machines� is that they may fail �see Exercise ����� That is� with some speci�ed
��failure�� probability� these algorithms may fail to produce the desired output�
We discuss two aspects of this failure� its type and its magnitude�

�� The type of failure is a qualitative notion� One aspect of this type is whether�
in case of failure� the algorithm produces a wrong answer or merely an indica
tion that it failed to �nd a correct answer� Another aspect is whether failure
may occur on all instances or merely on certain types of instances� Let us
clarify these aspects by considering three natural types of failure� giving rise
to three di�erent types of algorithms�

�a� The most liberal notion of failure is the one of two�sided error� This
term originates from the setting of decision problems� where it means
that �in case of failure� the algorithm may err in both directions �i�e��
it may rule that a yesinstance is a noinstance� and vice versa�� In the
case of search problems twosided error means that� when failing� the
algorithm may output a wrong answer on any input� Furthermore� the
algorithm may falsely rule that the input has no solution and it may
also output a wrong solution �both in case the input has a solution and
in case it has no solution��

�b� An intermediate notion of failure is the one of one�sided error� Again� the
term originates from the setting of decision problems� where it means
that the algorithm may err only in one direction �i�e�� either on yes
instances or on noinstances�� Indeed� there are two natural cases de
pending on whether the algorithm errs on yesinstances but not on no
instances� or the other way around� Analogous cases occur also in the
setting of search problems� In one case the algorithm never outputs
a wrong solution but may falsely rule that the input has no solution�
In the other case the indication that an input has no solution is never
wrong� but the algorithm may output a wrong solution�

���� PROBABILISTIC POLYNOMIALTIME ���

�c� The most conservative notion of failure is the one of zero�sided error� In
this case� the algorithm
s failure amounts to indicating its failure to �nd
an answer �by outputting a special don�t know symbol�� We stress that
in this case the algorithm never provides a wrong answer�

Indeed� the forgoing discussion ignores the probability of failure� which is the
subject of the next item�

�� The magnitude of failure is a quantitative notion� It refer to the probability
that the algorithm fails� where the type of failure is �xed �e�g�� as in the
forgoing discussion��

When actually using a randomized algorithm we typically wish its failure
probability to be negligible� which intuitively means that the failure event is
so rare that it can be ignored in practice� Formally� we say that a quantity is
negligible if� as a function of the relevant parameter �e�g�� the input length��
this quantity vanishes faster than the reciprocal of any positive polynomial�

For ease of presentation� we sometimes consider alternative upperbounds
on the probability of failure� These bounds are selected in a way that al
lows �and in fact facilitates� �error reduction� �i�e�� converting a probabilistic
polynomialtime algorithm that satis�es such an upperbound into one in
which the failure probability is negligible�� For example� in case of twosided
error we need to be able to distinguish the correct answer from wrong an
swers by sampling� and in the other types of failure �hitting� a correct answer
su�ces�

In the following three subsections� we will discuss complexity classes corresponding
to the aforementioned three types of failure� For sake of simplicity� the failure
probability itself will be set to a constant that allows error reduction�

Randomized reductions� Before turning to the more detailed discussion� we
note that randomized reductions play an important role in complexity theory� Such
reductions can be de�ned analogously to the standard CookReductions �resp��
Karpreductions�� and again a discussion of the type and magnitude of the failure
probability is in place� For clarity� we spellout the twosided error versions�

� In analogy to De�nition ���� we say that a problem ' is probabilistic polynomial�
time reducible to a problem '� if there exists a probabilistic polynomialtime
oracle machine M such that� for every function f that solves '� and for every
x� with probability at least ����jxj�� the output Mf �x� is a correct solution
to the instance x� where � is a negligible function�

� In analogy to De�nition ���	� we say that a decision problem S is reducible
to a decision problem S� via a randomized Karp�reduction if there exists a
probabilistic polynomialtime algorithm A such that� for every x� it holds that
Pr��S��A�x�� � �S�x�� � ����jxj�� where �S �resp�� �S�� is the characteristic
function of S �resp�� S�� and � is a negligible function�

These reductions preserve e�cient solvability and are transitive� see Exercise ����

��� CHAPTER �� RANDOMNESS AND COUNTING

���� Two	sided error
 The complexity class BPP

In this section we consider the most liberal notion of probabilistic polynomialtime
algorithms that is still meaningful� We allow the algorithm to err on each input�
but require the error probability to be negligible� The latter requirement guarantees
the usefulness of such algorithms� because in reality we may ignore the negligible
error probability�

Before focusing on the decision problem setting� let us say a few words on the
search problem setting �see De�nition ����� Following the previous paragraph� we
say that a probabilistic �polynomialtime� algorithm A solves the search problem

of the relation R if for every x � SR �i�e�� R�x�
def
� fy � �x� y� �Rg �� �� it holds

that Pr�A�x� � R�x�� � � � ��jxj� and for every x �� SR it holds that Pr�A�x� �
�� � ����jxj�� where � is a negligible function� Note that we did not require that�
when invoked on input x that has a solution �i�e�� R�x� �� ��� the algorithm always
outputs the same solution� Indeed� a stronger requirement is that for every such x
there exists y � R�x� such that Pr�A�x�� y� � �� ��jxj�� The latter version and
quantitative relaxations of it allow for errorreduction �see Exercise �����

Turning to decision problems� we consider probabilistic polynomialtime algo
rithms that err with negligible probability� That is� we say that a probabilistic
�polynomialtime� algorithm A decides membership in S if for every x it holds
that Pr�A�x� � �S�x�� � � � ��jxj�� where �S is the characteristic function of S
�i�e�� �S�x� � � if x � S and �S�x� � 	 otherwise� and � is a negligible function�
The class of decision problems that are solvable by probabilistic polynomialtime
algorithms is denoted BPP� standing for Boundederror Probabilistic Polynomial
time� Actually� the standard de�nition refers to machines that err with probability
at most ����

De�nition ��� �the class BPP�� A decision problem S is in BPP if there exists
a probabilistic polynomial�time algorithm A such that for every x � S it holds that
Pr�A�x� � �� � ��� and for every x �� S it holds that Pr�A�x� � 	� � ����

The choice of the constant ��� is immaterial� and any other constant greater than
��� will do �and yields the very same class�� Similarly� the complementary constant
��� can be replaced by various negligible functions �while preserving the class��
Both facts are special cases of the robustness of the class� which is established
using the process of error reduction�

Error reduction �or con�dence ampli�cation�� For � � N �	� 	� �� let
BPP� denote the class of decision problems that can be solved in probabilistic
polynomialtime with error probability upperbounded by �� that is� S � BPP� if
there exists a probabilistic polynomialtime algorithm A such that for every x it
holds that Pr�A�x� �� �S�x�� � ��jxj�� By de�nition� BPP � BPP���� However� a
wide range of other classes also equal BPP� In particular� we mention two extreme
cases�

�� For every positive polynomial p and ��n� � ������ ���p�n��� the class BPP�

equals BPP� That is� any error that is ��noticeably�� bounded away from

���� PROBABILISTIC POLYNOMIALTIME ���

��� �i�e�� error ������ ���poly�n��� can be reduced to an error of ����

�� For every positive polynomial p and ��n� � ��pn�� the class BPP� equals
BPP� That is� an error of ��� can be further reduced to an exponentially
vanishing error�

Both facts are proved by invoking the weaker algorithm �i�e�� the one having a
larger error probability bound� for an adequate number of times� and ruling by
majority� We stress that invoking a randomized machine several times means that
the random choices made in the various invocations are independent of one another�
The success probability of such a process is analyzed by applying an adequate Law
of Large Numbers �see Exercise �����

������� On the power of randomization

Let us turn back to the natural question raised at the beginning of Section ����
that is� was anything gained by extending the de�nition of e�cient computation to
include also probabilistic polynomial�time ones�

This phrasing seems too generic� We certainly gained the ability to toss coins
�and generate various distributions�� More concretely� randomized algorithms are
essential in many settings �see� e�g�� Chapter �� Section �	����� Appendix C� and
Appendix D��� and seem essential in others �see� e�g�� Sections ������������� What
we mean to ask here is whether allowing randomization increases the power of
polynomial�time algorithms also in the restricted context of solving decision and
search problems�

The question is whether BPP extends beyond P �where clearly P � BPP��
It is commonly conjectured that the answer is negative� Speci�cally� under some
reasonable assumptions� it holds that BPP � P �see Part � of Theorem ������ We
note� however� that a polynomial slowdown occurs in the proof of the latter result�
that is� randomized algorithms that run in time t��� are emulated by determinis
tic algorithms that run in time poly�t����� This slowdown seems inherent to the
aforementioned approach �see x��������� Furthermore� for some concrete problems
�most notably primality testing �cf� x���������� the known probabilistic polynomial
time algorithm is signi�cantly faster �and conceptually simpler� than the known
deterministic polynomialtime algorithm� Thus� we believe that even in the con
text of decision problems� the notion of probabilistic polynomialtime algorithms
is advantageous�

We note that the fundamental nature of BPP will remain intact even in the
�rather unlikely� case that it turns out that randomization o�ers no computa
tional advantage �i�e�� even if every problem that can be decided in probabilistic
polynomialtime can be decided by a deterministic algorithm of essentially the
same complexity�� Such a result would address a fundamental question regarding
the power of randomness��

�By analogy� establishing that IP � PSPACE �cf� Theorem 	��� does not diminish the
importance of any of these classes� because each class models something fundamentally di�erent�

��� CHAPTER �� RANDOMNESS AND COUNTING

BPP is in the Polynomial�TimeHierarchy� While it may be that BPP � P �
it is not known whether or not BPP is contained in NP � The source of trouble
is the twosided error probability of BPP� which is incompatible with the absolute
rejection of noinstances required in the de�nition of NP �see Exercise ����� In
view of this ignorance� it is interesting to note that BPP resides in the second
level of the PolynomialTime Hierarchy �i�e�� BPP � ���� This is a corollary of
Theorem ����

Trivial derandomization� A straightforward way of eliminating randomness
from an algorithm is trying all possible outcomes of its internal coin tosses� collect
ing the relevant statistics and deciding accordingly� This yields BPP � PSPACE �
EXP � which is considered the trivial derandomization of BPP� In Section ��� we
will consider various nontrivial derandomizations of BPP� which are known under
various intractability assumptions� The interested reader� who may be puzzled by
the connection between derandomization and computational di�culty� is referred
to Chapter ��

Non�uniform derandomization� In many settings �and speci�cally in the con
text of solving search and decision problems�� the power of randomization is su
perseded by the power of nonuniform advice� Intuitively� the nonuniform advice
may specify a sequence of coin tosses that is good for all �primary� inputs of a
speci�c length� In the context of solving search and decision problems� such an
advice must be good for each of these inputs�� and thus its existence is guaran
teed only if the error probability is low enough �so as to support a union bound��
The latter condition can be guaranteed by errorreduction� and thus we get the
following result�

Theorem ��� BPP is �strictly� contained in P�poly�

Proof� Recall that P�poly contains undecidable problems �Theorem ����� which
are certainly not in BPP� Thus� we focus on showing that BPP � P�poly� By
the discussion regarding errorreduction� for every S � BPP there exists a �de
terministic� polynomialtime algorithm A and a polynomial p such that for every
x it holds that Pr�A�x� Upjxj�� �� �S�x�� � ��jxj� Using a union bound� it follows
that Prr�f���gp�n� ��x � f	� �gn s�t� A�x� r� �� �S�x�� � �� Thus� for every n � N �
there exists a string rn � f	� �gpn� such that for every x � f	� �gn it holds that
A�x� rn� � �S�x�� Using such a sequence of rn
s as advice� we obtain the desired
nonuniform machine �establishing S � P�poly��

Digest� The proof of Theorem ��� combines errorreduction with a simple ap
plication of the Probabilistic Method �cf� ��	��� where the latter refers to proving
the existence of an object by analyzing the probability that a random object is
adequate� In this case� we sought an nonuniform advice� and proved it existence

�In other contexts �see� e�g�� Chapters � and
�� it su�ces to have an advice that is good on
the average� where the average is taken over all relevant �primary� inputs�

���� PROBABILISTIC POLYNOMIALTIME ��

by analyzing the probability that a random advice is good� The latter event was
analyzed by identifying the space of advice with the set of possible sequences of
internal coin tosses of a randomized algorithm�

������� A probabilistic polynomial�time primality test

Teaching note� Although primality has been recently shown to be in P� we believe

that the following example provides a nice illustration to the power of randomized

algorithms�

We present a simple probabilistic polynomialtime algorithm for deciding whether
or not a given number is a prime� The only Number Theoretic facts that we use
are�

Fact �� For every prime p � �� each quadratic residue mod p has exactly two square
roots mod p �and they sumup to p���

Fact �� For every �odd and nonintegerpower� composite numberN � each quadratic
residue mod N has at least four square roots mod N �

Our algorithm uses as a blackbox an algorithm� denoted sqrt� that given a prime
p and a quadratic residue mod p� denoted s� returns the smallest among the two
modular square roots of s� There is no guarantee as to what the output is in the
case that the input is not of the aforementioned form �and in particular in the case
that p is not a prime�� Thus� we actually present a probabilistic polynomialtime
reduction of testing primality to extracting square roots modulo a prime �which is
a search problem with a promise� see Section �������

Construction ��	 �the reduction�� On input a natural number N � � do

�� If N is either even or an integer�power� then reject�

� Uniformly select r � f�� ���� N � �g� and set s� r� mod N �

�� Let r� � sqrt�s�N�� If r� � &r �mod N� then accept else reject�

Indeed� in the case that N is composite� the reduction invokes sqrt on an illegiti
mate input �i�e�� it makes a query that violates the promise of the problem at the
target of the reduction�� In such a case� there is not guarantee as to what sqrt an
swers� but actually a bluntly wrong answer only plays in our favor� In general� we
will show that if N is composite� then the reduction rejects with probability at least
���� regardless of how sqrt answers� We mention that there exists a probabilistic
polynomialtime algorithm for implementing sqrt �see Exercise ��� ��

�That is� for every r � f�� ���� p��g� the equation x� � r� �mod p� has two solutions modulo p
�i�e�� r and p� r��

�This can be checked by scanning all possible powers e � f�� ���� log�Ng� and �approximately�
solving the equation xe � N for each value of e �i�e�� �nding the smallest integer i such that
ie � N�� Such a solution can be found by binary search�

��� CHAPTER �� RANDOMNESS AND COUNTING

Proposition ��� Construction ��� constitutes a probabilistic polynomial�time re�
duction of testing primality to extracting square roots module a prime� Further�
more� if the input is a prime then the reduction always accepts� and otherwise it
rejects with probability at least ����

We stress that Proposition �� refers to the reduction itself� that is� sqrt is viewed
as a ��perfect�� oracle that� for every prime P and quadratic residue s �mod P ��
returns r � s�� such that r� � s �mod P �� Combining Proposition �� with a
probabilistic polynomialtime algorithm that computes sqrt with negligible error
probability� we obtain that testing primality is in BPP�

Proof� By Fact �� on input a prime number N � Construction ��� always accepts
�because in this case� for every r � f�� ���� N��g� it holds that sqrt�r� mod N�N� �
fr�N � rg�� On the other hand� suppose that N is an odd composite that is not
an integerpower� Then� by Fact �� each quadratic residue s has at least four
square roots� and each of these square roots is equally likely to be chosen at Step �
�in other words� s yields no information regarding which of its modular square
roots was selected in Step ��� Thus� for every such s� the probability that either
sqrt�s�N� or N � sqrt�s�N� equal the root chosen in Step � is at most ���� It
follows that� on input a composite number� the reduction rejects with probability
at least ����

Re�ection� Construction ��� illustrates an interesting aspect of randomized al
gorithms �or rather reductions�� that is� the ability to hide information from a sub
routine� Speci�cally� Construction ��� generates a problem instance �N� s� without
disclosing any additional information� Furthermore� a correct solution to this in
stance is likely to help the reduction� that is� a correct answer to the instance �N� s�
provides probabilistic evidence regarding whether N is a prime� where the proba
bility space refers to the missing information �regarding how s was generated��

Comment� Testing primality is actually in P � however� the deterministic al
gorithm demonstrating this fact is more complex �and its analysis is even more
complicated��

���� One	sided error
 The complexity classes RP and coRP

In this section we consider notions of probabilistic polynomialtime algorithms
having onesided error� The notion of onesided error refers to a natural partition of
the set of instances� that is� yesinstances versus noinstances in the case of decision
problems� and instances having solution versus instances having no solution in the
case of search problems� We focus on decision problems� and comment that an
analogous treatment can be provided for search problems �see the second paragraph
of Section �������

���� PROBABILISTIC POLYNOMIALTIME ���

De�nition ��� �the class RP��� A decision problem S is in RP if there exists a
probabilistic polynomial�time algorithm A such that for every x � S it holds that
Pr�A�x���� � ��� and for every x �� S it holds that Pr�A�x��	� � ��

The choice of the constant ��� is immaterial� and any other constant greater than
zero will do �and yields the very same class�� Similarly� this constant can be
replaced by ����jxj� for various negligible functions � �while preserving the class��
Both facts are special cases of the robustness of the class �see Exercise �� ��

Observe that RP � NP �see Exercise ���� and that RP � BPP �by the
aforementioned errorreduction�� De�ning coRP � ff	� �g� n S � S � RPg� note
that coRP corresponds to the opposite direction of onesided error probability�
That is� a decision problem S is in coRP if there exists a probabilistic polynomial�
time algorithm A such that for every x � S it holds that Pr�A�x���� � � and for
every x �� S it holds that Pr�A�x��	� � ����

������� Testing polynomial identity

An appealing example of a onesided error randomized algorithm refers to the
problem of determining whether two polynomials are identical� For simplicity� we
assume that we are given an oracle for the evaluation of each of the two polynomials�
An alternative presentation that refers to polynomials that are represented by
arithmetic circuits �cf� Appendix B��� yields a standard decision problem in coRP
�see Exercise ������ Either way� we refer to multivariant polynomials and to the
question of whether they are identical over any �eld �or� equivalently� whether they
are identical over a su�ciently large �nite �eld�� Note that it su�ces to consider
�nite �elds that are larger than the degree of the two polynomials�

Construction �� �PolynomialIdentity Test�� Let n be an integer and F be a
�nite �eld� Given black�box access to p� q � Fn F� uniformly select r�� ���� rn � F�
and accept if and only if p�r�� ���� rn� � q�r�� ���� rn��

Clearly� if p � q then the algorithm always accepts� The following lemma implies
that if p and q are di�erent polynomials� each of total degree at most d over the
�nite �eld F� then the foregoing procedure accepts with probability at most d�jFj�

Lemma ��� Let p � Fn F be a non�zero polynomial of total degree d over the
�nite �eld F� Then

Prr������rn�F�p�r�� ���� rn� � 	� � d

jFj �
Proof� The lemma is proven by induction on n� The base case of n � � follows
immediately by the Fundamental Theorem of Algebra �i�e�� the number of distinct

�The initials RP stands for Random Polynomial�time� which fails to convey the restricted type
of error allowed in this class� The only nice feature of this notation is that it is reminiscent of NP�
thus re#ecting the fact that RP is a randomized polynomial�time class that is contained in NP�

��� CHAPTER �� RANDOMNESS AND COUNTING

roots of a degree d univariant polynomial is at most d�� In the induction step� we
write p as a polynomial in its �rst variable� That is�

p�x�� x�� ���� xn� �

dX
i��

pi�x�� ���� xn� � xi�

where pi is a polynomial of total degree at most d�i� Let i be the largest integer for
which pi is not identically zero� Dismissing the case i � 	 and using the induction
hypothesis� we have

Prr��r������rn�p�r�� r�� ���� rn� � 	�

� Prr������rn�pi�r�� ���� rn� � 	�

$Prr��r������rn�p�r�� r�� ���� rn� � 	 j pi�r�� ���� rn� �� 	�

� d� i

jFj $
i

jFj
where the second term is bounded by �xing any sequence r�� ���� rn for which

pi�r�� ����� rn� �� 	 and considering the univariant polynomial p��x� def
� p�x� r�� ���� rn�

�which by hypothesis is a nonzero polynomial of degree i��

������� Relating BPP to RP

A natural question regarding probabilistic polynomialtime algorithms refers to the
relation between twosided and onesided error probability� For example� is BPP
contained in RP! Loosely speaking� we show that BPP is reducible to coRP
by one�sided error randomized Karpreductions� where the actual statement refers
to the promise problem versions of both classes �brie�y de�ned in the following
paragraph�� Note that BPP is trivially reducible to coRP by two�sided error
randomized Karpreductions� whereas a deterministic reduction of BPP to coRP
would imply BPP � coRP � RP �see Exercise �����

First� we refer the reader to the general discussion of promise problems in
Section ������ Analogously to De�nition ���	� we say that the promise problem
' � �Syes� Sno� is in �the promise problem extension of� BPP if there exists a
probabilistic polynomial�time algorithm A such that for every x � Syes it holds that
Pr�A�x���� � ��� and for every x � Sno it holds that Pr�A�x��	� � ���� Similarly�
' is in coRP if for every x � Syes it holds that Pr�A�x� � �� � � and for every
x � Sno it holds that Pr�A�x��	� � ���� Probabilistic reductions among promise
problems are de�ned by adapting the conventions of Section ������ speci�cally�
queries that violate the promise at the target of the reduction may be answered
arbitrarily�

Theorem ��� Any problem in BPP is reducible by a one�sided error randomized
Karp�reduction to coRP� where coRP �and possibly also BPP� denotes the cor
responding class of promise problems� Speci�cally� the reduction always maps a
no�instance to a no�instance�

���� PROBABILISTIC POLYNOMIALTIME ���

It follows that BPP is reducible by a onesided error randomized Cookreduction to
RP � Thus� using the conventions of Section ����� and referring to classes of promise
problems� we may write BPP � RPRP � In fact� since RPRP � BPPBPP � BPP�
we have BPP � RPRP � Theorem ��� may be paraphrased as saying that the
combination of the onesided error probability of the reduction and the onesided
error probability of coRP can account for the twosided error probability of BPP�
We warn that this statement is not a triviality like � $ � � �� and in particular
we do not know whether it holds for classes of standard decision problems �rather
than for the classes of promise problems considered in Theorem �����

Proof� Recall that we can easily reduce the error probability of BPPalgorithms�
and derive probabilistic polynomialtime algorithms of exponentially vanishing er
ror probability� But this does not eliminate the error �even on �one side�� alto
gether� In general� there seems to be no hope to eliminate the error� unless we
�either do something earthshaking or� change the setting as done when allowing a
onesided error randomized reduction to a problem in coRP � The latter setting can
be viewed as a twomove randomized game �i�e�� a random move by the reduction
followed by a random move by the decision procedure of coRP�� and it enables
applying di�erent quanti�ers to the two moves �i�e�� allowing error in one direction
in the �rst quanti�er and error in the other direction in the second quanti�er��
In the next paragraph� which is inessential to the actual proof� we illustrate the
potential power of this setting�

Teaching note� The following illustration represents an alternative way of proving

Theorem ���� This way seems conceptual simpler but it requires a starting point
or

rather an assumption� that is much harder to establish� where both comparisons are

with respect to the actual proof of Theorem ���
which follows the illustration��

An illustration
 Suppose that for some set S � BPP there exists a polynomial p� and
an o�line BPPalgorithmA� such that for every x it holds that Prr�f���g�p��jxj� �A

��x� r� ��
�S�x�� � ��p

�jxj����� that is� the algorithm uses �p��jxj� bits of randomness and
has error probability smaller than ��p

�jxj���� Note that such an algorithm cannot
be obtained by standard errorreduction �see Exercise ���	�� Anyhow� such a small
error probability allows a partition of the string r such that one part accounts
for the entire error probability on yesinstances while the other part accounts for
the error probability on noinstances� Speci�cally� for every x � S� it holds that
Prr��f���gp��jxj� ���r�� � f	� �gp�jxj��A��x� r�r��� � �� � ���� whereas for every x �� S

and every r� � f	� �gp�jxj� it holds that Prr���f���gp��jxj� �A
��x� r�r��� � �� � ����

Thus� the error on yesinstances is �pushed� to the selection of r�� whereas the
error on noinstances is pushed to the selection of r��� This yields a onesided error
randomized Karpreduction that maps x to �x� r��� where r� is uniformly selected
in f	� �gp�jxj�� such that deciding S is reduced to the coRP problem �regarding
pairs �x� r��� that is decided by the �online� randomized algorithm A�� de�ned
by A���x� r�� def

� A��x� r�Up�jxj��� For details� see Exercise ����� The actual proof�
which avoids the aforementioned hypothesis� follows�

�		 CHAPTER �� RANDOMNESS AND COUNTING

The actual starting point
 Consider any BPPproblem with a characteristic function
� �which� in case of a promise problem� is a partial function� de�ned only over the
promise�� By standard errorreduction� there exists a probabilistic polynomialtime
algorithm A such that for every x on which � is de�ned it holds that Pr�A�x� ��
��x�� � ��jxj�� where � is a negligible function� Looking at the corresponding
o�line algorithm A� and denoting by p the polynomial that bounds the running
time of A� we have

Prr�f���gp�jxj� �A
��x� r� ����x�� � ��jxj� �

�

�p�jxj� �����

for all su�ciently long x
s on which � is de�ned� We show a randomized onesided
error Karpreduction of � to a promise problem in coRP �

The main idea
 As in the illustrating paragraph� the basic idea is �pushing� the
error probability on yesinstances �of �� to the reduction� while pushing the er
ror probability on noinstances to the coRPproblem� Focusing on the case that
��x� � �� this is achieved by augmenting the input x with a random sequence of
�modi�ers� that act on the randominput of algorithm A� such that for a good
choice of modi�ers it holds that for every r � f	� �gpjxj� there exists a modi�er in
this sequence that when applied to r yields r� that satis�es A��x� r�� � �� Indeed�
not all sequences of modi�ers are good� but a random sequence will be good with
high probability and bad sequences will be accounted for in the error probability
of the reduction� On the other hand� using only modi�ers that are permutations
guarantees that the error probability on noinstances only increase by a factor that
equals the number of modi�ers we use� and this error probability will be accounted
for by the error probability of the coRPproblem� Details follow�

The aforementioned modi�ers are implemented by shifts �of the set of all strings
by �xed o�sets�� Thus� we augment the input x with a random sequence of shifts�
denoted s�� ���� sm � f	� �gpjxj�� such that for a good choice of �s�� ���� sm� it holds
that for every r � f	� �gpjxj� there exists an i � �m� such that A��x� r	si� � �� We
will show that� for any yesinstance x and a suitable choice of m� with very high

probability� a random sequence of shifts is good� Thus� for A���hx� s�� ���� smi� r� def
�

�mi��A��x� r 	 si�� it holds that� with very high probability over the choice of
s�� ���� sm� a yesinstance x is mapped to an augmented input hx� s�� ���� smi that
is accepted by A�� with probability �� On the other hand� the acceptance probabil
ity of augmented noinstances �for any choice of shifts� only increases by a factor of
m� In further detailing the foregoing idea� we start by explicitly stating the simple
randomized mapping �to be used as a randomized Karpreduction�� and next de�ne
the target promise problem�

The randomized mapping
 On input x � f	� �gn� we set m � p�jxj�� uniformly select
s�� ���� sm � f	� �gm� and output the pair �x� s�� where s � �s�� ���� sm�� Note that
this mapping� denoted M � is easily computable by a probabilistic polynomialtime
algorithm�

The promise problem
 We de�ne the following promise problem� denoted ' �
�'yes�'no�� having instances of the form �x� s� such that jsj � p�jxj���

���� PROBABILISTIC POLYNOMIALTIME �	�

� The yesinstances are pairs �x� s�� where s � �s�� ���� sm� and m � p�jxj�� such
that for every r � f	� �gm there exists an i satisfying A��x� r 	 si� � ��

� The noinstances are pairs �x� s�� where again s � �s�� ���� sm� and m � p�jxj��
such that for at least half of the possible r � f	� �gm� for every i it holds that
A��x� r 	 si� � 	�

To see that ' is indeed a coRP promise problem� we consider the following random
ized algorithm� On input �x� �s�� ���� sm��� wherem � p�jxj� � js�j � � � � � jsmj� the
algorithm uniformly selects r � f	� �gm� and accepts if and only if A��x� r	 si� � �
for some i � f�� ����mg� Indeed� yesinstances of ' are accepted with probability ��
whereas noinstances of ' are rejected with probability at least ����

Analyzing the reduction� We claim that the randomized mapping M reduces � to
' with onesided error� Speci�cally� we will prove two claims�

Claim �� If x is a yesinstance �i�e�� ��x� � �� then Pr�M�x� � 'yes� � ����

Claim �� If x is a noinstance �i�e�� ��x� � 	� then Pr�M�x� � 'no� � ��

We start with Claim �� which is easier to establish� Recall thatM�x� � �x� �s�� ���� sm���
where s�� ���� sm are uniformly and independently distributed in f	� �gm� We note
that �by Eq� ����� and ��x� � 	�� for every possible choice of s�� ���� sm � f	� �gm
and every i � f�� ����mg� the fraction of r
s that satisfy A��x� r 	 si� � � is at most
�
�m � Thus� for every possible choice of s�� ���� sm � f	� �gm� for at least half of the
possible r � f	� �gm there exists an i such that A��x� r 	 si� � � holds� Hence� the
reduction M always maps the noinstance x �i�e�� ��x� � 	� to a noinstance of '
�i�e�� an element of 'no��

Turning to Claim � �which refers to ��x� � ��� we will show shortly that in
this case� with very high probability� the reduction M maps x to a yesinstance of
'� We upperbound the probability that the reduction fails �in case ��x� � �� as
follows�

Pr�M�x� �� 'yes� � Prs������sm ��r � f	� �gm s�t� ��i� A��x� r 	 si� � 	�

�
X

r�f���gm
Prs������sm ���i� A��x� r 	 si� � 	�

�
X

r�f���gm

mY
i��

Prsi �A
��x� r 	 si� � 	�

� �m �

�

�m

�m
where the last inequality is due to Eq� ������ It follows that if ��x� � � then
Pr�M�x� � 'yes� � ���� Thus� the randomized mapping M reduces � to '� with
onesided error on yesinstances� Recalling that ' � coRP � the theorem follows�

�	� CHAPTER �� RANDOMNESS AND COUNTING

BPP is in PH� The traditional presentation of the ideas underlying the proof of
Theorem ��� uses them for showing that BPP is in the Polynomial�time Hierarchy
�where both classes refer to standard decision problems�� Speci�cally� to prove that
BPP � �� �see De�nition ����� de�ne the polynomialtime computable predicate

��x� s� r�
def
�
Wm
i���A

��x� si 	 r� � ��� and observe that

��x� � � $ �s�r ��x� s� r� �����

��x� � 	 $ �s�r ���x� s� r� �����

�where Eq� ����� is equivalent to ��s�r ��x� s� r��� Note that Claim � �in the proof
of Theorem ���� establishes that most sequences s satisfy �r ��x� s� r�� whereas
Eq� ����� only requires the existence of at least one such s� Similarly� Claim �
establishes that for every s most choices of r violate ��x� s� r�� whereas Eq� �����
only requires that for every s there exists at least one such r� We comment that
the same proof idea yields a variety of similar statements �e�g�� BPP � MA� where
MA is a randomized version of NP de�ned in Section ������

���� Zero	sided error
 The complexity class ZPP

We now consider probabilistic polynomialtime algorithms that never err� but may
fail to provide an answer� Focusing on decision problems� the corresponding class is
denoted ZPP �standing for Zeroerror Probabilistic Polynomialtime�� The stan
dard de�nition of ZPP is in terms of machines that output � �indicating fail
ure� with probability at most ���� That is� S � ZPP if there exists a proba�
bilistic polynomial�time algorithm A such that for every x � f	� �g� it holds that
Pr�A�x� � f�S�x���g� � � and Pr�A�x� � �S�x�� � ���� where �S�x� � � if x � S
and �S�x� � 	 otherwise� Again� the choice of the constant �i�e�� ���� is immate
rial� and �errorreduction� can be performed showing that algorithms that yield a
meaningful answer with noticeable probability can be ampli�ed to algorithms that
fail with negligible probability �see Exercise �����

Theorem ���� ZPP � RP � coRP�
Proof Sketch� The fact that ZPP � RP �as well as ZPP � coRP� follows by a
trivial transformation of the ZPPalgorithm� that is� replacing the failure indicator
� by a �no� verdict �resp�� �yes� verdict�� Note that the choice of what to say in
case the ZPPalgorithm fails is determined by the type of error that we are allowed�

In order to prove that RP � coRP � ZPP we combine the two algorithm
guaranteed for a set in RP � coRP � The point is that we can trust the RP
algorithm �resp�� coNPalgorithm� in the case that it says �yes� �resp�� �no��� but
not in the case that it says �no� �resp�� �yes��� Thus� we invoke both algorithms�

�Speci�cally� the classMA is de�ned by allowing the veri�cation algorithm V in De�nition ���
to be probabilistic and err on no�instances that is� for every x � S there exists y � f�� �gpoly�jxj�
such that Pr�V �x� y� � �� � �� whereas for every x �� S and every y it holds that Pr�V �x� y� �
�� � �
�� We note that MA can be viewed as a hybrid of the two aforementioned pairs of
conditions speci�cally� each problem in MA satisfy the conjunction of Eq� ����� and Claim ��
Other randomized versions of NP �i�e�� variants of MA� are considered in Exercise �����

���� PROBABILISTIC POLYNOMIALTIME �	�

and output a de�nite answer only if we obtain an answer that we can trust �which
happen with high probability�� Otherwise� we output ��

Expected polynomial�time� In some sources ZPP is de�ned in terms of ran
domized algorithms that run in expected polynomialtime and always output the
correct answer� This de�nition is equivalent to the one we used �see Exercise �����

���� Randomized Log	Space

In this section we discuss probabilistic polynomialtime algorithms that are further
restricted such that they are allowed to use only a logarithmic amount of space�

����	�� De�nitional issues

When de�ning spacebounded randomized algorithms� we face a problem analogous
to the one discussed in the context of nondeterministic spacebounded computation
�see Section ���� Speci�cally� the online and the o�line versions �formulated in
De�nition ���� are no longer equivalent� unless we restrict the o�line machine to
access its randominput tape in a unidirectional manner� The issue is that� in the
context of spacebounded computation �and unlike in the case that we only care
about timebounds�� the outcome of the internal coin tosses �in the online model�
cannot be recorded for free� Bearing in mind that� in the current context� we wish
to model real algorithms �rather than present a �ctitious model that captures a
fundamental phenomena as in Section ���� it is clear that using the on�line version
is the natural choice�

An additional issue that arises is the need to explicitly bound the runningtime
of spacebounded randomized algorithms� Recall that� without loss of generality�
the number of steps taken by a spacebounded nondeterministic machine is at
most exponential in its space complexity� because the shortest path between two
con�gurations in the �directed� graph of possible con�gurations is upperbounded
by its size �which in turn is exponential in the spacebound�� This reasoning fails in
the case of randomized algorithms� because the shortest path between two con�g
urations does not bound the expected number of random steps required for going
from the �rst con�guration to the second one� In fact� as we shall shortly see�
failing to upperbound the running time of logspace randomized algorithms seems
to allow them too much power� that is� such �unrestricted� logspace randomized
algorithms can emulate nondeterministic logspace computations �in exponential
time�� The emulation consists of repeatedly invoking the NLmachine� while using
random choices in the role of the nondeterministic moves� If the input is a yes
instance then� in each attempt� with probability at least ��t� we �hit� an accepting
tstep �nondeterministic� computation� where t is polynomial in the input length�
Thus� the randomized machine accepts such a yesinstance after an expected num
ber of �t trials� To allow for the rejection of noinstances �rather than looping
in�nitely in vain�� we wish to implement a counter that counts till �t �or so� and

�	� CHAPTER �� RANDOMNESS AND COUNTING

reject the input if this number of trials have failed� We need to implement such a
counter within space O�log t� rather than t �which is easy�� In fact� it su�ces to
have a �randomized counter� that� with high probability� counts to approximately
�t� The implementation of such a counter is left to Exercise ����� and using it
we may obtain a randomized algorithm that halts with high probability �on every
input�� always rejects a noinstance� and accepts each yesinstance with probability
at least ����

In light of the foregoing discussion� when de�ning randomized logspace algo
rithms we explicitly require that the algorithms halt in polynomialtime� Modulo
this convention� the classRL �resp�� BPL� relates toNL analogously to the relation
of RP �resp�� BPP� to NP � Speci�cially� the probabilistic acceptance condition of
RL �resp�� BPL� is as in the case of RP �resp�� BPP��
De�nition ���� �the classes RL and BPL�� We say that a randomized log�space
algorithm is admissible if it always halts in a polynomial number of steps�

� A decision problem S is in RL if there exists an admissible �online� random�
ized log�space algorithm A such that for every x � S it holds that Pr�A�x� �
�� � ��� and for every x �� S it holds that Pr�A�x� � 	� � ��

� A decision problem S is in BPL if there exists an admissible �online� random�
ized log�space algorithm A such that for every x � S it holds that Pr�A�x� �
�� � ��� and for every x �� S it holds that Pr�A�x� � 	� � ����

Clearly� RL � NL � P and BPL � P � Note that the classes RL and BPL remain
unchanged even if we allow the algorithms to run for expected polynomialtime and
have nonhalting computations� Such algorithms can be easily transformed into
admissible algorithms by truncating long computations� while using a �standard�
counter �which can be implemented in logarithmicspace�� Also note that error
reduction is applicable in the current setting �while essentially preserving both the
time and space bounds��

����	�� The accidental tourist sees it all

An appealing example of a randomized logspace algorithm is presented next� It
refers to the problem of deciding undirected connectivity� and demonstrated that
this problem is in RL� �Recall that in Section ���� we proved that this problem is
actually in L� but the algorithm and its analysis were more complicated�� Recall
that Directed Connectivity is complete for NL �under logspace reductions�� For
sake of simplicity� we consider the following version of undirected connectivity�
which is equivalent under logspace reductions to the version in which one needs
to determine whether or not the input �undirected� graph is connected� In the
current version� the input consists of a triple �G� s� t�� where G is an undirected
graph� s� t are two vertices in G� and the task is to determine whether or not s and
t are connected in G�

Construction ���� On input �G� s� t�� the randomized algorithm starts a poly�jGj��
long random walk at vertex s� and accepts the triplet if and only if the walk passed

��	� COUNTING �	

through the vertex t� By a random walk we mean that at each step the algorithm
selects uniformly one of the neighbors of the current vertex and moves to it�

Observe that the algorithm can be implemented in logarithmic space �because we
only need to store the current vertex as well as the number of steps taken so far��
Obviously� if s and t are not connected in G then the algorithm always rejects
�G� s� t�� Proposition ���� implies that undirected connectivity is indeed in RL�
Proposition ���� If s and t are connected in G � �V�E� then a random walk of
length O�jV j � jEj� starting at s passes through t with probability at least ����

In other words� a random walk starting at s visits all vertices of the connected
component of s �i�e�� it sees all that there is to see��

Proof Sketch� We will actually show that if G is connected then� with probability
at least ���� a random walk starting at s visits all the vertices of G� For any pair of
vertices �u� v�� letXu�v be a random variable representing the number of steps taken
in a random walk starting at u until v is �rst encountered� The reader may verify
that for every edge fu� vg � E it holds that E�Xu�v� � �jEj� see Exercise ����� Next�
we let cover�G� denote the expected number of steps in a random walk starting at s
and ending when the last of the vertices of V is encountered� Our goal is to upper
bound cover�G�� Towards this end� we consider an arbitrary directed cyclictour
C that visits all vertices in G� and note that

cover�G� �
X

u�v��C
E�Xu�v� � jCj � �jEj�

In particular� selecting C as a traversal of some spanning tree of G� we conclude
that cover�G� � � � jV j � jEj� Thus� with probability at least ���� a random walk
of length � � jV j � jEj starting at s visits all vertices of G�

��� Counting

We now turn to a new type of computational problems� which vastly generalize
decision problems of the NPtype� We refer to counting problems� and more specif
ically to counting objects that can be e�ciently recognized� The search and decision
versions of NP provide suitable de�nitions of e�ciently recognized objects� which
in turn yield corresponding counting problems�

�� For each search problem having e�ciently checkable solutions �i�e�� a relation
R � f	� �g�� f	� �g� in PC �see De�nition ������ we consider the problem of
counting the number of solutions for a given instance� That is� on input x�
we are required to output jfy � �x� y��Rgj�

�� For each decision problem S in NP � and each corresponding veri�cation
procedure V �as in De�nition �� �� we consider the problem of counting the
number of NPwitnesses for a given instance� That is� on input x� we are
required to output jfy � V �x� y���gj�

�	� CHAPTER �� RANDOMNESS AND COUNTING

We shall consider these types of counting problems as well as relaxations �of
these counting problems� that refer to approximating the said quantities �see Sec
tions ����� and ������ respectively�� Other related topics include �problems with
unique solutions� �see Section ������ and �uniform generation of solutions� �see
Section ������� Interestingly� randomized procedures will play an important role in
the results regarding the aforementioned types of problems�

���� Exact Counting

In continuation to the foregoing discussion� we de�ne the class of problems con
cerned with counting e�ciently recognized objects� �Recall that PC denotes the
class of search problems having polynomially long solutions that are e�ciently
checkable� see De�nition �����

De�nition ���	 �counting e�ciently recognized objects � �P�� The class �P
consists of all functions that count solutions to a search problem in PC� That is�
f � f	� �g� N is in �P if there exists R � PC such that� for every x� it holds
that f�x� � jR�x�j� where R�x� � fy � �x� y��Rg� In this case we say that f is the
counting problem associated with R� and denote the latter by �R �i�e�� �R � f��

Every decision problem in NP is Cookreducible to �P � because every such prob
lem can be cast as deciding membership in SR � fx � jR�x�j � 	g for some R � PC
�see Section ������� It also holds that BPP is Cookreducible to �P �see Exer
cise ������ The class �P is sometimes de�ned in terms of decision problems� as is
implicit in the following proposition�

Proposition ���� �a decisional version of �P�� For any f � �P� deciding mem�

bership in Sf
def
� f�x�N� � f�x��Ng is computationally equivalent to computing f �

Actually� the claim holds for any function f � f	� �g� N for which there exists a
polynomial p such that for every x � f	� �g� it holds that f�x� � �pjxj��

Proof� Since the relation R vouching for f � �P �i�e�� f�x� � jR�x�j� is poly
nomially bounded� there exists a polynomial p such that for every x it holds that
f�x� � �pjxj�� Deciding membership in Sf is easily reduced to computing f �i�e��
we accept the input �x�N� if and only if f�x� � N�� Computing f is reducible to
deciding Sf by using a binary search �see Exercise ����� This relies on the fact that�
on input x and oracle access to Sf � we can determine whether or not f�x� � N by
making the query �x�N�� Note that we know a priori that f�x� � �	� �pjxj���

The counting class �P is also related to the problem of enumerating all possible
solutions to a given instance �see Exercise ���	��

������� On the power of �P
As indicated� NP � BPP is �easily� reducible to �P � Furthermore� as stated in
Theorem ����� the entire PolynomialTime Hierarchy �as de�ned in Section ���� is
Cookreducible to �P �i�e�� PH � P�P�� On the other hand� any problem in �P
is solvable in polynomial space� and so P�P � PSPACE �

��	� COUNTING �	�

Theorem ���� Every set in PH is Cook�reducible to �P�

We do not present a proof of Theorem ���� here� because the known proofs are
rather technical� Furthermore� one main idea underlying these proofs appears in
a more clear form in the proof of Theorem ����� Nevertheless� in Section F�� we
present a proof of a related result� which implies that PH is reducible to �P via
randomized Karpreductions�

������� Completeness in �P
The de�nition of �Pcompleteness is analogous to the de�nition ofNPcompleteness�
That is� a counting problem f is �P�complete if f � �P and every problem in �P
is Cook�reducible to f �

We claim that the counting problems associated with the NPcomplete problems
presented in Section ����� are all �Pcomplete� We warn that this fact is not
due to the mere NPcompleteness of these problems� but rather to an additional
property of the reductions establishing their NPcompleteness� Speci�cally� the
Karpreductions that were used �or variants of them� have the extra property of
preserving the number of NPwitnesses �as captured by the following de�nition��

De�nition ��� �parsimonious reductions�� Let R�R� � PC and let g be a Karp�
reduction of SR � fx � R�x� �� �g to SR� � fx � R��x� �� �g� where R�x� � fy �
�x� y� � Rg and R��x� � fy � �x� y� � R�g� We say that g is parsimonious �with
respect to R and R�� if for every x it holds that jR�x�j � jR��g�x��j� In such a case
we say that g is a parsimonious reduction of R to R��

We stress that the condition of being parsimonious refers to the two underlying
relations R and R� �and not merely to the sets SR and SR��� The requirement
that g is a Karpreduction is partially redundant� because if g is polynomialtime
computable and for every x it holds that jR�x�j � jR��g�x��j� then g constitutes a
Karpreduction of SR to SR� � Speci�cally� jR�x�j � jR��g�x��j implies that jR�x�j �
	 �i�e�� x � SR� if and only if jR��g�x��j � 	 �i�e�� g�x� � SR��� The reader may
easily verify that the Karpreduction underlying the proof of Theorem ���� as well
as many of the reductions used in Section ����� are parsimonious �see Exercise ������

Theorem ���� Let R � PC and suppose that every search problem in PC is par�
simoniously reducible to R� Then the counting problem associated with R is �P�
complete�

Proof� Clearly� the counting problem associated with R� denoted �R� is in �P�
To show that every f � � �P is reducible to f � we consider the relation R� � PC
that is counted by f �� that is� �R� � f �� Then� by the hypothesis� there exists
a parsimonious reduction g of R� to R� This reduction also reduces �R� to �R�
speci�cally� �R��x� � �R�g�x�� for every x�

�	� CHAPTER �� RANDOMNESS AND COUNTING

Corollaries� As an immediate corollary of Theorem ����� we get that counting
the number of satisfying assignments to a given CNF formula is �Pcomplete�
Similar statement hold for all the other NPcomplete problems mentioned in Sec
tion ����� and in fact for all NPcomplete problems listed in ����� These corollaries
follow from the fact that all known reductions among natural NPcomplete prob
lems are either parsimonious or can be easily modi�ed to be so�

We conclude that many counting problems associated with NPcomplete search
problems are �Pcomplete� It turns out that also counting problems associated
with e�ciently solvable search problems may be �Pcomplete�

Theorem ���� There exist �P�complete counting problems that are associated
with e�ciently solvable search problems� That is� there exists R � PF �see De�ni
tion ���� such that �R is �P�complete�

Proof� Consider the relation Rdnf consisting of pairs ��� � such that � is a DNF
formula and is an assignment satisfying it� Note that the search problem of Rdnf
is easy to solve �e�g�� by picking an arbitrary truth assignment that satis�es the
�rst term in the input formula�� To see that �Rdnf is �Pcomplete consider the
following reduction from �RSAT �which is �Pcomplete by Theorem ������ Given
a CNF formula �� transform �� into a DNF formula �� by applying deMorgan
s
Law� and return �n � �Rdnf��

��� where n denotes the number of variables in �
�resp�� ����

Re�ections� We note that Theorem ���� is not established by a parsimonious
reduction �and refer the reader to more arti�cal �Pcomplete problems presented
in Exercise ������ This fact should not come as a surprise because a parsimonious
reduction of �R� to �R implies that SR� � fx � �y s�t� �x� y� �R�g is reducible
to SR � fx � �y s�t� �x� y� � Rg� where in our case SR� is NPComplete while
SR � P �since R � PF�� Nevertheless� the proof of Theorem ���� is related to
the hardness of some underlying decision problem �i�e�� the problem of deciding
whether a given DNF formula is a tautology �i�e�� whether �Rdnf��

�� � �n��� But
does there exist a �Pcomplete problem that is �not based on some underlying
NPcomplete decision problem�! Amazingly enough� the answer is positive�

Theorem ���� Counting the number of perfect matchings in a bipartite graph is
�P�complete�	

Equivalently �see Exercise ������ the problem of computing the permanent of ma
trices with 	��entries is �Pcomplete� Recall that the permanent of an nbyn
matrix M � �mi�j�� denoted perm�M�� equals the sum over all permutations �
of �n� of the products

Qn
i��mi��i�� Theorem ���	 is proven by composing the

following two �manytoone� reductions �asserted in Propositions ���� and �����
respectively� and using the fact that �R�SAT is �Pcomplete �see Theorem ����
and Exercise ������ Needless to say� the resulting reduction is not parsimonious�

�See Appendix G�� for basic terminology regarding graphs�

��	� COUNTING �	�

Proposition ���� The counting problem of �SAT �i�e�� �R�SAT� is reducible to
computing the permanent of integer matrices� Furthermore� there exists an even
integer c � 	 and a �nite set of integers I such that� on input a �CNF formula �� the
reduction produces an integer matrix M� with entries in I such that perm�M�� �
cm ��R�SAT��� where m denotes the number of clauses in ��

The original proof of Proposition ���� uses c � ��� and I � f��� 	� �� �� �g� It
can be shown �see Exercise ���� �which relies on Theorem ������ that� for every
integer n � � that is relatively prime to c� computing the permanent modulo n
is NPhard �under randomized reductions�� Thus� using the case of c � ���� this
means that computing the permanent modulo n is NPhard for any odd n � �� In
contrast� computing the permanent modulo � �which is equivalent to computing
the determinant modulo �� is easy �i�e�� can be done in polynomialtime and even
in NC�� Thus� assuming NP �� BPP� Proposition ���� cannot hold for an odd c
�because by Exercise ���� it would follow that computing the permanent modulo �
is NPHard�� We also note that� assuming P �� NP � Proposition ���� cannot
possibly hold for a set I containing only nonnegative integers �see Exercise ������

Proposition ���� Computing the permanent of integer matrices is reducible to
computing the permanent of ����matrices� Furthermore� the reduction maps any
integer matrix A into a ����matrix A�� such that the permanent of A can be easily
computed from A and the permanent of A���

Teaching note� We do not recommend presenting the proofs of Propositions ����

and ���� in class� The high�level structure of the proof of Proposition ���� has the

�avor of some sophisticated reductions among NP�problems� but the crucial point is the

existence of adequate gadgets� We do not know of a high�level argument establishing

the existence of such gadgets nor of any intuition as to why such gadgets exist�� Instead�

the existence of such gadgets is proved by a design that is both highly non�trivial and ad

hoc in nature� Thus� the proof of Proposition ���� boils down to a complicated design

problem that is solved in a way that has little pedagogical value� In contrast� the proof

of Proposition ���� uses two simple ideas that can be useful in other settings� With

suitable hints� this proof can be used as a good exercise�

Proof of Proposition ����� We will use the correspondence between the
permanent of a matrix A and the sum of the weights of the cycle covers of the
weighted directed graph represented by the matrix A� A cycle cover of a graph
is a collection of simple� vertex�disjoint directed cycles that covers all the graph
s
vertices� and its weight is the product of the weights of the corresponding edges�
The SWCC of a weighted directed graph is the sum of the weights of all its cycle
covers�

Given a �CNF formula �� we construct a directed weighted graph G� such that
the SWCC of G� equals equals cm ��R�SAT���� where c is a universal constant and
m denotes the number of clauses in �� We may assume� without loss of generality�
that each clause of � has exactly three literals �which are not necessarily distinct��

�Indeed� the conjecture that such gadgets exist can only be attributed to ingenuity�
	Here a simple cycle is a strongly connected directed graph in which each vertex has a single

incoming �resp�� outgoing� edge� In particular� self�loops are allowed�

��	 CHAPTER �� RANDOMNESS AND COUNTING

x

+x

+x+x

-x

Figure ���� Tracks connecting gadgets for the reduction to cycle cover�

We start with a highlevel description �of the construction� that refers to �clause�
gadgets� each containing some internal vertices and internal �weighted� edges� which
are unspeci�ed at this point� In addition� each gadget has three pairs of designated
vertices� one pair per each literal appearing in the clause� where one vertex in the
pair is designated as an entry vertex and the other as an exit vertex� The graph
G� consists of m such gadgets� one per each clause �of ��� and n auxiliary vertices�
one per each variable �of ��� as well as some additional directed edges� each having
weight �� Speci�cally� for each variable� we introduce two tracks� one per each of
the possible literals of this variable� The track associated with a literal consists of
directed edges �each having weight �� that form a simple �cycle� passing through
the corresponding �auxiliary� vertex as well as through the designated vertices that
correspond to the occurrences of this literal in the various clauses� Speci�cally� for
each such occurrence� the track enters the corresponding clause gadget at the entry
vertex corresponding to this literal and exits at the corresponding exitvertex� �If
a literal does not appear in � then the corresponding track is a selfloop on the
corresponding variable�� See Figure ��� showing the two tracks of a variable x that
occurs positively in three clauses and negatively in one clause� The entryvertices
�resp�� exitvertices� are drawn on the top �resp�� bottom� part of each gadget�

For the purpose of stating the desired properties of the clause gadget� we aug
ment the gadget by nine external edges �of weight ��� one per each pair of �not
necessarily matching� entry and exit vertices such that the edge goes from the
exitvertex to the entryvertex �see Figure ����� �We stress that this is an auxiliary
construction that di�ers from and yet is related to the use of gadgets in the forego
ing construction of G��� The three edges that link the designated pairs of vertices
that correspond to the three literals are called nice� We say that a collection of
edges C �e�g�� a collection of cycles� uses the external edges S if the intersection of
C with the set of the �nine� external edges equals S� We postulate the following
three properties of the clause gadget�

��	� COUNTING ���

On the left is a gadget with the track edges adjacent to it �as in the
real construction�� On the right is a gadget and four out of the nine
external edges �two of which are nice� used in the analysis�

Figure ���� External edges for the analysis of the clause gadget

�� The sum of the weights of all cycle covers �of the gadget� that do not use any
external edge �i�e�� use the empty set of external edges� equals zero�

�� Let V �S� denote the set of vertices incident to S� and say that S is nice if it
is nonempty and the vertices in V �S� can be perfectly matched using nice
edges��� Then� there exists a constant c �indeed the one postulated in the
proposition
s claim� such that� for any nice set S� the sum of the weights of
all cycle covers that use the external edges S equals c�

�� For any nonnice set S of external edges� the sum of the weights of all cycle
covers that use the external edges S equals zero�

Note that the foregoing three cases exhaust all the possible ones� and that the set
of external edges used by a cycle cover must be a matching �i�e�� these edges are
vertex disjoint�� Using the foregoing conditions� it can be shown that each satisfying
assignment of � contributes exactly cm to the SWCC of G� �see Exercise ��� �� It
follows that the SWCC of G� equals cm ��R�SAT����

Having established the validity of the abstract reduction� we turn to the imple
mentation of the clause gadget� The �rst implementation is a Deus ex Machina�
with a corresponding adjacency matrix depicted in Figure ���� Its validity �for the
value c � ��� can be veri�ed by computing the permanent of the corresponding
submatrices �see analogous analysis in Exercise ������

�
Clearly� any non�empty set of nice edges is a nice set� Thus� a singleton set is nice if and only
if the corresponding edge is nice� On the other hand� any set S of three �vertex�disjoint� external
edges is nice� because V �S� has a perfect matching using all three nice edges� Thus� the notion
of nice sets is �non�trivial� only for sets of two edges� Such a set S is nice if and only if V �S�
consists of two pairs of corresponding designated vertices�

��� CHAPTER �� RANDOMNESS AND COUNTING

The gadget uses eight vertices� where the �rst six are the designated
�entry and exit� vertices� The entryvertex �resp�� exitvertex� associ
ated with the ith literal is numbered i �resp�� i$��� The corresponding
adjacency matrix follows��BBBBBBBBBB�

� 	 	 � 	 	 	 	
	 � 	 	 � 	 	 	
	 	 	 	 	 � 	 	
	 	 �� � �� 	 � �
	 	 �� �� � 	 � �
	 	 	 �� �� 	 � �
	 	 � � � 	 � ��
	 	 � � � 	 	 �

	CCCCCCCCCCA
Note that the edge � � can be contracted� but the resulting �
vertex graph will not be consistent with our �inessentially stringent�
de�nition of a gadget by which the six designated vertices should be
distinct�

Figure ���� A Deus ex Machina clause gadget for the reduction to cycle cover�

A more structured implementation of the clause gadget is depicted in Figure ����
which refers to a �hexagon� box to be implemented later� The box contains several
vertices and weighted edges� but only two of these vertices� called terminals� are
connected to the outside �and are shown in Figure ����� The clause gadget consists
of �ve copies of this box� where three copies are designated for the three literals
of the clause �and are marked LB�� LB�� and LB��� as well as additional vertices
and edges shown in Figure ���� In particular� the clause gadget contains the six
aforementioned designated vertices �i�e�� a pair of entry and exit vertices per each
literal�� two additional vertices �shown at the two extremes of the �gure�� and some
edges �all having weight ��� Each designated vertex has a selfloop� and is incident
to a single additional edge that is outgoing �resp�� incoming� in case the vertex
is an entryvertex �resp�� exitvertex� of the gadget� The two terminals of each
box that is associated with some literal are connected to the corresponding pair
of designated vertices �e�g�� the outgoing edge of entry� is incident at the right
terminal of the box LB��� Note that the �ve boxes reside on a directed path �going
from left to right�� and the only edges going in the opposite direction are those
drawn below this path�

In continuation to the foregoing� we wish to state the desired properties of the
box� Again� we do so by considering the augmentation of the box by external edges
�of weight �� incident at the speci�ed vertices� In this case �see Figure �� �� we
have a pair of antiparallel edges connecting the two terminals of the box as well as
two selfloops �one on each terminal�� We postulate the following three properties
of the box�

��	� COUNTING ���

entry1 entry2 entry3

exit1 exit2 exit3

LB1 LB2 LB3

Figure ���� A structured clause gadget for the reduction to cycle cover�

On the left is a box with potential edges adjacent to it �as in the
gadget construction�� On the right is a box and the four external
edges used in the analysis�

Figure �� � External edges for the analysis of the box

�� The sum of the weights of all cycle covers �of the box� that do not use any
external edge equals zero�

�� There exists a constant b �in our case b � �� such that� for each of the two
antiparallel edges� the sum of the weights of all cycle covers that use this
edge equals b�

�� For any �nonempty� set S of the selfloops� the sum of the weights of all
cycle covers �of the box� that use S equals zero�

Note that the foregoing three cases exhaust all the possible ones� It can be shown
that the conditions regarding the box imply that the construction presented in
Figure ��� satis�es the conditions that were postulated for the clause gadget �see
Exercise ������ Speci�cally� we have c � b�� As for box itself� a smaller Deus ex

��� CHAPTER �� RANDOMNESS AND COUNTING

Machina is provided by the following �by� adjacency matrix�BB�
	 � �� ��
� �� � �
	 � � �
	 � � 	

	CCA �����

where the two terminals correspond to the �rst and the fourth vertices� Its va
lidity �for the value b � �� can be veri�ed by computing the permanent of the
corresponding submatrices �see Exercise ������

Proof of Proposition ����� The proof proceeds in two steps� In the �rst
step we show that computing the permanent of integer matrices is reducible to
computing the permanent of non�negative matrices� This reduction proceeds as
follows� For an nbyn integer matrix A � �ai�j�i�j��n�� let kAk� � maxi�j�jai�j j�
and QA � ��n-� � kAkn�$�� We note that� given A� the value QA can be computed
in polynomialtime� and in particular log�QA � n� log kAk�� Given the matrix A�
the reduction constructs the nonnegative matrix A� � �ai�j mod QA�i�j��n� �i�e��
the entries of A� are in f	� �� ���� QA � �g�� queries the oracle for the permanent of

A�� and outputs v
def
� perm�A�� mod QA if v � QA�� and ��QA � v� otherwise�

The key observation is that

perm�A� � perm�A�� �mod QA�� while jperm�A�j � �n-� � kAkn� � QA���

Thus� perm�A�� mod QA �which is in f	� �� ���� QA � �g� determines perm�A�� We
note that perm�A�� is likely to be much larger than QA � jperm�A�j� it is merely
that perm�A�� and perm�A� are equivalent modulo QA�

In the second step we show that computing the permanent of nonnegative ma
trices is reducible to computing the permanent of 	��matrices� In this reduction�
we view the computation of the permanent as the computation of the sum of the
weights of the cycle covers �SWCC� of the corresponding weighted directed graph
�see proof of Proposition ������ Thus� we reduce the computation of the SWCC of
directed graphs with non�negative weights to the computation of the SWCC of un�
weighted directed graphs with no parallel edges �which correspond to 	��matrices��
The reduction is via local replacements that preserve the value of the SWCC� These
local replacements combine the following two local replacements �which preserve
the SWCC��

�� Replacing an edge of weight w �
Qt

i�� wi by a path of length t �i�e�� t � �
internal nodes� with the corresponding weights w�� ���� wt� and selfloops �with
weight �� on all internal nodes�

Note that a cyclecover that uses the original edge corresponds to a cycle
cover that uses the entire path� whereas a cyclecover that does not use the
original edge corresponds to a cyclecover that uses all the selfloops�

�� Replacing an edge of weight w �
Pt

i�� wi by t parallel �edge paths such that
the �rst edge on the ith path has weight wi� the second edge has weight ��

��	� COUNTING ��

and the intermediate node has a selfloop �with weight ��� �Paths of length
two are used because parallel edges are not allowed��

Note that a cyclecover that uses the original edge corresponds to a collection
of cyclecovers that use one out of the t paths �and the selfloops of all other
intermediate nodes�� whereas a cyclecover that does not use the original edge
corresponds to a cyclecover that uses all the selfloops�

In particular� writing the positive integer w� having binary expansion 	jwj�� � � �	��
as
P

i��i��
�� $ ��i� we may apply the additive replacement �for the sum over fi �

	i � �g�� next the product replacement �for each �i�� and �nally the additive
replacement �for � $ ��� Applying this process to the matrix A� obtained in the
�rst step� we e�ciently obtain a matrix A�� with 	��entries such that perm�A�� �
perm�A���� �In particular� the dimension of A�� is polynomial in the length of the
binary representation of A�� which in turn is polynomial in the length of the binary
representation ofA�� Combining the two reductions �steps�� the proposition follows�

���� Approximate Counting

Having seen that exact counting �for relations in PC� seems even harder than
solving the corresponding search problems� we turn to relaxations of the counting
problem� Before focusing on relative approximation� we brie�y consider approxi
mation with �large� additive deviation�

Let us consider the counting problem associated with an arbitrary R � PC�
Without loss of generality� we assume that all solutions to nbit instances have
the same length
�n�� where indeed
 is a polynomial� We �rst note that� while
it may be hard to compute �R� given x it is easy to approximate �R�x� up to
an additive error of 	�	� � ��jxj� �by randomly samplying potential solutions for
x�� Indeed� such an approximation is very rough� but it is not trivial �and in fact
we do not know how to obatin it deterministically�� In general� we can e�ciently
produce at random an estimate of �R�x� that� with high probability� deviates
from the correct value by at most an additive term that is related to the absolute
upperbound on the number of solutions �i�e�� ��jxj���

Proposition ���� �approximation with large additive deviation�� Let R � PC
and
 be a polynomial such that R � �n�Nf	� �gn � f	� �g�n�� Then� for every
polynomial p� there exists a probabilistic polynomial�time algorithm A such that for
every x � f	� �g� and � � �	� �� it holds that

Pr�jA�x� ����R�x�j � ���p�jxj�� � ��jxj�� � �� ��� �

As usual� � is presented to A in binary� and hence the running time of A�x� �� is
upper�bounded by poly�jxj � log�������
Proof Sketch� On input x and �� algorithm A sets t � +�p�jxj�� � log������� selects
uniformly y�� ���� yt and outputs ��jxj� � jfi � �x� yi� � Rgj�t�

��� CHAPTER �� RANDOMNESS AND COUNTING

Discussion� Proposition ���� is meaningful in the case that �R�x� � ���p�jxj�� �
��jxj� holds for some x
s� But otherwise� a trivial approximation �i�e�� outputting
the constant value zero� meets the bound of Eq� ��� �� In contrast to this no
tion of additive approximation� a relative factor approximation is typically more
meaningful� Speci�cally� we will be interested in approximating �R�x� upto a
constant factor �or some other reasonable factor�� In x�������� we consider a natu
ral �Pcomplete problem for which such a relative approximation can be obtained
in probabilistic polynomialtime� We do not expect this to happen for every count
ing problem in �P � because a relative approximation allows for distinguishing
instances having no solution from instances that do have solutions �i�e��� deciding
membership in SR is reducible to a relative approximation of �R�� Thus� rela
tive approximation for all �P is at least as hard as deciding all problems in NP �
but in x������� we show that the former is not harder than the latter� that is�
relative approximation for any problem in �P can be obtained by a randomized
Cookreduction to NP � Before turning to these results� let us state the underlying
de�nition �and actually strengthen it by requiring approximation to within a factor
of �& �� for � � �	� ������

De�nition ���	 �approximation with relative deviation�� Let f � f	� �g� N

and �� � � N �	� ��� A randomized process ' is called an ��� ���approximator of f
if for every x it holds that

Pr �j'�x� � f�x�j � ��jxj� � f�x�� � ��jxj�� �����

We say that f is e�ciently �� � ���approximable �or just �� � ���approximable� if
there exists a probabilistic polynomial�time algorithm A that constitute an ��� �����
approximator of f �

The error probability of the latter algorithm A �which has error probability ����
can be reduced to � by O�log������ repetitions �see Exercise ������ Typically� the
running time of A will be polynomial in ���� and � is called the deviation parameter�

������� Relative approximation for �Rdnf

In this subsection we present a natural �Pcomplete problem for which constant
factor approximation can be found in probabilistic polynomialtime� Stronger re
sults regarding unnatural �Pcomplete problems appear in Exercise �����

Consider the relation Rdnf consisting of pairs ��� � such that � is a DNF
formula and is an assignment satisfying it� Recall that the search problem
of Rdnf is easy to solve and that the proof of Theorem ���� establishes that

��We refrain from formally de�ning an F �factor approximation� for an arbitrary F � although
we shall refer to this notion in several informal discussions� There are several ways of de�ning the
aforementioned term �and they are all equivalent when applied to our informal discussions�� For
example� an F �factor approximation of �Rmay mean that� with high probability� the output A�x�
satis�es �R�x�
F �jxj� � A�x� � F �jxj� � �R�x�� Alternatively� we may require that �R�x� �
A�x� � F �jxj� ��R�x� �or� alternatively� that �R�x�
F �jxj� � A�x� � �R�x��

��	� COUNTING ���

�Rdnf is �Pcomplete �via a nonparsimonious reduction�� Still there exists a
probabilistic polynomialtime algorithm that provides a constant factor approxi
mation of �Rdnf� We warn that the fact that �Rdnf is �Pcomplete via a non�
parsimonious reduction means that the constant factor approximation for �Rdnf
does not seem to imply a similar approximation for all problems in �P � In fact� we
should not expect each problem in �P to have a �probabilistic� polynomialtime
constantfactor approximation algorithm because this would imply NP � BPP
�since a constant factor approximation allows for distinguishing the case in which
the instance has no solution from the case in which the instance has a solution��

The following algorithm is actually a deterministic reduction of the task of
��� ����approximating �Rdnf to an �additive deviation� approximation of the
type provided in Proposition ����� Consider a DNF formula � �

Wm
i�� Ci� where

each Ci � f	� �gn f	� �g is a conjunction� Actually� we will deal with the more
general problem in which we are �implicitly� given m subsets S�� ���� Sm � f	� �gn
and wish to approximate jSi Sij� In our case� each Si is the set of assignments
satisfying the conjunction Ci� In general� we make two computational assumptions
regarding these sets �letting e�cient mean implementable in time polynomial in
n �m��

�� Given i � �m�� one can e�ciently determine jSij�

�� Given i � �m� and J � �m�� one can e�ciently approximate Prs�Si
h
s � Sj�J Sj

i
up to an additive deviation of ��poly�n$m��

These assumptions are satis�ed in our setting �where Si � C��i ���� see Exer
cise ���	�� Now� the key observation towards approximating jSm

i�� Sij is that�����
m
i��

Si

����� �
mX
i��

������Si n

j�i

Sj

������ �
mX
i��

jSij � Prs�Si

��s ��
j�i

Sj

�� �����

and that the probabilities in Eq� ����� can be approximated by the second assump
tion� This leads to the following algorithm� where � denotes the desired deviation
parameter �i�e�� we wish to obtain ��& �� � jSm

i�� Sij��
Construction ���� Let �� � ��m� For i � � to m do�

�� Using the �rst assumption� compute jSij�

� Using the second assumption� obtain epi � pi & ��� where pi
def
� Prs�Si �s ��S

j�i Sj �� Set ai
def
� epi � jSij�

Output the sum of the ai	s�

Let Ni � pi � jSij� We are interested in the quality of the approximation to
P

iNi �
jSi Sij provided by

P
i ai� Using ai � �pi & ��� � jSij � Ni & �� � jSij �for all i
s�� we

have
P

i ai �
P

iNi & �� �Pi jSij� Using
P

i jSij � m � jSi Sij � m �PiNi �and
� � m���� we get

P
i ai � ��& �� �PiNi� Thus� we obtain the following result �see

Exercise ���	��

��� CHAPTER �� RANDOMNESS AND COUNTING

Proposition ���� For every positive polynomial p� the counting problem of Rdnf
is e�ciently ��� ���p���approximable�

Using the reduction presented in the proof of Theorem ����� we conclude that the
number of unsatisfying assignments to a given CNF formula is e�ciently ������p��
approximable� We warn� however� that the number of satisfying assignments to
such a formula is not e�ciently approximable� This concurs with the general
phenomenon by which relative approximation may be possible for one quantity� but
not for the complementary quantity� Needless to say� such a phenomenon does not
occur in the context of additivedeviation approximation�

������� Relative approximation for �P
Recall that we cannot expect to e�ciently approximate every �P problem� where
throughout the rest of this section �approximation� is used as a shorthand for �rel
ative approximation� �as in De�nition ������ Speci�cally� e�ciently approximating
�R yields an e�cient algorithm for deciding membership in SR � fx � R�x� ���g�
Thus� at best we can hope that approximating �R is not harder than deciding SR
�i�e�� that approximating �R is reducible in polynomialtime to SR�� This is indeed
the case for every NPcomplete problem �i�e�� if SR is NPcomplete�� More gener
ally� we show that approximating any problem in �P is reducible in probabilistic
polynomialtime to NP�

Theorem ��� For every R � PC and positive polynomial p� there exists a prob�
abilistic polynomial�time oracle machine that when given oracle access to NP
constitutes a ���p� ���approximator of �R� where � is a negligible function �e�g��
��n� � ��n��

Recall that it su�ces to provide a ���p� ��approximator of �R� for any constant
� � 	� � because error reduction is applicable in this context �see Exercise ������
Also� it su�ces to provide a ����� ��approximator for every problem in �P �see
Exercise ������

Proof� Given x� we show how to approximate jR�x�j to within some constant
factor� The desired ��� ���p��approximation can be obtained as in Exercise �����
We may also assume that R�x� �� �� by starting with the query �is x in SR�
and halting �with output 	� if the answer is negative� Without loss of generality�
we assume that R�x� � f	� �g�� where
 � poly�jxj�� We focus on �nding some
i � f�� ����
g such that �i�� � jR�x�j � �i���

We proceed in iterations� For i � �� ����
 $ �� we �nd out whether or not
jR�x�j � �i� If the answer is positive then we halt with output �i� and otherwise
we proceed to the next iteration� �Indeed� if we were able to obtain correct answers
to these queries then the output �i would satisfy �i�� � jR�x�j � �i��

Needless to say� the key issue is how to check whether jR�x�j � �i� The main
idea is to use a �random sieve� on the set R�x� such that each element passes the
sieve with probability ��i� Thus� we expect jR�x�j��i elements of R�x� to pass
the sieve� Assuming that the number of elements in R�x� that pass the random

��	� COUNTING ���

sieve is indeed bjR�x�j��ic� it holds that jR�x�j � �i if and only if some element of
R�x� passes the sieve� Assuming that the sieve can be implemented e�ciently� the
question of whether or not some element in R�x� passed the sieve is of an �NP
type� �and thus can be referred to our NPoracle�� Combining both assumptions�
we may implement the foregoing process by proceeding to the next iteration as
long as some element of R�x� passes the sieve� Furthermore� this implementation
will provide a reasonably good approximation even if the number of elements in
R�x� that pass the random sieve is only approximately equal to jR�x�j��i� In fact�
the level of approximation that this implementation provides is closely related to
the level of approximation that is provided by the random sieve� Details follow�

Implementing a random sieve
 The random sieve is implemented by using a family
of hashing functions �see Appendix D���� Speci�cally� in the ith iteration we use a
family H i

� such that each h � H i
� has a poly�
�bit long description and maps
bit

long strings to ibit long strings� Furthermore� the family is accompanied with
an e�cient evaluation algorithm �i�e�� mapping adequate pairs �h� x� to h�x�� and
satis�es �for every S � f	� �g��

Prh�Hi
�
�jfy � S � h�y� � 	igj �� ��& �� � ��ijSj� � �i

��jSj �����

�see Lemma D���� The random sieve will let y pass if and only if h�y� � 	i� Indeed�
this random sieve is not as perfect as we assumed in the foregoing discussion� but
Eq� ����� suggests that in some sense this sieve is good enough�

Implementing the queries
 Recall that for some x� i and h � H i
� � we need to de

termine whether fy�R�x� � h�y�� 	ig � �� This type of question can be cast as
membership in the set

SR�H
def
� f�x� i� h� � �y s�t� �x� y��R
 h�y��	ig� �����

Using the hypotheses that R � PC and that the family of hashing functions has an
e�cient evaluation algorithm� it follows that SR�H is in NP �

The actual procedure
 On input x � SR and oracle access to SR�H � we proceed in
iterations� starting with i � � and halting at i �
 �if not before�� where
 denotes
the length of the potential solutions for x� In the ith iteration �where i �
�� we
uniformly select h � H i

� and query the oracle on whether or not �x� i� h� � SR�H �
If the answer is negative then we halt with output �i� and otherwise we proceed to
the next iteration �using i � i$ ��� Needless to say� if we reach the last iteration
�i�e�� i �
� then we just halt with output ���

Indeed� we have ignored the case that x �� SR� which can be easily handled by
a minor modi�cation of the foregoing procedure� Speci�cally� on input x� we �rst
query SR on x and halt with output 	 if the answer is negative� Otherwise we
proceed as in the foregoing procedure�

The analysis
 We upperbound separately the probability that the procedure out
puts a value that is too small and the probability that it outputs a value that is
too big� In light of the foregoing discussion� we may assume that jR�x�j � 	� and
let ix � blog� jR�x�jc � 	�

��	 CHAPTER �� RANDOMNESS AND COUNTING

�� The probability that the procedure halts in a speci�c iteration i � ix equals
Prh�Hi

�
�jfy � R�x� � h�y� � 	igj � 	�� which in turn is upperbounded by

�i�jR�x�j �using Eq� ����� with � � ��� Thus� the probability that the pro

cedure halts before iteration ix � � is upperbounded by
Pix��

i�� �i�jR�x�j�
which in turn is less than ��� �because ix � log� jR�x�j�� Thus� with prob
ability at least ���� the output is at least �ix�� � jR�x�j��� �because ix �
�log� jR�x�j� � ���

�� The probability that the procedure does not halt in iteration i � ix equals
Prh�Hi

�
�jfy � R�x� � h�y� � 	igj � ��� which in turn is upperbounded by

���� � ���� where � � �i�jR�x�j � � �using Eq� ����� with � � � � �����

Thus� the probability that the procedure does not halt by iteration ix $ � is
upperbounded by ���� � ��� �because ix � �log� jR�x�j� � ��� Thus� with
probability at least ��� the output is at most �ix�� � �� � jR�x�j �because
ix � log� jR�x�j��

Thus� with probability at least ����������� � ���� the foregoing procedure outputs
a value v such that v��� � jR�x�j � ��v� Reducing the deviation by using the ideas
presented in Exercise ���� �and reducing the error probability as in Exercise ������
the theorem follows�

Perspective� The key observation underlying the proof Theorem ���� is that�
while �even with the help of an NPoracle� we cannot directly test whether the
number of solutions is greater than a given number� we can test �with the help
of an NPoracle� whether the number of solutions that �survive a random sieve�
is greater than zero� If fact� we can also test whether the number of solutions
that �survive a random sieve� is greater than a small number� where small means
polynomial in the length of the input �see Exercise ������ That is� the complexity
of this test is linear in the size of the threshold� and not in the length of its binary
description� Indeed� in many settings it is more advantageous to use a threshold
that is polynomial in some e�ciency parameter �rather than using the threshold
zero�� examples appear in x������� and in ��	���

���� Searching for unique solutions

A natural computational problem �regarding search problems�� which arises when
discussing the number of solutions� is the problem of distinguishing instances having
a single solution from instances having no solution �or �nding the unique solution
whenever such exists�� We mention that instances having a single solution facilitate
numerous arguments �see� for example� Exercise ���� and x�	�������� Formally�
searching for and deciding the existence of unique solutions are de�ned within the
framework of promise problems �see Section �������

��A better bound can be obtained by using the hypothesis that� for every y� when h is uniformly
selected in Hi

�� the value of h�y� is uniformly distributed in f�� �gi� In this case� Prh�Hi
�
�jfy �

R�x� � h�y� � �igj � �� is upper�bounded by Eh�Hi
�
�jfy � R�x� � h�y� � �igj� � jR�x�j
�i�

��	� COUNTING ���

De�nition ���� �search and decision problems for unique solution instances��
The set of instances having unique solutions with respect to the binary relation R

is de�ned as USR
def
� fx � jR�x�j � �g� where R�x� def

� fy � �x� y��Rg� As usual� we
denote SR � fx � jR�x�j � �g� and SR

def
� f	� �g� n SR � fx � jR�x�j � 	g�

� The problem of �nding unique solutions for R is de�ned as the search problem
R with promise USR � SR �see De�nition ������

In continuation to De�nition ��� the candid searching for unique solutions
for R is de�ned as the search problem R with promise USR�

� The problem of deciding unique solution for R is de�ned as the promise problem
�USR� SR� �see De�nition ���	��

Interestingly� in many natural cases� the promise does not make any of these prob
lems any easier than the original problem� That is� for all known NPcomplete
problems� the original problem is reducible in probabilistic polynomialtime to the
corresponding unique instances problem�

Theorem ���� Let R � PC and suppose that every search problem in PC is par�
simoniously reducible to R� Then solving the search problem of R �resp�� deciding
membership in SR� is reducible in probabilistic polynomial�time to �nding unique
solutions for R �resp�� to the promise problem �USR� SR��� Furthermore� there
exists a probabilistic polynomial�time computable mapping M such that for every
x � SR it holds that Pr�M�x� � SR� � �� whereas for every x � SR it holds that
Pr�M�x��USR� � ��poly�jxj��

We highlight the fact that the hypothesis asserts that R is PCcomplete via parsi�
monious reductions� this hypothesis is crucial to Theorem ���� �see Exercise ������
The large �but boundedaway from �� error probability of the randomized Karp
reduction M can be reduced by repetitions� yielding a randomized Cookreduction
with exponentially vanishing error probability� Note that the resulting reduction
may make many queries that violate the promise� and still yields the correct answer
�with high probability� by relying on queries that satisfy the promise� �Speci�cally�
in the case of search problems� we avoid wrong solutions by checking each solution
obtained� while in the case of decision problems we rely on the fact that for every
x � SR it always holds that M�x� � SR��

Proof� As in the proof of Theorem ����� the idea is to apply a �random sieve� on
R�x�� this time with the hope that a single element survives� Speci�cally� if we let
each element passes the sieve with probability approximately ��jR�x�j then with
constant probability a single element survives �and we shall obtain an instance with
a unique solution�� Sieving will be performed by a random function selected in an
adequate hashing family �see Appendix D���� A couple of questions arise�

�� How do we get an approximation to jR�x�j! Note that we need such an
approximation in order to determine the adequate hashing family� Indeed�
we may just invoke Theorem ����� but this will not yield a manytoone

��� CHAPTER �� RANDOMNESS AND COUNTING

reduction� Instead� we just select m � f	� ���� poly�jxj�g uniformly and note
that �if jR�x�j � 	 then� Pr�m � dlog� jR�x�je� � ��poly�jxj�� Next� we
randomly map x to �x�m� h�� where h is uniformly selected in an adequate
hashing family�

�� How does the question of whether a single element of R�x� pass the random
sieve translate to an instance of the unique�solution problem for R! Recall
that in the proof of Theorem ���� the nonemptiness of the set of element of
R�x� that pass the sieve �de�ned by h� was determined by checking mem
bership �of �x�m� h�� in SR�H � NP �de�ned in Eq� ������� Furthermore� the
number of NPwitnesses for �x�m� h� � SR�H equals the number of elements
of R�x� that pass the sieve� Using the parsimonious reduction of SR�H to SR
�which is guaranteed by the theorem
s hypothesis�� we obtained the desired
instance�

Note that in case R�x� � � the aforementioned mapping always generates a no
instance �of SR�H and thus of SR�� Details follow�

Implementation �i
e
 the mapping M�
 As in the proof of Theorem ����� we as
sume� without loss of generality� that R�x� � f	� �g�� where
 � poly�jxj�� We
start by uniformly selecting m � f�� ����
$ �g and h � Hm

� � where Hm
� is a family

of e�ciently computable and pairwiseindependent hashing functions �see De�ni
tion D��� mapping
bit long strings to mbit long strings� Thus� we obtain an
instance �x�m� h� of SR�H � NP such that the set of valid solutions for �x�m� h�
equals fy�R�x� � h�y��	mg� Using the parsimonious reduction g of SR�H to SR�
we map �x�m� h� to g�x�m� h�� and it holds that jfy �R�x� � h�y� � 	mgj equals
jR�g�x�m� h��j� To summarize� on input x the randomized mapping M outputs the

instance M�x�
def
� g�x�m� h�� where m � f�� ����
$ �g and h � Hm

� are uniformly
selected�

The analysis
 Note that for any x � SR it holds that Pr�M�x� � SR� � �� Assuming
that x � SR� with probability exactly ���
 $ �� it holds that m � mx� where

mx
def
� dlog� jR�x�je $ �� Focusing on the case that m � mx� for a uniformly

selected h � Hm
� � we shall lowerbound the probability that the set Rh�x�

def
� fy�

R�x� � h�y��	mg is a singleton� First� using the InclusionExclusion Principle� we
lowerbound Prh�Hmx

�
�jRh�x�j � 	� byX

y�Rx�
Prh�Hmx

�
�h�y��	mx � �

X
y��y��Rx�

Prh�Hmx
�

�h�y���h�y���	mx ��

Next� we upperbound Prh�Hmx
�

�jRh�x�j � �� byX
y��y��Rx�

Prh�Hmx
�

�h�y���h�y���	mx ��

Combining these two bounds� we get

Prh�Hmx
�

�jRh�x�j � �� ����	�

��	� COUNTING ���

� Prh�Hmx
�

�jRh�x�j � 	� � Prh�Hmx
�

�jRh�x�j � ��

�
X

y�Rx�
Prh�Hmx

�
�h�y��	mx � � � �

X
y��y��Rx�

Prh�Hmx
�

�h�y���h�y���	mx �

� jR�x�j � ��mx � � �

jR�x�j

�

�
� ���mx

where the last equality is due to the pairwise independence property� Using
�mx�� � jR�x�j � �mx��� it follows that Eq� ����	� is lowerbounded by ����
Thus� Pr�M�x� � USR� � ����
$ ��� and the theorem follows�

Comment� Theorem ���� is sometimes stated as referring to the unique solution
problem of SAT� In this case and when using a speci�c family of pairwise indepen
dent hashing functions� the use of the parsimonious reduction can be avoided� For
details see Exercise ��� �

���� Uniform generation of solutions

We now turn to a new type of computational problems� which may be viewed as
a straining of search problems� We refer to the task of generating a uniformly
distributed solution for a given instance� rather than merely �nding an adequate
solution� Needless to say� by de�nition� algorithms solving this ��uniform gener
ation�� task must be randomized� Focusing on relations in PC we consider two
versions of the problem� which di�er by the level of approximation provided for the
desired �uniform� distribution���

De�nition ���� �uniform generation�� Let R � PC and SR � fx � jR�x�j � �g�
and let ' be a probabilistic process�

�� We say that ' solves the uniform generation problem of R if� on input x � SR�
the process ' outputs either an element of R�x� or a special symbol� denoted
�� such that Pr�'�x� � R�x�� � ��� and for every y � R�x� it holds that
Pr�'�x��y j'�x��R�x�� � ��jR�x�j�

� For � � N �	� ��� we say that ' solves the �� � ���approximate uniform
generation problem of R if� on input x � SR� the distribution '�x� is ��jxj��
close�� to the uniform distribution on R�x��

In both cases� without loss of generality� we may require that if x �� SR then
Pr�'�x� � �� � �� More generally� we may require that ' never outputs a string
not in R�x��

��Note that a probabilistic algorithm running in strict polynomial�time is not able to output a
perfectly uniform distribution on sets of certain sizes� Speci�cally� referring to the standard model
that allows only for uniformly selected binary values� such algorithms cannot output a perfectly
uniform distribution on sets having cardinality that is not a power of two�

��See Appendix D�����

��� CHAPTER �� RANDOMNESS AND COUNTING

Note that the error probability of uniform generation �as in Item �� can be made
exponentially vanishing �in jxj� by employing errorreduction� In contrast� we are
not aware of any general way of reducing the deviation of an approximate uniform
generation procedure �as in Item �����

In x������� we show that� for many search problems� approximate uniform gener
ation is computationally equivalent to approximate counting� In x������� we present
a direct approach for solving the uniform generation problem of any search problem
in PC by using an oracle to NP �

����	�� Relation to approximate counting

We show that� for many natural search problems in PC� the approximate counting
problem associated with R is computationally equivalent to approximate uniform
generation with respect to R� Speci�cally� we refer to search problems R � PC
such that R��x� y�� def

� fy�� � �x� y�y��� � Rg is strongly parsimoniously reducible to
R� where a strongly parsimonious reduction of R� to R is a parsimonious reduction g
that is coupled with an e�ciently computable �� mapping of pairs �g�x�� y� � R to
pairs �x� h�x� y�� � R� �i�e�� h is e�ciently computable and h�x� �� is a �� mapping
of R�g�x�� to R��x��� Note that for many natural search problems R �e�g�� the
search problem of SAT and Perfect Matching�� the corresponding R� is strongly
parsimoniously reducible to R�

Recalling that both types of approximation problems are parameterized by the
level of precision� we obtain the following quantitative form of the aforementioned
equivalence�

Theorem ���� Let R � PC and let
 be a polynomial such that for every �x� y��R
it holds that jyj �
�jxj�� Suppose that R� is strongly parsimoniously reducible to

R� where R��x� y�� def� fy�� � �x� y�y��� � Rg�
�� From approximate counting to approximate uniform generation� Let ��n� �

��
�n� and let � �N �	� �� be a function satisfying ��n� � exp��poly�n���
Then� �� � ���approximate uniform generation for R is reducible in proba�
bilistic polynomial�time to ��� ���approximating �R�

� From approximate uniform generation to approximate counting� For every
noticeable � �N �	� �� �i�e�� ��n� � ��poly�n� for every n�� the problem of
������approximating �R is reducible in probabilistic polynomial�time to ���
����approximate uniform generation problem of R� where ���n� � ��n��
�n��

In fact� Part � holds also in case R� is just parsimoniously reducible to R�

Note that the quality of the approximate uniform generation asserted in Part �
�i�e�� �� is independent of the quality of the approximate counting procedure �i�e��
�� to which the former is reduced� provided that the approximate counter performs
better than some threshold� On the other hand� the quality of the approximate

��We note that in some cases� the deviation of an approximate uniform generation procedure
can be reduced� See discussion following Theorem �����

��	� COUNTING ��

counting asserted in Part � �i�e�� �� does depend on the quality of the approximate
uniform generation �i�e�� ���� but cannot reach beyond a certain bound �i�e�� no
ticeable relative devaition�� Recall� that for problems that are NPcomplete under
parsimonious reductions the quality of approximate counting procedures can be
improved �see Exercise ������ However� Theorem ���� is most useful when applied
to problems that are not NPcomplete� because for problems that are NPcomplete
both approximate counting and uniform generation are randomly reducible to the
corresponding search problem �see Exercise ������

Proof� Throughout the proof� we assume for simplicity �and in fact without loss
of generality� that R�x� �� � and R�x� � f	� �g�jxj��

Towards Part �� let us �rst reduce the uniform generation problem of R to �R
�rather than to approximating �R�� On input x � SR� we generate a uniformly
distributed y � R�x� by randomly generating its bits one after the other� We
proceed in iterations� entering the ith iteration with an �i � ��bit long string

y� such that R��x� y�� def
� fy�� � �x� y�y��� � Rg is not empty� With probability

jR��x� y���j�jR��x� y��j we set the ith bit to equal �� and otherwise we set it to equal 	�
We obtain both jR��x� y���j and jR��x� y��j by using a parsimonious reduction g of
R� � f��x� y��� y��� � �x� y�y��� � Rg � PC to R� That is� we obtain jR��x� y��j
by querying for the value of jR�g�x� y���j� Ignoring integrality issues� all this works
perfectly �i�e�� we generate an
�n�bit string uniformly distributed in R�x�� as long
as we have oracle access to �R� But we only have oracle access to an approximation
of �R� and thus a careful modi�cation is in place�

Let us denote the approximation oracle by A� Firstly� by adequate error reduc
tion� we may assume that� for every x� it holds that Pr�A�x� � ��&��n�� ��R�x�� �
�����jxj�� where ���n� � ��n��
�n�� In the rest of the analysis we ignore the prob
ability that the estimate deviates from the aforementioned interval� and note that
this rare event is the only source of the possible deviation of the output distribution
from the uniform distribution on R�x���� Let us assume for a moment that A is
deterministic and that for every x and y� it holds that

A�g�x� y�	�� $A�g�x� y���� � A�g�x� y���� ������

We also assume that the approximation is correct at the �trivial level� �where one
may just check whether or not �x� y� is in R�� that is� for every y � f	� �g�jxj�� it
holds that

A�g�x� y�� � � if �x� y� � R and A�g�x� y�� � 	 otherwise� ������

We modify the ith iteration of the foregoing procedure such that� when entering
with the �i� ��bit long pre�x y�� we set the ith bit to 	 � f	� �g with probability
A�g�x� y�	���A�g�x� y��� and halt �with output �� with the residual probability
�i�e�� �� �A�g�x� y�	���A�g�x� y����� �A�g�x� y�����A�g�x� y������ Indeed� Eq� ������
guarantees that the latter instruction is sound� since the two main probabilities
sumup to at most �� If we completed the last �i�e��
�jxj�th� iteration� then we

��The possible deviation is due to the fact that this rare event may occur with di�erent prob�
ability in the di�erent invocations of algorithm A�

��� CHAPTER �� RANDOMNESS AND COUNTING

output the
�jxj�bit long string that was generated� Thus� as long as Eq� ������
holds �but regardless of other aspects of the quality of the approximation�� every
y � 	� � � �	�jxj� � R�x�� is output with probability

A�g�x�	���

A�g�x����
� A�g�x�	�	���
A�g�x�	���

� � � A�g�x�	�	� � � �	�jxj���
A�g�x�	�	� � � �	�jxj����� ������

which� by Eq� ������� equals ��A�g�x����� Thus� the procedure outputs each ele
ment of R�x� with equal probability� and never outputs a non� value that is out
side R�x�� It follows that the quality of approximation only e�ects the probability
that the procedure outputs a non� value �which in turn equals jR�x�j�A�g�x������
The key point is that� as long as Eq� ������ holds� the speci�c approximate values
obtained by the procedure are immaterial � with the exception of A�g�x����� all
these values �cancel out��

We now turn to enforcing Eq� ������ and Eq� ������� We may enforce Eq� ������
by performing the straightforward check �of whether or not �x� y� � R� rather
than invoking A�g�x� y����	 As for Eq� ������� we enforce it arti�cially by using

A��x� y�� def
� �� $ ��jxj����jxj��jy�j� � A�g�x� y��� instead of A�g�x� y���� Recalling

that A�g�x� y��� � ��& ��jxy�j�� � jR��x� y��j� we have

A��x� y�� � �� $ ��jxj����jxj��jy�j� � ��� ��jxj�� � jR��x� y��j
A��x� y�	� � �� $ ��jxj����jxj��jy�j��� � �� $ ��jxj�� � jR��x� y�	�j

and the claim follows using ��� ��jxj�� � �� $ ��jxj��� � ��� ��jxj��� Note that the
foregoing modi�cation only decreases the probability of outputting a non� value
by a factor of �� $ ��jxj����jxj� � �� where the inequality is due to the setting of �
�i�e�� ��n� � ��
�n��� Finally� we refer to our assumption that A is deterministic�
This assumption was only used in order to identify the value of A�g�x� y��� obtained
and used in the �jy�j���st iteration with the value of A�g�x� y��� obtained and used
in the jy�jth iteration� but the same e�ect can be obtained by just reusing the
former value �in the jy�jth iteration� rather than reinvoking A in order to obtain
it� Part � follows�

Towards Part �� let use �rst reduce the task of approximating �R to the
task of �exact� uniform generation for R� On input x � SR� the reduction uses
the tree of possible pre�xes of elements of R�x� in a somewhat di�erent manner�
Again� we proceed in iterations� entering the ith iteration with an �i� ��bit long

string y� such that R��x� y�� def
� fy�� � �x� y�y��� � Rg is not empty� At the ith

iteration we estimate the bigger among the two fractions jR��x� y�	�j�jR��x� y��j
and jR��x� y���j�jR��x� y��j� by uniformly sampling the uniform distribution over
R��x� y��� That is� taking poly�jxj����jxj�� uniformly distributed samples in R��x� y���
we obtain with overwhelmingly high probability an approximation of these frac
tions up to an additive deviation of at most ���jxj���� This means that we obtain

��Alternatively� we note that since A is a �� � ���approximator for � � � it must hold that
�R��z� � � implies A�z� � �� Also� since � � �
�� if �R��z� � � then A�z� � ��
�� �
��� which
may be rounded to ��

��	� COUNTING ���

a relative approximation upto a factor of �& ���jxj� for the fraction �or fractions�
that is �resp�� are� bigger than ���� Indeed� we may not be able to obtain such
a good relative approximation of the other fraction �in case it is very small�� but
this does not matter� It also does not matter that we cannot tell which is the
bigger fraction among the two� it only matter that we use an approximation that
indicates a quantity that is� say� bigger than ���� We proceed to the next iteration
by augmenting y� using the bit that corresponds to such a quantity� Speci�cally�
suppose that we obtained the approximations a��y

�� ' jR��x� y�	�j�jR��x� y��j and
a��y

�� ' jR��x� y���j�jR��x� y��j� Then we extend y� by the bit � if a��y
�� � a��y

��
and extend y� by the bit 	 otherwise� Finally� when we reach y � 	� � � �	�jxj� such
that �x� y� � R� we output

a�����
�� � a���	���� � � � a���jxj��	�	� � � �	�jxj������� ������

As in Part �� actions regarding R� �in this case uniform generation in R�� are con
ducted via the parsimonious reduction g to R� That is� whenever we need to sample
uniformly in the set R��x� y��� we sample the set R�g�x� y��� and recover the corre
sponding element of R��x� y�� by using the mapping guaranteed by the hypothesis
that g is strongly parsimonious� Finally� note that the deviation from uniform
distribution �i�e�� the fact that we can only approximately sample R� merely in
troduces such a deviation in each of our approximations to the relevant fractions
�i�e�� to a fraction bigger than ����� Speci�cally� on input x� using an oracle that
provides a �� � ���approximate uniform generation for R� with overwhelmingly
high probability� the output �as de�ned in Eq� ������� is in

�jxj�Y
i��

��& ����jxj�� � jR

��x�	� � � �	i���j
jR��x�	� � � �	i�j

�
���� �

where the error probability is due to the unlikely case that in one of the iterations
our approximations deviates from the correct value by more than an additive de
viation term of ���n���� Noting that Eq� ���� � equals �� & ����jxj���jxj� � jR�x�j
and using ��&����jxj���jxj� � ��&��jxj��� Part � follows� and so does the theorem�

����	�� A direct procedure for uniform generation

We conclude the current chapter by presenting a direct procedure for solving the
uniform generation problem of any R � PC� This procedure uses an oracle to
NP � which is unavoidable because solving the uniform generation problem implies
solving the corresponding search problem� One advantage of this procedure� over
the reduction presented in x�������� is that it solves the uniform generation problem
rather than the approximate uniform generation problem�

We are going to use hashing again� but this time we use a family of hashing
functions having a stronger �uniformity property� �see Appendix D������ Speci�
cally� we will use a family of
wise independent hashing functions mapping
bit
strings to mbit strings� where
 bounds the length of solutions in R� and rely on

��� CHAPTER �� RANDOMNESS AND COUNTING

the fact that such a family satis�es Lemma D��� Intuitively� such functions parti
tion f	� �g� into �m cells and Lemma D�� asserts that these partitions �uniformly
shatter� all su�ciently large sets� That is� for every set S � f	� �g� of size "�
 ��m�
the partition induced by almost every function is such that each cell contains ap
proximately jSj��m elements of S� In particular� if jSj � +�
 � �m� then each cell
contains +�
� elements of S�

Loosely speaking� the following procedure �for uniform generation� �rst selects
a random hashing function and tests whether it �uniformly shatters� the target set
S� If this condition holds then the procedure selects a cell at random and retrieve
the elements of S residing in the chosen cell� Finally� the procedure outputs each
retrieves element �in S� with a �xed probability� which is independent of the actual
number of elements of S that reside in the chosen cell� This guarantees that each
element e � S is output with the same probability� regardless of the number of
elements of S that resides with e in the same cell�

In the following construction� we assume that on input x we also obtain a good
approximation to the size of R�x�� This assumption can be enforced by using
an approximate counting procedure as a preprocessing stage� Alternatively� the
ideas presented in the following construction yield such an approximate counting
procedure�

Construction ���� �uniform generation�� On input x and m�
x � fmx�mx $ �g�

where mx
def
� blog� jR�x�jc and R�x� � f	� �g�� the oracle machine proceeds as

follows�

�� Selecting a partition that �uniformly shatters� R�x�� The machine sets m �
max�	�m�

x���log�
� and selects uniformly h � Hm
� � Such a function de�nes

a partition of f	� �g� into �m cells�
� and the hope is that each cell contains
approximately the same number of elements of R�x�� Next� the machine
checks that this is indeed the case or rather than no cell contains more that
���
 elements of R�x�� This is done by checking whether or not �x� h� ���
����

is in the set S
��
R�H de�ned as follows

S
��
R�H

def
� f�x�� h�� �t� � �v s�t� jfy � �x�� y��R
 h��y��vgj � tg ������

� f�x�� h�� �t� � �v� y�� ���� yt s�t� ����x�� h�� v� y�� ���� yt�g�
where ����x�� h�� v� y�� ���� yt� holds if and only if y��y� � � ��yt and for every

j � �t� it holds that �x�� yj��R
 h��yj��v� Note that S
��
R�H � NP�

If the answer is positive �i�e�� there exists a cell that contains more that
���
 elements of R�x�� then the machine halts with output �� Otherwise�
the machine continues with this choice of h� In this case� no cell contains
more that ���
 elements of R�x� �i�e�� for every v � f	� �gm� it holds that
jfy � �x� y� � R
 h�y� � vgj � ���
�� We stress that this is an absolute

guarantee that follows from �x� h� ���
���� �� S
��
R�H �

��For sake of uniformity� we allow also the case of m � �� which is rather arti�cial� In this
case all hashing functions in H

�
map f�� �g� to the empty string� which is viewed as �
� and thus

de�ne a trivial partition of f�� �g� �i�e�� into a single cell��

��	� COUNTING ���

� Selecting a cell and determining the number of elements of R�x� that are
contained in it� The machine selects uniformly v � f	� �gm and determines

sv
def
� jfy � �x� y��R
 h�y��vgj by making queries to the following NP�set

S
��
R�H

def
� f�x�� h�� v�� �t� � �y�� ���� yt s�t� ����x�� h�� v�� y�� ���� yt�g� ������

Speci�cally� for i � �� ���� ���
� it checks whether �x� h� v� �i� is in S
��
R�H � and

sets sv to be the largest value of i for which the answer is positive�

�� Obtaining all the elements of R�x� that are contained in the selected cell�
and outputting one of them at random� Using sv� the procedure reconstructs

the set Sv
def
� fy � �x� y��R
 h�y� � vg� by making queries to the following

NP�set

S
��
R�H

def
� f�x�� h�� v�� �t� j� � �y�� ���� yt s�t� ����x�� h�� v�� y�� ���� yt� j�g� ������

where ����x�� h�� v�� y�� ���� yt� j� holds if and only if ����x�� h�� v�� y�� ���� yt�
holds and the jth bit of y� � � � yt equals �� Speci�cally� for j� � �� ���� sv and
j� � �� ����
� we make the query �x� h� v� �sv � �j� � �� �
 $ j�� in order to
determine the jth� bit of yj� � Finally� having recovered Sv� the procedure
outputs each y � Sv with probability �����
� and outputs � otherwise �i�e��
with probability �� �sv����
���

Focusing on the case that m�
x � � $ log�
� we note that m � m�

x � � � log�
 �
log��jR�x�j��	
�� In this case� by Lemma D��� with overwhelmingly high prob
ability� each set fy � �x� y� � R
 h�y� � vg has cardinality �� & 	� �jR�x�j��m�
Using m�

x � �log� jR�x�j� � � �resp�� m�
x � �log� jR�x�j� $ ��� it follows that

jR�x�j��m � ���
 �resp�� jR�x�j��m � ��
�� Thus� Step � can be easily adapted
to yield an approximate counting procedure for �R �see Exercise ������ However�
our aim is to establish the following fact�

Proposition ���� Construction ��� solves the uniform generation problem of R�

Proof� By Lemma D�� �and the setting of m�� with overwhelmingly high probabil
ity� a uniformly selected h � Hm

� partitions R�x� into �m cells� each containing at
most ���
 elements� The key observation� stated in Step �� is that if the procedure
does not halt in Step � then it is indeed the case that h induces such a partition�
The fact that these cells may contain a di�erent number of elements is immaterial�
because each element is output with the same probability �i�e�� �����
�� What
matters is that the average number of elements in the cells is su�ciently large� be
cause this average number determines the probability that the procedure outputs
an element of R�x� �rather than ��� Speci�cally� the latter probability equals the
aforementioned average number �which equals jR�x�j��m� divided by ���
� Using
m � max�	� � $ log���jR�x�j�� �� log�
�� we have jR�x�j��m � min�jR�x�j� ��
��
which means that the procedure outputs some element of R�x� with probability at
least min��jR�x�j����
�� �������

��	 CHAPTER �� RANDOMNESS AND COUNTING

Technical comments� We can easily improve the performance of Construc
tion ���� by dealing separately with the case m � 	� In such a case� Step �
can be simpli�ed and improved by uniformly selecting and outputting an element
of S� �which equals R�x��� Under this modi�cation� the procedure outputs some
element of R�x� with probability at least ���� In any case� recall that the proba
bility that a uniform generation procedure outputs � can be deceased by repeated
invocations�

Chapter Notes

One key aspect of randomized procedures is their success probability� which is ob
viously a quantitative notion� This aspect provides a clear connection between
probabilistic polynomialtime algorithms considered in Section ��� and the count
ing problems considered in Section ��� �see also Exercise ������ More appealing
connections between randomized procedures and counting problems �e�g�� the ap
plication of randomization in approximate counting� are presented in Section ����
These connections justify the presentation of these two topics in the same chapter�

Randomized algorithms

Making people take an unconventional step requires compelling reasons� and indeed
the study of randomized algorithms was motivated by a few compelling examples�
Ironically� the appeal of the two most famous examples �discussed next� has been
somewhat diminished due to subsequent �nding� but the fundamental questions
that emerged remain fascinating regardless of the status of these two examples�
These questions refer to the power of randomization in various computational set
tings� and in particular in the context of decision and search problems� We shall
return to these questions after brie�y reviewing the story of the aforementioned
examples�

The �rst example� primality testing� For more than two decades� primality
testing was the archetypical example of the usefulness of randomization in the con
text of e�cient algorithms� The celebrated algorithms of Solovay and Strassen ��	��
and of Rabin ������ proposed in the late ���	
s� established that deciding primality
is in coRP �i�e�� these tests always recognize correctly prime numbers� but they
may err on composite inputs�� �The approach of Construction ���� which only es
tablishes that deciding primality is in BPP� is commonly attributed to M� Blum��
In the late ���	
s� Adleman and Huang ��� proved that deciding primality is in RP
�and thus in ZPP�� In the early �			
s� Agrawal� Kayal� and Saxena ��� showed
that deciding primality is actually in P � One should note� however� that strong
evidence to the fact that deciding primality is in P was actually available from
the start� we refer to Miller
s deterministic algorithm �� ��� which relies on the
Extended Riemann Hypothesis�

��	� COUNTING ���

The second example� undirected connectivity� Another celebrated example
to the power of randomization� speci�cally in the context of logspace computa
tions� was provided by testing undirected connectivity� The randomwalk algorithm
presented in Construction ���� is due to Aleliunas� Karp� Lipton� Lov#asz� and Rack
o� � �� Recall that a deterministic logspace algorithm was found twenty�ve years
later �see Section ���� or �������

Other randomized algorithms� In addition to the two foregoing examples�
several other appealing randomized algorithms are known� Con�ning ourselves to
the context of search and decision problems� we mention the algorithms for �nding
perfect matchings and minimum cuts in graphs �see� e�g�� ���� Apdx� B��� or �����
Sec� ����.�	����� and note the prominent role of randomization in computational
number theory �see� e�g�� ���� or ����� Chap� ����� We mention that randomized al
gorithms are more abundant in the context of approximation problems �let alone in
other computational settings �cf�� e�g�� Chapter �� Appendix C� and Appendix D����
For a general textbook on randomized algorithms� we refer the interested reader
to ������

While it can be shown that randomization is essential in several important
computational settings �cf�� e�g�� Chapter �� Appendix C� and Appendix D����
a fundamental question is whether randomization is essential in the context of
search and decision problems� The prevailing conjecture is that randomization
is of limited help in the context of timebounded and spacebounded algorithms�
For example� it is conjectured that BPP � P and BPL � L� Note that such
conjectures do not rule out the possibility that randomization is helpful also in
these contexts� it merely says that this help is limited� For example� it may be the
case that any quadratictime randomized algorithm can be emulated by a cubic
time deterministic algorithm� but not by a quadratic time deterministic algorithm�

On the study of BPP� The conjecture BPP � P is referred to as a full deran
domization of BPP� and can be shown to hold under some reasonable intractability
assumptions� This result �and related ones� will be presented in Section ���� In
the current chapter� we only presented uncoditional results regarding BPP like
BPP � P�poly and BPP � PH� Our presentation of Theorem ��� follows the
proof idea of Lautemann ������ A di�erent proof technique� which yields a weaker
result but found more applications �see� e�g�� Theorem ���� and ��	���� was pre
sented �independently� by Sipser ������

On the role of promise problems� In addition to their use in the formulation of
Theorem ���� promise problems allow for establishing time hierarchy theorems �as
in x�������� for randomized computation �see Exercise ������ We mention that such
results are not known for the corresponding classes of standard decision problems�
The technical di�culty is that we do not know how to enumerate probabilistic
machines that utilize a nontrivial probabilistic decision rule�

��� CHAPTER �� RANDOMNESS AND COUNTING

On the feasibility of randomized computation� Di�erent perspectives on
this question are o�ered by Chapter � and Appendix D��� Speci�cally� as ad
vocated in Chapter �� generating uniformly distributed bit sequences is not really
necessary for implementing randomized algorithms� it su�ces to generate sequences
that look as if they are uniformly distributed� In many cases this leads to reducing
the number of coin tosses in such implementations� and at times even to a full
�e�cient� derandomization �see Sections ��� and ����� A less radical approach is
presented in Appendix D��� which deals with the task of extracting almost uni
formly distributed bit sequences from sources of weak randomness� Needless to
say� these two approaches are complimentary and can be combined�

Counting problems

The counting class �P was introduced by Valiant ���	�� who proved that computing
the permanent of 	��matrices is �Pcomplete �i�e�� Theorem ���	�� Interestingly�
like in the case of Cook
s introduction of NPcompleteness � �� Valiant
s motivation
was determining the complexity of a speci�c problem �i�e�� the permanent��

Our presentation of Theorem ���	 is based both on Valiant
s paper ���	� and on
subsequent studies �most notably ������ Speci�cally� the highlevel structure of the
reduction presented in Proposition ���� as well as the �structured� design of the
clause gadget is taken from ���	�� whereas the Deus Ex Machina gadget presented
in Figure ��� is based on ����� The proof of Proposition ���� is also based on ����
�with some variants�� Turning back to the design of clause gadgets we regret not
being able to cite and�or use a systematic study of this design problem�

As noted in the main text� we decided not to present a proof of Toda
s The
orem ������ which asserts that every set in PH is Cookreducible to �P �i�e��
Theorem ������ A proof of a related result appears in Section F�� �implying that
PH is reducible to �P via probabilistic polynomialtime reductions�� Alternative
proofs can be found in ���	� �	�� �����

Approximate counting and related problems� The approximation proce
dure for �P is due to Stockmeyer ��	��� following an idea of Sipser ������ Our
exposition� however� follows further developments in the area� The randomized
reduction of NP to problems of unique solutions was discovered by Valiant and
Vazirani ������ Again� our exposition is a bit di�erent�

The connection between approximate counting and uniform generation �pre
sented in x�������� was discovered by Jerrum� Valiant� and Vazirani ������ and
turned out to be very useful in the design of algorithms �e�g�� in the �Markov Chain
approach� �see ����� Sec� ���������� The direct procedure for uniform generation
�presented in x�������� is taken from �����

In continuation to x�������� which is based on ������ we refer the interested reader
to ������ which presents a probabilistic polynomialtime algorithm for approximat
ing the permanent of nonnegative matrices� This fascinating algorithm is based
on the fact that knowing �approximately� certain parameters of a nonnegative
matrix M allows to approximate the same parameters for a matrix M �� provided
that M and M � are su�ciently similar� Speci�cally� M and M � may di�er only

��	� COUNTING ���

on a single entry� and the ratio of the corresponding values must be su�ciently
close to one� Needless to say� the actual observation �is not generic but rather�
refers to speci�c parameters of the matrix� which include its permanent� Thus�
given a matrix M for which we need to approximate the permanent� we consider a
sequence of matrices M�� ����Mt ' M such that M� is the all �
s matrix �for which
it is easy to evaluate the said parameters�� and each Mi�� is obtained from Mi by
reducing some adequate entry by a factor su�ciently close to one� This process of
�polynomially many� gradual changes� allows to transform the dummy matrix M�

into a matrix Mt that is very close to M �and hence has a permanent that is very
close to the permanent of M�� Thus� approximately obtaining the parameters of
Mt allows to approximate the permanent of M �

Finally� we note that Section �	���� provides a treatment of a di�erent type
of approximation problems� Speci�cally� when given an instance x �for a search
problem R�� rather than seeking an approximation of the number of solutions �i�e��
�R�x��� one seeks an approximation of the value of the best solution �i�e�� best
y � R�x��� where the value of a solution is de�ned by an auxiliary function�

Exercises

Exercise ��� Show that if a search �resp�� decision� problem can be solved by a
probabilistic polynomialtime algorithm having zero failure probability� then the
problem can be solve by a deterministic polynomialtime algorithm�

Hint� replace the internal coin tosses by a �xed outcome that is easy to generate deterministically

�e�g�� the all�zero sequence���

Exercise ��� �randomized reductions� In continuation to the de�nitions pre
sented at the beginning of Section ���� prove the following�

�� If a problem ' is probabilistic polynomialtime reducible to a problem that
is solvable in probabilistic polynomialtime then ' is solvable in probabilistic
polynomialtime� where by solving we mean solving correctly except with
negligible probability�

Warning� Recall that in the case that '� is a search problem� we required
that on input x the solver provides a correct solution with probability at least
�� ��jxj�� but we did not require that it always returns the same solution�

Hint� without loss of generality� the reduction does not make the same query twice��

�� Prove that probabilistic polynomialtime reductions are transitive�

�� Prove that randomized Karpreductions are transitive and that they yield a
special case of probabilistic polynomialtime reductions�

De�ne onesided error and zerosided error randomized �Karp and Cook� reduc
tions� and consider the foregoing items when applied to them� Note that the
implications for the case of onesided error are somewhat subtle�

��� CHAPTER �� RANDOMNESS AND COUNTING

Exercise ��� �on the de�nition of probabilistically solving a search problem�
In continuation to the discussion at the beginning of Section ������ suppose that
for some probabilistic polynomialtime algorithm A and a positive polynomial p

the following holds� for every x � SR
def
� fz � R�z� �� �g there exists y � R�x�

such that Pr�A�x� � y� � 	� $ ���p�jxj��� whereas for every x �� SR it holds that
Pr�A�x� � �� � 	� $ ���p�jxj���

�� Show that there exists a probabilistic polynomialtime algorithm that solves
the search problem of R with negligible error probability�

Hint� See Exercise ��� for a related procedure��

�� Re�ect on the need to require that one �correct� solution occurs with probabil
ity greater than 	� $���p�jxj��� Speci�cally� what can we do if it is only guar
anteed that for every x � SR it holds that Pr�A�x� � R�x�� � 	� $ ���p�jxj��
�and for every x �� SR it holds that Pr�A�x� � �� � 	� $ ���p�jxj���!

Note that R is not necessarily in PC� Indeed� in the case that R � PC we can
eliminate the error probability for every x �� SR� and perform errorreduction as in
RP �

Exercise ��	 �error�reduction for BPP� For � � N �	� ��� let BPP� denote
the class of decision problems that can be solved in probabilistic polynomialtime
with error probability upperbounded by �� Prove the following two claims�

�� For every positive polynomial p and ��n� � ������ ���p�n��� the class BPP�

equals BPP�

�� For every positive polynomial p and ��n� � ��pn�� the class BPP equals
BPP��

Formulate a corresponding version for the setting of search problem� Speci�cally�
for every input that has a solution� consider the probability that a speci�c solution
is output�

Guideline� Given an algorithm A for the syntactically weaker class� consider an algo�

rithm A� that on input x invokes A on x for t
jxj� times� and rules by majority� For Part �

set t
n� � O
p
n��� and apply Chebyshev�s Inequality� For Part � set t
n� � O
p
n�� and

apply the Cherno� Bound�

Exercise ��� �error�reduction for RP� For � � N �	� ��� we de�ne the class
of decision problem RP� such that it contains S if there exists a probabilistic
polynomialtime algorithm A such that for every x � S it holds that Pr�A�x� �
�� � ��jxj� and for every x �� S it holds that Pr�A�x� � 	� � �� Prove the following
two claims�

�� For every positive polynomial p� the class RP��p equals RP �

�� For every positive polynomial p� the class RP equals RP�� where ��n� �
�� ��pn��

��	� COUNTING ��

Hint� The one�sided error allows using an �or�rule� �rather than a �majority�rule�� for the

decision��

Exercise ��� �error�reduction for ZPP� For � � N �	� ��� we de�ne the class
of decision problem ZPP� such that it contains S if there exists a probabilistic
polynomialtime algorithmA such that for every x it holds that Pr�A�x� � �S�x�� �
��jxj� and Pr�A�x� � f�S�x���g� � �� where �S�x� � � if x � S and �S�x� � 	
otherwise� Prove the following two claims�

�� For every positive polynomial p� the class ZPP��p equals ZPP�

�� For every positive polynomial p� the class ZPP equals ZPP�� where ��n� �
�� ��pn��

Exercise �� �an alternative de�nition of ZPP� We say that the decision prob
lem S is solvable in expected probabilistic polynomial�time if there exists a random
ized algorithm A and a polynomial p such that for every x � f	� �g� it holds that
Pr�A�x� � �S�x�� � � and the expected number of steps taken by A�x� is at most
p�jxj�� Prove that S � ZPP if and only if S is solvable in expected probabilistic
polynomialtime�

Guideline� Repeatedly invoking a ZPP algorithm until it yields an output other than ��

results in an expected probabilistic polynomial�time solver� On the other hand� truncating

runs of an expected probabilistic polynomial�time algorithm once they exceed twice the

expected number of steps
and outputting � on such runs�� we obtain a ZPP algorithm�

Exercise ��� Prove that for every S � NP there exists a probabilistic polynomial
time algorithm A such that for every x � S it holds that Pr�A�x� � �� � 	 and for
every x �� S it holds that Pr�A�x� � 	� � �� That is� A has error probability at
most � � exp��poly�jxj�� on yesinstances but never errs on noinstances� Thus�
NP may be �ctitiously viewed as having a huge onesided error probability�

Exercise ��� Let BPP and coRP be classes of promise problems �as in Theo
rem �����

�� Prove that every problem in BPP is reducible to the set f�g � P by a two�
sided error randomized Karpreduction�

Hint� Such a reduction may e�ectively decide membership in any set in BPP��

�� Prove that if a set S is Karpreducible toRP �resp�� coRP� via a deterministic
reduction then S � RP �resp�� S � coRP��

Exercise ���� �randomness�e�cient error�reductions� Note that standard
errorreduction �as in Exercise ���� yields error probability � at the cost of increas
ing the randomness complexity by a factor of O�log������� Using the randomness
e�cient errorreductions outlined in xD������� show that error probability � can
be obtained at the cost of increasing the randomness complexity by a constant
factor and an additive term of �� log������� Note that this allows satisfying the
hypothesis made in the illustrative paragraph of the proof of Theorem ����

��� CHAPTER �� RANDOMNESS AND COUNTING

Exercise ���� In continuation to the illustrative paragraph in the proof of Theo
rem ���� consider the promise problem '� � �'�yes�'�no� such that '�yes � f�x� r�� �
jr�j�p��jxj�
 ��r�� � f	� �gjr�j�A��x� r�r��� � �g and '�no � f�x� r�� � x ��Sg� Recall
that for every x it holds that Prr�f���g�p��jxj� �A

��x� r� ���S�x�� � ��p
�jxj�����

�� Show that mapping x to �x� r��� where r� is uniformly distributed in f	� �gp�jxj��
constitutes a onesided error randomized Karpreduction of S to '��

�� Show that '� is in the promise problem class coRP �

Exercise ���� �randomized versions of NP� In continuation to Footnote ��
consider the following two variants of MA �which we consider the main randomized
version of NP��

�� S � MA�� if there exists a probabilistic polynomialtime algorithm V such
that for every x � S there exists y � f	� �gpolyjxj� such that Pr�V �x� y���� �
���� whereas for every x �� S and every y it holds that Pr�V �x� y��	� � ��

�� S � MA�� if there exists a probabilistic polynomialtime algorithm V such
that for every x � S there exists y � f	� �gpolyjxj� such that Pr�V �x� y���� �
���� whereas for every x �� S and every y it holds that Pr�V �x� y��	� � ����

Prove that MA�� � NP whereas MA�� � MA�

Guideline� For the �rst part� note that a sequence of internal coin tosses that makes

V accept
x� y� can be incorporated into y itself
yielding a standard NP�witness�� For

the second part� apply the ideas underlying the proof of Theorem ���� and note that an

adequate sequence shifts
to be used by the veri�er� can be incorporated in the single

message sent by the prover�

Exercise ���� �BPP � ZPPNP� In continuation to the proof of Theorem ����
present a zeroerror randomized reduction of BPP to NP � where all classes are the
standard classes of decision problems�

Exercise ���	 �time hierarchy theorems for promise problem versions of BPtime�
Fixing a model of computation� let BPtime�t� denote the class of promise prob
lems that are solvable by a randomized algorithm of time complexity t that has
a twosided error probability at most ���� �The common de�nition refers only to
decision problems�� Formulate and prove results analogous to Theorem ��� and
Corollary ����

Guideline� Analogously to the proof of Theorem ���� we construct a Boolean function

f by associating with each admissible machine M an input xM � and making sure that

Pr�f
xM � �� M �
x� � ���� where M �
x� denotes the emulation of M
x� suspended after

t�
jxj� steps� The key point is that f is a partial function
corresponding to a promise

problem� that is de�ned only for machines
called admissible� that have two�sided error

at most ���
on every input�� This restriction allows for a randomized computation of f

with two�sided error probability at most ���
on each input on which f is de�ned��

��	� COUNTING ���

Exercise ���� �extracting square roots modulo a prime� Using the follow
ing guidelines� present a probabilistic polynomialtime algorithm that� on input a
prime P and a quadratic residue s �mod P �� returns r such that r� � s �mod P ��

�� Prove that if P � � �mod �� then sP����� mod P is a square root of the
quadratic residue s �mod P ��

�� Note that the procedure suggested in Item � relies on the ability to �nd an
odd integer e such that se � � �mod P �� Indeed� once such e is found� we
may output se����� mod P � �In Item �� we used e � �P � ����� which is odd
since P � � �mod ����

Show that it su�ces to �nd an odd integer e together with a residue t and
an even integer e� such that sete

� � � �mod P �� because s � se��te
� �

�se�����te
������

�� Given a prime P � � �mod ��� a quadratic residue s� and any quadratic
nonresidue t �i�e�� residue t such that tP����� � �� �mod P ��� show that
e and e� as in Item � can be e�ciently found���

�� Prove that� for a prime P � with probability ��� a uniformly chosen t �
f�� ���� Pg satis�es tP����� � �� �mod P ��

Note that randomization is used only in the last item� which in turn is used only
for P � � �mod ���

Exercise ���� Referring to the de�nition of arithmetic circuits �cf� Appendix B����
show that the following decision problem is in coRP � Given a pair of circuits
�C�� C�� of depth d over a �eld that has more than �d�� elements� determine
whether the circuits compute the same polynomial�

Guideline� Note that each of these circuits computes a polynomial of degree at most �d�

Exercise ��� �small�space randomized step�counter� As de�ned in Exer
cise ���� a step�counter is an algorithm that halts after issuing a number of �signals�
as speci�ed in its input� where these signals are de�ned as entering �and leaving�
a designated state �of the algorithm�� Recall that a stepcounter may be run in
parallel to another procedure in order to suspend the execution after a desired
number of steps �of the other procedure� has elapsed� Note that there exists a
simple deterministic machine that� on input n� halts after issuing n signals while
using O���$ log� n space �and eO�n� time�� The goal of this exercise is presenting a
�randomized� stepcounter that allows for many more signals while using the same
amount of space� Speci�cally� present a �randomized� algorithm that� on input

�	Write �P � ��
� � ��j � �� � �i� � and note that s��j����i� � � �mod P �� Assuming

that for some i� i � and j� it holds that s��j����i t��j
�����i

�

� � �mod P �� show how

to �nd i�� i � � and j�� such that s��j����i�� t��j
������i

��

� � �mod P �� �Extra hint�

s��j����i�� t��j
�����i

��� � �� �mod P � and t��j����i� � �� �mod P ��� Thus� starting with
i � i
� we reach i � �� at which point we have what we need�

��� CHAPTER �� RANDOMNESS AND COUNTING

n� uses O��� $ log� n space �and eO��n� time� and halts after issuing an expected
number of �n signals� Furthermore� prove that� with probability at least ����k���
this stepcounter halts after issuing a number of signals that is between �n�k and
�n�k�

Guideline� Repeat the following experiment till reaching success� Each trial consists of

uniformly selecting n bits
i�e�� tossing n unbiased coins�� and is deemed successful if all

bits turn out to equal the value �
i�e�� all outcomes equal head�� Note that such a trial

can be implemented by using space O
�� � log� n
mainly for implementing a standard

counter for determining the number of bits�� Thus� each trial is successful with probability

��n� and the expected number of trials is �n�

Exercise ���� �analysis of random walks on arbitrary undirected graphs�
In order to complete the proof of Proposition ����� prove that if fu� vg is an edge
of the graph G � �V�E� then E�Xu�v� � �jEj� Recall that� for a �xed graph� Xu�v

is a random variable representing the number of steps taken in a random walk that
starts at the vertex u until the vertex v is �rst encountered�

Guideline� Let Zu�v
n� be a random variable counting the number of minimal paths

from u to v that appear along a random walk of length n� where the walk starts at the

stationary vertex distribution
which is well�de�ned assuming the graph is not bipartite�

which in turn may be enforced by adding a self�loop�� On one hand� E�Xu�v � Xv�u �

limn��
n�E�Zu�v
n� �� due to the memoryless property of the walk� On the other hand�

letting
v�u
i�
def
� � if the edge fu� vg was traversed from v to u in the ith step of such

a random walk and
v�u
i�
def
� � otherwise� we have

Pn

i��

v�u
i� Zu�v
n� � � and

E�
v�u
i� � ���jEj
because� in each step� each directed edge appears on the walk with

equal probability�� It follows that E�Xu�v � �jEj�

Exercise ���� �the class PP � BPP and its relation to �P� In contrast to
BPP� which refers to useful probabilistic polynomialtime algorithms� the class PP
does not capture such algorithms but is rather closely related to �P� A decision
problem S is in PP if there exists a probabilistic polynomialtime algorithm A such
that� for every x� it holds that x � S if and only if Pr�A�x� � �� � ���� Note that
BPP � PP� Prove that PP is Cookreducible to �P and vise versa�

Guideline� For S � PP
by virtue of the algorithm A�� consider the relation R such that

x� r� � R if and only if A accepts the input x when using the random�input r � f�� �gp�jxj��
where p is a suitable polynomial� Thus� x � S if and only if jR
x�j � �p�jxj���� which

in turn can de determined by querying the counting function of R� To reduce f � #P
to PP� consider the relation R � PC that is counted by f
i�e�� f
x� � jR
x�j� and the

decision problem Sf as de�ned in Proposition ���� Let p be the polynomial specifying the

length of solutions for R
i�e��
x� y� � R implies jyj � p
jxj��� and consider the algorithm

A� that on input
x�N� proceeds as follows� With probability ���� it uniformly selects

y � f�� �gp�jxj� and accepts if and only if
x� y� � R� and otherwise
i�e�� in the other

case� it accepts with probability �p�jxj��N
��

�p�jxj�
� Prove that
x�N� � Sf if and only if

Pr�A�
x� � � � ����

��	� COUNTING ���

Exercise ���� �enumeration problems� For any binary relation R� de�ne the
enumeration problem of R as a function fR � f	� �g��N f	� �g� � f�g such that
fR�x� i� equals the i

th element in jR�x�j if jR�x�j � i and fR�x� i� � � otherwise�
The above de�nition refers to the standard lexicographic order on strings� but any
other e�cient order of strings will do���

�� Prove that� for any polynomially bounded R� computing �R is reducible to
computing fR�

�� Prove that� for any R � PC� computing fR is reducible to some problem in
�P�

Guideline� Consider the binary relation R� � f
hx� bi� y� �
x� y� � R � y bg�
and show that fR is reducible to #R��
Extra hint� Note that fR�x� i� � y if and only

if jR��hx� yi�j � i and for every y� � y it holds that jR��hx� y�i�j � i��

Exercise ���� �arti�cial �P�complete problems� Show that there exists a re
lation R � PC such that �R is �Pcomplete and SR � f	� �g�� Furthermore� prove
that for every R � PC there exists R� � PF such that for every x it holds that
�R��x� � �R�x� $ �� Note that Theorem ���� follows by starting with a relation
that satis�es Theorem �����

Exercise ���� �computing the permanent of integer matrices� Prove that
computing the permanent of matrices with 	��entries is computationally equiva
lent to computing the number of perfect matchings in bipartite graphs�

Hint� Given a bipartite graph G � ��X�Y �� E�� consider the matrix M representing the edges

between X and Y �i�e�� the �i� j��entry in M is � if the ith vertex of X is connected to the jth

entry of Y �� and note that only perfect matchings in G contribute to the permanent of M ��

Exercise ���� �computing the permanent modulo �� Combining Proposition ����
and Theorem ����� prove that for every integer n � � that is relatively prime to
c� computing the permanent modulo n is NPhard under randomized reductions���

Since Proposition ���� holds for c � ���� hardness holds for every odd integer n � ��

Guideline� Apply the reduction of Proposition ���� to the promise problem of deciding

whether a �CNF formula has a unique satis�able assignment or is unsatis�able� Use the

fact that n does not divide any power of c�

Exercise ���	 �negative values in Proposition ����� Assuming P �� NP � prove
that Proposition ���� cannot hold for a set I containing only nonnegative integers�
Note that the claim holds even if the set I is not �nite �and even if I is the set of
all nonnegative integers��

�
An order of strings is a ��� and onto mapping � from the natural numbers to the set of all
strings� Such order is called e�cient if both � and its inverse are e�ciently computable� The
standard lexicographic order satis�es ��i� � y if the �compact� binary expansion of i equals �y
that is ���� � �� ���� � �� ���� � �� ���� � ��� etc�

��Actually� a su�cient condition is that n does not divide any power of c� Thus �referring to
c � ��
�� hardness holds for every integer n � that is not a power of �� On the other hand� for
any �xed n � �e� the permanent modulo n can be computed in polynomial�time ����� Thm� ���

��	 CHAPTER �� RANDOMNESS AND COUNTING

Guideline� A reduction as in Proposition ���� yields a Karp�reduction of �SAT to deciding

whether the permanent of a matrix with entries in I is non�zero� Note that the permanent

of a non�negative matrix is non�zero if and only if the corresponding bipartite graph has

a perfect matching�

Exercise ���� �high�level analysis of the permanent reduction� Establish the
correctness of the highlevel reduction presented in the proof of Proposition �����
That is� show that if the clause gadget satis�es the three conditions postulated in
the said proof� then each satisfying assignment of � contributes exactly cm to the
SWCC of G� whereas unsatisfying assignments have no contribution�

Guideline� Cluster the cycle covers of G� according to the set of track edges that they
use
i�e�� the edges of the cycle cover that belong to the various tracks��
Note the
correspondence between these edges and the external edges used in the de�nition of the
gadget�s properties�� Using the postulated conditions
regarding the clause gadget� prove
that� for each such set T of track edges� if the sum of the weights of all cycle covers that
use the track edges T is non�zero then the following hold�

�� The intersection of T with the set of track edges incident at each speci�c clause
gadget is non�empty� Furthermore� if this set contains an incoming edge
resp��
outgoing edge� of some entry�vertex
resp�� exit�vertex� then it also contains an
outgoing edge
resp�� incoming edge� of the corresponding exit�vertex
resp�� entry�
vertex��

�� If T contains an edge that belongs to some track then it contains all edges of this
track� It follows that� for each variable x� the set T contains the edges of a single
track associated with x�

�� The tracks �picked� by T correspond to a single truth assignment to the variables of
�� and this assignment satis�es �
because� for each clause� T contains an external
edge that corresponds to a literal that satis�es this clause��

It follows that each satisfying assignment of � contributes exactly cm to the SWCC of

G��

Exercise ���� �analysis of the implementation of the clause gadget� Establish
the correctness of the implementation of the clause gadget presented in the proof of
Proposition ����� That is� show that if the box satisfy the three conditions postu
lated in the said proof� then the clause gadget of Figure ��� satis�es the conditions
postulated for it�

Guideline� Cluster the cycle covers of a gadget according to the set of non�box edges that
they use� where non�box edges are the edges shown in Figure ���� Using the postulated
conditions
regarding the box� prove that� for each set S of non�box edges� if the sum of
the weights of all cycle covers that use the non�box edges S is non�zero then the following
hold�

�� The intersection of S with the set of edges incident at each box must contain
two
non�sel�oop� edges� one incident at each of the box�s terminals� Needless to
say� one edge is incoming and the other outgoing� Referring to the six edges that
connects one of the six designated vertices
of the gadget� with the corresponding
box terminals as connectives� note that if S contains a connective incident at the
terminal of some box then it must also contain the connective incident at the other
terminal� In such a case� we say that this box is picked by S�

��	� COUNTING ���

�� Each of the three
literal�designated� boxes that is not picked by S is �traversed�
from left to right
i�e�� the cycle cover contains an incoming edge of the left terminal
and an outgoing edge of the right terminal�� Thus� the set S must contain a
connective� because otherwise no directed cycle may cover the leftmost vertex shown
in Figure ���� That is� S must pick some box�

�� The set S is fully determined by the non�empty set of boxes that it picks�

The postulated properties of the clause gadget follow� with c � b��

Exercise ��� �analysis of the design of a box for the clause gadget� Prove
that the �by� matrix presented in Eq� ����� satis�es the properties postulated for
the �box� used in the second part of the proof of Proposition ����� In particular�

�� Show a correspondence between the conditions required of the box and con
ditions regarding the value of the permanent of certain submatrices of the
adjacency matrix of the graph�

Hint� For example� show that the �rst condition correspond to requiring that the value

of the permanent of the entire matrix equals zero� The second condition refers to sub�

matrices obtained by omitting either the �rst row and fourth column or the fourth row

and �rst column��

�� Verify that the matrix in Eq� ����� satis�es the aforementioned conditions
�regarding the value of the permanent of certain submatrices��

Prove that no �by� matrix �and thus also no �by� matrix� can satisfy the afore
mentioned conditions�

Exercise ���� �error reduction for approximate counting� Show that the er
ror probability � in Section ���� can be reduced from ��� �or even �����$���poly�jxj��
to exp��poly�jxj���
Guideline� Invoke the weaker procedure for an adequate number of times and take the

median value among the values obtained in these invocations�

Exercise ���� �strong approximation for some �P�complete problems� Show
that there exists �Pcomplete problems �albeit unnatural ones� for which an ��� 	�
approximation can be found by a �deterministic� polynomialtime algorithm� Fur
thermore� the runningtime depends polynomially on ����

Guideline� Combine any #P�complete problem referring to some R� � PC with a

trivial counting problem
e�g�� the counting problem associated with the trivial relation

R� � �n�Nf
x� y� � x� y � f�� �gng�� Show that� without loss of generality� it holds that

#R�
x� �jxj	�� Prove that the counting problem of R � f
x� �y� �
x� y� � R�g �
f
x� �y� �
x� y� � R�g is #P�complete
by reducing from #R��� Present a deterministic

algorithm that� on input x and � � �� outputs an
�� ���approximation of #R
x� in time

poly
jxj���
Extra hint� distinguish between � � ��jxj	� and � � ��jxj	���

Exercise ���� �relative approximation for DNF satisfaction� Referring to
the text of x�������� prove the following claims�

��� CHAPTER �� RANDOMNESS AND COUNTING

�� Both assumptions regarding the general setting hold in case Si � C��i ����
where C��i ��� denotes the set of truth assignments that satisfy the conjunc
tion Ci�

Guideline� In establishing the second assumption note that it reduces to the
conjunction of the following two assumptions�

a� Given i� one can e�ciently generate a uniformly distributed element of Si�
Actually� generating a distribution that is almost uniform over Si su�ces�

b� Given i and x� one can e�ciently determine whether x � Si�

�� Prove Proposition ����� relating to details such as the error probability in an
implementation of Construction ��� �

�� Note that Construction ��� does not require exact computation of jSij� An
alyze the output distribution in the case that we can only approximate jSij
upto a factor of �& ���

Exercise ���� �reducing the relative deviation in approximate counting�
Prove that� for any R � PC and every polynomial p and constant � � 	� � there
exists R� � PC such that ���p� ��approximation for �R is reducible to ����� ��
approximation for �R�� Furthermore� for any F �n� � exp�poly�n��� prove that
there exists R�� � PC such that ���p� ��approximation for �R is reducible to ap
proximating �R�� to within a factor of F with error probability ��

Guideline �for the main part�� For t
n� � $
p
n��� de�neR� such that
y�� ���� yt�jxj�� �
R�
x� if and only if
�i�
x� yi� � R� Note that jR
x�j � jR�
x�j�	t�jxj�� and thus if

a �
��
����� � jR�
x�j then a�	t�jxj� �
��
������	t�jxj� � jR
x�j�

Exercise ���� �deviation reduction in approximate counting� cont�� In con
tinuation to Exercise ����� prove that if R is NPcomplete via parsimonious reduc
tions then� for every positive polynomial p and constant � � 	� � the problem of
���p� ��approximation for �R is reducible to ����� ��approximation for �R�

Hint� Compose the reduction �to the problem of ��
�� 	��approximation for �R�� provided in

Exercise ���� with the parsimonious reduction of �R� to �R��

Prove that� for every function F � such that F ��n� � exp�no���� we can also reduce
the aforementioned problems to the problem of approximating �R to within a
factor of F � with error probability ��

Guideline� Using R�� as in Exercise ����� we encounter a technical di�culty� The issue is

that the composition of the
�amplifying�� reduction of #R to #R�� with the parsimonious

reduction of #R�� to #R may increase the length of the instance� Indeed� the length of the

new instance is polynomial in the length of the original instance� but this polynomial may

depend on R��� which in turn depends on F �� Thus� we cannot use F �
n� � exp
n�	O����

but F �
n� � exp
no���� is �ne�

Exercise ���� Referring to the procedure in the proof Theorem ����� show how to
use an NPoracle in order to determine whether the number of solutions that �pass
a random sieve� is greater than t� You are allowed queries of length polynomial in
the length of x� h and in the size of t�

��	� COUNTING ���

Hint� Consider the set S�R�H
def
� f�x� i� h� �t� �
y�� ���� yt s�t� ���x� h� y�� ���� yt�g� where ���x� h� y�� ���� yt�

holds if and only if the yj are di�erent and for every j it holds that �x� yj��R � h�yj���i��

Exercise ���	 �parsimonious reductions and Theorem ����� Demonstrate the
importance of parsimonious reductions in Theorem ���� by proving the following�

�� There exists a search problem R � PC such that every problem in PC is
reducible to R �by a nonparsimonious reduction� and still the the promise
problem �USR� SR� is decidable in polynomialtime�

Guideline� Consider the following arti�cial witness relation R for SAT in which

�� ��� � R if � � f�� �g and � satis�es �� Note that the standard witness relation

of SAT is reducible to R� but this reduction is not parsimonious� Also note that

USR � � and thus
USR� SR� is trivial�

�� There exists a search problem R � PC such that �R is �Pcomplete and
still the the promise problem �USR� SR� is decidable in polynomialtime�

Guideline� Just use the relation suggested in the guideline to Part �� An al�

ternative proof relies on Theorem ���� and on the fact that it is easy to decide

USR� SR� when R is the corresponding perfect matching relation
by computing

the determinant��

Exercise ���� Prove that SAT is randomly reducible to deciding unique solution
for SAT� without using the fact that SAT is NP�complete via parsimonious reductions�

Guideline� Follow the proof of Theorem ����� while using the family of pairwise inde�

pendent hashing functions provided in Construction D��
or in Eq�
������� Note that�

in this case� the condition
� �RSAT
��� �
h
� � � �i� can be directly encoded as a CNF

formula� That is� consider the formula �h such that �h
z�
def
� �
z��
h
z���i�� and note

that h
z���i can be written as the conjunction of i clauses� where each clause is a CNF

that is logically equivalent to the parity of some of the bits of z
where the identity of

these bits is determined by h��

Exercise ���� �an alternative procedure for approximate counting� Adapt
Step � of Construction ���� so to obtain an approximate counting procedure for
�R�

Guideline� For m � �� �� ����� the procedure invokes Step � of Construction ���� until a

negative answer is obtained� and outputs �m for the current value of m� For jR
x�j �
����� this yields a constant factor approximation of jR
x�j� In fact� we can obtain a

better estimate by making additional queries at iteration m
i�e�� queries of the form

x� h� �i� for i � ���� ���� ������ The case jR
x�j ���� can be treated by using Step � of

Construction ����� in which case we obtain an exact count�

Exercise ��� Let R be an arbitrary PCcomplete search problem� Show that
approximate counting and uniform generation for R can be randomly reduced to
deciding membership in SR� where by approximate counting we mean a ��� ���p�
approximation for any polynomial p�

��� CHAPTER �� RANDOMNESS AND COUNTING

Guideline� Note that Construction ���� yields such procedures
see also Exercise ������

except that they make oracle calls to some other set in NP� Using the NP�completeness

of SR� we are done�

Chapter �

The Bright Side of Hardness

So saying she donned her beautiful� glittering golden
Ambrosial
sandals� which carry her �ying like the wind over the vast land
and sea� she grasped the redoubtable bronzeshod spear� so stout
and sturdy and strong� wherewith she quells the ranks of heroes
who have displeased her� the �brighteyed� daughter of her mighty
father�

Homer� Odyssey� ������	�

The existence of natural computational problems that are �or seem to be� in
feasible to solve is usually perceived as bad news� because it means that we cannot
do things we wish to do� But these bad news have a positive side� because hard
problem can be �put to work� to our bene�t� most notably in cryptography�

It seems that utilizing hard problems requires the ability to e�ciently generate
hard instances� which is not guaranteed by the notion of worstcase hardness� In
other works� we refer to the gap between �occasional� hardness �e�g�� worstcase
hardness or mild averagecase hardness� and �typical� hardness �with respect to
some tractable distribution�� Much of the current chapter is devoted to bridging
this gap� which is known by the term hardness ampli�cation� The actual applica
tions of typical hardness are presented in Chapter � and Appendix C�

Summary� We consider two conjectures that are related to P �� NP �
The �rst conjecture is that there are problems that are solvable in
exponentialtime �i�e�� in E� but are not solvable by �nonuniform� fam
ilies of small �say polynomialsize� circuits� We show that this worst
case conjecture can be transformed into an averagecase hardness result�
speci�cally� we obtain predicates that are strongly �inapproximable� by
small circuits� Such predicates are used towards derandomizing BPP
in a nontrivial manner �see Section �����

The second conjecture is that there are problems in NP �i�e�� search
problems in PC� for which it is easy to generate �solved� instances that

��

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

are typically hard to solve �for a party that did not generate these
instances�� This conjecture is captured in the formulation of one�way
functions� which are functions that are easy to evaluate but hard to
invert �in an averagecase sense�� We show that functions that are hard
to invert in a relatively mild averagecase sense yield functions that
are hard to invert in a strong averagecase sense� and that the latter
yield predicates that are very hard to approximate �called hard�core
predicates�� Such predicates are useful for the construction of general
purpose pseudorandom generators �see Section ���� as well as for a host
of cryptographic applications �see Appendix C��

In the rest of this chapter� the actual order of presentation of the two aforemen
tioned conjectures and their consequences is reversed� We start �in Section ����
with the study of oneway functions� and only later �in Section ���� turn to the
study of problems in E that are hard for small circuits�

Teaching note� We list several reasons for preferring the aforementioned order of
presentation� First� we mention the great conceptual appeal of one�way functions and
the fact that they have very practical applications� Second� hardness ampli�cation in the
context of one�way functions is technically simpler in comparison to the ampli�cation
of hardness in the context of E �
In fact� Section ��� is the most technical text in
this book�� Third� some of the techniques that are shared by both treatments seem
easier to understand �rst in the context of one�way functions� Last� the current order
facilitates the possibility of teaching hardness ampli�cation only in one incarnation�
where the context of one�way functions is recommended as the incarnation of choice

for the aforementioned reasons��

If you wish to teach hardness ampli�cation and pseudorandomness in the two afore�

mentioned incarnations� then we suggest following the order of the current text� That

is� �rst teach hardness ampli�cation in its two incarnations� and only next teach pseu�

dorandomness in the corresponding incarnations�

Prerequisites� We assume a basic familiarity with elementary probability theory
�see Appendix D��� and randomized algorithms �see Section ����� In particular�
standard conventions regarding random variables �presented in Appendix D�����
and various �laws of large numbers� �presented in Appendix D����� will be exten
sively used�

�� One�Way Functions

Loosely speaking� oneway functions are functions that are easy to evaluate but
hard �on the average� to invert� Thus� in assuming that oneway functions exist�
we are postulating the existence of e�cient processes �i�e�� the computation of the
function in the forward direction� that are hard to reverse� Analogous phenomena
in daily life are known to us in abundance �e�g�� the lighting of a match�� Thus�
the assumption that oneway functions exist is a complexity theoretic analogue of
our daily experience�

���� ONEWAY FUNCTIONS ���

Oneway functions can also be thought of as e�cient ways for generating �puz
zles� that are infeasible to solve� that is� the puzzle is a random image of the
function and a solution is a corresponding preimage� Furthermore� the person gen
erating the puzzle knows a solution to it and can e�ciently verify the validity of
�possibly other� solutions to the puzzle� In fact� as explained in Section ������ every
mechanism for generating such puzzles can be converted to a oneway function�

The reader may note that when presented in terms of generating hard puzzles�
oneway functions have a clear cryptographic �avor� Indeed� oneway functions
are central to cryptography� but we shall not explore this aspect here �and rather
refer the reader to Appendix C�� Similarly� oneway functions are closely related to
�generalpurpose� pseudorandom generators� but this connection will be explored
in Section ���� Instead� in the current section� we will focus on oneway functions
per se�

Teaching note� While we recommend including a basic treatment of pseudorandom�

ness within a course on complexity theory� we do not recommend doing so with respect

to cryptography� The reason is that cryptography is far more complex than pseudo�

randomness
e�g�� compare the de�nition of secure encryption to the the de�nition of

pseudorandom generators�� The extra complexity is due to conceptual richness� which

is something good� except that some of these conceptual issues are central to cryptog�

raphy but not to complexity theory� Thus� teaching cryptography in the context of a

course on complexity theory is likely to either overload the course with material that

is not central to complexity theory or cause a super�cial and misleading treatment of

cryptography� We are not sure as to which of these two possibilities is worse� Still� for

the bene�t of the interested reader� we have included an overview of the foundations of

cryptography as an appendix to the main text
see Appendix C��

����� The concept of one	way functions

Let us assume that P �� NP or even that NP is not contained in BPP� Can
we use this assumption to our bene�t! Not really� because the assumption refers
to the worstcase complexity of problems� and it may be that hard instances are
hard to �nd� But then� it seems that if we cannot generate hard instances then we
cannot bene�t from their existence�

In Section ��� we shall see that worstcase hardness �of NP or even E� can be
transformed into averagecase hardness of E � Such a transformation is not known
for NP itself� and in some applications �e�g�� in cryptography� we do wish that
the hardontheaverage problem be in NP� In this case� we currently need to
assume that� for some problem in NP � it is the case that hard instances are easy
to generate �and not merely exist�� That is� NP is �hard on the average� with
respect to a distribution that is e�ciently sampleable� This assumption will be
further discussed in Section �	���

However� for the aforementioned applications �e�g�� in cryptography� this as
sumption does not seem to su�ce either� we know how to utilize such �hard on the
average� problems only when we can e�ciently generate hard instances coupled

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

with adequate solutions�� That is� we assume that� for some search problem in
PC �resp�� decision problem in NP�� we can e�ciently generate instancesolution
pairs �resp�� yesinstances coupled with corresponding NPwitnesses� such that the
instance is hard to solve �resp�� hard to verify as belonging to the set�� Needless
to say� the hardness assumption refers to a person that does not get the solution
�resp�� witness��

Let us formulate the latter notion� Referring to De�nition ���� we consider
a relation R in PC �i�e�� R is polynomially bounded and membership in R can
be determined in polynomialtime�� and assume that there exists a probabilistic
polynomialtime algorithm G that satis�es the following two conditions�

�� On input �n� algorithm G always generates a pair in R such that the �rst
element has length n� That is� Pr�G��n� � R � �f	� �gn � f	� �g��� � ��

�� It is infeasible to �nd solutions to instances that are generated by G� that
is� when only given the �rst element of G��n�� it is infeasible to �nd an ad
equate solution� Formally� denoting the �rst element of G��n� by G���

n��
for every probabilistic polynomialtime �solver� algorithm S� it holds that
Pr��G���

n�� S�G���
n�� � R� � ��n�� where � vanishes faster than any poly

nomial fraction �i�e�� for every positive polynomial p and all su�ciently large
n it is the case that ��n� � ��p�n���

We call G a generator of solved intractable instances for R� We will show that such
a generator exists if and only if oneway functions exists� where oneway functions
are functions that are easy to evaluate but hard �on the average� to invert� That
is� a function f �f	� �g�f	� �g� is called one�way if there is an e�cient algorithm
that on input x outputs f�x�� whereas any feasible algorithm that tries to �nd a
preimage of f�x� under f may succeed only with negligible probability �where the
probability is taken uniformly over the choices of x and the algorithm
s coin tosses��
Associating feasible computations with probabilistic polynomialtime algorithms
and negligible functions with functions that vanish faster than any polynomial
fraction� we obtain the following de�nition�

De�nition �� �oneway functions�� A function f �f	� �g�f	� �g� is called one�
way if the following two conditions hold�

�� Easy to evaluate� There exist a polynomial�time algorithm A such that A�x� �
f�x� for every x � f	� �g��

� Hard to invert� For every probabilistic polynomial�time algorithm A�� every
polynomial p� and all su�ciently large n�

Prx�f���gn �A��f�x�� �n� � f���f�x��� �
�

p�n�
�����

�We wish to stress the di�erence between the two gaps discussed here� Our feeling is that
the non�usefulness of worst�case hardness �per se� is far more intuitive than the non�usefulness of
average�case hardness that does not correspond to an e�cient generation of �solved� instances�

���� ONEWAY FUNCTIONS ���

where the probability is taken uniformly over all the possible choices of x �
f	� �gn and all the possible outcomes of the internal coin tosses of algorithm
A���

Algorithm A� is given the auxiliary input �n so as to allow it to run in time poly
nomial in the length of x� which is important in case f drastically shrinks its input
�e�g�� jf�x�j � O�log jxj��� Typically �and� in fact� without loss of generality� see
Exercise ����� f is length preserving� in which case the auxiliary input �n is re
dundant� Note that A� is not required to output a speci�c preimage of f�x�� any
preimage �i�e�� element in the set f���f�x��� will do� �Indeed� in case f is ���
the string x is the only preimage of f�x� under f � but in general there may be
other preimages�� It is required that algorithm A� fails �to �nd a preimage� with
overwhelming probability� when the probability is also taken over the input distri
bution� That is� f is �typically� hard to invert� not merely hard to invert in some
��rare�� cases�

Proposition �� The following two conditions are equivalent�

�� There exists a generator of solved intractable instances for some R � NP�
� There exist one�way functions�

Proof Sketch� Suppose that G is such a generator of solved intractable instances
for some R � NP� and suppose that on input �n it tosses
�n� coins� For simplicity�
we assume that
�n� � n� and consider the function g�r� � G���

jrj� r�� where
G��n� r� denotes the output of G on input �n when using coins r �and G� is as
in the foregoing discussion�� Then g must be oneway� because an algorithm that
inverts g on input x � g�r� obtains r� such that G���

n� r�� � x and G��n� r�� must
be in R �which means that the second element of G��n� r�� is a solution to x�� In
case
�n� �� n �and assuming without loss of generality that
�n� � n�� we de�ne
g�r� � G���

n� s� where n is the largest integer such that
�n� � jrj and s is the

�n�bit long pre�x of r�

Suppose� on the other hand� that f is a oneway function �and that f is
length preserving�� Consider G��n� that uniformly selects r � f	� �gn and out

puts �f�r�� r�� and let R
def
� f�f�x�� x� � x � f	� �g�g� Then R is in PC and G

is a generator of solved intractable instances for R� because any solver of R �on
instances generated by G� is e�ectively inverting f on f�Un��

Comments� Several candidates oneway functions and variation on the basic
de�nition appear in Appendix C����� Here� for the sake of future discussions� we
de�ne a stronger version of oneway functions� which refers to the infeasibility of
inverting the function by nonuniform circuits of polynomialsize� Here we use the
form discussed in Footnote ��

�An alternative formulation of Eq� ����� relies on the conventions in Appendix D����� Speci��
cally� letting Un denote a random variable uniformly distributed in f�� �gn� we may write Eq� �����
as Pr�A��f�Un�� �n� � f���f�Un��� � �
p�n�� recalling that both occurrences of Un refer to the
same sample�

� 	 CHAPTER �� THE BRIGHT SIDE OF HARDNESS

De�nition �� �oneway functions� nonuniformly hard�� A one�way function f �
f	� �g� f	� �g� is said to be non�uniformly hard to invert if for every family of
polynomial�size circuits fCng� every polynomial p� and all su�ciently large n�

Pr�Cn�f�Un�� �
n� � f���f�Un��� �

�

p�n�

We note that if a function is infeasible to invert by polynomialsize circuits then it is
hard to invert by probabilistic polynomialtime algorithms� that is� nonuniformity
�more than� compensates for lack of randomness� See Exercise ����

����� Ampli�cation of Weak One	Way Functions

In the forgoing discussion we have interpreted �hardness on the average� in a very
strong sense� Speci�cally� we required that any feasible algorithm fails to solve
the problem �e�g�� invert the oneway function� almost always �i�e�� except with
negligible probability�� This interpretation is indeed the one that is suitable for
various applications� Still� a weaker interpretation of hardness on the average�
which is also appealing� only requires that any feasible algorithm fails to solve the
problem often enough �i�e�� with noticeable probability�� The main thrust of the
current section is showing that the mild form of hardness on the average can be
transformed into the strong form discussed in Section ������ Let us �rst de�ne the
mild form of hardness on the average� using the framework of oneway functions�
Speci�cally� we de�ne weak oneway functions�

De�nition �	 �weak oneway functions�� A function f �f	� �g�f	� �g� is called
weakly one�way if the following two conditions hold�

�� Easy to evaluate� As in De�nition ����

� Weakly hard to invert� There exists a positive polynomial p such that for
every probabilistic polynomial�time algorithm A� and all su�ciently large n�

Prx�f���gn �A��f�x�� �n� �� f���f�x��� �
�

p�n�
�����

where the probability is taken uniformly over all the possible choices of x �
f	� �gn and all the possible outcomes of the internal coin tosses of algorithm
A�� In such a case� we say that f is ��p�one�way�

Here we require that algorithm A� fails �to �nd an f preimage for a random f
image� with noticeable probability� rather than with overwhelmingly high prob
ability �as in De�nition ����� For clarity� we will occasionally refer to oneway
functions as in De�nition ��� by the term strong one�way functions�

We note that� assuming that oneway functions exist at all� there exists weak
oneway functions that are not strongly oneway �see Exercise ����� Still� any weak
oneway function can be transformed into a strong oneway function� This is indeed
the main result of the current section�

���� ONEWAY FUNCTIONS � �

Theorem �� �ampli�cation of oneway functions�� The existence of weak one�
way functions implies the existence of strong one�way functions�

Proof Sketch� The construction itself is straightforward� We just parse the argu
ment to the new function into su�ciently many blocks� and apply the weak oneway
function on the individual blocks� That is� suppose that f is ��poneway� for some
polynomial p� and consider the following function

F �x�� ���� xt� � �f�x��� ���� f�xt�� �����

where t
def
� n � p�n� and x�� ���� xt � f	� �gn�

�Indeed F should be extended to strings of length outside fn� � p�n� � n � Ng and
this extension must be hard to invert on all preimage lengths���

We warn that the hardness of inverting the resulting function F is not es
tablished by mere �combinatorics� �i�e�� considering the relative volume of St in
�f	� �gn�t� for S � f	� �gn� where S represents the set of �easy to invert� f images��
Speci�cally� one may not assume that the potential inverting algorithm works inde
pendently on each block� Indeed this assumption seems reasonable� but we should
not make assumptions regarding the class of all e�cient algorithms unless we can
actually prove that nothing is lost by such assumptions�

The hardness of inverting the resulting function F is proved via a so called
�reducibility argument� �which is used to prove all conditional results in the area��
By a reducibility argument we actually mean a reduction� but one that is analyzed
with respect to average case complexity� Speci�cally� we show that any algorithm
that inverts the resulting function F with nonnegligible success probability can
be used to construct an algorithm that inverts the original function f with success
probability that violates the hypothesis �regarding f�� In other words� we reduce
the task of �strongly inverting� f �i�e�� violating its weak onewayness� to the task
of �weakly inverting� F �i�e�� violating its strong onewayness�� In particular� on
input y � f�x�� the reduction invokes the F inverter �polynomially� many times�
each time feeding it with a sequence of random f images that contains y at a
random location� �Indeed such a sequence corresponds to a random image of F ��
Details follow�

Suppose towards the contradiction that F is not strongly oneway� that is� there
exists a probabilistic polynomialtime algorithm B� and a polynomial q��� so that
for in�nitely many m
s

Pr�B��F �Um���F���F �Um��� �
�

q�m�
�����

Focusing on such a generic m and assuming �see Footnote �� that m � n�p�n�� we
present the following probabilistic polynomialtime algorithm� A�� for inverting f �
On input y and �n �where supposedly y � f�x� for some x � f	� �gn�� algorithm A�

�One simple extension is to de�ne F �x� to equal F �x�� ���� xn�p�n��� where n is the largest integer

satisfying n�p�n� � jxj and xi is the ith consecutive n�bit long string in x �i�e�� x � x� � � �xn�p�n�x��
where x�� ���� xn�p�n� � f�� �gn��

� � CHAPTER �� THE BRIGHT SIDE OF HARDNESS

proceeds by applying the following probabilistic procedure� denoted I � on input y
for t��n� times� where t���� is a polynomial that depends on the polynomials p and

q �speci�cally� we set t��n� def
� �n� � p�n� � q�n�p�n����

Procedure I �on input y and �n��

For i � � to t�n�
def
� n � p�n� do begin

��� Select uniformly and independently a sequence of strings x�� ���� xtn� � f	� �gn�
��� Compute �z�� ���� ztn�� � B��f�x��� ���� f�xi���� y� f�xi���� ���� f�xtn���

�Note that y is placed in the ith position instead of f�xi���
��� If f�zi� � y then halt and output zi�

�This is considered a success��
end

Using Eq� ������ we now present a lower bound on the success probability of al
gorithm A�� deriving a contradiction to the theorem
s hypothesis� To this end we
de�ne a set� denoted Sn� that contains all nbit strings on which the procedure I
succeeds with probability greater than n�t��n�� �The probability is taken only over
the coin tosses of procedure I�� Namely�

Sn
def
�

�
x�f	� �gn � Pr�I�f�x���f���f�x��� � n

t��n�

�
In the next two claims we shall show that Sn contains all but at most a ���p�n�
fraction of the strings of length n� and that for each string x � Sn algorithm A�

inverts f on f�x� with probability exponentially close to �� It will follow that A�

inverts f on f�Un� with probability greater than �� ���p�n��� in contradiction to
the theorem
s hypothesis�

Claim �
�
�� For every x �Sn

Pr
�
A��f�x���f���f�x��� � �� ��n

This claim follows directly from the de�nitions of Sn and A��

Claim �
�
��

jSnj �

�� �

�p�n�

�
� �n

The rest of the proof is devoted to establishing this claim� and indeed combining
Claims �� �� and �� ��� the theorem follows�

The key observation is that� for every i � �t�n�� and every xi � f	� �gn n Sn� it
holds that

Pr
h
B��F �Un�pn����F���F �Un�pn���

���U i�
n � xi

i
� Pr

�
I�f�xi�� � f���f�xi��

� � n

t��n�

���� ONEWAY FUNCTIONS � �

where U
��
n � ���� U

n�pn��
n denote the nbit long blocks in the random variable Un�pn��

It follows that

�
def
� Pr

h
B��F �Un�pn����F���F �Un�pn���

�
�i s�t� U i�

n �f	� �gn n Sn
�i

�
tn�X
i��

Pr
h
B��F �Un�pn����F���F �Un�pn���
 U i�

n �f	� �gn n Sn
i

� t�n� � n

t��n� �

On the other hand� using Eq� ������ we have

� � Pr
�
B��F �Un�pn����F���F �Un�pn���

� � Pr
h
��i�U i�

n �Sn
i

� �

q�n�p�n��
� Pr �Un�Sn�tn� �

Using t��n� � �n� � p�n� � q�n�p�n�� and t�n� � n � p�n�� we get Pr�Un � Sn� �
����q�n�p�n�����n�pn��� which implies Pr�Un � Sn� � �� ����p�n�� for su�ciently
large n� Claim �� �� follows� and so does the theorem�

Digest� Let us recall the structure of the proof of Theorem �� � Given a weak
oneway function f � we �rst constructed a polynomialtime computable function
F with the intention of later proving that F is strongly oneway� To prove that
F is strongly oneway� we used a reducibility argument� The argument transforms
e�cient algorithms that supposedly contradict the strong onewayness of F into
e�cient algorithms that contradict the hypothesis that f is weakly oneway� Hence
F must be strongly oneway� We stress that our algorithmic transformation� which
is in fact a randomized Cook reduction� makes no implicit or explicit assumptions
about the structure of the prospective algorithms for inverting F � Such assumptions
�e�g�� the �natural� assumption that the inverter of F works independently on each
block� cannot be justi�ed �at least not at our current state of understanding of the
nature of e�cient computations��

We use the term a reducibility argument� rather than just saying a reduction
so as to emphasize that we do not refer here to standard �worstcase complexity�
reductions� Let us clarify the distinction� In both cases we refer to reducing the
task of solving one problem to the task of solving another problem� that is� we use
a procedure solving the second task in order to construct a procedure that solves
the �rst task� However� in standard reductions one assumes that the second task
has a perfect procedure solving it on all instances �i�e�� on the worstcase�� and
constructs such a procedure for the �rst task� Thus� the reduction may invoke the
given procedure �for the second task� on very �nontypical� instances� This cannot
be allowed in our reducibility arguments� Here� we are given a procedure that
solves the second task with certain probability with respect to a certain distribution�
Thus� in employing a reducibility argument� we cannot invoke this procedure on
any instance� Instead� we must consider the probability distribution� on instances

� � CHAPTER �� THE BRIGHT SIDE OF HARDNESS

of the second task� induced by our reduction� In our case �as in many cases�
the latter distribution equals the distribution to which the hypothesis �regarding
solvability of the second task� refers� but other cases may be handled too �e�g�� these
distributions may be �su�ciently close� for the speci�c purpose�� In any case� a
careful analysis of the distribution induced by the reducibility argument is due�
�Indeed� the same issue arises in the context of reductions among �distributional
problems� considered in Section �	����

An information theoretic analogue� Theorem �� has a natural information
theoretic �or �probabilistic�� analogue that asserts that repeating an experiment
that has a noticeable failure probability� su�ciently many times yields some failure
with very high probability� The reader is probably convinced at this stage that
the proof of Theorem �� is much more complex than the proof of the information
theoretic analogue� In the information theoretic context the repeated events are
independent by de�nition� whereas in the computational context no such indepen
dence �which corresponds to the naive argument discussed at the beginning of the
proof of Theorem �� � can be guaranteed� Another indication to the di�erence be
tween the two settings follows� In the information theoretic setting the probability
that none of the failure events occurs decreases exponentially in the number of rep
etitions� In contrast� in the computational setting we can only reach an unspeci�ed
negligible bound on the inverting probabilities of polynomialtime algorithms� Fur
thermore� it may be the case that F constructed in the proof of Theorem �� can be
e�ciently inverted on F �Un�pn�� with success probability that is subexponentially

decreasing �e�g�� with probability ��log� n�
�

�� whereas the analogous information
theoretic bound is exponentially decreasing �i�e�� e�n��

����� Hard	Core Predicates

Oneway functions per se su�ce for one central application� the construction of
secure signature schemes �see Appendix C���� For other applications� one relies not
merely on the infeasibility of fully recovering the preimage of a oneway function�
but rather on the infeasibility of meaningfully guessing bits in the preimage� The
latter notion is captured by the de�nition of a hardcore predicate�

Recall that saying that a function f is oneway means that given a typical y
�in the range of f� it is infeasible to �nd a preimage of y under f � This does not
mean that it is infeasible to �nd partial information about the preimage�s� of y
under f � Speci�cally� it may be easy to retrieve half of the bits of the preimage

�e�g�� given a oneway function f consider the function f � de�ned by f ��x� r� def�
�f�x�� r�� for every jxj� jrj�� We note that hiding partial information �about the
function
s preimage� plays an important role in more advanced constructs �e�g��
pseudorandom generators and secure encryption�� With this motivation in mind�
we will show that essentially any oneway function hides speci�c partial information
about its preimage� where this partial information is easy to compute from the
preimage itself� This partial information can be considered as a �hard core� of the
di�culty of inverting f � Loosely speaking� a polynomial�time computable �Boolean�

���� ONEWAY FUNCTIONS �

predicate b� is called a hardcore of a function f if no feasible algorithm� given f�x��
can guess b�x� with success probability that is nonnegligibly better than one half�

f(x)

x

b(x)

The solid arrows depict easily computable transformation
while the dashed arrows depict infeasible transformations�

Figure ���� The hardcore of a oneway function � an illustration�

De�nition �� �hardcore predicates�� A polynomial�time computable predicate
b � f	� �g� f	� �g is called a hard�core of a function f if for every probabilistic
polynomial�time algorithm A�� every positive polynomial p���� and all su�ciently
large n	s

Pr �A��f�x���b�x�� �
�

�
$

�

p�n�

where the probability is taken uniformly over all the possible choices of x � f	� �gn
and all the possible outcomes of the internal coin tosses of algorithm A��

Note that for every b � f	� �g� f	� �g and f � f	� �g� f	� �g�� there exist obvious
algorithms that guess b�x� from f�x� with success probability at least one half �e�g��
the algorithm that� obliviously of its input� outputs a uniformly chosen bit�� Also� if
b is a hardcore predicate �of any function� then it follows that b is almost unbiased
�i�e�� for a uniformly chosen x� the di�erence jPr�b�x� � 	� � Pr�b�x� � ��j must be
a negligible function in n�� Finally� if b is a hardcore of a �� function f that is
polynomialtime computable then f must be a oneway function� In general� the
interesting case is when being a hardcore is a computational phenomenon rather
an information theoretic one �which is due to �information loss� of f��

Theorem � �a generic hardcore predicate�� For any one�way function f � the
inner�product mod of x and r� denoted b�x� r�� is a hard�core of f ��x� r� �
�f�x�� r��

� � CHAPTER �� THE BRIGHT SIDE OF HARDNESS

In other words� given f�x� and a random subset S � �jxj�� it is infeasible to guess
	i�Sxi signi�cantly better than with probability ���� where x � x� � � �xn is uni
formly distributed in f	� �gn�

Proof Sketch� The proof is by a socalled �reducibility argument� �see Sec
tion ������� Speci�cally� we reduce the task of inverting f to the task of predicting
the hardcore of f �� while making sure that the reduction �when applied to input
distributed as in the inverting task� generates a distribution as in the de�nition
of the predicting task� Thus� a contradiction to the claim that b is a hardcore
of f � yields a contradiction to the hypothesis that f is hard to invert� We stress
that this argument is far more complex than analyzing the corresponding �prob
abilistic� situation �i�e�� the distribution of the innerproduct mod � of X and r�
conditioned on a uniformly selected r � f	� �gn� where X is a random variable
with superlogarithmic minentropy� which represents the �e�ective� knowledge of
x� when given f�x����

Our starting point is a probabilistic polynomialtime algorithm B that satis�es�
for some polynomial p and in�nitely many n
s� Pr�B�f�Xn�� Un� � b�Xn� Un�� �
����� $ ���p�n��� where Xn and Un are uniformly and independently distributed

over f	� �gn� Using a simple averaging argument� we focus on a �
def
� ���p�n�

fraction of the x
s for which Pr�B�f�x�� Un� � b�x� Un�� � ����� $ � holds� We will
show how to use B in order to invert f � on input f�x�� provided that x is in the
good set �which has density ���

As a warmup� suppose for a moment that� for the aforementioned x
s� algorithm
B succeeds with probability p � �

�$��poly�jxj� rather than at least �
�$��poly�jxj��

In this case� retrieving x from f�x� is quite easy� To retrieve the ith bit of x� denoted
xi� we randomly select r � f	� �gjxj� and obtain B�f�x�� r� and B�f�x�� r	ei�� where
ei � 	i���	jxj�i and v	u denotes the addition mod � of the binary vectors v and u�
A key observation underlying the foregoing scheme as well as the rest of the proof is
that b�x� r	s� � b�x� r�	 b�x� s�� which can be readily veri�ed by writing b�x� y� �Pn

i�� xiyi mod � and noting that addition modulo � of bits corresponds to their
XOR� Indeed� note that if both B�f�x�� r� � b�x� r� and B�f�x�� r	ei� � b�x� r	ei�
hold� then B�f�x�� r� 	 B�f�x�� r	ei� equals b�x� r� 	 b�x� r	ei� � b�x� ei� � xi�
The probability that both B�f�x�� r��b�x� r� and B�f�x�� r	ei��b�x� r	ei� hold�
for a random r� is at least �� � � ��� p�� �

� $
�

polyjxj� � Hence� repeating the above

procedure su�ciently many times �using independent random choices of such r
s�
and ruling by majority� we retrieve xi with very high probability� Similarly� we can
retrieve all the bits of x� and hence invert f on f�x�� However� the entire analysis
was conducted under �the unjusti�able� assumption that p � �

�$
�

polyjxj� � whereas
we only know that p � �

�$� for � � ��poly�jxj��
The problem with the foregoing procedure is that it doubles the original error

probability of algorithm B on inputs of the form �f�x�� ��� Under the unrealistic

�The min�entropy of X is de�ned as minvflog���
Pr�X � v��g that is� if X has min�entropy m
then maxvfPr�X � v�g � ��m� The Leftover Hashing Lemma �see Appendix D��� implies that�
in this case� Pr�b�X�Un� � �jUn� � �

�
� ����m�� where Un denotes the uniform distribution over

f�� �gn� and b�u� v� denotes the inner�product mod � of u and v�

���� ONEWAY FUNCTIONS � �

�foregoing� assumption that B
s average error on such inputs is nonnegligibly
smaller than �

� � the �errordoubling� phenomenon raises no problems� However�
in general �and even in the special case where B
s error is exactly �

� � the above
procedure is unlikely to invert f � Note that the average error probability of B �for
a �xed f�x�� when the average is taken over a random r� can not be decreased
by repeating B several times �e�g�� for every x� it may be that B always answer
correctly on three quarters of the pairs �f�x�� r�� and always err on the remaining
quarter�� What is required is an alternative way of using the algorithm B� a way
that does not double the original error probability of B�

The key idea is generating the r
s in a way that allows applying algorithm
B only once per each r �and i�� instead of twice� Speci�cally� we will invoke B
on �f�x�� r	 ei� in order to obtain a �guess� for b�x� r	 ei�� and obtain b�x� r�
in a di�erent way �which does not involve using B�� The good news is that the
error probability is no longer doubled� since we only use B to get a �guess� of
b�x� r	 ei�� The bad news is that we still need to know b�x� r�� and it is not
clear how we can know b�x� r� without applying B� The answer is that we can
guess b�x� r� by ourselves� This is �ne if we only need to guess b�x� r� for one
r �or logarithmically in jxj many r
s�� but the problem is that we need to know
�and hence guess� the value of b�x� r� for polynomially many r
s� The obvious
way of guessing these b�x� r�
s yields an exponentially small success probability�
Instead� we generate these polynomially many r
s such that� on one hand they are
�su�ciently random� whereas� on the other hand� we can guess all the b�x� r�
s with
noticeable success probability�� Speci�cally� generating the r
s in a speci�c pairwise
independent manner will satisfy both �con�icting� requirements� We stress that in
case we are successful �in our guesses for all the b�x� r�
s�� we can retrieve x with
high probability� Hence� we retrieve x with noticeable probability�

A word about the way in which the pairwise independent r
s are generated
�and the corresponding b�x� r�
s are guessed� is indeed in place� To generate m �

poly�jxj� many r
s� we uniformly �and independently� select

def
� log��m$�� strings

in f	� �gjxj� Let us denote these strings by s�� ���� s�� We then guess b�x� s�� through
b�x� s��� Let us denote these guesses� which are uniformly �and independently�
chosen in f	� �g� by 	� through 	�� Hence� the probability that all our guesses
for the b�x� si�
s are correct is ��� � �

polyjxj� � The di�erent r
s correspond to

the di�erent non�empty subsets of f�� �� ����
g� Speci�cally� for every such subset

J � we let rJ
def
� 	j�Jsj � The reader can easily verify that the rJ
s are pairwise

independent and each is uniformly distributed in f	� �gjxj� see Exercise �� � The
key observation is that b�x� rJ � � b�x�	j�Jsj� � 	j�Jb�x� sj�� Hence� our guess
for b�x� rJ � is 	j�J	j � and with noticeable probability all our guesses are correct�
Wrappingup everything� we obtain the following procedure� where � � ��poly�n�
represents a lowerbound on the advantage of B in guessing b�x� �� for an � fraction
of the x
s�

Inverting procedure �on input y � f�x� and parameters n and ���

�Alternatively� we can try all polynomially many possible guesses� In such a case� we shall
output a list of candidates that� with high probability� contains x�

� � CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Set
 � log��n��
�� $O����

��� Select uniformly and independently s�� ���� s� � f	� �gn�
Select uniformly and independently 	�� ���� 	� � f	� �g�

��� For every nonempty J � �
�� compute rJ � 	j�Jsj and �J � 	j�J	j �
��� For i � �� ���� n determine the bit zi according to the majority vote

of the ��� � ��long sequence of bits ��J	B�f�x�� rJ	ei��	��J
����
��� Output z� � � � zn�

Note that the �voting scheme� employed in Step � uses pairwise independent sam
ples �i�e�� the rJ
s�� but works essentially as well as it would have worked with
independent samples �i�e�� the independent r
s��� That is� for every i and J � it
holds that Prs������s� �B�f�x�� rJ	ei� � b�x� rJ	ei�� � �����$�� where rJ � 	j�Jsj �
and �for every �xed i� the events corresponding to di�erent J
s are pairwise inde
pendent� It follows that if for every j � �
� it holds that 	j � b�x� sj�� then for
every i and J we have

Prs������s� ��
J 	B�f�x�� rJ	ei� � b�x� ei�� ��� �

� Prs������s� �B�f�x�� rJ	ei� � b�x� rJ	ei�� � �

�
$ �

where the equality is due to �J � 	j�J	j � b�x� rJ � � b�x� rJ	ei�	 b�x� ei�� Note
that Eq� ��� � refers to the correctness of a single vote for b�x� ei�� Using m �
�� � � � O�n���� and noting that these �Boolean� votes are pairwise independent�
we infer that the probability that the majority of these votes is wrong is upper
bounded by ���n� Using a union bound on all i
s� we infer that with probability at
least ���� all majority votes are correct and thus x is retrieved correctly� Recall that
the foregoing is conditioned on 	j � b�x� sj� for every j � �
�� which in turn holds
with probability ��� � �m $ ���� � "����n� � ��poly�n�� Thus� x is retrieved
correctly with probability ��poly�n�� and the theorem follows�

Digest� Looking at the proof of Theorem ���� we note that it actually refers to a
blackbox Bx��� that approximates b�x� ��� speci�cally� in the case of Theorem ���

we used Bx�r�
def
� B�f�x�� r�� In particular� the proof does not use the fact that we

can verify the correctness of the preimage recovered by the described process� Thus�
the proof actually establishes the existence of a poly�n����time oracle machine that�
for every x � f	� �gn� given oracle access to any Bx � f	� �gn f	� �g satisfying

Prr�f���gn �Bx�r� � b�x� r�� � �

�
$ � �����

�Our focus here is on the accuracy of the approximation obtained by the sample� and not so
much on the error probability� We wish to approximate Pr�b�x� r� � B�f�x�� r�ei� � �� up to
an additive term of �� because such an approximation allows to correctly determine b�x� ei�� A
pairwise independent sample of O�t
��� points allows for an approximation of a value in ��� �� up
to an additive term of � with error probability �
t� whereas a totally random sample of the same
size yields error probability exp��t�� Since we can a�ord setting t � poly�n� and having error
probability �
�n� the di�erence in the error probability between the two approximation schemes
is not important here� For a wider perspective see Appendix D���� and D���

��	� HARD PROBLEMS IN E � �

outputs x with probability at least poly���n�� Speci�cally� x is output with proba

bility at least p
def
� "����n�� Noting that x is merely a string for which Eq� �����

holds� it follows that the number of strings that satisfy Eq� ����� is at most ��p�

Furthermore� by iterating the foregoing procedure for eO���p� times we can obtain
all these strings �see Exercise �����

Theorem �� �Theorem ���� revisited�� There exists a probabilistic oracle ma�
chine that� given parameters n� � and oracle access to any function B � f	� �gn
f	� �g� halts after poly�n��� steps and with probability at least ��� outputs a list of
all strings x � f	� �gn that satisfy

Prr�f���gn �B�r� � b�x� r�� � �

�
$ ��

where b�x� r� denotes the inner�product mod of x and r�

This machine can be modi�ed such that� with high probability� its output list does
not include any string x such that Prr�f���gn �B�r� � b�x� r�� � �

� $
�
� � Theorem ���

can be viewed as a list decoding	 procedure for the Hadamard Code� where the
Hadamard encoding of a string x � f	� �gn is the �nbit long string containing b�x� r�
for every r � f	� �gn�

Applications� Hardcore predicates play a central role in the construction of
generalpurpose pseudorandom generators �see Section ����� commitment schemes
and zeroknowledge proofs �see Sections ����� and C������ and encryption schemes
�see Appendix C� ��

�� Hard Problems in E

We start again with the assumption P �� NP � In fact� we consider the seemingly
stronger assumption by which NP cannot be solved by �nonuniform� families of
polynomialsize circuits� that is� NP is not contained in P�poly �even not in�nitely
often�� Our goal is to transform this worstcase assumption into an averagecase
condition� which is useful for our applications� Since the transformation will not
yield a problem in NP but rather one in E � we might as well take the weaker as
sumption �see Exercise ����� That is� our starting point is actually that there exists
an exponential�time solvable decision problem such that any family of polynomial�
size circuit fails to solve it correctly on all but �nitely many input lengths�

�In contrast to standard decoding in which one recovers the unique information that is encoded
in the codeword that is closest to the given string� in list decoding one recovers all strings having
encoding that is at a speci�ed distance from the given string� We mention that list decoding is
applicable and valuable in the case that the speci�ed distance does not allow for unique decoding
and or that the speci�ed distance is greater than half the distance of the code� See further
discussion in Appendix E���

�Note that our starting point is actually stronger than assuming the existence of a function f
in E n P
poly� Such an assumption would mean that any family of polynomial�size circuit fails
to compute f correctly on in�nitely many input lengths� whereas our starting point postulates
failures on all but �nitely many lengths�

��	 CHAPTER �� THE BRIGHT SIDE OF HARDNESS

A di�erent perspective at our assumption is provided by the fact that E con
tains problems that cannot be solved in polynomialtime �cf�� Section ������� The
current assumption goes beyond this fact by postulating the failure of nonuniform
polynomialtime machines rather than �uniform� polynomialtime machines�

Recall that our goal is to obtain a predicate �i�e�� a decision problem� that
is computable in exponentialtime but is inapproximable by small circuits� where
small may mean polynomialsize� For sake of later developments� we formulate a
general notion of inapproximability�

De�nition �� �inapproximability� a general formulation�� We say that f � f	� �g�
f	� �g is �S� ���inapproximable if for every family of S�size circuits fCngn�N and all
su�ciently large n it holds that

Pr�Cn�Un� �� f�Un�� � ��n�

�
�����

We say that f is T �inapproximable if it is �T� �� ���T ���inapproximable�

We chose the speci�c form of Eq� ����� such that the �level of inapproximability�
represented by the parameter � will range in �	� �� and increase with the value
of �� Speci�cally� �almosteverywhere� worstcase hardness for circuits of size S
is represented by �S� ��inapproximability with ��n� � ��n�� �i�e�� in this case
Pr�C�Un� �� f�Un�� � ��n for every circuit Cn of size S�n��� whereas no pred
icate can be �S� ��inapproximable for ��n� � � � ��n even with S�n� � O�n�
�i�e�� Pr�C�Un� � f�Un�� � 	� $ ��n�� holds for some linearsize circuit� see
Exercise ���	�� Indeed� Eq� ����� can be interpreted as an upperbound on the
correlation of each adequate circuit with f �i�e�� E���C�Un�� f�Un��� � � � ��n��
where ��	� � � � if 	 � and ��	� � � �� otherwise�� Thus� T inapproximability
means that no family of size T circuits can correlate f better than ��T �

Comments� Recall that E denote the class of exponentialtime solvable decision
problems �equivalently� exponentialtime computable Boolean predicates�� that is�

E � ��Dtime�t��� where t��n�
def
� ��n� We highlight the aforementioned term

almost everywhere� Our starting point is not merely that E is not contained in
P�poly �or in other circuit size classes to be discussed�� but rather that this is
the case almost everywhere� Note that by saying that f has circuit complexity
exceeding S� we merely mean that there are in�nitely many n	s such that no circuit
of size S�n� can computes f correctly on all inputs of length n� In contrast� by
saying that f has circuit complexity exceeding S almost everywhere� we mean that
for all but �nite many n	s no circuit of size S�n� can computes f correctly on all
inputs of length n�

We start �in Section ������ with a treatment of assumptions and hardness am
pli�cation regarding polynomialsize circuits� which su�ce for nontrivial deran
domization of BPP� We then turn �in Section ������ to assumptions and hardness
ampli�cation regarding exponentialsize circuits� which yield a �full� derandom
ization of BPP �i�e�� BPP � P�� In fact� both sections contain material that is

��	� HARD PROBLEMS IN E ���

applicable to various other circuitsize bounds� but the motivational focus is as
stated�

Teaching note� Section ����� is advanced material� which is best left for independent

reading� Furthermore� for one of the central results
i�e�� Lemma ����� only an outline

is provided and the interested reader is referred to the original paper ���� �

����� Ampli�cation wrt polynomial	size circuits

Our goal here is to prove the following result�

Theorem ��� Suppose that for every polynomial p there exists a problem in E
having circuit complexity that is almost�everywhere greater than p� Then there exist
polynomial�inapproximable Boolean functions in E� that is� for every polynomial p
there exists a p�inapproximable Boolean function in E�
Theorem ���	 is used towards deriving a meaningful derandomization of BPP
under the aforementioned assumption �see Part � of Theorem ������ We present
two proofs of Theorem ���	� The �rst proof proceeds in two steps�

�� Starting from the worstcase hypothesis� we �rst establish some mild level of
averagecase hardness �i�e�� a mild level of inapproximability�� Speci�cally�
we show that for every polynomial p there exists a problem in E that is
�p� ��inapproximable for ��n� � ��n��

�� Using the foregoing mild level of inapproximability� we obtain the desired
strong level of inapproximability �i�e�� p�inapproximability for every polyno
mial p��� Speci�cally� for every two polynomials p� and p�� we prove that if the
function f is �p�� ��p���inapproximable� then the function F �x�� ���� xtn�� �

	tn�
i�� f�xi�� where t�n� � n�p��n� and x�� ���� xtn� � f	� �gn� is p��inapproximable

for p��t�n� � n� � p��n�
����poly�t�n��� This claim is known as Yao�s XOR

Lemma and its proof is far more complex than the proof of its information
theoretic analogue�

The second proof of Theorem ���	 consists of showing that the construction em
ployed in the �rst step� when composed with Theorem ���� actually yields the
desired end result� This proof will uncover a connection between hardness ampli�
cation and coding theory� Our presentation will thus proceed in three corresponding
steps �presented in x��������������� and schematically depicted in Figure �����

������ From worst�case hardness to mild average�case hardness

The transformation of worstcase hardness into averagecase hardness �even in a
mild sense� is indeed remarkable� Note that worstcase hardness may be due to a
relatively small �superpolynomial�� number of instances� whereas even mild forms

	Indeed� worst�case hardness for polynomial�size circuits cannot be due to a small �i�e�� poly�
nomial� number of instances� because a polynomial number of instances can be hard�wired into
such circuits�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

worst-case
HARDNESS HARDNESS

average-case
mild

via list decoding (7.2.1.3)

7.2.1.1 7.2.1.2

Yao’s XOR

derandomized
Yao’s XOR (7.2.2)

inapprox.

Figure ���� Proofs of hardness ampli�cation� organization

of averagecase hardness refer to an exponential number of possible instances� In
other words� we should transform hardness that may occur on a negligible frac
tion of the instances into hardness that occurs on a noticeable fraction of the
instances� Intuitively� we should �spread� the hardness of few instances �of the
original problem� over all �or most� instances �of the transformed problem�� The
counterpositive view is that computing the value of typical instances of the trans
formed problem should enable solving the original problem on every instance�

The aforementioned transformation is based on the self�correction paradigm �see
also x��������� to be reviewed �rst� The paradigm refers to functions g that can
be evaluated at any desired point by using the value of g at a few random points�
where each of these points is uniformly distributed in the function
s domain �but
indeed the points are not independently distributed�� The key observation is that
if g�x� can be reconstructed based on the value of g at t such random points�
then such a reconstruction can tolerate a ���t fraction of errors �regarding the
values of g�� Thus� if we can correctly obtain the value of g on all but at most a
���t fraction of its domain� then we can probabilistically recover the correct value
of g at any point with very high probability� It follows that if no probabilistic
polynomialtime algorithm can correctly compute g in the worst�case sense� then
every probabilistic polynomialtime algorithm must fail to correctly compute g on
at least a ���t fraction of its domain�

The archetypical example of a selfcorrectable function is any mvariate poly
nomial of individual degree d over a �nite �eld F such that jF j � dm $ �� The
value of such a polynomial at any desired point x can be recovered based on the
values of dm $ � points �other than x� that reside on a random line that passes
through x� Note that each of these points is uniformly distributed in Fm� which is
the function
s domain� �For details� see Exercise ������

Recall that we are given an arbitrary function f � E that is hard to compute
in the worstcase� Needless to say� this function is not necessarily selfcorrectable
�based on relatively few points�� but it can be extended into such a function�
Speci�cally� we extend f � �N � f	� �g �viewed as f � �N��m�m f	� �g� to an m
variate polynomial of individual degree d over a �nite �eld F such that jF j � dm$�
and �d $ ��m � N � Intuitively� the extended function is at least as hard on the

��	� HARD PROBLEMS IN E ���

worstcase as f � and by selfcorrection the extended function must be mildly hard
in the averagecase� Details follow�

Construction ��� �multivariate extension���� For any function fn � f	� �gn
f	� �g� �nite �eld F � H � F and integer m such that jH jm � �n and jF j �
�jH j � ��m $ �� we consider the function &fn � Fm F de�ned as the m�variate
polynomial of individual degree jH j � � that extends fn � Hm f	� �g� That is�

we identify f	� �gn with Hm� and de�ne &fn as the unique m�variate polynomial of

individual degree jH j � � that satis�es &fn�x� � fn�x� for every x � Hm� where we
view f	� �g as a subset of F �

Note that &fn can be evaluated at any desired point� by evaluating fn on its entire
domain� and determining the unique mvariate polynomial of individual degree
jH j�� that agrees with fn onHm �see Exercise ������ Thus� for f � f	� �g� f	� �g
in E � the corresponding &f �de�ned by separately extending the restriction of f
to each input length� is also in E � For the sake of preserving various complexity
measures� we wish to have jFmj � poly��n�� which leads to settingm � O�n� logn�

�yielding jF j � poly�n�� as in x��������� In particular� in this case &fn is de�ned over

strings of length O�n�� The mild averagecase hardness of &f follows by the forgoing
discussion� In fact� we state and prove a more general result�

Theorem ��� Suppose that there exists a Boolean function f in E having cir�
cuit complexity that is almost�everywhere greater than S� Then� there exists an
exponential�time computable function &f � f	� �g� f	� �g� such that j &f�x�j � jxj
and for every family of circuit fC �n�gn��N of size S��n�� � S�n��O�����poly�n�� it
holds that Pr�C �n��Un�� �� &f�Un��� � ���n���� Furthermore� &f does not depend on S�

Theorem ���� completes the �rst step of the proof of Theorem ���	� except that we
desire a Boolean function rather than one that does not stretch its input� The extra
step �of obtaining a Boolean function that is �poly�n�� n���inapproximable� may
be taken by considering the bits in the output of the function �see Exercise ��������

That is� if &f is hard to compute on an ���n��� fraction of the n�bit long inputs

then the Boolean predicate that returns an indicated bit of &f�x� must be mildly
inapproximable�

Proof� Given f as in the hypothesis and for every n � N � we consider the re
striction of f to f	� �gn� denoted fn� and apply Construction ���� to it� while
using m � n� logn� jH j � n and n� � jF j � poly�n�� Recall that the resulting

function &fn maps strings of length n� � log� jFmj � O�n� to strings of length
log� jF j � O�logn�� Following the foregoing discussion� we note that by mak

ing t
def
� �jH j � ��m $ � � o�n�� oracle calls to any circuit C �n� that satis�es

�
The algebraic fact underlying this construction is that for any function f � Hm � F there
exists a unique m�variate polynomial �f � Fm � F of individual degree jHj�� such that for every

x � Hm it holds that �f�x� � f�x�� This polynomial is called a multi�variate polynomial extension
of f � and it can be found in poly�jHjm log jF j��time� For details� see Exercise �����

��A quantitatively stronger bound can be obtained by noting that the proof of Theorem ����
actually establishes an error lower�bound of $��log n��
�n���� and that j �f�x�j � O�log jxj��

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Pr�C �n��Un�� � &fn�Un��� � �� ���n��� � �� ����t�� we can probabilistically recover

the value of � &fn and thus� fn on each input� with probability at least ���� Using
errorreduction and derandomization as in the proof of Theorem ���� we obtain a
circuit of size n� � jC �n� j that computes fn� By the hypothesis n� � jC �n� j � S�n�� and
the theorem follows�

Digest� The proof of Theorem ���� is actually a worstcase to averagecase re
duction� That is� the proof consists of a selfcorrection procedure that allows for
the evaluation of f at any desired nbit long point� using oracle calls to any circuit
that computes &f correctly on a �� ���n��� fraction of the n�bit long inputs� We

note that if f � E then &f � E � but we do not know how to preserve the complexity
of f in case it is in NP � �Various indications to the di�culty of a worstcase to
averagecase reduction for NP are known� see� e�g�� ��	���

������ Yao�s XOR Lemma

Having obtained a mildly inapproximable predicate� we wish to obtain a strongly
inapproximable one� The information theoretic context provides an appealing sug
gestion� Suppose that X is a Boolean random variable �representing the mild
inapproximability of the aforementioned predicate� that equals � with probability
�� Then XORing the outcome of n�� independent samples of X yields a bit that
equals � with probability 	� & exp��"�n��� It is tempting to think that the same
should happen in the computational setting� That is� if f is hard to approximate
correctly with probability exceeding � � � then XORing the output of f on n��
nonoverlapping parts of the input should yield a predicate that is hard to approx
imate correctly with probability that is nonnegligibly higher than ���� The latter
assertion turns out to be correct� but �even more than in Section ������ the proof
of the computational phenomenon is considerably more complex than the analysis
of the information theoretic analogue�

Theorem ��� �Yao
s XOR Lemma�� There exist a universal constant c � 	 such
that the following holds� If� for some polynomials p� and p�� the Boolean function f

is �p�� ��p���inapproximable� then the function F �x�� ���� xtn�� � 	tn�
i�� f�xi�� where

t�n� � n � p��n� and x�� ���� xtn� � f	� �gn� is p��inapproximable for p��t�n� � n� �
p��n�

c�t�n���c� Furthermore� the claim holds also if the polynomials p� and p� are
replaced by any integer functions�

Combining Theorem ���� �and Exercise ������ and Theorem ����� we obtain a proof
of Theorem ���	� �Recall that an alternative proof is presented in x���������

We note that proving Theorem ���� seems more di�cult than proving Theo
rem �� �i�e�� the ampli�cation of oneway functions�� due to two issues� Firstly�
unlike in Theorem �� � the computational problems are not in PC and thus we
cannot e�ciently recognize correct solutions to them� Secondly� unlike in Theo
rem �� � solutions to instances of the transformed problem do not correspond of
the concatenation of solutions for the original instances� but are rather a function

��	� HARD PROBLEMS IN E ��

of the latter that losses almost all the information about the latter� The proof of
Theorem ���� presented next deals with each of these two di�culties separately�

Several di�erent proofs of Theorem ���� are known� We choose using a proof
that bene�ts most from the material already presented in Section ���� This proof
proceeds in two steps�

�� First we prove that the corresponding �direct product� function P �x�� ���� xtn�� �
�f�x��� ���� f�xtn��� is di�cult to compute in a strong averagecase sense�

�� Next we establish the desired result by an application of Theorem ����

Thus� given Theorem ���� our main focus is on the �rst step� which is of independent
interest �and is thus generalized from Boolean functions to arbitrary ones��

Theorem ��	 �The Direct Product Lemma�� Let p� and p� be two polynomials�
and suppose that f � f	� �g� f	� �g� is such that for every family of p��size
circuits� fCngn�N� and all su�ciently large n � N � it holds that Pr�Cn�Un� ��
f�Un�� � ��p��n�� Let P �x�� ���� xtn�� � �f�x��� ���� f�xtn���� where x�� ���� xtn� �
f	� �gn and t�n� � n � p��n�� Then� for any �� � N �	� ��� setting p� such that
p��t�n� � n� � p��n��poly�t�n���

��t�n� � n��� it holds that every family of p��size
circuits� fC �mgm�N� satis�es Pr�C �m�Um� � P �Um�� � ���m�� Furthermore� the
claim holds also if the polynomials p� and p� are replaced by any integer functions�

In particular� for an adequate constant c � 	� selecting ���t�n� � n� � p��n�
�c� we

obtain p��t�n� � n� � p��n�
c�t�n���c� we so ���m� � ��p��m�� Theorem ���� fol

lows from Theorem ���� by considering the �related� function P ��x�� ���� xtn�� r� �
b�f�x�� � � � f�xtn��� r�� where f is a Boolean function� r � f	� �gtn�� and b�y� r� is
the innerproduct modulo � of the t�n�bit long strings y and r� Note that� for
the corresponding P � we have P ��x�� ���� xtn�� r� � b�P �x�� ���� xtn��� r�� whereas

F �x�� ���� xtn�� � P ��x�� ���� xtn�� �tn��� Thus� the inapproximability of P � should
follow from the strong averagecase hardness of P �via Theorem ����� whereas
it should be possible to reduce the approximation of P � to the approximation
of F �and thus derive the desired inapproximability of F �� Speci�cally� �rst�
assuming that f is �p�� ��p��inapproximable and applying Theorem ���� �with
���t�n� � n� � p��n�

�c� and Theorem ��� �see Exercise ������ we infer that P � is
p�inapproximable for p��t�n� � n� � p��n�

����poly�t�n��� Next� we reduce the ap
proximation of P � to the approximation of F �see Exercise ��� �� and Theorem ����
follows�

Proof of Theorem ��	� Analogously to the proof of Theorem �� � we show how
to converts circuits that violate the theorem
s conclusion into circuits that violate
the theorem
s hypothesis� We note� however� that things were much simpler in
the context of Theorem �� � There we could �e�ciently� check whether or not a
value contained in the output of the circuit that solves the directproduct problem
constitutes a correct answer for the corresponding instance of the basic problem�
Lacking such an ability in the current context� we shall have to use such values
more carefully� Loosely speaking� we will take a weighted majority vote among

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

various answers� where the weights re�ect our con�dence in the correctness of the
various answers�

We establish Theorem ���� by applying the following lemma that provides quan
titative bounds on the feasibility of computing the direct product of two functions�
In this lemma� fYmgm�N and fZmgm�N are independent probability ensembles such
that Ym� Zm � f	� �gm� and Xn � �Y�n�� Zn��n�� for some function
 � N N �
The lemma refers to the success probability of computing the direct product func
tion F � f	� �g� f	� �g� de�ned by F �yz� � �F��y�� F��z��� where jyj �
�jyzj��
when given bounds on the success probability of computing F� and F� �separately��
Needless to say� these probability bounds refer to circuits of certain sizes� We stress
that the lemma is not symmetric with respect to the two functions� it guarantees a
stronger �and in fact lossless� preservation of circuit sizes for one of the functions
�which is arbitrarily chosen to be F���

Lemma ��� �Direct Product� a quantitative two argument version�� For fYmg�
fZmg� F�� F��
� fXng and F as in the foregoing� let ����� be an upper�bound on
the success probability of s�����size circuits in computing F� over fYmg� That is�
for every such circuit family fCmg

Pr�Cm�Ym��F��Ym�� � ���m��

Likewise� suppose that ����� is an upper�bound on the probability that s�����size
circuits compute F� over fZmg� Then� for every function � �NR � the function
� de�ned as

��n�
def
� ���
�n�� � ���n�
�n�� $ ��n�

is an upper�bound on the probability that families of s����size circuits correctly com�
pute F over fXng� where

s�n�
def
� min

�
s��
�n�� �

s��n�
�n��

poly�n���n��

�
�

Theorem ���� is derived from Lemma ��� by using a careful induction� which
capitalizes on the asymmetry of Lemma ��� � Speci�cally�

� Wewrite P �x�� x�� ���� xtn�� as P
tn���x�� x�� ���� xtn��� where P

i��x�� ���� xi� �

�f�x��� ���� f�xi�� and P i��x�� ���� xi� � �P i����x�� ���� xi���� f�xi���

For any function �� we shall prove by induction on i that circuits of size
s�n� � p��n��poly�t�n����n�� cannot compute P i��Ui�n� with success prob
ability greater than �� � ���p��n��

i $ �i � �� � ��n�� where p� and p� are
as in Theorem ����� Thus� no s�n�size circuit can compute P tn���Utn��n�
with success probability greater than ��� ���p��n��

tn� $ �t�n� � �� � ��n� �
exp��n� $ �t�n�� �� � ��n�� Recalling that this is established for any polyno
mials p� and p� and any function �� Theorem ���� follows �by using s�n� �
p��t�n� � n� and ��n� � ���t�n� � n���

� Turning to the induction itself� we �rst note that its basis �i�e�� i � �� is
guaranteed by the theorem
s hypothesis� The induction step �i�e�� from i to

��	� HARD PROBLEMS IN E ���

i$�� is proved by using Lemma ��� with F� � P i� and F� � f � along with

the parameter setting �
i�
� �i�n� � ������p��n��

i$�i������n�� si�� �i�n� � s�n��

�
i�
� �n� � �� ���p��n�� and s

i�
� �n� � poly�n���n�� � s�n� � p��n��

Note that the induction hypothesis �regarding P i�� implies that F� satis�es
the hypothesis of Lemma ��� � whereas the theorem
s hypothesis regarding
f implies that F� satis�es the hypothesis of Lemma ��� � Thus� F � P i���

satis�es the lemma
s conclusion with respect to circuits of size min�s
i�
� �i �

n�� s
i�
� �n��poly�n���n��� � s�n� and success rate �

i�
� �i � n� � �i�� �n� $ ��n�

which is upperbounded by �� � ���p��n��
i�� $ i � ��n�� This completes the

induction step�

We stress the fact that we used induction for a nonconstant number of steps� and
that this was enabled by the highly quantitative form of the inductive claim and
the small loss incurred by the inductive step� Speci�cally� the size bound did not
decrease during the induction �although we could a�ord a small additive loss in
each step� but not a constant factor loss�� Likewise� the success rate su�ered an
additive increase of ��n� in each step� which was accomodated by the inductive
claim�

Proof of Lemma ���� Proceeding �as usual� by the contrapositive� we consider
a family of s���size circuits fCngn�N that violates the lemma
s conclusion� that is�
Pr�Cn�Xn� � F �Xn�� � ��n�� We will show how to use such circuits in order to
obtain either circuits that violate the lemma
s hypothesis regarding F� or circuits
that violate the lemma
s hypothesis regarding F�� Towards this end� it is instructive
to write the success probability of Cn in a conditional form� while denoting the ith

output of Cn�x� by Cn�x�i �i�e�� Cn�x� � �Cn�x��� Cn�x�����

Pr�Cn�Y�n�� Zn��n���F �Y�n�� Zn��n���
� Pr�Cn�Y�n�� Zn��n����F��Y�n���

� Pr�Cn�Y�n�� Zn��n����F��Zn��n�� jCn�Y�n�� Zn��n����F��Y�n����

The basic idea is that if the �rst factor is greater than ���
�n�� then we imme
diately derive a circuit �i�e�� C �n�y� � Cn�y� Zn��n���� contradicting the lemma
s
hypothesis regarding F�� whereas if the second factor is signi�cantly greater than
���n �
�n�� then we can obtain a circuit contradicting the lemma
s hypothesis
regarding F�� The treatment of the latter case is indeed not obvious� The idea
is that a su�ciently large sample of �Y�n�� F��Y�n���� which may be hardwired
into the circuit� allows using the conditional probability space �in such a circuit�
towards an attempt to approximate F�� That is� on input z� we select uniformly a
string y satisfying Cn�y� z�� � F��y� �from the aforementioned sample�� and out
put Cn�y� z��� For a �xed z� sampling of the conditional space �i�e�� y
s satisfying
Cn�y� z�� � F��y�� is possible provided that Pr�Cn�Y�n�� z���F��Y�n��� holds with
noticeable probability� The last caveat motivates a separate treatment of z
s having
a noticeable value of Pr�Cn�Y�n�� z���F��Y�n��� and of the rest of z
s �which are
essentially ignored�� Details follow�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Let us �rst simplify the notations by �xing a generic n and using the abbre
viations C � Cn� � � ��n��
 �
�n�� Y � Y�� and Z � Yn��� We call z good
if Pr�C�Y� z�� � F��Y �� � ��� and let G be the set of good z
s� Next� rather
than considering the event C�Y� Z� � F �Y� Z�� we consider the event C�Y� Z� �
F �Y� Z�
 Z�G� which occurs with almost the same probability �up to an additive
error term of ����� This is the case because� for any z �� G� it holds that

Pr�C�Y� z��F �Y� z�� � Pr�C�Y� z���F��Y �� � ���

and thus z
s that are not good do not contribute much to Pr�C�Y� Z� �F �Y� Z���
that is� Pr�C�Y� Z��F �Y� Z�
 Z�G� is lowerbounded by Pr�C�Y� Z��F �Y� Z�� �
���� Using Pr�C�Y� z��F �Y� z�� � ��n� � ���
� � ���n�
� $ �� we have

Pr�C�Y� Z��F �Y� Z�
 Z�G� � ���
� � ���n�
� $
�

� �
�����

We proceed according to the forgoing outline� �rst showing that if Pr�C�Y� Z�� �
F��Y �� � ���
� then we derive circuits violating the hypothesis concerning F��
Actually� we prove something stronger �which we will actually need for the other
case��

Claim �
��
�� For every z� it holds that Pr�C�Y� z���F��Y �� � ���
��

Proof� Otherwise� using any z � f	� �gn�� that satis�es Pr�C�Y� z�� � F��Y �� �

���
�� we obtain a circuit C ��y� def� C�y� z�� that contradicts the lemma
s hypothesis
concerning F�� �

Using Claim ��� ��� we show how to obtain a circuit that violates the lemma
s
hypothesis concerning F�� and doing so we complete the proof of the lemma�

Claim �
��
�� There exists a circuit C �� of size s��n�
� such that

Pr�C ���Z��F��Z�� � Pr�C�Y� Z��F �Y� Z�
 Z�G�

���
�
� �

�

� ���n�
�

Proof� The second inequality is due to Eq� ������ and thus we focus on establish
ing the �rst inequality� We construct the circuit C �� as suggested in the foregoing
outline� Speci�cally� we take a poly�n���large sample� denoted S� from the distri

bution �Y� F��Y �� and let C ���z� def
� C�y� z��� where �y� v� is a uniformly selected

among the elements of S for which C�y� z�� � v holds� Details follow�
Let m be a su�ciently large number that is upperbounded by a polynomial

in n��� and consider a random sequence of m pairs� generated by taking m in
dependent samples from the distribution �Y� F��Y ��� We stress that we do not
assume here that such a sample� denoted S� can be produced by an e�cient �uni
form� algorithm �but� jumping ahead� we remark that such a sequence can be
�xed nonuniformly�� For each z � G � f	� �gn��� we denote by Sz the set of
pairs �y� v� � S for which C�y� z�� � v� Note that Sz is a random sample of the
residual probability space de�ned by �Y� F��Y �� conditioned on C�Y� z�� � F��Y ��
Also� with overwhelmingly high probability� jSz j � "�n����� because z � G implies

��	� HARD PROBLEMS IN E ���

Pr�C�Y� z���F��Y �� � ��� and m � "�n������ Thus� for each z � G� with over
whelming probability taken over the choices of S� the sample Sz provides a good
approximation to the conditional probability space� In particular� with probability
greater than �� ��n� it holds that

jf�y� v� � Sz � C�y� z���F��z�gj
jSz j � Pr�C�Y� z���F��z� jC�Y� z���F��Y ��� �

�
�

�����
Thus� with positive probability� Eq� ����� holds for all z � G � f	� �gn��� The
circuit C �� computing F� is now de�ned as follows� The circuit will contain a set
S � f�yi� vi� � i � �� ����mg �i�e�� S is �hardwired� into the circuit C ��� such that
��� for every i � �m� it holds that vi � F��yi�� and ��� for each good z the set
Sz � f�y� v��S � C�y� z��� vg satis�es Eq� ������ �In particular� Sz is not empty
for any good z�� On input z� the circuit C �� �rst determines the set Sz� by running
C for m times and checking� for each i � �� ����m� whether or not C�yi� z� � vi�
In case Sz is empty� the circuit returns an arbitrary value� Otherwise� the circuit
selects uniformly a pair �y� v� � Sz and outputs C�y� z��� �The latter random
choice can be eliminated by a standard averaging argument�� Using the de�nition
of C �� and Eq� ������ we have�

Pr�C ���Z��F��Z�� �
X
z�G

Pr�Z�z� � Pr�C ���z��F��z��

�
X
z�G

Pr�Z�z� � jf�y� v� � Sz � C�y� z���F��z�gj
jSzj

�
X
z�G

Pr�Z�z� �
�
Pr�C�Y� z���F��z� jC�Y� z���F��Y �� � �

�

�
�

X
z�G

Pr�Z�z� �

Pr�C�Y� z���F��z�
 C�Y� z���F��Y ��

Pr�C�Y� z���F��Y ��
� �

�

�
Next� using Claim ��� ��� we have�

Pr�C ���Z��F��Z�� �
�X
z�G

Pr�Z�z� � Pr�C�Y� z��F �Y� z��

���
�

�
� �

�

�
Pr�C�Y� Z��F �Y� Z�
 Z�G�

���
�
� �

�

Finally� using Eq� ������ the claim follows� �

This completes the proof of the lemma�

Comments� Firstly� we wish to call attention to the care with which an inductive
argument needs to be carried out in the computational setting� especially when a
nonconstant number of inductive steps is concerned� Indeed� our inductive proof
of Theorem ���� involves invoking a quantitative lemma �i�e�� Lemma ��� � that
allows to keep track of the relevant quantities �e�g�� success probability and circuit

��	 CHAPTER �� THE BRIGHT SIDE OF HARDNESS

size� throughout the induction process� Secondly� we mention that Lemma ���
�as well as Theorem ����� has a uniform complexity version that assumes that one
can e�ciently sample the distribution �Y�n�� F��Y�n��� �resp�� �Un� f�Un���� For
details see ����� Indeed� a good lesson from the proof of Lemma ��� is that non
uniform circuits can �e�ectively sample� any distribution� Lastly� we mention that
Theorem �� �the ampli�cation of oneway functions� and Theorem ���� �Yao
s
XOR Lemma� also have �tight� quantitative versions �see� e�g�� ���� Sec� ������ and
���� Sec� ��� respectively��

������ List decoding and hardness ampli�cation

Recall that Theorem ���	 was proved in x��������������� by �rst constructing a
mildly inapproximable predicate via Construction ����� and then amplifying its
hardness via Yao
s XOR Lemma� In this subsection we show that the construc
tion used in the �rst step �i�e�� Construction ����� actually yields a strongly in
approximable predicate� Thus� we provide an alternative proof of Theorem ���	�
Speci�cally� we show that a strongly inapproximable predicate �as asserted in The
orem ���	� can be obtained by combining Construction ���� �with a suitable choice
of parameters� and the innerproduct construction �of Theorem ����� The main
ingredient of this argument is captured by the following result�

Proposition ��� Suppose that there exists a Boolean function f in E having cir�
cuit complexity that is almost�everywhere greater than S� and let � � N �	� �� sat�

isfying ��n� � ��n� Let fn be the restriction of f to f	� �gn� and let &fn be the func�
tion obtained from fn when applying Construction ������ with jH j � n���n� and

jF j � jH j�� Then� the function &f � f	� �g� f	� �g�� de�ned by &f�x� � &fjxj���x��
is computable in exponential�time and for every family of circuit fC �n�gn��N of size

S��n�� � poly���n�����n�� � S�n���� it holds that Pr�C �n��Un�� � &f�Un��� � ���n�� def
�

��n�����

Before turning to the proof of Proposition ����� let us describe how it yields an
alternative proof of Theorem ���	� Firstly� for some � � 	� Proposition ���� yields
an exponentialtime computable function &f such that j &f�x�j � jxj and for ev
ery family of circuit fC �n�gn��N of size S��n�� � S�n������poly�n�� it holds that

Pr�C �n��Un�� � &f�Un��� � ��S��n��� Combining this with Theorem ���� we in

fer that P �x� r� � b� &f�x�� r�� where jrj � j &f�x�j � jxj� is S��inapproximable for
S���n��� � S��n���������poly�n���� In particular� for every polynomial p� we ob
tain a pinapproximable predicate in E by applying the foregoing with S�n� �
poly�n� p�n��� Thus� Theorem ���	 follows�

Proposition ���� is proven by observing that the transformation of fn to &fn
constitutes a �good� code �see xE������� and that any such code provides a worst
case to �strongly� averagecase reduction� We start by de�ning the class of codes

��Recall that in Construction ���� we have jHjm � �n� which may yield a non�integer m if
we insist on jHj � n
��n�� Thus� we should either relax the requirement jHjm � �n �e�g�� allow
�n � jHjm � ��n� or relax the requirement jHj � n
��n�� However� for the sake of simplicity� we
ignore this issue in the presentation�

��	� HARD PROBLEMS IN E ���

that su�ces for the latter reduction� while noting that the code underlying the
mapping fn � &fn is actually stronger than needed�

De�nition �� �e�cient codes supporting implicit decoding�� For �xed functions
q�
 � N N and � � N �	� ��� the mapping) � f	� �g� f	� �g� is e�cient and
supports implicit decoding with parameters q�
� � if it satis�es the following two
conditions�

�� Encoding� The mapping) is polynomial�time computable�

It is instructive to view) as mapping N�bit long strings to sequences of length

�N� over �q�N��� and to view)�x� � �q�jxj���jxj� as a mapping from �
�jxj��
to �q�jxj���

� Decoding� There exists a polynomial p such that the following holds� For
every w � �
�N�� �q�N�� and x�f	� �gN such that)�x� is �� � ��N���close
to w� there exists an oracle�aided�� circuit C of size p��logN����N�� such
that� for every i � �N �� it holds that Cw�i� equals the ith bit of x�

The encoding condition implies that
 is polynomially bounded� The decoding
condition refers to any)codeword that agrees with the oracle w � �
�N�� �q�N��
on an ��N� fraction of the
�N� coordinates� where ��N� may be very small�
We highlight the nontriviality of the decoding condition� There are N bits of
information in x� while the size of the circuit C is only p��logN����N�� and yet C
should be able to recover any desired entry of x by making queries to w� which may
be a highly corrupted version of)�x�� Needless to say� the number of queries made
by C is upperbounded by its size �i�e��p��logN����N���� On the other hand� the
decoding condition does not refer to the complexity of obtaining the aforementioned
oracleaided circuits�

We mention that the transformation of fn to &fn underlying Proposition ����
�where N � �n� is e�cient and supports implicit decoding with parameters q�
� �
such that
��n� �
�jhfnij� � jhfnij� � ��n� ���n� � ��n�� and q��n� � �n����n����

Furthermore� there are at most O������n��� codewords �i�e�� &fn
s� that are �� �
���n��close to any �xed w � �
��n�� �q��n��� and the corresponding oracleaided
circuits can be constructed in probabilistic p�n����n��time��� These results are
termed �list decoding� �with implicit representations�� We stress that the fact that

fn � &fn satis�es there properties �e�g�� constitutes an e�cient code that supports
implicit decoding� is highly nontrivial� but establishing this fact is beyond the

��Oracle�aided circuits are de�ned analogously to oracle Turing machines� Alternatively� we
may consider here oracle machines that take advice such that both the advice length and the
machine�s running time are upper�bounded by p��logN�
��N��� The relevant oracles may be
viewed either as blocks of binary strings that encode sequences over �q�N�� or as sequences over
�q�N��� Indeed� in the latter case we consider non�binary oracles� which return elements in �q�N���

��The construction may yield also oracle�aided circuits that compute the decoding of codewords
that are almost �� � ���n���close to w� That is� there exists a probabilistic p�n
���n���time
algorithm that outputs a list of circuits that� with high probability� contains an oracle�aided
circuit for the decoding of each codeword that is ��� ���n���close to w� Furthermore� with high
probability� the list contains only circuits that decode codewords that are �� � ���n�
���close to
w�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

scope of the current text �and the interested reader is referred to ���	��� Our focus
is on showing that e�cient codes that supports implicit decoding su�ce for worst
case to �strongly� averagecase reductions� We state and prove a general result�

noting that in the special case of Proposition ���� gn � &fn�

Theorem ��� Suppose that there exists a Boolean function f in E having circuit
complexity that is almost�everywhere greater than S� and let � � N �	� ��� Con�
sider
 � N N such that n � log�
��

n� is a ��� map of the integers� and let
m�n� � log�
��

n�� Suppose that the mapping) � f	� �g� f	� �g� is e�cient and
supports implicit decoding with parameters q�
� � such that ��N� � ��blog�Nc��
De�ne gn � �
��n�� �q��n�� such that gn�i� �)�hfni��i�� where hfni denotes the
�n�bit long description of the truth�table of fn� Then� the function g � f	� �g�
f	� �g�� de�ned by g�z� � gm��jzj��z�� is computable in exponential�time and for
every family of circuit fC �n�gn��N of size S��n�� � poly���m���n����n�� �S�m���n���

it holds that Pr�C �n��Un�� � g�Un��� � ���n�� def� ��m���n����

Proof Sketch� First note that we can generate the truthtable of fn in exponential
time� and by the encoding condition of) it follows that gn can be evaluated in
exponentialtime� Regarding g
s averagecase hardness� consider a circuit C � � C �n�
violating the conclusion of the theorem� let n � m���n��� and recall that ���n�� �
��n� � ���n�� Then� C � is �� � ���n��close to gn �)�hfni�� and the decoding
condition of) asserts that we can recover each bit of hfni �i�e�� evaluate fn� by a
circuit of size p�n����n�� � S��n�� � S�n�� in contradiction to the hypothesis�

Comment� For simplicity� we formulated De�nition ���� in a crude manner that
su�ces for the foregoing application� A more careful formulation of the decoding
condition refers to codewords that are ��� ����q�N�� $ ��N���close to the oracle
w � �
�N�� �q�N�� rather than being ��� ��N��close to it��� Needless to say� the
di�erence is insigni�cant in the case that ��N� � ��q�N� �as in Proposition �����
where we used q�N� � ��log�N����N����� but it is signi�cant in case we care about
binary codes �i�e�� q�N� � �� or codes over other small alphabets�� We mention
that Theorem ���� can be adapted to this context �of q�N� � ��� and directly
yields strongly inapproximable predicates� For details� see Exercise �����

����� Ampli�cation wrt exponential	size circuits

For the purpose of stronger derandomization of BPP� we start with a stronger as
sumption regarding the worstcase circuit complexity of E and turn it to a stronger
inapproximability result�

��Note that this is the �right� formulation� because in the case that ��N� � �
q�n� it seems
impossible to satisfy the decoding condition �as stated in De�nition ������ Speci�cally� a random
��N��sequence over �q�N�� is expected to be �� � ��
q�N����close to any �xed codeword� and
with overwhelmingly high probability it will be �� � ��� � o����
q�N����close to almost all the
codewords� provided ��N�� q�n��� But in case N � log q�N�� we cannot hope to recover almost
all N�bit long strings based on poly�q�N� logN� bits of advice �per each of them��

��	� HARD PROBLEMS IN E ���

Theorem ��� Suppose that there exists a decision problem L � E having almost�
everywhere exponential circuit complexity� that is� there exists a constant b � 	 such
that� for all but �nitely many n	s� any circuit that correctly decides L on f	� �gn
has size at least �bk� Then� for some constant c � 	 and T �n�

def
� �c�n� there exists

a T �inapproximable Boolean function in E�
Theorem ���� can be used for deriving a full derandomization of BPP �i�e�� BPP �
P� under the aforementioned assumption �see Part � of Theorem ������

Theorem ���� follows as a special case of Proposition ���� �combined with The
orem ���� see Exercise ������ An alternative proof� which uses di�erent ideas that
are of independent interest� will be brie�y reviewed next� The starting point of the
latter proof is a mildly inapproximable predicate� as provided by Theorem �����
However� here we cannot a�ord to apply Yao
s XOR Lemma �i�e�� Theorem ������
because the latter relates the size of circuits that strongly fail to approximate a
predicate de�ned over poly�n�bit long strings to the size of circuits that fail to
mildly approximate a predicate de�ned over nbit long strings� That is� Yao
s
XOR Lemma asserts that if f � f	� �gn f	� �g is mildly inapproximable by
Sf size circuits then F � f	� �gpolyn� f	� �g is strongly inapproximable by SF
size circuits� where SF �poly�n�� is polynomially related to Sf �n�� In particular�
SF �poly�n�� � Sf �n� seems inherent in this reasoning� For the case of polynomial
lowerbounds� this is good enough �i�e�� if Sf can be an arbitrarily large polynomial
then so can SF �� but for Sf �n� � exp�"�n�� we cannot obtain SF �m� � exp�"�m��
�but rather only obtain SF �m� � exp�m������

The source of trouble is that ampli�cation of inapproximability was achieved
by taking a polynomial number of independent instances� Indeed� we cannot hope
to amplify hardness without applying f on many instances� but these instances

need not be independent� Thus� the idea is to de�ne F �r� � 	polyn�
i�� f�xi�� where

x�� ���� xpolyn� � f	� �gn are generated from r and still jrj � O�n�� That is� we
seek a �derandomized� version of Yao
s XOR Lemma� In other words� we seek a
�pseudorandom generator� of a type appropriate for expanding r to dependent xi
s
such that the XOR of the f�xi�
s is as inapproximable as it would have been for
independent xi
s�

��

Teaching note� In continuation to Footnote ��� we note that there is a strong con�

nection between the rest of this section and Chapter �� On top of the aforementioned

conceptual aspects� we will refer to pairwise independence generators
see Section ������

random walks on expanders
see Section ������ and even to the Nisan�Wigderson Con�

struction
Construction ������

The pivot of the proof is the notion of a hard region� Loosely speaking� S
is a hard region of a Boolean function f if f is strongly inapproximable on a
random input in S� that is� for every �relatively� small circuit Cn� it holds that
Pr�Cn�Un� � f�Un�jUn � S� ' ���� By de�nition� f	� �g� is a hard region of any

��Indeed� this falls within the general paradigm discussed in Section
��� Furthermore� this sug�
gestion provides another perspective on the connection between randomness and computational
di�culty� which is the focus of much discussion in Chapter
 �see� e�g�� x
��������

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

strongly inapproximable predicate� One important �and nontrivial� observation
is that any mildly inapproximable predicate has a hard region of density related
to its inapproximability parameter� Loosely speaking� hardness ampli�cation will
proceed via methods for generating related instances that hit the hard region with
su�ciently high probability� But� �rst let us study the notion of a hard region�

������ Hard regions

We actually generalize the notion of hard regions to arbitrary distributions� The
important special case of uniform distributions is obtained by taking Xn to be
Un �i�e�� the uniform distribution over f	� �gn�� In general� we only assume that
Xn � f	� �gn�

De�nition ��� �hard region relative to arbitrary distribution�� Let f �f	� �g�
f	� �g be a Boolean predicate� fXng be a probability ensemble� s � N N and
� �N �	� ���

� We say that a set S is a hard region of f relative to fXng with respect to
s����size circuits and advantage ���� if for every n and every circuit Cn of
size at most s�n�� it holds that

Pr�Cn�Xn��f�Xn�jXn�S� � �

�
$ ��n��

� We say that f has a hard region of density ���� relative to fXng �with respect
to s���size circuits and advantage ����� if there exists a set S that is a hard
region of f relative to fXng �with respect to the foregoing parameters� such
that Pr�Xn�Sn� � ��n��

Note that a Boolean function f is �s� �����inapproximable if and only if f	� �g� is
a hard region of f relative to fUng with respect to s���size circuits and advantage
����� Thus� strongly inapproximable predicates �e�g�� Sinapproximable predicates
for superpolynomial S� have a hard region of density � �with respect to a neg
ligible advantage���	 But this trivial observation does not provide hard regions
�with respect to a small �i�e�� close to zero� advantage� for mildly inapproximable
predicates� Providing such hard regions is the contents of the following theorem�

Theorem ��� �hard regions for mildly inapproximable predicates�� Let f �f	� �g�
f	� �g be a Boolean predicate� fXng be a probability ensemble� s � N N � and
� � N �	� �� such that ��n� � ��poly�n�� Suppose that� for every circuit Cn of
size at most s�n�� it holds that Pr�Cn�Xn� � f�Xn�� � � � ��n�� Then� for every
� �N �	� ��� the function f has a hard region of density ����� relative to fXng with

respect to s�����size circuits and advantage ����� where ���n� def� ��� o���� � ��n� and
s��n� def

� s�n��poly�n���n���

��Likewise� mildly inapproximable predicates have a hard region of density � with respect to
an advantage that is close to �
��

��	� HARD PROBLEMS IN E ��

In particular� if f is �s� ���inapproximable then f has a hard region of density
����� ' ���� relative to the uniform distribution �with respect to s����size circuits
and advantage ������
Proof Sketch��
 The proof proceeds by �rst establishing that fXng is �related� to
�or rather �dominates�� an ensemble fYng such that f is strongly inapproximable
on fYng� and next showing that this implies the claimed hard region� Indeed� this
notion of �related ensembles� plays a central role in the proof�

For � �N �	� ��� we say that fXng ��dominates fYng if for every x it holds that
Pr�Xn� x� � ��n� � Pr�Yn � x�� In this case we also say that fYng is ��dominated
by fXng� We say that fYng is critically ��dominated by fXng if for every x either
Pr�Yn�x� � �����n�� � Pr�Xn�x� or Pr�Yn�x� � 	���

The notions of domination and critical domination play a central role in the
proof� which consists of two parts� In the �rst part �Claim �������� we prove the
existence of a ensemble fYng that is �dominated by fXng such that f is strongly
inapproximable on fYng� In the second part �Claim �������� we prove that the
existence of such a dominated ensemble implies the existence of an ensemble fZng
that is critically ��dominated by fXng such that f is strongly inapproximable on
fZng� Finally� we note that such a critically dominated ensemble yields a hard
region of f relative to fXng� and the theorem follows�

Claim �
��
�� Under the hypothesis of the theorem it holds that there exists a
probability ensemble fYng that is �dominated by fXng such that� for every s��n�
size circuit Cn� it holds that

Pr�Cn�Yn��f�Yn�� � �

�
$
��n�

� �
����	�

Proof� We employ von Neumann
s MinMax Principle �cf� ������ to a �game� that
corresponds to the set of critically dominated �by Xn� probability distributions on
one side and the set of s��n�size circuits on the other side��� We start by assuming�
towards the contradiction� that for every distribution Yn that is �dominated by
Xn there exists a s��n�size circuits Cn such that Pr�Cn�Yn� � f�Yn�� � 	� $���n��
where ���n� � ��n���� One key observation is that there is a correspondence
between the set of distributions that are each �dominated by Xn and the set of
all convex combinations of critically �dominated �by Xn� distributions� that is�
each �dominated distribution is a convex combinations of critically �dominated
distributions and vice versa �cf�� a special case in xD�������� Thus� considering an

enumeration Y
��
n � ���� Y

t�
n of the critically �dominated �by Xn� distributions� we

conclude that for every distribution � on �t� there exists a s��n�size circuits Cn
such that

tX
i��

��i� � Pr�Cn�Y i�
n � � f�Y i�

n �� � 	� $ ���n�� ������

��See details in �	
� Apdx� A��
�	Actually� we should allow one point of expection that is� relax the requirement by saying

that for at most one string � � f�� �gn it holds that � � Pr�Yn ��� � Pr�Xn � x�
��j�j�� This
point has little e�ect on the proof� and is ignored in our presentation�

�
We warn that this application of the min�max principle is somewhat non�straightforward�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Now� consider a �nite game between two players� where the �rst player selects a crit
ically �dominated �by Xn� distribution� and the second player selects a s��n�size
circuit and obtains a payo� as determined by the corresponding success probability�
that is� if the �rst player selects the ith critically dominated distribution and the

second player selects the circuit C then the payo� equals Pr�C�Y
i�
n � � f�Y

i�
n ���

Eq� ������ may be interpreted as saying that for any randomized strategy for the
�rst player there exists a deterministic strategy for the second player yielding av
erage payo� greater than 	� $ ���n�� The minmax principle asserts that in such
a case there exists a randomized strategy for the second player that yields aver
age payo� greater than 	� $ ���n� no matter what strategy is employed by the
�rst player� This means that there exists a distribution� denoted Dn� on s��n�size
circuits such that for every i it holds that

Pr�Dn�Y
i�
n � � f�Y i�

n �� � 	� $ ���n�� ������

where the probability refers both to the choice of the circuit Dn and to the random
variable Yn� Let Bn � fx � Pr�Dn�x� � f�x�� � 	� $ ���n�g� Then� Pr�Xn �
Bn� � ��n�� because otherwise we reach a contradiction to Eq� ������ by de�ning
Yn such that Pr�Yn� x� � Pr�Xn�x��Pr�Xn � Bn� if x � Bn and Pr�Yn �x� � 	
otherwise��� By employing standard ampli�cation to Dn� we obtain a distribution
D�
n over poly�n����n�� � s��n�size circuits such that for every x � f	� �gn n Bn it

holds that Pr�D�
n�x� � f�x�� � � � ��n� It follows that there exists a s�n�sized

circuit Cn such that Cn�x� � f�x� for every x � f	� �gn n Bn� and it follows that
Pr�Cn�Xn� � f�Xn�� � Pr�Xn � f	� �gn n Bn� � � � ��n�� in contradiction to the
theorem
s hypothesis� The claim follows� �

We next show that the conclusion of Claim ������ �which was stated for ensem
bles that are �dominated by fXng� essentially holds also for some critically �
dominated �by fXng� ensembles� The following precise statement involves some
loss in the domination parameter � �as well as in the advantage ���

Claim �
��
�� If there exists a probability ensemble fYng that is �dominated
by fXng such that for every s��n�size circuit Cn it holds that Pr�Cn�Yn� �
f�Yn�� � 	� $ ���n����� then there exists a probability ensemble fZng that is
critically ��dominated by fXng such that for every s��n�size circuit Cn it holds
that Pr�Cn�Zn� � f�Zn�� � 	� $ ��n��

In other words� Claim ������ asserts that the function f has a hard region of
density ����� relative to fXng with respect to s����size circuits and advantage �����
thus establishing the theorem� The proof of Claim ������ uses the Probabilistic
Method �cf� ��	��� Speci�cally� we select a set Sn at random by including each
nbit long string x with probability

p�x�
def
�

��n� � Pr�Yn�x�

Pr�Xn�x�
� � ������

��Note that Yn is ��dominated by Xn� whereas by the hypothesis Pr�Dn�Yn� � f�Yn�� �
�������n�� Using the fact that any ��dominated distribution is a convex combination of critically

��dominated distributions� it follows that Pr�Dn�Y
�i�
n � � f�Y

�i�
n �� � ��� � ���n� holds for some

critically ��dominated Y
�i�
n �

��	� HARD PROBLEMS IN E ���

independently of the choice of all other strings� It can be shown that� with high
probability over the choice of Sn� it holds that Pr�Xn � Sn� ' ��n� and that
Pr�Cn�Xn� � f�Xn�jXn �Sn� � 	� $ ��n� for every circuit Cn of size s��n�� The
latter assertion is proved by a union bound on all relevant circuits� showing that
for each such circuit Cn� with probability � � exp��s��n��� over the choice of Sn�
it holds that jPr�Cn�Xn� � f�Xn�jXn � Sn� � Pr�Cn�Yn� � f�Yn��j � ��n���� For
details see ���� Apdx� A��

������ Hardness ampli�cation via hard regions

Before showing how to use the notion of a hard region in order to prove a deran
domized version of Yao
s XOR Lemma� we show how to use it in order to prove
the original version of Yao
s XOR Lemma �i�e�� Theorem ������

An alternative proof of Yao�s XOR Lemma� Let f � p�� and p� be as
in Theorem ����� Then� by Theorem ����� for ���n� � ���p��n� and s��n� �
p��n�

����poly�n�� the function f has a hard region S of density �� �relative to
fUng� with respect to s����size circuits and advantage ��s����� Thus� for t�n� �
n � p��n� and F as in Theorem ����� with probability at least �� ��� ���n��tn� �
��exp��"�n��� one of the t�n� random nbit blocks of F resides in S �i�e�� the hard
region of f�� Intuitively� this su�ces for establishing the strong inapproximability
of F � Indeed� suppose towards the contradiction that a small �i�e�� p��t�n� �n�size�
circuit Cn can approximate F �over Utn��n� with advantage ��n� $ exp��"�n���
where ��n� � ��s��n�� Then� the ��n� term must be due to t�n� � nbit long inputs
that contain a block in S� Using an averaging argument� we can �rst �x the index
of this block and then the contents of the other blocks� and infer the following� for
some i � �t�n�� and x�� ���� xtn� � f	� �gn it holds that

Pr�Cn�x
�� Un� x��� � F �x�� Un� x��� jUn � S� � �

�
$ ��n�

where x� � �x�� ���� xi��� � f	� �gi����n and x�� � �xi��� ���� xtn�� � f	� �gtn��i��n�
Hardwiring i � �t�n��� x� � �x�� ���� xi��� and x�� � �xi��� ���� xtn�� as well as

	
def
� 	j ��if�xj� in Cn� we obtain a contradiction to the �established� fact that S is

a hard region of f �by using the circuit C �n�z� � Cn�x
�� z� x���		�� and the theorem

follows �for p��t�n� � n� � s��n�� ���

Derandomized versions of Yao�s XOR Lemma� We �rst show how to use
the notion of a hard region in order to amplify very mild inapproximability to
a constant level of inapproximability� Recall that our goal is to obtain such an
ampli�cation while applying the given function on many �related� instances� where
each instance has length that is linearly related to the length of the input of the
resulting function� Indeed� these related instances are produced by applying an
adequate �pseudorandom generator� �see Chapter ��� The following ampli�cation
utilizes a pairwise independence generator �see Section �� ���� denoted G� that
stretches �nbit long seeds to sequences of n strings� each of length n�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Lemma ��� �derandomized XOR Lemma up to constant inapproximability��
Suppose that f � f	� �g� f	� �g is �T� ���inapproximable� for ��n� � ��poly�n��
and assume for simplicity that ��n� � ��n� Let b denote the inner�product mod
predicate� and G be the aforementioned pairwise independence generator� Then
F��s� r� � b�f�x�� � � � f�xn�� r�� where jrj � n � jsj�� and �x�� ���� xn� � G�s�� is
�T �� ����inapproximable for T ��n�� � T �n�����poly�n�� and ���n�� � "�n� � ��n������
Needless to say� if f � E then F� � E � By applying Lemma ���� for a constant
number of times� we may transform an �T� ��poly�inapproximable predicate into
an �T ���"����inapproximable one� where T ���n��� � T �n���O�����poly�n����

Proof Sketch� As in the foregoing proof �of the original version of Yao
s XOR
Lemma�� we �rst apply Theorem ����� This time we set the parameters so to infer
that� for ��n� � ��n��� and s��n� � T �n��poly�n�� the function f has a hard region
S of density � �relative to fUng� with respect to s����size circuits and advantage
	�	�� Next� as in x�������� we shall consider the corresponding �derandomized�
direct product problem� that is� the function P��s� � �f�x��� ���� f�xn��� where
jsj � �n and �x�� ���� xn� � G�s�� We will �rst show that P� is hard to compute
on an "�n � ��n�� fraction of the domain� and the quanti�ed inapproximality of F�
will follow�

One key observation is that� by Exercise ����� with probability at least ��n�
def
�

n � ��n���� at least one of the n strings output by G�U�n� resides in S� Intuitively�
we expect every s��n�sized circuit to fail in computing P��U�n� with probability
at least 	�����n�� because with probability ��n� the sequence G�U�n� contains an
element in the hard region of f � Things are somewhat more involved �than in the
nonderandomized case� because it is not clear what is the conditional distribution
of the element�s� residing in the hard region�

For technical reasons��� we use the condition ��n� � ���n �which is guaranteed
by the hypothesis that ��n� � ��n and our setting of ��n� � ��n����� In this

case Exercise ���� implies that� with probability at least ��n�
def
� 	�� � n � ��n��

at least one of the n strings output by G�U�n� resides in S� We claim that every
�s��n��poly�n��sized circuit fails to compute P� correctly with probability at least
��n� � 	����n�� As usual� the claim is proved by a reducibility argument� Let G�s�i
denote the ith string in the sequence G�s� �i�e�� G�s� � �G�s��� ���� G�s�n��� and note

that given i and x we can e�ciently sample G��i �x�
def
� fs�f	� �g�n � G�s�i�xg�

Given a circuit Cn that computes P��U�n� correctly with probability �� ��n�� we
consider the circuit C �n that� on input x� uniformly selects i � �n� and s � G��i �x��
and outputs the ith bit in Cn�s�� Then� by the construction �of C �n� and the
hypothesis regarding Cn� it holds that

Pr�C �n�Un��f�Un�jUn�S� �
nX
i��

�

n
� Pr�Cn�U�n��P��U�n�jG�U�n�i�S�

� �

n
� Pr�Cn�U�n��P��U�n�
 �iGi�U�n�i�S�

maxifPr�G�U�n�i�S�g
��The following argument will rely on the fact that ��n� � ��n� ����n � ��n�� where ��n� �

$���n���

��	� HARD PROBLEMS IN E ���

� �

n
� ��� ��n��� ��� ��n��

��n�

�
	����n�

n � ��n� � 	� � �

This contradicts the fact that S is a hard region of f with respect to s����size
circuits and advantage 	�	�� Thus� we have established that every �s��n��poly�n��
sized circuit fails to compute P� correctly with probability at least ��n� � 	����n��
Employing the simple �warmup� case discussed at the beginning of the proof of
Theorem ��� �where the predictor errs with probability less than ����� it follows
that� for s���n�� � s�n�����poly�n��� every s���jsj$jrj�sized circuits fails to compute

�s� r� � b�P��s�� r� with probability at least ��jsj$ jrj� def
� 	��� � ��jrj�� Thus� F� is

�s��� ���inapproximable� and the lemma follows�

The next lemma o�ers an ampli�cation of constant inapproximability to strong
inapproximability� Indeed� combining Theorem ���� with Lemmas ���� and �����
yields Theorem ���� �as a special case��

Lemma ��� �derandomized XOR Lemma starting with constant inapproxima
bility�� Suppose that f � f	� �g� f	� �g is �T� ���inapproximable� for some con�
stant �� and let b denote the inner�product mod predicate� Then there exists a
exponential�time computable function G such that F��s� r� � b�f�x�� � � � f�xn�� r��
where �x�� ���� xn� � G�s� and n � "�jsj� � jrj � jx�j � � � � � jxnj� is T ��
inapproximable for T ��n�� � T �n��O��������poly�n���

Again� if f � E then F� � E �
Proof Outline��� As in the proof of Lemma ����� we start by establishing
a hard region of density ��� for f �this time with respect to circuits of size
T �n�����poly�n� and advantage T �n������� and focus on the analysis of the
�derandomized� direct product problem corresponding to computing the function
P��s� � �f�x��� ���� f�xn��� where jsj � O�n� and �x�� ���� xn� � G�s�� The �gen
erator� G is de�ned such that G�s�s��� � G��s

�� 	 G��s
���� where js�j � js��j�

jG��s
��j � jG��s

���j� and the following conditions hold�

�� G� is the Expander Random Walk Generator discussed in Section �� ��� It
can be shown that G��UOn�� outputs a sequence of n strings such that for
any set S of density �� with probability � � exp��"��n��� at least "��n�
of the strings hit S� Note that this property is inherited by G� provided
jG��s

��j � jG��s
���j for any js�j � js��j� It follows that� with probability

� � exp��"��n��� a constant fraction of the xi
s in the de�nition of P� hit
the hard region of f �

It is tempting to say that small circuits cannot compute P� better than with
probability exp��"��n��� but this is clear only in case the the xi
s that hit
the hard region are distributed independently �and uniformly� in it� which is
hardly the case here� Indeed� G� is used to handle this problem�

��For details� see ������

��	 CHAPTER �� THE BRIGHT SIDE OF HARDNESS

�� G� is the �set projection� system underlying Construction ����� speci�cally�
G��s� � �sS� � ���� sSn�� where each Si is an nsubset of �jsj� and the Si
s have
pairwise intersections of size at most n�O������ An analysis as in the proof
of Theorem ���� can be employed for showing that the dependency among
the xi
s does not help for computing a particular f�xi� when given xi as well
as all the other f�xj�
s� �Note that the relevant property of G� is inherited
by G��

The actual analysis of the construction �via a guessing game presented in �����
Sec� ���� links the success probability of computing P� to the advantage of guessing
f on its hard region� The interested reader is referred to ������

Digest� Both Lemmas ���� and ���� are proved by �rst establishing correspond
ing derandomized versions of the �direct product� lemma �Theorem ������ in fact�
the core of these proofs is proving adequate derandomized �direct product� lemmas�
We call the reader
s attention to the seemingly crucial role of this step �especially
in the proof of Lemma ������ We cannot treat the values f�x��� ���f�xn� as if they
were independent �at least not for the generator G as postulated in these lemmas��
and so we seek to avoid analyzing the probability of correctly computing the XOR
of all these values� In contrast� we have established that it is very hard to correctly
compute all n values� and thus XORing a random subset of these values yields a
strongly inapproximable predicate� �Note that the argument used in Exercise ���
fails here� because the xi
s are not independent� which is the reason that we XOR
a random subset of these values rather than all of them��

Chapter Notes

The notion of a oneway function was suggested by Di�e and Hellman ����� The
notion of weak oneway functions as well as the ampli�cation of oneway functions
�Theorem �� � were suggested by Yao ������ A proof of Theorem �� has �rst
appeared in �����

The concept of hardcore predicates was suggested by Blum and Micali �����
They also proved that a particular predicate constitutes a hardcore for the �DLP
function� �i�e�� exponentiation in a �nite �eld�� provided that the latter function is
oneway� The generic hardcore predicate �Theorem ���� was suggested by Levin�
and proven as such by Goldreich and Levin �� �� The proof presented here was
suggested by Racko�� We comment that the original proof has its own merits �cf��
e�g�� ��	����

The construction of canonical derandomizers and� speci�cally� the NisanWigderson
framework �Construction ����� has been the driving force behind the study of in
approximable predicates in E � Theorem ���	 is due to ��	�� whereas Theorem ����
is due to ������ Both results rely heavily of variants of Yao
s XOR Lemma� to be
reviewed next�

��Recall that sS denotes the projection of s on coordinates S � �jsj� that is� for s � �� � � ��k
and S � fij � j � �� ���� ng� we have sS � �i� � � ��in �

��	� HARD PROBLEMS IN E ���

Like several other fundamental insights attributed to Yao
s paper ������ Yao
s
XOR Lemma �Theorem ����� is not even stated in ����� but is rather due to Yao
s
oral presentations of his paper� The �rst published proof of Yao
s XOR Lemma
was given by Levin �see ���� Sec� ���� Levin
s proof is the only one known giving a
tight quantitative analysis �on the decrease in the level of approximability�� and the
interested reader is referred to it �via the nonlaconic presentation of ���� Sec� ����
The proof presented in x������� is due to Goldreich� Nisan and Wigderson ����
Sec� ��

The notion of a hard region and its applications to proving the original version
of Yao
s XOR Lemma as well as the �rst derandomization of it �Lemma ����� are
due to Impagliazzo ������ The second derandomization �Lemma ����� as well as
Theorem ���� are due to Impagliazzo and Wigderson ������

The connection between list decoding and hardness ampli�cation �x���������
yielding an alternative proof of Theorem ����� is due to Sudan� Trevisan� and
Vadhan ���	��

Hardness ampli�cation for NP has been the subject of recent attention� An
ampli�cation of mild inapproximability to strong inapproximability is provided
in ������ an indication to the impossibility of a worstcase to averagecase reductions
�at least nonadaptive ones� is provided in ��	��

Exercises

Exercise �� Prove that if one wayfunctions exist then there exists oneway func
tions that are length preserving �i�e�� jf�x�j � jxj for every x � f	� �gn��
Guideline� Clearly� for some polynomial p� it holds that jf
x�j � p
jxj� for all x� Assume�

without loss of generality that n �� p
n� is ��� and increasing� and let p��
m� � n if

p
n� m � p
n � ��� De�ne f �
z� � f
x���jzj�jf�x�j��� where x is the p��
jzj��bit long

pre�x of z�

Exercise �� Prove that if a function f is hard to invert in the sense of De�ni
tion ��� then it is hard to invert in the sense of De�nition ����

Hint� consider a sequence of internal coin tosses that maximizes the probability in Eq� �������

Exercise �� Assuming the existence of oneway functions� prove that there exists
a weak oneway function that is not strongly oneway�

Exercise �	 �a universal one�way function� Using the notion of a universal
machine� present a polynomialtime computable function that is hard to invert �in
the sense of De�nition ���� if and only if there exist oneway functions�

Guideline� Consider the function F that parses its input into a pair
M�x� and emulates

jxj� steps of M on input x� Note that if there exists a one�way function that can be

evaluated in cubic time then F is a weak one�way function� Using padding� prove that

there exists a one�way function that can be evaluated in cubic time if and only if there

exist one�way functions�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Exercise �� For
 � �� prove that the following �� � � samples are pairwise
independent and uniformly distributed in f	� �gn� The samples are generated by
uniformly and independently selecting
 strings in f	� �gn� Denoting these strings
by s�� ���� s�� we generate �� � � samples corresponding to the di�erent non�empty

subsets of f�� �� ����
g such that for subset J we let rJ
def
� 	j�Jsj �

Guideline� For J �� J �� it holds that rJ�rJ� � �j�Ks
j � where K denotes the symmetric

di�erence of J and J �� See related material in Section �����

Exercise �� Provide a detailed presentation of the alternative procedure outlined
in Footnote � That is� prove that for every x � f	� �gn� given oracle access to any
Bx � f	� �gn f	� �g that satis�es Eq� ������ this procedure makes poly�n��� steps
and outputs a list of strings that� with probability at least ���� contains x�

Exercise � Prove Theorem ����

Guideline� Recall that there exists a poly
n����time oracle machine M such that� for

every B � f�� �gn � f�� �g and x � f�� �gn that satisfy Prr�B
r� � b
x� r� � �
�

� �� it

holds that Pr�MB
n� �� � x � !
���n�� Apply a �coupon collector� argument�

Exercise �� A polynomialtime computable predicate b �f	� �g�f	� �g is called
a universal hard�core predicate if for every oneway function f � the predicate b is
a hardcore of f � Note that the predicate presented in Theorem ��� is �almost
universal� �i�e�� for every oneway function f � that predicate is a hardcore of
f ��x� r� � �f�x�� r�� where jxj � jrj�� Prove that there exist no universal hard
core predicate�

Guideline� Let b be a candidate universal hard�core predicate� and let f be an arbitrary

one�way function� Then consider the function f �
x� �
f
x�� b
x���

Exercise �� Prove that if NP is not contained in P�poly then neither is E �
Furthermore� for every S � N N � if some problem in NP does not have circuits
of size S then for some constant � � 	 there exists a problem in E that does not
have circuits of size S�� where S��n� � S�n��� Repeat the exercise for the �almost
everwhere� case�

Guideline� Although NP is not known to be in E � it is the case that SAT is in E � which

implies that NP is reducible to a problem in E � For the �almost everwhere� case� address

the fact that the said reduction may not preserve the length of the input�

Exercise ��� For every function f � f	� �gn f	� �g� present a linearsize circuit
Cn such that Pr�C�Un� � f�Un�� � 	� $ ��n� Furthermore� for every t � �n���
present a circuit Cn of size O�t � n� such that Pr�C�Un� � f�Un�� � 	� $ t � ��n�
Warning� you may not assume that Pr�f�Un� � �� � 	� �

Exercise ��� �self�correction of low�degree polynomials� Let d�m be in

tegers� and F be a �nite �eld of cardinality greater than t
def
� dm $ �� Let

p � Fm F be a polynomial of individual degree d� and ��� ���� �t be t distinct
nonzero elements of F �

��	� HARD PROBLEMS IN E ���

�� Show that� for every x� y � Fm� the value of p�x� can be e�ciently computed
from the values of p�x$ ��y�� ���� p�x$ �ty�� where x and y are viewed both
as mary vectors over F and as sequences of m elements of F �

�� Show that� for every x � Fm and � � F n f	g� if we uniformly select r � Fm

then the point x$ �r is uniformly distributed in Fm�

Conclude that p�x� can be recovered based on t random points� where each point
is uniformly distributed in Fm�

Exercise ��� �low degree extension� Prove that for any H � F and function

f � Hm F there exists an mvariate polynomial &f � Fm F of individual degree
jH j � � such that for every x � Hm it holds that &f�x� � f�x��

Guideline� De�ne %f
x� �
P

a�Hm 	a
x� � f
a�� where 	a is an m�variate of individual

degree jHj�� such that 	a
a� � � whereas 	a
x� � � for every x � Hm nfag� Speci�cally�

	a������am
x�� ���� xm� �
Qm

i��

Q
b�Hnfaig

xi � b��
ai � b���

Exercise ��� Suppose that &f and S� are as in the conclusion of Theorem �����
Prove that there exists a Boolean function g in E that is �S��� ��inapproximable
for S���n� $O�log n��� � S��n���n� and ��m� � ��m��

Guideline� Consider the function g de�ned such that g
x� i� equals the ith bit of %f
x��

Exercise ��	 �an application of Theorem ��� Let h � f	� �g� f	� �g� be
a function such that jh�x�j � jh��jxj�j for every x � f	� �g�� and fXngn�N be a
probability ensemble� Suppose that� for some s � N N and � � N �	� ��� for
every family of ssize circuits fCngn�N and all su�ciently large n it holds that
Pr�Cn�Xn� � h�Xn�� � ��n�� Suppose that s� � N N and �� � N �	� �� satisfy
s��n� � s�n��poly�n�����n�� and ��n� � ��poly�n�����n��� Then the predicate
h��x� r� � b�h�x�� r�� where jrj � jh�x�j� is �s�� � � ���inapproximable� Conclude
that if ��n� � ��s�n� and s���n� � s�n�����poly�n�� then h� is s�inapproximable�

Exercise ��� Let f be a Boolean function� and b�y� r� denote the innerproduct

modulo � of the equallength strings y and r� Suppose that F ��x�� ���� xtn�� r�
def
�

b�f�x�� � � � f�xtn��� r�� where x�� ���� xtn� � f	� �gn and r � f	� �gtn�� is T inapproximable�

Assuming that n � t�n� � n is ��� prove that F �x�
def
� F ��x� �t

�jxj��� where
t��t�n� � n� � t�n�� is T �inapproximable for T ��m$ t��m�� � T �m�� t��m��

Guideline� Reduce the approximation of F � to the approximation of F � An important

observation is that for any x �
x�� ���� xt�n��� x
� �
x��� ���� x

�
t�n��� and r � r� � � � rt�n� such

that x�i � xi if ri � �� it holds that F �
x� r� � F
x�� � �i�ri�
f
x�i�� This suggests a

non�uniform reduction of F � to F � which uses �adequate� z�� ���� zt�n� � f�� �gn as well as

the corresponding values f
zi��s as advice� On input x�� ���� xt�n�� r� � � � rt�n�� the reduction

sets x�i � xi if ri � � and x�i � zi otherwise� makes the query x� �
x��� ���� x
�
t�n�� to F � and

returns F
x�� �i�ri�
 f
zi�� Analyze this reduction in the case that z�� ���� zt�n� � f�� �gn
are uniformly distributed� and infer that they can be set to some �xed values�

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Exercise ��� Consider a modi�cation of De�nition ����� in which the decoding
condition reads as follows �where p is a �xed polynomial�� For every w � �
�N��
�q�N�� and x�f	� �gN such that)�x� is ��� ����q�N�� $��N����close to w� there
exists an oracle�aided circuit C of size p��logN����N�� such that Cw�i� yields the
ith bit of x for every i � �N ��

�� Formulate and prove a version of Theorem ���� that refers to the modi�ed
de�nition �rather than to the original one��

Hint� the modi�ed version should refer to computing g�Um�n�� with success probability

greater than ��
q�n�� � ��n���

�� Prove that� when applied to binary codes �i�e�� q � ��� the version in Item �
yields S��inapproximable predicates� for S���n�� � S�m���n�������poly�n���

�� Prove that the Hadamard Code allows implicit decoding under the modi�ed
de�nition �but not according to the original one����

Hint� this is the actual contents of Theorem ��
��

Note that if) � f	� �gN �q�N���N� is a �nonbinary� code that allows implicit
decoding then encoding its symbols by the Hadamard code yields a binary code

�f	� �gN f	� �g�N���dlog� q�N�e

� that allows implicit decoding� Note that e�cient
encoding is preserved only if q�N� � poly�N��

Exercise �� �using Proposition ��� to prove Theorem ���� Prove The
orem ���� by combining Proposition ���� and Theorem ����

Guideline� Note that� for some � � �� Proposition ���� yields an exponential�time com�

putable function %f such that j %f
x�j jxj and for every family of circuit fC�
n�gn��N of

size S�
n�� � S
n����
�poly
n�� it holds that Pr�C�
n�
Un� � � %f
Un�� � ��S�
n��� Com�

bining this with Theorem ���� infer that P
x� r� � b
 %f
x�� r�� where jrj � j %f
x�j jxj� is

S���inapproximable for S��
n��� � S
n����������poly
n���� Note that if S
n� � ���n� then

S��
n��� � ���n
����

Exercise ��� LetG be a pairwise independent generator �i�e�� as in Lemma ������

S � f	� �gn and �
def
� jSj��n� Prove that� with probability at least min�n � �� �����

at least one of the n strings output by G�U�n� resides in S�

Guideline� Using the pairwise independence property and employing the Inclusion�

Exclusion formula� we lower�bound the aforementioned probability by n � p �
�
n
�

�
� p��

If p ��n then the claim follows� otherwise we employ the same reasoning to the �rst

��p elements in the output of G
U�n��

Exercise ��� �one�way functions versus inapproximable predicates� Prove
that the existence of a nonuniformly hard oneway function �as in De�nition ����
implies the existence of an exponentialtime computable predicate that is T inapproximable
�as per De�nition ����� for every polynomial T �

��Needless to say� the Hadamard Code is not e�cient �for the trivial reason that its codewords
have exponential length��

��	� HARD PROBLEMS IN E ��

Guideline� Suppose �rst that the one�way function f is length�preserving and ���� Con�

sider the corresponding function g and hard�core predicate b guaranteed by Theorem ����

and show that the Boolean function h such that h
z� � b
g��
z�� is polynomially in�

approximable� For the general case a di�erent approach seems needed� Speci�cally�

given a
length preserving� one�way function f � consider the Boolean function h de�

�ned as h
z� i� �� � � if and only if the ith bit of the lexicographically �rst element

in f��
z� � fx � f
x� � zg equals ��
In particular� if f��
z� � � then h
z� i� �� � � for

every i and ����� Note that h is computable in exponential�time� but is not
worst�case�

computable in polynomial�time� Applying Theorem ����� we are done�

��Thus� h may be easy to computed in the average�case sense �e�g�� if f�x� � �jxjf ��x� for some
one�way function f ���

��� CHAPTER �� THE BRIGHT SIDE OF HARDNESS

Chapter 	

Pseudorandom Generators

Indistinguishable things are identical��

G�W� Leibniz �����������

A fresh view at the question of randomness has been taken in the theory of comput
ing� It has been postulated that a distribution is random �or rather pseudorandom�
if it cannot be told apart from the uniform distribution by any e�cient procedure�
Thus� �pseudo�randomness is not an inherent property of an object� but is rather
subjective to the observer�

At the extreme� this approach says that the question of whether the world
is deterministic or allows for some free choice �which may be viewed as sources of
randomness� is irrelevant� What matters is how the world looks to us and to various
computationally bounded devices� That is� if some phenomenon looks random then
we may just treat it as if it were random� Likewise� if we can generate sequences
that cannot be told apart from the uniform distribution by any e�cient procedure�
then we can use these sequences in any e�cient randomized application instead of
the ideal random bits that are postulated in the design of this application�

The pivot of this approach is the notion of computational indistinguishability�
which refers to pairs of distributions that cannot be told apart by e�cient proce
dures� The most fundamental variant of this notion associates e�cient procedures
with polynomialtime algorithms� but other variants that restrict attention to other
classes of distinguishing procedures also lead to interesting insights� Likewise� the
generation of pseudorandom objects is actually a general paradigm with numerous
useful incarnations�

Summary� A generic formulation of pseudorandom generators consists
of specifying three fundamental aspects � the stretch measure of the

�This is Leibniz�s Principle of Identity of Indiscernibles� Leibniz admits that counterexamples
to this principle are conceivable but will not occur in real life because God is much too benevolent�
We thus believe that he would have agreed to the theme of this chapter� which asserts that
indistinguishable things should be considered as identical�

���

��� CHAPTER �� PSEUDORANDOM GENERATORS

generators� the class of distinguishers that the generators are supposed
to fool �i�e�� the algorithms with respect to which the computational in�
distinguishability requirement should hold�� and the resources that the
generators are allowed to use �i�e�� their own computational complexity��

The archetypical case of pseudorandom generators refers to e�cient
generators that fool any feasible procedure� that is� the potential dis
tinguisher is any probabilistic polynomialtime algorithm� which may
be more complex than the generator itself �which� in turn� has time
complexity bounded by a �xed polynomial�� These generators are called
generalpurpose� because their output can be safely used in any e�cient
application� Such �generalpurpose� pseudorandom generators exist if
and only if oneway functions exist�

For purposes of derandomization one may use pseudorandom genera
tors that are somewhat more complex than the potential distinguisher
�which represents the algorithm to be derandomized�� Following this
approach� suitable pseudorandom generators� which can be constructed
assuming the existence of problems in E that have no subexponential
size circuits� yield a full derandomization of BPP �i�e�� BPP � P��

It is also bene�cial to consider pseudorandom generators that fool space
bounded distinguishers and generators that exhibit some limited ran
dom behavior �e�g�� outputting a pairwise independent or a smallbias
sequence��

Introduction

The second half of this century has witnessed the development of three theories
of randomness� a notion which has been puzzling thinkers for ages� The �rst the
ory �cf�� ��	��� initiated by Shannon ��� �� is rooted in probability theory and is
focused at distributions that are not perfectly random� Shannon
s Information
Theory characterizes perfect randomness as the extreme case in which the infor�
mation contents is maximized �i�e�� there is no redundancy at all�� Thus� perfect
randomness is associated with a unique distribution � the uniform one� In par
ticular� by de�nition� one cannot �deterministically� generate such perfect random
strings from shorter random seeds�

The second theory �cf�� ����� � 	��� due to Solomonov ��	��� Kolmogorov �����
and Chaitin ����� is rooted in computability theory and speci�cally in the notion of
a universal language �equiv�� universal machine or computing device� see x���������
It measures the complexity of objects in terms of the shortest program �for a �xed
universal machine� that generates the object� Like Shannon
s theory� Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme case�
However� in this approach one may say that a single object� rather than a distribu
tion over objects� is perfectly random� Still� Kolmogorov
s approach is inherently
intractable �i�e�� Kolmogorov Complexity is uncomputable�� and � by de�nition �

���

one cannot �deterministically� generate strings of high Kolmogorov Complexity
from short random seeds�

The third theory is rooted in complexity theory and is the focus of this chapter�
This approach is explicitly aimed at providing a notion of randomness that nev
ertheless allows for an e�cient �and deterministic� generation of random strings
from shorter random seeds� The heart of this approach is the suggestion to view
objects as equal if they cannot be told apart by any e�cient procedure� Conse
quently� a distribution that cannot be e�ciently distinguished from the uniform
distribution will be considered as being random �or rather called pseudorandom��
Thus� randomness is not an �inherent� property of objects �or distributions� but
is rather relative to an observer �and its computational abilities�� To demonstrate
this approach� let us consider the following mental experiment�

Alice and Bob play �head or tail� in one of the following four ways� In
each of them Alice �ips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the �oor� The alternative ways di�er by
the knowledge Bob has before making his guess�

In the �rst alternative� Bob has to announce his guess before Alice �ips
the coin� Clearly� in this case Bob wins with probability ����

In the second alternative� Bob has to announce his guess while the coin
is spinning in the air� Although the outcome is determined in principle
by the motion of the coin� Bob does not have accurate information on
the motion and thus we believe that also in this case Bob wins with
probability ����

The third alternative is similar to the second� except that Bob has
at his disposal sophisticated equipment capable of providing accurate
information on the coin
s motion as well as on the environment e�ecting
the outcome� However� Bob cannot process this information in time to
improve his guess�

In the fourth alternative� Bob
s recording equipment is directly con
nected to a powerful computer programmed to solve the motion equa
tions and output a prediction� It is conceivable that in such a case Bob
can improve substantially his guess of the outcome of the coin�

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal� At the extreme� deterministic events that
are fully determined by some rule may be perceived as random events by observer
that lack relevant information and�or ability to process it� Our focus will be on
the lack of processing power� which may be due either to the formidable amount
of computation required for analyzing the event at question or to the fact that the
observer is very limited�

A natural notion of pseudorandomness arises � a distribution is pseudorandom
if no e�cient procedure can distinguish it from the uniform distribution� where
e�cient procedures are associated with �probabilistic� polynomialtime algorithms�
This speci�c notion of pseudorandomness is indeed the most fundamental one� and

��	 CHAPTER �� PSEUDORANDOM GENERATORS

much of this chapter is focused on it� Weaker notions of pseudorandomness arise as
well � they refer to indistinguishability by weaker procedures such as spacebounded
algorithms� constantdepth circuits� etc� Stretching this approach even further one
may consider algorithms that are designed on purpose so not to distinguish even
weaker forms of �pseudorandom� sequences from random ones �such algorithms
arise naturally when trying to convert some natural randomized algorithm into
deterministic ones� see Section �� ��

The foregoing discussion has focused at one aspect of the pseudorandomness
question � the resources or type of the observer �or potential distinguisher�� An
other important aspect is whether such pseudorandom sequences can be generated
from much shorter ones� and at what cost �or complexity�� A natural approach
is that the generation process has to be at least as e�cient as the distinguisher
�equiv�� that the distinguisher is allowed at least as much resources as the gener
ator�� Coupled with the aforementioned strong notion of pseudorandomness� this
yields the archetypical notion of pseudorandom generators � these operating in
polynomialtime and producing sequences that are indistinguishable from uniform
ones by any polynomialtime observer� Such �general�purpose� pseudorandom gen
erators allow to reduced the randomness complexity of any e�cient application�
and are thus of great relevance to randomized algorithms and cryptography �see
Section �����

Gen
seed output sequence

a truly random sequence
?

Figure ���� Pseudorandom generators � an illustration�

We stress that there are important reasons for considering also an alternative
that seems less natural� that is� allowing the pseudorandom generator to use more
resources �e�g�� time or space� than the observer it tries to fool� This alternative is
natural in the context of derandomization �i�e�� converting randomized algorithms
to deterministic ones�� where the crucial step is replacing the random input of an
algorithm by a pseudorandom input� which in turn can be generated based on
a much shorter random seed� In particular� when derandomizing a probabilistic
polynomialtime algorithm� the observer �to be fooled by the generator� is a �xed
algorithm� In this case employing a more complex generator merely means that the
complexity of the derived deterministic algorithm is dominated by the complexity of
the generator �rather than by the complexity of the original randomized algorithm��
Needless to say� allowing the generator to use more resources than the observer that
it tries to fool makes the task of designing pseudorandom generators potentially

���� THE GENERAL PARADIGM ���

easier� and enables derandomization results that are not known when using general
purpose pseudorandom generators� The usefulness of this approach is demonstrated
in Sections ��� through �� �

We note that the goal of all types of pseudorandom generators is to allow the
generation of �su�ciently random� sequences based on much shorter random seeds�
Thus� pseudorandom generators o�er signi�cant saving in the randomness complex
ity of various applications� This saving is valuable because many applications are
severely limited in their ability to generate or obtain truly random bits� Further
more� typically� generating truly random bits is signi�cantly more expensive than
standard computation steps� Thus� randomness is a computational resource that
should be considered on top of time complexity �analogously to the consideration
of space complexity��

Organization� In Section ��� we present the general paradigm underlying the
various notions of pseudorandom generators� The archetypical case of general
purpose pseudorandom generators is presented in Section ���� We then turn to the
alternative notions of pseudorandom generators� Generators that su�ce for the
derandomization of complexity classes such as BPP are discussed in Section ����
Pseudorandom generators in the domain of spacebounded computations are dis
cussed in Section ���� and specialpurpose generators are discussed in Section �� �
�For an alternative presentation� which focuses on generalpurpose pseudorandom
generators and provides more details on it� the reader is referred to ���� Chap� ����

Teaching note� If you can a�ord teaching only one of the alternative notions of pseu�

dorandom generators� then we suggest teaching the notion of general�purpose pseudo�

random generators
presented in Section ����� This notion is more relevant to computer

science at large and the technical material is relatively simpler� The chapter is organized

to facilitate this option�

Prerequisites� We assume a basic familiarity with elementary probability theory
�see Appendix D��� and randomized algorithms �see Section ����� In particular�
standard conventions regarding random variables �presented in Appendix D�����
will be extensively used�

��� The General Paradigm

Teaching note� We advocate a uni�ed view of various notions of pseudorandom gen�

erators� That is� we view these notions as incarnations of a general abstract paradigm�

to be presented in this section� A teacher that wishes to focus on one of the special

cases may still use this section as a general motivation towards the speci�c de�nitions

used later�

A generic formulation of pseudorandom generators consists of specifying three fun
damental aspects � the stretch measure of the generators� the class of distinguishers
that the generators are supposed to fool �i�e�� the algorithms with respect to which

��� CHAPTER �� PSEUDORANDOM GENERATORS

the computational indistinguishability requirement should hold�� and the resources
that the generators are allowed to use �i�e�� their own computational complexity��

Stretch function� A necessary requirement from any notion of a pseudorandom
generator is that it is a deterministic algorithm that stretches short strings� called
seeds� into longer output sequences� Speci�cally� it stretches kbit long seeds into

�k�bit long outputs� where
�k� � k� The function
 � N N is called the
stretch measure �or stretch function�� In some settings the speci�c stretch measure
is immaterial �e�g�� see Section �������

Computational Indistinguishability� A necessary requirement from any no
tion of a pseudorandom generator is that it �fools� some nontrivial algorithms�
That is� any algorithm taken from a predetermined class of interest cannot dis
tinguish the output produced by the generator �when the generator is fed with a
uniformly chosen seed� from a uniformly chosen sequence� Typically� we consider
a class D of distinguishers and a class F of �threshold� functions� and require that
the generator G satis�es the following� For any D � D� any f � F � and for all
su�ciently large k
s

jPr�D�G�Uk�� � �� � Pr�D�U�k�� � �� j � f�k� �����

where Un denotes the uniform distribution over f	� �gn and the probability is taken
over Uk �resp�� U�k�� as well as over the coin tosses of algorithm D in case it is
probabilistic�� The reader may think of such a distinguisher� D� as trying to tell
whether the �tested string� is a random output of the generator �i�e�� distributed
as G�Uk�� or is a truly random string �i�e�� distributed as U�k��� The condition in
Eq� ����� requires that D cannot make a meaningful decision� that is� ignoring a
negligible di�erence �represented by f�k��� D
s verdict is the same in both cases�
The archetypical choice is that D is the set of all probabilistic polynomialtime
algorithms� and F is the set of all functions that are the reciprocal of some positive
polynomial�

Complexity of Generation� The archetypical choice is that the generator has
to work in polynomialtime �in length of its input � the seed�� Other choices will
be discussed as well� We note that placing no computational requirements on
the generator �or� alternatively� putting very mild requirements such as a double
exponential runningtime upper bound�� yields �generators� that can fool any
subexponentialsize circuit family �see Exercise �����

�The class of threshold functions F should be viewed as determining the class of noticeable
probabilities �as a function of k�� Thus� we require certain functions �i�e�� the absolute di�erence
between the above probabilities�� to be smaller than any noticeable function on all but �nitely

many integers� We call the former functions negligible� Note that a function may be neither
noticeable nor negligible �e�g�� it may be smaller than any noticeable function on in�nitely many
values and yet larger than some noticeable function on in�nitely many other values��

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS ���

Notational conventions� We will consistently use k to denote the length of the
seed of a pseudorandom generator� and
�k� to denote the length of the correspond
ing output� In some cases� this makes our presentation a little more cumbersome
�as a natural presentation may specify some other parameters and let the seed
length be a function of these�� However� our choice has the advantage of focusing
attention on the fundamental parameter of pseudorandom generation � the length
of the random seed� We note that whenever a pseudorandom generator is used to
�derandomize� an algorithm� n will denote the length of the input to this algorithm�
and k will be selected as a function of n�

Some instantiations of the general paradigm� Two important instantiations
of the notion of pseudorandom generators relate to probabilistic polynomialtime
distinguishers�

�� Generalpurpose pseudorandom generators correspond to the case that the
generator itself runs in polynomial time and needs to withstand any prob�
abilistic polynomial�time distinguisher� including distinguishers that run for
more time than the generator� Thus� the same generator may be used safely
in any e�cient application� �This notion is treated in Section �����

�� In contrast� pseudorandom generators intended for derandomization may run
more time than the distinguisher� which is viewed as a �xed circuit having
size that is upperbounded by a �xed polynomial� �This notion is treated in
Section �����

In addition� the general paradigm may be instantiated by focusing on the space
complexity of the potential distinguishers �and the generator�� rather than on their
time complexity� Furthermore� one may also consider distinguishers that merely
re�ect probabilistic properties such as pairwise independence� smallbias� and hit
ting frequency�

��� General�Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation� It is fre
quently used in the design of sequential� parallel and distributed algorithms� and
it is of course central to cryptography� Whereas it is convenient to design such al
gorithms making free use of randomness� it is also desirable to minimize the usage
of randomness in real implementations� Thus� generalpurpose pseudorandom gen
erators �as de�ned next� are a key ingredient in an �algorithmic toolbox� � they
provide an automatic compiler of programs written with free usage of randomness
into programs that make an economical use of randomness�

����� The basic de�nition

Loosely speaking� generalpurpose pseudorandom generators are e�cient �i�e�� polynomial
time� deterministic programs that expand short randomly selected seeds into longer

��� CHAPTER �� PSEUDORANDOM GENERATORS

pseudorandom bit sequences� where the latter are de�ned as computationally indis
tinguishable from truly random sequences by any e�cient �i�e�� polynomialtime�
algorithm� Thus� the distinguisher is more complex than the generator� The gen
erator is a �xed algorithm working within some �xed polynomialtime� whereas a
potential distinguisher is any algorithm that runs in polynomialtime� Thus� for
example� the distinguisher may always run in time cubic in the runningtime of
the generator� Furthermore� to facilitate the development of this theory� we allow
the distinguisher to be probabilistic �whereas the generator remains determinis
tic as stated above�� We require that such distinguishers cannot tell the output
of the generator from a truly random string of similar length� or rather that the
di�erence that such distinguishers may detect �or �sense�� is negligible� Here a
negligible function is one that vanishes faster than the reciprocal of any positive
polynomial�

De�nition ��� �generalpurpose pseudorandom generator�� A deterministic polynomial�
time algorithm G is called a pseudorandom generator if there exists a stretch func
tion�
 � NN �satisfying
�k� � k for all k�� such that for any probabilistic
polynomial�time algorithm D� for any positive polynomial p� and for all su�ciently
large k	s

jPr�D�G�Uk�� � �� � Pr�D�U�k�� � �� j �
�

p�k�
�����

where Un denotes the uniform distribution over f	� �gn and the probability is taken
over Uk �resp�� U�k�� as well as over the internal coin tosses of D�

Thus� De�nition ��� is derived from the generic framework �presented in Sec
tion ���� by taking the class of distinguishers to be the set of all probabilistic
polynomialtime algorithms� and taking the class of �noticeable� threshold functions
to be the set of all functions that are the reciprocals of some positive polynomial��

The latter choice is naturally coupled with the association of e�cient computation
with polynomialtime algorithms� An event that occurs with noticeable probability
occurs almost always when the experiment is repeated a �feasible� �i�e�� polyno
mial� number of times�

We note that De�nition ��� does not make any requirement regarding the stretch
function
 � NN � except for the generic requirement that
�k� � k for all k�
Needless to say� the larger
 is the more useful is the pseudorandom generator�
In Section ����� we show how to use any pseudorandom generator �even one with
minimal stretch
�k� � k $�� in order to obtain a pseudorandom generator of any
desired polynomial stretch function� But before going so� we rigorously discuss
the �reduction in randomness� o�ered by pseudorandom generators� and provide a
wider perspective on the notion of computational indistinguishability that underlies
De�nition ����

�De�nition
�� requires that the distinguishing gap of certain algorithms must be smaller than
the reciprocal of any positive polynomial for all but �nitely many k�s� Such functions are called
negligible see Footnote �� The notion of negligible probability is robust in the sense that an
event which occurs with negligible probability occurs with negligible probability also when the
experiment is repeated a �feasible� �i�e�� polynomial� number of times�

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS ��

����� The archetypical application

We note that �pseudorandom number generators� appeared with the �rst comput
ers� However� typical implementations use generators that are not pseudorandom
according to De�nition ���� Instead� at best� these generators are shown to pass
some adhoc statistical test �cf�� ���	��� We warn that the fact that a �pseudo
random number generator� passes some statistical tests� does not mean that it
will pass a new test and that it will be good for a future �untested� application�
Furthermore� the approach of subjecting the generator to some adhoc tests fails
to provide general results of the form �for all practical purposes using the out
put of the generator is as good as using truly unbiased coin tosses�� In contrast�
the approach encompassed in De�nition ��� aims at such generality� and in fact is
tailored to obtain it� The notion of computational indistinguishability� which un
derlines De�nition ���� covers all possible e�cient applications guaranteeing that
for all of them pseudorandom sequences are as good as truly random ones� Indeed�
any e�cient randomized algorithm maintains its performance when its internal coin
tosses are substituted by a sequence generated by a pseudorandom generator� This
substitution is spellout next�

Construction ��� �typical application of pseudorandom generators�� Let G be a
pseudorandom generator with stretch function
 �NN � Let A be a probabilistic
algorithm� and ��n� denote a �polynomial� upper bound on its randomness com�
plexity� Denote by A�x� r� the output of A on input x and coin tosses sequence
r � f	� �g�jxj�� Consider the following randomized algorithm� denoted AG�

On input x� set k � k�jxj� to be the smallest integer such that
�k� �
��jxj�� uniformly select s � f	� �gk� and output A�x� r�� where r is the
��jxj��bit long pre�x of G�s��

That is� AG�x� s� � A�x�G��s��� for jsj � k�jxj� � argminif
�i� � ��jxj�g� where
G��s� is the ��jxj��bit long pre�x of G�s��

Thus� using AG instead of A� the randomness complexity is reduced from � to

�� �� while �as we show next� it is infeasible to �nd inputs �i�e�� x
s� on which the
noticeable behavior of AG is di�erent from the one of A� For example� if
�k� � k��
then the randomness complexity is reduced from � to

p
�� We stress that the

pseudorandom generator G is universal� that is� it can be applied to reduce the
randomness complexity of any probabilistic polynomialtime algorithm A�

Proposition ��� Let A� � and G be as in Construction ��� and suppose that
� � N N is ���� Then� for every pair of probabilistic polynomial�time algorithms�
a �nder F and a tester T � every positive polynomial p and all su�ciently long n	sX

x�f���gn
Pr�F ��n� � x� � j(A�T �x� j �

�

p�n�
�����

where (A�T �x�
def
� Pr�T �x�A�x� U�jxj��� � �� � Pr�T �x�AG�x� Ukjxj��� � ��� and

the probabilities are taken over the Um	s as well as over the coin tosses of F and
T �

��� CHAPTER �� PSEUDORANDOM GENERATORS

Algorithm F represents a potential attempt to �nd an input x on which the output
of AG is distinguishable from the output of A� This �attempt� may be benign
as in the case that a user employs algorithm AG on inputs that are generated
by some probabilistic polynomialtime application� However� the attempt may
also be adversarial as in the case that a user employs algorithm AG on inputs
that are provided by a potentially malicious party� The potential tester� denoted
T � represents the potential use of the output of algorithm AG� and captures the
requirement that this output be as good as a corresponding output produced by A�

Thus� T is given x as well as the corresponding output produced either by AG�x�
def
�

A�x� Ukn�� or by A�x� � A�x� U�n��� and it is required that T cannot tell the
di�erence� In the case that A is a probabilistic polynomialtime decision procedure�
this means that it is infeasible to �nd an x on which AG decides incorrectly �i�e��
di�erently than A�� In the case that A is a search procedure for some NP�relation�
it is infeasible to �nd an x on which AG outputs a wrong solution� For details� see
Exercise ����

Proof� The proposition is proven by showing that any triplet �A�F� T � violating
the claim can be converted into an algorithm D that distinguishes the output of G
from the uniform distribution� in contradiction to the hypothesis� The key observa
tion is that (A�T �x� equals Pr�T �x�A�x� U�n��� � ��� Pr�T �x�A�x�G��Ukn���� �
��� where G��s� is the ��n�bit long pre�x of G�s�� Details follow�

As a warmup� consider the following algorithm D� On input r �taken from
either U�kn�� or G�Ukn���� algorithm D �rst obtains x � F ��n�� where n can be
obtained easily from jrj �because � is �� and �n � ��n� is computable via A��
Next� D obtains y � A�x� r��� where r� is the ��jxj�bit long pre�x of r� Finally D
outputs T �x� y�� Note that D is implementable in probabilistic polynomialtime�
and that

D�U�n�� � T �Xn� A�Xn� U�n��� � where Xn
def
� F ��n�

D�G��Ukn��� � T �Xn� A�Xn� G
��Ukn���� � where Xn

def
� F ��n�

It follows that Pr�D�U�kn��� � �� � Pr�D�G�Ukn��� � �� equals E�(A�T �F ��n����
which implies a weaker version of the proposition �referring to E�(A�T �F ��n���
rather than to E�j(A�T �F ��n��j���

In order to prove that E�j(A�T �F ��n��j� �rather than to E�(A�T �F ��n���� is neg
ligible� we need to modify D a little� We start by assuming� towards the contra
diction� that E�j(A�T �F ��n��j� � ��n� for some nonnegligible function �� On input
r �taken from either U�kn�� or G�Ukn���� the modi�ed algorithm D �rst obtains
x � F ��n�� as before� Next� using a sample of size poly�n���n��� it approximates

pU �x�
def
� Pr�T �x�A�x� U�n�� � �� and pG�x�

def
� Pr�T �x�A�x�G��Ukn��� � �� such

that each probability is approximated to within a deviation of ��n��� with negli
gible error probability �say� exp��n��� �Note that� so far� the actions of D only
depend on the length of its input r� which determines n�� If these approximations
indicate that pU �x� � pG�x� �equiv�� that (A�T � 	� then D outputs T �x�A�x� r���
else it outputs �� T �x�A�x� r���� where r� is the ��jxj�bit long pre�x of r and we
assume without loss of generality that the output of T is in f	� �g� The reader may

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS ���

verify that� for every x� it holds that

Pr�D�U�n�� � �jF ��n� � x� � Pr�D�G��Ukn��� � �jF ��n� � x�

� jpU �x�� pG�x�j � ��n�

�
� exp��n��

where the error terms are due to possible errors in the approximation of pU �x� �
pG�x� �which may cause us to �ip its sign and incur an error of �jpU �x� � pG�x�j
in the case that jpU �x� � pG�x�j is smaller than our typical approximation error
for pU �x� � pG�x���

� Thus� Pr�D�U�kn��� � �� � Pr�D�G�Ukn��� � �� is lower
bounded by E�j(A�T �F ��n��j�� ���n����� exp��n� � ��n���� and the proposition
follows�

Conclusion� Analogous arguments are applied whenever one wishes to prove
that an e�cient randomized process �be it an algorithm as above or a multiparty
computation� preserves its behavior when one replaces true randomness �assumed
in the analysis� by pseudorandomness �used in the implementation�� Thus� given a
pseudorandom generator with a large stretch function� one can considerably reduce
the randomness complexity in any e�cient application�

����� Computational Indistinguishability

In this section we spellout �and study� the de�nition of computational indistin
guishability that underlies De�nition ���� The general de�nition of computational
indistinguishability refers to arbitrary probability ensembles� where a probability
ensemble is an in�nite sequence of random variables fZngn�N such that each Zn
ranges over strings of length bounded by a polynomial in n� We say that fXngn�N
and fYngn�N are computationally indistinguishable if for every feasible algorithm A

the di�erence dA�n�
def
� jPr�A�Xn�� �� � Pr�A�Yn� ���j is a negligible function in

n� That is�

De�nition ��	 �computational indistinguishability�� The probability ensembles
fXngn�N and fYngn�N are computationally indistinguishable if for every probabilis�
tic polynomial�time algorithm D� every positive polynomial p� and all su�ciently
large n�

jPr�D�Xn����� Pr�D�Yn����j � �

p�n�
�����

where the probabilities are taken over the relevant distribution �i�e�� either Xn or
Yn� and over the internal coin tosses of algorithm D� The l�h�s� of Eq� ������ when
viewed as a function of n� is often called the distinguishing gap ofD� where fXngn�N
and fYngn�N are understood from the context�

�Speci�cally� the ��n�
� term is due to the maximal typical deviation �i�e�� ��n�
�� of our
approximation of pU �x� � pG�x� and the exp��n� term is due to the rare case that our approx�
imation of pU �x� � pG�x� errs by more than ��n�
�� Note that if jpU�x� � pG�x�j � ��n�
� and
our approximation of pU �x��pG�x� deviates from its true value by less than ��n�
� then we gain
the full gap due to x �i�e�� jpU�x� � pG�x�j��

��� CHAPTER �� PSEUDORANDOM GENERATORS

That is� we can think of D as somebody who wishes to distinguish two distributions
�based on a sample given to it�� and think of the output ��� as D
s verdict that
the sample was drawn according to the �rst distribution� Saying that the two
distributions are computationally indistinguishable means that if D is a feasible
procedure then its verdict is not really meaningful �because the verdict is almost
as often � when the input is drawn from the �rst distribution as when the input
is drawn from the second distribution�� We comment that the absolute value in
Eq� ����� can be omitted without a�ecting the de�nition �see Exercise ����� and we
will often do so without warning�

In De�nition ���� we required that the probability ensembles fG�Uk�gk�N and
fU�k�gk�N be computationally indistinguishable� Indeed� an important special
case of De�nition ��� is when one ensemble is uniform� and in such a case we call
the other ensemble pseudorandom�

Non�triviality of Computational Indistinguishability� Clearly� any two prob
ability ensembles that are statistically close� are computationally indistinguishable�
Needless to say� this is a trivial case of computational indistinguishability� which is
due to information theoretic reasons� In contrast� as noted in Section ���� there ex
ist probability ensembles that are statistically far apart and yet are computationally
indistinguishable �see Exercise ����� However� at least one of the probability en
sembles in Exercise ��� is not polynomialtime constructible� One nontrivial case
of computational indistinguishability in which both ensembles are polynomialtime
constructible is provided by the de�nition of pseudorandom generators �see Exer
cise ����� As we shall see �in Theorem ������ the existence of oneway functions
implies the existence of pseudorandom generators� which in turn implies the exis
tence of polynomial�time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable� We mention that this
su�cient condition is also necessary �see Exercise �����

Indistinguishability by Multiple Samples

The de�nition of computational indistinguishability �i�e�� De�nition ���� refers to
distinguishers that obtain a single sample from one of the two probability ensembles
�i�e�� fXngn�N and fYngn�N�� A more general de�nition refers to distinguishers
that obtain several independent samples from such an ensemble�

De�nition ��� �indistinguishability by multiple samples�� Let s �NN be polynomially�
bounded� Two probability ensembles� fXngn�N and fYngn�N� are computationally
indistinguishable by s��� samples if for every probabilistic polynomial�time algorithm�
D� every positive polynomial p���� and all su�ciently large n	s���Pr hD�X��

n � ���� Xsn��
n ���

i
� Pr

h
D�Y ��

n � ���� Y sn��
n ���

i��� � �

p�n�

�Two probability ensembles� fXngn�N and fYngn�N� are said to be statistically close if for

every positive polynomial p and su�cient large n the variation distance between Xn and Yn �i�e��
�
�

P
z
jPr�Xn � z�� Pr�Yn � z�j� is bounded above by �
p�n��

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS ���

where X
��
n through X

sn��
n and Y

��
n through Y

sn��
n are independent random vari�

ables� with each X
i�
n identical to Xn and each Y

i�
n identical to Yn�

It turns out that in the most interesting cases� computational indistinguishability
by a single sample implies computational indistinguishability by any polynomial
number of samples� One such case is the case of polynomialtime constructible
ensembles� We say that the ensemble fZngn�N is polynomial�time constructible if
there exists a polynomialtime algorithm S so that S��n� and Zn are identically
distributed�

Proposition ��� Suppose that X
def
� fXngn�N and Y

def
� fYngn�N are both polynomial�

time constructible� and s be a polynomial� Then� X and Y are computationally
indistinguishable by a single sample if and only if they are computationally indis�
tinguishable by s��� samples�

Clearly� for every polynomial s� computational indistinguishability by s��� sam
ples implies computational indistinguishability by a single sample� We now prove
that� for e�ciently constructible ensembles� indistinguishability by a single sample
implies indistinguishability by multiple samples� � The proof provides a simple
demonstration of a central proof technique� known as the hybrid technique�

Proof Sketch�	 To prove that a sequence of independently drawn samples of one
distribution is indistinguishable from a sequence of independently drawn samples
from the other distribution� we consider hybrid sequences such that the ith hybrid
consists of i samples taken from the �rst distribution and the rest taken from the
second distribution� The �homogeneous� sequences �which we wish to prove to be
computational indistinguishable� are the extreme hybrids �i�e�� the �rst and last
hybrids considered above�� The key observation is that distinguishing the extreme
hybrids �towards the contradiction hypothesis� means distinguishing neighboring
hybrids� which in turn yields a procedure for distinguishing single samples of the
two original distributions �contradicting the hypothesis that these two distributions
are indistinguishable by a single sample�� Details follow�

Suppose thatD distinguishes s�n� samples of one distribution from s�n� samples
of the other� with a distinguishing gap of ��n�� Denoting the ith hybrid by H i

n

�i�e�� H i
n � �X

��
n � ���� X

i�
n � Y

i���
n � ���� Y

sn��
n ��� this means that D distinguishes the

extreme hybrids �i�e�� H�
n andH

sn�
n � with gap ��n�� ThenD distinguishes a random

pair of neighboring hybrids �i�e�� D distinguishes the ith hybrid from the i $ �st

hybrid� for a randomly selected i� with gap at least ��n��s�n�� The reason being
that

Ei�f������sn���g
�
Pr�D�H i

n� � ��� Pr�D�H i��
n � � ��

�
�

�

s�n�
�
sn���X
i��

�
Pr�D�H i

n� � ��� Pr�D�H i��
n � � ��

�
��� �

�The requirement that both ensembles are polynomial�time constructible is essential see�
Exercise
�	�

�For more details see �
�� Sec� �������

�		 CHAPTER �� PSEUDORANDOM GENERATORS

�
�

s�n�
�
�
Pr�D�H�

n� � ��� Pr�D�Hsn�
n � � ��

�
�

��n�

s�n�

Using D� we obtain a distinguisher D� of single samples� Given a single sample�
algorithm D� selects i � f	� ���� s�n� � �g at random� generates i samples from
the �rst distribution and s�n� � i � � samples from the second distribution� and
invokes D with the s�n�samples sequence obtained when placing the input sample
in location i$ �� Thus� the construction of D� relies on the hypothesis that both
probability ensembles are polynomialtime constructible� In analyzing D�� observe
that when the single sample �i�e�� the input to D�� is taken from the �rst �resp��
second� distribution� algorithmD� invokesD on the i$�st hybrid �resp�� ith hybrid��
Thus� the distinguishing gap of D� is captured by Eq� ��� �� and the claim follows�

The hybrid technique � a digest� The hybrid technique constitutes a special
type of a �reducibility argument� in which the computational indistinguishability
of complex ensembles is proven using the computational indistinguishability of basic
ensembles� The actual reduction is in the other direction� e�ciently distinguishing
the basic ensembles is reduced to e�ciently distinguishing the complex ensembles�
and hybrid distributions are used in the reduction in an essential way� The following
three properties of the construction of the hybrids play an important role in the
argument�

�� The extreme hybrids collide with the complex ensembles� this property is
essential because what we want to prove �i�e�� the indistinguishability of the
complex ensembles� relates to the complex ensembles�

�� Neighboring hybrids are easily related to the basic ensembles� this property
is essential because what we know �i�e�� the indistinguishability of the basic
ensembles� relates to the basic ensembles� We need to be able to translate our
knowledge �i�e�� computational indistinguishability� of the basic ensembles to
knowledge �i�e�� computational indistinguishability� of any pair of neighbor
ing hybrids� Typically� it is required to e�ciently transform strings in the
range of a basic distribution into strings in the range of a hybrid� so that
the transformation maps the �rst basic distribution to one hybrid and the
second basic distribution to the neighboring hybrid� �In the proof of Proposi
tion ���� the hypothesis that both X and Y are polynomialtime constructible
is instrumental for such an e�cient transformation��

�� The number of hybrids is small �i�e�� polynomial�� this property is essential
in order to deduce the computational indistinguishability of extreme hybrids
from the computational indistinguishability of each pair of neighboring hy
brids� Typically� the provable �distinguishability gap� is inversely propor
tional to the number of hybrids� Indeed� see Eq� ��� ��

We remark that in the course of an hybrid argument� a distinguishing algorithm
referring to the complex ensembles is being analyzed and even invoked on arbi
trary hybrids� The reader may be annoyed of the fact that the algorithm �was

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS �	�

not designed to work on such hybrids� �but rather only on the extreme hybrids��
However� an algorithm is an algorithm� once it exists we can invoke it on inputs of
our choice� and analyze its performance on arbitrary input distributions�

����� Amplifying the stretch function

Recall that the de�nition of pseudorandom generators �i�e�� De�nition ���� makes
a minimal requirement regarding their stretch� that is� it is only required that
the length of the output of such generators is longer than their input� Needless
to say� we seek pseudorandom generators with a signi�cant stretch� It turns out
�see Construction ���� that pseudorandom generators of any stretch function and

in particular of stretch
��k�
def
� k $ �� are easily converted into pseudorandom

generators of any desired �polynomially bounded� stretch function�
� �On the
other hand� since pseudorandom generators are required �in De�nition ���� to run
in polynomial time� their stretch must be polynomially bounded�� Thus� when
talking about the existence of pseudorandom generators� as in De�nition ���� we
may ignore the stretch function�

Construction �� Let G� be a pseudorandom generator with stretch function

��k� � k$�� and
 be any polynomially bounded stretch function that is polynomial�
time computable� Let

G�s�
def
� 	�	� � � �	�jsj� �����

where x� � s and xi	i � G��xi���� for i � �� ����
�jsj�� �That is� 	i is the last bit
of G��xi��� and xi is the jsjbit long pre�x of G��xi�����

Needless to say� G is polynomialtime computable and has stretch
� An alternative
construction is considered in Exercise ���	�

σ
i

Hk
i

σ

σ

x

σ

σ

x

i+1

l

l

l
. . .

. . .

σ σ
1 i-1
. . .

Gi

σ

x

i

G11 i+1

i+1

Figure ���� Analysis of stretch ampli�cation � the ith hybrid�

Proposition ��� Let G� and G be as in Construction ���� Then G constitutes a
pseudorandom generator�

�	� CHAPTER �� PSEUDORANDOM GENERATORS

Proof Sketch�
 The proposition is proven using the hybrid technique� presented
and discussed in Section ������ Here �for i � 	� ����
�k�� we consider the hybrid
distributions H i

k� de�ned by

H i
k
def
� U

��
i � g�k��i�U ��

k ��

where U
��
i and U

��
k are independent uniform distributions �over f	� �gi and f	� �gk�

respectively�� and gj�x� denotes the jbit long pre�x of G�x�� �See Figure �����
The extreme hybrids �i�e�� H�

k and Hk
k � correspond to G�Uk� and U�k�� whereas

distinguishability of neighboring hybrids can be worked into distinguishability of
G��Uk� and Uk��� Details follow�

Suppose that algorithm D distinguishes H i
k from H i��

k �with some gap ��k���
Denoting the �rst jxj � � bits �resp�� last bit� of x by F �x� �resp�� L�x��� we may
write gj�s� � �L�G��s��� gj���F �G��s���� and

H i
k � U

��
i � g�k��i�U ��

k �

� �U
��
i � L�G��U

��
k ��� g�k��i����F �G��U

��
k ����

H i��
k � U

���
i�� � g�k��i���U ��

k �

� �U
��
i � L�U

���
k���� g�k��i����F �U

���
k������

Then� incorporating the generation of U
��
i and the evaluation of g�k��i�� into

the distinguisher D� we distinguish �F �G��U
��
k ��� L�G��U

��
k ��� � G��Uk� from

�F �U
���
k���� L�U

���
k���� � Uk��� in contradiction to the pseudorandomness of G��

Speci�cally� on input x � f	� �gk��� we uniformly select r � f	� �gi and output
D�r � L�x� � g�k��i���F �x���� Thus� the probability we output � on input G��Uk�

�resp�� Uk��� equals Pr�D�H i
k� � �� �resp�� Pr�D�H i��

k � � ���� A �nal detail refers
to the question which i to use� As usual �when the hybrid technique is used�� a
random i �in f	� ���� k � �g� will do�

����� Constructions

The constructions surveyed in this section �transform� computational di�culty� in
the form of oneway functions� into generators of pseudorandomness� Recall that
a polynomial�time computable function is called one�way if any e�cient algorithm
can invert it only with negligible success probability �see De�nition ��� and Sec
tion ��� for further discussion�� We will actually use hardcore predicates of such
functions� and refer the reader to their treatment in Section ������ Loosely speak
ing� a polynomial�time computable predicate b is called a hard�core of a function f
if any e�cient algorithm� given f�x�� can guess b�x� only with success probability
that is negligible better than half� Recall that� for any oneway function f � the
innerproduct mod � of x and r is a hardcore of f ��x� r� � �f�x�� r�� Finally� we
get to the construction of pseudorandom generators�

�For more details see �
�� Sec� �������

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS �	�

Proposition ��� �A simple construction of pseudorandom generators�� Let b be
a hard�core predicate of a polynomial�time computable ��� and length�preserving

function f � Then� G�s�
def
� f�s� � b�s� is a pseudorandom generator�

Proof Sketch�� The jsjbit long pre�x of G�s� is uniformly distributed� because f
is �� and onto f	� �gjsj� Hence� the proof boils down to showing that distinguishing
f�s�b�s� from f�s��	� where 	 is a random bit� yields contradiction to the hypothesis
that b is a hardcore of f �i�e�� that b�s� is unpredictable from f�s��� Intuitively�
such a distinguisher also distinguishes f�s�b�s� from f�s� � b�s�� where 	 � �� 	�
and distinguishing f�s� � b�s� from f�s� � b�s� yields an algorithm for predicting b�s�
based on f�s�� Details follow�

We start with any potential distinguisher D� and let

��k�
def
� Pr�D�G�Uk�� � ��� Pr�D�Uk��� � ���

We may assume� without loss of generality� that ��k� is nonnegative �for in�nitely
many k
s�� Using G�Uk� � f�Uk� � b�Uk� and Uk�� � f�Uk� � Z� where Z � b�Uk�
with probability ��� and Z � b�Uk� otherwise� we have

Pr�D�f�Uk�b�Uk�� � ��� Pr�D�f�Uk�b�Uk�� � �� � ���k��

Consider an algorithm A that� on input y� uniformly selects 	 � f	� �g� invokes
D�y	�� and outputs 	 if D�y	� � � and 	 otherwise� Then

Pr�A�f�Uk�� � b�Uk�� � Pr�D�f�Uk� � 	� � �
 	 � b�Uk��

$ Pr�D�f�Uk� � 	� � 	
 	 � b�Uk��

�
�

�
� �Pr�D�f�Uk� � b�Uk�� � ��

$ � � Pr�D�f�Uk� � b�Uk�� � ��
�

which equals �� $ ���k����� The proposition follows�

Combining Theorem ���� Proposition ��� and Construction ���� we obtain the fol
lowing corollary�

Theorem ���� �A su�cient condition for the existence of pseudorandom gener
ators�� If there exists ��� and length�preserving one�way function then� for every
polynomially bounded stretch function
� there exists a pseudorandom generator of
stretch
�

Digest� The key point in the proof of Proposition ��� is showing that the �rather
obvious� unpredictability of the output of G implies its pseudorandomness� The
fact that �next bit� unpredictability and pseudorandomness are equivalent� in gen
eral� is proven explicitly in the alternative proof of Theorem ���	 provided next�

	For more details see �
�� Sec� �������

�	� CHAPTER �� PSEUDORANDOM GENERATORS

An alternative presentation� Let us take a closer look at the pseudorandom
generators obtained by combining Construction ��� and Proposition ���� For a
stretch function
 �NN � a �� oneway function f with a hardcore b� we obtain

G�s�
def
� 	�	� � � �	�jsj� � �����

where x� � s and xi	i � f�xi���b�xi��� for i � �� ����
�jsj�� Denoting by f i�x�
the value of f iterated i times on x �i�e�� f i�x� � f i���f�x�� and f��x� � x�� we
rewrite Eq� ����� as follows

G�s�
def
� b�s� � b�f�s�� � � � b�f �jsj����s�� � �����

The pseudorandomness of G is established in two steps� using the notion of �next
bit� unpredictability� An ensemble fZkgk�N is called unpredictable if any probabilis
tic polynomialtime machine obtaining a �random��� pre�x of Zk fails to predict
the next bit of Zk with probability nonnegligibly higher than ���� Speci�cally� we
need to establish the following two results�

�� A general result asserting that an ensemble is pseudorandom if and only if
it is unpredictable� Recall that an ensemble is pseudorandom if it is compu
tationally indistinguishable from a uniform distribution �over bit strings of
adequate length��

Clearly� pseudorandomness implies polynomialtime unpredictability� but here
we actually need the other direction� which is less obvious� Still� using a
hybrid argument� one can show that �nextbit� unpredictability implies in
distinguishability from the uniform ensemble� For details see Exercise �����

�� A speci�c result asserting that the ensemble fG�Uk�gk�N is unpredictable
from right to left� Equivalently� G��Un� is polynomialtime unpredictable
�from left to right �as usual��� where G��s� � b�f �jsj����s�� � � � b�f�s�� � b�s�
is the reverse of G�s��

Using the fact that f induces a permutation over f	� �gn� observe that the �j$
��bit long pre�x of G��Uk� is distributed identically to b�f j�Uk�� � � � b�f�Uk���
b�Uk�� Thus� an algorithm that predicts the j $ �st bit of G��Un� based on
the jbit long pre�x of G��Un� yields an algorithm that guesses b�Un� based
on f�Un�� For details see Exercise �����

Needless to say� G is a pseudorandom generator if and only if G� is a pseudorandom
generator �see Exercise ������ We mention that Eq� ����� is often referred to as the
Blum�Micali Construction���

�
For simplicity� we de�ne unpredictability as referring to pre�ces of a random length �dis�
tributed uniformly in f�� ���� jZkj � �g��

��Given the popularity of the term� we deviate from our convention of not specifying credits in
the main text� Indeed� this construction originates in �����

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS �	

A general condition for the existence of pseudorandom generators� Re
call that given any oneway �� lengthpreserving function� we can easily construct
a pseudorandom generator� Actually� the �� �and lengthpreserving� requirement
may be dropped� but the currently known construction � for the general case � is
quite complex�

Theorem ���� �On the existence of pseudorandom generators�� Pseudorandom
generators exist if and only if one�way functions exist�

To show that the existence of pseudorandom generators imply the existence of
oneway functions� consider a pseudorandom generator G with stretch function

�k� � �k� For x� y � f	� �gk� de�ne f�x� y� def
� G�x�� and so f is polynomialtime

computable �and lengthpreserving�� It must be that f is oneway� or else one can
distinguish G�Uk� from U�k by trying to invert and checking the result� Inverting f
on its range distribution refers to the distribution G�Uk�� whereas the probability
that U�k has inverse under f is negligible�

The interesting direction of the proof of Theorem ���� is the construction of
pseudorandom generators based on any oneway function� In general �when f may
not be ��� the ensemble f�Uk� may not be pseudorandom� and so Construction ���
�i�e�� G�s� � f�s�b�s�� where b is a hardcore of f� cannot be used directly� One
idea underlying the known construction is to hash f�Uk� to an almost uniform
string of length related to its entropy� using Universal Hash Functions� �This is
done after guaranteeing� that the logarithm of the probability mass of a value of
f�Uk� is typically close to the entropy of f�Uk���

�� But �hashing f�Uk� down to
length comparable to the entropy� means shrinking the length of the output to�
say� k� � k� This foils the entire point of stretching the kbit seed� Thus� a second
idea underlying the construction is to compensate for the k� k� loss by extracting
these many bits from the seed Uk itself� This is done by hashing Uk� and the point
is that the �k�k��bit long hash value does not make the inverting task any easier�
Implementing these ideas turns out to be more di�cult than it seems� and indeed
an alternative construction would be most appreciated�

���� Non	uniformly strong pseudorandom generators

Recall that we said that truly random sequences can be replaced by pseudoran
dom ones without a�ecting any e�cient computation� The speci�c formulation of
this assertion� presented in Proposition ���� refers to randomized algorithms that
take a �primary input� and use a secondary �random input� in their computation�
Proposition ��� asserts that it is infeasible to �nd a primary input for which the
replacement of a truly random secondary input by a pseudorandom one a�ects the
�nal output of the algorithm in a noticeable way� This� however� does not mean
that such primary inputs do not exist �but rather that they are hard to �nd��

��Speci�cally� given an arbitrary one�way function f �� one �rst constructs f by taking a �direct

product� of su�ciently many copies of f �� For example� for x�� ���� xk��� � f�� �gk��� � we let

f�x�� ���� xk����
def
� f ��x��� ���� f ��xk��� ��

�	� CHAPTER �� PSEUDORANDOM GENERATORS

Consequently� Proposition ��� falls short of yielding a �worstcase��� �derandom
ization� of a complexity class such as BPP� To obtain such results� we need a
stronger notion of pseudorandom generators� presented next� Speci�cally� we need
pseudorandom generators that can fool all polynomialsize circuits �cf� x���������
and not merely all probabilistic polynomialtime algorithms���

De�nition ���� �strong pseudorandom generator � fooling circuits�� A determin�
istic polynomial�time algorithm G is called a non�uniformly strong pseudorandom
generator if there exists a stretch function�
 � NN � such that for any family
fCkgk�N of polynomial�size circuits� for any positive polynomial p� and for all suf�
�ciently large k	s

jPr�Ck�G�Uk�� � �� � Pr�Ck�U�k�� � �� j �
�

p�k�

An alternative formulation is obtained by referring to polynomialtime machines
that take advice �Section ������� Using such pseudorandom generators� we can
�derandomize� BPP�

Theorem ���� �Derandomization of BPP�� If there exists non�uniformly strong

pseudorandom generators then BPP is contained in ����Dtime�t��� where t��n� def�
�n

�

�

Proof Sketch� For any S � BPP and any � � 	� we let A denote the decision
procedure for L and G denote a nonuniformly strong pseudorandom generator
stretching n�bit long seeds into poly�n�long sequences �to be used by A as sec
ondary input when processing a primary input of length n�� We thus obtain an
algorithm A� � AG �as in Construction ����� We claim that A and A� may sig
ni�cantly di�er in their �expected probabilistic� decision on at most �nitely many
inputs� because otherwise we can use these inputs �together with A� to derive
a �nonuniform� family of polynomialsize circuits that distinguishes G�Un�� and
Upolyn�� contradicting the the hypothesis regarding G� Speci�cally� an input x on
which A and A� di�er signi�cantly yields a circuit Cx that distinguishes G�Ujxj��
and Upolyjxj�� by letting Cx�r� � A�x� r���� Incorporating the �nitely many �bad�

��Indeed� Proposition
�� yields an average�case derandomization of BPP� In particular� for
every polynomial�time constructible ensemble fXngn�N� every Boolean function f � BPP� and
every � �� there exists a randomized algorithm A� of randomness complexity r��n� � n� such
that the probability that A��Xn� �� f�Xn� is negligible� A corresponding deterministic �exp�r���
time� algorithm A�� can be obtained� as in the proof of Theorem
���� and again the probability
that A���Xn� �� f�Xn� is negligible� where here the probability is taken only over the distribution
of the primary input �represented by Xn�� In contrast� worst�case derandomization� as captured
by the assertion BPP � Dtime��r� �� requires that the probability that A���Xn� �� f�Xn� is zero�

��Needless to say� strong pseudorandom generators in the sense of De�nition
��� satisfy the
basic de�nition of a pseudorandom generator �i�e�� De�nition
��� see Exercise
���� We com�
ment that the underlying notion of computational indistinguishability �by circuits� is strictly
stronger than De�nition
��� and that it is invariant under multiple samples �regardless of the
constructibility of the underlying ensembles� for details� see Exercise
����

��Indeed� in terms of the proof of Proposition
��� the �nder F consists of a non�uniform family
of polynomial�size circuits that print the �problematic� primary inputs that are hard�wired in
them� and the corresponding distinguisher D is thus also non�uniform�

��	� GENERALPURPOSE PSEUDORANDOM GENERATORS �	�

inputs into A�� we derive a probabilistic polynomialtime algorithm that decides S
while using randomness complexity n��

Finally� emulating A� on each of the �n
�

possible random choices �i�e�� seeds
to G� and ruling by majority� we obtain a deterministic algorithm A�� as required�
That is� let A��x� r� denote the output of algorithm A� on input x when using coins
r � f	� �gn�� Then A���x� invokes A��x� r� on every r � f	� �gn� � and outputs � if
and only if the majority of these �n

�

invocations have returned ��

We comment that stronger results regarding derandomization of BPP are pre
sented in Section ����

On constructing non�uniformly strong pseudorandom generators� Non
uniformly strong pseudorandom generators �as in De�nition ����� can be con
structed using any oneway function that is hard to invert by any nonuniform
family of polynomialsize circuits �as in De�nition ����� rather than by probabilis
tic polynomialtime machines� In fact� the construction in this case is simpler than
the one employed in the uniform case �i�e�� the construction underlying the proof
of Theorem ������

����� Other variants and a conceptual discussion

We �rst mention two stronger variants on the de�nition of pseudorandom genera
tors� and conclude this section by highlighting various conceptual issues�

������ Stronger notions

The following two notions represent strengthening of the standard de�nition of
pseudorandom generators �as presented in De�nition ����� Nonuniform versions
of these variants �strengthening De�nition ����� are also of interest�

Fooling stronger distinguishers� One strengthening of De�nition ��� amounts
to explicitly quantifying the resources �and success gaps� of distinguishers� We
chose to bound these quantities as a function of the length of the seed �i�e�� k�� rather
than as a function of the length of the string that is being examined �i�e��
�k��� For

a class of time bounds T �e�g�� T � ft�k� def
� �c

p
kgc�N� and a class of noticeable

functions �e�g�� F � ff�k� def
� ��t�k� � t � T g�� we say that a pseudorandom

generator� G� is �T �F��strong if for any probabilistic algorithm D having running
time bounded by a function in T �applied to k���� for any function f in F � and for
all su�ciently large k
s� it holds that

jPr�D�G�Uk�� � �� � Pr�D�U�k�� � �� j � f�k��

An analogous strengthening may be applied to the de�nition of oneway functions�
Doing so reveals the weakness of the known construction that underlies the proof

��That is� when examining a sequence of length ��k� algorithm D makes at most t�k� steps�
where t � T �

�	� CHAPTER �� PSEUDORANDOM GENERATORS

of Theorem ����� It only implies that for some � � 	 �� � ��� will do�� for any
T and F � the existence of ��T �F�strong oneway functions� implies the existence

of �T ��F ��strong pseudorandom generators� where T � � ft��k� def
� t�k���poly�k� �

t � T g and F � � ff ��k� def
� poly�k� � f�k�� � f � Fg� What we would like to

have is an analogous result with T � � ft��k� def
� t�"�k���poly�k� � t � T g and

F � � ff ��k� def
� poly�k� � f�"�k�� � f � Fg�

Pseudorandom Functions� Pseudorandom generators allow to e�ciently gen
erate long pseudorandom sequences from short random seeds� Pseudorandom func
tions �de�ned in Appendix C����� are even more powerful� They allow e�cient
direct access to a huge pseudorandom sequence� which is not even feasible to scan
bitbybit� Put in other words� pseudorandom functions can replace truly random
functions in any e�cient application �e�g�� most notably in cryptography�� We
mention that pseudorandom functions can be constructed from any pseudorandom
generator �see Appendix C������ and that they found many applications in cryp
tography �see Appendix C����� C� ��� and C������ Pseudorandom functions have
been used to derive negative results in computational learning theory ����� and in
the study of circuit complexity �cf�� Natural Proofs �������

������ Conceptual Discussion

Whoever does not value preoccupation with thoughts� can skip this chapter�

Robert Musil� The Man without Qualities� Chap� ��

We highlight several conceptual aspects of the foregoing computational approach
to randomness� Some of these aspects are common to other instantiation of the
general paradigm �esp�� the one presented in Section �����

Behavioristic versus Ontological� The behavioristic nature of the computa
tional approach to randomness is best demonstrated by confronting this approach
with the KolmogorovChaitin approach to randomness� Loosely speaking� a string
is Kolmogorov�random if its length equals the length of the shortest program pro
ducing it� This shortest program may be considered the �true explanation� to
the phenomenon described by the string� A Kolmogorovrandom string is thus a
string that does not have a substantially simpler �i�e�� shorter� explanation than
itself� Considering the simplest explanation of a phenomenon may be viewed as an
ontological approach� In contrast� considering the e�ect of phenomena on certain
devices �or observations�� as underlying the de�nition of pseudorandomness� is a
behavioristic approach� Furthermore� there exist probability distributions that are
not uniform �and are not even statistically close to a uniform distribution� and nev
ertheless are indistinguishable from a uniform distribution �by any e�cient device��
Thus� distributions that are ontologically very di�erent� are considered equivalent
by the behavioristic point of view taken in the de�nition of computational indis
tinguishability�

���� DERANDOMIZATION OF TIMECOMPLEXITY CLASSES �	�

A relativistic view of randomness� We have de�ned pseudorandomness in
terms of its observer� Speci�cally� we have considered the class of e�cient �i�e��
polynomialtime� observers and de�ned as pseudorandom objects that look ran
dom to any observer in that class� In subsequent sections� we shall consider re
stricted classes of such observers �e�g�� spacebounded polynomialtime observers
and even very restricted observers that merely apply speci�c tests such as linear
tests or hitting tests�� Each such class of observers gives rise to a di�erent notion
of pseudorandomness� Furthermore� the general paradigm �of pseudorandomness�
explicitly aims at distributions that are not uniform and yet are considered as such
from the point of view of certain observers� Thus� our entire approach to pseu
dorandomness is relativistic and subjective �i�e�� depending on the abilities of the
observer��

Randomness and Computational Di�culty� Pseudorandomness and com
putational di�culty play dual roles� The general paradigm of pseudorandomness
relies on the fact that putting computational restrictions on the observer gives
rise to distributions that are not uniform and still cannot be distinguished from
uniform� Thus� the pivot of the entire approach is the computational di�culty of
distinguishing pseudorandom distributions from truly random ones� Furthermore�
many of the constructions of pseudorandom generators rely either on conjectures or
on facts regarding computational di�culty �i�e�� that certain computations that are
hard for certain classes�� For example� oneway functions were used to construct
generalpurpose pseudorandom generators �i�e�� those working in polynomialtime
and fooling all polynomialtime observers�� Analogously� as we shall see in x��������
the fact that parity function is hard for polynomialsize constantdepth circuits can
be used to generate �highly nonuniform� sequences that fool such circuits�

Randomness and Predictability� The connection between pseudorandomness
and unpredictability �by e�cient procedures� plays an important role in the analysis
of several constructions �cf� Sections ���� and ������� We wish to highlight the
intuitive appeal of this connection�

��� Derandomization of time�complexity classes

Let us take a second look at the proof of Theorem ����� A pseudorandom gen
erator was used to shrink the randomness complexity of a BPPalgorithm� and
derandomization was achieved by scanning all possible seeds to the generator� A
key observation regarding this process is that there is no point in insisting that
the pseudorandom generator runs in time polynomial in its seed length� Instead�
it su�ces to require that the generator runs in time exponential in its seed length�
because we are incurring such an overhead anyhow due to the scanning of all pos
sible seeds� Furthermore� in this context� the runningtime of the generator may
be larger than the running time of the algorithm� which means that the genera
tor need only fool distinguishers that take less steps than the generator� These
considerations motivate the following de�nition�

��	 CHAPTER �� PSEUDORANDOM GENERATORS

����� De�nition

Recall that in order to �derandomize� a probabilistic polynomialtime algorithm A�
we �rst obtain a functionally equivalent algorithm AG �as in Construction ���� that
has �signi�cantly� smaller randomness complexity� Algorithm AG has to maintain
A
s inputoutput behavior on all �but �nitely many� inputs� Thus� the set of the
relevant distinguishers �considered in the proof of Theorem ����� is the set of all
possible circuits obtained from A by hardwiring each of the possible inputs� Such a
circuit� denoted Cx� emulates the execution of algorithm A on input x� when using
the circuit
s input as the algorithm
s internal coin tosses �i�e�� A�x� r� � Cx�r���
Furthermore� the size of Cx is quadratic in the runningtime of A on input x� and
the length of the input to Cx is linear in the runningtime of A �on input x���	 Thus�
the size of Cx is quadratic in the length of its own input� and the pseudorandom
generator in use �i�e�� G� needs to fool each such circuit� Recalling that we may
allow the generator to run in exponential time �in the length of its own input��
�
we arrive at the following de�nition�

De�nition ���	 �pseudorandom generator for derandomizing BPtime������� Let

 ��NN be a ��� function� A canonical derandomizer of stretch
 is a deterministic
algorithm G of time complexity upper�bounded by poly��k �
�k�� such that for every
circuit Dk of size
�k�� it holds that

jPr�Dk�G�Uk�� � �� � Pr�Dk�U�k�� � �� j �
�

�
� �����

The circuits Dk are potential distinguishers� which are given inputs of length
�k��
When seeking to derandomize an algorithm A of timecomplexity t� the aforemen
tioned
�k�bit long inputs represent possible randominputs of A when invoked on
a generic �primary� input of length n � t���
�k��� That is� letting Dk�r� � A�x� r�
for some choice of x � f	� �gn� where jrj � t�n� �
�k�� Eq� ����� implies that
AG�x� maintains the majority vote of A�x�� The straightforward deterministic
emulation of AG takes time �k � �poly��k �
�k�� $ t�n��� which is upperbounded

by poly��k �
�k�� � poly���
��tn�� � t�n��� The following proposition is easy to

establish�
��Indeed� we assume that algorithm A is represented as a Turing machine and refer to the

standard emulation of Turing machines by circuits �as underlying the proof of Theorem ������
Thus� the aforementioned circuit Cx has size that is at most quadratic �and in fact even almost�
linear ������ in the running�time of A on input x� which in turn means that Cx has size that is
at most quadratic �or almost linear� in the length of its own input� We note that most sources
use the �ctitious convention by which the circuit size equals the length of its input� which can be
justi�ed by considering a suitably padded input�

��Actually� in De�nition
��� we allow the generator to run in time poly��k��k��� rather than
poly��k�� This is done in order not to rule out trivially generators of super�exponential stretch
�i�e�� ��k� � ���k��� However �see Exercise
����� the condition in Eq� �
�	� does not allow
for super�exponential stretch� and so in retrospect the two formulations are equivalent �because
poly��k��k�� � poly��k� for ��k� � �O�k���

�	Fixing a model of computation� we denote by BPtime�t� the class of decision problems that are
solvable by a randomized algorithm of time complexity t that has two�sided error �
�� Using � � as
the �threshold distinguishing gap� �in Eq� �
�	�� guarantees that if Pr�Dk�U��k�� � �� � �
� �resp��
Pr�Dk�U��k�� � �� � �
�� then Pr�Dk�G�Uk�� � �� �
� �resp�� Pr�Dk�G�Uk�� � �� � �
��� Note

that jG�s�j � ��jsj� is implied by Eq� �
�	��

���� DERANDOMIZATION OF TIMECOMPLEXITY CLASSES ���

Proposition ���� If there exists a canonical derandomizer of stretch
 then� for
every time�constructible t �� NN � it holds that BPtime�t� � Dtime�T �� where

T �n� � poly���
��tn�� � t�n���

Proof Sketch� Just follow the proof of Theorem ����� noting that the ade
quate value of k �i�e�� k �
���t�n��� can be determined easily �e�g�� by invok
ing G��i� for i � �� ���� k� using the fact that
 � NN is ���� Note that the
complexity of the deterministic procedure is dominated by the �k invocations of
AG�x� s� � A�x�G�s��� where s � f	� �g���tjxj��� and each of these invocations

takes time poly��k �
�k�� $ t�n� � poly���
��tn�� � t�n��� Using the hypothesis

jPr�A�x� U�k������ �����j � ���� it follows that the majority vote of AG equals �
�equiv�� Pr�AG�x� Uk� � �� � ���� if and only if Pr�A�x� U�k�� � �� � ��� �equiv��
Pr�A�x� U�k����� � ����� Indeed� the implication is due to Eq� ������ when applied
to the circuit Cx�r� � A�x� r� �which has size at most jrj���

The goal� In light of Proposition ��� � we seek canonical derandomizers with
stretch that is as big as possible� The stretch cannot be superexponential �i�e�� it
most hold that
�k� � O��k��� because there exists a circuit of size O��k �
�k�� that
violates Eq� ����� �see Exercise ����� whereas for
�k� � ���k� it holds that O��k �

�k�� �
�k��� Thus� our goal is to construct canonical derandomizer with stretch

�k� � ��k�� Such canonical derandomizers will allow for a �full derandomization
of BPP��
Theorem ���� If there exists a canonical derandomizer of stretch
�k� � ��k��
then BPP � P�
Proof� Using Proposition ��� � we get BPtime�t� � Dtime�T �� where T �n� �

poly���
��tn�� � t�n�� � poly�t�n���

Re�ections� We stress that a canonical derandomizer G was de�ned in a way
that allows it to have time complexity tG that is larger than the size of the circuits
that it fools �i�e�� tG�k� �
�k�� is allowed�� Furthermore� tG�k� � �k was also
allowed� Thus� if indeed tG�k� � ��k� �as is the case in Section ������ then G�Uk�
can be distinguished from U�k� in time �k � tG�k� � poly�tG�k�� by trying all
possible seeds��� In contrast� for a generalpurpose pseudorandom generator G �as
discussed in Section ���� it holds that tG�k� � poly�k�� while for every polynomial
p it holds that G�Uk� is indistinguishable from U�k� in time p�tG�k���

����� Construction

The fact that canonical derandomizers are allowed to be more complex than the
corresponding distinguisher makes some of the techniques of Section ��� inapplica
ble in the current context� For example� the stretch function cannot be ampli�ed

�
Note that this does not contradict the hypothesis that G is a canonical derandomizer because
in this case �k � tG�k� ��k���

��� CHAPTER �� PSEUDORANDOM GENERATORS

as in Section ������ On the other hand� the techniques developed below are in
applicable to Section ���� Amazingly enough� the pseudorandomness �or rather
the nextbit unpredictability� of the following generators hold even when the �ob
server� is given the seed itself� �This fact capitalizes on the fact that the observer
s
timecomplexity does not allow for running the generator��

As in Section ���� � the construction presented next transforms computational
di�culty into pseudorandomness� except that here both computational di�culty
and pseudorandomness are of a somewhat di�erent form than in Section ���� �
Speci�cally� here we use Boolean predicates that are computable in exponential
time but are T inapproximable for some exponential function T �see De�nition ���
in Section ����� That is� for constants c� � � 	 and all but �nitely many m� the
�residual� predicate f � f	� �gm f	� �g is computable in time �cm but for any
circuit C of size ��m it holds that Pr�C�Um� � f�Um�� � �

� $ ���m� �Needless to
say� � � c�� Recall that such predicates exist under the assumption that E has
�almosteverywhere� exponential circuit complexity �see Theorem ���� for an exact
formulation�� With these preliminaries� we turn to the construction of canonical
derandomizers with exponential stretch�

Construction ��� �The NisanWigderson Construction���� Let f � f	� �gm
f	� �g and S�� ���� S� be a sequence of m�subsets of f�� ���� kg� Then� for s � f	� �gk�
we let

G�s�
def
� f�sS�� � � � f�sS�� ����	�

where sS denotes the projection of s on the bit locations in S � f�� ���� jsjg� that is�
for s � 	� � � �	k and S � fi�� ���� img� we have sS � 	i� � � �	im �

Letting k vary and
�m �NN be functions of k� we wish G to be a canonical de
randomizer and
�k� � ��k�� One �obvious� necessary condition for this to happen
is that the sets must be distinct� and hence m�k� � "�k�� consequently� f must
be computable in exponentialtime� Furthermore� the sequence of sets S�� ���� S�k�
must be constructible in poly��k� time� Intuitively� it is desirable to use a set
system with small pairwise intersections �because this restricts the overlap among
the various inputs to which f is applied�� and a function f that is strongly inap
proximable �i�e�� T inapproximable for some exponential function T �� Interestingly�
these conditions are essentially su�cient�

Theorem ���� �analysis of Construction ������ Let �� �� �� � � 	 be constants
satisfying � � ������ $ �� and
�m� T ��NN satisfy
�k� � ��k� m�k� � �k� and
T �n� � ��n� Suppose that the following two conditions hold�

�� There exists an exponential�time computable function f �f	� �g�f	� �g that
is T �inapproximable� �See De�nition �����

� There exists an exponential�time computable function S � N�N �N such
that

��Given the popularity of the term� we deviate from our convention of not specifying credits in
the main text� This construction originates in ����� ��	��

���� DERANDOMIZATION OF TIMECOMPLEXITY CLASSES ���

a� For every k and i � �� ����
�k�� it holds that S�k� i� � �k� and jS�k� i�j �
m�k��

b� For every k and i �� j� it holds that jS�k� i� � S�k� j�j � � �m�k��

Then using G as de�ned in Construction ����� with Si � S�k� i�� yields a canonical
derandomizer with stretch
�

Before proving Theorem ���� we note that� for any � � 	� a function S as in Condi
tion � does exist with some m�k� � "�k� and
�k� � ��k�� see Exercise ����� Com
bining such S with Theorems ���� and ����� we obtain a canonical derandomizer
with exponential stretch based on the assumption that E has �almosteverywhere�
exponential circuit complexity��� Combining this with Theorem ����� we get the
�rst part of the following theorem�

Theorem ���� �Derandomization of BPP� revisited��

�� Suppose that there exists a set S � E having almost�everywhere exponential
circuit complexity �i�e�� there exists a constant � � 	 such that� for all but
�nitely many m
s� any circuit that correctly decides S on f	� �gm has size at
least ��m�� Then� BPP � P�

� Suppose that for every polynomial p there exists a set S � E having circuit
complexity that is almost�everywhere greater than p� Then BPP is contained

in ����Dtime�t��� where t��n� def� �n
�

�

Part � is proved �in Exercise ����� by using a generalization of Theorem ����� which
in turn is provided in Exercise ���	� We note that Part � of Theorem ���� supersedes
Theorem ���� �see Exercise ������ As in the case of general purpose pseudorandom
generators� the hardness hypothesis made in each part of Theorem ���� is necessary
for the existence of a corresponding canonical derandomizer �see Exercise ������
The two parts of Theorem ���� exhibit two extreme cases� Part � �often referred
to as the �high end�� assumes an extremely strong circuit lowerbound and yields
�full derandomization� �i�e�� BPP � P�� whereas Part � �often referred to as the
�low end�� assumes an extremely weak circuit lowerbound and yields weak but
meaningful derandomization� Intermediate results �relying on intermediate lower
bound assumptions� can be obtained analogous to Exercise ����� but tight tradeo�s
are obtained di�erently �cf�� �������

Proof of Theorem ����� Using the time complexity upperbounds on f and S�
it follows that G can be computed in exponential time� Our focus is on showing that
fG�Uk�g cannot be distinguished from fU�k�g by circuits of size
�k��� speci�cally�
that G satis�es Eq� ������ In fact� we will prove that this holds for G��s� � s �G�s��
that is� G fools such circuits even if they are given the seed as auxiliary input�

��Speci�cally� starting with a function having circuit complexity at least exp��
m�� we apply
Theorem ���	 and obtain a T �inapproximable predicate for T �m� � ��m� where the constant
� � ��� �
� depends on the constant �
� Next� we set � � �
� and invoke Exercise
���� which
determines �� � � such that ��k� � ��k and m�k� � �k� Note that �by possibly decreasing ��
we get ���
�� � � � ��

��� CHAPTER �� PSEUDORANDOM GENERATORS

�Indeed� these circuits are smaller than the running time of G� and so they cannot
just evaluate G on the given seed��

We start by presenting the intuition underlying the proof� As a warmup sup
pose that the sets �i�e�� S�k� i�
s� used in the construction are disjoint� In such a
case �which is indeed impossible because k �
�k� �m�k��� the pseudorandomness of
G�Uk� would follow easily from the inapproximability of f � because in this case G
consists of applying f to nonoverlapping parts of the seed �see Exercise ������ In
the actual construction being analyzed here� the sets �i�e�� S�k� i�
s� are not disjoint
but have relatively small pairwise intersection� which means that G applies f on
parts of the seed that have relatively small overlap� Intuitively� such small overlaps
guarantee that the values of f on the corresponding inputs are �computationally
independent� �i�e�� having the value of f at some inputs x�� ���� xi does not help in
approximating the value of f at another input xi���� This intuition will be backed
by showing that� when �xing all bits that do not appear in the target input �i�e��
in xi���� the former values �i�e�� f�x��� ���� f�xi�� can be computed at a relatively
small computational cost� With this intuition in mind� we now turn to the actual
proof�

The proof that G� fools circuits of size
�k�� utilizes the relation between pseu
dorandomness and unpredictability� Speci�cally� as detailed in Exercise ����� any
circuit that distinguishes G��Uk� from U�k��k with gap ���� yields a nextbit pre
dictor of similar size that succeeds in predicting the next bit with probability at
least �

� $ �
���k� �

�
� $ �

	�k� � where the factor of
��k� �
�k� $ k � �� $ o����
�k�

is introduced by the hybrid technique �cf� Eq� ��� ��� Furthermore� given the non
uniform setting of the current proof� we may �x a bit location i$� for prediction�
rather than analyzing the prediction at a random bit location� Indeed� i � k must
hold� because the �rst k bits of G��Uk� are uniformly distributed� In the rest of
the proof� we transform such a predictor into a circuit that approximates f better
than allowed by the hypothesis �regarding the inapproximability of f��

Assuming that a small circuit C � can predict the i$�st bit of G��Uk�� when given
the previous i bits� we construct a small circuit C for approximating f�Umk�� on
input Umk�� The point is that the i$�st bit of G��s� equals f�sSk�j����� where j �
i� k � 	� and so C � approximates f�sSk�j���� based on s� f�sSk����� ���� f�sSk�j���

where s � f	� �gk is uniformly distributed� Note that this is the type of thing that
we are after� except that the circuit we seek may only get sSk�j��� as input�

The �rst observation is that C � maintains its advantage when we �x the best
choice for the bits of s that are not at bit locations Sj�� � S�k� j $ �� �i�e�� the
bits s�k�nSj���� That is� by an averaging argument� it holds that

max
s��f���gk�m�k�

fPrs�f���gk �C ��s� f�sS��� ���� f�sSj �� � f�sSj��� j s�k�nSj�� � s��g

� p� def
� Prs�f���gk �C

��s� f�sS��� ���� f�sSj �� � f�sSj�����

Recall that by the hypothesis p� � �
�$

�
	�k� � Hardwiring the �xed string s� into C ��

and letting ��x� denote the �unique� string s satisfying sSj�� � x and s�k�nSj�� � s��
we obtain a circuit C �� that satis�es

Prx�f���gm �C ���x� f���x�S� �� ���� f���x�Sj �� � f�x�� � p��

���� DERANDOMIZATION OF TIMECOMPLEXITY CLASSES ��

The circuit C �� is almost what we seek� The only problem is that C �� gets as input
not only x� but also f���x�S��� ���� f���x�Sj �� whereas we seek an approximator of
f�x� that only gets x�

The key observation is that each of the �missing� values f���x�S� �� ���� f���x�Sj �
depend only on a relatively small number of the bits of x� This fact is due to the
hypothesis that jSt�Sj��j � � �m�k� for t � �� ���� j� which means that ��x�St is an

m�k�bit long string in which mt
def
� jSt � Sj��j bits are projected from x and the

rest are projected from the �xed string s�� Thus� given x� the value f���x�St� can

be computed by a �trivial� circuit of size eO��mt�� that is� by a circuit implementing
a lookup table on mt bits� Using all these circuits �together with C ���� we will
obtain the desired approximator of f � Details follow�

We obtain the desired circuit� denoted C� that T approximates f as follows�
The circuit C depends on the index j and the string s� that are �xed as in the
foregoing analysis� On input x � f	� �gm� the circuit C computes the values
f���x�S� �� ���� f���x�Sj �� invokes C

�� on input x and these values� and outputs the
answer as a guess for f�x�� That is�

C�x� � C ���x� f���x�S� �� ���� f���x�Sj �� � C ����x�� f���x�S� �� ���� f���x�Sj ���

By the foregoing analysis� Prx�C�x� � f�x�� � p� � �
� $ �

T m� � where the second

inequality is due to T �m�k�� � ��mk� � ��k � ���k � �
�k�� The size of C

is upperbounded by
�k�� $
�k� � eO����mk�� � eO�
�k�� � ���mk�� � T �m�k���

where the second inequality is due to T �m�k�� � ��mk� � eO�����k���mk�� and

�k� � ��k� Thus� we derived a contradiction to the hypothesis that f is T
inapproximable�

����� Variants and a conceptual discussion

We start this section by discussing a general framework that underlies Construc
tion ���� and end it with a conceptual discussion regarding derandomization�

������� Construction ��� as a general framework

The Nisan�Wigderson Construction �i�e�� Construction ����� is actually a general
framework� which can be instantiated in various ways� Some of these instantiations
are brie�y reviewed next� and are based on an abstraction of the construction as
well as of its analysis�

We �rst note that the generator described in Construction ���� consists of a
generic algorithmic scheme that can be instantiated with any predicate f � Further
more� this algorithmic scheme� denoted G� is actually an oracle machine that makes
�nonadaptive� queries to the function f � and thus the combination may be writ
ten as Gf � Likewise� the proof of pseudorandomness of Gf yields a �nonuniform�
circuit C that given oracle access to any distinguisher yields an approximation
procedure for f � The circuit C does depends on f �but in a restricted way�� and
uses the distinguisher as a blackbox� Speci�cally� C contains lookup tables for

��� CHAPTER �� PSEUDORANDOM GENERATORS

computing functions obtained from f by �xing some of the input bits �i�e�� lookup
tables for the functions f�����St �
s��

Derandomization of constant�depth circuits� In this case we instantiate
Construction ���� using the parity function in the role of the inapproximable
predicate f � noting that parity is indeed inapproximable by �small� constant
depth circuits� With an adequate setting of parameters we obtain pseudorandom
generators with stretch
�k� � exp�k��O��� that fool �small� constantdepth cir
cuits �see ������� The analysis of this construction proceeds very much like the proof
of Theorem ����� One important observation is that incorporating the �straightfor
ward� circuits that compute f���x�St � into the distinguishing circuit only increases
its depth by two levels� Speci�cally� the circuit C uses depthtwo circuits that com
pute the values f���x�St�
s� and then obtains a prediction of f�x� by using these
values in its �single� invocation of the �given� distinguisher�

The resulting pseudorandom generator� which use a seed of polylogarithmic
length �equiv��
�k� � exp�k��O����� can be used for derandomizing RAC� �i�e��
random AC��� analogously to Theorem ����� In other words� we can determin�
istically approximate� in quasipolynomialtime and upto an additive error� the
fraction of inputs that satisfy a given �constantdepth� circuit� Speci�cally� for any
constant d� given a depthd circuit C� we can deterministically approximate the
fraction of the inputs that satisfy C �i�e�� cause C to evaluate to �� to within any
additive constant error�� in time exp�poly�log jCj��� where the polynomial depends
on d� Providing a deterministic polynomialtime approximation� even in the case
d � � �i�e�� CNF�DNF formulae� is an open problem�

Derandomization of probabilistic proof systems� A di�erent �and more
surprising� instantiation of Construction ���� utilizes predicates that are inapprox
imable by small circuits having oracle access to NP � The result is a pseudorandom
generator robust against twomove publiccoin interactive proofs �which are as pow
erful as constantround interactive proofs �see x���������� The key observation is
that the analysis of Construction ���� provides a blackbox procedure for approx
imating the underlying predicate when given oracle access to a distinguisher �and
this procedure is valid also in case the distinguisher is a nondeterministic machine��
Thus� under suitably strong �and yet plausible� assumptions� constantround inter
active proofs collapse to NP � We note that a stronger result� which deviates from
the foregoing framework� has been subsequently obtained �cf� ���	���

Construction of randomness extractors� An even more radical instantiation
of Construction ���� was used to obtain explicit constructions of randomness ex
tractors �see Appendix D���� In this case� the predicate f is viewed as �an error

��We mention that in the special case of approximating the number of satisfying assignment
of a DNF formula� relative error approximations can be obtained by employing a deterministic
reduction to the case of additive constant error �see x��������� Thus� using a pseudorandom gen�
erator that fools DNF formulae� we can deterministically obtain a relative �rather than additive�
error approximation to the number of satisfying assignment in a given DNF formula�

���� SPACEBOUNDED DISTINGUISHERS ���

correcting encoding of� a somewhat random function� and the construction makes
sense because it refers to f in a blackbox manner� In the analysis we rely on the
fact that f can be approximated by combining relatively little information �regard
ing f� with �blackbox access to� a distinguisher for Gf � For further details see
Appendix D���

������� A conceptual discussion regarding derandomization

Part � of Theorem ���� is often summarized by saying that �under some reasonable
assumptions� randomness is useless� We believe that this interpretation is wrong
even within the restricted context of traditional complexity classes� and is bluntly
wrong if taken outside of the latter context� Let us elaborate�

Taking a closer look at the proof of Theorem ���� �which underlies Theo
rem ������ we note that a randomized algorithm A of time complexity t is emulated
by a deterministic algorithm A� of time complexity t� � poly�t�� Further noting
that A� � AG invokes A �as well as the canonical derandomizer G� for a number of
times that must exceed t� we infer that t� � t� must hold� Thus� derandomization
via �Part � of� Theorem ���� is not really for free�

More importantly� we note that derandomization is not possible in various dis
tributed settings� when both parties may protect their con�icting interests by em
ploying randomization� Notable examples include most cryptographic primitives
�e�g�� encryption� as well as most types of probabilistic proof systems �e�g�� PCP��
For further discussion see Chapter � and Appendix C� Additional settings where
randomness makes a di�erence �either between impossibility and possibility or be
tween formidable and a�ordable cost� include distributed computing �see ������
communication complexity �see ������� parallel architectures �see ��� ��� sampling
�see Appendix D���� and property testing �see Section �	������

��� Space�Bounded Distinguishers

In the previous two sections we have considered generators that output sequences
that look random to any e�cient procedures� where the latter were modeled by
timebounded computations� Speci�cally� in Section ��� we considered indistin
guishability by polynomialtime procedures� A �ner classi�cation of timebounded
procedures is obtained by considering their spacecomplexity �i�e�� restricting the
spacecomplexity of timebounded computations�� This leads to the notion of
pseudorandom generators that fool spacebounded distinguishers� Interestingly�
in contrast to the notions of pseudorandom generators that were considered in
Sections ��� and ���� the existence of pseudorandom generators that fool space
bounded distinguishers can be established without relying on computational as
sumptions�

��� CHAPTER �� PSEUDORANDOM GENERATORS

����� De�nitional issues

Unfortunately� natural notions of spacebounded computations are quite subtle�
especially when nondeterminism or randomization are concerned �see Sections ��
and ������ respectively�� Two major issues are time bounds and access to the random
tape�

�� Time bound� The question is whether or not one restricts the spacebounded
machines to run in timecomplexity that is at most exponential in the space
complexity��� Recall that such an upperbound follows automatically in the
deterministic case �Theorem ���� and can be assumed without loss of general
ity in the nondeterministic case �see Section ������ but it does not necessarily
hold in the randomized case �see x���������
As in Section ������ we do postulate the aforementioned timebound�

�� Access to the random tape� The question is whether whether the space
bounded machine has oneway or twoway access to the randomness tape�
�Allowing twoway access means that the randomness is recorded for free�
that is� without being accounted for in the spacebound� see discussions in
Sections �� and ������� Recall that oneway access to the randomness tape
corresponds to the natural model of online randomized machine �which de
termines its moves based on its internal coin tosses��

Again� as in Section ������ we consider oneway access���

In accordance with the resulting de�nition of randomized spacebounded compu
tation� we consider spacebounded distinguishers that have a oneway access to the
input sequence that they examine� Since all known constructions remain valid also
when these distinguishers are nonuniform �and since nonuniform distinguishers
arise anyhow in derandomization�� we use this stronger notion here���

In the context of nonuniform algorithms that have oneway access to their
input� we may assume� without loss of generality� that the runningtime of such
algorithms equals the length of their input� denoted
 �
�k�� Thus� we de�ne a
non�uniform machine of space s �NN as a family� fDkgk�N� of directed layered
graphs such that Dk has at most �sk� vertices at each layer� and labeled directed
edges from each layer to the next layer��	 Each vertex has two �possibly parallel�

��Alternatively� one can ask whether these machines must always halt or only halt with prob�
ability approaching �� It can be shown that the only way to ensure �absolute halting� is to have
time�complexity that is at most exponential in the space�complexity�

��We note that the fact that we restrict our attention to one�way access is instrumental in
obtaining space�robust generators without making intractability assumptions� Analogous gener�
ators for two�way space�bounded computations would imply hardness results of a breakthrough
nature in the area�

��We note that these non�uniform space�bounded distinguishers correspond to branching pro�
grams of width that is exponential in the space�bound� Furthermore� these branching programs
read their input in a �xed predetermined order �which is determined by the designer of the
generator��

��Note that the space bound of the machine is stated in terms of a parameter k� rather than in
terms of the length of its input� In the sequel this parameter will be set to the length of a seed to
a pseudorandom generator� We warn that our presentation here is indeed non�standard for this
area� To compensate for this� we will also state the consequences in the standard format�

���� SPACEBOUNDED DISTINGUISHERS ���

outgoing directed edges� one labeled 	 and the other labeled �� and there is a single
vertex in the �rst layer of Dk� The result of the computation of such a machine�
on an input of adequate length �i�e�� length
 where Dk has
$� layers�� is de�ned
as the vertex �in last layer� reached when following the sequence of edges that are
labeled by the corresponding bits of the input� That is� on input x � x� � � �x�� for
i � �� ����
� we move from the vertex reached in the ith layer by using the outgoing
edge labeled xi �thus reaching a vertex in the i$�st layer�� Using a �xed partition
of the vertices of the last layer� this de�nes a natural notion of decision �by Dk��
that is� we write Dk�x� � � if on input x machine Dk reached a vertex that belongs
to the �rst part of the aforementioned partition�

De�nition ���� �Indistinguishability by spacebounded machines��

� For a non�uniform machine� fDkgk�N� and two probability ensembles� fXkgk�N
and fYkgk�N� the function d �N �	� �� de�ned as

d�k�
def
� jPr�Dk�Xk� � ��� Pr�Dk�Yk� � ��j

is called the distinguishability�gap of fDkg between the two ensembles�

� Let s � NN and � � N �	� ��� A probability ensemble� fXkgk�N� is
called �s� ���pseudorandom if for any �non�uniform� machine of space s���� the
distinguishability�gap of the machine between fXkgk�N and the corresponding
uniform ensemble �i�e�� fUjXkjgk�N� is at most �����

� A deterministic algorithm G of stretch function
 is called a �s� ���pseudorandom
generator if the ensemble fG�Uk�gk�N is �s� ���pseudorandom� That is� every
non�uniform machine of space s��� has a distinguishing�gap of at most ����
between fG�Uk�gk�N and fU�k�gk�N�

Thus� when using a random seed of length k� a �s� ��pseudorandom generator
outputs a sequence of length
�k� that looks random to observers having space
s�k�� �Setting m � s�k�� we have k � s���m� and
�k� �
�s���m����

����� Two Constructions

In contrast to the case of pseudorandom generators that fool timebounded distin
guishers� pseudorandom generators that fool spacebounded distinguishers can be
established without relying on any computational assumption� The following two
constructions exhibit two extreme cases of a general tradeo� between the space
bound of the potential distinguisher and the stretch function of the generator��

We start with an attempt to maximize the stretch�

Theorem ���� �exponential stretch with quadratic length seed�� For every space
constructible function s �NN � there exists a �s� ��s��pseudorandom generator of

��These two results have been �interpolated� in ����� There exists a parameterized family of
�space fooling� pseudorandom generators that includes both results as extreme special cases�

��	 CHAPTER �� PSEUDORANDOM GENERATORS

stretch function
�k� � �k�Osk�� � �sk�� Furthermore� the generator works in
space that is linear in the length of the seed� and in time that is linear in the stretch
function�

In other words� for every t � m� we have a generator that takes a random seed
of length k � O�t �m� and produce a sequence of length �t that looks random to
any �nonuniform� machine of space m �up to a distinguishinggap of ��m�� In
particular� using a random seed of length k � O�m��� one can produce a sequence
of length �m that looks random to any �nonuniform� machine of space m� Thus�
one may replace random sequences used by any space�bounded computation� by
sequences that are e�ciently generated from random seeds of length quadratic in
the space bound� The common instantiation is for logspace machines� In x��������
we apply Theorem ���� �and its underlying ideas� for the derandomization of space
complexity classes such as BPL �i�e�� the logspace analogue of BPP��

We now turn to the case where one wishes to maximize the space bound of po
tential distinguishers� We warn that Theorem ���� only guarantees a subexponen
tial distinguishing gap �rather than the exponential distinguishing gap guaranteed
in Theorem ������ This warning is voiced because failing to recall this limitation
has led to errors in the past�

Theorem ���� �polynomial stretch with linear length seed�� For any polynomial
p and for some s�k� � k�O���� there exists a �s� ��

p
s��pseudorandom genera�

tor of stretch function p� Furthermore� the generator works in linear�space and
polynomial�time �both stated in terms of the length of the seed��

In other words� we have a generator that takes a random seed of length k �
O�m� and produce a sequence of length poly�m� that looks random to any �non
uniform� machine of space m� Thus� one may convert any randomized computation
utilizing polynomial�time and linear�space into a functionally equivalent randomized
computation of similar time and space complexities that uses only a linear number
of coin tosses�

��	���� Overviews of the proofs of Theorems ���� and ����

In both cases� we start the proof by considering a generic spacebounded distin
guisher and show that the input distribution that this distinguisher examines can
be modi�ed �from the uniform distribution into a pseudorandom one� without the
distinguisher noticing the di�erence� This modi�cation �or rather a sequence of
modi�cations� yields a construction of a pseudorandom generator� which is only
spelledout at the end of argument�

Overview of the proof of Theorem ������� The main technical tool used in
this proof is the �mixing property� of pairwise independent hash functions �see Ap
pendix D���� A family of functions Hn� which map f	� �gn to itself� is called mixing

�	A detailed proof appears in ������

���� SPACEBOUNDED DISTINGUISHERS ���

if for every pair of subsets A�B � f	� �gn for all but very few �i�e�� exp��"�n��
fraction� of the functions h � Hn� it holds that

Pr�Un � A
 h�Un� � B� ' jAj
�n

� jBj
�n

������

where the approximation is up to an additive term of exp��"�n��� �See the gener
alization of Lemma D��� which implies that exp��"�n�� can be set to ��n����

For any s�k�space distinguisher Dk as in De�nition ���	� we consider an aux

iliary �distinguisher� D�
k that is obtained by �contracting� every block of n

def
�

+�s�k�� consecutive blocks layers in Dk� yielding a directed layered graph with

� def�
�k��n � �sk� layers �and �sk� vertices in each layer�� Speci�cally� in D�
k�

each vertex has a directed edge going to each vertex of the next layer� and these
edges are labeled with �possibly empty� subsets of f	� �gn that correspond to the
set of corresponding npaths in Dk �and in particular form a partition of f	� �gn��
The graph D�

k simulates Dk in the obvious manner� that is� the computation of D�
k

on an input of length
�k� �
� �n is de�ned by breaking the input into consecutive
blocks of length n and following the path of edges that are labeled by the subsets
containing the corresponding block� Now� for each pair of neighboring vertices� u
and v �in layers i and i$�� respectively�� consider the label� Lu�v � f	� �gn� of the
edge going from u to v� Similarly� for a vertex w at layer i $ �� we consider the
label L�v�w of the edge from v to w� By Eq� ������� for all but very few of h � Hn�
it holds that

Pr�Un � Lu�v
 h�Un� � L�v�w� ' Pr�Un � Lu�v� � Pr�Un � L�v�w�

where �very few� and ' are as in Eq� ������� Thus� for all but exp��"�n�� fraction
of the choices of h � Hn� replacing the coins in the second block �i�e�� used in
transitions from layer i $ � to layer i $ �� with the value of h applied to the
outcomes of the coins used in the �rst block �i�e�� in transitions from layer i to
i $ ��� approximately maintains the probability that D�

k moves from u to w via
v� Using a union bound �on all triplets �u� v� w� as in the foregoing�� for all but
��sk� �
� � exp��"�n�� fraction of the choices of h � Hn� the foregoing replacement
approximately maintains the probability that D�

k moves through any speci�c �
edge path of D�

k� Using
� � �sk� and a suitable choice of n � +�s�k��� we have
��sk� �
� � exp��"�n�� � exp��"�n��� and thus all but �few� functions h � Hn

are good for approximating all these transition probabilities� �We stress that the
same h can be used in all these approximations�� Thus� at the cost of extra jhj
random bits� we can reduce the number of true random coins used in transitions on
D�
k by a factor of �� without signi�cantly a�ecting the �nal decision of D�

k �where
again we use the fact that
� � exp��"�n�� � exp��"�n��� which implies that the
approximation errors do not accumulate to too much�� In other words� at the cost
of extra jhj random bits� we can e�ectively contract the distinguisher to half its
length� That is� �xing a good h �i�e�� one that provides a good approximation to
the transition probability over all ��sk� �
� �edge paths�� we can replace the �edge
paths in D�

k by edges in a new distinguisher D��
k such that r is in the set that labels

��� CHAPTER �� PSEUDORANDOM GENERATORS

1

0 1

0 1 0 1

0 0 0 0 1111

α

α0 α1

α10α00 α
01

α11

000
α

001
α 010

α
011

α α100 α
101

α110 α111

application(possible)

h
(3)

(2)
hof

application
(possible)

(1)
hof

(possible) application of

The output of the generator �on seed �� h��� ���� ht�� consists of the concate
nation of the strings denoted ��t � ���� ��t � appearing in the leaves of the tree�
For every x � f	� �g� it holds that �x� � �x and �x� � ht�jxj���x�� In par
ticular� for t � �� we have ���� � h�������� which equals h���h������� �
h���h������� where � � ���

Figure ���� The �rst generator that �fools� spacebounded machines�

the edge u�w in D��
k if and only if� for some v� the string r is in the label of the

edge u�v in D�
k and h�r� is in the label of the edge v�w �also in D�

k��
Repeating the process for a logarithmic �in the depth of D�

k� number of times
we obtain a distinguisher that only examines n bits� at which point we stop� In

total� we have used t
def
� log��

��n� � log�
�k� random hash functions� denoted
h��� ���� ht�� which means that we can generate a sequence that fools the original
Dk using a seed of length n$ t � log� jHnj �see Figure ��� and Exercise ������ Using
n � +�s�k�� and an adequate family Hn �e�g�� Construction D��� yields the claimed
seed length of O�s�k� � log�
�k�� � k�

Overview of the proof of Theorem ������� The main technical tool used in this
proof is a suitable randomness extractor �as de�ned in xD�������� which is indeed a
much more powerful tool than hashing functions� The basic idea is that when Dk is
at some �distant� layer� say at layer t� it typically �knows� little about the random
choices that led it there� That is� Dk has only s�k� bits of memory� which leaves
out t � s�k� bits of �uncertainty� �or randomness� regarding the previous moves�
Thus� much of the randomness that led Dk to its current state may be �reused�
�or �recycled��� To reuse these bits we need to extract almost uniform distribution
on strings of su�cient length out of the aforementioned distribution over f	� �gt
that has entropy�� at least t � s�k�� Furthermore� such an extraction requires

�
A detailed proof appears in ������
��Actually� a stronger technical condition needs and can be imposed on the latter distribution�

���� SPACEBOUNDED DISTINGUISHERS ���

some additional truly random bits� yet relatively few such bits� In particular� using
k� � "�log t� bits towards this end� the extracted bits are exp��"�k��� away from
uniform�

The gain from the aforementioned recycling is signi�cant if recycling is repeated
su�ciently many times� Towards this end� we break the kbit long seed into two
parts� denoted r� � f	� �gk�� and �r�� ���� r�

p
k�� where jrij �

p
k��� and set n � k���

Intuitively� r� will be used for determining the �rst n steps� and it will be re
used �or recycled� together with ri for determining the steps i � n $ � through
�i $ �� � n� Looking at layer i � n� we consider the information regarding r� that
is known to Dk �at layer i � n�� Typically� the conditional distribution of r�� given
that we reached a speci�c vertex at layer i � n� has �min�entropy greater than
	������k����s�k��� Using ri �as a seed of an extractor applied to r��� we can extract

	�����k����s�k��o�k�� � k�� � n bits that are almostrandom �i�e�� ���
p
k�close

to Un� with respect to Dk� and use these bits for determining the next n steps�
Hence� using k random bits we are produce a sequence of length �� $ �

p
k� � n �

k��� that fools machines of space bound� say� s�k� � k��	� Speci�cally� using an

extractor of the form Ext � f	� �g
p
k�� � f	� �gk�� f	� �gk��� we map the seed

�r�� r�� ���� r�pk� to the output sequence �r��Ext�r�� r��� ����Ext�r�pk� r
���� Thus� we

obtained a �s� ���
p
s��pseudorandom generator of stretch function
�k� � k����

To obtain an arbitrary polynomial stretch rather than a speci�c polynomial
stretch �i�e��
�k� � k���� we repeatedly apply an adequate composition� to be
outlined next� Suppose that G� is a �s�� ���pseudorandom generator of stretch
function
� that works in linear space� and similarly for G� with respect to �s�� ���
and
�� Then� we consider the following construction of a generator G�

�� On input s � f	� �gk� obtain G��s�� and parse it into consecutive blocks� each
of length k� � s��k��O���� denoted r�� ���� rt� where t �
��k��k

��

�� Output the t �
��k��bit long sequence G��r�� � � �G��rt��

Note that jG�s�j �
��k� �
��k���k�� which for s��k� � +�k� yields jG�s�j �

��k� �
��"�k���O�k�� which for polynomials
� and
� yields jG�s�j �
��jsj� �

��jsj��O�jsj�� We claim that G is a �s� ��pseudorandom generator� for s�k� �
min�s��k���� s��"�s��k��� and ��k� � ���k� $
��k� � ���"�s��k��� The proof uses a
hybrid argument� which refers to the distributionsG�Uk�� Ik

def
� G��U

��
k� � � � �G��U

t�
k� ��

and Ut���k�� � U
��
��k��

� � � �U t�
��k��

� The reader can verify that Ik is �s��k
��� t ����k���

pseudorandom �see Exercise ������ and so we focus on proving that Ik is indistin
guishable from G�Uk� by machines of space s��k��� �with respect to distinguishing
gap ���k��� This is proved by converting a potential distinguisher into a distin
guisher of U��k� � Ut�k� and G��Uk�� where the new distinguisher parses the
��k�
bit long input into t blocks �each of length k��� invokes G� on the corresponding
k�bit long blocks� and feeds the resulting sequence of
��k

��bit long blocks to the

Speci�cally� with overwhelmingly high probability� at layer t machine Dk is at a vertex that can
be reached in more than �
�		��t�s�k�� di�erent ways� In this case� the distribution representing
a random walk that reaches this vertex has min�entropy greater than ��		 � �t� s�k��� The reader
is referred to xD������ for de�nitions of min�entropy and extractors�

��� CHAPTER �� PSEUDORANDOM GENERATORS

original distinguisher� For this end� it is crucial that G� can be evaluate on k�bit
long strings using space at most s��k���� which is guaranteed by our setting of
k� � s��k��O��� and the hypothesis that G� works in linear space�

��	���� Derandomization of space�complexity classes

As a direct application of Theorem ����� we obtain that BPL � Dspace�log���
where BPL denotes the logspace analogue of BPP �see De�nition ������ �Recall
that NL � Dspace�log��� but it is not known whether or not BPL � NL���� A
stronger derandomization result can be obtained by a �ner analysis of the proof of
Theorem �����

Theorem ���� BPL � SC� where SC denotes the class of decision problems
that can be solved by a deterministic machine that runs in polynomial�time and
polylogarithmic�space�

Thus� BPL �and in particular RL � BPL� is placed in a class not known to
contain NL� Another such result was subsequently obtained in ������ Randomized
logspace can be simulated in deterministic space o�log��� speci�cally� in space

log���� We mention that the archetypical problem of RL has been recently proved
to be in L �see Section ����

Overview of the proof of Theorem ������� We are going to use the genera
tor construction provided in the proof of Theorem ����� but show that the main
part of the seed �i�e�� the sequence of hash functions� can be �xed �depending on
the distinguisher at hand�� Furthermore� this �xing can be performed in polyloga
rithmic space and polynomialtime� Speci�cally� wishing to derandomize a speci�c
logspace computation �which refers to a speci�c input�� we �rst obtain the corre
sponding distinguisher� denotedD�

k� that represents this computation �as a function
of the outcomes of the internal coin tosses of the logspace algorithm�� The key
observation is that the question of whether or not a speci�c hash function h � Hn

is good for a speci�c D�
k can be determined in space that is linear in n � jhj��

and logarithmic in the size of D�
k� Indeed� the time complexity of this decision

procedure is exponential in its space complexity� It follows that we can �nd a
good h � Hn� for a given D�

k� within these complexities �by scanning through all
possible h � Hn�� Once a good h is found� we can also construct the corresponding
graph D��

k �in which edges represent �edge paths in D�
k�� again within the same

complexity� Actually� it will be more instructive to note that we can determine a
step �i�e�� an edgetraversal� in D��

k by making two steps �edgetraversals� in D�
k�

This will allow to �x a hash function for D��
k � and so on� Details follow�

The main claim is that the entire process of �nding a sequence of t
def
� log�

��k�
good hash functions can be performed in space t �O�n$log jDkj� � O�n$log jDkj��
and time poly��n �jDkj�� that is� the time complexity is subexponential in the space

��Indeed� the log�space analogue of RP� denoted RL� is contained in NL � Dspace�log��� and
thus the fact that Theorem
��� implies RL � Dspace�log�� is of no interest�

��A detailed proof appears in ���
��

���� SPECIAL PURPOSE GENERATORS ��

complexity �i�e�� the time complexity is signi�cantly smaller than than the generic

bound of exp�O�n $ log jDkj����� Starting with D
��
k � D�

k� we �nd a good �for

D
��
k � hashing function h�� � Hn� which de�nes D

��
k � D��

k � Having found �and

stored� h��� ���� hi� � Hn� which determine D
i���
k � we �nd a good hashing function

hi��� � Hn for D
i���
k by emulating pairs of edgetraversals on D

i���
k � Indeed�

a key point is that we do not construct the sequence of graphs D
��
k � ���� D

i���
k �

but rather emulate an edgetraversal in D
i���
k by making �i edgetraversals in D�

k�
using h��� ���� hi�� The �edgetraversal� move � � f	� �gn starting at vertex v of

D
i���
k translates to a sequence of �i moves starting at vertex v of D�

k� where the
moves are determined by the sequence of nbit strings

h�
i����� h�

i��������� h�
i��������� h�

i��������� ���� h�
i�����

where h�i������ is the function obtained by the composition of some of the functions
h��� ���� hi�� �Speci�cally� h�i������ equals hi�� hi�� � � � hit� �� where fij � j �
�� ���� t�g � fj � 	j � �g and i� � i� � � � � � it� �� Thus� for n � +�log jD�

kj�� given
D�
k and a pair �u� v� of source and sink in D�

k �which reside in the �rst and last
layer� respectively�� we can �deterministically� approximate the probability that
a random walk starting at u reaches v in O�log jD�

kj��space and poly�jD�
kj�time�

The approximation can be made accurate up to a factor of �& ���poly�jD�
kj���

We conclude the proof by recalling the connection between such an approxima
tion and the derandomization of BPL �indeed� note the analogy to the proof of
Theorem ������ The computation of a logspace probabilistic machine M on input
x� can be represented by a directed layer graph GM�x of size poly�jxj�� Speci�
cally� the probability that M accepts x equals the probability that a random walk
starting at the single vertex of the �rst layer of GM�x reaches some vertex in the
last layer that represents an accepting con�guration� Setting k � +�log jxj� and
n � +�k�� the graph GM�x coincides with the graph Dk referred to at the begin
ning of the proof of Theorem ����� and D�

k is obtained from Dk by an �nlayer
contraction� �see ibid��� Combining this with the foregoing analysis� we conclude
that the probability that M accepts x can be deterministically approximated in
O�log jxj��space and poly�jxj�time� The theorem follows�

��� Special Purpose Generators

In this section we consider even weaker types of pseudorandom generators� pro
ducing sequences that can fool only very restricted types of distinguishers� Still�
such generators have many applications in complexity theory and in the design of
algorithms� �These applications will only be mentioned brie�y��

Our choice is to start with the simplest of these generators� the pairwise
independent generator� and its generalization to twise independence for any t���
Such generators perfectly fool any distinguisher that only observe t locations in the
output sequence� This leads naturally to almost pairwise �or twise� independence
generators� which also fool �albeit nonperfectly� such distinguishers� The latter

��� CHAPTER �� PSEUDORANDOM GENERATORS

generators are implied by a stronger class of generators� which is of independent
interest� the smallbias generators� Smallbias generators fool any linear test �i�e��
any distinguisher that merely considers the xor of some �xed locations in the input
sequence�� We then turn to the Expander Random Walk Generator� this generator
produces a sequence of strings that hit any dense subset of strings with probability
that is close to the hitting probability of a truly random sequence� Related notions
such as samplers� dispersers� and extractors are treated in Appendix D�

Comment regarding our parameterization� To maintain consistency with
prior sections� we continue to present the generators in terms of the seed length�
denoted k� Since this is not the common presentation for most results presented in
the sequel� we provide �in footnotes� the common presentation in which the seed
length is determined as a function of other parameters�

����� Pairwise	Independence Generators

Pairwise �resp�� twise� independence generators fool tests that inspect only two
�resp�� t� elements in the output sequence of the generator� Such local tests are
indeed very restricted� yet they arise naturally in many settings� For example�
such a test corresponds to a probabilistic analysis �of a procedure� that only relies
on the pairwise independence of certain choices made by the procedure� We also
mention that� in some natural range of parameters� pairwise independent sampling
is as good as sampling by totally independent sample points� see Sections D����
and D���

A t�wise independence generator of block�size b �NN �and stretch function
� is
an e�cient deterministic algorithm �e�g�� one that works in time polynomial in the
output length� that expands a kbit long random seed into a sequence of
�k��b�k�
blocks� each of length b�k�� such that any t blocks are uniformly and independently
distributed in f	� �gt�bk�� That is� denoting the ith block of the generator
s output
�on seed s� by G�s�i� we requite that for every i� � i� � � � � � it �in �
�k��b�k��� it
holds that

G�Uk�i� � G�Uk�i� � ���� G�Uk�it � Ut�bk��

In case t � �� we call the generator pairwise independent� We note that this condi
tion holds even if the inspected t blocks are selected adaptively �see Exercise ��� �

������� Constructions

In the �rst construction� we refer to GF��bk��� the �nite �eld of �bk� elements�
and associate its elements with f	� �gbk��

Proposition ���	 �twise independence generator���� Let t be a �xed integer and
b�
�
� �NN such that b�k� � k�t�
��k� �
�k��b�k� � t and
��k� � �bk�� Let

��In the common presentation of this t�wise independence generator� the length of the seed is
determined as a function of the desired block�length and stretch� That is� given the parameters
b and �� � �b� the seed length is set to t � b�

���� SPECIAL PURPOSE GENERATORS ���

��� ���� ���k� be �xed distinct elements of the �eld GF��bk��� For s�� s�� ���� st�� �
f	� �gbk�� let

G�s�� s�� ���� st���
def
�

��t��X
j��

sj�
j
� �

t��X
j��

sj�
j
� � ����

t��X
j��

sj�
j
��k�

	A ������

where the arithmetic is that of GF��bk��� Then� G is a t�wise independence gen�
erator of block�size b and stretch
�

That is� given a seed that consists of t elements of GF��bk��� the generator outputs
a sequence of
��k� such elements� To make the above generator totally explicit� we
need an explicit representation of GF��bk��� which requires an irreducible polyno
mial of degree b�k� over GF���� For speci�c values of b�k�� a good representation

does exist� For example� for d
def
� b�k� � � � �e �with e being an integer�� the poly

nomial xd$xd��$� is irreducible over GF���� The proof of Proposition ���� is left
as an exercise �see Exercise ������ We note that an analogous constructions work
for every �nite �eld �e�g�� a �nite �eld of any prime cardinality��

An alternative construction for the case of t � � is obtained by using �random�
a�ne transformations �as possible seeds�� In fact� better performance �i�e�� shorter
seed length� is obtained by using a�ne transformations de�ned by Toeplitz ma
trices� A Toeplitz matrix is a matrix with all diagonals being homogeneous �see
Figure ����� that is� T � �ti�j� is a Toeplitz matrix if ti�j � ti���j�� for all i� j�
Note that a Toeplitz matrix is determined by its �rst row and �rst column �i�e��
the values of t��j
s and ti��
s��

+ =

m(k)

b(k)

Figure ���� An a�ne transformation de�ned by a Toeplitz matrix�

Proposition ���� �Alternative pairwise independence generator� see Figure �������

Let b�
�
��m � NN such that
��k� �
�k��b�k� and m�k� � dlog�
��k�e �
k � �b�k� $ �� Associate f	� �gn with the n�dimensional vector space over GF����

��In the common presentation of this pairwise independence generator� the length of the seed
is determined as a function of the desired block�length and stretch� That is� given the parameters
b and ��� the seed length is set to �b� dlog� ��e � ��

��� CHAPTER �� PSEUDORANDOM GENERATORS

and let v�� ���� v��k� be �xed distinct vectors in the m�k��dimensional vector space

over GF���� For s � f	� �gbk��mk��� and r � f	� �gbk�� let

G�s� r�
def
� �Tsv� $ r � Tsv� $ r � ���� Tsv��k� $ r� ������

where Ts is an b�k��by�m�k� Toeplitz matrix speci�ed by the string s� Then G is a
pairwise independence generator of block�size b and stretch
�

That is� given a seed that represents an a�ne transformation de�ned by an b�k�
bym�k� Toeplitz matrix� the generator outputs a sequence of
��k� � �mk� strings�
each of length b�k�� Note that k � �b�k�$m�k���� and that the stretching property
requires
��k� � k�b�k�� The proof of Proposition ��� is left as an exercise �see
Exercise ������

A stronger notion of e�cient generator� We note that the aforementioned
constructions satisfy a stronger notion of e�cient generation� which is useful in
several applications� Speci�cally� there exists a polynomialtime algorithm that
given a seed� s � f	� �gk� and a block location i � �
��k�� �in binary�� outputs the
ith block of the corresponding output �i�e�� the ith block of G�s���

������� Applications

Pairwise independence generators do su�ce for a variety of applications �cf�� �����
� ���� In particular� we mention the application to sampling discussed in Ap
pendix D��� and the �celebrated� derandomization of the fast parallel algorithm for
the Maximal Independent Set problem� This derandomization relies on the fact
that the analysis of the randomized algorithm only relies on the hypothesis that
some objects are distributed in pairwise independent manner� Thus� this analysis
holds also when these objects are selected using a pairwise independence generator�
In general� pairwise independence generators do su�ce to fool distinguishers that
are derived from some natural and interesting randomized algorithms�

Referring to Eq� ������� we remark that for any constant t � �� the cost
of derandomization �i�e�� going over all �k possible seeds� is exponential in the
blocksize �because b�k� � "�k��� which in turn also bounds the number of blocks
�because
��k� � �bk��� Note that if a larger number of blocks is needed� we
can arti�cially increase the blocklength in order to accommodate it �i�e�� allow

��k� � �bk� � exp�k�t��� and in this case the cost of derandomization will be
polynomial in the number of blocks� Thus� whenever the analysis of a randomized
algorithm can be based on a constant amount of independence between �feasibly
many� random choices� each made within a feasible domain� a feasible derandom�
ization is possible��� On the other hand� the relationship
�k� � exp�k�t� is the best
possible� speci�cally� one cannot produce from a seed of length k an exp�k�O����
long sequence of nonconstantly independent random bits� In other words� twise

��We stress that it is important to have the cost of derandomization be polynomial in the length
of the produced pseudorandom sequence� because the latter is typically polynomially�related to
the length of the input to the algorithm that we wish to derandomize�

���� SPECIAL PURPOSE GENERATORS ���

independent generators of �any blocklength and� stretch
 require a seed of length
"�t � log
�� In the next subsection �cf� x�� ����� we will see that meaningful ap
proximations may be obtained with much shorter seeds�

����� Small	Bias Generators

Trying to go beyond constantindependence in derandomizations �while using seeds
of length that is logarithmic in the length of the pseudorandom sequence� was the
original motivation �and remain an important application� of the notion of small
bias generators� Still� smallbias generators are interesting for their own sake� and
in particular they fool �global tests� that look at the entire output sequence and not
merely at a �xed number of positions in it �as the limited independence generators��
Speci�cally� smallbias generators generate a sequence of bits that fools any linear
test �i�e�� a test that computes a �xed linear combination of the bits��

For � � N �	� ��� an ��bias generator with stretch function
 is an e�cient
deterministic algorithm �e�g�� working in poly�
�k�� time� that expands a kbit
long random seed into a sequence of
�k� bits such that for any �xed nonempty set
S � f�� ����
�k�g the bias of the output sequence over S is at most ��k�� The bias of
a sequence of n �possibly dependent� Boolean random variables ��� ���� �n � f	� �g
over a set S � f�� ��� ng is de�ned as

� �
����Pr�	i�S�i � ��� �

�

���� � jPr�	i�S�i � ��� Pr�	i�S�i � 	�j� ������

The factor of � was introduced so to make these biases correspond to the Fourier co
e�cients of the distribution �viewed as a function from f	� �gn to the reals�� To see
the correspondence replace f	� �g by f&�g� and substitute xor by multiplication�
The bias with respect to set S is thus written as�����Pr

�Y
i�S

�i � $�

�
� Pr

�Y
i�S

�i � ��

������ �

�����E
�Y
i�S

�i

������
�

���� �

which is merely the �absolute value of the� Fourier coe�cient corresponding to S�

������� Constructions

E�cient smallbias generators with exponential stretch and exponentially vanishing
bias are know�

Theorem ���� �smallbias generators���	 For some universal constant c � 	� let

 �NN and � �N �	� �� such that
�k� � ��k� � exp�k�c�� Then� there exists an
��bias generator with stretch function
 operating in time polynomial in the length
of its output�

��In the common presentation of this generator� the length of the seed is determined as a
function of the desired bias and stretch� That is� given the parameters � and �� the seed length
is set to c � log��
��� We comment that using �	� the constant c is merely � �i�e�� k � � log���
����
whereas using ����� k � log� �� � log���
���

��	 CHAPTER �� PSEUDORANDOM GENERATORS

Three simple constructions of smallbias generators that satisfy Theorem ���� are
known �see ����� One of these constructions is based on Linear Feedback Shift Reg
isters� Loosely speaking� the �rst half of the seed� denoted f�f� � � � fk������ is inter
preted as a �nondegenerate� feedback rule�
� the other half� denoted s�s� � � � sk������
is interpreted as �the start sequence�� and the output sequence� denoted r�r� � � � r�k����
is obtained by setting ri � si for i � k�� and ri �

Pk�����
j�� fj � ri�k����j for

i � k��� �See Figure �� and Exercise ������

r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure �� � The LFSR smallbias generator �for t � k����

As in Section �� ����� we note that the aforementioned constructions satisfy
a stronger notion of e�cient generation� which is useful in several applications�
Speci�cally� there exists a polynomialtime algorithm that given a seed and a bit
location i � �
�k�� �in binary�� outputs the ith bit of the corresponding output�

������� Applications

An archetypical application of smallbias generators is for producing short and
random ��ngerprints� �or �digests�� such that equality�inequality among strings
is �probabilistically� re�ected in equality�inequality between their corresponding
�ngerprints� The key observation is that checking whether or not x � y is prob
abilistically reducible to checking whether the inner product modulo � of x and r
equals the inner product modulo � of y and r� where r is generated by a smallbias
generator G� Thus� the pair �s� v�� where s is a random seed to G and v equals
the inner product modulo � of z and G�s�� serves as the randomized �ngerprint of
the string z� One advantage of this reduction is that only few bits �i�e�� the seed
of the generator and the result of the inner product� needs to be �communicated
between x and y� in order to enable the checking �see Exercise ������ A related
advantage �i�e�� low randomness complexity� underlies the application of smallbias
generators for the construction of amplifying reductions �see Section ������ of gap
problems regarding the satis�ability of systems of equations �see� e�g�� x������� and
Exercise �	����

��That is� f
 � � and f�z�
def
� zk	��

P�k	����

j�

fj �zj is required to be an irreducible polynomial

over GF���� The enforcing of the latter condition is discussed in Exercise
����

���� SPECIAL PURPOSE GENERATORS ���

Smallbias generators have been used in a variety of areas �e�g�� inapproxima
tion� structural complexity� and applied cryptography� see references in ���� Sec
�������� In addition� they seem an important tool in the design of various types of
�pseudorandom� objects� see next�

Approximate independence generators� As hinted at the beginning of this
section� smallbias is related to approximate limited independence��� Actually�
even a restricted type of �bias �in which only subsets of size t�k� are required
to have bias upperbounded by �� implies that any t�k� bits in the said sequence
are �tk��� � ��k�close to Utk�� where here we refer to the variation distance �i�e��
Norm� distance� between the two distributions� �The maxnorm of the di�er
ence is bounded by ��k����� Combining Theorem ���� and the foregoing upper
bound� and relying on the linearity of the construction presented in Proposi
tion ����� we obtain generators with exp�k� stretch that are approximately t�k�
independent� for some nonconstant t�k�� see Exercise ��� � Speci�cally� for k �

O�t�k� $ log�����k�� $ log log
�k�� �equiv�� for
�k� � ��
k�O���

� t�k� � k�O���� and
��k� � ��k�O���� one may obtain generators with stretch function
� producing
bit sequences in which any t�k� positions are at most ��k�away from uniform �in
variation distance�� In the corresponding result for the maxnorm distance� it suf
�ces to have k � O�log�t�k����k� $ log log
�k��� Thus� whenever the analysis of a
randomized algorithm can be based on a logarithmic amount of �almost� indepen
dence between feasiblymany binary random choices� a feasible derandomization is
possible �by using an adequate generator of logarithmic seed length��

Extensions to nonbinary choices were considered in various works �see refer
ences in ���� Sec �������� Some of these works also consider the related problem of
constructing small �discrepancy sets� for geometric and combinatorial rectangles�

t�universal set generators� Using the aforementioned upperbound on the max
norm �of the deviation from uniform of any t locations�� any �bias generator yields
a t�universal set generator� provided that � � ��t� The latter generator outputs
sequences such that in every subsequence of length t all possible �t patterns occur
�i�e�� each for at least one possible seed�� Such generators have many applications�

������� Generalization

In this subsection� we outline a generalization of the treatment of smallbias gen
erators to the generation of sequences over an arbitrary �nite �eld� Focusing on
the case of a �eld of prime characteristic� denoted GF�p�� we �rst de�ne an ad
equate notion of bias� Generalizing Eq� ���� �� we de�ne the bias of a sequence
of n �possibly dependent� random variables ��� ���� �n � GF�p� with respect to the

linear combination �c�� ���� cn� � GF�p�n as
���E h�Pn

i	�
ci�i
i���� where � denotes the

�	We warn that� unlike in the case of perfect independence� here we refer only to the distribution
on �xed bit locations� See Exercise
��
 for further discussion�

�
Both bounds are derived from the Norm� bound on the di�erence vector �i�e�� the di�erence
between the two probability vectors�� For details� see Exercise
����

��� CHAPTER �� PSEUDORANDOM GENERATORS

pth �complex� root of unity �i�e�� � � �� if p � ��� Using Exercise ����� we note
that upperbounds on the biases of ��� ���� �n �with respect to any nonzero linear
combinations� yield upperbounds on the distance of

Pn
i�� ci�i from the uniform

distribution�

We say that S � GF�p�n is an ��bias probability space if a uniformly selected
sequence in S has bias at most � with respect to any nonzero linear combination
over GF�p�� �Whenever such a space is e�ciently constructible� it yields a corre
sponding �biased generator�� We mention that the LFSR construction� outlined
in x�� ���� and analyzed in Exercise ����� generalizes to GF�p� and yields an �bias
probability space of size �at most� p�e� where e � dlogp�n���e� Such constructions
can be used in applications that generalize those in x�� �����

����� Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a
random walk on a large graph that has a small degree but an adequate �mixing�
property� Such a graph is called an expander� and by taking a random walk on it
we may generate a sequence of
� values over its vertex set� while using a random
seed of length b$ �
� � �� � log� d� where �b denotes the number of vertices in the
graph and d denotes its degree� This seed length should be compared against the

� � b random bits required for generating a sequence of
� independent samples
from f	� �gb �or taking a random walk on a clique of size �b�� Interestingly� as we
shall see� the pseudorandom sequence �generated by the said random walk on an
expander� behaves similarly to a truly random sequence with respect to hitting any
�xed subset of f	� �gb� Let us start by de�ning this property �or rather by de�ning
the corresponding hitting problem��

De�nition ��� �the hitting problem�� A sequence of �possibly dependent� ran�
dom variables� denoted �X�� ���� X�� � over f	� �gb is ��� ���hitting if for any �target�
set T � f	� �gb of cardinality at least � � �b� with probability at least �� �� at least
one of these variables hits T � that is� Pr��i s�t� Xi�T � � �� ��

Clearly� a truly random sequence of length
� over f	� �gb is ��� ��hitting for � �
��� ���

�

� The aforementioned �expander random walk generator� �to be described
next� achieves similar behavior� Speci�cally� for arbitrary small c � 	 �which
depends on the degree and the mixing property of the expander�� the generator
s
output is ��� ��hitting for � � �� � �� � c� � ���� � To describe this generator� we
need to discuss expanders�

Expanders� By expander graphs �or expanders� of degree d and eigenvalue bound
� � d� we actually mean an in�nite family of dregular graphs� fGNgN�S �S� N��
such that GN is a dregular graph over N vertices and the absolute value of all
eigenvalues� save the biggest one� of the adjacency matrix of GN is upperbounded
by �� We will refer to such a family as to a �d� ���expander �for S�� This technical
de�nition is related to the aforementioned notion of �mixing� �which refers to the

���� SPECIAL PURPOSE GENERATORS ���

rate at which a random walk starting at a �xed vertex reaches uniform distribution
over the graph
s vertices�� For further detail� see Appendix E���

We are interested in explicit constructions of such graphs� by which we mean
that there exists a polynomialtime algorithm that on input N �in binary�� a vertex
v � GN and an index i � f�� ���� dg� returns the ith neighbor of v� �We also require
that the set S for which GN
s exist is su�ciently �tractable� � say that given any
n � N one may e�ciently �nd an s �S such that n � s � �n�� Several explicit
constructions of expanders are known �see Appendix E������ Below� we rely on the
fact that for every � � 	� there exist d and an explicit construction of a �d� � � d�
expander over f�b � b � Ng��� The relevant �to us� fact about expanders is stated
next�

Theorem ���� �Expander Random Walk Theorem�� Let G � �V�E� be an ex�
pander graph of degree d and eigenvalue bound �� Let W be a subset of V and

�
def
� jW j�jV j� and consider walks on G that start from a uniformly chosen vertex

and take
� � � additional random steps� where in each such step one uniformly
selects one out of the d edges incident at the current vertex and traverses it� Then
the probability that such a random walk stays in W is at most

� �

�$ ��� �� � �

d

�����
������

Thus� a random walk on an expander is �pseudorandom� with respect to the hitting
property �i�e�� when we consider hitting the set V nW and use � � ����� that is� a
set of density � is hit with probability ���� where � � ����������$���d�������� �
��� ��� ���d�� � ���� � A proof of an upperbound that is weaker than Eq� ������ is
outlined in Exercise ����� Using Theorem ���� and an explicit ��t� � � �t�expander�
we get

Proposition ���� �The Expander Random Walk Generator����

� For every constant � � 	� consider an explicit construction of ��t� � � �t��
expanders for f�n � n�Ng� where t�N is a su�ciently large constant� For
v � ��n� � f	� �gn and i � ��t� � f	� �gt� denote by)i�v� the vertex of the
corresponding �n�vertex graph that is reached from vertex v when following
its ith edge�

� For b�
� � NN such that k � b�k� $ �
��k� � �� � t �
��k� � b�k�� and for
v� � f	� �gbk� and i�� ���� i��k��� � ��t�� let

G�v�� i�� ����� i��k����
def
� �v�� v�� ����� v��k����� ������

where vj �)ij �vj����

��This can be obtained with d � poly��
��� In fact d � O��
�
�
�� which is optimal� can be

obtained too� albeit with graphs of sizes that are only approximately close to powers of two�
��In the common presentation of this generator� the length of the seed is determined as a

function of the desired block�length and stretch� That is� given the parameters b and ��� the seed
length is set to b�O��� � ���

��� CHAPTER �� PSEUDORANDOM GENERATORS

distinguisher�s generator�s stretch comments
type resources resources
i�e�� �
k��

gen��purpose p
k��time� � poly� p poly
k��time poly
k� Assumes OW��

derand� BPP �k	O����time �O�k��time �k	O��� Assumes EvEC��

space�bounded s
k��space O
k��space �k	O�s�k�� runs in time
robustness k�O
���space O
k��space poly
k� poly
k� � �
k�

t�wise indepen� �t�wise� poly
k� � �
k��time �k	O�t�
e�g�� pairwise�

small bias ���bias� poly
k� � �
k��time �k	O��� � �
k�

expander �hitting� poly
k� � �
k��time ��
k� � b
k�

rand� walk
��� ���
��k�	O�����hitting for f�� �gb�k�� with ��
k� �

k � b
k���O
��� � ��

Figure ���� Pseudorandom generators at a glance

Then G has stretch
�k� �
��k� � b�k�� and G�Uk� is ��� ���hitting for any � � 	
and � � ��� ��� �� � ����k��

The stretch of G is optimized at b�k� ' k�� �and
��k� � k��t�� but optimizing
the stretch is not necessarily the goal in all applications� Expander randomwalk
generators have been used in a variety of areas �e�g�� PCP and inapproximability
�see ���� Sec� ������� cryptography �see ���� Sec� ������ and the design of various
types of �pseudorandom� objects �see� in particular� Appendix D�����

Chapter Notes

Figure ��� depicts some of the notions of pseudorandom generators discussed in
this chapter� We highlight a key distinction between the case of generalpurpose
pseudorandom generators �treated in Section ���� and the other cases �cf� Sec
tions ��� and ����� in the former case the distinguisher is more complex than the
generator� whereas in the latter cases the generator is more complex than the dis
tinguisher� Speci�cally� in the generalpurpose case the generator runs in �some
�xed� polynomialtime and needs to withstand any probabilistic polynomialtime
distinguisher� In fact� some of the proofs presented in Section ��� utilize the fact
that the distinguisher can invoke the generator on seeds of its choice� In contrast�
the NisanWigderson Generator� analyzed in Theorem ���� �of Section ����� runs
more time than the distinguishers that it tries to fool� and the proof relies on this
fact in an essential manner� Similarly� the space complexity of the spaceresilient
generators presented in Section ��� is higher than the spacebound on the distin
guishers that they fool�

The general paradigm of pseudorandom generators� Our presentation�
which views vastly di�erent notions of pseudorandom generators as incarnations
of a general paradigm� has emerged mostly in retrospect� We note that� while the

��By the OW we denote the assumption that one�way functions exists� By EvEC we denote the
assumption that the class E has �almost�everywhere� exponential circuit complexity�

���� SPECIAL PURPOSE GENERATORS ��

historical study of the various notions was mostly unrelated at a technical level�
the case of generalpurpose pseudorandom generators served as a source of inspi
ration to most of the other cases� In particular� the concept of computational
indistinguishability� the connection between hardness and pseudorandomness� and
the equivalence between pseudorandomness and unpredictability� appeared �rst in
the context of generalpurpose pseudorandom generators �and inspired the devel
opment of �generators for derandomization� and �generators for space bounded
machines��� Indeed� the study of the specialpurpose generators �see Section �� �
was unrelated to all of these�

General�purpose pseudorandom generators� The concept of computational
indistinguishability� which underlies the entire computational approach to random
ness� was suggested by Goldwasser and Micali ��	�� in the context of de�ning secure
encryption schemes� Indeed� computational indistinguishability plays a key role in
cryptography �see Appendix C�� The general formulation of computational indis
tinguishability is due to Yao ������ Using the hybrid technique of ��	��� Yao also
observed that de�ning pseudorandom generators as producing sequences that are
computationally indistinguishable from the corresponding uniform distribution is
equivalent to de�ning such generators as producing unpredictable sequences� The
latter de�nition originates in the earlier work of Blum and Micali �����

Blum and Micali ���� pioneered the rigorous study of pseudorandom generators
and� in particular� the construction of pseudorandom generators based on some
simple intractability assumption� In particular� they constructed pseudorandom
generators assuming the intractability of Discrete Logarithm problem over prime
�elds� Their work also introduces basic paradigms that were used in all subsequent
improvements �cf�� e�g�� ����� ������ We refer to the transformation of compu
tational di�culty into pseudorandomness� the use of hardcore predicates �also
de�ned in ������ and the iteration paradigm �cf� Eq� �������

Theorem ���� �by which pseudorandom generators exist if and only if oneway
functions exist� is due to H/astad� Impagliazzo� Levin and Luby ������ building upon
the hardcore predicate of �� � �see Theorem ����� Unfortunately� the current proof
of Theorem ���� is very complicated and un�t for presentation in a book of the
current nature� Presenting a simpler and tighter �cf� x�������� proof is indeed an
important research project�

Pseudorandom functions �further discussed in Appendix C����� were de�ned
and �rst constructed by Goldreich� Goldwasser and Micali ����� We also mention
�and advocate� the study of a general theory of pseudorandom objects initiated
in �����

Derandomization of time�complexity classes� As observed by Yao ������ a
nonuniformly strong notion of pseudorandom generators yields improved deran
domization of timecomplexity classes� A key observation of Nisan ����� ���� is that
whenever a pseudorandom generator is used in this way� it su�ces to require that
the generator runs in time exponential in its seed length� and so the generator may
have runningtime greater than the distinguisher �representing the algorithm to be

��� CHAPTER �� PSEUDORANDOM GENERATORS

derandomized�� This observation underlines the construction of Nisan and Wigder
son ����� ����� and is the basis for further improvements culminating in ������ Part �
of Theorem ���� �i�e�� the socalled �high end� derandomization of BPP� is due to
Impagliazzo and Wigderson ������ whereas Part � �the �low end�� is from ������

The Nisan�Wigderson Generator ����� was subsequently used in several ways
transcending its original presentation� We mention its application towards fooling
nondeterministic machines �and thus derandomizing constantround interactive
proof systems� and to the construction of randomness extractors ������

In contrast to the aforementioned derandomization results� which place BPP in
some worstcase deterministic complexity class� we now mention a result that places
BPP in an averagecase deterministic complexity class �cf� Section �	���� We refer
speci�cally to the theorem� which is due to Impagliazzo and Wigderson ��� � but
is not presented in the main text� that asserts the following� if BPP is not con�
tained in EXP �almost always� then BPP has deterministic sub�exponential time
algorithms that are correct on all typical cases �i�e�� with respect to any polynomial
time sampleable distribution��

Space Pseudorandom Generators� As stated in the �rst paper on the sub
ject of spaceresilient pseudorandom generators ������ this research direction was
inspired by the derandomization result obtained via the use of generalpurpose
pseudorandom generators� The latter result �necessarily� depends on intractabil
ity assumptions� and so the objective was �nding classes of algorithms for which
derandomization is possible without relying on intractability assumptions� �This
objective was achieved before for the case of constantdepth circuits�� Funda
mentally di�erent constructions of space pseudorandom generators were given in
several works� but are superseded by the two incomparable results mentioned in
Section ������ Theorem ���� �a�k�a Nisan
s Generator ������ and Theorem ����
�a�k�a the Nisan�Zuckerman Generator ���	��� These two results have been �inter
polated� in ����� Theorem ���� �BPL � SC� was proved by Nisan ������

Special Purpose Generators� The various generators presented in Section ��
were not inspired by any of the other types of pseudorandom generator �nor even by
the generic notion of pseudorandomness�� Pairwiseindependence generator were
explicitly suggested in � �� �and are implicit in ������ The generalization to twise
independence �for t � �� is due to ���� Smallbias generators were �rst de�ned and
constructed by Naor and Naor ������ and three simple constructions were subse
quently given in ���� The Expander Random Walk Generator was suggested by
Ajtai� Komlos� and Szemer#edi ���� who discovered that random walks on expander
graphs provide a good approximation to repeated independent attempts with re
spect to hitting any �xed subset of su�cient density �within the vertex set�� The
analysis of the hitting property of such walks was subsequently improved� culmi
nating in the bound cited in Theorem ����� which is taken from ����� Cor� �����

��This paper is more frequently cited for the Expander Random Walk technique which it has
introduced�

���� SPECIAL PURPOSE GENERATORS ���

�The foregoing historical notes do not mention several technical contributions that
played an important role in the development of the area� For further details�
the reader is referred to ���� Chap� ��� In fact� the current chapter is a revision
of ���� Chap� ��� providing more details for the main topics� and omitting relatively
secondary material �a revision of which appears in Appendix D���

Exercises

Exercise ��� Show that placing no computational requirements on the genera
tor enables unconditional results regarding �generators� that fool any family of
subexponentialsize circuits� That is� making no computational assumptions� prove
that there exist functions G � f	� �g� f	� �g� such that fG�Uk�gk�N is �strongly�
pseudorandom� while jG�s�j � �jsj for every s � f	� �g�� Furthermore� show that
G can be computed in doubleexponential time�

Guideline� Use the Probabilistic Method
cf� ��� �� First� for any �xed circuit C �

f�� �gn � f�� �g� upper�bound the probability that for a random set S � f�� �gn of size

�n	� the absolute value of Pr�C
Un� � � �
jfx � S � C
x� � �gj�jSj� is larger than

��n	�� Next� using a union bound� prove the existence of a set S � f�� �gn of size �n	�

such that no circuit of size �n	� can distinguish a uniformly distributed element of S from

a uniformly distributed element of f�� �gn� where distinguishing means with a probability

gap of at least ��n	��

Exercise ��� LetA be a probabilistic polynomialtime algorithm solving the search
associated with the NPrelation R� and let AG be as in Construction ���� Prove
that it is infeasible to �nd an x on which AG outputs a wrong solution� that is�
assuming for simplicity that A has error probability ���� prove that on input �n it
is infeasible to �nd an x � f	� �gn � SR such that Pr��x�AG�x�� �� R� � 	��� where

SR
def
� fx � �y �x� y��Rg�

Hint� For x that violates the claim� it holds that jPr��x�A�x�� �� R��Pr��x�AG�x�� �� R�j ������

Exercise ��� Prove that omitting the absolute value in Eq� ����� keeps De�ni
tion ��� intact�

Hint� consider D��z�
def
� ��D�z���

Exercise ��	 Prove that computational indistinguishability is an equivalence re
lation �de�ned over pair of probability ensembles�� Speci�cally� prove that this
relation is transitive �i�e�� X � Y and Y � Z implies X � Z��

Exercise ��� Prove that if fXngn�N and fYngn�N are computationally indistin�
guishable and A is a probabilistic polynomial�time algorithm then fA�Xn�gn�N and
fA�Yn�gn�N are computationally indistinguishable�

Hint� If D distinguishes the latter ensembles then D� such that D��z�
def
� D�A�z�� distinguishes

the former��

��� CHAPTER �� PSEUDORANDOM GENERATORS

Exercise ��� In continuation to Exercise �� � show that the conclusion may not
hold in case A is not computationally bounded� That is� show that there ex
ists computationally indistinguishable ensembles� fXngn�N and fYngn�N� and an
exponentialtime algorithmA such that fA�Xn�gn�N and fA�Yn�gn�N are not com
putationally indistinguishable�

Guideline� For any pair of ensembles fXngn�N and fYngn�N� consider the Boolean

function f such that f
z� � � if and only if Pr�Xn � z � Pr�Yn � z � Show that

jPr�f
Xn� � � � Pr�f
Yn� � � j equals the statistical di�erence between Xn and Yn�

Consider an adequate
approximate� implementation of f
e�g�� approximate Pr�Xn � z

and Pr�Yn � z up to ����jzj�� and use Exercise ����

Exercise �� Show that the existence of pseudorandom generators implies the ex
istence of polynomialtime constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable�

Guideline� Lower�bound the statistical distance between G
Uk� and U��k�� where G is a

pseudorandom generator with stretch ��

Exercise ��� Prove that the su�cient condition in Exercise ��� is in fact necessary���

Recall that fXngn�N and fYngn�N are said to be statistically far apart if� for some
positive polynomial p and all su�ciently large n� the variation distance between
Xn and Yn is greater than ��p�n�� Using the following three steps� prove that the
existence of polynomial�time constructible probability ensembles that are statisti
cally far apart and yet are computationally indistinguishable implies the existence
of pseudorandom generators�

�� Show that� without loss of generality� we may assume that the variation
distance between Xn and Yn is greater than �� exp��n��
Guideline� For Xn and Yn as in the forgoing� consider Xn �
X

���
n � ���� X

�t�n��
n �

and Y n �
Y
���
n � ���� Y

�t�n��
n �� where the X

�i�
n �s
resp�� Y

�i�
n �s� are independent copies

of Xn
resp�� Yn�� and t
n� � O
n �p
n���� To lower�bound the statistical di�erence

between Xn and Y n� consider the set Sn
def
� fz � Pr�Xn � z � Pr�Yn � z g and the

random variable representing the number of copies in Xn
resp�� Y n� that reside in

Sn�

�� Using fXngn�N and fYngn�N as in Step �� prove the existence of a false en�
tropy generator� where a false entropy generator is a deterministic polynomial
time algorithm G such that G�Uk� has entropy e�k� but fG�Uk�gk�N is com
putationally indistinguishable from a polynomialtime constructible ensemble
that has entropy greater than e��� $ ������

Guideline� Let S
 and S� be sampling algorithms such that Xn
 S

Upoly�n��

and Yn
 S�
Upoly�n��� Consider the generator G
�� r� �
�� S�
r��� and the distri�

bution Zn that equals
U�� Xn� with probability ��� and
U�� Yn� otherwise� Note

that in G
U�� Upoly�n�� the �rst bit is almost determined by the rest� whereas in Zn
the �rst bit is statistically independent of the rest�

��This exercise follows �
��� which in turn builds on ������

���� SPECIAL PURPOSE GENERATORS ���

�� Using a false entropy generator� obtain one in which the excess entropy isp
k� and using the latter construct a pseudorandom generator�

Guideline� Use the ideas presented at the end of Section ����
i�e�� the discussion

of the interesting direction of the proof of Theorem ������

Exercise ��� �multiple samples vs single sample� a separation� Prove that
there exist two probability ensembles that are computational indistinguishable by
a single sample� but are e�ciently distinguishable by two samples� Furthermore�
one of these ensembles is the uniform ensembles and the other has a sparse support
�i�e�� only poly�n� many strings are assigned nonzero probability weight by the
second distribution��

Guideline� Prove that� for every function d � f�� �gn � ��� � � there exists two strings� xn
and yn
in f�� �gn�� and a number p � ��� � such that Pr�d
Un��� � p�Pr�d
xn��� �
��
p� � Pr�d
yn��� � Generalize this claim to m functions� using m� � strings and a convex

combination of the corresponding probabilities��� Conclude that there exists a distribution

Zn with a support of size at most m � � such that for each of the �rst
in lexicographic

order� m
randomized� algorithms A it holds that Pr�A
Un� � � � Pr�A
Zn� � � � Note

that with probability at least ��
m� ��� two independent samples of Zn are assigned the

same value� yielding a simple two�sample distinguisher of Un from Zn�

Exercise ���� �amplifying the stretch function� an alternative construction�

For G� and
 as in Construction ���� consider G�s�
def
� G

�jsj��jsj
� �s�� where Gi

��x�
denotes G� iterated i times on x �i�e�� Gi

��x� � Gi��
� �G��x�� and G�

��x� � x��
Prove that G is a pseudorandom generator of stretch
� Re�ect on the advantages
of Construction ��� over the current construction�

Guideline� Use a hybrid argument� with the ith hybrid being Gi
�
U��k��i�� for i �

�� ���� �
k� � k� Note that Gi�
�
U��k���i��� � Gi

�
G�
U��k��i���� and Gi
�
U��k��i� �

Gi
�
UjG��U��k��i���j

�� and use Exercise ���

Exercise ���� �pseudorandom versus unpredictability� Prove that a prob
ability ensemble fZkgk�N is pseudorandom if and only if it is unpredictable� For
simplicity� we say that fZkgk�N is �nextbit� unpredictable if for every probabilis
tic polynomialtime algorithm A it holds that Pri�A�Fi�Zk�� �Bi���Zk�� � �����
is negligible� where i � f	� ���� jZkj � �g is uniformly distributed� and Fi�z� �resp��
Bi���z�� denotes the ibit pre�x �resp�� i$ �st bit� of z�

Guideline� Show that pseudorandomness implies polynomial�time unpredictability� that

is� polynomial�time predictability violates pseudorandomness
because the uniform en�

semble is unpredictable regardless of computing power�� Use a hybrid argument to prove

that unpredictability implies pseudorandomness� Speci�cally� the ith hybrid consists of

the i�bit long pre�x of Zk followed by jZkj � i uniformly distributed bits� Thus� distin�

guishing the extreme hybrids
which correspond to Zk and UjZk j� implies distinguishing

��That is� prove that for every m functions d�� ���� dm � f�� �gn � ��� �� there exist m�� strings

z
���
n � ���� z

�m��
n and m�� non�negative numbers p�� ���� pm� that sum�up to � such that for every

i � �m� it holds that Pr�di�Un���� �
P

j
pj � Pr�di�z�j�n �����

��	 CHAPTER �� PSEUDORANDOM GENERATORS

some neighboring hybrids� which in turn implies next�bit predictability� For the last step�

use an argument as in the proof of Proposition ����

Exercise ���� Prove that a probability ensemble is unpredictable �from left to
right� if and only if it is unpredictable from right to left �or in any other canonical
order��

Hint� use Exercise
���� and note that an ensemble is pseudorandom if and only if its reverse is

pseudorandom��

Exercise ���� Let f be �� and length preserving� and b be a hardcore predicate
of f � For any polynomial
� prove that fG��Uk�g is unpredictable �in the sense of

Exercise ������ where G��s� def
� b�f �jsj����s�� � � � b�f�s�� � b�s��

Guideline� Suppose towards the contradiction that� for a uniformly distributed j �
f�� ���� �
k� � �g� given the j�bit long pre�x of G�
Uk� an algorithm A� can predict the

j � �st bit of G�
Uk�� That is� given b
f ��k���
s�� � � � b
f ��k��j
s��� algorithm A� predicts

b
f ��k���j��
s��� where s is uniformly distributed in f�� �gk� Consider an algorithm A

that given y � f
x� approximates b
x� by invoking A� on input b
f j��
y�� � � � b
y�� where

j is uniformly selected in f�� ���� �
k�� �g� Analyze the success probability of A using the

fact that f induces a permutation over f�� �gn� and thus b
f j
Uk�� � � � b
f
Uk�� � b
Uk� is

distributed identically to b
f ��k���
Uk�� � � � b
f ��k��j
Uk�� � b
f ��k���j��
Uk���

Exercise ���	 Prove that if G is a strong pseudorandom generator in the sense
of De�nition ���� then it a pseudorandom generator in the sense of De�nition ����

Hint� consider a sequence of internal coin tosses that maximizes the probability in Eq� �
�����

Exercise ���� �strong computational indistinguishability� Provide a de�
nition of the notion of computational indistinguishability that underlies De�ni
tion ���� �i�e�� indistinguishability with respect to �nonuniform� polynomialsize
circuits�� Prove the following two claims�

�� Computational indistinguishability with respect to �nonuniform� polynomial
size circuits is strictly stronger than De�nition ����

�� Computational indistinguishability with respect to �nonuniform� polynomial
size circuits remains invariant under multiple samples �even if the underlying
ensembles are not polynomialtime constructible��

Guideline� For Part �� see the solution to Exercise ���� For Part � note that samples

as generated in the proof of Proposition ��� can be hard�wired into the distinguishing

circuit�

Exercise ���� Show that there exists a circuit of size O��k �
�k�� that violates
Eq� ������ provided that
�k� � k�

Hint� The circuit may incorporate all values in the range of G and decide by comparing its input

to these values��

���� SPECIAL PURPOSE GENERATORS ���

Exercise ��� �constructing a set system for Theorem ����� For every � �
	� show a construction of a set system S as in Condition � of Theorem ����� with
m�k� � "�k� and
�k� � ��k��

Guideline� We assume� without loss of generality� that � � �� and set m
k� �
���� � k
and �
k� � �
m�k�	�� We construct the set system S�� ���� S��k� in iterations� selecting

Si as the �rst m
k��subset of �k that has su�ciently small intersections with each of

the previous sets S�� ���� Si��� The existence of such a set Si can be proved using the

Probabilistic Method
cf� ��� �� Speci�cally� for a �xed m
k��subset S�� the probability

that a random m
k��subset has intersection greater than �m
k� with S� is smaller than

��
m�k�	�� because the expected intersection size is
���� � m
k�� Thus� with positive

probability a randomm
k��subset has intersection at most �m
k� with each of the previous

i�� � �
k� � �
m�k�	� subsets� Note that we construct Si in time
�

k
m�k�

� �
i��� �m
k� �

�k � �
k� � k� and thus S is computable in time k�k � �
k�� � ��k�

Exercise ���� �pseudorandom versus unpredictability� by circuits� In con
tinuation to Exercise ����� show that if there exists a circuit of size s that distin
guishes Zn from U� with gap �� then there exists an i �
 � jZnj and a circuit
of size s $ O��� that given an ibit long pre�x of Zn guesses the i $ �st bit with
success probability at least �

� $

� �

Hint� de�ning hybrids as in Exercise
���� note that� for some i� the given circuit distinguishes

the ith hybrid from the i� �st hybrid with gap at least 	
���

Exercise ���� Suppose that the sets Si
s in Construction ���� are disjoint and
that f � f	� �gm f	� �g is T inapproximable� Prove that for every circuit C of
size T �O��� it holds that jPr�C�G�Uk�� � ��� Pr�C�U�� � ��j �
�T �

Guideline� Prove the contrapositive using Exercise ����� Note that the values of the

i � �st bit of G
Uk� is statistically independent of the values of the �rst i bits of G
Uk��

and thus predicting it yields an approximator for f � Indeed� such an approximator can

be obtained by �xing the the �rst i bits of G
Uk� via an averaging argument�

Exercise ���� �Theorem ����� generalized� Let
�m�m�� T � N N satisfy

�k�� $ eO�
�k��m
�k�� � T �m�k��� Suppose that the following two conditions hold�

�� There exists an exponentialtime computable function f �f	� �g�f	� �g that
is T inapproximable�

�� There exists an exponentialtime computable function S �N�N�N such that
for every k and i � �� ����
�k� it holds that S�k� i� � �k� and jS�k� i�j � m�k��
and jS�k� i� � S�k� j�j � m��k� for every k and i �� j�

Prove that using G as de�ned in Construction ����� with Si � S�k� i�� yields a
canonical derandomizer with stretch
�

Hint� following the proof of Theorem
��
� just note that the circuit constructed for approximat�

ing f�Um�k�� has size ��k�
� � ��k� � eO��m

��k�� and success probability at least ��
�� � ��
���k����

��� CHAPTER �� PSEUDORANDOM GENERATORS

Exercise ���� �Part � of Theorem ����� Prove that if for every polynomial T
there exists a T inapproximable predicate in E then BPP � ����Dtime�t��� where
t��n�

def
� �n

�

�

Guideline� For any p�time algorithm� apply Exercise ���� using �
k� � p
k�	��� m
k� �p
k and m�
k� � O
log k�� Revisit Exercise ���� in order to obtain a set system as required

in Exercise ����
for these parameters�� and use Theorem �����

Exercise ���� �canonical derandomizers imply hard problems� Prove that
the hardness hypothesis made in each part of Theorem ���� is essential for the ex
istence of a corresponding canonical derandomizer� More generaly� prove that the
existence of a canonical derandomizer with stretch
 implies the existence of a
predicate in E that is T inapproximable for T �n� �
�n���O���

Guideline� We focus on obtaining a predicate in E that cannot be computed by circuits

of size �� and note that the claim follows by applying the techniques in x�������� Given a

canonical derandomizer G � f�� �gk � f�� �g��k�� we consider the predicate f � f�� �gk� �
f�� �g that satis�es f
x� � � if and only if there exists s � f�� �gjxj�� such that x is a pre�x

of G
s�� Note that f is in E and that an algorithm computing f yields a distinguisher of

G
Uk� and U��k��

Exercise ���� �multiple samples and space�bounded machines� Suppose that
two probability ensembles� fXkgk�N and fYkgk�N� are �s� ��indistinguishable by
nonuniform machines �i�e�� the distinguishabilitygap of any nonuniform machine
of space s is bounded by the function ��� For any function t � NN � prove

that the ensembles f�X��
k � ���� X

tk��
k �gk�N and f�Y ��

k � ���� X
tk��
k �gk�N are �s� t��

indistinguishable� where X
��
k through X

tk��
k and Y

��
k through Y

tk��
k are inde

pendent random variables� with each X
i�
k identical to Xk and each Y

i�
k identical

to Yk �

Guideline� Use the hybrid technique� When distinguishing the ith and
i� ��st hybrids�

note that the �rst i blocks
i�e�� copies of Xk� as well as the last t
k��
i� �� blocks
i�e��

copies of Yk� can be �xed and hard�wired into the non�uniform distinguisher�

Exercise ���	 Provide an explicit description of the generator outlined in the
proof of Theorem �����

Guideline� for r � f�� �gn and h���� ���� h�t� � Hn� the genera or outputs a �t�long

sequence of n�bit strings such that the ith block equals h�
r�� where h� is a composition

of some of the h�j��s�

Exercise ���� �adaptive t�wise independence tests� Recall that a generator
G � f	� �gk f	� �g��k��bk� is called twise independent if for any t �xed block posi�
tions� the distribution G�Uk� restricted to these t blocks is uniform over f	� �gt�bk��
Prove that the output of a twise independence generator is �perfectly� indistin
guishable from the uniform distribution by any test that examines t of the blocks�
even if the examined blocks are selected adaptively �i�e�� the location of the ith block

���� SPECIAL PURPOSE GENERATORS ���

to be examined is determined based on the contents of the previously inspected
blocks��

Guideline� First show that� without loss of generality� it su�ces to consider deterministic

adaptive� tester� Next� show that the probability that such a tester sees any �xed

sequence of t values at the locations selected adaptively in the generator�s output equals

��t�b�k�� where b
k� is the block length�

Exercise ���� �t�wise independence generator� Prove that G as de�ned in
Proposition ���� produces a twise independent sequence over GF��bk���

Guideline� For every t �xed indices i�� ���� it � ���
k� � consider the distribution of

G
Uk�i������it
i�e�� the projection of G
Uk� on locations i�� ���� it�� Show that for every

sequence of t possible values v�� ���� vt � GF
�b�k��� there exists a unique seed s � f�� �gk
such that G
s�i������it �
v�� ���� vt��

Exercise ��� �pairwise independence generators� As a warmup� consider
a construction analogous to the one in Proposition ��� � where the seed speci�es
an a�ne b�k�bym�k� transformation� That is� for s � f	� �gbk��mk� and r �
f	� �gbk�� where k � b�k� �m�k� $ b�k�� let

G�s� r�
def
� �Asv� $ r � Asv� $ r � ���� Asv��k� $ r� ������

where As is an b�k�bym�k� matrix speci�ed by the string s� Show that G as
in Eq� ������ is a pairwise independence generator of blocksize b and stretch
�
�Note that a related construction appears in the proof of Theorem ���� see also
Exercise �� �� Next� show that G as in Eq� ������ is a pairwise independence
generator of blocksize b and stretch
�

Guideline� The following description applies to both constructions� First note that

for every �xed i � ���
k� � the ith element in the sequence G
Uk�� denoted G
Uk�i� is

uniformly distributed in f�� �gb�k�� Actually� show that for every �xed s � f�� �gk�b�k��
it holds that G
s� Ub�k��i is uniformly distributed in f�� �gb�k�� Next note that it su�ces

to show that� for every j �� i� conditioned on the value of G
Uk�i� the value of G
Uk�j
is uniformly distributed in f�� �gb�k�� The key technical detail is showing that for any

non�zero vector v � f�� �gm�k� it holds that AUk�b�k�v
resp�� TUk�b�k�v� is uniformly

distributed in f�� �gb�k�� This is easy in case of a random b
k��by�m
k� matrix� and can

be proven also for a random Toeplitz matrix�

Exercise ���� �adaptive t�wise independence tests� revisited� Note that in
contrast to Exercise ��� � with respect to non�perfect indistinguishability� there is
a discrepancy between adaptive and nonadaptive tests that inspects t locations�

�� Present a distribution over �t��bit long strings in which each t �xed bit
positions are t ���tclose to uniform� but some test that adaptively inspects t
positions can distinguish this distribution from the uniform one with constant
gap�

Hint� Modify the uniform distribution over ��t� ��� �t����bit long strings such that the

�rst t� � locations indicate a bit position �among the rest� that is set to zero��

��� CHAPTER �� PSEUDORANDOM GENERATORS

�� On the other hand� prove that if each t �xed bit positions in a distribution
X are �close to uniform� then every test that adaptively inspects t positions
can distinguish X the uniform distribution with gap at most �t � ��

Hint� See Exercise
�����

Exercise ���� Suppose that G is an �bias generator with stretch
� Show that
equality between the
�k�bit strings x and y can be probabilistically checked by
comparing the inner product modulo � of x and G�s� to the inner product modulo �
of y and G�s�� where s � f	� �gk is selected uniformly�

Hint� reduce the problem to the special case in which y � ���k���

Exercise ���� �bias versus statistical di�erence from uniform� Let X be
a random variable assuming values in f	� �gt� Prove that if X has bias at most �
over any nonempty set then the statistical di�erence between X and Ut is at most
�t�� � �� and that for every x � f	� �gt it holds that Pr�X � x� � ��t & ��

Guideline� Consider the probability function p � f�� �gt � ��� � de�ned by p
x�
def
�

Pr�X � x � and let 	
x�
def
� p
x�� ��t denote the deviation of p from the uniform proba�

bility function� Viewing the set of real functions over f�� �gt as a �t�dimensional vector

space� consider two orthonormal bases for this space� The �rst basis consists of the

Kroniker� functions fk�g��f
��gt such that k�
x� � � if x � � and k�
x� � � other�

wise� The second basis consists of the
normalize Fourier� functions ffSgS��t� de�ned

by fS
x�
def
� ��t	�

Q
i�S

���xi
where f	
 ��t	����� Note that the bias of X over any

S �� � equals jP
x
p
x� � �t	�fS
x�j� which in turn equals �t	�jP

x
	
x�fS
x�j� Thus� for

every S
including the empty set�� we have jP
x
	
x�fS
x�j ��t	��� which means that

the representation of 	 in the normalize Fourier basis is by coe�cients that have each an

absolute value of at most ��t	��� It follows that the Norm�� of this vector of coe�cients

is upper�bounded by
p

�t �
��t	���� � �� and the two claims follow by noting that they

refer to norms of 	 according to the Kroniker basis� In particular� Norm�� is preserved

under orthonormal bases� the max�norm is upper�bounded by Norm��� and Norm�� is

upper�bounded by
p

�t times the value of the Norm���

Exercise ���� �The LFSR small�bias generator �following ����� Using the
following guidelines �and letting t � k���� analyze the construction outlined fol
lowing Theorem ���� �and depicted in Figure �� ��

�� Prove that ri �
Pt��

j�� c
f�i�
j � sj � where c

f�i�
j is the coe�cient of zj in the

�degree t � �� polynomial obtained by reducing zi modulo the polynomial

f�z� �i�e�� zi �Pt��
j�� c

f�i�
j zj �mod f�z����

Hint� Recall that zt �
Pt��

j�

fjz

j �mod f�z��� and thus zi �
Pt��

j�

fjz

i�tj �mod f�z���

Note the correspondence to ri �
Pt��

j�

fj � ri�tj ��

��Verify that both bases are indeed orthogonal �i�e��
P

x
k��x�k�x� � � for every � �� � andP

x
fS�x�fT �x� � � for every S �� T � and normal �i�e��

P
x
k��x�� � � and

P
x
fS�x�

� � ���

���� SPECIAL PURPOSE GENERATORS ��

�� For any nonempty S � f	� ����
�k� � �g� evaluate the bias of the sequence
r�� ���� r�k��� over S� where f is a random irreducible polynomial of degree t
and s � �s�� ���� st��� � f	� �gt is uniformly distributed� Speci�cally�

�a� For a �xed f and random s � f	� �gt� prove that
P

i�S ri has nonzero
bias if and only if f�z� divides

P
i�S z

i�

Hint� Note that
P

i�S
ri �

Pt��

j�

P
i�S

c
�f�i�
j sj � and use Item ���

�b� Prove that the probability that a random irreducible polynomial of de
gree t divides

P
i�S z

i is +�
�k���t��

Hint� A polynomial of degree n can be divided by at most n
d di�erent irreducible

polynomials of degree d� On the other hand� the number of irreducible polynomials

of degree d over GF��� is %��d
d���

Conclude that for random f and s� the sequence r�� ���� r�k��� has biasO�
�k���t��

Note that an implementation of the LFSR generator requires a mapping of random
k��bit long string to almost random irreducible polynomials of degree k��� Such a
mapping can be constructed in exp�k� time� which is poly�
�k�� if
�k� � exp�"�k���
A more e�cient mapping that uses a O�k�bit long seek is described in ��� Sec� ���

Exercise ���� �limitations on small�bias generators� LetG be an �bias gen
erator with stretch
� and view G as a mapping from GF���k to GF����k�� As such�
each bit in the output of G can be viewed as a polynomial�
 in the k input variables
�each ranging in GF����� Prove that if ��k� � � and each of these polynomials has

total degree at most d then
�k� �Pd
i��

�
k
i

�
�

Guideline� Note that� without loss of generality� all polynomials have a free term equal to

zero
and has individual degree at most � in each variable�� Next� consider the vector space

spanned by all d�monomials over k variables
i�e�� monomial having at most d variables��

Since �
k� � �� the polynomials representing the output bits of G must correspond to a

sequence of independent vectors in this space�
Derive the following corollaries�

�� If �
k� � � then �
k� � �k
regardless of d��

�� If �
k� � � and �
k� � k then G cannot be a linear transformation�

We note that� in contrast to Item ��
e�cient� ��bias generators of stretch �
k� � poly
�
k���
�k do exists
see ���� �� Also� in contrast to Item �� note that G
s� �
s� b
s��� where

b
s�� ���� sk� �
Pk	�

i��
sis�k	��i mod �� is an ��bias generator with �
k� � exp
�!
k���

Hint� Focusing on bias over sets that include the last output bit� prove that without loss of

generality it su�ces to analyze the bias of b�Uk���

Exercise ���� �a sanity check for space�bounded pseudorandomness� The
following fact is suggested as a sanity check for candidate pseudorandom genera
tors with respect to spacebounded machines� The fact �to be proven as an ex
ercise� is that� for every ���� and s��� such that s�k� � � for every k� if G is
�s� ��pseudorandom �as per De�nition ���	�� then G is an �bias generator�

��Recall that every Boolean function over GF�p� can be expressed as a polynomial of individual
degree at most p� ��

��� CHAPTER �� PSEUDORANDOM GENERATORS

Exercise ���	 In continuation to Exercise ����� prove that there exist exp��"�n��
bias distributions over f	� �gn that are not ��� 	����pseudorandom�

Guideline� Show that the uniform distribution over the set f�� � � � �n �
Pn

i��
�i
 �

mod ��g has bias exp
�!
n���

Exercise ���� �approximate t�wise independent generators �following �������
Combining a smallbias generator as in Theorem ���� with the twise independent
generator of Eq� ������� and relying on the linearity of the latter� construct a gen
erator producing
bit long sequences in which any t positions are at most �away
from uniform �in variation distance�� while using a seed of length O�t$ log����� $
log log
�� �For maxnorm a seed of length O�log�t��� $ log log
� su�ces��

Guideline� First note that� for any t� �� and b� the transformation of Eq�
����� can

be implemented by a �xed linear
over GF
��� transformation of a t � b�bit seed into

an ��bit long sequence� where � � �� � b� It follows that there exists a �xed GF
���

linear transformation T of a random seed of length t � b� where b � log� �
�� into a t�wise

independent bit sequence of the length �
i�e�� T Ut�b is t�wise independent over f�� �g���
Thus� every t rows of T are linearly independent� The key observation is that when we

replace the aforementioned random seed by an ���bias sequence� every i t positions in

the output sequence have bias at most ��
because they de�ne a non�zero linear test on

the bits of the ���bias sequence�� Note that the length of the new seed
used to produce

���bias sequence of length t � b� is O
log tb����� Applying Exercise ����� we conclude that

any t positions are at most �t	� ����away from uniform
in variation distance�� Recall that

this was obtained using a seed of length O
log
t���� � log log ��� and the claim follows by

using �� � ��t	� � ��

Exercise ���� �small�bias generator and error�correcting codes� Show a cor
respondence between �bias generators of stretch
 and binary linear errorcorrecting
codes �cf� Appendix E��� mapping
�k�bit long strings to �kbit long strings such
that every two codewords are at distance ��& ��k�� � �k apart�

Guideline� Associate f�� �gk with ��k � Then� a generator G � ��k � f�� �g��k� corre�

sponds to the code C � f�� �g��k� � f�� �g�k such that� for every i � ��
k� and j � ��k �

the ith bit of G
j� equals the jth bit of C
�i������k��i��

Exercise ��� �on the bias of sequences over a �nite �eld� For a prime p�

let � be a random variable assigned values in GF�p� and ��v�
def
� Pr�� � v�� ���p��

Prove that maxv�GFp�fj��v�jg is upperbounded by b
def
� maxc�f������p��gfkE��c��kg�

where � denotes the pth �complex� root of unity� and that
P

v�GFp� j��v�j is upper
bounded by

p
p � b�

Guideline� Analogously to Exercise ����� view probability distributions over GF
p� as

p�ary vectors� and consider two bases for the set of complex functions over GF
p�� the

Kroniker basis
i�e�� ki
x� � � if x � i and ki
x� � �� and the
normalize� Fourier basis

i�e�� fi
x� � p��	� � �ix�� Note that the biases of � corresponds to the inner products of

	 with the non�constant Fourier functions� whereas the distances of � from the uniform

distribution correspond to the inner products of 	 with the Kroniker functions�

���� SPECIAL PURPOSE GENERATORS ���

Exercise ���� �a version of the Expander Random Walk Theorem� Using
notations as in Theorem ����� prove that the probability that a random walk of
length
� stays in W is at most �� $ ���d����

���� In fact� prove a more general
claim that refers to the probability that a random walk of length
� intersects
W� �W� � � � � �W����� The claimed upperbound is

p
�� �

����Y
i��

q
�i $ ���d��� ������

where �i
def
� jWij�jV j�

Guideline� View the random walk as the evolution of a corresponding probability vector

under suitable transformations� The transformations correspond to taking a random step

in the graph and to passing through a �sieve� that keeps only the entries that correspond

to the current set Wi� The key observation is that the �rst transformation shrinks the

component that is orthogonal to the uniform distribution
which is the �rst eigenvalue

of the adjacency matrix of the expander�� whereas the second transformation shrinks the

component that is in the direction of the uniform distribution� For further details� see

xE�������

Exercise ���� Using notations as in Theorem ����� prove that the probability
that a random walk of length
� visits W more than �
� times is smaller than�
��

���

� � ��$���d�����
���� For example� for � � ��� and ��d �

p
�� we get an upper

bound of ������
���� We comment that much better bounds can be obtained �cf��

e�g�� �������

Hint� Use a union bound on all possible sequences of m � ��� visits� and upper�bound the

probability of visitingW in steps j�� ���� jm by applying Eq� �
��	� with Wi � W if i � fj�� ���� jmg
and W � V otherwise��

��� CHAPTER �� PSEUDORANDOM GENERATORS

Chapter

Probabilistic Proof Systems

A proof is whatever convinces me�

Shimon Even ���� ��		��

Various types of probabilistic proof systems have played a central role in the de
velopment of computer science in the last couple of decades� In this chapter� we
concentrate on three such proof systems� interactive proofs� zero�knowledge proofs�
and probabilistic checkable proofs� These proof systems share a common �untra
ditional� feature � they carry a probability of error �which is explicitly bounded
and can be reduced by successive application of the proof system�� The gain in
allowing this untraditional relaxation is substantial� as demonstrated by the three
results mentioned in the summary�

Summary� The association of e�cient procedures with deterministic
polynomialtime procedures is the basis for viewing NPproof systems
as the canonical formulation of proof systems �with e�cient veri�ca
tion procedures�� Allowing probabilistic veri�cation procedures and�
moreover� ruling by statistical evidence gives rise to various types of
probabilistic proof systems� These probabilistic proof systems carry an
explicitly bounded probability of error� but they o�er various advan
tages over the traditional �deterministic and errorless� proof systems�

Randomized and interactive veri�cation procedures� giving rise to inter�
active proof systems� seem much more powerful than their deterministic
counterparts� In particular� such interactive proof systems exist for any
set in PSPACE � coNP �e�g�� for the set of unsatis�ed propositional
formulae�� whereas it is widely believed that some sets in coNP do not
have NPproof systems �i�e�� NP �� coNP�� We stress that a �proof�
in this context is not a �xed and static object� but rather a randomized
�and dynamic� process in which the veri�er interacts with the prover�
Intuitively� one may think of this interaction as consisting of questions
asked by the veri�er� to which the prover has to reply convincingly�

���

� 	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Such randomized and interactive veri�cation procedures allow for the
meaningful conceptualization of zero�knowledge proofs� which are of
great conceptual and practical interest �especially in cryptography��
Loosely speaking� zeroknowledge proofs are interactive proofs that
yield nothing �to the veri�er� beyond the fact that the assertion is
indeed valid� For example� a zeroknowledge proof that a certain propo
sitional formula is satis�able does not reveal a satisfying assignment to
the formula nor any partial information regarding such an assignment
�e�g�� whether the �rst variable can assume the value true�� Thus� the
successful veri�cation of a zeroknowledge proof exhibit an extreme con
trast between being convinced of the validity of a statement and learning
anything in addition �while receiving such a convincing proof�� It turns
out that� under reasonable complexity assumptions �i�e�� assuming the
existence of oneway functions�� every set in NP has a zeroknowledge
proof system�

NPproofs can be e�ciently transformed into a �redundant� form that
o�ers a tradeo� between the number of locations �randomly� exam
ined in the resulting proof and the con�dence in its validity� In par
ticular� it is known that any set in NP has an NPproof system that
supports probabilistic veri�cation such that the error probability de
creases exponentially with the number of bits read from the alleged
proof� These redundant NPproofs are called probabilistically checkable
proofs �or PCPs�� In addition to their conceptually fascinating nature�
PCPs have played a key role in the study of the complexity of approx
imation problems�

Prerequisites� We assume a basic familiarity with elementary probability theory
�see Appendix D��� and randomized algorithms �see Section �����

Introduction and Preliminaries

The glory attached to the creativity involved in �nding proofs� makes us forget that
it is the less glori�ed process of veri�cation that gives proofs their value� Conceptu
ally speaking� proofs are secondary to the veri�cation process� whereas technically
speaking� proof systems are de�ned in terms of their veri�cation procedures�

The notion of a veri�cation procedure presumes the notion of computation and
furthermore the notion of e�cient computation� This implicit stipulation is made
explicit in the de�nition of NP �cf� De�nition �� �� in which e�cient computation
is associated with �deterministic� polynomialtime algorithms�� Thus� NP provides
the ultimate formulation of proof systems �with e�cient veri�cation procedures�

�Recall that the formulation of NP�proof systems explicitly restricts the length of proofs to be
polynomial in the length of the assertion� Thus� veri�cation is performed in a number of steps
that is polynomial in the length of the assertion� We comment that deterministic proof systems
that allow for longer proofs �but require that veri�cation is e�cient in terms of the length of the
alleged proof� can be modeled as NP�proof systems by adequate padding �of the assertion��

���� INTERACTIVE PROOF SYSTEMS � �

as long as one associates e�cient procedures with deterministic polynomialtime
algorithms� However� we can gain a lot if we are willing to take a somewhat non
traditional step and allow probabilistic veri�cation procedures� In particular�

� Interactive proof systems� which employ randomized and interactive veri�ca
tion procedures� seem much more powerful than their deterministic counter
parts�

� Such interactive proof systems allow for the construction of �meaningful�
zeroknowledge proofs� which are of great theoretical and practical interest�

� NPproofs can be e�ciently transformed into a �redundant� form that sup
ports superfast probabilistic veri�cation via very few random probes into the
alleged proof�

In all these cases� explicit bounds are imposed on the computational complexity of
the veri�cation procedure� which in turn is personi�ed by the notion of a veri�er�
Furthermore� in all these proof systems� the veri�er is allowed to toss coins and
rule by statistical evidence� Thus� all these proof systems carry a probability of
error� yet� this probability is explicitly bounded and� furthermore� can be reduced
by successive application of the proof system�

One important convention� When presenting a proof system� we state all
complexity bounds in terms of the length of the assertion to be proven �which
is viewed as an input to the veri�er�� Namely� when we say �polynomialtime�
we mean time that is polynomial in the length of this assertion� Actually� as
will become evident� this is the natural choice in all the cases that we consider�
Note that this convention is consistent with the de�nition of NPproof systems �cf�
De�nition �� �� because poly�j�x� y�j� � poly�jxj� for jyj � poly�jxj��

Notational Conventions� Denote by poly the set of all integer functions bounded
by a polynomial and by log the set of all integer functions bounded by a logarithmic
function �i�e�� f � log i� f�n� � O�log n��� All complexity measures mentioned in
the subsequent exposition are assumed to be constructible in polynomialtime�

Organization� In Section ��� we present the basic de�nitions and results regard
ing interactive proof systems� The de�nition of an interactive proof systems is the
starting point for a discussion of zeroknowledge proofs� which is provided in Sec
tion ���� Section ���� which presents the basic de�nitions and results regarding
probabilistically checkable proofs �PCP�� can be read independently of the other
sections�

��� Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations�
it is only natural to associate the notion of e�cient computation with probabilistic

� � CHAPTER �� PROBABILISTIC PROOF SYSTEMS

and interactive polynomialtime computations� This leads naturally to the notion
of an interactive proof system in which the veri�cation procedure is interactive and
randomized� rather than being noninteractive and deterministic� Thus� a �proof�
in this context is not a �xed and static object� but rather a randomized �dynamic�
process in which the veri�er interacts with the prover� Intuitively� one may think
of this interaction as consisting of questions asked by the veri�er� to which the
prover has to reply convincingly� The foregoing discussion� as well as the de�nition
provided in Section ������ makes explicit reference to a prover� whereas a prover is
only implicit in the traditional de�nitions of proof systems �e�g�� NPproof systems��
Before turning to the actual de�nition� we highlight and further discuss some of
the foregoing issues�

A static object versus an interactive process� Traditionally in mathematics�
a �proof� is a �xed sequence consisting of statements that are either selfevident or
are derived from previous statements via selfevident rules� Actually� both concep
tually and technically� it is more accurate to substitute the phrase �selfevident�
by the phrase �commonly agreed� �because� at the last account� selfevidence is a
matter of common agreement�� In fact� in the formal study of proofs �i�e�� logic��
the commonly agreed statements are called axioms� whereas the commonly agreed
rules are referred to as derivation rules� We highlight a key property of mathemat�
ics proofs� proofs are viewed as �xed �static� objects� In contrast� in other areas of
human activity� the notion of a �proof� has a much wider interpretation� In partic
ular� a proof is not a �xed object but rather a process by which the validity of an
assertion is established� For example� in the context of Law� the crossexamination
of a witness in court �including its nonverbal components� may be considered a
proof �or a refutation� of some claim� Likewise� debates that take place in daily life
have an analogous potential of establishing claims and are then perceived as proofs�
This perception is quite common in philosophical and political debates� and arise
also in scienti�c debates� Furthermore� some technical �proofs by contradiction�
appeal to this daily experience by emulating an imaginary debate with a potential
�generic� skeptic�

We note that� in mathematics� proofs are often considered more fundamental
than their consequence �i�e�� the theorem�� In contrast� in many daily situations�
proofs are considered secondary �in importance� to their consequence� These con
�icting attitudes are wellcoupled with the di�erence between written proofs and
�interactive� proofs� If one values the proof itself then one may insist on having it
archived� whereas if one only cares about the consequence then the way in which
it is reached is immaterial�

Interestingly� the set of daily attitudes will be adequate in the current chapter�
where proofs are viewed merely as a vehicle for the veri�cation of the validity of
claims� �This attitude gets to an extreme in the case of zeroknowledge proofs�
where we actually require that the proofs themselves be useless beyond being con
vincing of the validity of the claimed assertion�� In general� we will be interested in
modeling various forms of proofs� focusing on proofs that can be veri�ed by auto
mated procedures� These veri�cation procedures are designed to check the validity

���� INTERACTIVE PROOF SYSTEMS � �

of potential proofs� and are oblivious of additional features that appeal to humans
such as beauty� insightfulness� etc� In the current section we will consider the most
general form of proof systems that still allow e�cient veri�cation�

We note that the proof systems that we study refer to mundane theorems �e�g��
asserting that a speci�c propositional formula is not satis�able or that a party sent
a message as instructed by a predetermined protocol�� We stress that the �meta�
theorems that we shall state regarding these proof systems will be proven in the
traditional mathematical sense�

Prover and Veri�er� The notion of a prover is implicit in all discussions of
proofs� be it in mathematics or in other situations� the prover is the �sometimes
hidden or transcendental� entity providing the proof� In contrast� the notion of a
veri�er tends to be more explicit in such discussions� which typically emphasize the
veri�cation process� or in other words the role of the veri�er� Both in mathematics
and in daily situations� proofs are de�ned in terms of the veri�cation procedure�
The veri�cation procedure is considered to be relatively simple� and the burden is
placed on the party�person supplying the proof �i�e�� the prover�� The asymmetry
between the complexity of the veri�cation task and the complexity of the theorem
proving task is captured by the de�nition of NPproof systems �i�e�� veri�cation
is required to be e�cient� whereas P �� NP implies that in some cases �nding
adequate proofs is infeasible��

We highlight the �distrustful attitude� towards the prover� which underlies any
proof system� If the veri�er trusts the prover then no proof is needed� Hence�
whenever discussing a proof system one considers a setting in which the veri�er
is not trusting the prover� and furthermore is skeptic of anything that the prover
says� In such a setting the prover
s goal is to convince the veri�er� while the veri�er
should make sure it is not fooled by the prover�

Completeness and Soundness� Two fundamental properties of a proof system
�i�e�� of a veri�cation procedure� are its soundness �or validity� and completeness�
The soundness property asserts that the veri�cation procedure cannot be �tricked�
into accepting false statements� In other words� soundness captures the veri�er
s
ability to protect itself from being convinced of false statements �no matter what
the prover does in order to fool it�� On the other hand� completeness captures the
ability of some prover to convince the veri�er of true statements �belonging to some
predetermined set of true statements�� Note that both properties are essential to
the very notion of a proof system�

We note that not every set of true statements has a �reasonable� proof system
in which each of these statements can be proven �while no false statement can be
�proven��� This fundamental phenomenon is given a precise meaning in results
such as G�odel	s Incompleteness Theorem and Turing
s theorem regarding the un�
decidability of the Halting Problem� In contrast� recall that NP was de�ned as the
class of sets having proof systems that support e�cient deterministic veri�cation
�of �written proofs��� This section is devoted to the study of a more liberal notion
of e�cient veri�cation procedures �allowing both randomization and interaction��

� � CHAPTER �� PROBABILISTIC PROOF SYSTEMS

����� De�nition

Loosely speaking� an interactive proof is a game between a computationally bounded
veri�er and a computationally unbounded prover whose goal is to convince the veri
�er of the validity of some assertion� Speci�cally� the veri�er employs a probabilistic
polynomialtime strategy� It is required that if the assertion holds then the veri�er
always accepts �i�e�� when interacting with an appropriate prover strategy�� On the
other hand� if the assertion is false then the veri�er must reject with probability
at least �

� � no matter what strategy is being employed by the prover� �The error
probability can be reduced by running such a proof system several times��

Formally� a strategy for a party describes the party	s next move �i�e�� its next
message or its �nal decision� as a function of the common input �i�e�� the afore
mentioned assertion�� its internal coin tosses� and all messages it has received so
far� That is� we assume that each party records the outcomes of its past coin
tosses as well as all the messages it has received� and determines its moves based
on these� Thus� an interaction between two parties� employing strategies A and B
respectively� is determined by the common input� denoted x� and the randomness
of both parties� denoted rA and rB � Assuming that A takes the �rst move �and
B takes the last one�� the corresponding interaction transcript �on common input
x and randomness rA and rB� is ��� ��� ���� �t� �t� where �i � A�x� rA� ��� ���� �i���
and �i � B�x� rB � ��� ���� �i�� The corresponding �nal decision of A is de�ned as
A�x� rA� ��� ���� �t��

We say that a party employs a probabilistic polynomial�time strategy if its next
move can be computed in a number of steps that is polynomial in the length of
the common input� In particular� this means that� on input common input x� the
strategy may only consider a polynomial in jxj many messages� which are each of
poly�jxj� length�� Intuitively� if the other party exceeds an a priori �polynomial in
jxj� bound on the total length of the messages that it is allowed to send� then the
execution is suspended� Thus� referring to the aforementioned strategies� we say
that A is a probabilistic polynomialtime strategy if� for every i and rA� ��� ���� �i�
the value of A�x� rA� ��� ���� �i� can be computed in time polynomial in jxj� Again�
in proper use� it must hold that jrAj� t and the j�ij
s are all polynomial in jxj�

De�nition ��� �Interactive Proof systems � IP��� An interactive proof system for
a set S is a two�party game� between a veri�er executing a probabilistic polynomial
time strategy� denoted V � and a prover that executes a �computationally unbounded�
strategy� denoted P � satisfying the following two conditions�

� Completeness� For every x � S� the veri�er V always accepts after interacting
with the prover P on common input x�

�Needless to say� the number of internal coin tosses fed to a polynomial�time strategy must
also be bounded by a polynomial in the length of x�

�We follow the convention of specifying strategies for both the veri�er and the prover� An
alternative presentation only speci�es the veri�er�s strategy� while rephrasing the completeness
condition as follows� There exists a prover strategy P so that� for every x � S� the veri�er V
always accepts after interacting with P on common input x�

���� INTERACTIVE PROOF SYSTEMS �

� Soundness� For every x �� S and every strategy P �� the veri�er V rejects with
probability at least �

� after interacting with P � on common input x�

We denote by IP the class of sets having interactive proof systems�

The error probability �in the soundness condition� can be reduced by successive
applications of the proof system� �This is easy to see in the case of sequential
repetitions� but holds also for parallel repetitions� see Exercise ����� In particular�
repeating the proving process for k times� reduces the probability that the veri�er
is fooled �i�e�� accepts a false assertion� to ��k� and we can a�ord doing so for any
k � poly�jxj�� �Variants on the basic de�nition are discussed in Section �������

The role of randomness� Randomness is essential to the power of interactive
proofs� that is� restricting the veri�er to deterministic strategies yields a class of
interactive proof systems that has no advantage over the class of NPproof systems�
The reason being that� in case the veri�er is deterministic� the prover can predict
the veri�er
s part of the interaction� Thus� the prover can just supply its own
sequence of answers to the veri�er
s sequence of �predictable� questions� and the
veri�er can just check that these answers are convincing� Actually� we establish
that soundness error �and not merely randomized veri�cation� is essential to the
power of interactive proof systems �i�e�� their ability to reach beyond NPproofs��

Proposition ��� Suppose that S has an interactive proof system �P� V � with no
soundness error� that is� for every x �� S and every potential strategy P �� the veri�er
V rejects with probability one after interacting with P � on common input x� Then
S � NP�

Proof� We may assume� without loss of generality� that V is deterministic �by
just �xing arbitrarily the contents of its randomtape �e�g�� to the allzero string�
and noting that both �perfect� completeness and perfect �i�e�� errorless� soundness
still hold�� Since V is deterministic� the prover can predict each message sent by
V �because each such message is uniquely determined by the common input and
the previous prover messages�� Thus� a sequence of optimal prover
s messages �i�e��
a sequence of messages leading V to accept x� can be �pre�determined �without
interacting with V � based solely on the common input x� �Note that we do not
care about the complexity of determining such a sequence� since no computational
bounds are placed on the prover�� Formally� x � S if and only if there exists a
sequence of �prover
s� messages that make �the deterministic� V accept x� where
the question of whether a speci�c sequence makes V accept x depends only on the
sequence and on the common input x �because V tosses no coins that may a�ect
this decision�� It follows that S � NP �

Indeed� the punchline of the foregoing proof is that the prover gains nothing
from interacting with an easily predictable veri�er �i�e�� a veri�er that determines
its messages in deterministic polynomialtime based on the common input and the

� � CHAPTER �� PROBABILISTIC PROOF SYSTEMS

prover
s prior messages��� The prover can just produce the entire interaction by
itself �and send it to the veri�er for veri�cation�� The moral is is that there is
no point to interact with a party whose moves are easily predictable� This moral
represents the prover
s point of view �regarding deterministic veri�ers�� Certainly�
from the veri�er
s point of view it is bene�cial to interact with the prover� because
the latter is computationally stronger �and thus its moves may not be easily pre
dictable by the veri�er even in case they are predictable in an information theoretic
sense��

����� The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems
in the sense that without randomness interactive proofs are not more powerful than
NPproofs� Indeed� the power of interactive proof arises from the combination of
randomization and interaction� We �rst demonstrate this point by a simple proof
system for a speci�c coNPset that is not known to have an NPproof system� and
next prove the celebrated result IP � PSPACE � which suggests that interactive
proofs are much stronger than NPproofs�

������� A simple example

One day on the Olympus� brighteyed Athena claimed that Nectar
poured out of the new silvercoated jars tastes less good than Nec
tar poured out of the older golddecorated jars� Mighty Zeus� who was
forced to introduce the new jars by the practically oriented Hera� was
annoyed at the claim� He ordered that Athena be served one hundred
glasses of Nectar� each poured at random either from an old jar or from
a new one� and that she tell the source of the drink in each glass� To
everybody�s surprise� wise Athena correctly identi�ed the source of each
serving� to which the Father of the Gods responded �my child� you are
either right or extremely lucky�� Since all gods knew that being lucky
was not one of the attributes of PallasAthena� they all concluded that
the impeccable goddess was right in her claim�

The foregoing story illustrates the main idea underlying the interactive proof for
Graph NonIsomorphism� presented in Construction ���� Informally� this interac
tive proof system is designed for proving dissimilarity of two given objects �in the
foregoing story these are the two brands of Nectar� whereas in Construction ���
these are two nonisomorphic graphs�� We note that� typically� proving similarity
between objects is easy� because one can present a mapping �of one object to the
other� that demonstrates this similarity� In contrast� proving dissimilarity seems
harder� because in general there seems to be no succinct proof of dissimilarity� More
generally� it is typically easy to prove the existence of an easily veri�able structure in

�Note that knowledge of the veri�er�s messages may be essential for answering these questions
convincingly� In the case that V is deterministic its messages can be determined by the prover�
but this may not be possible in the general case �i�e�� when V is randomized��

���� INTERACTIVE PROOF SYSTEMS � �

the given object by merely presenting this structure� but proving the nonexistence
of such a structure seems hard� Formally� membership in an NPset is proved by
presenting an NPwitness� but it is not clear how to prove the nonexistence of such
witness� Indeed� recall that the common belief is that coNP �� NP �

Two graphs� G���V�� E�� and G���V�� E��� are called isomorphic if there exists
a �� and onto mapping� �� from the vertex set V� to the vertex set V� such that
fu� vg � E� if and only if f��v�� ��u�g � E�� This ��edge preserving�� mapping
�� in case it exists� is called an isomorphism between the graphs� The following
protocol speci�es a way of proving that two graphs are not isomorphic� while it is
not known whether such a statement can be proven via a noninteractive process
�i�e�� via an NPproof system��

Construction ��� �Interactive proof for Graph NonIsomorphism��

� Common Input� A pair of graphs� G���V�� E�� and G���V�� E���

� Veri�er
s �rst step �V��� The veri�er selects at random one of the two input
graphs� and sends to the prover a random isomorphic copy of this graph�
Namely� the veri�er selects uniformly 	 � f�� �g� and a random permutation
� from the set of permutations over the vertex set V�� The veri�er constructs
a graph with vertex set V� and edge set

E
def
� ff��u�� ��v�g � fu� vg�E�g

and sends �V� � E� to the prover�

� Motivating Remark� If the input graphs are non�isomorphic� as the prover
claims� then the prover should be able to distinguish �not necessarily by an
e�cient algorithm� isomorphic copies of one graph from isomorphic copies of
the other graph� However� if the input graphs are isomorphic� then a random
isomorphic copy of one graph is distributed identically to a random isomorphic
copy of the other graph�

� Prover
s step� Upon receiving a graph� G� � �V �� E��� from the veri�er� the
prover �nds a � f�� �g such that the graph G� is isomorphic to the input
graph G� � �If both ��� � satisfy the condition then is selected arbitrarily�
In case no � f�� �g satis�es the condition� is set to ��� The prover sends
 to the veri�er�

� Veri�er
s second step �V��� If the message� � received from the prover equals
	 �chosen in Step V�� then the veri�er outputs � �i�e�� accepts the common
input�� Otherwise the veri�er outputs � �i�e�� rejects the common input��

The veri�er
s strategy in Construction ��� is easily implemented in probabilistic
polynomialtime� We do not known of a probabilistic polynomialtime implemen
tation of the prover
s strategy� but this is not required� The motivating remark
justi�es the claim that Construction ��� constitutes an interactive proof system for

� � CHAPTER �� PROBABILISTIC PROOF SYSTEMS

the set of pairs of nonisomorphic graphs�� Recall that the latter is a coNPset
�which is not known to be in NP��

������� The full power of interactive proofs

The interactive proof system of Construction ��� refers to a speci�c coNPset that
is not known to be in NP � It turns out that interactive proof systems are powerful
enough to prove membership in any coNPset �e�g�� prove that a graph is not �
colorable�� Thus� assuming that NP �� coNP� this establishes that interactive
proof systems are more powerful than NPproof systems� Furthermore� the class
of sets having interactive proof systems coincides with the class of sets that can be
decided using a polynomial amount of workspace�

Theorem ��	 �The IP Theorem�� IP � PSPACE�

Recall that it is widely believed that NP is a proper subset of PSPACE � Thus�
under this conjecture� interactive proofs are more powerful than NPproofs�

Sketch of the Proof of Theorem ��	

Theorem ���� was established using algebraic methods �see details below�� In partic
ular� the following approach � unprecedented in complexity theory � was employed�
In order to demonstrate that a particular set is in a particular class� an arithmetic
generalization of the Boolean problem is presented� and �elementary� algebraic
methods are applied for showing that the arithmetic problem is solvable within
the class� Following is a sketch of the proof� We �rst show that coNP � IP � by
presenting an interactive proof system for the coNPcomplete set of nonsatis�able
CNF formulae� Next we extend this proof system to obtain one for the PSPACE
complete set of nonsatis�able Quanti�ed Boolean Formulae� Finally� we observe
that IP � PSPACE �

Teaching note� Our presentation focuses on the main ideas� and neglects various

implementation details
which can be found in ��� ��� �� Furthermore� we devote

most of the presentation to establishing that coNP � IP� and recommend doing the

same in class�

Arithmetization of Boolean �CNF� formulae� Given a Boolean �CNF� for
mula� we replace the Boolean variables by integer variables� and replace the logical
operations by corresponding arithmetic operations� In particular� orclauses are
replaced by sums� and the top level conjunction is replaced by a product� Then�
we consider the formal summation of the resulting arithmetic expression� where

�In case G� is not isomorphic to G�� no graph can be isomorphic to both input graphs �i�e��
both to G� and to G��� In this case the graph G� sent in Step �V�� uniquely determines the bit
�� On the other hand� if G� and G� are isomorphic then� for every G� sent in Step �V��� the
number of isomorphisms between G� and G� equals the number of isomorphisms between G� and
G�� It follows that� in this case G�� yields no information about � �chosen by the veri�er�� and so
no prover may convince the veri�er with probability exceeding �
��

���� INTERACTIVE PROOF SYSTEMS � �

summation is taken over all 	� assignments to its variables� For example� the
Boolean formula

�x� � �x� � x�	�
 �x� � x��
 ��x� � �x��

is replaces by the arithmetic expression

�x� $ ��� x�� $ x�	� � �x� $ x�� � ���� x�� $ ��� x���

and the Boolean formula is non�satis�able if and only if the sum of the arithmetic
expression� taken over all choices of x�� x�� ���� x�	 � f	� �g� equals �� Thus� proving
that the original Boolean formula is nonsatis�able reduces to proving that the
corresponding arithmetic summation evaluates to 	� We highlight two additional
observations regarding the resulting arithmetic expression�

�� The arithmetic expression is a low degree polynomial over the integers� specif
ically� its �total� degree equals the number of clauses in the original Boolean
formula�

�� For any Boolean formula� the value of the corresponding arithmetic expression
�for any choice of x�� ���� xn � f	� �g� resides within the interval �	� vm�� where
v is the maximum number of variables in a clause� and m is the number of
clauses� Thus� summing over all �n possible 	� assignments� where n � vm
is the number of variables� the result resides in �	� �nvm��

Moving to a Finite Field� Whenever we need to check equality between two
integers in �	�M �� it su�ces to check their equality mod q� where q � M � The
bene�t is that the arithmetic is now in a �nite �eld �mod q�� and so certain things
are �nicer� �e�g�� uniformly selecting a value�� Thus� proving that a CNF formula
is not satis�able reduces to proving an equality of the following formX

x�����

� � �
X

xn����

��x�� ���� xn� � 	 �mod q�� �����

where � is a low degree multivariate polynomial� In the rest of this exposition� all
arithmetic operations refer to the �nite �eld of q elements� denoted GF�q��

Overview of the actual protocol� stripping summations in iterations�
Given a formal expression as in Eq� ������ we strip o� summations in iterations�
stripping a single summation at each iteration� and instantiate the corresponding
free variable as follows� At the beginning of each iteration the prover is supposed
to supply the univariate polynomial representing the residual expression as a func
tion of the �single� currently stripped variable� �By Observation �� this is a low
degree polynomial and so it has a short description��� The veri�er checks that the

�We also use Observation �� which implies that we may use a �nite �eld with elements having
a description length that is polynomial in the length of the original Boolean formula �i�e�� log� q �
O�vm���

��	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

polynomial �say� p� is of low degree� and that it corresponds to the current value
�say� v� being claimed �i�e�� it veri�es that p�	� $ p��� � v�� Next� the veri�er ran
domly instantiates the currently free variable �i�e�� it selects uniformly r � GF�q���
yielding a new value to be claimed for the resulting expression �i�e�� the veri�er
computes v � p�r�� and expects a proof that the residual expression equals v��
The veri�er sends the uniformly chosen instantiation �i�e�� r� to the prover� and the
parties proceed to the next iteration �which refers to the residual expression and
to the new value v�� At the end of the last iteration� the veri�er has a closed form
expression �i�e�� an expression without formal summations�� which can be easily
checked against the claimed value�

A single iteration �detailed�� The ith iteration is aimed at proving a claim of
the form X

xi����

� � �
X

xn����

��r�� ���� ri��� xi� xi��� ���� xn� � vi�� �mod q�� �����

where v� � 	� and r�� ���� ri�� and vi�� are as determined in previous iterations�
The ith iteration consists of two steps �messages�� a prover step followed by a
veri�er step� The prover is supposed to provide the veri�er with the univariate
polynomial pi that satis�es

pi�z�
def
�

X
xi������

� � �
X

xn����

��r�� ���� ri��� z� xi��� ���� xn� mod q � �����

Denote by p�i the actual polynomial sent by the prover �i�e�� the honest prover sets
p�i � pi�� Then� the veri�er �rst checks if p�i�	� $ p�i��� � vi�� �mod q�� and next
uniformly selects ri � GF�q� and sends it to the prover� Needless to say� the veri�er
will reject if the �rst check is violated� The claim to be proven in the next iteration
is X

xi������

� � �
X

xn����

��r�� ���� ri��� ri� xi��� ���� xn� � vi �mod q�� �����

where vi
def
� p�i�ri� mod q�

Completeness of the protocol� When the initial claim �i�e�� Eq� ������ holds�
the prover can supply the correct polynomials �as determined in Eq� ������� and
this will lead the veri�er to always accept�

Soundness of the protocol� It su�ces to upperbound the probability that� for
a particular iteration� the entry claim �i�e�� Eq� ������ is false while the ending claim
�i�e�� Eq� ������ is valid� Both claims refer to the current summation expression
being equal to the current value� where %current
 means either at the beginning
of the iteration or at its end� Let p��� be the actual polynomial representing the
expression when stripping the current variable� and let p���� be any potential answer
by the prover� We may assume that p��	� $ p���� � v �mod q� and that p� is of

���� INTERACTIVE PROOF SYSTEMS ���

lowdegree �as otherwise the veri�er will reject�� Using our hypothesis �that the
entry claim of Eq� ����� is false�� we know that p�	� $ p��� �� v �mod q�� Thus�
p� and p are di�erent lowdegree polynomials� and so they may agree on very few
points �if at all�� In case the veri�er instantiation �i�e�� its choice of random r� does
not happen to be one of these few points� the ending claim �i�e�� Eq� ������ is false
too �because p�r� �� p��r� �mod q�� whereas the new value is set to p��r� mod q
and the residual expression evaluates to p�r��� Details are left as an exercise �see
Exercise �����

This establishes that the set of nonsatis�able CNF formulae has an interactive
proof system� Actually� a similar proof system �which uses a related arithmeti
zation � see Exercise ���� can be used to prove that a given formula has a given
number of satisfying assignment� i�e�� prove membership in the ��counting�� set

f��� k� � jf � ��� � �gj � kg � ��� �

Using adequate reductions� it follows that every problem in �P has an interactive
proof system �i�e�� for every R � PC� the set f�x� k� � jfy � �x� y��Rgj � kg is in
IP�� Proving that PSPACE � IP requires a little more work�

Interactive Proofs for PSPACE �basic idea�� We present an interactive
proof for the set of satis�ed Quanti�ed Boolean Formulae �QBF�� which is complete
for PSPACE �see Theorem �� ��	 Recall that the number of quanti�ers in such
formulae is unbounded �e�g�� it may be polynomially related to the length of the
input�� that there are both existential and universal quanti�ers� and furthermore
these quanti�ers may alternate� In the arithmetization of these formulae� we replace
existential quanti�ers by summations and universal quanti�ers by products� Two
di�culties arise when considering the application of the forgoing protocol to the re
sulting arithmetic expression� Firstly� the �integral� value of the expression �which
may involve a big number of nested formal products� is only upperbounded by a
doubleexponential function �in the length of the input�� Secondly� when stripping
a summation �or a product�� the expression may be a polynomial of high degree
�due to nested formal products that may appear in the remaining expression�� For
example� both phenomena occur in the following expressionX

x����

Y
y�����

� � �
Y

yn����

�x$ yn� �

which equals
P

x���� x
�n�� � �� $ x��

n��

� The �rst di�culty is easy to resolve by
using the fact �to be established in Exercise ���� that if two integers in �	�M � are
di�erent then they must be di�erent modulo most of the primes in the interval
��� poly�logM��� Thus� we let the veri�er selects a random prime q of length that
is linear in the length of the original formula� and the two parties consider the
arithmetic expression reduced modulo this q� The second di�culty is resolved

�Actually� the following extension of the foregoing proof system yields a proof system for the set
of unsatis�ed Quanti�ed Boolean Formulae �which is also complete for PSPACE�� Alternatively�
one may extend the related proof system presented in Exercise 	���

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

by noting that PSPACE is actually reducible to a special form of QBF in which
no variable appears both to the left and to the right of more than one universal
quanti�er �see the proof of Theorem �� or alternatively Exercise �� �� It follows
that when arithmetizing and stripping summations �or products� from the resulting
arithmetic expression� the corresponding univariate polynomial is of low degree
�i�e�� at most twice the length of the original formula� where the factor of two is
due to the single universal quanti�er that has this variable quanti�ed on its left
and appearing on its right��

IP is contained in PSPACE� We shall show that� for every interactive proof
system� there exists an optimal prover strategy that can be implemented in polynomial
space� where an optimal prover strategy is one that maximizes the probability that
the prescribed veri�er accepts the common input� It follows that IP � PSPACE�
because �for every S � IP� we can emulate the interaction of the prescribed veri�er
with an optimal prover strategy in polynomial space�

Proposition ��� Let V be a probabilistic polynomial�time interactive machine�
Then� there exists a polynomial�space computable prover strategy f that� for every
x maximizes the probability that V accepts x� That is� for every P � and every x it
holds that the probability that V accepts x after interacting with P � is upper�bounded
by the probability that V accepts x after interacting with f �

Proof Sketch� For every common input x and any possible partial transcript �
of the interaction so far� the strategy
 f determines an optimal next message for
the prover by considering all possible coin tosses of the veri�er that are consistent
with �x� ��� Speci�cally� f is determined recursively such that f�x� �� � m if m
maximizes the number of veri�er coins that are consistent with �x� �� and lead the
veri�er to accept when subsequent prover moves are determined by f �which is
where recursion is used�� That is� coins r support the setting f�x� �� � m� where
� � ���� ��� ���� �t� �t�� if the following two conditions hold�

�� r is consistent with �x� ��� which means that for every i � f�� ���� tg it holds
that �i � V �x� r� ��� ���� �i��

�� r leads V to accept �when subsequent prover moves are determined by f��
which means that V �x� r� ��� ���� �t�m� �t��� ���� �T � � �� where for every i �
ft $ �� ���� T � �g it holds that �i�� � f�x� ��m� �t��� ���� �i� �i� and �i �
V �x� r� ��� ���� �t�m� �t��� ���� �i��

That is� f�x� �� � m if m maximizes the value of E�f�x� ��m� V �x�R� �m���� where
R� is selected uniformly among the r
s that are consistent with �x� ��� Thus� the
value f�x� �� can be computed in polynomialspace when given oracle access to
f�x� �� �� ��� and the proposition follows by standard composition of spacebounded
computations�

�For sake of convenience� when describing the strategy f � we refer to the entire partial tran�
script of the interaction with V �rather than merely to the sequence of previous messages sent by
V ��

���� INTERACTIVE PROOF SYSTEMS ���

����� Variants and �ner structure
 an overview

In this subsection we consider several variants on the basic de�nition of interactive
proofs as well as �ner complexity measures� This is an advanced subsection� which
only provides an overview of the various notions and results �as well as pointers to
proofs of the latter��

������� Arthur�Merlin games a�k�a public�coin proof systems

The veri�er
s messages in a general interactive proof system are determined arbi
trarily �but e�ciently� based on the veri�er
s view of the interaction so far �which
includes its internal coin tosses� which without loss of generality can take place
at the onset of the interaction�� Thus� the veri�er
s past coin tosses are not nec
essarily revealed by the messages that it sends� In contrast� in public�coin proof
systems �a�k�a ArthurMerlin proof systems�� the veri�er
s messages contain the
outcome of any coin that it tosses at the current round� Thus� these messages re
veal the randomness used towards generating them �i�e�� this randomness becomes
public�� Actually� without loss of generality� the veri�er
s messages can be identical
to the outcome of the coins tossed at the current round �because any other string
that the veri�er may compute based on these coin tosses is actually determined by
them�� Note that the proof systems presented in the proof of Theorem ��� are of
the publiccoin type� whereas this is not the case for the Graph NonIsomorphism
proof system �of Construction ����� Thus� although not all natural proof systems
are of the publiccoin type� every set having an interactive proof system also has a
publiccoin interactive proof system� This means that� in the context of interactive
proof systems� asking random questions is as powerful as asking clever questions�

Indeed� publiccoin proof systems are a syntactically restricted type of inter
active proof systems� This restriction may make the design of such systems more
complex� but potentially facilitates their analysis �and especially the analysis of a
generic system�� Another advantage of publiccoin proof systems is that the veri
�er
s actions �except for its �nal decision� are oblivious of the prover
s messages�
This property is used in the proof of Theorem �����

������� Interactive proof systems with two�sided error

In De�nition ��� error probability is allowed in the soundness condition but not
in the completeness condition� In such a case� we say that the proof system has
perfect completeness �or onesided error probability�� A more general de�nition
allows an error probability �upperbounded by� say� ���� in both the completeness
and soundness conditions� Note that sets having such generalized �twosided error�
interactive proofs are also in PSPACE � and thus allowing twosided error does
not increase the power of interactive proofs� See further discussion at the end of
x��������

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

������� A hierarchy of interactive proof systems

De�nition ��� only refers to the total computation time of the veri�er� and thus
allows an arbitrary �polynomial� number of messages to be exchanged� A �ner
de�nition refers to the number of messages being exchanged �also called the number
of rounds���

De�nition ��� �The roundcomplexity of interactive proof��

� For an integer function m� the complexity class IP�m� consists of sets having
an interactive proof system in which� on common input x� at most m�jxj�
messages are exchanged between the parties���

� For a set of integer functions� M � we let IP�M�
def
�
S
m�M IP�m�� Thus�

IP � IP�poly��

For example� interactive proof systems in which the veri�er sends a single message
that is answered by a single message of the prover corresponds to IP���� Clearly�
NP � IP���� yet the inclusion may be strict because in IP��� the veri�er may toss
coins after receiving the prover
s single message� �Also note that IP�	� � coRP ��
Concerning the �ner structure of the IPhierarchy� the following is known�

� A linear speed�up �see Appendix F�� �or ���� and ��	����� For every integer
function� f � such that f�n� � � for all n� the class IP�O�f����� collapses to
the class IP�f����� In particular� IP�O���� collapses to IP����

� The class IP��� contains sets not known to be in NP� e�g�� Graph Non
Isomorphism �see Construction ����� However� under plausible intractability
assumptions� IP��� � NP �see ���	���

� If coNP � IP��� then the PolynomialTime Hierarchy collapses �see ������

It is conjectured that coNP is not contained in IP���� and consequently that
interactive proofs with an unbounded number of message exchanges are more pow
erful than interactive proofs in which only a bounded �i�e�� constant� number of
messages are exchanged��� The class IP��� �also denoted MA� seems to be the
�real� randomized �and yet noninteractive� version of NP � Here the prover sup
plies a candidate �polynomialsize� �proof�� and the veri�er assesses its validity
probabilistically �rather than deterministically��

The IPhierarchy �i�e�� IP���� equals an analogous hierarchy� denoted AM����
that refers to publiccoin �a�k�a ArthurMerlin� interactive proofs� That is� for
every integer function f � it holds that AM�f� � IP�f�� For f � �� it is also the
case that AM�f� � AM�O�f��� actually� the aforementioned linear speedup for
IP��� is established by combining the following two results�

	An even �ner structure emerges when considering also the total length of the messages sent
by the prover �see �������

�
We count the total number of messages exchanged regardless of the direction of
communication�

��Note that the linear speed�up cannot be applied for an unbounded number of times� because
each application may increase �e�g�� square� the time�complexity of veri�cation�

���� INTERACTIVE PROOF SYSTEMS ��

�� Emulating IP��� by AM��� �see xF���� or ��	���� IP�f� � AM�f $ ���

�� Linear speedup for AM��� �see xF���� or ������ AM��f� � AM�f $ ���

In particular� IP�O���� � AM���� even ifAM��� is restricted such that the veri�er
tosses no coins after receiving the prover
s message� �Note that IP��� � AM���
and IP�	� � AM�	� are trivial�� We comment that it is common to denoteAM���
by AM� which is indeed inconsistent with the convention of using IP to denote
IP�poly��

The fact that IP�O�f�� � IP�f� is proved by establishing an analogous result
for AM��� demonstrates the advantage of the publiccoin setting for the study
of interactive proofs� A similar phenomenon occurs when establishing that the
IPhierarchy equals an analogous twosided error hierarchy �see Exercise �����

������	 Something completely di�erent

We stress that although we have relaxed the requirements from the veri�cation
procedure �by allowing it to interact with the prover� toss coins� and risk some
�bounded� error probability�� we did not restrict the validity of its assertions by
assumptions concerning the potential prover� This should be contrasted with other
notions of proof systems� such as computationallysound ones �see x��������� in
which the validity of the veri�er
s assertions depends on assumptions concerning
the potential prover�s��

����� On computationally bounded provers
 an overview

Recall that our de�nition of interactive proofs �i�e�� De�nition ���� makes no ref
erence to the computational abilities of the potential prover� This fact has two
con�icting consequences�

�� The completeness condition does not provide any upper bound on the com
plexity of the corresponding proving strategy �which convinces the veri�er to
accept valid assertions��

�� The soundness condition guarantees that� regardless of the computational
e�ort spend by a cheating prover� the veri�er cannot be fooled to accept
invalid assertions �with probability exceeding the soundness error��

Note that providing an upperbound on the complexity of the �prescribed� prover
strategy P of a speci�c interactive proof system �P� V � only strengthens the claim
that �P� V � is a proof system for the corresponding set �of valid assertions�� We
stress that the prescribed prover strategy is referred to only in the completeness
condition �and is irrelevant to the soundness condition�� On the other hand� relax
ing the de�nition of interactive proofs such that soundness holds only for a speci�c
class of cheating prover strategies �rather than for all cheating prover strategies�
weakens the corresponding claim� In this advanced section we consider both pos
sibilities�

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Teaching note� Indeed� this is an advanced subsection� which is best left for indepen�

dent reading� It merely provides an overview of the various notions� and the reader is

directed to the chapter�s notes for further detail
i�e�� pointers to the relevant literature��

����	�� How powerful should the prover be

Assume that a set S is in IP � This means that there is a veri�er V that can
be convinced to accept any input in S but cannot be fooled to accept any input
not in S �except with small probability�� One may ask how powerful should a
prover be such that it can convince the veri�er V to accept any input in S� Note
that Proposition �� asserts that an optimal prover strategy can be implemented in
polynomialspace �and that we cannot expect better for a generic set in PSPACE �
IP�� but we will seek better upperbounds on the complexity of the prover that
convinces a speci�c veri�er �which in turn corresponds to a speci�c set S�� More
interestingly� considering all possible veri�ers that give rise to interactive proof
systems for S� we ask what is the minimum power required from a prover that
satis�es the completeness requirement with respect to one of these veri�ers!

We stress that� unlike the case of computationallysound proof systems �see
x��������� we do not restrict the power of the prover in the soundness condition�
but rather consider the minimum complexity of provers meeting the completeness
condition� Speci�cally� we are interested in relatively e�cient provers that meet
the completeness condition� The term �relatively e�cient prover� has been given
three di�erent interpretations� which are brie�y surveyed next�

�� A prover is considered relatively e�cient if� when given an auxiliary input �in
addition to the common input in S�� it works in �probabilistic� polynomial
time� Speci�cally� in case S � NP � the auxiliary input maybe an NPproof
that the common input is in the set� Still� even in this case the interac
tive proof need not consist of the prover sending the auxiliary input to the
veri�er� for example� an alternative procedure may allow the prover to be
zeroknowledge �see Construction ���	��

This interpretation is adequate and in fact crucial for applications in which
such an auxiliary input is available to the otherwise polynomialtime parties�
Typically� such auxiliary input is available in cryptographic applications in
which parties wish to prove in �zeroknowledge� that they have correctly con
ducted some computation� In these cases the NPproof is just the transcript
of the computation by which the claimed result has been generated� and thus
the auxiliary input is available to the proving party�

�� A prover is considered relatively e�cient if it can be implemented by a prob
abilistic polynomialtime oracle machine with oracle access to the set S itself�
�Note that the prover in Construction ��� has this property��

This interpretation generalizes the notion of selfreducibility of NPsets� �Re
call that by selfreducibility of an NPset we mean that the search problem of
�nding an NPwitness is polynomialtime reducible to deciding membership
in the set �cf� De�nition �������

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

�� A prover is considered relatively e�cient if it can be implemented by a prob
abilistic machine that runs in time that is polynomial in the deterministic
complexity of the set� This interpretation relates the di�culty of convincing
a �lazy veri�er� to the complexity of �nding the truth alone�

Hence� in contrast to the �rst interpretation� which is adequate in settings
where assertions are generated along with their NPproofs� the current in
terpretation is adequate in settings in which the prover is given only the
assertion and has to �nd a proof to it by itself �before trying to convince a
lazy veri�er of its validity��

����	�� Computational�soundness

Relaxing the soundness condition such that it only refers to relativelye�cient ways
of trying to fool the veri�er �rather than to all possible ways� yields a fundamen
tally di�erent notion of a proof system� Assertions proven in such a system are not
necessarily correct� they are correct only if the potential cheating prover does not
exceed the presumed complexity limits� As in x�������� the notion of �relative e�
ciency� can be given di�erent interpretations� the most popular one being that the
cheating prover strategy can be described by a �nonuniform� family of polynomial
size circuits� The latter interpretation coincides with the �rst interpretation used
in x������� �i�e�� a probabilistic polynomialtime strategy that is given an auxiliary
input �of polynomial length��� Speci�cally� the soundness condition is replaced by
the following computational soundness condition that asserts that it is infeasible to
fool the veri�er into accepting false statements� Formally�

For every prover strategy that is implementable by a family of polynomial
size circuits fCng� and every su�ciently long x � f	� �g� nS� the prob
ability that V accepts x when interacting with Cjxj is less than ����

As in case of standard soundness� the computationalsoundness error can be re
duced by repetitions� We warn� however� that unlike in the case of standard sound
ness �where both sequential and parallel repetitions will do�� the computational
soundness error cannot always be reduced by parallel repetitions�

It is common and natural to consider proof systems in which the prover strate
gies considered both in the completeness and soundness conditions satisfy the same
notion of relative e�ciency� Protocols that satisfy these conditions with respect
to the foregoing interpretation are called arguments� We mention that argument
systems may be more e�cient �e�g�� in terms of their communication complexity�
than interactive proof systems�

��� Zero�Knowledge Proof Systems

ZeroKnowledge proofs are fascinating and extremely useful constructs� Their fas
cinating nature is due to their seemingly contradictory de�nition� zeroknowledge

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

proofs are both convincing and yet yield nothing beyond the validity of the asser
tion being proven� Their applicability in the domain of cryptography is vast� they
are typically used to force malicious parties to behave according to a predetermined
protocol� In addition to their direct applicability in Cryptography� zeroknowledge
proofs serve as a good benchmark for the study of various problems regarding
cryptographic protocols� In this section we focus on the conceptual contents of
zeroknowledge� and relegate their cryptographic applications to Appendix C�

X

?
!

?
!

 !

??
X is true!

Figure ���� Zeroknowledge proofs � an illustration�

Turning back to the conceptual angle� we highlight the fact that standard proofs
are believed to yield knowledge and not merely establish the validity of the assertion
being proven� Indeed� it is commonly believed that �good� proofs provide a deeper
understanding of the theorem being proved� At the technical level� an NPproof of
membership in some set S � NP n P yields something �i�e�� the NPproof itself�
that is typically hard to compute �even when assuming that the input is in S��
For example� a �coloring of a graph is an NPproof that the graph is �colorable�
but it yields information �i�e�� the coloring� that is infeasible to compute �when
given an arbitrary �colorable graph�� In contrast to such NPproofs� which seem
to yield a lot of knowledge� zeroknowledge proofs yield no knowledge at all� that
is� the latter exhibit an extreme contrast between being convincing �of the validity
of a statement� and teaching anything on top of the validity of the statement�

Teaching note� We believe that the treatment of zero�knowledge proofs provided in

this section su�ces for the purpose of a course in complexity theory� For an extensive

treatment of zero�knowledge proofs� the interested reader is referred to ���� Chap� � �

����� De�nitional Issues

Loosely speaking� zeroknowledge proofs are proofs that yield nothing beyond the
validity of the assertion� that is� a veri�er obtaining such a proof only gains convic
tion in the validity of the assertion� This is formulated by saying that anything that
can be feasibly obtained from a zeroknowledge proof is also feasibly computable

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

from the �valid� assertion itself� The latter formulation follows the simulation
paradigm� which is discussed next�

������� A wider perspective� the simulation paradigm

In de�ning zeroknowledge proofs� we view the veri�er as a potential adversary
that tries to gain knowledge from the �prescribed� prover��� We wish to state that
no �feasible� adversary strategy for the veri�er can gain anything from the prover
�beyond conviction in the validity of the assertion�� Let us consider the desired
formulation from a wide perspective�

A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary �gains nothing substantial� by deviating
from the prescribed behavior of an honest user� Our approach is that the adversary
gains nothing if whatever it can obtain by unrestricted adversarial behavior can
be obtained within essentially the same computational e�ort by a benign behavior�
The de�nition of the �benign behavior� captures what we want to achieve in terms
of security� and is speci�c to the security concern to be addressed� For example�
in the context of zeroknowledge� a benign behavior is any computation that is
based �only� on the assertion itself �while assuming that the latter is valid�� Thus�
a zeroknowledge proof is an interactive proof in which no feasible adversarial ver
i�er strategy can obtain from the interaction more than a �benign veri�er� �which
believes the assertion� can obtain from the assertion itself� We comment that the
simulation paradigm is pivotal to many de�nitions in cryptography �e�g�� it under
lies the de�nition of security of encryption schemes and cryptographic protocols��
for further details see Appendix C�

������� The basic de�nitions

Zeroknowledge is a property of some prover strategies� More generally� zero
knowledge is a property of some interactive machines� Fixing an interactive ma
chine �e�g�� a prescribed prover�� we consider what can be gained �i�e�� computed�
by an arbitrary feasible adversary �e�g�� a veri�er� that interacts with the afore�
mentioned �xed machine on a common input taken from a predetermined set �in
our case the set of valid assertions�� This gain is compared against what can be
computed by an arbitrary feasible algorithm �called a simulator� that is only given
the input itself� The �xed machine is zeroknowledge if the �computational power�
of these two �fundamentally di�erent settings� is essentially equivalent� Details
follow�

The formulation of the zeroknowledge condition refers to two types of probabil
ity ensembles� where each ensemble associates a single probability distribution to
each relevant input �e�g�� a valid assertion�� Speci�cally� in the case of interactive
proofs� the �rst ensemble represents the output distribution of the veri�er after
interacting with the speci�ed prover strategy P �on some common input�� where

��Recall that when de�ning a proof system �e�g�� an interactive proof system�� we view the
prover as a potential adversary that tries to fool the �prescribed� veri�er �into accepting invalid
assertions��

��	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

the veri�er is employing an arbitrary e�cient strategy �not necessarily the speci�ed
one�� The second ensemble represents the output distribution of some probabilistic
polynomialtime algorithm �which is only given the corresponding input but does
not interact with anyone�� The basic paradigm of zeroknowledge asserts that for
every ensemble of the �rst type there exist a �similar� ensemble of the second type�
The speci�c variants di�er by the interpretation given to the notion of similarity�
The most strict interpretation� leading to perfect zero�knowledge� is that similarity
means equality�

De�nition �� �perfect zeroknowledge� oversimpli�ed���� A prover strategy� P �
is said to be perfect zero�knowledge over a set S if for every probabilistic polynomial�
time veri�er strategy� V �� there exists a probabilistic polynomial�time algorithm�
M�� such that

�P� V ���x� � M��x� � for every x � S

where �P� V ���x� is a random variable representing the output of veri�er V � after
interacting with the prover P on common input x� and M��x� is a random variable
representing the output of machine M� on input x�

We comment that any set in coRP has a perfect zeroknowledge proof system in
which the prover keeps silence and the veri�er decides by itself� The same holds
for BPP provided that we relax the de�nition of interactive proof system to allow
twosided error� Needless to say� our focus is on nontrivial proof systems� that is�
proof systems for sets outside of BPP�

A somewhat more relaxed interpretation �of the notion of similarity�� leading
to almost�perfect zero�knowledge �a�k�a statistical zero�knowledge�� is that similar
ity means statistical closeness �i�e�� negligible di�erence between the ensembles��
The most liberal interpretation� leading to the standard usage of the term zero
knowledge �and sometimes referred to as computational zero�knowledge�� is that
similarity means computational indistinguishability �i�e�� failure of any e�cient pro
cedure to tell the two ensembles apart�� Combining the foregoing discussion with
the relevant de�nition of computational indistinguishability �i�e�� De�nition C� ��
we obtain the following de�nition�

De�nition ��� �zeroknowledge� somewhat simpli�ed�� A prover strategy� P � is
said to be zero�knowledge over a set S if for every probabilistic polynomial�time
veri�er strategy� V �� there exists a probabilistic polynomial�time simulator� M��
such that for every probabilistic polynomial�time distinguisher� D� it holds that

d�n�
def
� max

x�S�f���gn
fjPr�D�x� �P� V ���x����� � Pr�D�x�M��x�����jg

��In the actual de�nition one relaxes the requirement in one of the following two ways� The
�rst alternative is allowing M� to run for expected �rather than strict� polynomial�time� The
second alternative consists of allowing M� to have no output with probability at most �
� and
considering the value of its output conditioned on it having output at all� The latter alternative
implies the former� but the converse is not known to hold�

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

is a negligible function��� We denote by ZK the class of sets having zero�knowledge
interactive proof systems�

De�nition ��� is a simpli�ed version of the actual de�nition� which is presented in
Appendix C����� Speci�cally� in order to guarantee that zeroknowledge is preserved
under sequential composition it is necessary to slightly augment the de�nition �by
providing V � and M� with the same value of an arbitrary �poly�jxj�bit long�
auxiliary input�� Other de�nitional issues and related notions are brie�y discussed
in Appendix C�����

On the role of randomness and interaction� It can be shown that only
sets in BPP have zeroknowledge proofs in which the veri�er is deterministic �see
Exercise ����� The same holds for deterministic provers� provided that we consider
�auxiliaryinput� zeroknowledge �as in De�nition C���� It can also be shown that
only sets in BPP have zeroknowledge proofs in which a single message is sent �see
Exercise ���	�� Thus� both randomness and interaction are essential to the non
triviality of zeroknowledge proof systems� �For further details� see ���� Sec� �� �����

Advanced Comment� Knowledge Complexity� Zeroknowledge is the lowest
level of a knowledgecomplexity hierarchy which quanti�es the �knowledge revealed
in an interaction�� Speci�cally� the knowledge complexity of an interactive proof
system may be de�ned as the minimum number of oraclequeries required in order
to e�ciently simulate an interaction with the prover� �See ���� Sec� ������ for
references��

����� The Power of Zero	Knowledge

When faced with a de�nition as complex �and seemingly selfcontradictory� as the
de�nition of zeroknowledge� one should indeed wonder whether the de�nition can
be met �in a nontrivial manner���� It turns out that the existence of nontrivial
zeroknowledge proofs is related to the existence of intractable problems in NP �
In particular� we will show that if oneway functions exist then every NPset has a
zeroknowledge proof system� �For the converse� see ���� Sec� �� ��� or ������� We
�rst demonstrate the scope of zeroknowledge by a presenting a simple �perfect�
zeroknowledge proof system for a speci�c NPset that is not known to be in BPP�
In this case we make no intractability assumptions� but the result is signi�cant only
if NP is not contained in BPP�

������� A simple example

A story not found in the Odyssey refers to the not so famous Labyrinth
of the Island of Aeaea� The Sorceress Circe� daughter of Helius� chal

��That is� d vanishes faster that the reciprocal of any positive polynomial �i�e�� for every positive

polynomial p and for su�ciently large n� it holds that d�n� � �
p�n��� Needless to say� d�n�
def
� �

if S � f�� �gn � ��
��Note that any set in BPP has a trivial zero�knowledge �two�sided error� proof system in

which the veri�er just determines membership by itself�

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

lenged godlike Odysseus to traverse the Labyrinth from its North Gate
to its South Gate� Canny Odysseus doubted whether such a path ex
isted at all and asked beautiful Circe for a proof� to which she replied
that if she showed him a path this would trivialize for him the chal
lenge of traversing the Labyrinth� �Not necessarily�� clever Odysseus
replied� �you can use your magic to transport me to a random place in
the labyrinth� and then guide me by a random walk to a gate of my
choice� If we repeat this enough times then I�ll be convinced that there
is a labyrinthpath between the two gates� while you will not reveal to
me such a path�� �Indeed�� wise Circe thought to herself� �showing
this mortal a random path from a random location in the labyrinth to
the gate he chooses will not teach him more than his taking a random
walk from that gate��

The foregoing story illustrates the main idea underlying the zeroknowledge proof
for Graph Isomorphism presented next� Recall that the set of pairs of isomorphic
graphs is not known to be in BPP� and thus the straightforward NPproof system
�in which the prover just supplies the isomorphism� may not be zeroknowledge�
Furthermore� assuming that Graph Isomorphism is not in BPP� this set has no
zeroknowledge NPproof system� but as we shall shortly see it does have a zero
knowledge interactive proof system�

Construction ��� �zeroknowledge proof for Graph Isomorphism��

� Common Input� A pair of graphs� G� � �V�� E�� and G� � �V�� E��� Let �
be an isomorphism between the input graphs� namely� � is a ��� and onto
mapping of the vertex set V� to the vertex set V� such that fu� vg � E� if and
only if f��v�� ��u�g � E��

� Prover
s �rst Step �P��� The prover selects a random isomorphic copy of
G�� and sends it to the veri�er� Namely� the prover selects at random� with
uniform probability distribution� a permutation � from the set of permutations
over the vertex set V�� and constructs a graph with vertex set V� and edge set

E
def
� ff��u�� ��v�g � fu� vg�E�g �

The prover sends �V�� E� to the veri�er�

� Motivating Remark� If the input graphs are isomorphic� as the prover claims�
then the graph sent in Step P� is isomorphic to both input graphs� However�
if the input graphs are not isomorphic then no graph can be isomorphic to
both of them�

� Veri�er
s �rst Step �V��� Upon receiving a graph� G� � �V �� E��� from the
prover� the veri�er asks the prover to show an isomorphism between G� and
one of the input graphs� chosen at random by the veri�er� Namely� the veri�er
uniformly selects 	 � f�� �g� and sends it to the prover �who is supposed to
answer with an isomorphism between G� and G���

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

� Prover
s second Step �P��� If the message� 	� received from the veri�er equals
� then the prover sends � to the veri�er� Otherwise �i�e�� 	 �� ��� the prover

sends � � �i�e�� the composition of � on �� de�ned as � ��v� def
� ����v���

to the veri�er�

�Indeed� the prover treats any 	 �� � as 	 � �� In the analysis we shall
assume� without loss of generality� that 	 � f�� �g always holds��

� Veri�er
s second Step �V��� If the message� denoted �� received from the
prover is an isomorphism between G� and G� then the veri�er outputs ��
otherwise it outputs ��

The veri�er strategy in Construction ��� is easily implemented in probabilistic
polynomialtime� In case the prover is given an isomorphism between the input
graphs as auxiliary input� also the prover
s program can be implemented in proba
bilistic polynomialtime� The motivating remark justi�es the claim that Construc
tion ��� constitutes an interactive proof system for the set of pairs of isomorphic
graphs� As for the zeroknowledge property� consider �rst the special case in which
the veri�er actually follows the prescribed strategy �and selects 	 at random� and
in particular obliviously of the graph G� it receives�� The view of this veri�er can
be easily simulated by selecting 	 and � at random� constructing G� as a ran
dom isomorphic copy of G� �via the isomorphism ��� and outputting the triplet
�G�� 	� ��� Indeed �even in this case�� the simulator behaves di�erently from the
prescribed prover �which selects G� as a random isomorphic copy of G�� via the
isomorphism ��� but its output distribution is identical to the veri�er
s view in
the real interaction� However� the forgoing description assumes that the veri�er
follows the prescribed strategy� while in general the veri�er may �adversarially�
select 	 depending on the graph G�� Thus� a slightly more complicated simulation
�described next� is required�

A general clari�cation may be in place� Recall that we wish to simulate the
interaction of an arbitrary veri�er strategy with the prescribed prover� Thus� this
simulator must depend on the corresponding veri�er strategy� and indeed we shall
describe the simulator while referring to such a generic veri�er strategy� Formally�
this means that the simulator
s program incorporates the program of the corre
sponding veri�er strategy� �Actually� the following simulator uses the generic veri
�er strategy as a subroutine��

Turning back to the speci�c protocol of Construction ���� the basic idea is that
simulator tries to guess 	 and can complete a simulation if its guess turns out to
be correct� Speci�cally� the simulator selects � f�� �g uniformly �hoping that the
veri�er will later select 	 � �� and constructs G� by randomly permuting G� �and
thus being able to present an isomorphism between G� and G��� Recall that the
simulator is analyzed only on yesinstances �i�e�� the input graphs G� and G� are
isomorphic�� The point is that if G� and G� are isomorphic� then the graph G�

does not yield any information regarding the simulator
s guess �i�e�� ���� Thus�

��Indeed� this observation is identical to the one made in the analysis of the soundness of
Construction 	���

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

the value 	 selected by the adversarial veri�er may depend on G� but not on 	�
which implies that Pr�	� � � ���� In other words� the simulator
s guess �i�e�� �
is correct �i�e�� equals 	� with probability ���� Now� if the guess is correct then the
simulator can produce an output that has the correct distribution� and otherwise
the entire process is repeated�

Useful conventions� We wish to highlight three conventions that were either
used �implicitly� in the foregoing analysis or can be used to simplify the description
of �this and�or� other zeroknowledge simulators�

�� Without loss of generality� we may assume that the cheating veri�er strategy
is implemented by a deterministic polynomialsize circuit �or� equivalently�
by a deterministic polynomialtime algorithm with an auxiliary input���	

This is justi�ed by �xing any outcome of the veri�er
s coins� and observing
that our �uniform� simulation of the various �residual� deterministic strategies
yields a simulation of the original probabilistic strategy�

�� Without loss of generality� it su�ces to consider cheating veri�ers that �only�
output their view of the interaction �i�e�� the common input� their internal
coin tosses� and the messages that they have received�� In other words� it
su�ces to simulate the view that cheating veri�ers have of the real interaction�

This is justi�ed by noting that the �nal output of any veri�er can be obtained
from its view of the interaction� where the complexity of the transformation
is upperbounded by the complexity of the veri�er
s strategy�

�� Without loss of generality� it su�ces to construct a �weak simulator� that
produces output with some noticeable�
 probability such that whenever an
output is produced it is distributed �correctly� �i�e�� similarly to the distri
bution occuring in real interactions with the prescribed prover��

This is justi�ed by repeatedly invoking such a weak simulator �polynomially�
many times and using the �rst output produced by any of these invocations�
Note that by using an adequate number of invocations� we fail to produce
an output with negligible probability� Furthermore� note that a simulator
that fails to produce output with negligible probability can be converted
to a simulator that always produces an output� while incurring a negligible
statistic deviation in the output distribution�

������� The full power of zero�knowledge proofs

The zeroknowledge proof system presented in Construction ��� refers to one spe
ci�c NPset that is not known to be in BPP� It turns out that� under reasonable

��This observation is not crucial� but it does simplify the analysis �by eliminating the need to
specify a sequence of coin tosses in each invocation of the veri�er�s strategy��

��Recall that a probability is called noticeable if it is greater than the reciprocal of some positive
polynomial �in the relevant parameter��

��	� ZEROKNOWLEDGE PROOF SYSTEMS ��

assumptions� zeroknowledge can be used to prove membership in any NPset� In
tuitively� it su�ces to establish this fact for a single NPcomplete set� and thus we
focus on presenting a zeroknowledge proof system for the set of �colorable graphs�

It is easy to prove that a given graph G is �colorable by just presenting a
�coloring of G �and the same holds for membership in any set in NP�� but this
NPproof is not a zeroknowledge proof �unless NP � BPP�� In fact� assuming
NP �� BPP� graph �colorability has no zeroknowledge NPproof system� but
as we shall shortly see it does have a zeroknowledge interactive proof system�
This interactive proof system will be described while referring to �boxes� in which
information can be hidden and later revealed� Such boxes can be implemented
using oneway functions �see� e�g�� Theorem ������

Construction ���� �Zeroknowledge proof of �colorability� abstract description��
The description refers to abstract non�transparent boxes that can be perfectly locked
and unlocked such that these boxes perfectly hide their contents while being locked�

� Common Input� A simple graph G��V�E��

� Prover
s �rst step� Let � be a ��coloring of G� The prover selects a random

permutation� �� over f�� �� �g� and sets ��v�
def
� ����v��� for each v � V �

Hence� the prover forms a random relabeling of the ��coloring �� The prover
sends to the veri�er a sequence of jV j locked and non�transparent boxes such
that the vth box contains the value ��v��

� Veri�er
s �rst step� The veri�er uniformly selects an edge fu� vg � E� and
sends it to the prover�

� Motivating Remark� The boxes are supposed to contain a ��coloring of the
graph� and the veri�er asks to inspect the colors of vertices u and v� Indeed�
for the zero�knowledge condition� it is crucial that the prover only responds
to pairs that correspond to edges of the graph�

� Prover
s second step� Upon receiving an edge fu� vg � E� the prover sends to
the veri�er the keys to boxes u and v�

For simplicity of the analysis� if the veri�er sends fu� vg �� E then the prover
behaves as if it has received a �xed �or random� edge in E� rather than sus�
pending the interaction� which would have been the natural thing to do�

� Veri�er
s second step� The veri�er unlocks and opens boxes u and v� and
accepts if and only if they contain two di�erent elements in f�� �� �g�

The veri�er strategy in Construction ���	 is easily implemented in probabilistic
polynomialtime� The same holds with respect to the prover
s strategy� provided
that it is given a �coloring of G as auxiliary input� Clearly� if the input graph
is �colorable then the veri�er accepts with probability � when interacting with
the prescribed prover� On the other hand� if the input graph is not �colorable�
then any contents put in the boxes must be invalid with respect to at least one
edge� and consequently the veri�er will reject with probability at least �

jEj � Hence�

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

the foregoing protocol exhibits a nonnegligible gap in the accepting probabilities
between the case of �colorable graphs and the case of non�colorable graphs� To
increase the gap� the protocol may be repeated su�ciently many times �of course�
using independent coin tosses in each repetition��

In the abstract setting of Construction ���	� the zeroknowledge property follows
easily� because one can simulate the real interaction by placing a random pair of
di�erent colors in the boxes indicated by the veri�er� This indeed demonstrates
that the veri�er learns nothing from the interaction� because it expects to see a
random pair of di�erent colors �and indeed this is what it sees�� Note that the
aforementioned expectation relies on the fact that the boxes correspond to vertices
that are connected by an edge�

This simple demonstration of the zeroknowledge property is not possible in
the digital implementation �discussed next�� because in that case the boxes are
not totally una�ected by their contents �but are rather e�ected� yet in an indistin
guishable manner�� Instead� we simulate the interaction as follows� We �rst guess
�at random� which pair of boxes �corresponding to an edge� the veri�er would ask
to open� and place a random pair of distinct colors in these boxes �and garbage
in the rest���� Then� we hand all boxes to the veri�er� which asks us to open a
pair of boxes �corresponding to an edge�� If the veri�er asks for the pair that we
chose �i�e�� our guess is successful�� then we can complete the simulation by opening
these boxes� Otherwise� we try again �with a new random guess and random col
ors�� Thus� it su�ces to use boxes that hide their contents almost perfectly �rather
than being perfectly opaque�� Such boxes can be implemented digitally�

Teaching note� Indeed� we recommend presenting and analyzing in class only the

foregoing abstract protocol� It su�ces to brie�y comment about the digital implemen�

tation� rather than presenting a formal proof of Theorem ����
which can be found

in ���
or ���� Sec� ��� ���

Digital implementation� We implement the abstract boxes �referred to in Con
struction ���	� by using adequately de�ned commitment schemes� Loosely speak
ing� such a scheme is a twophase game between a sender and a receiver such that
after the �rst phase the sender is �committed� to a value and yet� at this stage� it
is infeasible for the receiver to �nd out the committed value �i�e�� the commitment
is �hiding��� The committed value will be revealed to the receiver in the second
phase and it is guaranteed that the sender cannot reveal a value other than the one
committed �i�e�� the commitment is �binding��� Such commitment schemes can be
implemented assuming the existence of oneway functions �as in De�nition �����

Zero�knowledge proofs for other NP�sets� Using the fact that �colorability
is NPcomplete� one can derive �from Construction ���	� zeroknowledge proof sys

�	An alternative �and more e�cient� simulation consists of putting random independent colors
in the various boxes� hoping that the veri�er asks for an edge that is properly colored� The latter
event occurs with probability �approximately� �
�� provided that the boxes hide their contents
�almost� perfectly�

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

tems for any NPset��� Furthermore� NPwitnesses can be e�ciently transformed
into polynomialsize circuits that implement the corresponding �prescribed zero
knowledge� prover strategies�

Theorem ���� �The ZK Theorem�� Assuming the existence of �nonuniformly
hard� one�way functions� any NP�proof can be e�ciently transformed into a �com
putational� zero�knowledge interactive proof� In particular� NP � ZK�

The hypothesis of Theorem ���� �i�e�� the existence of oneway functions� seems un
avoidable� because the existence of zeroknowledge proofs for �hard on the average�
problems implies the existence of oneway functions �and� likewise� the existence
of zeroknowledge proofs for sets outside BPP implies the existence of �auxiliary
input oneway functions���

Theorem ���� has a dramatic e�ect on the design of cryptographic protocols
�see Appendix C�� In a di�erent vein we mention that� under the same assump
tion� any interactive proof can be transformed into a zeroknowledge one� �This
transformation� however� is not e�cient��

Theorem ���� �The ultimate ZK Theorem�� Assuming the existence of �non
uniformly hard� one�way functions� IP � ZK�

Loosely speaking� Theorem ���� can be proved by recalling that IP � AM�poly�
and modifying any publiccoin protocol as follows� the modi�ed prover sends com
mitments to its messages rather than the messages themselves� and once the orig
inal interaction is completed it proves �in zeroknowledge� that the corresponding
transcript would have been accepted by the original veri�er� Indeed� the latter as
sertion is of the �NP type�� and thus the zeroknowledge proof system guaranteed
in Theorem ���� can be invoked for proving it�

Re�ection� The proof of Theorem ���� uses the fact that �colorability is NP
complete in order to obtain a zeroknowledge proofs for any set inNP by using such
a protocol for �colorability �i�e�� Construction ���	�� Thus� an NPcompleteness
result is used here in a �positive� way� that is� in order to construct something
rather than in order to derive a hardness result� This was probably the �rst pos
itive application of NPcompleteness� Subsequent positive uses of completeness
results have appeared in the context of interactive proofs �see the proof of Theo
rem ����� probabilistically checkable proofs �see the proof of Theorem ������ and
the �hardness versus randomness paradigm� �see� e�g�� ��� ���

Perfect and Statistical Zero�Knowledge� The foregoing results may be con
trasted with the results regarding the complexity of statistical zeroknowledge
proof systems� Statistical zeroknowledge proof systems exist only for sets in
IP��� � coIP���� and thus are unlikely to exist for all NPsets� On the other

�
Actually� we should either rely on the fact that the standard Karp�reductions are invertible
in polynomial time or on the fact that the ��colorability protocol is actually zero�knowledge with
respect to auxiliary inputs �as in De�nition C�	��

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

hand� the class Statistical ZeroKnowledge is known to contain some hard prob
lems� and turns out to have interesting complexity theoretic properties �e�g�� being
closed under complementation� and having very natural complete problems�� The
interested reader is referred to ������

����� Proofs of Knowledge � a parenthetical subsection

Teaching note� Technically speaking� this topic belongs to Section ���� but its more

interesting demonstrations refer to zero�knowledge proofs of knowledge & hence its cur�

rent positioning�

Loosely speaking� �proofs of knowledge� are interactive proofs in which the prover
asserts �knowledge� of some object �e�g�� a �coloring of a graph�� and not merely
its existence �e�g�� the existence of a �coloring of the graph� which in turn is
equivalent to the assertion that the graph is �colorable��

What do we mean by saying that a machine knows something! Any standard
dictionary suggests several meanings for the verb to know� but these are typically
phrased with reference to the notion of awareness� a notion which is certainly
inapplicable in the context of machines� Instead� we should look for a behavioristic
interpretation of the verb to know� Indeed� it is reasonable to link knowledge with
the ability to do something �e�g�� the ability to write down whatever one knows��
Hence� we will say that a machine knows a string � if it can output the string
�� But this seems as total nonsense too� a machine has a well de�ned output �
either the output equals � or it does not� So what can be meant by saying that
a machine can do something� Loosely speaking� it may mean that the machine
can be easily modi�ed so that it does whatever is claimed� More precisely� it may
mean that there exists an e�cient machine that� using the original machine as a
blackbox �or given its code as an input�� outputs whatever is claimed�

Technically speaking� using a machine as a blackbox seems more appealing
when the said machine is interactive �i�e�� implements an interactive strategy��
Indeed� this will be our focus here� Furthermore� conceptually speaking� whatever
a machine knows �or does not know� is its own business� whereas what can be
of interest and reference to the outside is whatever can be deduced about the
knowledge of a machine by interacting with it� Hence� we are interested in proofs
of knowledge �rather than in mere knowledge��

For sake of simplicity let us consider a concrete question� how can a machine
prove that it knows a ��coloring of a graph� An obvious way is just sending the
�coloring to the veri�er� Yet� we claim that applying the protocol in Construc
tion ���	 �i�e�� the zeroknowledge proof system for �Colorability� is an alternative
way of proving knowledge of a �coloring of the graph�

The de�nition of a veri�er of knowledge of ��coloring refers to any possible
prover strategy and links the ability to �extract� a �coloring �of a given graph�
from such a prover to the probability that this prover convinces the veri�er� That is�
the de�nition postulates the existence of an e�cient universal way of �extracting� a
�coloring of a given graph by using any prover strategy that convinces this veri�er
to accept this graph with probability � �or� more generally� with some noticeable

��	� ZEROKNOWLEDGE PROOF SYSTEMS ���

probability�� On the other hand� we should no expect this extractor to obtain
much from prover strategies that fail to convince the veri�er �or� more generally�
convince it with negligible probability�� A robust de�nition should allow a smooth
transition between these two extremes �and in particular between provers that
convince the veri�er with noticeable probability and those that convince it with
negligible probability�� Such a de�nition should also support the intuition by which
the following strategy of Alice is zeroknowledge� Alice sends Bob a ��coloring of
a given graph provided that Bob has successfully convinced her that he knows this
coloring��� We stress that the zeroknowledge property of Alice
s strategy should
hold regardless of the proofofknowledge system used for proving Bob
s knowledge
of a �coloring�

Loosely speaking� we say that an interactive machine� V � constitutes a veri�er for
knowledge of �coloring if� for any prover strategy P � the complexity of extracting a
�coloring of G when using machine P as a �black box��� is inversely proportional
to the probability that V is convinced by P �to accept the graph G�� Namely� the
extraction of the �coloring is done by an oracle machine� called an extractor� that
is given access to a function specifying the behavior P �i�e�� the messages it sends
in response to particular messages it may receive�� We require that the �expected�
running time of the extractor� on input G and access to an oracle specifying P 	s
behavior� be inversely related �by a factor polynomial in jGj� to the probability that
P convinces V to accept G� In particular� if P always convinces V to accept G�
then the extractor runs in expected polynomialtime� The same holds in case P
convinces V to accept with noticeable probability� On the other hand� if P never
convinces V to accept� then nothing is required of the extractor� We stress that
the latter special cases do not su�ce for a satisfactory de�nition� see discussion
in ���� Sec� �������

Proofs of knowledge� and in particular zeroknowledge proofs of knowledge�
have many applications to the design of cryptographic schemes and cryptographic
protocols� These are enabled by the following general result�

Theorem ���� �Theorem ����� revisited�� Assuming the existence of �nonuniformly
hard� one�way functions� any NP�relation has a zero�knowledge proof of knowledge
�of a corresponding NPwitnesses�� Furthermore� the prescribed prover strategy
can be implemented in probabilistic polynomial�time� provided it is given such an
NP�witness�

��For simplicity� the reader may consider graphs that have a unique ��coloring �upto a relabel�
ing�� In general� we refer here to instances that have unique solution �cf� Section ������� which
arise naturally in some �cryptographic� applications�

��Indeed� one may consider also non�black�box extractors�

��	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

��� Probabilistically Checkable Proof Systems

Teaching note� Probabilistically checkable proof
PCP� systems may be viewed as

a restricted type of interactive proof systems in which the prover is memoryless and

responds to each veri�er message as if it were the �rst such message� This perspective

creates a tighter link with previous sections� but is somewhat contrived� However� such

a memoryless prover may be viewed as a static object that the veri�er may query at

locations of its choice� But then it is more appealing to present the model using the

more traditional� terminology of oracle machines rather than using
and degenerating�

the terminology of interactive machines�

Probabilistically checkable proof systems can be viewed as standard �determinis
tic� proof systems that are augmented with a probabilistic procedure capable of
evaluating the validity of the assertion by examining few locations in the alleged
proof� In fact� we focus on the latter probabilistic procedure� which is given direct
access to the individual bits of the alleged proof �and need not scan it bitbybit��
Thus� the alleged proof is a string� as in the case of a traditional proof system�
but we are interested in probabilistic veri�cation procedures that access only few
locations in the proof� and yet are able to make a meaningful probabilistic verdict
regarding the validity of the alleged proof� Speci�cally� the veri�cation procedure
should accept any valid proof �with probability ��� but rejects with probability at
least ��� any alleged proof for a false assertion�

The main complexity measure associated with probabilistically checkable proof
systems is indeed their query complexity� Another complexity measure of natural
concern is the length of the proofs being employed� which in turn is related to
the randomness complexity of the system� The randomness complexity of PCPs
plays a key role in numerous applications �e�g�� in composing PCP systems as well
as when applying PCP systems to derive inapproximability results�� and thus we
specify this parameter rather than the proof length�

Teaching note� Indeed� PCP systems are most famous for their role in deriving nu�

merous inapproximability results
see Section ������� but our view is that the latter

is merely one extremely important application of the fundamental notion of a PCP

system� Our presentation is organized accordingly�

����� De�nition

Loosely speaking� a probabilistically checkable proof system consists of a probabilis
tic polynomialtime veri�er having access to an oracle that represents an alleged
proof �in redundant form�� Typically� the veri�er accesses only few of the oracle
bits� and these bit positions are determined by the outcome of the veri�er
s coin
tosses� As in the case of interactive proof systems� it is required that if the asser
tion holds then the veri�er always accepts �i�e�� when given access to an adequate
oracle�� whereas� if the assertion is false then the veri�er must reject with proba
bility at least �

� � no matter which oracle is used� The basic de�nition of the PCP
setting is given in Part ��� of the following de�nition� Yet� the complexity measures
introduced in Part ��� are of key importance for the subsequent discussions�

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

De�nition ���	 �Probabilistically Checkable Proofs � PCP��

�� A probabilistically checkable proof system �PCP� for a set S is a probabilistic
polynomial�time oracle machine� called veri�er and denoted V � that satis�es
the following two conditions�

� Completeness� For every x � S there exists an oracle �x such that� on
input x and access to oracle �x� machine V always accepts x�

� Soundness� For every x �� S and every oracle �� on input x and access
to oracle �� machine V rejects x with probability at least �

� �

� We say that a probabilistically checkable proof system has query complexity
q �NN if� on any input of length n� the veri�er makes at most q�n� oracle
queries��� Similarly� the randomness complexity r �N N upper�bounds the
number of coin tosses performed by the veri�er on a generic n�bit long input�

For integer functions r and q� we denote by PCP�r� q� the class of sets having
probabilistically checkable proof systems of randomness complexity r and query
complexity q� For sets of integer functions� R and Q�

PCP�R�Q�
def
�

r�R � q�Q

PCP�r� q� �

We note that the oracle �x referred to in the completeness condition a PCP system
constitutes a proof in the standard mathematical sense �with respect to a veri�
cation procedure that examines all possible outcomes of V
s internal coin tosses��
Furthermore� the oracles in PCP systems of logarithmic randomness complexity
constitute NPproofs� However� these oracles have the extra remarkable property
of enabling a lazy veri�er to toss coins� take its chances and �assess� the validity of
the proof without reading all of it �but rather by reading a tiny portion of it�� Po
tentially� this allows the veri�er to utilize very long proofs �i�e�� of superpolynomial
length� or alternatively examine very few bits of an NPproof�

We note that the error probability �in the soundness condition� of PCP systems
can be reduced by successive applications of the proof system� In particular� re
peating the process for k times� reduces the probability that the veri�er is fooled by
a false assertion to ��k� whereas all complexities increase by at most a factor of k�
Thus� PCP systems provide a tradeo� between the number of locations examined
in the proof and the con�dence in the validity of the assertion�

Adaptive versus non�adaptive veri�ers� De�nition ���� allows the veri�er to
be adaptive� that is� the veri�er may determine its queries based on the answers
it has received to previous queries �in addition to their dependence on the input
and the veri�er
s internal coin tosses�� In contrast� non�adaptive veri�ers determine
all their queries based solely on their input and internal coin tosses� We comment
that most constructions of PCP systems use nonadaptive veri�ers� and in fact in
many sources PCP systems are de�ned as nonadaptive�

��As usual in complexity theory� the oracle answers are always binary �i�e�� either � or ���

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Randomness versus proof length� Note that the �e�ective� length of proofs
for any PCP system is related to its query and randomness complexities� where the
e�ective length means the number of locations in a generic prooforacle that may
be examined on a �xed input and any possible sequence of internal coin tosses�
Speci�cally� if the PCP system has query complexity q and randomness complexity
r then its e�ective proof length is upperbounded by �q�r� whereas a bound of
�r � q holds for nonadaptive systems �see Exercise ������ On the other hand� in
some sense� the randomness complexity of a PCP can be upperbounded by the
logarithm of the length of the proofs employed �provided we allow nonuniform
veri�ers� see Exercise ������

On the role of randomness� The PCP Theorem �i�e�� NP � PCP�log� O�����
exhibits a tradeo� between the number of bits examined in the alleged proof
and the con�dence in the validity of the assertion� We note that such a tradeo�
is impossible if one requires the veri�er to be deterministic� This is due to the
fact that every set in PCP�r� q� has an NPproof system that employs proofs of
length �rq �see Exercise ������ Thus� PCP�r� q� � Dtime���

rq�r � poly�� and� in
particular� PCP�	� log� � P � Furthermore� since it is unlikely that all NPsets
have NPproof systems that employs proofs of �say� linear length� it follows that
for �rn�q�n� � n �or for any other �xed polynomial that bounds �rq� the class
PCP�r� q� is unlikely to contain NP � Actually� P �� NP implies that NP is not
contained in PCP�o�log�� o�log�� �see Exercise ��� ��

����� The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP � PCP�log� O����� and this result
is indeed the focus of the current section� But before getting to it we make several
simple observations regarding the PCP Hierarchy�

We �rst note that PCP�poly� 	� equals coRP � whereas PCP�	� poly� equals
NP � It is easy to prove an upper bound on the nondeterministic time complexity
of sets in the PCP hierarchy �see Exercise ������

Proposition ���� �upperbounds on the power of PCPs�� For every polynomially
bounded integer function r� it holds that PCP�r� poly� � Ntime��r � poly�� In
particular� PCP�log� poly� � NP�

The focus on PCP systems of logarithmic randomness complexity re�ects an inter
est in PCP systems that utilize proof oracles of polynomial length �see discussion in
Section ������� We stress that such PCP systems �i�e�� PCP�log� q�� are NPproof
systems with a �potentially amazing� extra property� the validity of the assertion
can be �probabilistically evaluated� by examining a �small� portion �i�e�� q�n� bits�
of the proof� Thus� for any �xed polynomially bounded function q� a result of the
form

NP � PCP�log� q� �����

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

is interesting �because it applies also to NPsets having witnesses of length exceed
ing q�� and the smaller q � the better� The PCP Theorem asserts the amazing fact
by which q can be made a constant�

Theorem ���� �The PCP Theorem�� NP � PCP�log� O�����

Thus� probabilistically checkable proofs in which the veri�er tosses only logarith
mically many coins and makes only a constant number of queries exist for every set
in NP � Furthermore� the proof of Theorem ���� is constructive in the sense that it
allows to e�ciently transform any NPwitness �for an instance of a set in NP� into
an oracle that makes the PCP veri�er accept �with probability ��� Thus� NPproofs
can be transformed into NPproofs that o�er a tradeo� between the portion of the
proof being read and the con�dence it o�ers� Speci�cally� for every � � 	� if one is
willing to tolerate an error probability of � then it su�ces to examine O�log������
bits of the �transformed� NPproof� Indeed �as discussed in Section ������� these
bit locations need to be selected at random�

A new characterization of NP� Combining Theorem ���� with Proposition ���
we obtain the following characterization of NP�

Corollary ��� �The PCP characterization of NP�� NP � PCP�log� O�����

The proof of the PCP Theorem� Theorem ���� is a culmination of a sequence
of remarkable works� each establishing meaningful and increasingly stronger ver
sions of Eq� ������ A presentation of the full proof of Theorem ���� is beyond the
scope of the current work �and is� in our opinion� unsuitable for a basic course
in complexity theory�� Instead� we present an overview of the original proof �see
x�������� as well as of an alternative proof �see x�������� that was found more
than a decade later� We will start� however� by presenting a weaker result that
is used in both proofs of Theorem ���� and is also of independent interest� This
weaker result �see x�������� asserts that every NPset has a PCP system with con
stant query complexity �albeit with polynomial randomness complexity�� that is�
NP � PCP�poly� O�����

Teaching note� In our opinion� presenting in class any part of the proof of the PCP

Theorem should be given low priority� In particular� presenting the connections between

PCP and the complexity of approximation should be given a higher priority� As for

relative priorities among the following three subsections� we recommend giving x�������

the highest priority� because it o�ers a direct demonstration of the power of PCPs� As

for the two alternative proofs of the PCP Theorem itself� our recommendation depends

on the intended goal� On one hand� for the purpose of merely giving a taste of the ideas

involved in the proof� we prefer an overview of the original proof
provided in x���������

On the other hand� for the purpose of actually providing a full proof� we de�nitely

prefer the new proof
which is only outlined in x���������

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

������� Proving that NP � PCP�poly� O����

The fact that every NPset has a PCP system with constant query complexity
�regardless of its randomness complexity� already testi�es to the power of PCP
systems� It asserts that probabilistic veri�cation of proofs is possible by inspecting
very few locations in a �potentially huge� proof� Indeed� the PCP systems presented
next utilize exponentially long proofs� but they do so while inspecting these proofs
at a constant number of �randomly selected� locations�

We start with a brief overview of the construction� We �rst note that it su�ces
to construct a PCP for proving the satis�ability of a given system of quadratic
equations over GF���� because this problem is NPcomplete �see Exercise ��� ����

For inputs consisting of quadratic equations with n variables� the oracle �of this
PCP� is supposed to provide the values of all quadratic expressions in these n
variables evaluated at some �xed assignment to these variables� This assignment
is supposed to satisfy the system of quadratic equations that is given as input� We
distinguish two tables in the oracle� The �rst table corresponding to the �n linear
expressions and the second table to the �n

�

quadratic expressions� Each table is
tested for selfconsistency �via a �linearity test��� and the two tables are tested to
be consistent with each other �via a �matrixequality� test� which utilizes �self
correction��� Each of these tests utilizes a constant number of Boolean queries�
and randomness that is logarithmic in the size of the corresponding table �and is
thus O�n���� Finally� we test �again via selfcorrection� the value assigned by these
tables to a quadratic expression obtained by a random linear combination of the
quadratic expressions that appear in the quadratic system that is given as input�
Details follow�

The starting point� We construct a PCP system for the set of satis�able
quadratic equations over GF���� The input is a sequence of such equations over the
variables x�� ���� xn� and the proof oracle consist of two parts �or tables�� which are
supposed to provide information regarding some satisfying assignment � � � � � n
�also viewed as an nary vector over GF����� The �rst part� denoted T�� is sup
posed to provide a Hadamard encoding of the said satisfying assignment� that is�
for every � � GF���n this table is supposed to provide the inner product mod � of
the nary vectors � and �i�e�� T���� is supposed to equal

Pn
i�� �ii�� The second

part� denoted T�� is supposed to provide all linear combinations of the values of
the ij
s� that is� for every � � GF���n

�

�viewed as an nbyn matrix over GF�����
the value of T���� is supposed to equal

P
i�j �i�jij � �Indeed T� is contained in

T�� because 	
� � 	 for any 	 � GF����� The PCP veri�er will use the two tables

for checking that the input �i�e�� a sequence of quadratic equations� is satis�ed by
the assignment that is encoded in the two tables� Needless to say� these tables may
not be a valid encoding of any nary vector �let alone one that satis�es the input��
and so the veri�er also needs to check that the encoding is �close to being� valid�
We will focus on this task �rst�

��Here and elsewhere� we denote by GF��� the ��element �eld�

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ��

Testing the Hadamard Code� Note that T� is supposed to encode a linear
function� that is� there must be some � � � � � n � GF���n such that T���� �Pn

i�� i�i holds for every � � �� � � ��n � GF���n� This can be tested by selecting
uniformly ��� ��� � GF���n and checking whether T���

�� $ T���
��� � T���

� $ �����
where ��$��� denotes addition of vectors over GF���� The analysis of this natural
tester turns out to be quite complex� Nevertheless� it is indeed the case that any
table that is 	�	�far from being linear is rejected with probability at least 	�	� �see
Exercise ������ where T is �far from being linear if T disagrees with any linear
function f on more than an � fraction of the domain �i�e�� Prr�T �r� � f�r�� � ���

By repeating the linearity test for a constant number of times� we may reject
each table that is 	�	�far from being a codeword of the Hadamard Code with
probability at least 	���� Thus� using a constant number of queries� the veri�er
rejects any T� that is 	�	�far from being a Hadamard encoding of any � GF���n�
and likewise rejects any T� that is 	�	�far from being a Hadamard encoding of
any � � GF���n

�

� We may thus assume that T� �resp�� T�� is 	�	�close to the
Hadamard encoding of some �resp�� ��� �This does not mean� however� that �

equals the outer produce of with itself��

In the rest of the analysis� we �x � GF���n and � � GF���n
�

� and denote the

Hadamard encoding of �resp�� �� by f� �GF���nGF��� �resp�� f� � �GF���n
�

GF����� Recall that T� �resp�� T�� is 	�	�close to f� �resp�� f� ���

Self�correction of the Hadamard Code� Suppose that T is �close to a linear
function f � GF���n GF��� �i�e�� Prr�T �r� � f�r�� � ��� Then� we can recover
the value of f at any desired point x� by making two �random� queries to T �
Speci�cally� for a uniformly selected r � GF���n� we use the value T �x$ r��T �r��
Note that the probability that we recover the correct value is at least ����� because
Prr�T �x $ r� � T �r� � f�x $ r� � f�r�� � � � �� and f�x $ r� � f�r� � f�x� by
linearity of f � �Needless to say� for � � ���� the function T cannot be �close to
two di�erent linear functions���� Thus� assuming that T� is 	�	�close to f� �resp��
T� is 	�	�close to f� �� we may correctly recover �i�e�� with error probability 	�	��
the value of f� �resp�� f� �� at any desired point by making � queries to T� �resp��
T���

α α

A = = f (r) f (s)

srr s

α α
.

Figure ���� Detail for testing consistency of linear and quadratic forms�

��Indeed� this fact follows from the self�correction argument� but a simpler proof merely refers
to the fact that the Hadamard code has relative distance �
��

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Checking consistency of f� and f� �� Suppose that we are given access to
f� � GF���n GF��� and f� � � GF���n

� GF���� where f� ��� �
P

i i�i
and f� ���

�� �
P

i�j
�
i�j�

�
i�j � and that we wish to verify that �i�j � ij for ev

ery i� j � f�� ���� ng� In other words� we are given a �somewhat weird� encoding of
two matrices� A � �ij�i�j and A� � � �i�j�i�j � and we wish to check whether or not
these matrices are identical� It can be shown �see Exercise ����� that if A �� A� then
Prr�s�r

�As �� r�A�s� � ���� where r and s are uniformly distributed nary vectors�
Note that� in our case �where A � �ij�i�j and A

� � � �i�j�i�j�� it holds that r
�As �P

j�
P

i riij�sj � f� �r�f� �s� �see Figure ���� and r�A�s �
P

j�
P

i ri
�
i�j�sj �

f� ��rs
��� where rs� is the outerproduct of s and r� Thus� �for �ij�i�j �� � �i�j�i�j�

we have Prr�s�f� �r�f� �s� �� f� ��rs
��� � ���� Using selfcorrection �to obtain the

desired value of f� � at rs
�� since rs� is not uniformly distributed in GF���n

�

�� we
test the consistency of f� and f� � � that is� we select uniformly r� s � GF���n and

R � GF���n
�

and check that T��r�T��s� � T��rs
� $R�� T��R��

By repeating the consistency test for a constant number of times� we may reject
an inconsistent pair of tables with probability at least 	���� Thus� in the rest of
the analysis� we may assume that �ij�i�j � � �i�j�i�j �

Checking that satis�es the quadratic system� Suppose that we are given
access to f� and f� � as in the foregoing �where� in particular� � � ��� A key
observation is that if does not satisfy a system of quadratic equations then�
with probability ���� it does not satisfy a random linear combination of these
equations� Thus� in order to check whether satis�es the quadratic system� we
create a single quadratic equation �by taking such a random linear combination�
and compare the value of the resulting quadratic expression to the corresponding
value� by recovering the value of f� � at a single point �which corresponds to the
quadratic equation�� That is� to test whether satis�es the quadratic equation
Q�x� � 	� we test whether f� ��Q� � 	� The actual checking is implemented by the
veri�er using selfcorrection �of the table T���

To summarize� the veri�er performs a constant number of queries and uses
randomness that is quadratic in the number of variables �and linear in the number
of equations�� If the quadratic system is satis�able �by some �� then the veri�er
accepts the corresponding tables T� and T� �i�e�� T� � f� and T� � f���� with
probability �� On the other hand� if the quadratic system is unsatis�able� then
any pair of tables �T�� T�� will be rejected with constant probability �by one of the
foregoing tests�� It follows that NP � PCP�r� O����� where r�n� � O�n���

������� Overview of the �rst proof of the PCP Theorem

The original proof of the PCP Theorem �Theorem ����� consists of three main
conceptual steps� which we brie�y sketch �rst and further discuss later�

�� Constructing a �nonadaptive� PCP system for NP having logarithmic ran�
domness and polylogarithmic query complexity� that is� this PCP has the
desired randomness complexity and a very low �but nonconstant� query com

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

plexity� Furthermore� this proof system has additional properties that enable
proof composition as in the following Step ����

�� Constructing a PCP system for NP having polynomial randomness and con�
stant query complexity� that is� this PCP has the desired �constant� query
complexity but its randomness complexity is prohibitingly high� �Indeed� we
showed such a construction in x��������� Furthermore� this proof system too
has additional properties enabling proof composition as in Step ����

�� The proof composition paradigm��� In general� this paradigm allows to com
pose two proof systems such that the �inner� one is used for probabilistically
verifying the acceptance criteria of the �outer� veri�er� The aim is to conduct
this ��composed�� veri�cation using much fewer queries than the query com
plexity of the �outer� proof system� In particular� the inner veri�er cannot
a�ord to read its input� which makes composition more subtle than the term
suggests�

Loosely speaking� the outer veri�er should be robust in the sense that its
soundness condition guarantee that with high probability the oracle answers
are �far� from satisfying the residual decision predicate �rather than merely
not satisfy it�� �Furthermore� the latter predicate� which is wellde�ned by
the nonadaptive nature of the outer veri�er� must have a circuit of size
bounded by a polynomial in the number of queries�� The inner veri�er is
given oracle access to its input and is charged for each query made to it� but
is only required to reject with high probability inputs that are far from being
valid �and� as usual� accept inputs that are valid�� That is� the inner veri�er
is actually a veri�er of proximity�

Composing two such PCPs yields a new PCP forNP � where the new proof or
acle consists of the proof oracle of the �outer� system and a sequence of proof
oracles for the �inner� system �one �inner� proof per each possible random
tape of the �outer� veri�er�� Thus� composing an outer veri�er of randomness
complexity r� and query complexity q� with an inner veri�er of randomness
complexity r�� and query complexity q�� yields a PCP of randomness complex
ity r�n� � r��n� $ r���q��n�� and query complexity q�n� � q���q��n��� because
q��n� represents the length of the input �oracle� that is accessed by the inner
veri�er� Recall that the outer veri�er is nonadaptive� and thus if the inner
veri�er is nonadaptive �resp�� robust� then so is the veri�er resulting from
the composition� which is important in case we wish to compose the latter
veri�er with another inner veri�er�

In particular� the proof system of Step ��� is composed with itself �using r��n� �
r���n� � O�logn� and q��n� � q���n� � poly�logn�� yielding a PCP system �for
NP� of randomness complexity r�n� � r��n� $ r���q��n�� � O�logn� and query
complexity q�n� � q���q��n�� � poly�log logn�� Composing the latter system �used
as an �outer� system� with the PCP system of Step ���� yields a PCP system �for

��Our presentation of the composition paradigm follows ����� rather than the original presen�
tation of ���� ����

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

NP� of randomness complexity r�n�$poly�q�n�� � O�logn� and query complexity
O���� thus establishing the PCP Theorem�

A more detailed overview � the plan� The foregoing description uses two
�nontrivial� PCP systems and refers to additional properties such as robustness
and veri�cation of proximity� A PCP system of polynomial randomness complexity
and constant query complexity �as postulated in Step �� is outlined in x�������� We
thus start by discussing the notions of verifying proximity and being robust� while
demonstrating their applicability to the said PCP� Finally� we outline the other
PCP system that is used �i�e�� the one postulated in Step ���

PCPs of Proximity� Recall that a standard PCP veri�er gets an explicit input
and is given oracle access to an alleged proof �for membership of the input in a
predetermined set�� In contrast� a PCP of proximity veri�er is given oracle access
to two oracles� one representing an input and the other being an alleged proof�
Typically� the query complexity of this veri�er is lower than the length of the input
oracle� and hence this veri�er cannot a�ord reading the entire input and cannot
be expected to make absolute statements about it� Indeed� instead of deciding
whether or not the input is in a predetermined set� the veri�er is only required to
distinguish the case that the input is in the set from the case that the input is far
from the set �where far means being at relative Hamming distance at least 	�	� �or
any other constant���

For example� consider a variant of the system of x������� in which the quadratic
system is �xed�	 and the veri�er needs to determine whether the assignment ap
pearing in the input oracle satis�es the said system or is far from any assignment
that satis�es it� The proof oracle is as in x�������� and a PCP of proximity may
proceed as in x������� and in addition perform a proximity test to verify that the
input oracle is close to the assignment encoded in the proof oracle� Speci�cally� the
veri�er may read a uniformly selected bit of the input oracle and compare this value
to the selfcorrected value obtained from the proof oracle �i�e�� for a uniformly se
lected i � f�� ���� ng� we compare the ith bit of the input oracle to the selfcorrection
of the value T��	

i���	n�i�� obtained from the proof oracle��

Robust PCPs� Composing an �outer� PCP veri�er with an �inner� PCP veri
�er of proximity makes sense provided that the outer veri�er rejects in a �robust�
manner� That is� the soundness condition of a robust veri�er requires that �with
probability at least ���� the oracle answers are far from any sequence that is ac
ceptable by the residual predicate �rather than merely that the answers are rejected
by this predicate�� Indeed� if the outer veri�er is �nonadaptive and� robust� then
it su�ces that the inner veri�er distinguish �with the help of an adequate proof�
answers that are valid from answers that are far from being valid�

For example� if robustness is de�ned as referring to relative constant distance
�which is indeed the case�� then the PCP of x������� �as well as any PCP of con

��Indeed� in our applications the quadratic system will be �known� to the ��inner�� veri�er�
because it is determined by the ��outer�� veri�er�

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

stant query complexity� is trivially robust� However� we will not care about the
robustness of this PCP� because we only use this PCP as an inner veri�er in proof
composition� In contrast� we will care about the robustness of PCPs that are used
as outer veri�ers �e�g�� the PCP presented next��

Teaching note� Unfortunately� the construction of a PCP of logarithmic randomness

and polylogarithmic query complexity for NP involves many technical details� Further�

more� obtaining a robust version of this PCP is beyond the scope of the current text�

Thus� the following description should be viewed as merely providing a �avor of the

underlying ideas�

PCP of logarithmic randomness and polylogarithmic query complexity
for NP � We start by showing that NP � PCP�f� f�� for f�n� � poly�logn�� The
proof system is based on an arithmetization of CNF formulae� which is di�erent
from the one used in x������� �for constructing an interactive proof system for
coNP�� In the current arithmetization� the names of the variables �resp�� clauses�
of the input formula � are represented by binary strings of logarithmic �in j�j�
length� and a generic variable �resp�� clause� of � is represented by a logarithmic
number of new variables �which are assigned values in a �nite �eld F � f	� �g��
The �structure of the� input �CNF formula ��x�� ���� xn� is represented by a Boolean
function C� � f	� �gOlogn� f	� �g such that C���� ��� ��� ��� � � if and only if�
for i � �� �� �� the ith literal in the �th clause has index �i � ��i� 	i� that is viewed
as a variable name augmented by its sign� Thus� for every � � f	� �glog j�j there is
a unique ���� ��� ��� � f	� �g� log �n such that C���� ��� ��� ��� � � holds� Next� we
consider a multilinear extension of C� over F� denoted ,� that is� , is the �unique�
multilinear polynomial that agrees with C� on f	� �gOlogn� � FOlog n�� Thus� on
input �� the veri�er �rst constructs C� and ,� Part of the proof oracle of this
veri�er is viewed as function A � Flog n F� which is supposed to be a multilinear
extension of a truth assignment that satis�es � �i�e�� for every � � f	� �glogn � �n��
the value A��� is supposed to be the value of the �th variable in such an assignment��
Thus� we wish to check whether� for every � � f	� �glog j�j� it holds that

X
����f���g� log �n

,��� ��� ��� ��� �
�Y
i��

���A���i�� � 	 �����

where A���� is the value of the �th literal under the �variable� assignment A� that
is� for � � ��� 	�� where � � f	� �glogn is a variable name and 	 � f	� �g is the
literal
s type� it holds that A���� � 	 �A��� $ ��� 	� � ���A����� Thus� Eq� �����
holds if and only if the �th clause is satis�ed by the assignment induced by A
�because A���� � � must hold for at least one of the three literals � that appear in
this clause���
 Note that� as in x�������� we cannot a�ord to verify all n instances of
Eq� ������ Furthermore� unlike in x�������� we cannot a�ord to take a random linear

��Note that� for this � there exists a unique triple ���� ��� ��� � f�� �g� log �n such that
&��� ��� ��� ��� �� �� This triple ���� ��� ��� encodes the literals appearing in the �th clause�
and this clause is satis�ed by A if and only if
i � ��� s�t� A���i� � ��

��	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

combination of these n instances either �because this requires too much random
ness�� Fortunately� taking a �pseudorandom� linear combination of these equations
is good enough� Speci�cally� using an adequate �e�ciently constructible� smallbias
probability space �cf� x�� ����� will do� Denoting such a space �of size poly�j�j � jF j�
and bias at most ���� by S � Fj�j� we may select uniformly �s�� ���� sj�j� � S and
check whether

X
�����f���g�

s� �,��� ��� ��� ��� �
�Y
i��

���A���i�� � 	 �����

where

def
� log j�j$ � log �n� The smallbias property guarantees that if A fails to

satisfy any of the equations of type Eq� ����� then� with probability at least ���
�taken over the choice of �s�� ���� sj�j� � S�� it is the case that A fails to satisfy

Eq� ������ Since jSj � poly�j�j � jF j� rather that jSj � �j�j� we can select a sample
in S using O�log j�j� coin tosses� Thus� we have reduced the original problem to
checking whether� for a random �s�� ���� sj�j� � S� Eq� ����� holds�

Assuming �for a moment� that A is a lowdegree polynomial� we can probabilis
tically verify Eq� ����� by applying a summation test �as in the interactive proof for
coNP�� Indeed� the veri�er obtains the relevant univariate polynomials by making
adequate queries �which specify the entire sequence of choices made so far in the
summation test�� Note that after stripping the
 summations� the veri�er endups
up with an expression that contains three unknown values of A�� which it may ob
tain by making corresponding queries to A� The summation test involves tossing

 � log jFj coins and making �
 $ �� � O�log jFj� Boolean queries �which correspond
to
 queries that are each answered by a univariate polynomial of constant degree
�over F�� and three queries to A �each answered by an element of F��� Soundness
of the summation test follows by setting jF j � O�
�� Needless to say� we must also
check that A is indeed a multivariate polynomial of low degree �or rather that it
is close to such a polynomial�� A lowdegree test of complexities similar to those
of the summation text does exist� Using a �nite �eld F of poly�log�n�� elements�

this yields NP � PCP�f� f� for f�n�
def
� O�log�n� � log log�n���

To obtain the desired PCP system of logarithmic randomness complexity� we

represent the names of the original variables and clauses by Olog n�
log logn long sequences

over f�� ���� logng� rather than by logarithmicallylong binary sequences� This re
quires using low degree polynomial extensions �i�e�� polynomial of degree �logn�����
rather than multilinear extensions� We can still use a �nite �eld of poly�log�n��

elements� and so we need only Olog n�
log logn �O�log logn� random bits for the summation

and lowdegree tests� However� the number of queries �needed for obtaining the
answers in these tests� grows� because now the polynomials involved have individ
ual degree �logn� � � rather than constant individual degree� This merely means
that the query complexity increases by a factor of O�log n� log logn�� Thus� we

obtain NP � PCP�log� q� for q�n�
def
� O�log� n��

Recall that� in order to use the latter PCP system in composition� we need to
guarantee that it �or a version of it� is robust as well as to present a version that

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

is a PCP of proximity� The latter version is relatively easy to obtain �using ideas
as applied to the PCP of x��������� whereas obtaining robustness is too complex to
be described here� We comment that one way of obtaining a robust PCP system
is by a generic application of a �randomnesse�cient� �parallelization� of PCP
systems �cf� ������ which in turn depends heavily on highly e�cient lowdegree
tests� A alternative approach �cf� ����� capitalizes of the speci�c structure of the
summation test �as well as on the evident robustness of a simple lowdegree test��

Digest� Assuming that P �� NP � the PCP Theorem asserts a PCP system that
obtains simultaneously the minimal possible randomness and query complexity �up
to a multiplicative factor�� The forgoing construction obtains this remarkable result
by combining two di�erent PCPs� the �rst PCP obtains logarithmic randomness
but uses polylogarithmically many queries� whereas the second PCP uses a constant
number of queries but has polynomial randomness complexity� We stress that each
of the two PCP systems is highly nontrivial and very interesting by itself� We
highlight the fact that these PCPs can be composed using a very simple composition
method that refers to auxiliary properties such as robustness and proximity testing�
�Composition of PCP systems that lack these extra properties is possible� but is
far more cumbersome and complex��

������� Overview of the second proof of the PCP Theorem

The original proof of the PCP Theorem focuses on the construction of two PCP
systems that are highly nontrivial and interesting by themselves� and combines
them in a natural manner� Loosely speaking� this combination �via proof composi
tion� preserves the good features of each of the two systems� that is� it yields a PCP
system that inherits the �logarithmic� randomness complexity of one system and
the �constant� query complexity of the other� In contrast� the following alterna
tive proof is focused at the �ampli�cation� of PCP systems� via a gradual process
of logarithmically many steps� We start with a trivial �PCP� system that has
the desired complexities but rejects false assertions with probability inversely pro
portional to their length� and double the rejection probability in each step while
essentially maintaining the initial complexities� That is� in each step� the con
stant query complexity of the veri�er is preserved and its randomness complexity
is increased only by a constant term� Thus� the process gradually transforms an
extremely weak PCP system into a remarkably strong PCP system as postulated
in the PCP Theorem�

In order to describe the aforementioned process we need to rede�ne PCP sys
tems so to allow arbitrary soundness error� In fact� for technical reasons� it is more
convenient to describe the process as an iterated reduction of a �constraint satisfac
tion� problem to itself� Speci�cally� we refer to systems of �variable constraints�
which are readily represented by �labeled� graphs such that the vertices correspond
to �nonBoolean� variables and the edges are associated with constraints�

De�nition ���� �CSP with �variable constraints�� For a �xed �nite set �� an
instance of CSP consists of a graph G � �V�E� �which may have parallel edges

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

and selfloops� and a sequence of �variable constraints , � ��e�e�E associated
with the edges� where each constraint has the form �e � �� f	� �g� The value
of an assignment � � V � is the number of constraints satis�ed by �� that is�
the value of � is jf�u� v� � E � �u�v����u�� ��v�� � �gj� We denote by vlt�G�,�
�standing for violation� the fraction of unsatis�ed constraints under the best possible
assignment� that is�

vlt�G�,� � min
��V��

fjf�u� v� � E � �u�v����u�� ��v�� � 	gj�jEjg� �����

For various functions � N �	� ��� we will consider the promise problem gapCSP�� �
having instances as in the foregoing� such that the yes�instances are fully satis�
�able instances �i�e�� vlt � 	� and the no�instances are pairs �G�,� for which
vlt�G�,� � �jGj� holds� where jGj denotes the number of edges in G�

Note that �SAT is reducible to gapCSP
f������	g
� for �m� � ��m� see Exercise �����

Our goal is to reduce �SAT �or rather gapCSP
f������	g
� � to gapCSP�c � for some �xed �

nite � and constant c � 	� The PCP Theorem will follow by showing a simple PCP
system for gapCSP�c � see Exercise ����� �The relationship between constraint satis
faction problems and the PCP Theorem is further discussed in Section ������� The
desired reduction of gapCSP���m to gapCSP���� is obtained by iteratively applying
the following reduction logarithmically many times�

Lemma ���� �amplifying reduction of gapCSP to itself�� For some �nite � and
constant c � 	� there exists a polynomial�time reduction of gapCSP� to itself such
that the following conditions hold with respect to the mapping of any instance �G�,�
to the instance �G��,���

�� If vlt�G�,� � 	 then vlt�G��,�� � 	�

� vlt�G��,�� � min�� � vlt�G�,�� c��
�� jG�j � O�jGj��

Proof Outline��� The reduction consists of three steps� We �rst apply a pre
processing step that makes the underlying graph suitable for further analysis� The
value of vlt may decrease during this step by a constant factor� The heart of the
reduction is the second step in which we may increase vlt by any desired constant
factor� The latter step also increases the alphabet �� and thus a postprocessing
step is employed to regain the original alphabet �by using any inner PCP systems�
e�g�� the one presented in x��������� Details follow�

We �rst stress that the aforementioned � and c� as well as the auxiliary pa
rameters d and t �to be introduced in the following two paragraphs�� are �xed
constants that will be determined such that various conditions �which arise in the
course of our argument� are satis�ed� Speci�cally� t will be the last parameter to
be determined �and it will be made greater than a constant that is determined by
all the other parameters��

�	For details� see �����

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

We start with the preprocessing step� Our aim in this step is to reduce the
input �G�,� of gapCSP� to an instance �G��,�� such that G� is a dregular ex
pander graph��� Furthermore� each vertex in G� will have at least d�� selfloops�
the number of edges is preserved up to a constant factor �i�e�� jG�j � O�jGj��� and
vlt�G��,�� � +�vlt�G�,��� This step is quite simple� see Exercise ����� Intu
itively� with respect to intersecting a �xed set of edges� a random �tedge long�
walk on the resulting graph G� behave like a random sample of �t� edges� while
jG�j � O�jGj� and vlt�G��,�� � "�vlt�G�,���

vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

The alphabet �� as a labeling of the distance t � � neighborhoods�
when repetitions are omitted� In this case d � � but the selfloops
are not shown �and so the �e�ective� degree is three�� The twosided
arrow indicates one of the edges in G� that will contribute to the edge
constraint between u and w in �G��,���

Figure ���� The amplifying reduction in the second proof of the PCP Theorem�

The main step is aimed at increasing the fraction of violated constraints by a
su�ciently large constant factor� This is done by reducing the instance �G��,�� of

�
A d�regular graph is a graph in which each vertex is incident to exactly d edges� Loosely
speaking� an expander graph has the property that each moderately balanced cut �i�e�� partition
of its vertex set� has relatively many edges crossing it� An equivalent de�nition� also used in the
actual analysis� is that the second eigenvalue of the corresponding adjacency matrix has absolute
value that is bounded away from d� For further details� see xE�������

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

gapCSP� to an instance �G��,�� of gapCSP
��

such that �� � �dt � Speci�cally� the
vertex set of G� is identical to the vertex set of G�� and each tedge long path in G�

is replaced by a corresponding edge in G�� which is thus a dtregular graph� The
constraints in ,� are the natural ones� viewing each element of �� as a �labeling
of the ��distance � t�� neighborhood of a vertex �see Figure ����� and checking
that two such labelings are consistent as well as satisfy ,�� That is� suppose that
there is a path of length at most t in G� going from vertex u to vertex w and
passing through vertex v� Then� there is an edge in G� between vertices u and w�
and the constraint associated with it with mandates that the entries corresponding
to vertex v in the ��labeling of vertices u and w are identical� In addition� if the
G�edge �v� v

�� is on a path of length at most t starting at u then the corresponding
edge in G� is associated a constraint that enforces the constraint that is associated
to �v� v�� in ,��

Clearly� if vlt�G��,�� � 	 then vlt�G��,�� � 	� The interesting fact is
that the fraction of violated constraints increases by a factor of "�

p
t�� that is�

vlt�G��,�� � min�"�
p
t � vlt�G��,���� c�� Here we merely provide a rough intu

ition and refer the interested reader to ����� The intuition is that any ��labeling
to the vertices of G� must either be consistent with a �labeling of G� or violate
the �equality constraints� of many edges in G�� Focusing on the �rst case and
relying on the hypothesis that G� is an expander� it follows that the set of violated
edgeconstraints �of ,�� with respect to the aforementioned �labeling causes many
more edgeconstraints of ,� to be violated �by virtue of the latter enforcing many
edgeconstraints of ,��� The point is that any set F of edges of G� is likely to
appear on a min�"�t� � jF j�jG�j�"���� fraction of the edges of G� �i�e�� tpaths of
G��� �Note that the claim would have been obvious if G� were a complete graph�
but it also holds for an expander����

The factor of "�
p
t� gained in the second step makes up for the constant factor

lost in the �rst step �as well as the constant factor to be lost in the last step��
Furthermore� for a suitable choice of the constant t� the aforementioned gain yields
an overall constant factor ampli�cation �of vlt�� However� so far we obtained

an instance of gapCSP�
�

rather than an instance of gapCSP�� where �� � �dt �
The purpose of the last step is to reduce the latter instance to an instance of
gapCSP�� This is done by viewing the instance of gapCSP�

�

as a �weak� PCP
system �analogously to Exercise ������ and composing it with an innerveri�er
using the proof composition paradigm outlined in x�������� We stress that the
innerveri�er used here needs only handle instances of constant size �i�e�� having
description length O�dt log j�j��� and so the veri�er presented in x������� will do�

The resulting PCPsystem uses randomness r
def
� log� jG�j $ O�dt log j�j�� and a

constant number of binary queries� and has rejection probability "�vlt�G��,����
which is independent of the choice of the constant t� As in Exercise ����� for � �

��Indeed� the ampli�cation step may be viewed as a randomness�e�cient version of a straight�
forward repetition procedure� where the sample points are generated by an expander walk �as in
Section
������ In the current context� the saving in randomness translates to a relatively mod�
erate increase in the size of the graph �i�e�� the number of edges�� We also note that� due to a
technical di�culty� it is easier to establish the claimed bound of $�

p
t � vlt�G��&��� rather than

$�t � vlt�G��&����

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ��

f	� �gO��� we can easily obtain an instance of gapCSP� that has a "�vlt�G��,���
fraction of violated constraints� Furthermore� the size of the resulting instance is
O��r� � O�jG�j�� because d and t are constants� This completes the last step as
well as the �outline of the� proof of the entire lemma�

����� PCP and Approximation

The characterization of NP in terms of probabilistically checkable proofs plays a
central role in the study of the complexity of approximation problems �cf�� Sec
tion �	������ To demonstrate this relationship� we �rst note that a PCP system
V gives rise to a natural approximation problem� that is� on input x� the task
is approximating the probability that V accepts x when given oracle access to
the best possible � �i�e�� we wish to approximate max�fPr�V ��x� � ��g�� Thus�
if S � PCP�r� q� then deciding membership in S is reducible to approximating
the maximum among exp��r�q� quantities �corresponding to all e�ective oracles��
where each quantity can be evaluated in time �r �poly� Note that an approximation
up to a constant factor �of �� will do�

Note that the foregoing approximation problem is parameterized by a PCP
veri�er V � and its instances are given their value with respect to this veri�er �i�e��
the instance x has value max�fPr�V ��x� � ��g�� This per se does not yield a
�natural� approximation problem� In order to link PCP systems with natural
approximation problems� we take a closer look at the approximation problem as
sociated with PCP�r� q�� For simplicity� we focus on the case of nonadaptive PCP
systems �i�e�� all the queries are determined beforehand based on the input and
the internal coin tosses of the veri�er�� Fixing an input x for such a system� we
consider the �rjxj� formulae that represent the decision of the veri�er on each of
the possible outcomes of its coin tosses after inspecting the corresponding bits in
the proof oracle� That is� each of these �rjxj� formulae depends on q�jxj� Boolean
variables that represent the values of the corresponding bits in the proof oracle�
Thus� if x is a yesinstance then there exists a truth assignment �to these variables�
that satis�es all �rjxj� formulae� whereas if x is a noinstance then there exists no
truth assignment that satis�es more than �rjxj��� formulae� Furthermore� in the
case that r�n� � O�log n�� given x� we can construct the corresponding sequence of
formulae in polynomialtime� Hence� the PCP Theorem �i�e�� Theorem ����� yields
NP�hardness results regarding the approximation of the number of simultaneously
satis�able Boolean formulae� When focusing on the case that q is constant� this
motivates the following de�nition�

De�nition ���� �gap problems for SAT and generalizedSAT�� For constants q �
N and � � 	� the promise problem gapGSATq� consists of instances that are each
a sequence of q�variable Boolean formulae� The yes�instances are sequences that
are simultaneously satis�able� whereas the no�instances are sequences for which no
Boolean assignment satis�es more than a � � � fraction of the formulae in the
sequence� The promise problem gapSATq� is de�ned analogously� except that in this
case each instance is a sequence of formulae that are each a single disjunctive
clause�

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Indeed� each instance of gapSATq� is naturally viewed as qCNF formulae� and we
consider an assignment that satis�es as many clauses �of the input CNF� as possible�

As hinted� NP � PCP�log� O���� implies that gapGSAT
O��
��� is NPcomplete� which

in turn implies that for some constant � � 	 the problem gapSAT�� is NPcomplete�
The converses hold too� All these claims are stated and proved next�

Theorem ���� �equivalent formulations of the PCP Theorem�� The following
three conditions are equivalent�

�� The PCP Theorem� there exists a constant q such that NP � PCP�log� q��

� There exists a constant q such that gapGSATq��� is NP�hard�

�� There exists a constant � � 	 such that gapSAT�� is NP�hard�
The point of Theorem ���� is not its mere validity �which follows from the valid
ity of each of the three items�� but rather the fact that its proof is quite simple�
Note that Items � and � make no reference to PCP� Thus� their �easy to estab
lish� equivalence to Item � manifests that the hardness of approximating natural
optimization problems lies at the heart of the PCP Theorem� In general� proba
bilistically checkable proof systems for NP yield strong inapproximability results
for various classical optimization problems �cf�� Exercise ���� and Section �	������

Proof� We �rst show that the PCP Theorem implies the NPhardness of gapGSAT�
We may assume� without loss of generality� that� for some constant q and every
S � NP � it holds that S � PCP�O�log�� q� via a nonadaptive veri�er �because
q adaptive queries can be emulated by �q nonadaptive queries�� We reduce S to
gapGSAT as follows� On input x� we scan all �Olog jxj� possible sequence of outcomes
of the veri�er
s coin tosses� and for each such sequence of outcomes we determine
the queries made by the veri�er as well as the residual decision predicate �where this
predicate determines which sequences of answers lead this veri�er to accept�� That
is� for each randomoutcome � � f	� �gOlog jxj�� we consider the residual predicate�
determined by x and �� that speci�es which qbit long sequence of oracle answers
makes the veri�er accept x on coins �� Indeed� this predicate depends only on q
variables �which represent the values of the q corresponding oracle answers�� Thus�
we map x to a sequence of poly�jxj� formulae� each depending on q variables�
obtaining an instance of gapGSATq� This mapping can be computed in polynomial
time� and indeed x � S �resp�� x �� S� is mapped to a yesinstance �resp�� no
instance� of gapGSATq����

Item � implies Item � by a standard reduction of GSAT to �SAT� Speci�cally�
gapGSAT

q
��� reduces to gapSAT

q
���q���

� which in turn reduces to gapSAT�� for � �

��q�����q � ��� Note that Item � implies Item � �e�g�� given an instance of gapSAT���
consider all possible conjunctions of ��� disjunctive clauses in the given instance��

We complete the proof by showing that Item � implies Item �� �The same
proof shows that Item � implies Item ��� This is done by showing that gapSAT�� is
in PCP�O���� log�� O������� and using the reduction of NP to gapSAT�� to derive
a corresponding PCP for each set in NP � In fact� we show that gapGSATq� is in

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

PCP�O���� log�� O�q����� and do so by presenting a very natural PCP system� In
this PCP system the proof oracle is supposed to be an satisfying assignment� and
the veri�er selects at random one of the �qvariable� formulae in the input sequence�
and checks whether it is satis�ed by the �assignment given by the� oracle� This
amounts to tossing logarithmically many coins and making q queries� This veri�er
always accepts yesinstances �when given access to an adequate oracle�� whereas
each noinstances is rejected with probability at least � �no matter which oracle is
used�� To amplify the rejection probability �to the desired threshold of ����� we
invoke the foregoing veri�er O����� times�

Gap amplifying reductions � a re�ection� Items � and � of Theorem ����
assert the existence of �gap amplifying� reductions of problems like �SAT to them
selves� These reductions map yesinstances to yesinstances �as usual�� while map
ping noinstances to noinstances of a special type such that a �gap� is created
between the yesinstances and noinstances at the image of the reduction� For ex
ample� in the case of �SAT� unsatis�able formulae are mapped to formulae that are
not merely unsatis�able but rather have no assignment that satis�es more than a
�� � fraction of the clauses� Thus� PCP constructions are essentially �gap ampli
fying� reductions�

����� More on PCP itself
 an overview

We start by discussing variants of the PCP characterization of NP� and next turn
to PCPs having expressing power beyond NP� Needless to say� the latter systems
have superlogarithmic randomness complexity�

����	�� More on the PCP characterization of NP

Interestingly� the two complexity measures in the PCPcharacterization of NP
can be traded o� such that at the extremes we get NP � PCP�log� O���� and
NP � PCP�	� poly�� respectively�

Proposition ���� For every S � NP� there exists a logarithmic function
 such
that� for every integer function k that satis�es 	� k�n��
�n�� it holds that S �
PCP�
� k�O��k�� � NP�

Proof Sketch� By Theorem ����� we have S � PCP�
� O����� Consider an emula
tion of the corresponding veri�er in which we try all possibilities for the k�n�bit
long pre�x of its randomtape� Lastly� recall that PCP�log� poly� � NP �

Following the establishment of Theorem ����� numerous variants of the PCP
Characterization of NP were explored� These variants refer to a �ner evaluation of
various parameters of probabilistically checkable proof systems �for sets in NP��
Following is a brief summary of some of these studies���

��With the exception of works that appeared after �
��� we provide no references for the results
quoted here� We refer the interested reader to �
�� Sec� �������

��� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

The length of PCPs� Recall that the e�ective length of the oracle in any
PCP�log� log� system is polynomial �in the length of the input�� Furthermore�
in the PCP systems underlying the proof of Theorem ���� the queries refer only to
a polynomially long pre�x of the oracle� and so the actual length of these PCPs for
NP is polynomial� Remarkably� the length of PCPs for NP can be made nearly�
linear �in the combined length of the input and the standard NPwitness�� while
maintaining constant query complexity� where by nearly�linear we mean linear up
to a poly�logarithmic factor� �For details see ���� ����� This means that a rel�
atively modest amount of redundancy in the proof oracle su�ces for supporting
probabilistic veri�cation via a constant number of probes�

The number of queries in PCPs� Theorem ���� asserts that a constant num
ber of queries su�ce for PCPs with logarithmic randomness and soundness error
of ��� �for NP�� It is currently known that this constant is at most �ve� whereas
with three queries one may get arbitrary close to a soundness error of ���� The
obvious tradeo� between the number of queries and the soundness error gives rise
to the robust notion of amortized query complexity� de�ned as the ratio between the
number of queries and �minus� the logarithm �to based �� of the soundness error�
For every � � 	� any set in NP has a PCP system with logarithmic randomness
and amortized query complexity �$ � �cf� ��� ��� whereas only sets in P have PCPs
of logarithmic randomness and amortized query complexity � �or less��

The free�bit complexity� The motivation to the notion of free bits came from
the PCP�to�MaxClique connection �see Exercise ���� and ���� Sec� ���� but we
believe that this notion is of independent interest� Intuitively� this notion distin
guishes between queries for which the acceptable answer is determined by previ
ously obtained answers �i�e�� the veri�er compares the answer to a value deter
mined by the previous answers� and queries for which the veri�er only records
the answer for future usage� The latter queries are called free �because any an
swer to them is �acceptable��� For example� in the linearity test �see x�������� the
�rst two queries are free and the third is not �i�e�� the test accepts if and only if
f�x� $ f�y� � f�x $ y��� The amortized free�bit complexity is de�ne analogously
to the amortized query complexity� Interestingly� NP has PCPs with logarithmic
randomness and amortized free�bit complexity less than any positive constant�

Adaptive versus non�adaptive veri�ers� Recall that a PCP veri�er is called
non�adaptive if its queries are determined solely based on its input and the outcome
of its coin tosses� �A general veri�er� called adaptive� may determine its queries also
based on previously received oracle answers�� Recall that the PCP Characterization
of NP �i�e�� Theorem ����� is established using a nonadaptive veri�er� however� it
turns out that adaptive veri�ers are more powerful than non�adaptive ones in terms
of quantitative results� Speci�cally� for PCP veri�ers making three queries and
having logarithmic randomness complexity� adaptive queries provide for soundness
error at most 	� � �actually 	� $ � for any � � 	� for any set in NP � whereas
non�adaptive queries provide soundness error �� �or less� only for sets in P �

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS ���

Non�binary queries� Our de�nition of PCP allows only binary queries� Cer
tainly� nonbinary queries can always be coded as binary ones� but the converse is
not necessarily valid� in particular in adversarial settings� Note that the soundness
condition constitutes an implicit adversarial setting� where a bad proof may be
thought of as being selected by an adversary� Thus� when several binary queries
are packed into one nonbinary query� the adversary need not respect the packing
�i�e�� it may answer inconsistently on the same binary query depending on the other
queries packed with it�� For this reason� �parallel repetition� is highly nontrivial
in the PCP setting� Still� a Parallel Repetition Theorem that refers to indepen
dent invocations of the same PCP is known� but it is not applicable for obtaining
soundness error smaller than a constant �while preserving logarithmic randomness��
Nevertheless� using adequate �consistency tests� one may construct PCP systems
for NP using logarithmic randomness� a constant number of �nonbinary� queries
and soundness error exponential in the length of the answers� �Currently� this is
known only for sublogarithmic answer lengths��

����	�� PCP with super�logarithmic randomness

Our focus in x������� was on the important case where the veri�er tosses logarith
mically many coins� and hence the �e�ective proof length� is polynomial� Here we
mention that the PCP Theorem scales up���

Theorem ���� �Theorem ���� � Generalized�� Let t��� be an integer function such
that n�t�n���polyn�� Then� Ntime�t� � PCP�O�log t�� O�����

Recall that PCP�r� q� � Ntime�t�� for t�n� � poly�n� � �rn�� Thus� the Ntime
Hierarchy implies a hierarchy of PCP��� O���� classes� for randomness complexity
ranging between logarithmic and polynomial functions�

Chapter Notes

�The following historical notes are quite long and still they fail to properly discuss
several important technical contributions that played an important role in the de
velopment of the area� For further details� the reader is referred to ���� Sec� ��������

Motivated by the desire to formulate the most general type of �proofs� that
may be used within cryptographic protocols� Goldwasser� Micali and Racko� ��	 �
introduced the notion of an interactive proof system� Although the main thrust of
their work was the introduction of a special type of interactive proofs �i�e�� ones
that are zero�knowledge�� the possibility that interactive proof systems may be more
powerful from NPproof systems was pointed out in ��	 �� Independently of ��	 ��
Babai ���� suggested a di�erent formulation of interactive proofs� which he called
Arthur�Merlin Games� Syntactically� ArthurMerlin Games are a restricted form

��This scaling up is not straightforward� since we wish to maintain polynomial�time veri�cation�
The key point is that the CNF formulae that represent the computation of Ntime are highly
uniform� and thus the corresponding Boolean functions �and their low degree extensions� can be
evaluated in polynomial�time�

�		 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

of interactive proof systems� yet it was subsequently shown that these restricted
systems are as powerful as the general ones �cf�� ��	���� The speedup result �i�e��
AM��f� � AM�f�� is due to ���� �improving over ������

The �rst evidence of the power of interactive proofs was given by Goldreich� Mi
cali� and Wigderson ����� who presented an interactive proof system for Graph Non
Isomorphism �Construction ����� More importantly� they demonstrated the gen�
erality and wide applicability of zero�knowledge proofs� Assuming the existence of
oneway function� they showed how to construct zeroknowledge interactive proofs
for any set in NP �Theorem ������ This result has had a dramatic impact on
the design of cryptographic protocols �cf�� ������ For further discussion of zero
knowledge and its applications to cryptography� see Appendix C� Theorem ����
�i�e�� ZK � IP� is due to ��	� �����

Probabilistically checkable proof �PCP� systems are related to multi�prover in�
teractive proof systems� a generalization of interactive proofs that was suggested
by BenOr� Goldwasser� Kilian and Wigderson ����� Again� the main motivation
came from the zeroknowledge perspective� speci�cally� introducing multiprover
zeroknowledge proofs for NP without relying on intractability assumptions� Yet�
the complexity theoretic prospects of the new class� denoted MIP� have not been
ignored�

The amazing power of interactive proof systems has been demonstrated by using
algebraic methods� The basic technique has been introduced by Lund� Fortnow�
Karlo� and Nisan �� �� who applied it to show that the polynomialtime hierarchy
�and actually P�P� is in IP � Subsequently� Shamir ����� used the technique to
show that IP � PSPACE � and Babai� Fortnow and Lund ���� used it to show that
MIP � NEXP � �Our entire proof of Theorem ��� follows �������

The aforementioned multiprover proof system of Babai� Fortnow and Lund ����
�hereafter referred to as the BFL proof system� has been the starting point for fun
damental developments regarding NP � The �rst development was the discovery
that the BFL proof system can be �scaleddown� from NEXP to NP � This im
portant discovery was made independently by two sets of authors� Babai� Fortnow�
Levin� and Szegedy ���� and Feige� Goldwasser� Lov#asz� and Safra ����� However�
the manner in which the BFL proof is scaleddown is di�erent in the two papers�
and so are the consequences of the scalingdown�

Babai et� al� ���� start by considering �only� inputs encoded using a special error
correcting code� The encoding of strings� relative to this errorcorrecting code� can
be computed in polynomial time� They presented an almostlinear time algorithm
that transforms NPwitnesses �to inputs in a set S � NP� into transparent proofs
that can be veri�ed �as vouching for the correctness of the encoded assertion�
in �probabilistic� poly�logarithmic time �by a Random Access Machine�� Babai
et� al� ���� stress the practical aspects of transparent proofs� speci�cally� for rapidly
checking transcripts of long computations�

In contrast� in the proof system of Feige et� al� ���� �	� the veri�er stays
polynomialtime and only two more re�ned complexity measures �i�e�� the ran
domness and query complexities� are reduced to polylogarithmic� This eliminates
the need to assume that the input is in a special errorcorrecting form� and yields

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS �	�

a re�ned �quantitative� version of the notion of probabilistically checkable proof
systems �introduced in ������ where the re�nement is obtained by specifying the
randomness and query complexities �see De�nition ������ Hence� whereas the BFL
proof system ���� can be reinterpreted as establishing NEXP � PCP�poly� poly��
the work of Feige et� al� ��	� establishes NP � PCP�f� f�� where f�n� � O�logn �
log logn�� �In retrospect� we note that the work of Babai et� al� ���� implies that
NP � PCP�log� polylog�� but the latter terminology was not available at the
time��

Interest in the new complexity class became immense since Feige et� al� ���� �	�
demonstrated its relevance to proving the intractability of approximating some
combinatorial problems �speci�cally� for MaxClique�� When using the PCP�to�
MaxClique connection established by Feige et� al�� the randomness and query com
plexities of the veri�er �in a PCP system for an NPcomplete set� relate to the
strength of the negative results obtained for approximation problems� This fact
provided a very strong motivation for trying to reduce these complexities and ob
tain a tight characterization of NP in terms of PCP��� ��� The obvious challenge
was showing that NP equals PCP�log� log�� This challenge was met by Arora and
Safra �� �� Actually� they showed that NP � PCP�log� q�� where q�n� � o�logn��

Hence� a new challenge arose� namely� further reducing the query complexity �
in particular� to a constant � while maintaining the logarithmic randomness com
plexity� Again� additional motivation for this challenge came from the relevance of
such a result to the study of approximation problems� The new challenge was met
by Arora� Lund� Motwani� Sudan and Szegedy ����� and is captured by the PCP
Characterization Theorem� which asserts that NP � PCP�log� O�����

Indeed the PCP Characterization Theorem is a culmination of a sequence of
impressive works �� � ��� ��� �	� � � ���� These works are rich in innovative ideas
�e�g�� various arithmetizations of SAT as well as various forms of proof composi
tion� and employ numerous techniques �e�g�� lowdegree tests� selfcorrection� and
pseudorandomness��

Our overview of the original proof of the PCP Theorem �in x���������������� is
based on ���� � ���� The alternative proof outlined in x������� is due to Dinur �����
We also mention some of the ideas and techniques involved in deriving even stronger
variants of the PCP Theorem �which are surveyed in x��������� These include
the Parallel Repetition Theorem ������ the use of the LongCode ����� and the
application of Fourier analysis in this setting ����� �����

Computationally�Sound Proof Systems� Argument systems were de�ned by
Brassard� Chaum and Cr#epeau ����� with the motivation of providing perfect zero
knowledge arguments �rather than zeroknowledge proofs� for NP � A few years
later� Kilian ����� demonstrated their signi�cance beyond the domain of zero
knowledge by showing that� under some reasonable intractability assumptions� ev
ery set in NP has a computationallysound proof in which the randomness and

��Our presentation also bene�ts from the notions of PCPs of proximity and robustness� put
forward in ���� ����

�	� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

communication complexities are polylogarithmic��� Interestingly� these argument
systems rely on the fact that NP � PCP�f� f�� for f�n� � poly�logn�� We men
tion that Micali �� �� suggested a di�erent type of computationallysound proof
systems �which he called CSproofs��

Final comment� The current chapter is a revision of ���� Chap� ��� In particular�
more details are provided here for the main topics� whereas numerous secondary
topics discussed in ���� Chap� �� are not mentioned here �or are only brie�y men
tioned here�� In addition� a couple of the research directions that were mentioned
in ���� Sec� ������ received considerable attention in the period that elapsed� and
improved results are currently known� In particular� the interested reader is re
ferred to ���� ��� ��� �for a study of the length of PCPs� and to ��� � �for a study
of their amortized query complexity��

Exercises

Exercise ��� �parallel error�reduction for interactive proof systems� Prove
that the error probability �in the soundness condition� can be reduced by parallel
repetitions of the proof system�

Guideline� As a warm�up consider �rst the case of public�coin interactive proof systems�

Next� note that the analysis generalizes to arbitrary interactive proof systems�
Extra

hint� As a mental experiment� consider a �powerful veri�er� that emulates the original veri�er

while behaving as in the public�coin model�� A proof appears in ���� Apdx� C�� �

Exercise ��� Complete the details of the proof that coNP � IP �i�e�� the �rst
part of the proof of Theorem ����� In particular� regarding the proof of non
satis�ability of a CNF with n variables and m clauses� what is the length of the
messages sent by the two parties! What is the soundness error!

Exercise ��� Present a n�O�logn�round interactive proof for the nonsatis�ability
of a CNF having n variables�

Guideline� Modify the
�rst part of the� proof of Theorem ���� by stripping O
log n�

summations in each round�

Exercise ��	 �an interactive proof system for �P� Using the main part of
the proof of Theorem ���� present a proof system for the counting set of Eq� ��� ��

Guideline� Use a slightly di�erent arithmetization of CNF formulae� Speci�cally� instead

of replacing the clause x 	 �y 	 z by the term
x �
� � y� � z�� replace it by the term

��

�� x� � y �
�� z����

Exercise ��� Show that QBF can be reduced to a special form of QBF in which no
variable appears both to the left and the right of more than one universal quanti�er�

��We comment that interactive proofs are unlikely to have such low complexities see ������

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS �	�

Guideline� Consider a process
which proceeds from left to right� of �refreshing� vari�
ables after each universal quanti�er� Let �
x�� ���� xs� y� xs�� ���� xst� be a quanti�er�free
boolean formula and let Qs�� ���� Qst be an arbitrary sequence of quanti�ers� Then� we
replace the quanti�ed
sub��formula

�yQs�xs� � � � Qstxst �
x�� ���� xs� y� xs�� ���� xst�

by the
sub��formula

�y�x�� � � � �x�s�
�si��
x�i � xi�� � Qs�xs� � � � Qstxst �
x��� ���� x
�
s� y� xs�� ���� xst� �

Note that the variables x�� ���� xs do not appear to the right of the quanti�er Qs� in

the replaced formula� and that the length of the replaced formula grows by an additive

term of O
s�� This process of refreshing variables is applied from left to right on the

entire sequence of universal quanti�ers
except the inner one� for which this refreshing is

useless����

Exercise ��� Prove that if two integers in �	�M � are di�erent then they must be
di�erent modulo most of the primes in the interval ��� L�� where L � poly�logM���
Prove the same for the interval �L� �L��

Guideline� Let a �� b � ���M and let P�� ���� Pt be an enumeration of the primes in the

interval ��� poly
logM� such that for every i � �� ���� t it holds that a
 b
mod Pi��

Using the Chinese Reminder Theorem� prove that Q
def
�
Qt

i��
Pi M
because otherwise

a � b follows by combining a
 b
mod Q� with the hypothesis a� b � ���M �� It follows

that t � log�M � Using a lower�bound on the density of prime numbers� the claim follows�

Exercise �� �on interactive proofs with two�sided error �following �����
Let IP ��f� denote the class of sets having a twosided error interactive proof system
in which a total of f�jxj� messages are exchanged on common input x� Similarly�
let AM� denote the publiccoin version of IP ��

�� Establish IP ��f� � AM��f $ �� by noting that the proof of Theorem F���
which establishes IP�f� � AM�f$��� extends to the twosided error setting�

�� Prove that AM��f� � AM��f $ �� by extending the ideas underlying the
proof of Theorem ���� which actually establishes that BPP � AM��� �where
BPP � AM��	���

��For example�

z�z�
z�z�
z�z� ��z�� z�� z�� z�� z�� z��

is �rst replaced by

z�z�
z�� ��z�� � z�� �
z�z�
z�z� ��z��� z�� z�� z�� z�� z���
and next �written as
z�z��
z�� ��z�� � z�� �
z��z��
z��z�� ��z��� z��� z��� z��� z��� z����� is replaced by

z�z��
z�� ��z�� � z�� �
z��z��
z���
z���
z���
����i���z

��
i � z�i�� �
z��z����z��� � z��� � z��� � z��� z��� z������

Thus� in the resulting formula� no variable appears both to the left and to the right of more than
a single universal quanti�er�

�	� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Using the Round Speedup Theorem �i�e�� Theorem F���� conclude that� for every
function f � N N n f�g� it holds that IP ��f� � AM�f� � IP�f��

Guideline� We focus on establishing AM�
f� � AM
f � �� for arbitrary f
rather than

for f
 ��� Consider an optimal prover strategy and the set of veri�er coins that make the

veri�er accept any �xed yes�instance� Applying the ideas underlying the transformation

of BPP to MA � AM
��� we obtain the desired result� For further details� see ��� �

Exercise ��� In continuation to Exercise ���� show that IP ��f� � IP�f� for every
function f � N N �including f � ���

Guideline� Focus on establishing IP �
�� � IP
��� which is identical to Part � of Exer�

cise ����� Note that the relevant classes de�ned in Exercise ���� coincide with IP
�� and

IP �
��� that is� MA � IP
�� and MA��� � IP �
���

Exercise ��� �on the role of soundness error in zero�knowledge proofs� Prove
that if S has a zeroknowledge interactive proof system with perfect soundness �i�e��
soundness error equals zero� then S � BPP�

Guideline� Let M be an arbitrary algorithm that simulates the view of the
honest�

veri�er� Consider the algorithm that on input x� accepts x if and only if M
x� represents

a valid view of the veri�er in an accepting interaction
i�e�� an interaction that leads the

veri�er to accept the common input x�� Use the simulation condition to analyze the case

x � S� and the perfect soundness hypothesis to analyze the case x �� S�

Exercise ���� �on the role of interaction in zero�knowledge proofs� Prove
that if S has a zeroknowledge interactive proof system with a unidirectional com
munication then S � BPP�

Guideline� Let M be an arbitrary algorithm that simulates the view of the
honest�

veri�er� and let M �
x� denote the part of this view that consists of the prover message�

Consider the algorithm that on input x� obtains m�M �
x�� and emulates the veri�er�s

decision on input x and message m� Note that this algorithm ignores the part of M
x� that

represents the veri�er�s internal coin tosses� and uses fresh veri�er�s coins when deciding

on
x�m��

Exercise ���� �on the e�ective length of PCP oracles� Suppose that V is
a PCP veri�er of query complexity q and randomness complexity r� Show that
for every �xed x� the number of possible locations in the proof oracle that are
examined by V on input x �when considering all possible internal coin tosses of V
and all possible answers it may receive� is upperbounded by �qjxj��rjxj�� Show
that if V is nonadaptive then the upperbound can be improved to �rjxj� � q�jxj��

Hint� In the adaptive case� the ith query is determined by V �s internal coin tosses and the

previous i�� answers� In the non�adaptive case� all q queries are determined by V �s internal coin

tosses��

Exercise ���� �upper�bounds on the complexity of PCPs� Suppose that a
set S has a PCP of query complexity q and randomness complexity r� Show that
S can be decided by a nondeterministic machine that� on input of length n� makes
at most �rn� � q�n� nondeterministic�	 steps and halts within a total number of

��See x������� for de�nition of non�deterministic machines�

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS �	

�rn� � poly�n� steps� Thus� S � Ntime��r � poly� �Dtime���rq�r � poly��
Guideline� For each input x � S and each possible value � � f�� �gr�jxj� of the random�

tape� we consider a sequence of q
jxj� bit values that represent a sequence of oracle answers

that make the veri�er accept� Indeed� for �xed x and � � f�� �gr�jxj�� each setting of the

q
jxj� oracle answers determine the computation of the corresponding veri�er
including

the queries it makes��

Exercise ���� �on the e�ective randomness of PCPs� Suppose that a set S
has a PCP of query complexity q that utilizes proof oracles of length
� Show
that� for every constant � � 	� the set S has a �nonuniform� PCP of query
complexity q� soundness error 	� $ � and randomness complexity r such that
r�n� � O��� $ log��
�n� $n�� By a �nonuniform PCP� we mean one in which the
veri�er is a probabilistic polynomialtime oracle machine that is given direct access
to a nonuniform poly�
�bit long advice�

Guideline� Consider a PCP veri�er V as in the hypothesis� and denote its randomness
complexity by rV � We construct a non�uniform veri�er V � that� on input of length n�
obtains as advice a set Rn � f�� �grV �n� of cardinality O

�
n� � n������ and emulates V
on a uniformly selected element of Rn� Show that for a random Rn of the said size� the
veri�er V � satis�es the claims of the exercise�

Extra hint� Fixing any input x �� S and any oracle � � f�� �g��jxj�� upper�bound the probability

that a random set Rn causes V � to accept x with probability ��� � � when using the oracle ���

Exercise ���	 �The FGLSS�reduction ���� For any S � PCP�r� q�� consider
the following mapping of instances for S to instances of the Independent Set

problem� The instance x is mapped to a graph Gx � �Vx� Ex�� where Vx �
f	� �grjxj��qjxj� consists of pairs ��� �� such that the PCP veri�er accepts the in
put x� when using coins � � f	� �grjxj� and receiving the answers � � �� � � ��qjxj�
�to the oracle queries determined by x� r and the previous answers�� Note that
Vx contains only accepting �views� of the veri�er� The set Ex consists of edges
that connect vertices that represents inconsistent view of the said veri�er� that is�
the vertex v � ��� �� � � ��qjxj�� is connected to the vertex v� � ���� ��� � � ���qjxj��
if there exists i and i� such that �i �� ��i and qxi �v� � qxi��v

��� where qxi �v� �resp��
qxi��v

��� denotes the ith �resp�� i�th� query of the veri�er on input x� when us
ing coins � �resp�� ��� and receiving the answers �� � � ��i�� �resp�� ��� � � ���i�����
In particular� for every � � f	� �grjxj� and � �� ��� if ��� ��� ��� ��� � Vx� then
f��� ��� ��� ���g � Ex�

�� Prove that the mapping x � Gx can be computed in time that is polynomial
in �rjxj��qjxj� � jxj�
�Note that the number of vertices in Gx equals �rjxj��fjxj�� where f � q is
the freebit complexity of the PCP veri�er��

�� Prove that� for every x� the size of the maximum independent set in Gx is at
most �rjxj��

�� Prove that if x � S then Gx has an independent set of size �rjxj��

�	� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

�� Prove that if x �� S then the size of the maximum independent set in Gx is
at most �rjxj����

In general� denoting the PCP veri�er by V � prove that the size of the maximum
independent set in Gx is exactly �rjxj� �max�fPr�V ��x� � ��g� �Note the similarity
to the proof of Proposition ��� ��
Show that the PCP Theorem implies that the size of the maximum independent set
�resp�� clique� in a graph is NP�hard to approximate to within any constant factor�

Guideline� Note that an independent set in Gx corresponds to a set of coins R and a

partial oracle �� such that V accepts x when using coins in R and accessing any oracle

that is consistent with ��� The FGLSS reduction creates a gap of a factor of � between

yes and no�instances of S
having a standard PCP�� Larger factors can be obtained by

considering a PCP that results from repeating the original PCP for a constant number of

times� The result for Clique follows by considering the complement graph�

Exercise ���� Using the ideas of Exercise ����� prove that� for any t�n� � o�logn��
it holds that NP � PCP�t� t� implies that P � NP�

Guideline� We only use the fact that the said reduction reduces PCP to instances of

the Clique problem
and ignore the fact that we actually get a stronger reduction to a

�gapClique� problem�� Furthermore� when applies to problems in NP � PCP
t� t�� this

reduction runs in polynomial�time� The key observation is that this reduction maps in�

stances of the Clique problem
which is in NP � PCP
o
log�� o
log��� to shorter instances

of the same problem
because �o�log n� � n�� Thus� iteratively applying the reduction� we

can reduce instances of Clique to instances of constant size� This yields a reduction of

Clique to a �nite set� and NP � P follows
by the NP�completeness of Clique��

Exercise ���� �a simple but partial analysis of the BLR Linearity Test�
For Abelian groups G and H � consider functions from G to H � For such a �generic�
function f � consider the linearity �or rather homomorphism� test that selects uni
formly r� s � G and checks that f�r�$f�s� � f�r$s�� Let ��f� denote the distance
of f from the set of homomorphisms �of G to H�� that is� ��f� is the minimum
taken over all homomorphisms h � G H of Prx�G�f�x� �� h�x��� Using the fol
lowing guidelines� prove that the probability that the test rejects f � denoted ��f��
is at least ���f�� ���f���

�� Suppose that h is the homomorphism closest to f �i�e�� ��f� � Prx�G�f�x� ��
h�x���� Prove that ��f� � Prx�y�G�f�x� $ f�y� �� f�x$ y�� is lowerbounded
by � � Prx�y�f�x� ��h�x�
 f�y��h�y�
 f�x$ y��h�x$ y���

Hint� consider three out of four disjoint cases �regarding f�x�
�
� h�x�� f�y�

�
� h�y�� and

f�x� y�
�
� h�x� y�� that are possible when f�x�� f�y� ��f�x� y�� where these three cases

refer to the disagreement of h and f on exactly one out of the three relevant points��

�� Prove that Prx�y�f�x� ��h�x�
f�y��h�y�
f�x$y��h�x$y�� � ��f�����f���

Hint� lower�bound the said probability by Prx�y�f�x� �� h�x����Prx�y�f�x� �� h�x��f�y� ��
h�y�� � Prx�y �f�x� �� h�x� � f�x� y� �� h�x� y�����

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS �	�

Note that the lowerbound ��f� � ���f� � ���f�� increases with ��f� only in the
case that ��f� � ���� Furthermore� the lowerbound is useless in the case that
��f� � ���� Thus an alternative lowerbound is needed in case ��f� approaches
��� �or is larger than it�� see Exercise �����

Exercise ��� �a better analysis of the BLR Linearity Test �cf� ������ In con
tinuation to Exercise ����� use the following guidelines in order to prove that
��f� � min����� ��f����� Speci�cally� focusing on the case that ��f� � ���� show
that f is ���f�close to some homomorphism �and thus ��f� � ��f�����

�� De�ne the vote of y regarding the value of f at x as �y�x�
def
� f�x$y��f�y�� and

de�ne ��x� as the corresponding plurality vote �i�e�� ��x�
def
� argmaxv�Hfjfy�

G � �y�x��vgjg��
Prove that� for every x � G� it holds that Pry��y�x� � ��x�� � �� ���f��

Extra guideline� Fixing x� call a pair
y�� y�� good if f
y�� � f
y� � y�� � f
y��

and f
x�y���f
y��y�� � f
x�y��� Prove that� for any x� a random pair
y�� y��

is good with probability at least �� ��
f�� On the other hand� for a good
y�� y���

it holds that �y�
x� � �y�
x�� Show that the graph in which edges correspond to

good pairs must have a connected component of size at least
�� ��
f�� � jGj� Note

that �y
x� is identical for all vertices y in this connected component� which in turn

contains a majority of all y�s in G�

�� Prove that � is a homomorphism� that is� prove that� for every x� y � G� it
holds that ��x� $ ��y� � ��x $ y��

Extra guideline� Prove that �
x� � �
y� � �
x � y� holds by considering the
somewhat �ctitious expression Prr�G��
x� � �
y� �� �
x� y� � and showing that it
is strictly smaller than �
and hence �
x� ��
y� �� �
x� y� is false�� Upper�bound
the probabilistic expression by

Prr��
x� ��f
x� r�� f
r�	 �
y� ��f
r�� f
r� y�	 �
x� y� ��f
x� r�� f
r� y� �

Use the union bound
and Item ��� and note that Prr��
x� �� f
x � r� � f
r� �

��
f� � ���� whereas Prr��
y� �� f
r� � f
r � y� � Prr� ��
y� �� f
y � r�� � f
r��

and Prr��
x� y� �� f
x� r�� f
r� y� � Prr� ��
x� y� �� f
x� y� r��� f
r��
by

substituting r� � r� y��

�� Prove that f is ���f�close to ��

Extra guideline� Denoting B � fx�G � Pry�G�f
x� �� �y
x� � ���g� prove that

�
f� �
���� �
jBj�jGj�� Note that if x � G nB then f
x� � �
x��

We comment that better bounds on the behavior of ��f� as a function of ��f� are
known�

Exercise ���� �checking matrix identity� Let M be a nonzero mbyn ma
trix over GF�p�� Prove that Prr�s�r

�Ms �� 	� � ��� p����� where r �resp�� s� is a
random mary �resp�� nary� vector�

Guideline� Prove that if v �� �m then Prs�v

s � � � p��� and that if M has rank �

then Prr�r

M � �n � p���

�	� CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Exercise ���� ��SAT and CSP with two variables� Show that �SAT is reducible

to gapCSP
f������	g
� for �m� � ��m� where gapCSP is as in De�nition ����� Further

more� show that the size of the resulting gapCSP instance is linear in the length of
the input formula�

Guideline� Given an instance � of �SAT� consider the graph in which vertices correspond

to clauses of �� edges correspond to pairs of clauses that share a variable� and the con�

straints represent the natural consistency condition regarding partial assignments that

satisfy the clauses� See a similar construction in Exercise �����

Exercise ���� �CSP with two Boolean variables� In contrast to Exercise �����

prove that for every positive function � N �	� �� the problem gapCSP
f���g
� is

solvable in polynomialtime�

Guideline� Reduce gapCSPf
��g� to �SAT�

Exercise ���� Show that� for any �xed �nite � and constant c � 	� the problem
gapCSP�c is in PCP�log� O�����

Guideline� Consider an oracle that� for some satisfying assignment for the CSP�instance

G�'�� provides a trivial encoding of the assignment� that is� for a satisfying assignment � �

V � �� the oracle responds to the query
v� i� with the ith bit in the binary representation

of �
v�� Consider a veri�er that uniformly selects an edge
u� v� of G and checks the

constraint ��u�v� when applied to the values �
u� and �
v� obtained from the oracle� This

veri�er makes log� j�j queries and reject each no�instance with probability at least c�

Exercise ���� For any constant � and d � ��� show that gapCSP� can be reduced
to itself such that the instance at the target of the reduction is a dregular expander�
and the fraction of violated constraints is preserved up to a constant factor� That
is� the instance �G�,� is reduced to �G��,�� such that G� is a dregular expander
graph and vlt�G��,�� � +�vlt�G�,��� Furthermore� make sure that jG�j �
O�jGj� and that each vertex in G� has at least d�� selfloops�

Guideline� First� replace each vertex of degree d� � � by a ��regular expander of size

d�� and connect each of the original d� edges to a di�erent vertex of this expander� thus

obtaining a graph of maximum degree �� Maintain the constraints associated with the

original edges� and associate the equality constraint
i�e�� �
i� j� � � if and only if i � j�

to each new edge
residing in any of the added expanders�� Next� augment the resulting

N��vertex graph by the edges of a ��regular expander of size N�
while associating with

these edges the trivially satis�ed constraint� i�e�� �
i� j� � � for all i� j � ��� Finally�

add at least d�� self�loops to each vertex
using again trivially satis�ed constraints�� so

to obtain a d�regular graph� Prove that this sequence of modi�cations may only decrease

the fraction of violated constraints� and that the decrease is only by a constant factor�

The latter assertion relies on the equality constraints associated with the small expanders

used in the �rst step�

Exercise ���� �free bit complexity zero� Note that only sets in BPP have
PCPs of query complexity zero� Furthermore� Exercise ���� implies that only sets
in P have PCP systems of logarithmic randomness and query complexity zero�

���� PROBABILISTICALLY CHECKABLE PROOF SYSTEMS �	�

�� Show that only sets in P have PCP systems of logarithmic randomness and
free�bit complexity zero�

Hint� Consider an application of the FGLSS�reduction to a set having a PCP of free�bit

complexity zero��

�� In contrast� show that Graph NonIsomorphism has a PCP system of free�bit
complexity zero �and linear randomness complexity��

Exercise ���	 �free bit complexity one� In continuation to Exercise ����� prove
that only sets in P have PCP systems of logarithmic randomness and freebit com
plexity one�

Guideline� Consider an application of the FGLSS�reduction to a set having a PCP of

free�bit complexity one and randomness complexity r� Note that the question of whether

the resulting graph has an independent set of size �r can be expressed as a �CNF formula

of size poly
�r�� and see Exercise �����

��	 CHAPTER �� PROBABILISTIC PROOF SYSTEMS

Chapter ��

Relaxing the Requirements

The philosophers have only interpreted the world� in
various ways� the point is to change it�

Karl Marx� Theses on Feuerbach

In light of the apparent infeasibility of solving numerous useful computational prob
lems� it is natural to ask whether these problems can be relaxed such that the
relaxation is both useful and allows for feasible solving procedures� We stress two
aspects about the foregoing question� on one hand� the relaxation should be suf
�ciently good for the intended applications� but� on the other hand� it should be
signi�cantly di�erent from the original formulation of the problem so to escape the
infeasibility of the latter� We note that whether a relaxation is adequate for an
intended application depends on the application� and thus much of the material
in this chapter is less robust �or generic� than the treatment of the nonrelaxed
computational problems�

Summary� We consider two types of relaxations� The �rst type of
relaxation refers to the computational problems themselves� that is� for
each problem instance we extend the set of admissible solutions� In
the context of search problems this means settling for solutions that
have a value that is �su�ciently close� to the value of the optimal
solution �with respect to some value function�� Needless to say� the
speci�c meaning of %su�ciently close
 is part of the de�nition of the
relaxed problem� In the context of decision problems this means that
for some instances both answers are considered valid� put di�erently�
we consider promise problems in which the noinstances are �far� from
the yesinstances in some adequate sense �which is part of the de�nition
of the relaxed problem��

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance� Instead�
the behavior of the solver is analyzed with respect to a predetermined

���

��� CHAPTER ��� RELAXING THE REQUIREMENTS

input distribution �or a class of such distributions�� and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution� That is� we replace worstcase analysis by
average�case �or rather typical�case� analysis� Needless to say� a major
component in this approach is limiting the class of distributions in a way
that� on one hand� allows for various types of natural distributions and�
on the other hand� prevents the collapse of the corresponding notion of
averagecase hardness to the standard notion of worstcase hardness�

���� Approximation

The notion of approximation is a natural one� and has arisen also in other disci
plines� Approximation is most commonly used in references to quantities �e�g�� �the
length of one meter is approximately forty inches��� but it is also used when refer
ring to qualities �e�g�� �an approximately correct account of a historical event��� In
the context of computation� the notion of approximation modi�es computational
tasks such as search and decision problems� �In fact� we have already encountered
it as a modi�er of counting problems� see Section �������

Two major questions regarding approximation are ��� what is a �good� approx
imation� and ��� can it be found easier than �nding an exact solution� The answer
to the �rst question seems intimately related to the speci�c computational task
at hand and to its role in the wider context �i�e�� the higher level application�� a
good approximation is one that su�ces for the intended application� Indeed� the
importance of certain approximation problems is much more subjective than the
importance of the corresponding optimization problems� This fact seems to stand
in the way of attempts at providing a comprehensive theory of natural approxi
mation problems �e�g�� general classes of natural approximation problems that are
shown to be computationally equivalent��

Turning to the second question� we note that in numerous cases natural approx
imation problems seem to be signi�cantly easier than the corresponding original
��exact�� problems� On the other hand� in numerous other cases� natural approxi
mation problems are computationally equivalent to the original problems� We shall
exemplify both cases by reviewing some speci�c results� but regret not being able
to provide a general systematic classi�cation��

Mimicking the two standard uses of the word approximation� we shall distinguish
between approximation problems that are of the �search type� and problems that
have a clear �decisional� �avor� In the �rst case we shall refer to a function that
assigns values to possible solutions �of a search problem�� whereas in the second
case we shall refer to distances between instances �of a decision problem�� We note
that� in some cases� the same computational problem may be cast in both ways�
but for most natural approximation problems one of the two frameworks is more
appealing than the other� The common theme is that in both cases we extend the
set of admissible solutions� In the case of search problems� we extend the set of

�A systematic classi�cation of a restricted class of approximation problems� which refer to
Constraint Satisfaction Problems� has appeared in �����

����� APPROXIMATION ���

optimal solutions by including also almostoptimal solutions� In the case of decision
problems� we extend the set of solutions by allowing an arbitrary answer �solution�
to some instances� which may be viewed as a promise problem that disallows these
instances� In this case we focus on promise problems in which the yes and no
instances are far apart �and the instances that violate the promise are closed to
yesinstances��

Teaching note� Most of the results presented in this section refer to speci�c computa�

tional problems and
with one exception� are presented without a proof� In view of the

complexity of the corresponding proofs and the merely illustrative role of these results

in the context of complexity theory� we recommend doing the same in class�

������ Search or Optimization

As noted in Section ������ many search problems involve a set of potential solutions
�per each problem instance� such that di�erent solutions are assigned di�erent �val
ues� �resp�� �costs�� by some �value� �resp�� �cost�� function� In such a case� one is
interested in �nding a solution of maximum value �resp�� minimum cost�� A corre
sponding approximation problem may refer to �nding a solution of approximately
maximum value �resp�� approximately minimum cost�� where the speci�cation of
the desired level of approximation is part of the problem
s de�nition� Let us elab
orate�

For concreteness� we focus on the case of a value that we wish to maximize� For
greater �exibility� we allow the value of the solution to depend also on the instance
itself� Thus� for a �polynomially bounded� binary relation R and a value function
f � f	� �g��f	� �g� R� we consider the problem of �nding solutions �with respect
to R� that maximize the value of f � That is� given x �such that R�x� �� ��� the
task is �nding y � R�x� such that f�x� y� � vx� where vx is the maximum value
of f�x� y�� over all y� � R�x�� Typically� R is in PC and f is polynomialtime
computable�� Indeed� without loss of generality� we may assume that for every x
it holds that R�x� � f	� �g�jxj� for some polynomial
 �see Exercise ����� Thus�
the optimization problem is recast as the following search problem� given x� �nd
y such that f�x� y� � vx� where vx � maxy��f���g��jxj�ff�x� y��g�

We shall focus on relative approximation problems� where for some gap function
g � f	� �g� fr�R � r��g the �maximization� task is �nding y such that f�x� y� �
vx�g�x�� Indeed� in some cases the approximation factor is stated as a function of
the length of the input �i�e�� g�x� � g��jxj� for some g� � N fr�R � r��g�� but
often the approximation factor is stated in terms of some more re�ned parameter
of the input �e�g�� as a function of the number of vertices in a graph�� Typically� g
is polynomialtime computable�

De�nition ���� �gfactor approximation�� Let f � f	� �g� � f	� �g� R�
 �
NN � and g � f	� �g� fr�R � r��g�

�In this case� we may assume without loss of generality that the function f depends only on
the solution� This can be obtained by rede�ning the relation R such that each solution y � R�x�
consists of a pair of the form �x� y��� Needless to say� this modi�cation cannot be applied along
with getting rid of R �as in Exercise ��
��

��� CHAPTER ��� RELAXING THE REQUIREMENTS

Maximization version� The g�factor approximation of maximizing f �w�r�t
� is the
search problem R such that R�x� � fy � f	� �g�jxj� � f�x� y� � vx�g�x�g�
where vx � maxy��f���g��jxj�ff�x� y��g�

Minimization version� The g�factor approximation of minimizing f �w�r�t
� is the
search problem R such that R�x� � fy � f	� �g�jxj� � f�x� y� � g�x� � cxg�
where cx � miny��f���g��jxj�ff�x� y��g�

We note that for numerous NPcomplete optimization problems� polynomialtime
algorithms provide meaningful approximations� A few examples will be mentioned
in x�	������� In contrast� for numerous other NPcomplete optimization problems�
natural approximation problems are computationally equivalent to the correspond
ing optimization problem� A few examples will be mentioned in x�	������� where
we also introduce the notion of a gap problem� which is a promise problem �of
the decision type� intended to capture the di�culty of the �approximate� search
problem�

�������� A few positive examples

Let us start with a trivial example� Considering a problem such as �nding the
maximum clique in a graph� we note that �nding a linear factor approximation is
trivial �i�e�� given a graph G � �V�E�� we may output any vertex in V as a jV j
factor approximation of the maximum clique in G�� A famous nontrivial example
is presented next�

Proposition ���� �factor two approximation to minimum Vertex Cover�� There
exists a polynomial�time approximation algorithm that given a graph G � �V�E�
outputs a vertex cover that is at most twice as large as the minimum vertex cover
of G�

We warn that an approximation algorithm for minimum Vertex Cover does not
yield such an algorithm for the complementary problem �of maximum Independent

Set�� This phenomenon stands in contrast to the case of optimization� where an
optimal solution for one problem �e�g�� minimum Vertex Cover� yields an optimal
solution for the complementary problem �maximum Independent Set��

Proof Sketch� The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph� LetM be anymaximal matching
in the graph G � �V�E�� that is� M � E is a matching but augmenting it by any
single edge yields a set that is not a matching� Then� on one hand� the set of all
vertices participating in M is a vertex cover of G� and� on the other hand� each
vertex cover of G must contain at least one vertex of each edge of M � Thus� we can
�nd the desired vertex cover by �nding a maximal matching� which in turn can be
found by a greedy algorithm�

����� APPROXIMATION ��

Another example� An instance of the traveling salesman problem �TSP� consists
of a symmetric matrix of distances between pairs of points� and the task is �nding
a shortest tour that passes through all points� In general� no reasonable approx
imation is feasible for this problem �see Exercise �	���� but here we consider two
special cases in which the distances satisfy some natural constraints �and pretty
good approximations are feasible��

Theorem ���� �approximations to special cases of TSP�� Polynomial�time algo�
rithms exist for the following two computational problems�

�� Providing a ����factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality�

� For every � � �� providing a ��$ ���factor approximation for the special case
of Euclidean TSP �i�e�� for some constant k �e�g�� k � ��� the points reside
in a kdimensional Euclidean space� and the distances refer to the standard
Euclidean norm��

A weaker version of Part � is given in Exercise �	��� A detailed survey of Part �
is provided in ����� We note the di�erence exampli�ed by the two items of Theo
rem �	��� Whereas Part � provides a polynomialtime approximation for a speci�c
constant factor� Part � provides such an algorithm for any constant factor� Such a
result is called a polynomial�time approximation scheme �abbreviated PTAS��

�������� A few negative examples

Let us start again with a trivial example� Considering a problem such as �nding
the maximum clique in a graph� we note that given a graph G � �V�E� �nding
a �� $ jV j���factor approximation of the maximum clique in G is as hard as
�nding a maximum clique in G� Indeed� this �result� is not really meaningful�
In contrast� building on the PCP Theorem �Theorem ������ one may prove that
�nding a jV j��o��factor approximation of the maximum clique in G is as hard as
�nding a maximum clique in G� This follows from the fact that the approximation
problem is NPhard �cf� Theorem �	� ��

The statement of inapproximability results is made stronger by referring to a
promise problem that consists of distinguishing instances of su�ciently far apart
values� Such promise problems are called gap problems� and are typically stated
with respect to two bounding functions g�� g� � f	� �g� R �which replace the gap
function g of De�nition �	���� Typically� g� and g� are polynomialtime computable�

De�nition ���	 �gap problem for approximation of f�� Let f be as in De�ni�
tion ���� and g�� g� � f	� �g� R�

Maximization version� For g� � g�� the gapg��g� problem of maximizing f consists
of distinguishing between fx � vx � g��x�g and fx � vx � g��x�g� where
vx � maxy�f���g��jxj�ff�x� y�g�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

Minimization version� For g� � g�� the gapg��g� problem of minimizing f consists
of distinguishing between fx � cx � g��x�g and fx � cx � g��x�g� where
cx � miny�f���g��jxj�ff�x� y�g�

For example� the gapg��g� problem of maximizing the size of a clique in a graph
consists of distinguishing between graphs G that have a clique of size g��G� and
graphs G that have no clique of size g��G�� In this case� we typically let gi�G� be a
function of the number of vertices in G��V�E�� that is� gi�G� � g�i�jV j�� Indeed�
letting ��G� denote the size of the largest clique in the graphG� we let gapCliqueL�s
denote the gap problem of distinguishing between fG� �V�E� � ��G� � L�jV j�g
and fG � �V�E� � ��G� � s�jV j�g� where L � s� Using this terminology� we
restate �and strengthen� the aforementioned jV j��o��factor inapproximation of
the maximum clique problem�

Theorem ���� For some L�N� � N��o�� and s�N� � No��� it holds that gapCliqueL�s
is NP�hard�

The proof of Theorem �	� is based on a major re�nement of Theorem ���� that
refers to a PCP system of amortized freebit complexity that tends to zero �cf�
x��������� A weaker result� which follows from Theorem ���� itself� is presented in
Exercise �	���

As we shall show next� results of the type of Theorem �	� imply the hardness
of a corresponding approximation problem� that is� the hardness of deciding a gap
problem implies the hardness of a search problem that refers to an analogous factor
of approximation�

Proposition ���� Let f� g�� g� be as in De�nition ���� and suppose that these
functions are polynomial�time computable� Then the gapg��g� problem of maximiz�
ing f �resp�� minimizing f� is reducible to the g��g��factor �resp�� g��g�factor�
approximation of maximizing f �resp�� minimizing f��

Note that a reduction in the opposite direction does not necessarily exist �even in
the case that the underlying optimization problem is selfreducible in some natural
sense�� Indeed� this is another di�erence between the current context �of approx
imation� and the context of optimization problems� where the search problem is
reducible to a related decision problem�

Proof Sketch� We focus on the maximization version� On input x� we solve the
gapg��g� problem� by making the query x� obtaining the answer y� and ruling that
x has value exceeding g��x� if and only if f�x� y� � g��x�� Recall that we need to
analyze this reduction only on inputs that satisfy the promise� Thus� if vx � g��x�
then the oracle must return a solution y that satis�es f�x� y� � vx��g��x��g��x���
which implies that f�x� y� � g��x�� On the other hand� if vx � g��x� then f�x� y� �
vx � g��x� holds for any possible solution y�

����� APPROXIMATION ���

Additional examples� Let us consider gapVCs�L� the gapgs�gL problem of mini
mizing the vertex cover of a graph� where s and L are constants and gs�G� � s � jV j
�resp�� gL�G� � L � jV j� for any graph G��V�E�� Then� Proposition �	�� implies
�via Proposition �	��� that� for every constant s� the problem gapVCs��s is solvable
in polynomialtime� In contrast� su�ciently narrowing the gap between the two
thresholds yields an inapproximability result� In particular�

Theorem ��� For some constants 	 � s � L � � �e�g�� s � 	��� and L � 	���
will do�� the problem gapVCs�L is NP�hard�

The proof of Theorem �	�� is based on a complicated re�nement of Theorem �����
Again� a weaker result follows from Theorem ���� itself �see Exercise �	����

As noted� re�nements of the PCP Theorem �Theorem ����� play a key role in
establishing inapproximability results such as Theorems �	� and �	��� In that
respect� it is adequate to recall that Theorem ���� establishes the equivalence of
the PCP Theorem itself and the NPhardness of a gap problem concerning the
maximization of the number of clauses that are satis�es in a given �CNF for
mula� Speci�cally� gapSAT�� was de�ned �in De�nition ���	� as the gap problem
consisting of distinguishing between satis�able �CNF formulae and �CNF formu
lae for which each truth assignment violates at least an � fraction of the clauses�
Although Theorem ���� does not specify the quantitative relation that underlies
its qualitative assertion� when �re�ned and� combined with the best known PCP
construction� it does yield the best possible bound�

Theorem ���� For every v � ���� the problem gapSAT�v is NP�hard�

On the other hand� gapSAT���
 is solvable in polynomialtime�

Sharp thresholds� The aforementioned opposite results �regarding gapSAT�v� ex
emplify a sharp threshold on the �factor of� approximation that can be obtained
by an e�cient algorithm� Another appealing example refers to the following maxi
mization problem in which the instances are systems of linear equations over GF���
and the task is �nding an assignment that satis�es as many equations as possible�
Note that by merely selecting an assignment at random� we expect to satisfy half
of the equations� Also note that it is easy to determine whether there exists an
assignment that satis�es all equations� Let gapLinL�s denote the problem of dis
tinguishing between systems in which one can satisfy at least an L fraction of the
equations and systems in which one cannot satisfy an s fraction �or more� of the
equations� Then� as just noted� gapLinL���� is trivial and gapLin��s is feasible
�for every s � ��� In contrast� moving both thresholds �slightly� away from the
corresponding extremes� yields an NPhard gap problem�

Theorem ���� For every constant � � 	� the problem gapLin��������� is NP�hard�

The proof of Theorem �	�� is based on a major re�nement of Theorem ����� In fact�
the corresponding PCP system �for NP� is merely a reformulation of Theorem �	���
the veri�er makes three queries and tests a linear condition regarding the answers�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

while using a logarithmic number of coin tosses� This veri�er accepts any yes
instance with probability at least � � � �when given oracle access to a suitable
proof�� and rejects any noinstance with probability at least 	� � � �regardless
of the oracle being accessed�� A weaker result� which follows from Theorem ����
itself� is presented in Exercise �	� �

Gap location� Theorems �	�� and �	�� illustrate two opposite situations with
respect to the �location� of the �gap� for which the corresponding promise prob
lem is hard� Recall that both gapSAT and gapLin are formulated with respect
to two thresholds� where each threshold bounds the fraction of �local� conditions
�i�e�� clauses or equations� that are satis�able in the case of yes and noinstances�
respectively� In the case of gapSAT� the high threshold �referring to yesinstances�
was set to �� and thus only the low threshold �referring to noinstances� remained
a free parameter� Nevertheless� a hardness result was established for gapSAT� and
furthermore this was achieved for an optimal value of the low threshold �cf� the
foregoing discussion of sharp thresholds�� In contrast� in the case of gapLin� set
ting the high threshold to � makes the gap problem e�ciently solvable� Thus�
the hardness of gapLin was established at a di�erent location of the high thresh
old� Speci�cally� hardness �for an optimal value of the ratio of thresholds� was
established when setting the high threshold to �� �� for any � � 	�

A �nal comment� All the aforementioned inapproximability results refer to ap
proximation �resp�� gap� problems that are relaxations of optimization problems
in NP �i�e�� the optimization problem is computationally equivalent to a decision
problem in NP � see Section ������� In these cases� the NPhardness of the approx
imation �resp�� gap� problem implies that the corresponding optimization problem
is reducible to the approximation �resp�� gap� problem� In other words� in these
cases nothing is gained by relaxing the original optimization problem� because the
relaxed version remains just as hard�

������ Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the
distance between instances� where a natural notion of distance is the Hamming
distance �i�e�� the fraction of bits on which two strings disagree�� Loosely speaking�
this relaxation �called property testing� refers to distinguishing inputs that reside
in a predetermined set S from inputs that are �relatively far� from any input that
resides in the set� Two natural types of promise problems emerge �with respect to
any predetermined set S �and the Hamming distance between strings���

�� Relaxed decision w�r�t a �xed distance� Fixing a distance parameter �� we
consider the problem of distinguishing inputs in S from inputs in)
�S��
where

)
�S�
def
� fx � �z � S � f	� �gjxj (�x� z� � � � jxjg ��	���

and (�x� � � �xm� z� � � � zm� � jfi � xi �� zigj denotes the number of bits on
which x � x� � � �xm and z � z� � � � zm disagree� Thus� here we consider a

����� APPROXIMATION ���

promise problem that is a restriction �or a special case� of the problem of
deciding membership in S�

�� Relaxed decision w�r�t a variable distance� Here the instances are pairs �x� ���
where x is as in Type � and � � �	� �� is a distance parameter� The yes
instances are pairs �x� �� such that x � S� whereas �x� �� is a noinstance if
x �)
�S��

We shall focus on Type � formulation� which seems to capture the essential question
of whether or not these relaxations lower the complexity of the original decision
problem� The study of Type � formulation refers to a relatively secondary question�
which assumes a positive answer to the �rst question� that is� assuming that the
relaxed form is easier than the original form� we ask how is the complexity of the
problem a�ected by making the distance parameter smaller �which means making
the relaxed problem �tighter� and ultimately equivalent to the original problem��

We note that for numerous NPcomplete problems there exist natural �Type ��
relaxations that are solvable in polynomialtime� Actually� these algorithms run in
sub�linear time �speci�cally� polylogarithmic time�� when given direct access to the
input� A few examples will be presented in x�	������� As indicated in x�	�������
this is not a generic phenomenon� But before turning to these results� we discuss
several important de�nitional issues�

�������� De�nitional issues

Property testing is concerned not only with solving relaxed versions of NPhard
problems� but rather solving these problems �as well as problems in P� in sub�
linear time� Needless to say� such results assume a model of computation in which
algorithms have direct access to bits in the �representation of the� input �see De�
nition �	��	��

De�nition ����� �a direct access model � conventions�� An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle �see x������ �� In addition� the algorithm is given the length of the
input and possibly other parameters on a secondary input device� The complexity of
such an algorithm is stated in terms of the length of its main input�

Indeed� the description in x ������ refers to such a model� but there the main input
is viewed as an oracle and the secondary input is viewed as the input� In this
model� polylogarithmic time means time that is polylogarithmic in the length of
the main input� which means time that is polynomial in the length of the binary
representation of the length of the main input� Thus� polylogarithmic time yields
a robust notion of extremely e�cient computations�

De�nition ����� �property testing for S�� For any �xed � � 	� the promise
problem of distinguishing S from)
�S� is called property testing for S �with respect
to ���

��	 CHAPTER ��� RELAXING THE REQUIREMENTS

Recall that we say that a randomized algorithm solves a promise problem if it
accepts every yesinstance �resp�� rejects every noinstance� with probability at
least ���� Thus� a �randomized� property testing for S accepts every input in S
�resp�� rejects every input in)
�S�� with probability at least ����

The question of representation� The speci�c representation of the input is of
major concern in the current context� This is due to ��� the e�ect of the represen�
tation on the distance measure and to ��� the dependence of direct access machines
on the speci�c representation of the input� Let us elaborate on both aspects�

�� Recall that we de�ned the distance between objects in terms of the Hamming
distance between their representations� Clearly� in such a case� the choice of
representation is crucial and di�erent representations may yield di�erent dis
tance measures� Furthermore� in this case� the distance between objects is
not preserved under various �natural� representations that are considered
�equivalent� in standard studies of computational complexity� For example�
in previous parts of this book� when referring to computational problems con
cerning graphs� we did not care whether the graphs were represented by their
adjacency matrix or by their incidencelists� In contrast� these two represen
tations induce very di�erent distance measures and correspondingly di�erent
property testing problems �see x�	�������� Likewise� the use of padding �and
other trivial syntactic conventions� becomes problematic �e�g�� when using a
signi�cant amount of padding� all objects are deemed close to one another
�and property testing for any set becomes trivial���

�� Since our focus is on sublinear time algorithms� we may not a�ord trans
forming the input from one natural format to another� Thus� representations
that are considered equivalent with respect to polynomialtime algorithms�
may not be equivalent with respect to sublinear time algorithms that have
a direct access to the representation of the object� For example� adjacency
queries and incidence queries cannot emulate one another in small time �i�e��
in time that is sublinear in the number of vertices��

Both aspects are further clari�ed by the examples provided in x�	�������

The essential role of the promise� Recall that� for a �xed constant � � 	�
we consider the promise problem of distinguishing S from)
�S�� The promise
means that all instances that are neither in S nor far from S �i�e�� not in)
�S��
are ignored� which is essential for sublinear algorithms for natural problems� This
makes the property testing task potentially easier than the corresponding stan
dard decision task �cf� x�	�������� To demonstrate the point� consider the set S
consisting of strings that have a majority of �
s� Then� deciding membership in
S requires linear time� because random nbit long strings with bn��c ones cannot
be distinguished from random nbit long strings with bn��c $ � ones by probing
a sublinear number of locations �even if randomization and error probability are
allowed � see Exercise �	���� On the other hand� the fraction of �
s in the input can

����� APPROXIMATION ���

be approximated by a randomized polylogarithmic time algorithm �which yields a
property tester for S� see Exercise �	���� Thus� for some sets� deciding membership
requires linear time� while property testing can be done in polylogarithmic time�

The essential role of randomization� Referring to the foregoing example� we
note that randomization is essential for any sublinear time algorithm that distin
guishes this set S from� say�)����S�� Speci�cally� a sublinear time deterministic
algorithm cannot distinguish �n from any input that has �
s in each position probed
by that algorithm on input �n� In general� on input x� a �sublinear time� deter
ministic algorithm always reads the same bits of x and thus cannot distinguish x
from any z that agrees with x on these bit locations�

Note that� in both cases� we are able to prove lowerbounds on the time com
plexity of algorithms� This success is due to the fact that these lowerbounds are
actually information theoretic in nature� that is� these lowerbounds actually refer
to the number of queries performed by these algorithms�

�������� Two models for testing graph properties

In this subsection we consider the complexity of property testing for sets of graphs
that are closed under graph isomorphism� such sets are called graph properties� In
view of the importance of representation in the context of property testing� we
consider two standard representations of graphs �cf� Appendix G���� which indeed
yield two di�erent models of testing graph properties�

�� The adjacency matrix representation� Here a graph G � ��N �� E� is rep
resented �in a somewhat redundant form� by an N byN Boolean matrix
MG � �mi�j�i�j��N � such that mi�j � � if and only if fi� jg � E�

�� Bounded incidencelists representation� For a �xed parameter d� a graph
G � ��N �� E� of degree at most d is represented �in a somewhat redundant
form� by a mapping �G � �N �� �d� �N �� f�g such that �G�u� i� � v if v is
the ith neighbor of u and �G�u� i� � � if v has less than i neighbors�

We stress that the aforementioned representations determine both the notion of
distance between graphs and the type of queries performed by the algorithm� As
we shall see� the di�erence between these two representations yields a big di�erence
in the complexity of corresponding property testing problems�

Theorem ����� �property testing in the adjacency matrix representation�� For
any �xed � � 	 and each of the following sets� there exists a polylogarithmic time
randomized algorithm that solves the corresponding property testing problem �with
respect to ���

� For every �xed k � �� the set of k�colorable graphs�

� For every �xed � � 	� the set of graphs having a clique �resp�� independent
set� of density ��

��� CHAPTER ��� RELAXING THE REQUIREMENTS

� For every �xed � � 	� the set of N �vertex graphs having a cut� with at least
� �N� edges�

� For every �xed � � 	� the set of N�vertex graphs having a bisection�with at
most � �N� edges�

In contrast� for some � � 	� there exists a graph property in NP for which property
testing �with respect to �� requires linear time�

The testing algorithms use a constant number of queries� where this constant is
polynomial in the constant ���� We highlight the fact that exact decision proce
dures for the corresponding sets require a linear number of queries� The running
time of the aforementioned algorithms hides a constant that is exponential in their
query complexity �except for the case of �colorability where the hidden constant
is polynomial in ����� Note that such dependencies seem essential� since setting
� � ��N� regains the original �nonrelaxed� decision problems �which� with the
exception of �colorability� are all NPcomplete�� Turning to the lowerbound� we
note that the graph property for which this bound is proved is not a natural one�
Again� the lowerbound on the time complexity follows from a lowerbound on the
query complexity�

Theorem �	��� exhibits a dichotomy between graph properties for which prop
erty testing is possible by a constant number of queries and graph properties for
which property testing requires a linear number of queries� A combinatorial charac
terization of the graph properties for which property testing is possible �in the ad
jacency matrix representation� when using a constant number of queries is known��

We note that the constant in this characterization may depend arbitrarily on � �and
indeed� in some cases� it is a function growing faster than a tower of ��� exponents��
For example� property testing for the set of triangle�free graphs is possible by using
a number of queries that depends only on �� but it is known that this number must
grow faster than any polynomial in ����

Turning back to Theorem �	���� we note that the results regarding property
testing for the sets corresponding to maxcut and minbisection yield approximation
algorithms with an additive error term �of �N��� For dense graphs �i�e�� N vertex
graphs having "�N�� edges�� this yields a constant factor approximation for the
standard approximation problem �as in De�nition �	���� That is� for every constant
c � �� we obtain a c�factor approximation of the problem of maximizing the size of a
cut �resp�� minimizing the size of a bisection� in dense graphs� On the other hand�
the result regarding clique yields a so called dualapproximation for maximum
clique� that is� we approximate the minimum number of missing edges in the densest
induced subgraph of a given size�

�A cut in a graph G � ��N �� E� is a partition �S�� S�� of the set of vertices �i�e�� S� �S� � �N �
and S� � S� � ��� and the edges of the cut are the edges with exactly one endpoint in S�� A
bisection is a cut of the graph to two parts of equal cardinality�

�Describing this fascinating result of Alon et� al� �
�� which refers to the notion of regular
partitions �introduced by Szemer'edi�� is beyond the scope of the current text�

����� APPROXIMATION ���

Indeed� Theorem �	��� is meaningful only for dense graphs� This holds� in
general� for any graph property in the adjacency matrix representation�� Also note
that property testing is trivial� under the adjacency matrix representation� for any
graph property S satisfying)o���S� � � �e�g�� the set of connected graphs� the set
of Hamiltonian graphs� etc��

We now turn to the bounded incidencelists representation� which is relevant
only for bounded degree graphs� The problems of maxcut� minbisection and clique
�as in Theorem �	���� are trivial under this representation� but graph connectivity
becomes nontrivial� and the complexity of property testing for the set of bipartite
graphs changes dramatically�

Theorem ����� �property testing in the bounded incidencelists representation��
The following assertions refer to the representation of graphs by incidence�lists of
length d�

� For any �xed d and � � 	� there exists a polylogarithmic time randomized
algorithm that solves the property testing problem for the set of connected
graphs of degree at most d�

� For any �xed d and � � 	� there exists a sub�linear randomized algorithm that
solves the property testing problem for the set of bipartite graphs of degree at
most d� Speci�cally� on input an N�vertex graph� the algorithm runs foreO�

p
N� time�

� For any �xed d � � and some � � 	� property testing for the set of N�vertex
��regular� bipartite graphs requires "�

p
N� queries�

� For some �xed d and � � 	� property testing for the set of N �vertex ��colorable
graphs requires "�N� queries�

The running time of the algorithms hides a constant that is polynomial in ����
Providing a characterization of graph properties according to the complexity of the
corresponding tester �in the bounded incidencelists representation� is an interest
ing open problem�

Decoupling the distance from the representation� So far� we have con�ned
our attention to the Hamming distance between the representations of graphs�
This made the choice of representation even more important than usual �i�e�� more
crucial than is common in complexity theory�� In contrast� it is natural to consider
a notion of distance between graphs that is independent of their representation�
For example� the distance between G���V�� E�� and G���V�� E�� can be de�ned

�In this model� as shown next� property testing of non�dense graphs is trivial� Speci�cally�

�xing the distance parameter 	� we call a N�vertex graph non�dense if it has less than �	
�� �
�
N
�

�
edges� The point is that� for non�dense graphs� the property testing problem for any set S is
trivial� because we may just accept any non�dense graph if and only if S contains some non�dense
graph� Clearly� the decision is correct in the case that S does not contain non�dense graphs�
However� the decision is admissible also in the case that S does contain some non�dense graph�
because in this case every non�dense graph is �	�close� to S �i�e�� it is not in (��S���

��� CHAPTER ��� RELAXING THE REQUIREMENTS

as the minimum of the size of symmetric di�erence between E� and the set of edges
in a graph that is isomorphic to G�� The corresponding relative distance may be
de�ned as the distance divided by jE�j$ jE�j �or by max�jE�j� jE�j���

�������� Beyond graph properties

Property testing has been applied to a variety of computational problems beyond
the domain of graph theory� In fact� this area �rst emerged in the algebraic domain�
where the instances �to be viewed as inputs to the testing algorithm� are functions
and the relevant properties are sets of algebraic functions� The archetypical ex
ample is the set of lowdegree polynomials� that is� mvariate polynomials of total
�or individual� degree d over some �nite �eld GF�q�� where m� d and q are param
eters that may depend on the length of the input �or satisfy some relationships�
e�g�� q � d� � m��� Note that� in this case� the input is the ��full� or �explicit��
description of an mvariate function over GF�q�� which means that it has length
qm � log� q� Viewing the problem instance as a function suggests a natural measure
of distance �i�e�� the fraction of arguments on which the functions disagree� as well
as a natural way of accessing the instance �i�e�� querying the function for the value
of selected arguments��

Note that we have referred to these computational problems� under a di�erent
terminology� in x������� and in x�������� In particular� in x������� we refereed to
the special case of linear Boolean functions �i�e�� individual degree � and q � ���
whereas in x������� we used the setting q � poly�d� and m � d� log d �where d is a
bound on the total degree��

Other domains of computational problems in which property testing was stud
ied include geometry �e�g�� clustering problems�� formal languages �e�g�� testing
membership in regular sets�� coding theory �cf� Appendix E������ probability the
ory �e�g�� testing equality of distributions�� and combinatorics �e�g�� monotone and
junta functions�� As discuss at the end of x�	������� it is often natural to decou
ple the distance measure from the representation of the objects �i�e�� the way of
accessing the problem instance�� This is done by introducing a representation
independent notion of distance between instances� which should be natural in the
context of the problem at hand�

���� Average Case Complexity

Teaching note� We view average�case complexity as referring to the performance on

average
or typical� instances� and not as the average performance on random instances�

This choice is justi�ed in x��������� Thus� it may be more justi�ed to refer to the

following theory by the name typical�case complexity� Still� the name average�case was

retained for historical reasons�

Our approach so far �including in Section �	��� is termed worstcase complex
ity� because it refers to the performance of potential algorithms on each legitimate
instance �and hence to the performance on the worst possible instance�� That is�

���	� AVERAGE CASE COMPLEXITY ��

computational problems were de�ned as referring to a set of instances and perfor
mance guarantees were required to hold for each instance in this set� In contrast�
averagecase complexity allows ignoring a negligible measure of the possible in
stances� where the identity of the ignored instances is determined by the analysis
of potential solvers and not by the problem	s statement�

A few comments are in place� Firstly� as just hinted� the standard statement
of the worstcase complexity of a computational problem �especially one having
a promise� may also ignores some instances �i�e�� those considered inadmissible
or violating the promise�� but these instances are determined by the problem
s
statement� In contrast� the inputs ignored in averagecase complexity are not
inadmissible in any inherent sense �and are certainly not identi�ed as such by
the problem
s statement�� It is just that they are viewed as exceptional when
claiming that a speci�c algorithm solve the problem� furthermore� these exceptional
instances are determined by the analysis of that algorithm� Needless to say� these
exceptional instances ought to be rare �i�e�� occur with negligible probability��

The last sentence raises a couple of issues� Firstly� a distribution on the set
of admissible instances has to be speci�ed� In fact� we shall consider a new type
of computational problems� each consisting of a standard computational problem
coupled with a probability distribution on instances� Consequently� the question of
which distributions should be considered in the theory of averagecase complexity
arises� This question and numerous other de�nitional issues will be addressed in
x�	�������

Before proceeding� let us spell out the rather straightforward motivation to the
study of the averagecase complexity of computational problems� It is that� in real
life applications� one may be perfectly happy with an algorithm that solves the
problem fast on almost all instances that arise in the relevant application� That is�
one may be willing to tolerate error provided that it occurs with negligible proba
bility� where the probability is taken over the distribution of instances encountered
in the application� The study of averagecase complexity is aimed at exploring the
possible bene�t of such a relaxation� distinguishing cases in which a bene�t exists
from cases in which it does not exist� A key aspect in such a study is a good
modeling of the type of distributions �of instances� that are encountered in natural
algorithmic applications�

A preliminary question that arises is whether every natural computational prob�
lem be solve e�ciently when restricting attention to typical instances� The conjec
ture that underlies this section is that� for a wellmotivated choice of de�nitions� the
answer is negative� that is� our conjecture is that the �distributional version� of NP
is not contained in the averagecase �or typicalcase� version of P� This means that
some NP problems are not merely hard in the worstcase� but are rather �typically
hard� �i�e�� hard on typical instances drawn from some simple distribution�� Specif
ically� hard instances may occur in natural algorithmic applications �and not only
in cryptographic �or other �adversarial�� applications that are design on purpose
to produce hard instances���

�We highlight two di�erences between the current context �of natural algorithmic applications�
and the context of cryptography� Firstly� in the current context and when referring to problems

��� CHAPTER ��� RELAXING THE REQUIREMENTS

The foregoing conjecture motivates the development of an averagecase analogue
of NPcompleteness� which will be presented in this section� Indeed� the entire
section may be viewed as an averagecase analogue of Chapter �� In particular� this
�averagecase� theory identi�es distributional problems that are �typically hard�
provided that distributional problems that are �typically hard� exist at all� If one
believes the foregoing conjecture then� for such complete �distributional� problems�
one should not seek algorithms that solve these problems e�ciently on typical
instances�

Organization� A major part of our exposition is devoted to the de�nitional is
sues that arise when developing a general theory of averagecase complexity� These
issues are discussed in x�	������� In x�	������ we prove the existence of distribu
tional problems that are �NPcomplete� in the averagecase complexity sense� In
particular� we show how to obtain such a distributional version for any natural NP
complete decision problem� In x�	������ we extend the treatment to randomized
algorithms� Additional rami�cations are presented in Section �	�����

������ The basic theory

In this section we provide a basic treatment of the theory of averagecase com
plexity� while postponing important rami�cations to Section �	����� The basic
treatment consists of the preferred de�nitional choices for the main concepts as
well as the identi�cation of complete problems for a natural class of averagecase
computational problems�

�������� De�nitional issues

The theory of averagecase complexity is more subtle than may appear at �rst
thought� In addition to the generic di�culty involved in de�ning relaxations� dif
�culties arise from the �interface� between standard probabilistic analysis and the
conventions of complexity theory� This is most striking in the de�nition of the
class of feasible averagecase computations� Referring to the theory of worstcase
complexity as a guideline� we shall address the following aspects of the analogous
theory of averagecase complexity�

�� Setting the general framework� We shall consider distributional problems�
which are standard computational problems �see Section ������ coupled with
distributions on the relevant instances�

�� Identifying the class of feasible �distributional� problems� Seeking an average
case analogue of classes such as P � we shall reject the �rst de�nition that
comes to mind �i�e�� the naive notion of �average polynomialtime��� brie�y

that are typically hard� the simplicity of the underlying input distribution is of great concern�
the simpler this distribution� the more appealing the hardness assertion becomes� This concern
is irrelevant in the context of cryptography� On the other hand �see discussion at the beginning
of Section ����� and or at end of x���������� cryptographic applications require the ability to
e�ciently generate hard instances together with corresponding solutions�

���	� AVERAGE CASE COMPLEXITY ���

discuss several related alternatives� and adopt one of them for the main treat
ment�

�� Identifying the class of interesting �distributional� problems� Seeking an
averagecase analogue of the class NP � we shall avoid both the extreme
of allowing arbitrary distributions �which collapses averagecase hardness to
worstcase hardness� and the opposite extreme of con�ning the treatment to
a single distribution such as the uniform distribution�

�� Developing an adequate notion of reduction among �distributional� problems�
As in the theory of worstcase complexity� this notion should preserve feasible
solveability �in the current distributional context��

We now turn to the actual treatment of each of the aforementioned aspects�

Step �� De�ning distributional problems� Focusing on decision problems�
we de�ne distributional problems as pairs consisting of a decision problem and a
probability ensemble�	 For simplicity� here a probability ensemble fXngn�N is a
sequence of random variables such thatXn ranges over f	� �gn� Thus� �S� fXngn�N�
is the distributional problem consisting of the problem of deciding membership in
the set S with respect to the probability ensemble fXngn�N� �The treatment of
search problem is similar� see x�	�������� We denote the uniform probability ensemble
by U � fUngn�N� that is� Un is uniform over f	� �gn�

Step �� Identifying the class of feasible problems� The �rst idea that
comes to mind is de�ning the problem �S� fXngn�N� as feasible �on the average�
if there exists an algorithm A that solves S such that the average running time
of A on Xn is bounded by a polynomial in n �i�e�� there exists a polynomial p
such that E�tA�Xn�� � p�n�� where tA�x� denotes the runningtime of A on input
x�� The problem with this de�nition is that it very sensitive to the model of
computation and is not closed under algorithmic composition� Both de�ciencies
are a consequence of the fact that tA may be polynomial on the average with
respect to fXngn�N but t�A may fail to be so �e�g�� consider tA�x

�x��� � �jx
�j if

x� � x�� and tA�x
�x��� � jx�x��j� otherwise� coupled with the uniform distribution

over f	� �gn�� We conclude that the average running�time of algorithms is not a
robust notion� We also doubt the naive appeal of this notion� and view the typical
running time of algorithms �as de�ned next� as a more natural notion� Thus� we
shall consider an algorithm as feasible if its runningtime is typically polynomial�

�We mention that even this choice is not evident� Speci�cally� Levin ���
� �see discussion
in �
��� advocates the use of a single probability distribution de�ned over the set of all strings�
His argument is that this makes the theory less representation�dependent� At the time we were
convinced of his argument �see �
���� but currently we feel that the representation�dependent
e�ects discussed in �
�� are legitimate� Furthermore� the alternative formulation of ���
�
��
comes across as unnatural and tends to confuse some readers�

�An alternative choice� taken by Levin ���
� �see discussion in �
���� is considering as feasible
�w�r�t X � fXngn�N� any algorithm that runs in time that is polynomial in a function that is

linear on the average �w�r�t X� that is� requiring that there exists a polynomial p and a function

��� CHAPTER ��� RELAXING THE REQUIREMENTS

We say that A is typically polynomial�time on X � fXngn�N if there exists a
polynomial p such that the probability that A runs more that p�n� steps on Xn

is negligible �i�e�� for every polynomial q and all su�ciently large n it holds that
Pr�tA�Xn� � p�n�� � ��q�n��� The question is what is required in the �untypical�
cases� and two possible de�nitions follow�

�� The simpler option is saying that �S� fXngn�N� is �typically� feasible if there
exists an algorithm A that solves S such that A is typically polynomialtime
on X � fXngn�N� This e�ectively requires A to correctly solve S on each
instance� which is more than was required in the motivational discussion�
�Indeed� if the underlying motivation is ignoring rare cases� then we should
ignore them altogether rather than ignoring them in a partial manner �i�e��
only ignore their a�ect on the runningtime���

�� The alternative� which �ts the motivational discussion� is saying that �S�X�
is �typically� feasible if there exists an algorithm A such that A typically
solves S on X in polynomialtime� that is� there exists a polynomial p such
that the probability that on input Xn algorithm A either errs or runs more
that p�n� steps is negligible� This formulation totally ignores the untypical
instances� Indeed� in this case we may assume� without loss of generality�
that A always runs in polynomialtime �see Exercise �	����� but we shall not
do so here �in order to facilitate viewing the �rst option as a special case of
the current option��

We stress that both alternatives actually de�ne typical feasibility and not average�
case feasibility� To illustrate the di�erence between the two options� consider the
distributional problem of deciding whether a uniformly selected �nvertex� graph
contains a Hamiltonian path� Intuitively� this problem is �typically trivial� �with
respect to the uniform distribution�� because the algorithmmay always say yes and
be wrong with exponentially vanishing probability� Indeed� this trivial algorithm
is admissible by the second approach� but not by the �rst approach� In light of the
foregoing discussions� we adopt the second approach�

De�nition ����	 �the class tpcP�� We say that A typically solves �S� fXngn�N�
in polynomial�time if there exists a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p�n� steps is negligible��� We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial�time�

� � f�� �g� � N such that t�x� � p���x�� and E���Xn�� � O�n�� This de�nition is robust �i�e�� it
does not su�er from the aforementioned de�ciencies� and is arguably as �natural� as the naive
de�nition �i�e�� E�tA�Xn�� � poly�n���

	In contrast� testing whether a given graph contains a Hamiltonian path seems �typically
hard� for other distributions �see Exercise ������� Needless to say� in the latter distributions both
yes�instances and no�instances appear with noticeable probability�

�
Recall that a function � � N � N is negligible if for every positive polynomial q and all
su�ciently large n it holds that ��n� � �
q�n�� We say that A errs on x if A�x� di�ers from the
indicator value of the predicate x � S�

���	� AVERAGE CASE COMPLEXITY ���

Clearly� for every S � P and every probability ensemble X � it holds that �S�X� �
tpcP� However� tpcP contains also distributional problems �S�X� with S �� P
�see Exercises �	��� and �	����� The big question� which underlies the theory of
averagecase complexity� is whether natural distributional versions of NP are in
tpcP� Thus� we turn to identify such versions�

Step �� Identifying the class of interesting problems� Seeking to identify
reasonable distributional versions of NP � we note that two extreme choices should
be avoided� On one hand� we must limit the class of admissible distributions so to
prevent the collapse of averagecase hardness to worstcase hardness �by a selection
of a pathological distribution that resides on the �worst case� instances�� On the
other hand� we should allow for various types of natural distributions rather than
con�ning attention merely to the uniform distribution��� Recall that our aim is
addressing all possible input distributions that may occur in applications� and thus
there is no justi�cation for con�ning attention to the uniform distribution� Still�
arguably� the distributions occuring in applications are �relatively simple� and so
we seek to identify a class of simple distributions� One such notion �of simple
distributions� underlies the following de�nition� while a more liberal notion will be
presented in x�	�������

De�nition ����� �the class distNP�� We say that a probability ensemble X �
fXngn�N is simple if there exists a polynomial time algorithm that� on any input
x � f	� �g�� outputs Pr�Xjxj � x�� where the inequality refers to the standard lexico�
graphic order of strings� We denote by distNP the class of distributional problems
consisting of decision problems in NP coupled with simple probability ensembles�

Note that the uniform probability ensemble is simple� but so are many other �sim
ple� probability ensembles� Actually� it makes sense to relax the de�nition such
that the algorithm is only required to output an approximation of Pr�Xjxj � x�� say�

to within a factor of �& ���jxj� We note that De�nition �	�� interprets simplicity
in computational terms� speci�cally� as the feasibility of answering very basic ques
tions regarding the probability distribution �i�e�� determining the probability mass
assigned to a single �nbit long� string and even to an interval of such strings�� This
simplicity condition is closely related to being polynomialtime sampleable via a
monotone mapping �see Exercise �	�����

Teaching note� The following two paragraphs attempt to address some doubts re�

garding De�nition ����� One may postpone such discussions to a later stage�

We admit that the indenti�cation of simple distributions as the class of inter
esting distribution is signi�cantly more questionable than any other indenti�cation
advocated in this book� Nevertheless� we believe that we were fully justi�ed in re
jecting both the aforementioned extremes �i�e�� of either allowing all distributions

��Con�ning attention to the uniform distribution seems misguided by the naive belief according
to which this distribution is the only one relevant to applications� In contrast� we believe that�
for most natural applications� the uniform distribution over instances is not relevant at all�

��	 CHAPTER ��� RELAXING THE REQUIREMENTS

or allowing only the uniform distribution�� Yet� the reader may wonder whether
or not we have struck the right balance between �generality� and �simplicity� �in
the intuitive sense�� One speci�c concern is that we might have restricted the class
of distributions too much� We brie�y address this concern next�

A more intuitive and very robust class of distributions� which seems to contain
all distributions that may occur in applications� is the class of polynomialtime
sampleable probability ensembles �treated in x�	�������� Fortunately� the combi
nation of the results presented in x�	������ and x�	������ seems to retrospectively
endorse the choice underlying De�nition �	�� � Spe�cically� we note that enlarging
the class of distributions weakens the conjecture that the corresponding class of
distributional NP problems contains infeasible problems� On the other hand� the
conclusion that a speci�c distributional problem is not feasible becomes stronger
when the problem belongs to a smaller class that corresponds to a restricted def
inition of admissible distributions� Now� the combined results of x�	������ and
x�	������ assert that a conjecture that refers to the larger class of polynomialtime
sampleable ensembles implies a conclusion that refers to a �very� simple probability
ensemble �which resides in the smaller class�� Thus� the current setting in which
both the conjecture and the conclusion refer to simple probability ensembles may
be viewed as just an intermediate step�

Indeed� the big question in the current context is whether distNP is contained
in tpcP� A positive answer �especially if extended to sampleable ensembles� would
deem the PvsNP Question of little practical signi�cant� However� our daily ex
perience as well as much research e�ort indicate that some NP problems are not
merely hard in the worstcase� but rather �typically hard�� This leads to the con�
jecture that distNP is not contained in tpcP �

Needless to say� the latter conjecture implies P �� NP � and thus we should
not expect to see a proof of it� In particular� we should not expect to see a proof
that some speci�c problem in distNP is not in tpcP � What we may hope to see
is �distNPcomplete� problems� that is� problems in distNP that are not in tpcP
unless the entire class distNP is contained in tpcP � An adequate notion of a
reduction is used towards formulating this possibility �which in turn is captured
by the notion of �distNPcomplete� problems��

Step 	� De�ning reductions among �distributional� problems� Intuitively�
such reductions must preserve averagecase feasibility� Thus� in addition to the
standard conditions �i�e�� that the reduction be e�ciently computable and yield a
correct result�� we require that the reduction �respects� the probability distribu
tion of the corresponding distributional problems� Speci�cally� the reduction should
not map very likely instances of the �rst ��starting�� problem to rare instances of
the second ��target�� problem� Otherwise� having a typically polynomialtime al
gorithm for the second distributional problem does not necessarily yield such an
algorithm for the �rst distributional problem� Following is the adequate analogue
of a Cook reduction �i�e�� general polynomialtime reduction�� where the analogue
of a Karpreduction �manytoone reduction� can be easily derived as a special case�

���	� AVERAGE CASE COMPLEXITY ���

Teaching note� One may prefer presenting in class only the special case of many�to�

one reductions� which su�ces for Theorem ������ See Footnote ���

De�nition ����� �reductions among distributional problems�� We say that the
oracle machine M reduces the distributional problem �S�X� to the distributional
problem �T� Y � if the following three conditions hold�

�� E�ciency� The machine M runs in polynomial�time���

� Validity� For every x � f	� �g�� it holds that MT �x� � � if an only if x � S�
where MT �x� denotes the output of the oracle machine M on input x and
access to an oracle for T �

�� Domination��� The probability that� on input Xn and oracle access to T �
machine M makes the query y is upper�bounded by poly�jyj� � Pr�Yjyj � y��
That is� there exists a polynomial p such that� for every y � f	� �g� and every
n � N � it holds that

Pr�Q�Xn� (y� � p�jyj� � Pr�Yjyj � y�� ��	���

where Q�x� denotes the set of queries made by M on input x and oracle access
to T �

In addition� we require that the reduction does not make too short queries�
that is� there exists a polynomial p� such that if y � Q�x� then p��jyj� � jxj�

The l�h�s� of Eq� ��	��� refers to the probability that� on input distributed as Xn�
the reduction makes the query y� This probability is required not to exceed the
probability that y occurs in the distribution Yjyj by more than a polynomial factor
in jyj� In this case we say that the l�h�s� of Eq� ��	��� is dominated by Pr�Yjyj � y��

Indeed� the domination condition is the only aspect of De�nition �	��� that ex
tends beyond the worstcase treatment of reductions and refers to the distributional
setting� The domination condition does not insist that the distribution induced by
Q�X� equals Y � but rather allows some slackness that� in turn� is bounded so to
guarantee preservation of typical feasibility �see Exercise �	�� ����

We note that the reducibility arguments extensively used in Chapters � and �
�see discussion in Section ������ are actually reductions in the spirit of De�ni
tion �	��� �except that they refer to di�erent types of computational tasks��

��In fact� one may relax the requirement and only require that M is typically polynomial�time
with respect to X� The validity condition may also be relaxed similarly�

��Let us spell out the meaning of Eq� ������ in the special case of many�to�one reductions
�i�e�� MT �x� � � if and only if f�x� � T � where f is a polynomial�time computable function��
in this case Pr�Q�Xn� � y� is replaced by Pr�f�Xn� � y�� That is� Eq� ������ simpli�es to
Pr�f�Xn� � y� � p�jyj� � Pr�Yjyj � y�� Indeed� this condition holds vacuously for any y that is not

in the image of f �
��We stress that the notion of domination is incomparable to the notion of statistical �resp��

computational� indistinguishability� On one hand� domination is a local requirement �i�e�� it
compares the two distribution on a point�by�point basis�� whereas indistinguishability is a global
requirement �which allows rare exceptions�� On the other hand� domination does not require
approximately equal values� but rather a ratio that is bounded in one direction� Indeed� domina�
tion is not symmetric� We comment that a more relaxed notion of domination that allows rare
violations �as in Footnote ��� su�ces for the preservation of typical feasibility�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

�������� Complete problems

Recall that our conjecture is that distNP is not contained in tpcP � which in turn
strengthens the conjecture P �� NP �making infeasibility a typical phenomenon
rather than a worstcase one�� Having no hope of proving that distNP is not
contained in tpcP � we turn to the study of complete problems with respect to that
conjecture� Speci�cally� we say that a distributional problem �S�X� is distNP�
complete if �S�X� � distNP and every �S�� X �� � distNP is reducible to �S�X�
�under De�nition �	�����

Recall that it is quite easy to prove the mere existence of NPcomplete problems
and many natural problems are NPcomplete� In contrast� in the current context�
establishing completeness results is quite hard� This should not be surprising in
light of the restricted type of reductions allowed in the current context� The re
striction �captured by the domination condition� requires that �typical� instances
of one problem should not be mapped to �untypical� instances of the other prob
lem� However� it is fair to say that standard Karpreductions �used in establishing
NPcompleteness results� map �typical� instances of one problem to somewhat
�bizarre� instances of the second problem� Thus� the current subsection may be
viewed as a study of reductions that do not commit this sin���

Theorem ���� �distNPcompleteness�� distNP contains a distributional prob�
lem �T� Y � such that each distributional problem in distNP is reducible �per De�ni
tion �	���� to �T� Y �� Furthermore� the reductions are via many�to�one mappings�

Proof� We start by introducing such a �distributional� problem� which is a
natural distributional version of the decision problem Su �used in the proof of
Theorem ������ Recall that Su contains the instance hM�x� �ti if there exists
y � �itf	� �gi such that M accepts the input pair �x� y� within t steps� We couple
Su with the �quasiuniform� probability ensemble U � that assigns to the instance
hM�x� �ti a probability mass proportional to ��jMj�jxj�� Speci�cally� for every
hM�x� �ti it holds that

Pr�U �
n � hM�x� �ti� � ��jMj�jxj��

n
�

� ��	���

where n
def
� jhM�x� �tij def

� jM j $ jxj $ t� Note that� under a suitable natural
encoding� the ensemble U � is indeed simple���

The reader can easily verify that the generic reduction used when reducing
any set in NP to Su �see the proof of Theorem ������ fails to reduce distNP
to �Su� U

��� Speci�cally� in some cases �see next paragraph�� these reductions do
not satisfy the domination condition� Indeed� the di�culty is that we have to

��The latter assertion is somewhat controversial� While it seems totally justi�ed with respect
to the proof of Theorem ������ opinions regarding the proof of Theorem ����	 may di�er�

��For example� we may encode hM�x� �ti� where M � �� � � ��k � f�� �gk and x � �� � � � �� �
f�� �g�� by the string ���� � � ��k�k������ � � � ������t� Then

�
n
�

�
� Pr�U �n � hM�x� �ti� equals

�ijMj�jxj�t � �� � ��jMj � jfM � � f�� �gjMj � M � � Mgj � ���jMjjxj� � jfx� � f�� �gjxj � x� � xgj�
where ik���t is the ranking of fk� k � �g among all ��subsets of �k � �� t��

���	� AVERAGE CASE COMPLEXITY ���

reduce all distNP problems �i�e�� pairs consisting of decision problems and simple
distributions� to one single distributional problem �i�e�� �Su� U

���� Applying the
aforementioned reductions� we end up with many distributional versions of Su�
and furthermore the corresponding distributions are very di�erent �and are not
necessarily dominated by a single distribution��

Let us take a closer look at the aforementioned generic reduction� when applied
to an arbitrary �S�X� � distNP � This reduction maps an instance x to a triple
�MS � x� �

pSjxj��� where MS is a machine verifying membership in S �while using
adequate NPwitnesses� and pS is an adequate polynomial� The problem is that x
may have relatively large probability mass �i�e�� it may be that Pr�Xjxj�x� � ��jxj�
while �MS � x� �

pSjxj�� has �uniform� probability mass �i�e�� hMS � x� �
pSjxj�i has

probability mass smaller than ��jxj in U ��� This violates the domination condition
�see Exercise �	����� and thus an alternative reduction is required�

The key to the alternative reduction is an �e�ciently computable� encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution� This means that the encoding
should shrink strings that have relatively large probability mass under the origi
nal distribution� Speci�cally� this encoding will map x �taken from the ensemble
fXngn�N� to a codeword x� of length that is upperbounded by the logarithm of

��Pr�Xjxj�x�� ensuring that Pr�Xjxj�x� � O���jx
�j�� Accordingly� the reduction

will map x to a triple �MS�X � x
�� �p

�jxj��� where jx�j � O��� $ log����Pr�Xjxj�x��
and MS�X is an algorithm that �given x� and x� �rst veri�es that x� is a proper
encoding of x and next applies the standard veri�cation �i�e�� MS� of the problem
S� Such a reduction will be shown to satisfy all three conditions �i�e�� e�ciency�
validity� and domination�� Thus� instead of forcing the structure of the original
distribution X on the target distribution U �� the reduction will incorporate the
structure of X in the reduced instance� A key ingredient in making this possible is
the fact that X is simple �as per De�nition �	�� ��

With the foregoing motivation in mind� we now turn to the actual proof� that
is� proving that any �S�X� � distNP is reducible to �Su� U

��� The following
technical lemma is the basis of the reduction� In this lemma as well as in the
sequel� it will be convenient to consider the �accumulative� distribution function

of the probability ensemble X � That is� we consider ��x�
def
� Pr�Xjxj � x�� and

note that � � f	� �g� �	� �� is polynomialtime computable �because X satis�es
De�nition �	�� ��

Coding Lemma��	 Let � � f	� �g� �	� �� be a polynomialtime computable function
that is monotonically nondecreasing over f	� �gn for every n �i�e�� ��x�� � ��x���
for any x� � x�� � f	� �gjx�j�� For x � f	� �gn n f	ng� let x � � denote the string
preceding x in the lexicographic order of nbit long strings� Then there exist an
encoding function C� that satis�es the following three conditions�

��The lemma actually refers to f�� �gn� for any �xed value of n� but the e�ciency condition
is stated more easily when allowing n to vary �and using the standard asymptotic analysis of
algorithms�� Actually� the lemma is somewhat easier to state and establish for polynomial�
time computable functions that are monotonically non�decreasing over f�� �g� �rather than over
f�� �gn�� See further discussion in Exercise ����	�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

�� Compression� For every x it holds that jC��x�j � �$minfjxj� log�������x��g�
where ���x� def

� ��x� � ��x� �� if x �� f	g� and ���	n� def� ��	n� otherwise�

�� E�cient Encoding� The function C� is computable in polynomialtime�

�� Unique Decoding� For every n � N � when restricted to f	� �gn� the function
C� is onetoone �i�e�� if C��x� � C��x

�� and jxj � jx�j then x � x���

Proof� The function C� is de�ned as follows� If ���x� � ��jxj then C��x� � 	x
�i�e�� in this case x serves as its own encoding�� Otherwise �i�e�� ���x� � ��jxj�
then C��x� � �z� where z is chosen such that jzj � log�����

��x�� and the mapping
of nbit strings to their encoding is onetoone� Loosely speaking� z is selected to
equal the shortest binary expansion of a number in the interval ���x�����x�� ��x���
Bearing in mind that this interval has length ���x� and that the di�erent intervals
are disjoint� we obtain the desired encoding� Details follows�

We focus on the case that ���x� � ��jxj� and detail the way that z is selected
�for the encoding C��x� � �z�� If x � 	jxj and ��x� � �� then we let z be the
longest common pre�x of the binary expansions of ��x� �� and ��x�� for example�
if ���	�	� � 	��		�	 and ���	��� � 	��	�	���� then C���	��� � �z with z � �	�
Thus� in this case 	�z� is in the interval ���x���� ��x�� �i�e�� ��x��� � 	�z� � ��x���
For x � 	jxj� we let z be the longest common pre�x of the binary expansions of 	
and ��x� and again 	�z� is in the relevant interval �i�e�� �	� ��x���� Finally� for x such
that ��x� � � and ��x��� � �� we let z be the longest common pre�x of the binary
expansions of ��x��� and ����jxj��� and again 	�z� is in ���x���� ��x�� �because
���x� � ��jxj and ��x � �� � ��x� � � imply that ��x � �� � � � ��jxj � ��x���
Note that if ��x� � ��x � �� � � then ���x� � 	 � ��jxj�

We now verify that the foregoing C� satis�es the conditions of the lemma� We
start with the compression condition� Clearly� if ���x� � ��jxj then jC��x�j �
� $ jxj � � $ log�����

��x��� On the other hand� suppose that ���x� � ��jxj and
let us focus on the subcase that x � 	jxj and ��x� � �� Let z � z� � � � z� be
the longest common pre�x of the binary expansions of ��x � �� and ��x�� Then�
��x� �� � 	�z	u and ��x� � 	�z�v� where u� v � f	� �g�� We infer that

���x� � ��x�� ��x � �� �
�� �X

i��

��izi $
polyjxj�X
i����

��i

	A�
�X

i��

��izi � ��jzj�

and jzj � log�����
��x�� � jxj follows� Thus� jC��x�j � � $ min�jxj� log�������x���

holds in both cases� Clearly� C� can be computed in polynomialtime by computing
��x��� and ��x�� Finally� note that C� satis�es the unique decoding condition� by
separately considering the two aforementioned cases �i�e�� C��x� � 	x and C��x� �
�z�� Speci�cally� in the second case �i�e�� C��x� � �z�� use the fact that ��x� �� �
	�z� � ��x��

To obtain an encoding that is onetoone when applied to strings of di�erent

lengths we augment C� in the obvious manner� that is� we consider C ���x�
def
�

�jxj� C��x��� which may be implemented as C ���x� � 	�	� � � �	�	�	�C��x� where

���	� AVERAGE CASE COMPLEXITY ��

	� � � �	� is the binary expansion of jxj� Note that jC ���x�j � O�log jxj� $ jC��x�j
and that C �� is onetoone�

The machine associated with �S�X�
 Let � be the accumulative probability func
tion associated with the probability ensemble X � and MS be the polynomialtime
machine that veri�es membership in S while using adequate NPwitnesses �i�e��
x � S if and only if there exists y � f	� �gpolyjxj� such that M�x� y� � ��� Using
the encoding function C ��� we introduce an algorithm MS�� with the intension of
reducing the distributional problem �S�X� to �Su� U

�� such that all instances �of
S� are mapped to triples in which the �rst element equals MS��� Machine MS��

is given an alleged encoding �under C ��� of an instance to S along with an alleged
proof that the corresponding instance is in S� and veri�es these claims in the ob
vious manner� That is� on input x� and hx� yi� machine MS�� �rst veri�es that
x� � C ���x�� and next veri�ers that x � S by running MS�x� y�� Thus� MS�� veri�es
membership in the set S� � fC ���x� � x � Sg� while using proofs of the form hx� yi
such that MS�x� y� � � �for the instance C ���x���

�

The reduction
 We maps an instance x �of S� to the triple �MS��� C
�
��x�� �

pjxj���

where p�n�
def
� pS�n�$pC�n� such that pS is a polynomial representing the running

time of MS and pC is a polynomial representing the runningtime of the encoding
algorithm�

Analyzing the reduction
 Our goal is proving that the foregoing mapping constitutes
a reduction of �S�X� to �Su� U

��� We verify the corresponding three requirements
�of De�nition �	�����

�� Using the fact that C� is polynomialtime computable �and noting that p
is a polynomial�� it follows that the foregoing mapping can be computed in
polynomialtime�

�� Recall that� on input �x�� hx� yi�� machine MS�� accepts if and only if x� �
C ���x� and MS accepts �x� y� within pS�jxj� steps� Using the fact that C ���x�
uniquely determines x� it follows that x � S if and only if there exists a string
y of length at most p�jxj� such that MS�� accepts �C ���x�� hx� yi� in at most

p�jxj� steps� Thus� x � S if and only if �MS��� C
�
��x�� �

pjxj�� � Su� and the
validity condition follows�

�� In order to verify the domination condition� we �rst note that the foregoing
mapping is onetoone �because the transformation x C ���x� is oneto
one�� Next� we note that it su�ces to consider instances of Su that have
a preimage under the foregoing mapping �since instances with no preimage
trivially satisfy the domination condition�� Each of these instances �i�e�� each
image of this mapping� is a triple with the �rst element equal to MS�� and

��Note that jyj � poly�jxj�� but jxj � poly�jC���x�j� does not necessarily hold �and so S� is not

necessarily in NP�� As we shall see� the latter point is immaterial�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

the second element being an encoding under C ��� By the de�nition of U �� for
every such image hMS��� C

�
��x�� �

pjxj�i � f	� �gn� it holds that

Pr�U �
n � hMS��� C

�
��x�� �

pjxj�i� �

n

�

���
� ��jMS��j�jC�

�x�j�

� c � n�� � ��jC�x�j�Olog jxj���

where c � ��jMS��j�� is a constant depending only on S and � �i�e�� on the
distributional problem �S�X��� Thus� for some positive polynomial q� we
have

Pr�U �
n � hMS��� C

�
��x�� �

pjxj�i� � ��jC�x�j�q�n�� ��	���

By virtue of the compression condition �of the Coding Lemma�� we have
��jC�x�j � ����minjxj�log�����x���� It follows that

��jC�x�j � Pr�Xjxj � x���� ��	� �

Recalling that x is the only preimage that is mapped to hMS��� C
�
��x�� �

pjxj�i
and combining Eq� ��	���. ��	� �� we establish the domination condition�

The theorem follows�

Re�ections� The proof of Theorem �	��� highlights the fact that the reduction
used in the proof of Theorem ���� does not introduce much structure in the reduced
instances �i�e�� does not reduce the original problem to a �highly structured special
case� of the target problem�� Put in other words� unlike more advanced worstcase
reductions� this reduction does not map �random� �i�e�� uniformly distributed�
instances to highly structured instances �which occur with negligible probability
under the uniform distribution�� Thus� the reduction used in the proof of The
orem ���� su�ces for reducing any distributional problem in distNP to a distri
butional problem consisting of Su coupled with some simple probability ensemble
�see Exercise �	��	����

However� Theorem �	��� states more than the latter assertion� That is� it states
that any distributional problem in distNP is reducible to the same distributional
version of Su� Indeed� the e�ort involved in proving Theorem �	��� was due to
the need for mapping instances taken from any simple probability ensemble �which
may not be the uniform ensemble� to instances distributed in a manner that is
dominated by a single probability ensemble �i�e�� the quasiuniform ensemble U ���

Once we have established the existence of one distNPcomplete problem� we
may establish the distNPcompleteness of other problems �in distNP� by reduc
ing some distNPcomplete problem to them �and relying on the transitivity of
reductions �see Exercise �	������ Thus� the di�culties encountered in the proof of

�	Note that this cannot be said of most known Karp�reductions� which do map random instances
to highly structured ones� Furthermore� the same �structure creating property� holds for the
reductions obtained by Exercise �����

���	� AVERAGE CASE COMPLEXITY ���

Theorem �	��� are no longer relevant� Unfortunately� a seemingly more severe dif
�culty arises� almost all known reductions in the theory of NPcompleteness work
by introducing much structure in the reduced instances �i�e�� they actually reduce
to highly structured special cases�� Furthermore� this structure is too complex in
the sense that the distribution of reduced instances does not seem simple �in the
sense of De�nition �	�� �� Actually� as demonstrated next� the problem is not
the existence of a structure in the reduced instances but rather the complexity of
this structure� In particular� if the aforementioned reduction is �monotone� and
�length regular� then the distribution of the reduced instances is simple enough�

Proposition ����� �su�cient condition for distNPcompleteness�� Suppose that
f is a Karp�reduction of the set S to the set T such that� for every x�� x�� � f	� �g��
the following two conditions hold�

�� �f is monotone�� If x� � x�� then f�x�� � f�x���� where the inequalities refer
to the standard lexicographic order of strings���

� �f is lengthregular�� jx�j � jx��j if and only if jf�x��j � jf�x���j�
Then if there exists an ensemble X such that �S�X� is distNP�complete then there
exists an ensemble Y such that �T� Y � is distNP�complete�

Proof Sketch� Note that the monotonicity of f implies that f is onetoone
and that for every x it holds that f�x� � x� Furthermore� as shown next� f
is polynomialtime invertible� Intuitively� the fact that f is both monotone and
polynomialtime computable implies that a preimage can be found by a binary
search� Speci�cally� given y � f�x�� we search for x by iteratively halving the
interval of potential solutions� which is initialized to �	� y� �since x � f�x��� Note
that if this search is invoked on a string y that is not in the image of f � then it
terminates while detecting this fact�

Relying on the fact that f is onetoone �and lengthregular�� we de�ne the
probability ensemble Y � fYngn such that for every x it holds that Pr�Yjfx�j �
f�x�� � Pr�Xjxj � x�� Speci�cally� letting
�m� � jf��m�j and noting that
 is
onetoone and monotonically nondecreasing� we de�ne

Pr�Yjyj�y� �

���
Pr�Xjxj�x� if x � f���y�
	 if �m s�t� y � f	� �g�m� n ff�x� � x�f	� �gmg
��jyj otherwise �i�e�� if jyj �� f
�m� � m�Ng��� �

Clearly� �S�X� is reducible to �T� Y � �via the Karpreduction f � which� due to
our construction of Y � also satis�es the domination condition�� Thus� using the
hypothesis that distNP is reducible to �S�X� and the transitivity of reductions �see
Exercise �	����� it follows that every problem in distNP is reducible to �T� Y �� The

�
In particular� if jz�j � jz��j then z� � z��� Recall that for jz�j � jz��j it holds that z� � z�� if
and only if there exists w�u�� u�� � f�� �g� such that z� � w�u� and z�� � w�u���

��Having Yn be uniform in this case is a rather arbitrary choice� which is merely aimed at
guaranteeing a �simple� distribution on n�bit strings �also in this case��

��� CHAPTER ��� RELAXING THE REQUIREMENTS

key observation� to be established next� is that Y is a simple probability ensemble�
and it follows that �T� Y � is in distNP �

Loosely speaking� the simplicity of Y follows by combining the simplicity of
X and the properties of f �i�e�� the fact that f is monotone� lengthregular� and
polynomialtime invertible�� The monotonicity and lengthregularity of f implies
that Pr�Yjfx�j�f�x�� � Pr�Xjxj�x�� More generally� for any y � f	� �g�m�� it holds
that Pr�Y�m��y� � Pr�Xm�x�� where x is the lexicographicly largest string such
that f�x� � y �and� indeed� if jxj � m then Pr�Y�m��y� � Pr�Xm�x� � 	�� Note
that this x can be found in polynomialtime by the inverting algorithm sketched in
the �rst paragraph of the proof� Thus� we may compute Pr�Yjyj�y� by �nding the
adequate x and computing Pr�Xjxj�x�� Using the hypothesis that X is simple� it
follows that Y is simple �and the proposition follows��

On the existence of adequate Karp�reductions� Proposition �	��� implies
that a su�cient condition for distNPcompleteness of a distributional version of
some �NPcomplete� set T is the existence of an adequate Karpreduction from the
set Su to the set T � that is� this Karpreduction should be monotone and length
regular� While the lengthregularity condition seems easy to impose �by using
adequate padding�� the monotonicity condition seems more problematic� Fortu
nately� it turns out that the monotonicity condition can also be imposed by using
adequate padding �or rather an adequate �marking� � see Exercises ���	 and �	�����
We highlight the fact that the existence of an adequate padding �or �marking�� is
a property of the set T itself� In Exercise �	��� we review a method for modifying
any Karpreduction to a �monotonically markable� set T into a Karpreduction
�to T � that is monotone and lengthregular� In Exercise �	��� we provide evidence
to the thesis that all natural NPcomplete sets are monotonically markable� Com
bining all these facts� we conclude that any natural NP�complete decision problem
can be coupled with a simple probability ensemble such that the resulting distribu�
tional problem is distNP�complete� As a concrete illustration we state the �formal�
result for the twentyone NPcomplete problems treated in Karp
s paper on NP
completeness ������

Theorem ����� �a modest version of a general thesis�� For each of the twenty�
one NP�complete problems treated in ����� there exists a simple probability ensemble
such that the combined distributional problem is distNP�complete�

The said list of problems includes SAT� Clique� and ��Colorability�

�������� Probabilistic versions

The de�nitions in x�	������ can be extended so that to account also for randomized
computations� For example� extending De�nition �	���� we have�

De�nition ����� �the class tpcBPP�� For a probabilistic algorithm A� a Boolean
function f � and a time�bound function t �NN � we say that the string x is t�bad for
A with respect to f if with probability exceeding ���� on input x� either A�x� �� f�x�

���	� AVERAGE CASE COMPLEXITY ���

or A runs more that t�jxj� steps� We say that A typically solves �S� fXngn�N� in
probabilistic polynomial�time if there exists a polynomial p such that the probability
that Xn is p�bad for A with respect to the characteristic function of S is negligible�
We denote by tpcBPP the class of distributional problems that are typically solvable
in probabilistic polynomial�time�

The de�nition of reductions can be similarly extended� This means that in De�ni
tion �	���� both MT �x� and Q�x� �mentioned in Items � and �� respectively� are
random variables rather than �xed objects� Furthermore� validity is required to
hold �for every input� only with probability ���� where the probability space refers
only to the internal coin tosses of the reduction� Randomized reductions are closed
under composition and preserve typical feasibility �see Exercise �	�����

Randomized reductions allow the presentation of a distNPcomplete problem
that refers to the �perfectly� uniform ensemble� Recall that Theorem �	��� estab
lishes the distNPcompleteness of �Su� U

��� where U � is a quasiuniform ensemble
�i�e�� Pr�U �

n � hM�x� �ti� � ��jMj�jxj��
�
n
�

�
� where n � jhM�x� �tij�� We �rst

note that �Su� U
�� can be randomly reduced to �S�u� U ���� where S�u � fhM�x� zi �

hM�x� �jzji � Sug and Pr�U ��
n � hM�x� zi� � ��jMj�jxj�jzj��

�
n
�

�
for every hM�x� zi �

f	� �gn� The randomized reduction consists of mapping hM�x� �ti to hM�x� zi�
where z is uniformly selected in f	� �gt� Recalling that U � fUngn�N denotes the
uniform probability ensemble �i�e�� Un is uniformly distributed on strings of length
n� and using a suitable encoding we get�

Proposition ����� There exists S � NP such that every �S�� X �� � distNP is
randomly reducible to �S�U��

Proof Sketch� By the forgoing discussion� every �S�� X �� � distNP is randomly
reducible to �S�u� U ���� where the reduction goes through �Su� U

��� Thus� we focus
on reducing �S�u� U

��� to �S��u� U�� where S��u � NP is de�ned as follows� The string
bin��juj��bin��jvj��u�v�w is in S��u if and only if hu� v� wi � S�u and
 � dlog� juvwje$��
where bin��i� denotes the
bit long binary encoding of the integer i � ������ �i�e��
the encoding is padded with zeros to a total length of
�� The reduction maps
hM�x� zi to the string bin��jxj��bin��jM j��M�x�z� where
 � dlog��jM j$ jxj$ jzj�e$��
Noting that this reduction satis�es all conditions of De�nition �	���� the proposi
tion follows�

������ Rami�cations

In our opinion� the most problematic aspect of the theory described in Section �	����
is the choice to focus on simple probability ensembles� which in turn restricts �dis
tributional versions of NP� to the class distNP �De�nition �	�� �� As indicated
x�	������� this restriction raises two opposite concerns �i�e�� that distNP is either
too wide or too narrow���� Here we address the concern that the class of sim
ple probability ensembles is too restricted� and consequently that the conjecture

��On one hand� if the de�nition of distNP were too liberal then membership in distNP would
mean less than one may desire� On the other hand� if distNP were too restricted then the
conjecture that distNP contains hard problems would have been very questionable�

��	 CHAPTER ��� RELAXING THE REQUIREMENTS

distNP �� tpcBPP is too strong �which would mean that distNPcompleteness is
a weak evidence for typicalcase hardness�� An appealing extension of the class of
simple probability ensembles is presented in x�	������� yielding an corresponding
extension of distNP� and it is shown that if this extension of distNP is not con
tained in tpcBPP then distNP itself is not contained in tpcBPP� Consequently�
distNPcomplete problems enjoy the bene�t of both being in the more restricted
class �i�e�� distNP� and being hard as long as some problems in the extended class
is hard�

Another extension appears in x�	������� where we extend the treatment from
decision problems to search problems� This extension is motivated by the realiza
tion that search problem are actually of greater importance to reallife applications
�cf� Section ������� and hence a theory motivated by reallife applications must
address such problems� as we do next�

Prerequisites� For the technical development of x�	������� we assume familiar
ity with the notion of unique solution and results regarding it as presented in
Section ������ For the technical development of x�	������� we assume familiarity
with hashing functions as presented in Appendix D���

�������� Search versus Decision

Indeed� as in the case of worstcase complexity� search problems are at least as im
portant as decision problems� Thus� an averagecase treatment of search problems
is indeed called for� We �rst present distributional versions of PF and PC �cf�
Section ������� following the underlying principles of the de�nitions of tpcP and
distNP �

De�nition ����� �the classes tpcPF and distPC�� As in Section ����� we con�
sider only polynomially bounded search problems� that is� binary relations R �
f	� �g� � f	� �g� such that for some polynomial q it holds that �x� y� � R implies

jyj � q�jxj�� Recall that R�x� def
� fy � �x� y��Rg and SR

def
� fx � R�x� �� �g�

� A distributional search problem consists of a polynomially bounded search prob�
lem coupled with a probability ensemble�

� The class tpcPF consists of all distributional search problems that are typ�
ically solvable in polynomial�time� That is� �R� fXngn�N� � tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p�n� steps is negligible�
where A errs on x � SR if A�x� �� R�x� and errs on x �� SR if A�x� �� ��

� A distributional search problem �R�X� is in distPC if R � PC and X is
simple �as in De�nition �	�� ��

Likewise� the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomialtime �cf�� De�nition �	��	�� The

���	� AVERAGE CASE COMPLEXITY ���

de�nitions of reductions among distributional problems� presented in the context of
decision problem� extend to search problems�

Fortunately� as in the context of worstcase complexity� the study of distribu
tional search problems �reduces� to the study of distributional decision problems�

Theorem ����� �reducing search to decision�� distPC � tpcBPPF if and only if
distNP � tpcBPP� Furthermore� every problem in distNP is reducible to some
problem in distPC� and every problem in distPC is randomly reducible to some
problem in distNP�
Proof Sketch� The furthermore part is analogous to the actual contents of the
proof of Theorem ��� �see also Step � in the proof of Theorem ��� �� Indeed the
reduction ofNP to PC presented in the proof of Theorem ��� extends to the current
context� Speci�cally� for any S � NP� we consider a relation R � PC such that
S � fx � R�x� �� �g� and note that� for any probability ensemble X � the identity
transformation reduces �S�X� to �R�X��

A di�culty arises in the opposite direction� Recall that in the proof of The
orem ��� we reduced the search problem of R � PC to deciding membership in

S�R
def
� fhx� y�i � �y�� s�t� �x� y�y����Rg � NP � The di�culty encountered here is

that� on input x� this reduction makes queries of the form hx� y�i� where y� is a
pre�x of some string in R�x�� These queries may induce a distribution that is not
dominated by any simple distribution� Thus� we seek an alternative reduction�

As a warmup� let us assume for a moment that R has unique solutions �in the
sense of De�nition ������ that is� for every x it holds that jR�x�j � �� In this case
we may easily reduce the search problem of R � PC to deciding membership in
S��R � NP � where hx� i� 	i � S��R if and only if R�x� contains a string in which the
ith bit equals 	� Speci�cally� on input x� the reduction issues the queries hx� i� 	i�
where i � �
� �with
 � poly�jxj�� and 	 � f	� �g� which allows for determining the
single string in the set R�x� � f	� �g� �whenever jR�x�j � ��� The point is that this
reduction can be used to reduce any �R�X� � distPC �having unique solutions� to
�S��R� X

��� � distNP � where X �� equally distributes the probability mass of x �under
X� to all the tuples hx� i� 	i� that is� for every i � �
� and 	 � f	� �g� it holds that
Pr�X ��

jhx�i��ij � hx� i� 	i� equals Pr�Xjxj � x���
�
Unfortunately� in the general case� R may not have unique solutions� Nev

ertheless� applying the main idea that underlies the proof of Theorem ����� this
di�culty can be overcome� We �rst note that the foregoing mapping of instances
of the distributional problem �R�X� � distPC to instances of �S��R� X

��� � distNP
satis�es the e�ciency and domination conditions even in the case that R does not
have unique solutions� What may possibly fail �in the general case� is the validity
condition �i�e�� if jR�x�j � � then we may fail to recover any element of R�x���

Recall that the main part of the proof of Theorem ���� is a randomized reduction
that maps instances of R to triples of the form �x�m� h� such that m is uniformly
distributed in �
� and h is uniformly distributed in a family of hashing function
Hm
� � where
 � poly�jxj� and Hm

� is as in Appendix D��� Furthermore� if R�x� �� �
then� with probability "���
� over the choices ofm � �
� and h � Hm

� � there exists a

unique y � R�x� such that h�y� � 	m� De�ning R��x�m� h�
def
� fy�R � h�y� � 	mg�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

this yields a randomized reduction of the search problem of R to the search problem
of R� such that with noticeable probability�� the reduction maps instances that have
solutions to instances having a unique solution� Furthermore� this reduction can be
used to reduce any �R�X� � distPC to �R�� X �� � distPC� where X � distributes the
probability mass of x �underX� to all the triples �x�m� h� such that for every m � �
�
and h � Hm

� it holds that Pr�X �
jx�m�h�j � �x�m� h�� equals Pr�Xjxj � x���
 � jHm

� j��
�Note that with a suitable encoding� X � is indeed simple��

The theorem follows by combining the two aforementioned reductions� That is�
we �rst apply the randomized reduction of �R�X� to �R�� X ��� and next reduce the
resulting instance to an instance of the corresponding decision problem �S��R� � X ����
where X �� is obtained by modifying X � �rather than X�� The combined randomized
mapping satis�es the e�ciency and domination conditions� and is valid with notice
able probability� The error probability can be made negligible by straightforward
ampli�cation �see Exercise �	�����

�������� Simple versus sampleable distributions

Recall that the de�nition of simple probability ensembles �underlying De�nition �	�� �
requires that the accumulating distribution function is polynomialtime computable�
Recall that � � f	� �g� �	� �� is called the accumulating distribution function of

X � fXngn�N if for every n � N and x � f	� �gn it holds that ��x�
def
� Pr�Xn � x��

where the inequality refers to the standard lexicographic order of nbit strings�
As argued in x�	������� the requirement that the accumulating distribution func

tion is polynomialtime computable imposes severe restrictions on the set of ad
missible ensembles� Furthermore� it seems that these simple ensembles are indeed
�simple� in some intuitive sense� and that they represent a reasonable �alas dis
putable� model of distributions that may occur in practice� Still� in light of the fear
that this model is too restrictive �and consequently that distNPhardness is weak
evidence for typicalcase hardness�� we seek a maximalistic model of distributions
that may occur in practice� Such a model is provided by the notion of polynomial
time sampleable ensembles �underlying De�nition �	����� Our maximality thesis
is based on the belief that the real world should be modeled as a feasible ran
domized process �rather than as an arbitrary process�� This belief implies that all
objects encountered in the world may be viewed as samples generated by a feasible
randomized process�

De�nition ����	 �sampleable ensembles and the class sampNP�� We say that a
probability ensemble X � fXngn�N is �polynomialtime� sampleable if there exists
a probabilistic polynomial�time algorithm A such that for every x � f	� �g� it holds
that Pr�A��jxj� � x� � Pr�Xjxj � x�� We denote by sampNP the class of distri�
butional problems consisting of decision problems in NP coupled with sampleable
probability ensembles�

��Recall that the probability of an event is said to be noticeable �in a relevant parameter� if it is
greater than the reciprocal of some positive polynomial� In the context of randomized reductions�
the relevant parameter is the length of the input to the reduction�

���	� AVERAGE CASE COMPLEXITY ���

We �rst note that all simple probability ensembles are indeed sampleable �see
Exercise �	�� �� and thus distNP � sampNP � On the other hand� there exist
sampleable probability ensembles that do not seem simple �see Exercise �	�����

Extending the scope of distributional problems �from distNP to sampNP�
allows proving that every NPcomplete problem has a distributional version in
sampNP that is distNPhard �see Exercise �	����� Furthermore� it is possible to
prove that all natural NPcomplete problem have distributional versions that are
sampNPcomplete�

Theorem ����� �sampNPcompleteness�� Suppose that S � NP and that every
set in NP is reducible to S by a Karp�reduction that does not shrink the input�
Then there exists a polynomial�time sampleable ensemble X such that any problem
in sampNP is reducible to �S�X�

The proof of Theorem �	�� is based on the observation that there exists a polynomial�
time sampleable ensemble that dominates all polynomial�time sampleable ensembles�
The existence of this ensemble is based on the notion of a universal �sampling� ma
chine� For further details see Exercise �	����

distNP

sampNP

tpcBPP

distNP-complete [Thm 10.17 and 10.19]

sampNP-complete [Thm 10.25]

Figure �	��� Two types of averagecase completeness

Theorem �	�� establishes a rich theory of sampNPcompleteness� but does not
relate this theory to the previously presented theory of distNPcompleteness �see
Figure �	���� This is done in the next theorem� which asserts that the existence of
typically hard problems in sampNP implies their existence in distNP �

Theorem ����� �sampNPcompleteness versus distNPcompleteness�� If sampNP
is not contained in tpcBPP then distNP is not contained in tpcBPP�
Thus� the two �typicalcase complexity� versions of the PvsNP Question are
equivalent� That is� if some �sampleable distribution� versions of NP are not
typically feasible then some �simple distribution� versions of NP are not typically
feasible� In particular� if sampNPcomplete problems are not in tpcBPP then
distNPcomplete problems are not in tpcBPP�

��� CHAPTER ��� RELAXING THE REQUIREMENTS

The foregoing assertions would all follow if sampNP were �randomly� reducible
to distNP �i�e�� if every problem in sampNP were reducible �under a randomized
version of De�nition �	���� to some problem in distNP�� but� unfortunately� we
do not know whether such reductions exist� Yet� underlying the proof of Theo
rem �	��� is a more liberal notion of a reduction among distributional problem�

Proof Sketch� We shall prove that if distNP is contained in tpcBPP then the
same holds for sampNP �i�e�� sampNP is contained in tpcBPP�� Actually� we
shall show that if distPC is contained in tpcBPPF then the sampleable version of
distPC� denoted sampPC� is contained in tpcBPPF �and refer to Exercise �	�����
Speci�cally� we shall show that under a relaxed notion of a randomized reduction�
every problem in sampPC is reduced to some problem in distPC� Loosely speaking�
this relaxed notion �of a randomized reduction� only requires that the validity and
domination conditions �of De�nition �	��� �when adapted to randomized reduc
tions�� hold with respect to a noticeable fraction of the probability space of the
reduction��� We start by formulating this notion� when referring to distributional
search problems�

Teaching note� The following proof is quite involved and is better left for advanced

reading� Its main idea is related in one of the central ideas underlying the currently

known proof of Theorem ����� This fact as well as numerous other applications of this

idea� provide a good motivation for getting familiar with this idea�

De�nition� A relaxed reduction of the distributional problem �R�X� to the distri
butional problem �T� Y � is a probabilistic polynomialtime oracle machine M that
satis�es the following conditions�

Notation� For every x � f	� �g�� we denote by m�jxj� � poly�jxj� the number of
internal coin tosses of M on input x� and denote by MT �x� r� the execution
of M on input x� internal coins r � f	� �gm� and oracle access to T �

Validity� For some noticeable function � � N �	� �� �i�e�� ��n� � ��poly�n�� it
holds that for every x � f	� �g�� there exists a set "x � f	� �gmjxj� of size at
least ��jxj� � �mjxj� such that for every r � "x the reduction yields a correct
answer �i�e�� MT �x� r� � R�x� if R�x� �� � and MT �x� r� � � otherwise��

Domination� There exists a positive polynomial p such that� for every y � f	� �g�
and every n � N � it holds that

Pr�Q��Xn� (y� � p�jyj� � Pr�Yjyj � y�� ��	���

where Q��x� is a random variable� de�ned over the set "x �of the validity
condition�� representing the set of queries made by M on input x and oracle

��We warn that the existence of such a relaxed reduction between two speci�c distributional
problems does not necessarily imply the existence of a corresponding �standard average�case�
reduction� Speci�cally� although standard validity can be guaranteed �for problems in PC� by
repeated invocations of the reduction� such a process will not redeem the violation of the standard
domination condition�

���	� AVERAGE CASE COMPLEXITY ��

access to T � That is� Q��x� is de�ned by uniformly selecting r � "x and
considering the set of queries made by M on input x� internal coins r� and
oracle access to T � �In addition� as in De�nition �	���� we also require that
the reduction does not make too short queries��

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility� that is� for R � PC� if there exists a relaxed reduction of �R�X� to
�T� Y � and �T� Y � is in tpcBPPF then �R�X� is in tpcBPPF� The key observation
is that the analysis may discard the case that� on input x� the reduction selects
coins not in "x� Indeed� the queries made in that case may be untypical and the
answers received may be wrong� but this is immaterial� What matter is that� on
input x� with noticeable probability the reduction selects coins in "x� and produces
�typical with respect to Y � queries �by virtue of the relaxed domination condition��
Such typical queries are answered correctly by the algorithm that typically solves
�T� Y �� and if x has a solution then these answers yield a correct solution to x
�by virtue of the relaxed validity condition�� Thus� if x has a solution then with
noticeable probability the reduction outputs a correct solution� On the other hand�
the reduction never outputs a wrong solution �even when using coins not in "x��
because incorrect solutions are detected by relying on R � PC�

Our goal is presenting� for every �R�X� � sampPC� a relaxed reduction of
�R�X� to a related problem �R�� X �� � distPC� where �as usual� X � fXngn�N
and X � � fX �

ngn�N�
An oversimpli�ed case� For starters� suppose that Xn is uniformly distributed on
some set Sn � f	� �gn and that there is a polynomial�time computable and invert�
ible mapping � of Sn to f	� �g�n�� where
�n� � log� jSnj� Then� mapping x to
�jxj��jxj�	��x�� we obtain a reduction of �R�X� to �R�� X ��� where X �

n�� is uniform

over f�n��n�	v � v � f	� �g�n�g and R���n��n�	v� � R�����v�� �or� equivalently�
R�x� � R���jxj��jxj�	��x���� Note that X � is a simple ensemble and R� � PC�
hence� �R�� X �� � distPC� Also note that the foregoing mapping is indeed a valid
reduction �i�e�� it satis�es the e�ciency� validity� and domination conditions�� Thus�
�R�X� is reduced to a problem in distPC �and indeed the relaxation was not used
here��

A simple but more instructive case� Next� we drop the assumption that there is
a polynomialtime computable and invertible mapping � of Sn to f	� �g�n�� but
maintain the assumption that Xn is uniform on some set Sn � f	� �gn and as
sume that jSnj � ��n� is easily computable �from n�� In this case� we may map
x � f	� �gn to its image under a suitable randomly chosen hashing function h� which
in particular maps nbit strings to
�n�bit strings� That is� we randomly map x to

�h� �n��n�	h�x��� where h is uniformly selected in a set H
�n�
n of suitable hash func

tions �see Appendix D���� This calls for rede�ning R� such that R��h� �n��n�	v�
corresponds to the preimages of v under h that are in Sn� Assuming that h is a
�� mapping of Sn to f	� �g�n�� we may de�ne R��h� �n��n�	v� � R�x� where x is
the unique string satisfying x � Sn and h�x� � v� where the condition x � Sn may
be veri�ed by providing the internal coins of the sampling procedure that generate
x� Denoting the sampling procedure of X by S� and letting S��n� r� denote the

��� CHAPTER ��� RELAXING THE REQUIREMENTS

output of S on input �n and internal coins r� we actually rede�ne R� as

R��h� �n��n�	v� � fhr� yi � h�S��n� r���v
 y�R�S��n� r��g� ��	���

We note that hr� yi � R��h� �jxj��jxj�	h�x�� yields a solution y � R�x� if S��jxj� r� �
x� but otherwise �all bets are o�� �as y will be a solution for S��jxj� r� �� x�� Now�
although typically h will not be a �� mapping of Sn to f	� �g�n�� it is the case that
for each x � Sn� with constant probability over the choice of h� it holds that h�x�
has a unique preimage in Sn under h� �See the proof of Theorem ������ In this
case hr� yi � R��h� �jxj��jxj�	h�x�� implies S��jxj� r� � x �which� in turn� implies
y � R�x��� We claim that the randomized mapping of x to �h� �n��n�	h�x��� where
h is uniformly selected in H

�jxj�
jxj � yields a relaxed reduction of �R�X� to �R�� X ���

where X �
n� is uniform over H

�n�
n �f�n��n�	v � v � f	� �g�n�g� Needless to say� the

claim refers to the reduction that makes the query �h� �n��n�	h�x�� and returns y
if the oracle answer equals hr� yi and y � R�x��

The claim is proved by considering the set "x of choices of h � H
�jxj�
jxj for

which x � Sn is the only preimage of h�x� under h that resides in Sn �i�e��
jfx� � Sn � h�x�� � h�x�gj � ��� In this case �i�e�� h � "x� it holds that hr� yi �
R��h� �jxj��jxj�	h�x�� implies that S��jxj� r� � x and y � R�x�� and the �relaxed�
validity condition follows� The �relaxed� domination condition follows by noting
that Pr�Xn � x� ' ���jxj�� that x is mapped to �h� �jxj��jxj�	h�x�� with proba

bility ��jH�jxj�
jxj j� and that x is the only preimage of �h� �jxj��jxj�	h�x�� under the

mapping �among x� � Sn such that "x� (h��
Before going any further� let us highlight the importance of hashing Xn to
�n�

bit strings� On one hand� this mapping is �su�ciently� onetoone� and thus �with
constant probability� the solution provided for the hashed instance �i�e�� h�x�� yield
a solution for the original instance �i�e�� x�� This guarantees the validity of the re
duction� On the other hand� for a typical h� the mapping of Xn to h�Xn� covers the
relevant range almost uniformly� This guarantees that the reduction satis�es the
domination condition� Note that these two phenomena impose con�icting require
ments that are both met at the correct value of
� that is� the onetoone condition
requires
�n� � log� jSnj� whereas an almost uniform cover requires
�n� � log� jSnj�
Also note that
�n� � log����Pr�Xn � x�� for every x in the support of Xn� the
latter quantity will be in our focus in the general case�

The general case� Finally� get rid of the assumption that Xn is uniformly distributed
over some subset of f	� �gn� All that we know is that there exists a probabilistic
polynomialtime ��sampling�� algorithm S such that S��n� is distributed identi
cally to Xn� In this �general� case� we map instances of �R�X� according to their
probability mass such that x is mapped to an instance �of R�� that consists of
�h� h�x�� and additional information� where h is a random hash function mapping
nbit long strings to
xbit long strings such that

x
def
� dlog����Pr�Xjxj�x��e� ��	���

Since �in the general case� there may be more than ��x strings in the support of
Xn� we need to augment the reduced instance in order to ensure that it is uniquely

���	� AVERAGE CASE COMPLEXITY ���

associated with x� The basic idea is augmenting the mapping of x to �h� h�x�� with
additional information that restricts Xn to strings that occur with probability at
least ���x � Indeed� when Xn is restricted in this way� the value of h�Xn� uniquely
determines Xn�

Let q�n� denote the randomness complexity of S and S��n� r� denote the out
put of S on input �n and internal coin tosses r � f	� �gqn�� Then� we randomly
map x to �h� h�x�� h�� v��� where h � f	� �gjxj f	� �g�x and h� � f	� �gqjxj�
f	� �gqjxj���x are random hash functions and v� � f	� �gqjxj���x is uniformly dis
tributed� The instance �h� v� h�� v�� of the rede�ned search problem R� has solutions
that consists of pairs hr� yi such that h�S��n� r���v
h��r� � v� and y�R�S��n� r���
As we shall see� this augmentation guarantees that� with constant probability �over
the choice of h� h�� v��� the solutions to the reduced instance �h� h�x�� h�� v�� corre
spond to the solutions to the original instance x�

The foregoing description assumes that� on input x� we can determine
x�
which is an assumption that cannot be justi�ed� Instead� we select
 uniformly
in f	� �� ���� q�jxj�g� and so with noticeable probability we do select the correct
value �i�e�� Pr�
 �
x� � ���q�jxj� $ �� � ��poly�jxj��� For clarity� we make n
and
 explicit in the reduced instance� Thus� we randomly map x � f	� �gn to

��n� ��� h� h�x�� h�� v�� � f	� �gn� � where
 � f	� �� ���� q�n�g� h � H�
n� h

� � H
qn���
qn� �

and v� � f	� �gqn��� are uniformly distributed in the corresponding sets��� This
mapping will be used to reduce �R�X� to �R�� X ��� where R� and X � � fX �

n�gn��N
are rede�ned �yet again�� Speci�cally� we let

R���n� ��� h� v� h�� v�� � fhr� yi � h�S��n� r���v
h��r��v�
y�R�S��n� r��g ��	���

and X �
n� assigns equal probability to each Xn��� �for
 � f	� �� ���� ng�� where each

Xn��� is isomorphic to the uniform distribution over H�
n � f	� �g� � H

qn���
qn� �

f	� �gqn���� Note that indeed �R�� X �� � distPC�
The aforementioned randomized mapping is analyzed by considering the correct

choice for
� that is� on input x� we focus on the choice
 �
x� Under this
conditioning �as we shall show�� with constant probability over the choice of h� h�

and v�� the instance x is the only value in the support of Xn that is mapped to
��n� ��x � h� h�x�� h�� v�� and satis�es fr � h�S��n� r�� � h�x�
 h��r� � v�g �� �� It
follows that �for such h� h� and v�� any solution hr� yi � R���n� ��x � h� h�x�� h�� v��
satis�es S��n� r� � x and thus y � R�x�� which means that the �relaxed� validity
condition is satis�ed� The �relaxed� domination condition is satis�ed too� because
�conditioned on
 �
x and for such h� h�� v�� the probability that Xn is mapped to
��n� ��x � h� h�x�� h�� v�� approximately equals Pr�X �

n���x
���n� ��x � h� h�x�� h�� v����

We now turn to analyze the probability� over the choice of h� h� and v�� that the
instance x is the only value in the support ofXn that is mapped to ��n� ��x � h� h�x�� h�� v��
and satis�es fr � h�S��n� r�� � h�x�
 h��r� � v�g �� �� Firstly� we note that

��As in other places� a suitable encoding will be used such that the reduction maps strings of the
same length to strings of the same length �i�e�� n�bit string are mapped to n��bit strings� for n� �
poly�n��� For example� we may encode h�n� ��� h� h�x�� h�� v�i as �n�����q�n����hhihh�x�ihh�ihv�i�
where each hwi denotes an encoding of w by a string of length �n� � �n� q�n� � ���
��

��� CHAPTER ��� RELAXING THE REQUIREMENTS

jfr � S��n� r��xgj � �qn���x � and thus� with constant probability over the choice

of h� � H
qn���x
qn� and v� � f	� �gqn���x � there exists r that satis�es S��n� r� � x

and h��r� � v�� Next� we note that� with constant probability over the choice of
h � H�x

n � it holds that x is the only string having probability mass at least ���x
�under Xn� that is mapped to h�x� under h� Finally� we prove that� with constant

probability over the choice of h � H�x
n and h� � H

qn���x
qn� �and even when con

ditioning on the previous items�� the mapping r � �h�S��n� r��� h��r�� maps the
set fr � Pr�Xn�S��n� r�� � ���xg to f	� �gqn� in an almost �� manner� Speci�
cally� with constant probability� no other r is mapped to the aforementioned pair
�h�x�� v��� Thus� the claim follows and so does the theorem�

Re�ection� Theorem �	��� implies that if sampNP is not contained in tpcBPP
then every distNPcomplete problem is not in tpcBPP� This means that the
hardness of some distributional problems that refer to sampleable distributions im
plies the hardness of some distributional problems that refer to simple distributions�
Furthermore� by Proposition �	���� this implies the hardness of distributional prob
lems that refer to the uniform distribution� Thus� hardness with respect to some
distribution in an utmost wide class �which arguably captures all distributions that
may occur in practice� implies hardness with respect to a single simple distribution
�which arguably is the simplest one��

Relation to one�way functions� We note that the existence of oneway func
tions �see Section ���� implies the existence of problems in sampPC that are not in
tpcBPPF �which in turn implies the existence of such problems in distPC�� Specif
ically� for a lengthpreserving oneway function f � consider the distributional search
problem �Rf � ff�Un�gn�N�� where Rf � f�f�r�� r� � r � f	� �g�g��� On the other
hand� it is not known whether the existence of a problem in sampPC n tpcBPPF
implies the existence of oneway functions� In particular� the existence of a prob
lem �R�X� in sampPC n tpcBPPF represents the feasibility of generating hard
instances for the search problem R� whereas the existence of oneway function rep
resents the feasibility of generating instancesolution pairs such that the instances
are hard to solve �see Section ������� Indeed� the gap refers to whether or not hard
instances can be e�ciently generated together with corresponding solutions� Our
world view is thus depicted in Figure �	��� where lower levels indicate seemingly
weaker assumptions�

Chapter Notes

In this chapter� we presented two di�erent approaches to the relaxation of com
putational problems� The �rst approach refers to the concept of approximation�
while the second approach refers to averagecase analysis� We demonstrated that

��Note that the distribution f�Un� is uniform in the special case that f is a permutation over
f�� �gn�

���	� AVERAGE CASE COMPLEXITY ���

P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure �	��� Worstcase vs averagecase assumptions

various natural notions of approximation can be cast within the standard frame
works� where the framework of promise problems �presented in Section ������ is
the leaststandard framework we used �and it su�ces for casting gap problems and
property testing�� In contrast� the study of averagecase complexity requires the
introduction of a new conceptual framework and addressing of various de�nitional
issues�

A natural question at this point is what have we gained by relaxing the require
ments� In the context of approximation� the answer is mixed� in some natural cases
we gain a lot �i�e�� we obtained feasible relaxations of hard problems�� while in other
natural cases we gain nothing �i�e�� even extreme relaxations remain as intractable
as the original version�� In the context of averagecase complexity� the negative
side seems more prevailing �at least in the sense of being more systematic�� In par
ticular� assuming the existence of oneway functions� every natural NPcomplete
problem has a distributional version that is �typicalcase� hard� where this version
refers to a sampleable ensemble �and� in fact� even to a simple ensemble�� Fur
thermore� in this case� some problems in NP have hard distributional versions that
refer to the uniform distribution�

Another di�erence between the two approaches is that the theory of approxima
tion seems to lack a comprehensive structure� whereas the theory of averagecase
complexity seems to have a too rigid structure �which seems to foil attempts to
present more appealing distNPcomplete problems��

Approximation

The following bibliographic comments are quite laconic and neglect mentioning
various important works �including credits for some of the results mentioned in our
text�� As usual� the interested reader is referred to corresponding surveys�

Search or Optimization� The interest in approximation algorithms increased
considerably following the demonstration of the NPcompleteness of many nat
ural optimization problems� But� with some exceptions �most notably �������
the systematic study of the complexity of such problems stalled till the discov

� 	 CHAPTER ��� RELAXING THE REQUIREMENTS

ery of the �PCP connection� �see Section ������ by Feige� Goldwasser� Lov#asz� and
Safra ����� Indeed the relatively �tight� inapproximation results for maxClique�
maxSAT� and the maximization of linear equations� due to H/astad ����� �����
build on previous work regarding PCP and their connection to approximation �cf��
e�g�� ��	� � � ��� ��� ������ Speci�cally� Theorem �	� is due to ������ while Theo
rems �	�� and �	�� are due to ������ The best known inapproximation result for
minimum Vertex Cover �see Theorem �	��� is due to �� �� but we doubt it is tight
�see� e�g�� ������� Reductions among approximation problems were de�ned and
presented in ������ see Exercise �	��� which presents a major technique introduced
in ������ For general texts on approximation algorithms and problems �as discussed
in Section �	������ the interested reader is referred to the surveys collected in ������
A compendium of NP optimization problems is available at �����

Recall that a di�erent type of approximation problems� which are naturally
associated with search problems� refer to approximately counting the number of
solutions� These approximation problems were treated in Section ����� in a rather
ad hoc manner� We note that a more systematic treatment of approximate counting
problems can be obtained by using the de�nitional framework of Section �	���� �e�g��
the notions of gap problems� polynomialtime approximation schemes� etc��

Property testing� The study of property testing was initiated by Rubinfeld and
Sudan ����� and reinitiated by Goldreich� Goldwasser� and Ron ����� While the
focus of ����� was on algebraic properties such as lowdegree polynomials� the focus
of ���� was on graph properties �and Theorem �	��� is taken from ������ The model
of boundeddegree graphs was introduced in ���� and Theorem �	��� combines
results from ���� �		� ���� For surveys of the area� the interested reader is referred
to ���� �����

Average�case complexity

The theory of averagecase complexity was initiated by Levin ������ who in partic
ular proved Theorem �	���� In light of the laconic nature of the original text ������
we refer the interested reader to a survey �� �� which provides a more detailed
exposition of the de�nitions suggested by Levin as well as a discussion of the con
siderations underlying these suggestions� �This survey �� � provides also a brief
account of further developments��

As noted in x�	������� the current text uses a variant of the original de�nitions�
In particular� our de�nition of �typicalcase feasibility� di�ers from the original
de�nition of �averagecase feasibility� in totally discarding exceptional instances
and in even allowing the algorithm to fail on them �and not merely run for an
excessive amount of time�� The alternative de�nition was suggested by several
researchers� and appears as a special case of the general treatment provided in �����

Turning to x�	������� we note that while the existence of distNPcomplete prob
lems �cf� Theorem �	���� was established in Levin
s original paper ������ the ex
istence of distNPcomplete versions of all natural NPcomplete decision problems
�cf� Theorem �	���� was established more than two decades later in �� ���

���	� AVERAGE CASE COMPLEXITY � �

Section �	���� is based on ���� ����� Speci�cally� Theorem �	��� �or rather the
reduction of search to decision� is due to ���� and so is the introduction of the class
sampNP� A version of Theorem �	��� was proven in ������ and our proof follows
their ideas� which in turn are closely related to the ideas underlying the proof of
Theorem ���� �proved in �������

Recall that we know of the existence of problems in distNP that are hard pro
vided sampNP contains hard problems� However� these distributional problems do
not seem very natural �i�e�� they either refer to somewhat generic decision problems
such as Su or to somewhat contrived probability ensembles �cf� Theorem �	������
The presentation of distNPcomplete problems that combine a more natural deci
sion problem �like SAT or Clique� with a natural probability ensemble is an open
problem�

Exercises

Exercise ���� �general TSP� For any function g� prove that the following ap
proximation problem is NPHard� Given a general TSP instance I � represented
by a symmetric matrix of pairwise distances� the task is �nding a tour of length
that is at most a factor g�I� of the minimum� Show that the result holds with
g�I� � exp�poly�jI j�� and for instances in which all distances are positive�

Guideline� By reduction from Hamiltonian path� Speci�cally� reduce the instance G �

�n � E� to an n�by�n distance matrix D �
di�j�i�j��n� such that di�j � exp
poly
n�� if

fi� jg � E and di�j � ��

Exercise ���� �TSP with triangle inequalities� Provide a polynomialtime �
factor approximation for the special case of TSP in which the distances satisfy the
triangle inequality�

Guideline� First note that the length of any tour is lower�bounded by the weight of

a minimum spanning tree in the corresponding weighted graph� Next note that such a

tree yields a tour
of length twice the weight of this tree� that may visit some points

several times� The triangle inequality guarantees that the tour does not become longer

by �shortcuts� that eliminate multiple visits at the same point�

Exercise ���� �a weak version of Theorem ����� Using Theorem ���� prove
that� for some constants 	 � a � b � � when setting L�N� � N b and s�N� � Na�
it holds that gapCliqueL�s is NPhard�

Guideline� Starting with Theorem ����� apply the Expander Random Walk Generator

of Proposition ����� in order to derive a PCP system with logarithmic randomness and

query complexities that accepts no�instances of length n with probability at most ��n�

The claim follows by applying the FGLSS�reduction
of Exercise ������ while noting that

x is reduced to a graph of size poly
jxj� such that the gap between yes� and no�instances

is at least a factor of jxj�

Exercise ���	 �a weak version of Theorem ���� Using Theorem ���� prove
that� for some constants 	 � s � L � �� the problem gapVCs�L is NPhard�

� � CHAPTER ��� RELAXING THE REQUIREMENTS

Guideline� Note that combining Theorem ���� and Exercise ���� implies that for some

constants b � � it holds that gapCliqueL�s is NP�hard� where L
N� � b �N and s
N� �

b��� � N � The claim follows using the relations between cliques� independent sets� and

vertex covers�

Exercise ���� �a weak version of Theorem ����� Using Theorem ���� prove
that� for some constants 	� � s � L � �� the problem gapLinL�s is NPhard�

Guideline� Recall that by Theorems ���� and ����� the gap problem gapSAT�� is NP�

Hard� Note that the result holds even if we restrict the instances to have exactly three

not necessarily di�erent� literals in each clause� Applying the reduction of Exercise �����

note that� for any assignment � � a clause that is satis�ed by � is mapped to seven equations

of which exactly three are violated by � � whereas a clause that is not satis�ed by � is

mapped to seven equations that are all violated by � �

Exercise ���� �natural inapproximability without the PCP Theorem� In
contrast to the inapproximability results reviewed in x�	������� the NPcompleteness
of the following gap problem can be established �rather easily� without referring
to the PCP Theorem� The instances of this problem are systems of quadratic
equations over GF��� �as in Exercise ��� �� yesinstances are systems that have a
solution� and noinstances are systems for which any assignment violates at least
one third of the equations�

Guideline� By Exercise ���� when given such a quadratic system� it is NP�hard to

determine whether or not there exists an assignment that satis�es all the equations� Using

an adequate small�bias generator
cf� Section ������ present an amplifying reduction
cf�

Section ������ of the foregoing problem to itself� Speci�cally� if the input system has m

equations then we use a generator that de�nes a sample space of poly
m� many m�bit

strings� and consider the corresponding linear combinations of the input equations� Note

that it su�ces to bound the bias of the generator by ���� whereas using an ��biased

generator yields an analogous result with ��� replaced by �� � ��

Exercise ��� �enforcing multi�way equalities via expanders� The aim of
this exercise is presenting a major technique of Papadimitriou and Yannakakis ������
which is useful for designing reductions among approximation problems� Recall
ing that gapSAT���� is NPhard� our goal is proving NPhard of the following gap
problem� denoted gapSAT��c� � which is a special case of gapSAT��� Speci�cally� the
instances are restricted to �CNF formulae with each variable appearing in at most c
clauses� where c �as �� is a �xed constant� Note that the standard reduction of �SAT
to the corresponding special case �see proof of Proposition ����� does not preserve
an approximation gap��	 The idea is enforcing equality of the values assigned to the

��Recall that in this reduction each occurrence of each Boolean variable is replaced by a new
copy of this variable� and clauses are added for enforcing the assignment of the same value to all
these copies� Speci�cally� them occurrence of variable z are replaced by the variables z���� ���� z�m��
while adding the clauses z�i� � 	z�i�� and z�i�� � 	z�i� �for i � �� ����m � ��� The problem is
that almost all clauses of the reduced formula may be satis�ed by an assignment in which half
of the copies of each variable are assigned one value and the rest are assigned an opposite value�
That is� an assignment in which z��� � � � � � z�i� �� z�i�� � � � � � z�m� violates only one of the

���	� AVERAGE CASE COMPLEXITY � �

auxiliary variables �i�e�� the copies of each original variable� by introducing equal
ity constraints only for pairs of variables that correspond to edges of an expander
graph �see Appendix E���� For example� we enforce equality among the values of
z��� ���� zm� by adding the clauses zi� � �zj� for every fi� jg � E� where E is the
set of edges of am mvertex expander graph� Prove that� for some constants c and
� � 	� the corresponding mapping reduces gapSAT���� to gapSAT��c� �

Guideline� Using d�regular expanders� we map �CNF to instances in which each variable

appears in at most �d�� clauses� Note that the number of added clauses is linearly related

to the number of original clauses� Clearly� if the original formula is satis�able then so is

the reduced one� On the other hand� consider an arbitrary assignment � � to the reduced

formula ��
i�e�� the formula obtained by mapping ��� For each original variable z� if

� � assigns the same value to almost all copies of z then we consider the corresponding

assignment in �� Otherwise� by virtue of the added clauses� � � does not satisfy a constant

fraction of the clauses containing a copy of z�

Exercise ���� �deciding majority requires linear time� Prove that deciding
majority requires lineartime even in a direct access model and when using a ran
domized algorithm that may err with probability at most ����

Guideline� Consider the problem of distinguishing Xn from Yn� where Xn
resp�� Yn� is

uniformly distributed over the set of n�bit strings having exactly bn��c
resp�� bn��c� ��

ones� For any �xed set I � �n � denote the projection of Xn
resp�� Yn� on I by X �
n
resp��

Y �
n�� Prove that the statistical di�erence between X �

n and Y �
n is bounded by O
jIj�n��

Note that the argument needs to be extended to the case that the examined locations are

selected adaptively�

Exercise ���� �testing majority in polylogarithmic time� Show that test
ing majority �with respect to �� can be done in polylogarithmic time by probing
the input at a constant number of randomly selected locations�

Exercise ����� �on the triviality of some testing problems� Show that the
following sets are trivially testable in the adjacency matrix representation �i�e�� for
every � � 	 and any such set S� there exists a trivial algorithm that distinguishes
S from)
�S���

�� The set of connected graphs�

�� The set of Hamiltonian graphs�

�� The set of Eulerian graphs�

Indeed� show that in each case)
�S� � ��
Guideline �for Item ��� Note that� in general� the fact that the sets S� and S�� are

testable within some complexity does not imply the same for the set S� � S���
auxiliary clauses introduced for enforcing equality among the copies of z� Using an alternative
reduction that adds the clauses z�i� � 	z�j� for every i� j � �m� will not do either� because the
number of added clauses may be quadratic in the number of original clauses�

� � CHAPTER ��� RELAXING THE REQUIREMENTS

Exercise ����� �an equivalent de�nition of tpcP� Prove that �S�X� � tpcP
if and only if there exists a polynomialtime algorithm A such that the probability
that A�Xn� errs �in determining membership in S� is a negligible function in n�

Exercise ����� �tpcP versus P � Part �� Prove that tpcP contains a problem
�S�X� such that S is not even recursive� Furthermore� use X � U �

Guideline� Let S � f�jxjx � x � S�g� where S� is an arbitrary
non�recursive� set�

Exercise ����� �tpcP versus P � Part �� Prove that there exists a distribu
tional problem �S�X� such that S �� P and yet there exists an algorithm solving
S �correctly on all inputs� in time that is typically polynomial with respect to X �
Furthermore� use X � U �

Guideline� For any time�constructible function t � N�N that is super�polynomial and

sub�exponential� use S � f�jxjx � x � S�g for any S� � Dtime
t� n P�

Exercise ����	 �simple distributions and monotone sampling� We say that
a probability ensemble X � fXngn�N is polynomial�time sampleable via a monotone
mapping if there exists a polynomial p and a polynomialtime computable function
f such that the following two conditions hold�

�� For every n� the random variables f�Upn�� andXn are identically distributed�

�� For every n and every r� � r�� � f	� �gpn� it holds that f�r�� � f�r���� where
the inequalities refers to the standard lexicographic order of strings�

Prove that X is simple if and only if it is polynomialtime sampleable via a mono
tone mapping�

Guideline� Suppose that X is simple� and let p be a polynomial bounding the running�

time of the algorithm that on input x outputs Pr�Xjxjx � Consider a mapping� denoted

�� of ��� � to f�� �gn such that r� ��� � is mapped to x�f�� �gn if and only if r � �Pr�Xn�

x �Pr�Xnx �� The desired function f � f�� �gp�n� � f�� �gn can be obtained from � by

considering the binary representation of the numbers in ��� �
and recalling that the binary

representation of Pr�Xjxjx has length at most p
jxj��� Note that f can be computed by

binary search� using the fact that X is simple� Turning to the opposite direction� we note

that any e�ciently computable and monotone mapping f � f�� �gp�n� � f�� �gn can be

e�ciently inverted by a binary search� Furthermore� similar methods allow for e�ciently

determining the interval of p
n��bit long strings that are mapped to any given n�bit long

string�

Exercise ����� �reductions preserve typical polynomial�time solveability�
Prove that if the distributional problem �S�X� is reducible to the distributional
problem �S�� X �� and �S�� X �� � tpcP � then �S�X� is in tpcP �

Guideline� Let B� denote the set of exceptional instances for the distributional problem

S�� X ��� that is� B� is the set of instances on which the solver in the hypothesis either

errs or exceeds the typical running�time� Prove that Pr�Q
Xn� � B� �� � is a negligible

function
in n�� using both Pr�y � Q
Xn� p
jyj� �Pr�X �
jyj � y and jxj p�
jyj� for every

���	� AVERAGE CASE COMPLEXITY �

y � Q
x�� Speci�cally� use the latter condition for inferring that
P

y�B� Pr�y � Q
Xn�

equals
P

y�fy��B��p��jy�j��ng
Pr�y � Q
Xn� � which guarantees that a negligible function in

jyj for any y � Q
Xn� is negligible in n�

Exercise ����� �reductions preserve error�less solveability� In continuation
to Exercise �	�� � prove that reductions preserve errorless solveability �i�e�� solve
ability by algorithms that never err and typically run in polynomialtime��

Exercise ���� �transitivity of reductions� Prove that reductions among dis
tributional problems �as in De�nition �	���� are transitive�

Guideline� The point is establishing the domination property of the composed reduction�

The hypothesis that reductions do not make too short queries is instrumental here�

Exercise ����� For any S � NP present a simple probability ensemble X such
that the generic reduction used in the proof of Theorem ����� when applied to
�S�X�� violates the domination condition with respect to �Su� U

���

Guideline� Consider X � fXngn�N such that Xn is uniform over f�n	�x� � x� �
f�� �gn	�g�

Exercise ����� �variants of the Coding Lemma� Prove the following two vari
ants of the Coding Lemma �which is stated in the proof of Theorem �	�����

�� A variant that refers to any e�ciently computable function � � f	� �g� �	� ��
that is monotonically nondecreasing over f	� �g� �i�e�� ��x�� � ��x��� for any
x� � x�� � f	� �g��� That is� unlike in the proof of Theorem �	���� here it
holds that ��	n��� � ���n� for every n�

�� As in Part �� except that in this variant the function � is strictly increasing
and the compression condition requires that jC��x�j � log�����

��x�� rather

than jC��x�j � � $minfjxj� log�������x��g� where ���x� def
� ��x�� ��x � ���

In both cases� the proof is less cumbersome than the one presented in the main
text�

Exercise ����� Prove that for any problem �S�X� in distNP there exists a simple
probability ensemble Y such that the reduction used in the proof of Theorem ����
su�ces for reducing �S�X� to �Su� Y ��

Guideline� Consider Y � fYngn�N such that Yn assigns to the instance hM�x� �ti a

probability mass proportional to �x
def
� Pr�Xjxj � x � Speci�cally� for every hM�x� �ti it

holds that Pr�Yn � hM�x� �ti � ��jMj � �x�
�
n
�

�
� where n

def
� jhM� x� �tij def� jM j � jxj � t�

Alternatively� we may set Pr�Yn � hM�x� �ti � �x if M � MS and t � pS
jxj� and

Pr�Yn � hM�x� �ti � � otherwise� where MS and PS are as in the proof of Theorem �����

Exercise ����� �monotone markability and monotone reductions� In con
tinuation to Exercise ���	� we say that a set T is monotonically markable if there
exists a polynomialtime �marking� algorithm M such that

� � CHAPTER ��� RELAXING THE REQUIREMENTS

�� For every z� � � f	� �g� it holds that M�z� �� � T if and only if z � T �

�� For every jz�j � jz��j and j��j � j���j� it holds that
�a� If �� � ��� then M�z�� ��� � M�z��� �����

�b� jM�z�� ���j � jM�z��� ����j�
�� For every
 there exists
� � �
� poly�
�� such that for every z � ��i��f	� �gi

there exists
�� � �
�� such that jM�z� ��
��

�j �
��

Note that Condition � is reproduced from Exercise ���	� whereas Conditions � and �
are new� Prove that if the set S is Karpreducible to the set T and T is monotoni
cally markable then S is Karpreducible to T by a reduction that is monotone and
lengthregular �i�e�� the reduction satis�es the conditions of Proposition �	�����

Guideline� Given a Karp�reduction f from S to T � �rst obtain a length�regular reduction

f � from S to T
by applying the marking algorithm to f
x�� while using Conditions �

and ��� Next� obtain a reduction f �� that is also monotone
e�g�� by letting f ��
x� �

M
f �
x�� x�� while using Conditions � and ���

Exercise ����� �monotone markability and markability� Prove that if a set
is monotonically markable �as per Exercise �	���� then it is markable �as per Ex
ercise ���	��

Exercise ����� �some monotonically markable sets� Referring to Exercise �	����
verify that each of the twentyone NPcomplete problems treated in in Karp
s �rst
paper on NPcompleteness ����� is monotonically markable� For starters� consider
the sets SAT� Clique� and ��Colorability�

Guideline� For SAT consider the following marking algorithm M � This algorithm uses

two
�xed� satis�able formulae of the same length� denoted �
� ��� such that �
 � ��� For

any formula � and �� � � ��m � f�� �gm� it holds that M
�� �� � � � �m� � ��� �� � ����m���

where �
� �� use variables that do not appear in �� Note that the multiple occurrences

of �� can be easily avoided
by using �variations� of ����

Exercise ����	 �randomized reductions� Following the outline in x�	�������
provide a de�nition of randomized reductions among distributional problems�

�� In analogy to Exercise �	�� � prove that randomized reductions preserve fea
sible solveability �i�e�� typical solveability in probabilistic polynomialtime��
That is� if the distributional problem �S�X� is randomly reducible to the
distributional problem �S�� X �� and �S�� X �� � tpcBPP� then �S�X� is in
tpcBPP�

�� In analogy to Exercise �	���� prove that randomized reductions preserve
solveability by probabilistic algorithms that err with probability at most ���
on each input and typically run in polynomialtime�

�� Prove that randomized reductions are transitive �cf� Exercise �	�����

���	� AVERAGE CASE COMPLEXITY � �

�� Show that the error probability of randomized reductions can be reduced
�while preserving the domination condition��

Extend the foregoing to reductions that involve distributional search problems�

Exercise ����� �simple vs sampleable ensembles � Part �� Prove that any
simple probability ensemble is polynomialtime sampleable�

Guideline� See Exercise ������

Exercise ����� �simple vs sampleable ensembles � Part �� Assuming that
�P contains functions that are not computable in polynomialtime� prove that
there exists polynomialtime sampleable ensembles that are not simple�

Guideline� Consider any R � PC and suppose that p is a polynomial such that
x� y� � R

implies jyj � p
jxj�� Then consider the sampling algorithm A that� on input �n� uniformly

selects
x� y� � f�� �gn�� � f�� �gp�n��� and outputs x� if
x� y� � R and x� otherwise�

Note that #R
x� � �p�jxj��� � Pr�A
�jxj����x� �

Exercise ���� �distributional versions of NPC problems � Part � �����
Prove that for any NPcomplete problem S there exists a polynomialtime sam
pleable ensemble X such that any problem in distNP is reducible to �S�X�� We
actually assume that the manytoone reductions establishing the NPcompleteness
of S do not shrink the length of the input�

Guideline� Prove that the guaranteed reduction of Su to S also reduces
Su� U
�� to

S�X�� for some sampleable probability ensemble X� Consider �rst the case that the

standard reduction of Su to S is length preserving� and prove that� when applied to a

sampleable probability ensemble� it induces a sampleable distribution on the instances

of S�
Note that U � is sampleable
by Exercise ������� Next extend the treatment to

the general case� where applying the standard reduction to U �
n induces a distribution on

�poly�n�
m�n f�� �gm
rather than a distribution on f�� �gn��

Exercise ����� �distributional versions of NPC problems � Part � �����
Prove Theorem �	�� �i�e�� for any NPcomplete problem S there exists a polynomial
time sampleable ensemble X such that any problem in sampNP is reducible to
�S�X��� As in Exercise �	���� we actually assume that the manytoone reductions
establishing the NPcompleteness of S do not shrink the length of the input�

Guideline� We establish the claim for Su� and the general claim follows by using the

reduction of Su to S
as in Exercise ������� Thus� we focus on showing that� for some

suitably chosen� sampleable ensemble X� any
S�� X �� � sampNP is reducible to
Su� X��

Loosely speaking� X will be an adequate convex combination of all sampleable distribu�

tions
and thus X will not equal U � or U�� Speci�cally� X � fXngn�N is de�ned such

that Xn uniformly selects i � �n � emulates the execution of the ith algorithm
in lexi�

cographic order� on input �n for n� steps��� and outputs whatever the latter has output

��Needless to say� the choice to consider n algorithms in the de�nition of Xn is quite arbitrary�
Any other unbounded function of n that is at most a polynomial �and is computable in polynomial�
time� will do� �More generally� we may select the ith algorithm with pi� as long as pi is a noticeable
function of n�� Likewise� the choice to emulate each algorithm for a cubic number of steps �rather
some other �xed polynomial number of steps� is quite arbitrary�

� � CHAPTER ��� RELAXING THE REQUIREMENTS

or �n in case the said algorithm has not halted within n� steps�� Prove that� for any

S��� X ��� � sampNP such that X �� is sampleable in cubic time� the standard reduction

of S�� to Su reduces
S��� X ��� to
Su� X�
as per De�nition ����� i�e�� in particular�

it satis�es the domination condition���	 Finally� using adequate padding� reduce any

S�� X �� � sampNP to some
S��� X ��� � sampNP such that X �� is sampleable in cubic

time�

Exercise ����� �search vs decision in the context of sampleable ensembles�
Prove that every problem in sampNP is reducible to some problem in sampPC�
and every problem in sampPC is randomly reducible to some problem in sampNP �

Guideline� See proof of Theorem ������

�	Note that applying this reduction to X�� yields an ensembles that is also sampleable in cubic
time� This claim uses the fact that the standard reduction runs in time that is less than cubic
�and in fact almost linear� in its output� and the fact that the output is longer than the input�

Epilogue

Farewell� Hans
 whether you live or end where you are� Your
chances are not good� The wicked dance in which you are caught
up will last a few more sinful years� and we would not wager
much that you will come out whole� To be honest� we are not
really bothered about leaving the question open� Adventures in
the �esh and spirit� which enhanced and heightened your ordi
nariness� allowed you to survive in the spirit what you probably
will not survive in the �esh� There were majestic moments when
you saw the intimation of a dream of love rising up out of death
and the carnal body� Will love someday rise up out of this world
wide festival of death� this ugly rutting fever that in�ames the
rainy evening sky all round�

Thomas Mann� The Magic Mountain� The Thunderbolt�

We hope that this work succeeds in conveying the fascinating �avour of the con
cepts� results and open problems that dominate the �eld of computational complex
ity� We believe that the new century will witness even more exciting developments
in this �eld� and urge the reader to try to contribute to them� But before bidding
goodbye� we wish to express a few more thoughts�

As noted in Section ������ so far complexity theory has been far more success
ful in relating fundamental computational phenumena than in providing de�nite
answers regarding fundamental questions� Consider� for example� the theory of NP
completeness versus the PversusNP Question� or the theory of pseudorandomness
versus establishing the existence of oneway function �even under P �� NP�� The
failure to resolve questions of the �absolute� type is the source of common frustra
tion and one often wonders about the reasons for this failure�

Our feeling is that many of these failures are really due to the di�culty of
the questions asked� and that one tends to underestimate their hardness because
they are so appealing and natural� Indeed� the underlying sentiment is that if
a question is appealing and natural then answering it should not be hard� We
doubt this sentiment� Our own feeling is that the more intuitive a question is�
the harder it may be to answer� Our view is that intuitive questions arise from
an encounter with the raw and chaotic reality of life� rather than from an arti�cial
construct which is typically endowed with a rich internal structure� Indeed� natural

� �

��	 CHAPTER ��� RELAXING THE REQUIREMENTS

complexity classes and natural questions regarding computation arise from looking
at the reality of computation from the outside and thus lack any internal structure�
Speci�cally� complexity classes are de�ned in terms of the �external behavior� of
potential algorithms �i�e�� the resources such algorithms require� rather than in
terms of the �internal structure� �of the problem�� In our opinion� this �external
nature� of the de�nitions of complexity theorertic questions makes them hard to
resolve�

Another hard aspect regarding the �absolute� �or �lowerbound�� type of ques
tions is the fact that they call for impossibility results� That is� the natural formu
lation of these questions calls for proving the nonexistence of something �i�e�� the
nonexistence of e�cient procedures for solving the problem in question�� Needless
to say� proving the nonexistence of certain objects is typically harder than proving
existence of related objects �indeed� see Section ����� Still� proofs of nonexistence
of certain objects are known in various �elds and in particular in complexity theory�
but such proofs tend to either be trivial �see� e�g�� Section ���� or are derived by
exhibiting a sophisticated process that transforms the original question to a trivial
one� Indeed� the latter case is the one that underlies many of the impressive suc
cesses of circuit complexity� and all relative results of the �highlevel� direction have
a similar nature �i�e�� of relating one computational question to another�� Thus�
we are not suggesting that the �absolute� questions of complexity theory cannot
be resolved� but rather suggesting an intuitive explanation to the di�culties of
resolving them�

The obvious fact that di�cult questions can be resolved is demonstrated by
several recent results� which are mentioned in this book and �forced� us to modify
earlier drafts of it� Examples include the logspace graph exploration algorithm
presented in Section ���� and the alternative proof of the PCP Theorem presented
in x������� as well as Theorem �	��� and mention of the results of ��� � �����

Appendix A

Glossary of Complexity

Classes

Summary� This glossary includes selfcontained de�nitions of most
complexity classes mentioned in the book� Needless to say� the glossary
o�ers a very minimal discussion of these classes and the reader is re
ferred to the main text for further discussion� The items are organized
by topics rather than by alphabetic order� Speci�cally� the glossary is
partitioned into two parts� dealing separately with complexity classes
that are de�ned in terms of algorithms and their resources �i�e�� time
and space complexity of Turing machines� and complexity classes de
�ned in terms of nonuniform circuits �and referring to their size and
depth�� The algorithmic classes include timecomplexity based classes
�such as P � NP � coNP � BPP� RP � coRP � PH� E � EXP and NEXP�
and the space complexity classes L� NL� RL and PSPACE � The non
uniform classes include the circuit classes P�poly as well as NCk and
ACk�

De�nitions �and basic results� regarding many other complexity classes are available
at the constantly evolving Complexity Zoo ����

A�� Preliminaries

Complexity classes are sets of computational problems� where each class contains
problems that can be solved with speci�c computational resources� To de�ne a
complexity class one speci�es a model of computation� a complexity measure �like
time or space�� which is always measured as a function of the input length� and a
bound on the complexity �of problems in the class��

We follow the tradition of focusing on decision problems� but refer to these
problems using the terminology of promise problems �see Section ������� That is�
we will refer to the problem of distinguishing inputs in 'yes from inputs in 'no�

���

��� APPENDIX A� GLOSSARY OF COMPLEXITY CLASSES

and denote the corresponding decision problem by ' � �'yes�'no�� Standard
decision problems are viewed as a special case in which 'yes � 'no � f	� �g�� and
the standard formulation of complexity classes is obtained by postulating that this
is the case� We refer to this case as the case of a trivial promise�

The prevailing model of computation is that of Turing machines� This model
captures the notion of �uniform� algorithms �see Section ������� Another important
model is the one of nonuniform circuits �see Section ������� The term uniformity
refers to whether the algorithm is the same one for every input length or whether
a di�erent �algorithm� �or rather a �circuit�� is considered for each input length�

We focus on natural complexity classes� obtained by considering natural com
plexity measures and bounds� Typically� these classes contain natural computa
tional problems �which are de�ned in Appendix G�� Furthermore� almost all of
these classes can be �characterized� by natural problems� which capture every
problem in the class� Such problems are called complete for the class� which means
that they are in the class and every problem in the class can be �easily� reduced to
them� where �easily� means that the reduction takes less resources than whatever
seems to be requires for solving each individual problem in the class� E�cient
algorithm for a complete problem implies an algorithm of similar e�ciency for all
problems in the class�

Organization� The glossary is organized by topics �rather than by alphabetic
order of the various items�� Speci�cally� we partition the glossary to classes de�ned
in terms of algorithmic resources �i�e�� time and space complexity of Turing ma
chines� and classes de�ned in terms of circuit �size and depth�� The former include
the timecomplexity classes P � NP � coNP � BPP� RP � coRP � PH� E � EXP and
NEXP as well as the spacecomplexity classes L� NL� RL and PSPACE � which
are all reviewed in Section A��� The latter include the circuit classes P�poly as
well as NCk and ACk� which are reviewed in Section A���

A�� Algorithm�based classes

The two main complexity measures considered in the context of �uniform� algo
rithms are the number of steps taken by the algorithm �i�e�� its time complexity�
and the amount of �memory� or �workspace� consumed by the computation �i�e��
its space complexity�� We review the time complexity based classes P � NP � coNP �
BPP� RP � coRP � ZPP� PH� E � EXP and NEXP as well as the space complexity
classes L� NL� RL and PSPACE �

By prepending the name of a complexity class �of decision problems� with
the pre�x �co� we mean the class of complement problems� that is� the problem
' � �'yes�'no� is in coC if and only if �'no�'yes� is in C� Speci�cally� deciding
membership in the set S is in the class coC if and only if deciding membership in
the set f	� �g� nS is in the class C� Thus� the de�nition of coNP and coRP can be
easily derived from the de�nitions of NP and RP � respectively� Complexity classes
de�ned in terms of symmetric acceptance criteria �e�g�� deterministic and twosided
error randomized classes� are trivially closed under complementation �e�g�� coP � P

A�	� ALGORITHMBASED CLASSES ���

and coBPP � BPP� and so we do not present their �co�classes� In other cases
�most notably NL and SZK�� the closure property is highly nontrivial and we
comment about it�

A���� Time complexity classes

We start with classes that are closely related to polynomialtime computations �i�e��
P � NP � BPP� RP and ZPP�� and latter consider the classes PH� E � EXP and
NEXP �

A������ Classes closely related to polynomial time

The most prominent complexity classes are P and NP� which are extensively
discussed in Section ���� We also consider classes related to randomized polynomial
time� which are discussed in Section ����

P and NP� The class P consists of all decision problem that can be solved in
�deterministic� polynomialtime� A decision problem ' � �'yes�'no� is in NP
if there exists a polynomial p and a �deterministic� polynomialtime algorithm V
such that the following two conditions hold

�� For every x � 'yes there exists y � f	� �gpjxj� such that V �x� y� � ��

�� For every x � 'no and every y � f	� �g� it holds that V �x� y� � 	�

A string y satisfying Condition � is called an NP�witness �for x�� Clearly� P � NP �

Reductions and NP�completeness �NPC�� A problem is NP�complete if
it is in NP and every problem in NP is polynomialtime reducible to it� where
polynomialtime reducibility is de�ned and discussed in Section ���� Loosely speak
ing� a polynomial�time reduction of problem ' to problem '� is a polynomialtime
algorithm that solves ' by making queries to a subroutine that solves problem '��
where the runningtime of the subroutine is not counted in the algorithm
s time
complexity� Typically� NPcompleteness is de�ned while restricting the reduction
to make a single query and output its answer� Such a reduction� called a Karp�
reduction� is represented by a polynomialtime computable mapping that maps
yesinstances of ' to yesinstances of '� �and noinstances of ' to noinstances of
'��� Hundreds of NPcomplete problems are listed in �����

Probabilistic polynomial�time �BPP� RP and ZPP�� A decision problem
' � �'yes�'no� is in BPP if there exists a probabilistic polynomialtime algorithm
A such that the following two conditions hold

�� For every x � 'yes it holds that Pr�A�x���� � ����

�� For every x � 'no it holds that Pr�A�x��	� � ����

��� APPENDIX A� GLOSSARY OF COMPLEXITY CLASSES

That is� the algorithm has twosided error probability �of ����� which can be further
reduced by repetitions� We stress that due to the twosided error probability of
BPP� it is not known whether or not BPP is contained inNP � In contrast to BPP�
there are onesided and zeroerror classes� denoted RP and ZPP� respectively� A
problem ' � �'yes�'no� is in RP if there exists a probabilistic polynomialtime
algorithm A such that the following two conditions hold

�� For every x � 'yes it holds that Pr�A�x���� � ����

�� For every x � 'no it holds that Pr�A�x��	� � ��

Again� the error probability can be reduced by repetitions� and thus RP � BPP �
NP � A problem' � �'yes�'no� is in ZPP if there exists a probabilistic polynomial
time algorithm A� which may output a special ��don
t know�� symbol �� such that
the following two conditions hold

�� For every x � 'yes it holds that Pr�A�x��f���g� � � and Pr�A�x���� � ����

�� For every x � 'no it holds that Pr�A�x��f	��g� � � and Pr�A�x��	� � ����

Note that P � ZPP � RP � coRP � When de�ned in terms of promise problems�
these classes have complete problems �w�r�t Karpreductions�� but the same is not
known when considering only standard decision problems �with trivial promise��

The counting class �P� Functions in �P count the number of solutions to
an NPtype search problem �or� equivalently� the number of NPwitnesses for a
yesinstance of a decision problem in NP�� Formally� a function f is in �P if there
exists a polynomial p and a �deterministic� polynomialtime algorithm V such that
f�x� � jfy � f	� �gpjxj� � V �x� y� � �gj� Indeed� p and V are as in the de�nition
of NP � and it follows that deciding membership in the set fx � f�x� � �g is in
NP � Clearly� �P problems are solvable in polynomial space� Surprisingly� the
permanent of positive integer matrices is �Pcomplete �i�e�� it is in �P and any
function in �P is polynomialtime reducible to it��

A������ Other time complexity classes

The classes E and EXP corresponding to problems that can be solved �by a deter
ministic algorithm� in time �On� and �polyn�� respectively� for nbit long inputs�
Clearly� NP � EXP �

In general� one may de�ne a complexity class for every time bound and ev
ery type of machine �i�e�� deterministic� probabilistic and nondeterministic�� but
polynomial and exponential bounds seem most natural and very robust� Another
robust type of time bounds that is sometimes used is quasipolynomial time �i�e�� eP
denotes the class of problems solvable by deterministic machines of time complexity
exp�poly�logn���� Another class that occurs is NEXP the class of problems that
can be solved by a nondeterministic machine in �polyn� steps��

�Alternatively� analogously to the de�nition of NP� a problem ! � �!yes�!no� is in NEXP

A�	� ALGORITHMBASED CLASSES ��

The Polynomial�time hierarchy� PH� For any natural number k� the kth level
of the polynomialtime hierarchy consists of problems ' � �'yes�'no� such that
there a polynomial p and a polynomialtime algorithm V that satis�es the following
two conditions�

�� For every x � 'yes there exists y� � f	� �gpjxj� such that for every y� �
f	� �gpjxj� there exists y� � f	� �gpjxj� such that for every y� � f	� �gpjxj� ���
�going for k quanti�er alternations� ��� it holds that V �x� y�� y�� y�� y�� ���� yk��
��

�� For every x�'no� the above condition does not hold� That is� for every y� �
f	� �gpjxj� there exists y� � f	� �gpjxj� such that for every y� � f	� �gpjxj�
there exists y� � f	� �gpjxj� ��� it holds that V �x� y�� y�� y�� y�� ���� yk��	�

Such a problem ' is said to be in �k �and 'k
def
� co�k�� Indeed� NP � ��

corresponds to the special case where k � �� Interestingly� PH is polynomialtime
reducible to �P �

A���� Space complexity

When de�ning spacecomplexity classes� one counts only the space consumed by
the actual computation� and not the space occupied by the input and output� This
is formalized by postulating that the input is read from a readonly device �resp��
the output is written on a writeonly device�� Four important classes of decision
problems are de�ned below�

� The class L consists of problems solvable in logarithmic space� That is� a
problem ' is in L if there exists a standard �i�e�� deterministic� algorithm of
logarithmic spacecomplexity for solving '� This class contains some simple
computational problems �e�g�� matrix multiplication�� and arguably captures
the most spacee�cient computations� Interestingly� L contains the problem
of deciding connectivity of �undirected� graphs�

� Classes of problems solvable by randomized algorithms of logarithmic space
complexity include RL and BPL� which are de�ned analogously to RP and
BPP� That is� RL corresponds to algorithms with onesided error probabil
ity� whereas BPL allows twosided error�

� The class NL is the nondeterministic analogue of L� and is traditionally de
�ned in terms of nondeterministic machines of logarithmic spacecomplexity��

The classNL contains the problem of deciding whether there exists a directed

if there exists a polynomial p and a polynomial�time algorithm V such that the two conditions
hold

�� For every x � !yes there exists y � f�� �g�p�jxj� such that V �x� y� � ��

�� For every x � !no and every y � f�� �g� it holds that V �x� y� � ��

�See further discussion of this de�nition in Section ���� In particular� note that we refrained
here from presenting a de�nition analogous to the de�nition of NP�

��� APPENDIX A� GLOSSARY OF COMPLEXITY CLASSES

path between two given vertexes in a given directed graph� In fact� the lat
ter problem is complete for the class �under logarithmicspace reductions��
Interestingly� coNL equals NL�

� The class PSPACE consists of problems solvable in polynomial space� This
class contains very di�cult problems� including the computation of winning
strategies for any �e�cient �party games� �see Section ����

Clearly� L � RL � NL � P and NP � PSPACE � EXP �

A�� Circuit�based classes

We refer the reader to Section ����� for a de�nition of Boolean circuits as computing
devices� The two main complexity measures considered in the context of �non
uniform� circuits are the number of gates �or wires� in the circuit �i�e�� the circuit
s
size� and the length of the longest directed path from an input to an output �i�e��
the circuit
s depth��

Throughout this section� when we talk of circuits� we actually refer to families of
circuits containing a circuit for each instance length� where the nbit long instances
of the computational problem are handled by the nth circuit in the family� Similarly�
the size and depth of the circuit actually refers to the family of circuits and to �the
dependence on n of� the size and depth of the nth circuit in the family�

General polynomial�size circuits �P�poly�� The main motivation for the in
troduction of complexity classes based on �nonuniform� circuits is the development
of lowerbounds� For example� the class of problems solvable by polynomialsize
circuits� denoted P�poly� is a superset of P �because it clearly contains P as well
as deciding membership in any subset of f�g�� whereas there exists such sets that
represents decision problems that are not solvable �i�e�� by any uniform algorithm���
Thus� showing that NP is not contained in P�poly would imply P �� NP � For
further discussion see Appendix B��� An alternative de�nition of P�poly in terms
of �machines that take advice� is provided in Section ������ We also mention that
if NP � P�poly then PH � ���

The subclasses AC� and TC�� The class AC�� discussed in Appendix B�����
consists of problems solvable by constantdepth polynomialsize circuits of un�
bounded fan�in� The analogue class that allows also �unbounded fanin� majority
gates �or� equivalently� thresholdgates� is denoted T C��

The subclasses AC and NC� Turning back to the standard basis �of �� � and

�� for any nonnegative integer k� we denote by NCk �resp�� ACk� the class of
problems solvable by polynomialsize circuits of bounded fan�in �resp�� unbounded
fanin� having depth O�logk n�� where n is the input length� Clearly� NCk � ACk �
NCk��� A commonly referred class is NC def

� �k�NNCk�

A��� CIRCUITBASED CLASSES ���

We mention that the class NC� � NL is the habitat of most natural com
putational problems of Linear Algebra� solving a linear system of equations as
well as computing the rank� inverse and determinant of a matrix� The class NC�
contains all symmetric functions� regular languages as well as word problems for
�nite groups and monoids� The class AC� contains all properties of �nite objects
expressible by �rstorder logic�

Uniformity� The above classes make no reference to the complexity of construct
ing the adequate circuits� and it is plausible that there is no e�ective way of con
structing these circuits �e�g�� as in case of circuits that trivially solve undecidable
problem regarding unary instances�� A minimal notion of constructibility of such
�polynomialsize� circuits is the existence of a polynomial time algorithm that given
�n produces the nth relevant circuit �i�e�� the circuit that solves the problem on in
stances of length n�� Such a notion of constructibility means that the family of
circuits is �uniform� in some sense �rather than consisting of circuits that have
no relation between one another�� Stronger notions of uniformity �e�g�� logspace
constructibility� are more adequate for subclasses such as AC and NC� We men
tion that logspace uniform NC circuits correspond to parallel algorithms that use
polynomially many processors and run in polylogarithmic time�

��� APPENDIX A� GLOSSARY OF COMPLEXITY CLASSES

Appendix B

On the Quest for Lower

Bounds

Alas� Philosophy� Medicine� Law� and unfortunately also Theol
ogy� have I studied in detail� and still remained a fool� not a bit
wiser than before� Magister and even Doctor am I called� and
for a decade am I sick and tired of pulling my pupils by the nose
and understanding that we can know nothing��

J�W� Goethe� Faust� Lines � �����

Summary� In this appendix we survey some attempts at proving lower
bounds on the complexity of natural computational problems� In the
�rst part� devoted to Circuit Complexity� we describe lower bounds for
the size of �restricted� circuits that solve natural computational prob
lems� This can be viewed as a program whose longterm goal is proving
that P �� NP � In the second part� devoted to Proof Complexity� we de
scribe lower bounds on the length of �restricted� propositional proofs of
natural tautologies� This can be viewed as a program whose longterm
goal is proving that NP �� coNP �

The current activity in these areas is aimed towards developing proof
techniques that may be applied to the resolution of the �big problems�
�such as P versus NP�� but the current achievements �though very im
pressive� seem far from reaching this goal� Current crownjewel achieve
ments in these areas take the form of tight �or strong� lower bounds on
the complexity of computing �resp�� proving� �relatively simple� func
tions �resp�� claims� in restricted models of computation �resp�� proof
systems��

�This quote re#ects a common sentiment� not shared by the author of the current book�

���

��	 APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

B�� Preliminaries

Circuit complexity refers to a nonuniform model of computation� speci�cally the
model of Boolean circuits� focusing on the size of such circuits� while ignoring the
complexity of constructing adequate circuits� Similarly� proof complexity refers
to proofs of tautologies� focusing on the length of such proofs� while ignoring the
complexity of generating such proofs� Both circuits and proofs are �nite objects
that are de�ned on top of the notion of a directed acyclic graph �dag�� which we
review next�

A dag G�V�E� consists of a �nite set of vertices V � and a set of ordered pairs
called directed edges E�V�V � in which there are no directed cycles� The vertices
with no incoming edges are called the inputs of the dag G� and the vertices with
no outgoing edges are called the outputs� We will restrict ourselves to dags in
which the number of incoming edges to every vertex is at most �� If the number
of outgoing edges from every node is at most �� the dag is called a tree� Finally�
we assume that every vertex can be reached from some input via a directed path�
The size of a dag will be its number of edges�

To make a dag into a computational device �or a proof�� each noninput vertex
will be marked by a rule� converting values in its predecessors to values at that
vertex� It is easy to see that the vertices of every dag can be linearly ordered� such
that predecessors of every vertex �if any� appear before it in the ordering� Thus� if
the input vertices are labeled with some values� we can label the remaining vertices
�in that order�� one at a time� till all vertices �and in particular all outputs� are
labeled�

For computation devices� the noninput vertices will be marked by functions
�called gates�� which make the dag a circuit� If we label the input vertices by
speci�c values from some domain� the outputs will be determined by them� and
the circuit will naturally de�ne a function �from input values to output values��
For more details see Section ������

For proofs� the noninput vertices will be marked by sound deduction �or infer
ence� rules� which make the dag a proof� If we label the inputs by formulae that
are axioms in a given proof system� the output again will be determined by them�
and will yield the tautology proved by this proof�

We note that both settings �t the paradigm of simplicity shared by all com
putational models discussed in Section ���� the rules are simple by de�nition �
they are applied to at most � previous values� The main di�erence is that this
model is �nite � each dag can compute only functions�proofs with a �xed input
length� To allow all input lengths� one must consider in�nite sequences of dags�
one for each length� thus obtaining a model of computing devices having in�nite
description �when referring to all input lengths�� This signi�cantly extends the
power of the computation model beyond that of the notion of algorithm �discussed
in Section ������� However� as we are interested in lower bounds here� this is legit
imate� and one can hope that the �niteness of the model will potentially allow for
combinatorial techniques to analyze its power and limitations� Furthermore� these
models allow for the introduction �and study� of meaningful restricted classes of
computations�

B�	� BOOLEAN CIRCUIT COMPLEXITY ���

B�� Boolean Circuit Complexity

In Boolean circuits all inputs� outputs� and values at intermediate nodes of the
dag are bits� The set of allowed gates is naturally taken to be a complete basis �
one that allows the circuit to compute all Boolean functions� The speci�c choice
of a complete basis hardly e�ects the study of circuit complexity� A typical choice
is the set f
����g of �respectively� conjunction� disjunction �each on � bits� and
negation �on � bit��

For a �nite function f � we denote by S�f� the size of the smallest Boolean circuit
computing f � We will be interested in sequences of functions ffng� where fn is a
function on n input bits� and will study �their size complexity� S�fn� asymptotically

as a function of n� With some abuse of notation� for f�x�
def
� fjxj�x�� we let S�f�

denote the integer function that assigns to n the value S�fn�� Thus� we refer to
the following de�nition�

De�nition B�� �circuit complexity�� Let f � f	� �g� f	� �g� and ffng be such
that f�x� � fjxj�x� for every x� The complexity of a function f �resp�� ffng��
denoted S�f� �resp�� denoted n � S�fn��� is a function of n that represents the
size of the smallest Boolean circuit computing fn�

We note that di�erent circuits �e�g�� having a di�erent number of inputs� are
used for each fn� Still there may be a simple description of this sequence of circuits�
say� an algorithm that on input n produces a circuit computing fn� In case such
an algorithm exists and works in time polynomial in the size of its output� we
say that the corresponding sequence of circuits is uniform� Note that if f has a
uniform sequence of polynomialsize circuits then f � P � On the other hand� it
can be shown that any f � P has �a uniform sequence of� polynomialsize circuits�
Consequently� a superpolynomial size lowerbound on any function in NP would
imply that P �� NP �

De�nition B�� makes no reference to �uniformity� and indeed the sequence
of smallest circuits computing ffng may be highly �nonuniform�� Indeed� non
uniformity makes the circuit model stronger than Turing machines �or� equiva
lently� than the model of uniform circuits�� there exist functions f that cannot
be computed by Turing machines �regardless of their running time�� but do have
linearsize circuits� So isn
t proving circuit lowerbounds a much harder task than
we need to resolve the P vs� NP question!

The answer is that there is a strong sentiment that the extra power provided
by nonuniformity is irrelevant to the P vs� NP question� that is� it is conjectured
that NPcomplete sets do not have polynomialsize circuits� This conjecture is
supported by the fact that its failure will yield an unexpected collapse in the
complexity world of standard computations �see Section ����� Furthermore� the
hope is that abstracting away the �supposedly irrelevant� uniformity condition
will allow for combinatorial techniques to analyze the power and limitations of
polynomialsize circuits �w�r�t NPsets�� This hope has materialized in the study
of restricted classes of circuits �see Sections B���� and B������ Indeed� another
advantage of the circuit model is that it o�ers a framework for naturally restricted
models of computation�

��� APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

We also mention that Boolean circuits are a natural computational model� cor
responding to �hardware complexity� �which was indeed the original motivation
for their introduction by Shannon ������� and so their study is of independent in
terest� Moreover� some of the techniques for analyzing Boolean functions found
applications elsewhere �e�g�� in computational learning theory� combinatorics and
game theory��

B���� Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits� in particular
the fact that they can e�ciently simulate Turing Machines� Another basic fact is
that most Boolean functions require exponential size circuits� which is due to the
gap between the number of functions and the number of small circuits�

Thus� hard functions �i�e�� function that require large circuits and thus have
no e�cient algorithms� do exist� to say the least� However� the aforementioned
hardness result is proved via a counting argument� and so provides no way of
pointing to one hard function� Using more conventional language� we cannot prove
analogous hardness results for any explicit function f �e�g�� for an NPcomplete
function like SAT or even for functions in EXP�� The situation is even worse�
no nontrivial lowerbound is known for any explicit function� Note that for any
function f on n bits �which depends on all its inputs�� we trivially must have
S�f� � n� just to read the inputs� One major open problem of circuit complexity
is beating this trivial bound�

Open Problem B�� Find an explicit Boolean function f �or even a length�preserving
function f� for which S�f� is not O�n��

A particularly basic special case of this problem� is the question whether addi
tion is easier to perform than multiplication� Let ADD �f	� �gn�f	� �gnf	� �gn��
and MULT �f	� �gn�f	� �gnf	� �g�n� denote the addition and multiplication func
tions� respectively� applied to a pair of integers �presented in binary�� For addition
we have an optimal upper bound� that is� S�ADD� � O�n�� For multiplication� the
standard �elementary school� quadratictime algorithm can be greatly improved
�via Discrete Fourier Transforms� to slightly superlinear� yielding S�MULT� �
O�n � �logn���� Now� the question is whether or not there exist linear�size circuits
for multiplication �i�e�� is S�MULT� � O�n��!

Unable to report on any nontrivial lowerbound �for an explicit function�� we
turn to restricted models� There has been some remarkable successes in developing
techniques for proving strong lowerbounds for natural restricted classes of circuits�
We describe the most important ones� and refer the reader to ���� �� � for further
detail�

General Boolean circuits� as described above� can compute every function and
can do it at least as e�ciently as general �uniform� algorithms� Restricted circuits
may be only able to compute a subclass of all functions �e�g�� monotone functions��
The restriction makes sense when the related classes of functions and the com
putations represented by the restricted circuits are natural �from a conceptual or
practical viewpoint�� The models discussed below satisfy this condition�

B�	� BOOLEAN CIRCUIT COMPLEXITY ���

B���� Monotone Circuits

An extremely natural restriction comes by forbidding negation from the set of gates�
namely allowing only f
��g� The resulting circuits are called monotone circuits
and it is easy to see that they can compute every function f � f	� �gn f	� �g
that is monotone with respect to the standard partial order on nbit strings �i�e��
x � y i� for every bit position i we have xi � yi�� A very natural question in
this context is whether or not nonmonotone operations �in the circuit� help in
computing monotone functions!

Before turning to this question� we note that it is as easy to see that most
monotone functions require exponential size circuits �let alone monotone ones���

Still� proving a superpolynomial lowerbound on the monotone circuit complexity
of an explicit monotone function was open for over �	 years� till the invention of
the socalled approximation method �by Razborov ���	���

Let CLIQUE be the function that� given a graph on n vertices �by its adjacency
matrix�� outputs � if and only if the graph contains a complete subgraph of size
�say�

p
n �i�e��� all pairs of vertices in some

p
n subset are connected by edges��

This function is clearly monotone� Moreover� it is known to be NPcomplete�

Theorem B�� ����	�� improved in ����� There are no polynomial�size monotone
circuits for CLIQUE�

We note that the lowerbounds are subexponential in the number of vertices �i�e��
size exp�"�n��
�� for n vertices�� and that similar lowerbounds are known for func
tions in P � Thus� there exists an exponential separation between monotone circuit
complexity and non�monotone circuit complexity� where this separation refers �of
course� to the computation of monotone functions�

B���� Bounded	Depth Circuits

The next restriction is structural� we allow all gates� but limit the depth of the
circuit� The depth of a dag is simply the length of the longest directed path in
it� So in a sense� depth captures the parallel time to compute the function� if
a circuit has depth d� then the function can be evaluated by enough processors
in d phases �where in each phase many gates are evaluated at once�� Indeed�
parallel time is a natural and important computational resource� referring to the
following basic question� can one speed up computation by using several computers
in parallel! Determining which computational tasks can be �parallelized� when
many processors are available and which are �inherently sequential� is clearly a
fundamental question�

We will restrict d to be a constant� which still is interesting not only as a measure
of parallel time but also due to the relation of this model to expressibility in �rst
order logic as well as to complexity classes above NP called the Polynomial�time

�A key observation is that it su�ces to consider the set of n�bit monotone functions that
evaluate to � �resp�� to �� on each string x � x� � � �xn satisfying

Pn

i��
xi bn
�c �resp��Pn

i��
xi � bn
�c�� Note that each such function is speci�ed by

�
n

bn	�c

�
bits�

��� APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

Hierarchy �see Section ����� In the current setting �of constantdepth circuits�� we
allow unbounded fan�in �i�e��
gates and �gates taking any number of incoming
edges�� as otherwise each output bit can depend only on a constant number of
input bits�

Let PAR �for parity� denote the sum modulo two of the input bits� and MAJ �for
majority� be � if and only if there are more �
s than 	
s among the input bits� The
invention of the random restriction method �by Furst� Saxe� and Sipser ����� led to
the following basic result�

Theorem B�	 ������ improved in ����� ������ For all constant d� the functions PAR
and MAJ have no polynomial size circuit of depth d�

The aforementioned improvement �of H/astad ������ following Yao ������ gives a
relatively tight lowerbound of exp�"�n��d����� on the size of ninput PAR circuits
of depth d�

Interestingly� MAJ remains hard �for constantdepth polynomialsize circuits�
even if the circuits are also allowed �unbounded fanin� PARgates �this result is
based on yet another proof technique� approximation by polynomials ��	�� ������
However� the �converse� does not hold �i�e�� constantdepth polynomialsize cir
cuits with MAJgates can compute PAR�� and in general the class of constantdepth
polynomialsize circuits with MAJgates �denoted T C�� seems quite powerful� In
particular� nobody has managed to prove that there are functions in NP that
cannot be computed by such circuits� even if the depth is restricted to ��

B���� Formula Size

The �nal restriction is again structural � we require the dag to be a tree� Intuitively�
this forbids the computation from reusing a previously computed partial result �and
if it is needed again� it has to be recomputed�� Thus� the resulting Boolean circuits
are simply Boolean formulae� �Indeed� we are back to the basic model allowing
negation ���� and
�� gates of fan�in ��

Formulae are natural not only for their prevalent mathematical use� but also
because their size can be related to the depth of general circuits and to the memory
requirements of Turing machines �i�e�� their space complexity�� One of the oldest
results on Circuit Complexity� is that PAR and MAJ have nontrivial lowerbounds
in this model� The proof follows a simple combinatorial �or information theoretic�
argument�

Theorem B�� ������ Boolean formulae for n�bit PAR and MAJ require "�n�� size�

This should be contrasted with the linearsize circuits that exist for both functions�
We comment that S�PAR� � O�n� is trivial� but S�MAJ� � O�n� is not� Encouraged
by Theorem B� � one may ask whether we can hope to provide superpolynomial
lowerbounds on the formula size of explicit functions� This is indeed a famous
open problem�

Open Problem B�� Find an explicit Boolean function f for which S�f� is super�
polynomial�

B��� ARITHMETIC CIRCUITS ��

One of the cleanest methods suggested is the communication complexity method
�of Karchmer and Wigderson ��� ��� This method asserts that the depth of a
formula for a Boolean function f equals the communication complexity in the
following two party game� Gf � The �rst party is given x � f����� � f	� �gn� the
second party is given y � f���	� � f	� �gn� and their goal is to �nd a bit location
on which x and y disagree �i�e�� i such that xi �� yi� which clearly exists�� To that
end� the party exchange messages� according to a predetermined protocol� and the
question is what is the communication complexity �in terms of total number of bits
exchanged on the worstcase input pair� of the best such protocol�

Note that proving a superlogarithmic lowerbound on the communication com
plexity of the aforementioned game Gf will establish a superpolynomial lower
bound on the size of formulae computing f �because formula depth can be made
logarithmic in their size�� We stress that a lowerbound of purely information the
oretic nature �no computational restriction were paced on the parties in the game�
implies a computational lowerbound-

We mention that the communication complexity method has a monotone ver�
sion in which the depth of monotone circuits is related to the communication
complexity of protocols that are required to �nd an i such that xi � yi �rather
than any i such that xi �� yi��

� In fact� the monotone version is better known than
the general one� due to its success in establishing linear lowerbounds on monotone
depth of natural problems such as perfect matching �by Raz and Wigderson �������

B�� Arithmetic Circuits

We now leave the Boolean rind� and discuss circuits over general �elds� Fix any
�eld F � The gates of the dag will now be the standard $ and � operations in the
�eld� This requires two immediate clari�cations� First� to allow using constants
of the �eld� one adds a special input vertex whose value is the constant %�
 of the
�eld� Moreover� multiplication by any �eld element �e�g�� ��� is free� Second� one
may wonder about division� However� we will be mainly interested in computing
polynomials� and for computing polynomials �over in�nite �elds� division can be
e�ciently emulated by the other operations�

Now the inputs of the dag will hold elements of the �eld F � and hence so will
all computed values at vertices� Thus an arithmetic circuit computes a polyno
mial map p � Fn Fm� and every such polynomial map is computed by some
circuit� We denote by SF �p� the size of a smallest circuit computing p �when no
subscript is given� F � Q the �eld of rational numbers�� As usual� we
ll be in
terested in sequences of polynomials� one for every input size� and will study size
asymptotically�

It is easy to see that over any �xed �nite �eld� arithmetic circuits can simulate
Boolean circuits on Boolean inputs with only constant factor loss in size� Thus

�Note that since f is monotone� f�x� � � and f�y� � � implies the existence of an i such that
xi � � and yi � ��

��� APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

the study of arithmetic circuits focuses more on in�nite �elds� where lower bounds
may be easier to obtain�

As in the Boolean case� the existence of hard functions is easy to establish �via
dimension considerations� rather than counting argument�� and we will be inter
ested in explicit �families of� polynomials� However� the notion of explicitness is
more delicate here �e�g�� allowing polynomials with algebraically independent coe�
cients would yield strong lowerbounds� which are of no interest whatsoever�� Very
roughly speaking� polynomials are called explicit if the mapping from monomials
to �a �nite description of� their coe�cients has an e�cient program�

An important parameter� which is absent in the Boolean model� is the degree of
the polynomial�s� computed� It is obvious� for example� that a degree d polynomial
�even in one variable� i�e�� n � �� requires size at least log d� We brie�y consider the
univariate case �where d is the only measure of input size�� which already contains
striking and important problems� Then we move to the general multivariate case�
in which as usual n� the number of inputs will be the main parameter �where we
shall assume that d � n�� We refer the reader to ���� �	�� for further detail�

B���� Univariate Polynomials

How tight is the log d lowerbounds for the size of an arithmetic circuit computing
a degree d polynomial! A simple dimension argument shows that for most degree
d polynomials p� it holds that S�p� � "�d�� However� we know of no explicit one�

Open Problem B� Find an explicit polynomial p of degree d� such that S�p� is
not O�log d��

To illustrate the question� we consider the following two concrete polynomials
pd�x� � xd� and qd�x� � �x $ ���x $ �� � � � �x $ d�� Clearly� S�pd� � � log d �via
repeated squaring�� so the trivial lowerbound is essentially tight� On the other
hand� it is a major open problem to determine S�qd�� and the conjecture is that
S�qd� is not polynomial in log d� To realize the importance of this question� we
state the following proposition�

Proposition B�� If S�qd� � poly�log d�� then the integer factorization problem
can be solved by polynomial�size circuits�

Recall that it is widely believed that the integer factorization problem is intractable
�and� in particular� does not have polynomialsize circuits�� Proposition B�� follows
by observing that qd�t� � ��t $ d�-���t-� �mod N� and that using a circuit for
qd we can e�ciently obtain the value of ��t $ d�-���t-� mod N �by emulating the
computation of the former circuit modulo N�� Furthermore� the value of �K-� mod
N can be obtained from a product of some of the polynomials q�j evaluated at
adequate points� Next� observe that �K-� mod N and N are relatively prime if and
only if all prime factors of N are bigger than K� Thus� given a composite N � we
can �nd a factor of N by performing a binary search for a suitable K�

B��� ARITHMETIC CIRCUITS ���

B���� Multivariate Polynomials

We are now back to polynomials with n variables� To make n our only input size
parameter� it is convenient to restrict ourselves to polynomials whose total degree
is at most n�

Once again� almost every polynomial p in n variables requires size S�p� �
exp�n���� and we seek explicit polynomial �families� that are hard� Unlike in the
Boolean world� here there are slightly nontrivial lowerbounds �via elementary tools
from algebraic geometry��

Theorem B�� ����� S�xn� $ xn� $ � � �$ xnn� � "�n logn��

The same techniques extend to prove a similar lowerbound for other natural poly
nomials such as the symmetric polynomials and the determinant� Establishing a
stronger lowerbound for any explicit polynomial is a major open problem� Another
open problem is obtaining a superlinear lowerbound for a polynomial map of con
stant �even �� total degree� Outstanding candidates for the latter open problem
are the linear maps computing the Discrete Fourier Transform over the Complex
numbers� or the Walsh transform over the Rationals �for both O�n logn� algorithms
are known� but no superlinear lowerbounds are known��

We now focus on speci�c polynomials of central importance� The most natural
and well studied candidate for the last open problem is the matrix multiplication
function MM� let A�B be twom�mmatrices of variables over F � and de�ne MM�A�B�
to be the n � m� entries of the matrix A�B� Thus� MM is a set of n explicit bilinear
forms over the �n input variables� It is known that SGF���MM� � �n �cf�� �������

On the other hand� the obvious m� � n��� algorithm can be improved�

Theorem B��� � ��� For every �eld F � SF �MM� � O�n������

So what is the complexity of MM �even if one counts only multiplication gates�! Is
it linear or almostlinear or is it the case that S�MM� � n� for some � � �! This is
indeed a famous open problem�

We next consider the determinant and permanent polynomials �DET and PER�
resp�� over the n � m� variables representing an m�m matrix� While DET plays
a major role in classical mathematics� PER is somewhat esoteric in that context
�though it appears in Statistical Mechanics and Quantum Mechanics�� In the con
text of complexity theory both polynomials are of great importance� because they
capture natural complexity classes� The function DET has relatively low complexity
�and is closely related to the class of polynomials having polynomialsized arith
metic formulae�� whereas PER seems to have high complexity �and it is complete
for the counting class �P �see x�������� Thus� it is conjectured that PER is not
polynomialtime reducible to DET� One restricted type of reduction that makes
sense in this algebraic context is a reduction by projection�

De�nition B��� �projections�� Let pn � Fn F � and qN � FN F � be poly�
nomial maps and x�� ���� xn be variables over F � We say that there is a projection
from p to q over F � if there exists a function � � �N � fx�� ���� xng � F such that
p�x�� ���� xn� � q������ ���� ��N���

��� APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

Clearly� if pn) qN then SF �pn� � SF �qN �� Let DETm and PERm denote the
functions DET and PER restricted to mbym matrices� It is known that PERm)
DET�m � but to yield a polynomialtime reduction one would need a projection of
PERm to DETpolym�� It is conjectured that no such projection exists�

B�� Proof Complexity

The concept of proof is what distinguishes the study of Mathematics from all other
�elds of human inquiry� Mathematicians have gathered millennia of experience to
attribute such adjectives to proofs as �insightful� original� deep� and most notably�
�di�cult�� Can one quantify� mathematically� the di�culty of proving various
theorems! This is exactly the task undertaken in Proof Complexity� It seeks to
classify theorems according to the di�culty of proving them� much like Circuit
Complexity seeks to classify functions according to the di�culty of computing
them� In proofs� just like in computation� there will be a number of models� called
proof systems capturing the power of reasoning allowed to the prover�

We will consider only propositional proof systems� and so our theorems will be
tautologies� We will see soon why the complexity of proving tautologies is highly
nontrivial and amply motivated�

The formal de�nition of a proof system spells out what we take for granted� the
e�ciency of the veri�cation procedure� In the following de�nition the e�ciency of
the veri�cation procedure refers to its runningtime measured in terms of the total
length of the alleged theorem and proof� In contrast� in Chapter �� we consider the
runningtime as a function of the length of the alleged theorem� �Both approaches
were mentioned in Section ���� where the two approaches coincide because in Sec
tion ��� we mandated proofs of length polynomial in the alleged theorem��

De�nition B��� � ��� A �propositional� proof system is a polynomial�time Turing
machine M such that a formula T is a tautology of and only if exists a string ��
called a proof� such that M��� T � � ��

In agreement with standard formalisms �see below�� the proof is viewed as coming
before the theorem� Note that De�nition B��� guarantees the completeness and
soundness of the proof system� as well as veri�cation e�ciency �relative to the total
length of the alleged proof�theorem pair�� De�nition B��� judiciously ignores the
length of the proof � �of the tautology T �� viewing the length of the proof as a
measure of the complexity of the tautology T with respect to the proof system M �

For each tautology T � let LM �T � denote the length of the shortest proof of T in
M �i�e�� the length of the shortest string � such that M accepts ��� T ��� That is�
LM captures the proof complexity of various tautologies with respect to the proof
system M �

Abusing notation� we let LM �n� denotes the maximum LM �T � over all tau
tologies T of length n� The following simple theorem provides a basic connection
between proof complexity �with respect to any propositional proof system� and
computational complexity �i�e�� the NPvscoNP Question��

B��� PROOF COMPLEXITY ���

Theorem B��� � ��� There exists a propositional proof system M such that LM
is polynomial if and only if NP � coNP�
In particular� a propositional proof systemM such that LM is polynomial coincides
with a NPproof system �as in De�nition �� � for the set of propositional tautologies�
which is a coNPcomplete set�

The longterm goal of Proof Complexity is to establish superpolynomial lower
bounds on the length of proofs in any propositional proof system �and thus establish
NP �� coNP�� It is natural to start this formidable project by considering �rst sim
ple �and thus weaker� proof systems� and then move on to more and more complex
ones� Moreover� various natural proof systems� capturing basic �restricted� types
and �primitives� of reasoning as well as natural tautologies� suggest themselves as
objects for this study� In the rest of this section we focus on such restricted proof
systems� Di�erent branches of Mathematics such as logic� algebra and geometry
provide di�erent such systems� often implicitly� A typical system would have a
set of axioms� and a set of deduction rules� A proof would proceed to derive the
desired tautology in a sequence of steps� each producing a formula �often called a
line of the proof�� which is either an axiom� or follows from previous formulae via
one of the deduction rules�

Regarding these proof systems� we make two observations� First� proofs in
these systems can be easily veri�ed by an algorithm �and thus they �t the general
framework of De�nition B����� Second� these proof systems perfectly �t our dag
model� The inputs will be labeled by the axioms� the internal vertices by deduction
rules� which in turn �infer� a formula for that vertex from the formulae at the
vertices pointing to it��

For various proof systems '� we turn to study the proof length L��T � of tau
tologies T in proof system '� The �rst observation� revealing a major di�erence
between proof complexity and circuit complexity� is that the trivial counting ar
gument fails� The reason is that� while the number of functions on n bits is ��

n

�
there are at most �n tautologies of this length� Thus� in proof complexity� even the
existence of a hard tautology� not necessarily an explicit one� would be of interest
�and� in particular� if established for all propositional proof systems then it would
yield NP �� coNP�� �Note that here we refer to hard instances of of a problem
and not to hard problems�� Anyhow� as we shall see� most known lowerbounds �in
restricted proof systems� apply to very natural �let alone explicit� tautologies�

Conventions� There is an equivalent and somewhat more convenient view of
�simple� proof systems� namely as �simple� refutation systems� First� recalling
that �SAT is NPcomplete� note that every �negation of a� tautology can be written
as a conjunction of clauses� with each clause being a disjunction of only � literals
�variables or their negation�� Now� if we take these clauses as axioms� and derive
�using the rules of the system� a contradiction �e�g�� the negation of an axiom� or
better yet the empty clause�� then we have proved the tautology �since we have

�General proof systems as in De�nition B��� can also be adapted to this formalism� by con�
sidering a deduction rule that corresponds to a single step of the machine M � However� the
deduction rules considered below are even simpler� and more importantly they are natural�

��	 APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

proved that its negation yields a contradiction�� Proof complexity often takes the
refutation viewpoint� and often exchanges �tautology� with its negation ��contra
diction���

The rest of this section is divided to three parts� referring to logical� algebraic
and geometric proof systems� We will brie�y describe important representative
and basic results in each of these domains� and refer the reader to �� � for further
detail �and� in particular� to adequate references��

B���� Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulae� and
the di�erences will be in the structural limits imposed on these formulae�

The most basic proof system� called Frege system� puts no restriction on the
formulae manipulated by the proof� It has one derivation rule� called the cut rule�
A � C�B � �C * A � B �adding any other sound rule� like modus ponens� has
little e�ect on the length of proofs in this system�� Frege systems are basic in the
sense that they �in several variants� are the most common in Logic� and in that
polynomial length proofs in these systems naturally corresponds to �polynomial
time reasoning� about feasible objects�

The major open problem in proof complexity is to �nd any tautology �as usual�
we mean a family of tautologies� that has no polynomiallong proof in the Frege
system�

Since lowerbounds for Frege are hard� we turn to subsystems of Frege which
are interesting and natural� The most widely studied system is Resolution� whose
importance stems from its use by most propositional �as well as �rst order� auto
mated theorem provers� The formulae allowed in Resolution refutations are simply
clauses �disjunctions�� and so the derivation cut rule simpli�es to the �resolution
rule�� A � x�B � �x * A �B� for clauses A�B and variable x�

An example of a tautology that is easy for Frege and hard for Resolution� is the
pigeonhole principle� PHPmn � expressing the fact that there is no onetoone mapping
of m pigeons to n � m holes�

Theorem B��	 LFrege�PHP
n��
n � � nO�� but LResolution�PHP

n��
n � � ��n�

B���� Algebraic Proof Systems

Just as a natural contradiction in the Boolean setting is an unsatis�able collection
of clauses� a natural contradiction in the algebraic setting is a system of polyno
mials without a common root� Moreover� CNF formulae can be easily converted
to a system of polynomials� one per clause� over any �eld� One often adds the
polynomials x�i � xi which ensure Boolean values�

A natural proof system �related to Hilbert
s Nullstellensatz� and to compu
tations of Grobner bases in symbolic algebra programs� is Polynomial Calculus�
abbreviated PC� The lines in this system are polynomials �represented explicitly
by all coe�cients�� and it has two deduction rules� For any two polynomials g� h�
the rule g� h * g$h� and for any polynomial g and variable xi� the rule g� xi * xig�

B��� PROOF COMPLEXITY ���

Strong length lowerbounds �obtained from degree lowerbounds� are known for
this system� For example� encoding the pigeonhole principle as a contradicting set
of constant degree polynomials� we have

Theorem B��� For every n and every m � n� LPC�PHP
m
n � � �n��� over every

�eld�

B���� Geometric Proof Systems

Yet another natural way to represent contradictions is by a set of regions in space
that have empty intersection� Again� we care mainly about discrete �say� Boolean�
domains� and a wide source of interesting contradictions are Integer Programs from
Combinatorial Optimization� Here� the constraints are �a�ne� linear inequalities
with integer coe�cients �so the regions are subsets of the Boolean cube carved out
by halfspaces�� The most basic system is called Cutting Planes �CP�� Its lines are
linear inequalities with integer coe�cients� Its deduction rules are �the obvious�
addition of inequalities� and the �less obvious� division of the coe�cients by a
constant �and rounding� taking advantage of the integrality of the solution space��

While PHPmn is easy in this system� exponential lowerbounds are known for
other tautologies� We mention that they are obtained from the monotone circuit
lower bounds of Section B�����

��� APPENDIX B� ON THE QUEST FOR LOWER BOUNDS

Appendix C

On the Foundations of

Modern Cryptography

It is possible to build a cabin with no foundations�
but not a lasting building�

Eng� Isidor Goldreich ���	����� �

Summary� Cryptography is concerned with the construction of com
puting systems that withstand any abuse� Such a system is constructed
so to maintain a desired functionality� even under malicious attempts
aimed at making it deviate from this functionality�

This appendix is aimed at presenting the foundations of cryptography�
which are the paradigms� approaches and techniques used to concep
tualize� de�ne and provide solutions to natural security concerns� It
presents some of these conceptual tools as well as some of the funda
mental results obtained using them� The emphasis is on the clari�cation
of fundamental concepts� and on demonstrating the feasibility of solving
several central cryptographic problems� The presentation assumes ba
sic knowledge of algorithms� probability theory and complexity theory�
but nothing beyond this�

The appendix augments the treatment of oneway functions� pseudoran
dom generators and zeroknowledge proofs� given in Sections ���� ���
and ���� respectively� �These augmentations are important for cryp
tography� but are less central to the main context of this book and
thus were omitted from the main text�� Using these basic tools� the
appendix provides a treatment of basic cryptographic applications such
as Encryption� Signatures� and General Cryptographic Protocols�

���

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

C�� Introduction and Preliminaries

The vast expansion and rigorous treatment of cryptography is one of the major
achievements of theoretical computer science� In particular� concepts such as com
putational indistinguishability� pseudorandomness and zeroknowledge interactive
proofs were introduced� classical notions such as secure encryption and unforge
able signatures were placed on sound grounds� and new �unexpected� directions
and connections were uncovered� Indeed� modern cryptography is strongly linked
to complexity theory �in contrast to �classical� cryptography which is strongly
related to information theory��

C���� Modern cryptography

Modern cryptography is concerned with the construction of information systems
that are robust against malicious attempts to make these systems deviate from
their prescribed functionality� The prescribed functionality may be the private and
authenticated communication of information through the Internet� the holding of
incoercible and secret electronic voting� or conducting any �faultresilient� multi
party computation� Indeed� the scope of modern cryptography is very broad� and
it stands in contrast to �classical� cryptography �which has focused on the single
problem of enabling secret communication over insecure communication media��

The design of cryptographic systems is a very di�cult task� One cannot rely
on intuitions regarding the �typical� state of the environment in which the system
operates� For sure� the adversary attacking the system will try to manipulate the
environment into �untypical� states� Nor can one be content with countermeasures
designed to withstand speci�c attacks� since the adversary �which acts after the
design of the system is completed� will try to attack the schemes in ways that
are di�erent from the ones the designer had envisioned� Although the validity of
the foregoing assertions seems selfevident� still some people hope that in practice
ignoring these tautologies will not result in actual damage� Experience shows that
these hopes rarely come true� cryptographic schemes based on makebelieve are
broken� typically sooner than later�

In view of the foregoing� we believe that it makes little sense to make assump
tions regarding the speci�c strategy that the adversary may use� The only assump
tions that can be justi�ed refer to the computational abilities of the adversary�
Furthermore� the design of cryptographic systems has to be based on �rm foun�
dations� whereas adhoc approaches and heuristics are a very dangerous way to
go� A heuristic may make sense when the designer has a very good idea regard
ing the environment in which a scheme is to operate� yet a cryptographic scheme
has to operate in a maliciously selected environment that typically transcends the
designer
s view�

This appendix is aimed at presenting the foundations for cryptography� The
foundations of cryptography are the paradigms� approaches and techniques used to
conceptualize� de�ne and provide solutions to natural �security concerns�� Solving
a cryptographic problem �or addressing a security concern� is a twostage process
consisting of a de�nitional stage and a constructive stage� First� in the de�nitional

C��� INTRODUCTION AND PRELIMINARIES ��

stage� the functionality underlying the natural concern is to be identi�ed� and an
adequate cryptographic problem has to be de�ned� Trying to list all undesired sit
uations is infeasible and prone to error� Instead� one should de�ne the functionality
in terms of operation in an imaginary ideal model� and require a candidate solution
to emulate this operation in the real� clearly de�ned� model �which speci�es the
adversary
s abilities�� Once the de�nitional stage is completed� one proceeds to
construct a system that satis�es the de�nition� Such a construction may use some
simpler tools� and its security is proved relying on the features of these tools� In
practice� of course� such a scheme may need to satisfy also some speci�c e�ciency
requirements�

This appendix focuses on several archetypical cryptographic problems �e�g�� en
cryption and signature schemes� and on several central tools �e�g�� computational
di�culty� pseudorandomness� and zeroknowledge proofs�� For each of these prob
lems �resp�� tools�� we start by presenting the natural concern underlying it �resp��
its intuitive objective�� then de�ne the problem �resp�� tool�� and �nally demon
strate that the problem may be solved �resp�� the tool can be constructed�� In the
latter step� our focus is on demonstrating the feasibility of solving the problem� not
on providing a practical solution�

Computational Di�culty

The aforementioned tools and applications �e�g�� secure encryption� exist only if
some sort of computational hardness exists� Speci�cally� all these problems and
tools require �either explicitly or implicitly� the ability to generate instances of
hard problems� Such ability is captured in the de�nition of oneway functions�
Thus� oneway functions are the very minimum needed for doing most natural
tasks of cryptography� �It turns out� as we shall see� that this necessary condition
is �essentially� su�cient� that is� the existence of oneway functions �or augmenta
tions and extensions of this assumption� su�ces for doing most of cryptography��

Our current state of understanding of e�cient computation does not allow us
to prove that oneway functions exist� In particular� if P � NP then no oneway
functions exist� Furthermore� the existence of oneway functions implies that NP
is not contained in BPP � P �not even �on the average��� Thus� proving that one
way functions exist is not easier than proving that P �� NP � in fact� the former
task seems signi�cantly harder than the latter� Hence� we have no choice �at this
stage of history� but to assume that oneway functions exist� As justi�cation to
this assumption we can only o�er the combined beliefs of hundreds �or thousands�
of researchers� Furthermore� these beliefs concern a simply stated assumption� and
their validity follows from several widely believed conjectures which are central to
various �elds �e�g�� the conjectured intractability of integer factorization is central
to computational number theory��

Since we need assumptions anyhow� why not just assume what we want �i�e��
the existence of a solution to some natural cryptographic problem�! Well� �rst we
need to know what we want� as stated above� we must �rst clarify what exactly
we want� that is� go through the typically complex de�nitional stage� But once
this stage is completed� can we just assume that the de�nition derived can be met!

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Not really� once a de�nition is derived� how can we know that it can at all be met!
The way to demonstrate that a de�nition is viable �and that the corresponding
intuitive security concern can be satis�ed at all� is to construct a solution based
on a better understood assumption �i�e�� one that is more common and widely
believed�� For example� looking at the de�nition of zeroknowledge proofs� it is
not apriori clear that such proofs exist at all �in a nontrivial sense�� The non
triviality of the notion was �rst demonstrated by presenting a zeroknowledge proof
system for statements� regarding Quadratic Residuosity� which are believed to be
hard to verify �without extra information�� Furthermore� contrary to prior beliefs�
it was later shown that the existence of oneway functions implies that any NP
statement can be proved in zeroknowledge� Thus� facts that were not known
at all to hold �and even believed to be false�� were shown to hold by reduction to
widely believed assumptions �without which most of modern cryptography collapses
anyhow�� To summarize� not all assumptions are equal� and so reducing a complex�
new and doubtful assumption to a widelybelieved and simple �or even merely
simpler� assumption is of great value� Furthermore� reducing the solution of a new
task to the assumed security of a wellknown primitive typically means providing
a construction that� using the known primitive� solves the new task� This means
that we do not only know �or assume� that the new task is solvable but we also
have a solution based on a primitive that� being wellknown� typically has several
candidate implementations�

C���� Preliminaries

Modern Cryptography� as surveyed here� is concerned with the construction of
e�cient schemes for which it is infeasible to violate the security feature� Thus�
we need a notion of e�cient computations as well as a notion of infeasible ones�
The computations of the legitimate users of the scheme ought be e�cient� whereas
violating the security features �by an adversary� ought to be infeasible� We stress
that we do not identify feasible computations with e�cient ones� but rather view
the former notion as potentially more liberal� Let us elaborate�

C������ E�cient Computations and Infeasible ones

E�cient computations are commonly modeled by computations that are polynomial
time in the security parameter� The polynomial bounding the runningtime of the
legitimate user
s strategy is �xed and typically explicit �and small�� Indeed� our
aim is to have a notion of e�ciency that is as strict as possible �or� equivalently�
develop strategies that are as e�cient as possible�� Here �i�e�� when referring to
the complexity of the legitimate users� we are in the same situation as in any algo
rithmic setting� Things are di�erent when referring to our assumptions regarding
the computational resources of the adversary� where we refer to the notion of fea
sible� which we wish to be as wide as possible� A common approach is to postulate
that feasible computations are polynomialtime too� but here the polynomial is not
a�priori speci�ed �and is to be thought of as arbitrarily large�� In other words� the

C��� INTRODUCTION AND PRELIMINARIES ���

adversary is restricted to the class of polynomialtime computations and anything
beyond this is considered to be infeasible�

Although many de�nitions explicitly refer to the convention of associating fea
sible computations with polynomialtime ones� this convention is inessential to
any of the results known in the area� In all cases� a more general statement can
be made by referring to a general notion of feasibility� which should be preserved
under standard algorithmic composition� yielding theories that refer to adversaries
of runningtime bounded by any speci�c superpolynomial function �or class of
functions�� Still� for sake of concreteness and clarity� we shall use the former con
vention in our formal de�nitions �but our motivational discussions will refer to an
unspeci�ed notion of feasibility that covers at least e�cient computations��

C������ Randomized �or probabilistic� Computations

Randomized computations play a central role in cryptography� One fundamental
reason for this fact is that randomness is essential for the existence �or rather the
generation� of secrets� Thus� we must allow the legitimate users to employ random
ized computations� and certainly �since we consider randomization as feasible� we
must consider also adversaries that employ randomized computations� This brings
up the issue of success probability� typically� we require that legitimate users suc
ceed �in ful�lling their legitimate goals� with probability � �or negligibly close to
this�� whereas adversaries succeed �in violating the security features� with negli
gible probability� Thus� the notion of a negligible probability plays an important
role in our exposition�

One requirement of the de�nition of negligible probability is to provide a robust
notion of rareness� A rare event should occur rarely even if we repeat the experiment
for a feasible number of times� That is� in case we consider any polynomialtime
computation to be feasible� a function � � N N is called negligible if � � �� �
��n��pn� � 	�	� for every polynomial p and su�ciently big n �i�e�� � is negligible
if for every positive polynomial p� the function ���� is upperbounded by ��p������

We will also refer to the notion of noticeable probability� Here the requirement
is that events that occur with noticeable probability� will occur almost surely �i�e��
except with negligible probability� if we repeat the experiment for a polynomial
number of times� Thus� a function � �NN is called noticeable if for some positive
polynomial p� the function ���� is lowerbounded by ��p�����

C���� Prerequisites� Organization� and Beyond

Our aim is to present the basic concepts� techniques and results in cryptography�
and our emphasis is on the clari�cation of fundamental concepts and the relation
ship among them� This is done in a way independent of the particularities of some
popular number theoretic examples� These particular examples played a central
role in the development of the �eld and still o�er the most practical implementa
tions of all cryptographic primitives� but this does not mean that the presentation
has to be linked to them� On the contrary� we believe that concepts are best clari
�ed when presented at an abstract level� decoupled from speci�c implementations�

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

The appendix is organized in two main parts� corresponding to the Basic Tools
of Cryptography and the Basic Applications of Cryptography�

The basic tools� The most basic tool is computational di�culty� which in turn
is captured by the notion of oneway functions� Another notion of key im
portance is that of computational indistinguishability� underlying the theory
of pseudorandomness as well as much of the rest of cryptography� Pseu
dorandom generators and functions are important tools that are frequently
used� So are zeroknowledge proofs� playing a key role in the design of secure
cryptographic protocols and in their study�

The basic applications� Encryption and signature schemes are the most basic
applications of Cryptography� Their main utility is in providing secret and
reliable communication over insecure communication media� Loosely speak
ing� encryption schemes are used for ensuring the secrecy �or privacy� of the
actual information being communicated� whereas signature schemes are used
to ensure its reliability �or authenticity�� Another basic topic is the construc
tion of secure cryptographic protocols for the implementation of arbitrary
functionalities�

The presentation of the basic tools in Sections C���C�� augments �and sometimes
repeats parts of� Sections ���� ���� and ��� �which provide a basic treatment of one
way functions� pseudorandom generators� and zeroknowledge proofs� respectively��
Sections C� �C��� provide a overview of the basic applications� that is� Encryption
Schemes� Signature Schemes� and General Cryptographic Protocols�

Suggestions for further reading� This appendix is a brief summary of the
author
s twovolume work on the subject ���� ���� Furthermore� the �rst part �i�e��
Basic Tools� corresponds to ����� whereas the second part �i�e�� Basic Applications�
corresponds to ����� Needless to say� the interested reader is referred to these
textbooks for further detail �and� in particular� for missing references��

Practice� The aim of this appendix is to introduce the reader to the theoretical
foundations of cryptography� As argued� such foundations are necessary for sound
practice of cryptography� Indeed� practice requires more than theoretical founda
tions� whereas the current text makes no attempt to provide anything beyond the
latter� However� given a sound foundation� one can learn and evaluate various
practical suggestions that appear elsewhere� On the other hand� lack of sound
foundations results in inability to critically evaluate practical suggestions� which in
turn leads to unsound decisions� Nothing could be more harmful to the design of
schemes that need to withstand adversarial attacks than misconceptions about such
attacks�

C�� Computational Di�culty

Modern Cryptography is concerned with the construction of systems that are easy
to operate �properly� but hard to foil� Thus� a complexity gap �between the ease of

C�	� COMPUTATIONAL DIFFICULTY ���

proper usage and the di�culty of deviating from the prescribed functionality� lies
at the heart of Modern Cryptography� However� gaps as required for Modern Cryp
tography are not known to exist� they are only widely believed to exist� Indeed�
almost all of Modern Cryptography rises or falls with the question of whether one
way functions exist� We mention that the existence of oneway functions implies
that NP contains search problems that are hard to solve on the average� which
in turn implies that NP is not contained in BPP �i�e�� a worstcase complexity
conjecture��

Loosely speaking� oneway functions are functions that are easy to evaluate but
hard �on the average� to invert� Such functions can be thought of as an e�cient
way of generating �puzzles� that are infeasible to solve �i�e�� the puzzle is a random
image of the function and a solution is a corresponding preimage�� Furthermore�
the person generating the puzzle knows a solution to it and can e�ciently verify
the validity of �possibly other� solutions to the puzzle� Thus� oneway functions
have� by de�nition� a clear cryptographic �avor �i�e�� they manifest a gap between
the ease of one task and the di�culty of a related one��

C���� One	Way Functions

We start by reproducing the basic de�nition of oneway functions as appearing in
Section ������ where this de�nition is further discussed�

De�nition C�� �oneway functions� De�nition ��� restated�� A function f �f	� �g�
f	� �g� is called one�way if the following two conditions hold�

�� easy to evaluate� There exist a polynomial�time algorithm A such that A�x� �
f�x� for every x � f	� �g��

� hard to invert� For every probabilistic polynomial�time algorithm A�� every
polynomial p� and all su�ciently large n�

Pr�A��f�x�� �n� � f���f�x��� �
�

p�n�

where the probability is taken uniformly over x�f	� �gn and all the internal
coin tosses of algorithm A��

Some of the most popular candidates for oneway functions are based on the con
jectured intractability of computational problems in number theory� One such
conjecture is that it is infeasible to factor large integers� Consequently� the func
tion that takes as input two �equal length� primes and outputs their product is
widely believed to be a oneway function� Furthermore� factoring such a com
posite is infeasible if and only if squaring modulo such a composite is a oneway
function �see ������� For certain composites �i�e�� products of two primes that are
both congruent to � mod ��� the latter function induces a permutation over the
set of quadratic residues modulo this composite� A related permutation� which is
widely believed to be oneway� is the RSA function ������ x � xe mod N � where
N � P � Q is a composite as above� e is relatively prime to �P � �� � �Q� ��� and

��	APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

x � f	� ���� N � �g� The latter examples �as well as other popular suggestions� are
better captured by the following formulation of a collection of oneway functions
�which is indeed related to De�nition C����

De�nition C�� �collections of oneway functions�� A collection of functions� ffi �
Di f	� �g�gi�I � is called one�way if there exists three probabilistic polynomial�
time algorithms� I� D and F � such that the following two conditions hold�

�� easy to sample and compute� On input �n� the output of �the index selection�
algorithm I is distributed over the set I � f	� �gn �i�e�� is an n�bit long index
of some function�� On input �an index of a function� i � I� the output of
�the domain sampling� algorithm D is distributed over the set Di �i�e�� over
the domain of the function�� On input i � I and x � Di� �the evaluation�
algorithm F always outputs fi�x��

� hard to invert�� For every probabilistic polynomial�time algorithm� A�� every
positive polynomial p���� and all su�ciently large n	s

Pr
�
A��i� fi�x���f��i �fi�x��

�
�

�

p�n�

where i � I��n� and x � D�i��

The collection is said to be a collection of permutations if each of the fi	s is a
permutation over the corresponding Di� and D�i� is almost uniformly distributed
in Di�

For example� in case of the RSA� one considers fN�e � DN�e DN�e that satis�es
fN�e�x� � xe mod N � where DN�e � f	� ���� N � �g� De�nition C�� is also a good
starting point for the de�nition of a trapdoor permutation�� Loosely speaking�
the latter is a collection of oneway permutations augmented with an e�cient al
gorithm that allows for inverting the permutation when given adequate auxiliary
information �called a trapdoor��

De�nition C�� �trapdoor permutations�� A collection of permutations as in Def�
inition C� is called a trapdoor permutation if there are two auxiliary probabilistic
polynomial�time algorithms I � and F�� such that
�� the distribution I ���n� ranges
over pairs of strings so that the �rst string is distributed as in I��n�� and
� for
every �i� t� in the range of I ���n� and every x � Di it holds that F

���t� fi�x�� � x�
�That is� t is a trapdoor that allows to invert fi��

For example� in case of the RSA� fN�e can be inverted by raising to the power d
�moduloN � P �Q�� where d is the multiplicative inverse of emodulo �P�����Q����
Indeed� in this case� the trapdoor information is �N� d��

�Note that this condition refers to the distributions I��n� and D�i�� which are merely required
to range over I � f�� �gn and Di� respectively� �Typically� the distributions I��n� and D�i� are
�almost� uniform over I � f�� �gn and Di� respectively��

�Indeed� a more adequate term would be a collection of trapdoor permutations� but the shorter
�and less precise� term is the commonly used one�

C��� PSEUDORANDOMNESS ���

Strong versus weak one�way functions �summary of Section ������ Re
call that the foregoing de�nitions require that any feasible algorithm succeeds in
inverting the function with negligible probability� A weaker notion only requires
that any feasible algorithm fails to invert the function with noticeable probability�
It turns out that the existence of such weak oneway functions implies the exis
tence of strong oneway functions �as in De�nition C���� The construction itself
is straightforward� but analyzing it transcends the analogous information theoretic
setting� Instead� the security �i�e�� hardness of inverting� the resulting construc
tion is proved via a so called �reducibility argument� that transforms the violation
of the conclusion �i�e�� the security of the resulting construction� into a violation
of the hypothesis �i�e�� the security of the given primitive�� This strategy �i�e�� a
�reducibility argument�� is used to prove all conditional results in the area�

C���� Hard	Core Predicates

Recall that saying that a function f is oneway implies that given y �in the range
of f� it is infeasible to �nd a preimage of y under f � This does not mean that it
is infeasible to �nd out partial information about the preimage�s� of y under f �
Speci�cally it may be easy to retrieve half of the bits of the preimage �e�g�� given

a oneway function f consider the function g de�ned by g�x� r�
def
� �f�x�� r�� for

every jxj� jrj�� As will become clear in subsequent sections� hiding partial infor
mation �about the function
s preimage� plays an important role in more advanced
constructs �e�g�� secure encryption�� This partial information can be considered
as a �hard core� of the di�culty of inverting f � Loosely speaking� a polynomial�
time computable �Boolean� predicate b� is called a hard�core of a function f if no
feasible algorithm� given f�x�� can guess b�x� with success probability that is non
negligibly better than one half� The actual de�nition is presented in Section �����
�i�e�� De�nition �����

Note that if b is a hardcore of a �� function f that is polynomialtime com
putable then f is a oneway function� On the other hand� recall that Theorem ���
asserts that for any one�way function f � the inner�product mod of x and r is a
hard�core of f ��x� r� � �f�x�� r��

C�� Pseudorandomness

In practice �pseudorandom� sequences are often used instead of truly random se
quences� The underlying belief is that if an �e�cient� application performs well
when using a truly random sequence then it will perform essentially as well when
using a �pseudorandom� sequence� However� this belief is not supported by ad
hoc notions of �pseudorandomness� such as passing the statistical tests in ���	� or
having large �linearcomplexity� �as de�ned in ��	���� Needless to say� using such
�pseudorandom� sequences �instead of truly random sequences� in a cryptographic
application is very dangerous�

In contrast� truly random sequences can be safely replaced by pseudorandom
sequences provided that pseudorandom distributions are de�ned as being compu

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

tationally indistinguishable from the uniform distribution� Such a de�nition makes
the soundness of this replacement an easy corollary� Loosely speaking� pseudoran
dom generators are then de�ned as e�cient procedures for creating long pseudo
random sequences based on few truly random bits �i�e�� a short random seed�� The
relevance of such constructs to cryptography is in providing legitimate users that
share short random seeds a method for creating long sequences that look random
to any feasible adversary �which does not know the said seed��

C���� Computational Indistinguishability

A central notion in Modern Cryptography is that of �e�ective similarity� �a�k�a
computational indistinguishability� cf� ��	�� ������ The underlying thesis is that
we do not care whether or not objects are equal� all we care about is whether or
not a di�erence between the objects can be observed by a feasible computation� In
case the answer is negative� the two objects are equivalent as far as any practical
application is concerned� Indeed� in the sequel we will often interchange such
�computationally indistinguishable� objects� In this section we recall the de�nition
of computational indistinguishability �presented in Section ������� and consider two
variants�

De�nition C�	 �computational indistinguishability� De�nition ��� revised��� We
say that X � fXngn�N and Y � fYngn�N are computationally indistinguishable
if for every probabilistic polynomial�time algorithm D every polynomial p� and all
su�ciently large n�

jPr�D��n� Xn����� Pr�D��n� Yn����j � �

p�n�

where the probabilities are taken over the relevant distribution �i�e�� either Xn or
Yn� and over the internal coin tosses of algorithm D�

See further discussion in Section ������ In particular� recall that for �e�ciently con
structible� distributions� indistinguishability by a single sample �as de�ned above�
implies indistinguishability by multiple samples �as in De�nition �� ��

Extension to ensembles indexed by strings� Here we refer to a natural ex
tension of De�nition C��� Rather than referring to ensembles indexed by N � we refer
to ensembles indexed by an arbitrary set S � f	� �g�� Typically� for an ensemble
fZ�g��S � it holds that Z� ranges over strings of length that is polynomiallyrelated
to the length of ��

�For sake of streamlining De�nition C�� with De�nition C�� �and unlike in De�nition
���� here
the distinguisher is explicitly given the index n of the distribution that it inspects� �In typical
applications� the di�erence between De�nitions
�� and C�� is immaterial because the index n is
easily determined from any sample of the corresponding distributions��

C��� PSEUDORANDOMNESS ���

De�nition C�� We say that fX�g��S and fY�g��S are computationally indistin�
guishable if for every probabilistic polynomial�time algorithm D every polynomial
p� and all su�ciently long � � S�

jPr�D���X������ Pr�D��� Y�����j � �

p�j�j�
where the probabilities are taken over the relevant distribution
i�e�� either X� or
Y�� and over the internal coin tosses of algorithm D�

Note that De�nition C�� is obtained as a special case by setting S � f�n � n � Ng�

A non�uniform version� A nonuniform de�nition of computational indistin
guishability can be derived from De�nition C� by arti�cially augmenting the in
dices of the distributions� That is� fX�g��S and fY�g��S are computationally
indistinguishable in a non�uniform sense if for every polynomial p the ensembles
fX �

��g���S� and fY �
��g���S� are computationally indistinguishable �as in De�ni

tion C� �� where S� � f�� � � � S
 � � f	� �gpj�j�g and X �
� � X� �resp��

Y �
� � Y�� for every � � f	� �gpj�j�� An equivalent �alternative� de�nition can be

obtained by following the formulation that underlies De�nition �����

C���� Pseudorandom Generators

Loosely speaking� a pseudorandom generator is an e�cient �deterministic� algorithm
that on input a short random seed outputs a �typically much� longer sequence that
is computationally indistinguishable from a uniformly chosen sequence�

De�nition C�� �pseudorandom generator� De�nition ��� restated�� Let
 �NN

satisfy
�n� � n� for all n � N � A pseudorandom generator� with stretch function
�
is a �deterministic� polynomial�time algorithm G satisfying the following�

�� For every s � f	� �g�� it holds that jG�s�j �
�jsj��
� fG�Un�gn�N and fU�n�gn�N are computationally indistinguishable� where

Um denotes the uniform distribution over f	� �gm�
Indeed� the probability ensemble fG�Un�gn�N is called pseudorandom�

We stress that pseudorandom sequences can replace truly random sequences not
only in �standard� algorithmic applications but also in cryptographic ones� That
is� any cryptographic application that is secure when the legitimate parties use
truly random sequences� is also secure when the legitimate parties use pseudo
random sequences� The bene�t in such a substitution �of random sequences by
pseudorandom ones� is that the latter sequences can be e�ciently generated using
much less true randomness� Furthermore� in an interactive setting� it is possible to
eliminate all random steps from the online execution of a program� by replacing
them with the generation of pseudorandom bits based on a random seed selected
and �xed o�line �or at setup time�� This allows interactive parties to generate

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

a long sequence of common secret bits based on a shared random seed which may
have been selected at a much earlier time�

Various cryptographic applications of pseudorandom generators will be pre
sented in the sequel� but let us �rst recall that pseudorandom generators exist if
and only if one�way functions exist �see Theorem ������ For further treatment of
pseudorandom generators� the reader is referred to Section ����

C���� Pseudorandom Functions

Pseudorandom generators provide a way to e�ciently generate long pseudorandom
sequences from short random seeds� Pseudorandom functions� introduced and con
structed by Goldreich� Goldwasser� and Micali ����� are even more powerful� they
provide e�cient direct access to the bits of a huge pseudorandom sequence �which
is not feasible to scan bitbybit�� More precisely� a pseudorandom function is an ef
�cient �deterministic� algorithm that given an nbit seed� s� and an nbit argument�
x� returns an nbit string� denoted fs�x�� such that it is infeasible to distinguish
the values of fs� for a uniformly chosen s � f	� �gn� from the values of a truly
random function F � f	� �gn f	� �gn� That is� the �feasible� testing procedure
is given oracle access to the function �but not its explicit description�� and cannot
distinguish the case it is given oracle access to a pseudorandom function from the
case it is given oracle access to a truly random function�

De�nition C� �pseudorandom functions�� A pseudorandom function �ensemble��
is a collection of functions ffs �f	� �gjsjf	� �gjsjgs�f���g� that satis�es the follow�
ing two conditions�

�� �e�cient evaluation� There exists an e�cient �deterministic� algorithm that
given a seed� s� and an argument� x � f	� �gjsj� returns fs�x��

� �pseudorandomness� For every probabilistic polynomial�time oracle machine�
M � every positive polynomial p and all su�ciently large n	s��Pr�MfUn ��n� � ��� Pr�MFn��n� � ��

�� � �

p�n�

where Fn denotes a uniformly selected function mapping f	� �gn to f	� �gn�
One key feature of the foregoing de�nition is that pseudorandom functions can
be generated and shared by merely generating and sharing their seed� that is�
a �random looking� function fs � f	� �gn f	� �gn� is determined by its nbit
seed s� Parties wishing to share a �random looking� function fs �determining �n
many values�� merely need to generate and share among themselves the nbit seed
s� �For example� one party may randomly select the seed s� and communicate
it� via a secure channel� to all other parties�� Sharing a pseudorandom function
allows parties to determine �by themselves and without any further communication�
randomlooking values depending on their current views of the environment �which
need not be known a priori�� To appreciate the potential of this tool� one should
realize that sharing a pseudorandom function is essentially as good as being able

C��� PSEUDORANDOMNESS ��

to agree� on the �y� on the association of random values to �online� given values�
where the latter are taken from a huge set of possible values� We stress that
this agreement is achieved without communication and synchronization� Whenever
some party needs to associate a random value to a given value� v � f	� �gn� it will
associate to v the �same� random value rv � f	� �gn �by setting rv � fs�v�� where
fs is a pseudorandom function agreed upon beforehand�� Concrete applications of
�this power of� pseudorandom functions appear in Sections C� �� and C�����

Theorem C�� �How to construct pseudorandom functions�� Pseudorandom func�
tions can be constructed using any pseudorandom generator�

Proof Sketch�� Let G be a pseudorandom generator that stretches its seed by a
factor of two �i�e��
�n� � �n�� and let G��s� �resp�� G��s�� denote the �rst �resp��
last� jsj bits in G�s�� De�ne

G�jsj��������s�
def
� G�jsj�� � �G�� �G���s�� � � ���

We consider the function ensemble ffs �f	� �gjsjf	� �gjsjgs�f���g� � where fs�x� def
�

Gx�s�� Pictorially� the function fs is de�ned by nstep walks down a full binary
tree of depth n having labels at the vertices� The root of the tree� hereafter referred
to as the level 	 vertex of the tree� is labeled by the string s� If an internal vertex is
labeled r then its left child is labeled G��r� whereas its right child is labeled G��r��
The value of fs�x� is the string residing in the leaf reachable from the root by a
path corresponding to the string x�

We claim that this function ensemble ffsgs�f���g� is pseudorandom� The proof

uses the hybrid technique �cf� Section ������� The ith hybrid� H i
n� is a function

ensemble consisting of ��
i�n functions f	� �gn f	� �gn� each determined by �i

random nbit strings� denoted s � hsi�f���gi � The value of such function hs at
x � ��� where j�j � i� is de�ned to equal G��s�� �Pictorially� the function hs
is de�ned by placing the strings in s in the corresponding vertices of level i� and
labeling vertices of lower levels using the very rule used in the de�nition of fs��
The extreme hybrids correspond to our indistinguishability claim �i�e�� H�

n � fUn
and Hn

n is a truly random function�� and neighboring hybrids can be related to our
indistinguishability hypothesis �speci�cally� to the indistinguishability of G�Un�
and U�n under multiple samples��

Variants� Useful variants �and generalizations� of the notion of pseudorandom
functions include Boolean pseudorandom functions that are de�ned over all strings
�i�e�� fs � f	� �g� f	� �g� and pseudorandom functions that are de�ned for other
domains and ranges �i�e�� fs � f	� �gdjsj� f	� �grjsj�� for arbitrary polynomially
bounded functions d� r � N N�� Various transformations between these variants
are known �cf� ���� Sec� ������ and ���� Apdx� C�����

�See details in �
�� Sec� �������

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Applications and a generic methodology� Pseudorandom functions are a
very useful cryptographic tool� One may �rst design a cryptographic scheme assum
ing that the legitimate users have blackbox access to a random function� and next
implement the random function using a pseudorandom function� The usefulness of
this tool stems from the fact that having �blackbox� access to a random function
gives the legitimate parties a potential advantage over the adversary �which does
not have free access to this function��� The security of the resulting implementation
�which uses a pseudorandom function� is established in two steps� First one proves
the security of an idealized scheme that uses a truly random function� and next
one argues that the actual implementation �which uses a pseudorandom function�
is secure �as otherwise one obtains an e�cient oracle machine that distinguishes a
pseudorandom function from a truly random one��

C�� Zero�Knowledge

Zeroknowledge proofs provide a powerful tool for the design of cryptographic pro
tocols as well as a good benchmark for the study of various issues regarding such
protocols� Loosely speaking� zeroknowledge proofs are proofs that yield nothing
beyond the validity of the assertion� That is� a veri�er obtaining such a proof
only gains conviction in the validity of the assertion �as if it was told by a trusted
party that the assertion holds�� This is formulated by saying that anything that is
feasibly computable from a zeroknowledge proof is also feasibly computable from
the �valid� assertion itself� The latter formulation follows the simulation paradigm�
which is discussed next� while reproducing part of the discussion in x������� and
making additional comments regarding the use of this paradigm in cryptography�

C���� The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary �gains nothing substantial� by deviating
from the prescribed behavior of an honest user� Our approach is that the adversary
gains nothing if whatever it can obtain by unrestricted adversarial behavior can also
be obtained within essentially the same computational e�ort by a benign behavior�
The de�nition of the �benign behavior� captures what we want to achieve in terms
of security� and is speci�c to the security concern to be addressed� For example�
in the context of zeroknowledge the unrestricted adversarial behavior is captured
by an arbitrary probabilistic polynomialtime veri�er strategy� whereas the benign
behavior is any computation that is based �only� on the assertion itself �while
assuming that the latter is valid�� Other examples are discussed in Sections C� ��
and C�����

A notable property of the simulation paradigm� as well as of the entire de�ni
tional approach surveyed here� is that this approach is overly liberal with respect to

�The aforementioned methodology is sound provided that the adversary does not get the
description of the pseudorandom function �i�e�� the seed� in use� but has only �possibly limited�
oracle access to it� This is di�erent from the so�called Random Oracle Methodology�

C��� ZEROKNOWLEDGE ���

its view of the abilities of the adversary as well as to what might constitute a gain
for the adversary� Thus� the approach may be considered overly cautious� because
it prohibits also �nonharmful� gains of some �far fetched� adversaries� We warn
against this impression� Firstly� there is nothing more dangerous in cryptography
than to consider �reasonable� adversaries �a notion which is almost a contradiction
in terms�� typically� the adversaries will try exactly what the system designer has
discarded as �far fetched�� Secondly� it seems impossible to come up with de�
nitions of security that distinguish �breaking the scheme in a harmful way� from
�breaking it in a nonharmful way�� what is harmful is applicationdependent�
whereas a good de�nition of security ought to be applicationindependent �as oth
erwise using the scheme in any new application will require a full reevaluation of
its security�� Furthermore� even with respect to a speci�c application� it is typically
very hard to classify the set of �harmful breakings��

C���� The Actual De�nition

In x������� zeroknowledge was de�ned as a property of some prover strategies
�within the context of interactive proof systems� as de�ned in Section ������� More
generally� the term may apply to any interactive machine� regardless of its goal� A
strategy A is zero�knowledge on �inputs from� the set S if� for every feasible strategy
B�� there exists a feasible computation C� such that the following two probability
ensembles are computationally indistinguishable �according to De�nition C� ��

�� f�A�B���x�gx�S def
� the output of B� after interacting with A on common

input x � S� and

�� fC��x�gx�S def
� the output of C� on input x � S�

Recall that the �rst ensemble represents an actual execution of an interactive pro
tocol� whereas the second ensemble represents the computation of a standalone
procedure �called the �simulator��� which does not interact with anybody�

The foregoing de�nition does not account for auxiliary information that an
adversary B� may have prior to entering the interaction� Accounting for such
auxiliary information is essential for using zeroknowledge proofs as subprotocols
inside larger protocols� This is taken care of by a stricter notion called auxiliary�
input zero�knowledge� which was not presented in Section ����

De�nition C�� �zeroknowledge� revisited�� A strategy A is auxiliary�input zero�
knowledge on inputs from S if� for every probabilistic polynomial�time strategy B�

and every polynomial p� there exists a probabilistic polynomial�time algorithm C�

such that the following two probability ensembles are computationally indistinguish�
able�

�� f�A�B��z���x�gx�S � z�f���gp�jxj� def
� the output of B� when having auxiliary�

input z and interacting with A on common input x � S� and

� fC��x� z�gx�S � z�f���gp�jxj� def
� the output of C� on inputs x � S and z �

f	� �gpjxj��

���APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Almost all known zeroknowledge proofs are in fact auxiliaryinput zeroknowledge�
As hinted� auxiliary�input zero�knowledge is preserved under sequential composi�
tion� A simulator for the multiplesession protocol can be constructed by itera
tively invoking the singlesession simulator that refers to the residual strategy of
the adversarial veri�er in the given session �while feeding this simulator with the
transcript of previous sessions�� Indeed� the residual singlesession veri�er gets the
transcript of the previous sessions as part of its auxiliary input �i�e�� z in De�ni
tion C���� For details� see ���� Sec� �������

C���� A construction and a generic application

A question avoided so far is whether zeroknowledge proofs exist at all� Clearly�
every set in P �or rather in BPP� has a �trivial� zeroknowledge proof �in which the
veri�er determines membership by itself�� however� what we seek is zeroknowledge
proofs for statements that the veri�er cannot decide by itself�

Assuming the existence of �commitment schemes� �cf� xC�������� which in
turn exist if oneway functions exist ����� ����� there exist �auxiliaryinput� zero�
knowledge proofs of membership in any NP�set� These zeroknowledge proofs� ab
stractly depicted in Construction ���	� have the following important property� the
prescribed prover strategy is e�cient� provided it is given as auxiliaryinput an
NPwitness to the assertion �to be proved��� Indeed� by using the standard Karp
reductions to �Colorability� the protocol of Construction ���	 can be used for
obtaining zeroknowledge proofs for any set in NP � Implementing the abstract
boxes �referred to in Construction ���	� by commitment schemes� we get�

Theorem C��� �On the applicability of zeroknowledge proofs�� If �nonuniformly
hard� one�way functions exist then every set S � NP has an auxiliary�input zero�
knowledge interactive proof� Furthermore� the prescribed prover strategy can be im�
plemented in probabilistic polynomial�time� provided it is given as auxiliary�input
an NP�witness for membership of the common input in S�

Theorem C��	 makes zeroknowledge a very powerful tool in the design of crypto
graphic schemes and protocols �see xC�������� We comment that the intractability
assumption used in Theorem C��	 seems essential�

C�	���� Commitment schemes

Loosely speaking� commitment schemes are twostage �twoparty� protocols allow
ing for one party to commit itself �at the �rst stage� to a value while keeping the
value secret� In a �second� latter stage� the commitment is �opened� and it is
guaranteed that the �opening� can yield only a single value� which is determined

�The auxiliary�input given to the prescribed prover �in order to allow for an e�cient imple�
mentation of its strategy� is not to be confused with the auxiliary�input that is given to malicious
veri�ers �in the de�nition of auxiliary�input zero�knowledge�� The former is typically an NP�
witness for the common input� which is available to the user that invokes the prover strategy �cf�
the generic application discussed in xC�������� In contrast� the auxiliary�input that is given to
malicious veri�ers models arbitrary partial information that may be available to the adversary�

C��� ZEROKNOWLEDGE ���

during the committing phase� Thus� the ��rst stage of the� commitment scheme is
both binding and hiding�

A simple �unidirectional communication� commitment scheme can be con
structed based on any oneway �� function f �with a corresponding hardcore
b�� To commit to a bit 	� the sender uniformly selects s � f	� �gn� and sends the
pair �f�s�� b�s� 	 	�� Note that this is both binding and hiding� An alternative
construction� which can be based on any oneway function� uses a pseudorandom
generator G that stretches its seed by a factor of three �cf� Theorem ������ A
commitment is established� via twoway communication� as follows �cf� ������� The
receiver selects uniformly r � f	� �g�n and sends it to the sender� which selects
uniformly s � f	� �gn and sends r 	 G�s� if it wishes to commit to the value one
and G�s� if it wishes to commit to zero� To see that this is binding� observe that
there are at most ��n �bad� values r that satisfy G�s�� � r 	G�s�� for some pair
�s�� s��� and with overwhelmingly high probability the receiver will not pick one of
these bad values� The hiding property follows by the pseudorandomness of G�

C�	���� E�ciency considerations

The number of rounds in a protocol is commonly considered the most important
e�ciency criterion �or complexity measure�� and typically one desires to have it be
a constant� However� in order to obtain negligible soundness error� the protocol
of Construction ���	 has to be invoked for a nonconstant number of times �and
the analysis of the resulting protocol relies on the preservation of zeroknowledge
under sequential composition�� At �rst glance� it seems that one can derive a
constantround zeroknowledge proof system �of negligible soundness error� by per
forming these invocations in parallel �rather than sequentially�� Unfortunately� it
is not clear that the resulting interactive proof is zeroknowledge� Still� under
standard intractability assumptions �e�g�� the intractability of factoring�� constant
round zeroknowledge proofs �of negligible soundness error� do exist for every set
in NP �

C�	���� A generic application

As mentioned� Theorem C��	 makes zeroknowledge a very powerful tool in the
design of cryptographic schemes and protocols� This wide applicability is due to
two important aspects regarding Theorem C��	� Firstly� Theorem C��	 provides a
zeroknowledge proof for every NPset� and secondly the prescribed prover can be
implemented in probabilistic polynomialtime when given an adequate NPwitness�
We now turn to a typical application of zeroknowledge proofs�

In a typical cryptographic setting� a user U has a secret and is supposed to
take some action based on its secret� The question is how can other users verify
that U indeed took the correct action �as determined by U
s secret and publicly
known information�� Indeed� if U discloses its secret then anybody can verify that
U took the correct action� However� U does not want to reveal its secret� Using
zeroknowledge proofs we can satisfy both con�icting requirements �i�e�� having
other users verify that U took the correct action without violating U
s interest

 		APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

in not revealing its secret�� That is� U can prove in zeroknowledge that it took
the correct action� Note that U
s claim to having taken the correct action is an
NPassertion �since U
s legal action is determined as a polynomialtime function
of its secret and the public information�� and that U has an NPwitness to its
validity �i�e�� the secret is an NPwitness to the claim that the action �ts the public
information�� Thus� by Theorem C��	� it is possible for U to e�ciently prove the
correctness of its action without yielding anything about its secret� Consequently�
it is fair to ask U to prove �in zeroknowledge� that it behaves properly� and so
to force U to behave properly� Indeed� �forcing proper behavior� is the canonical
application of zeroknowledge proofs �see xC��������

This paradigm �i�e�� �forcing proper behavior� via zeroknowledge proofs�� which
in turn is based on Theorem C��	� has been utilized in numerous di�erent settings�
Indeed� this paradigm is the basis for the wide applicability of zeroknowledge
protocols in Cryptography�

C���� Variants and Issues

In this section we consider numerous variants on the notion of zeroknowledge and
the underlying model of interactive proofs� These include blackbox simulation and
other variants of zeroknowledge �cf� Section C�������� as well as notions such as
proofs of knowledge� noninteractive zeroknowledge� and witness indistinguishable
proofs �cf� Section C��������

Before starting� we call the reader
s attention to the notion of computational
soundness and to the related notion of argument systems� discussed in x��������
We mention that argument systems may be more e�cient than interactive proofs
as well as provide stronger zeroknowledge guarantees� Speci�cally� almostperfect
zeroknowledge arguments for NP can be constructed based on any oneway func
tion ��� �� where almostperfect zeroknowledge means that the simulator
s output
is statistically close to the veri�er
s view in the real interaction �see a discussion
in xC�������� Note that stronger security guarantee for the prover �as provided by
almostperfect zeroknowledge� comes at the cost of weaker security guarantee for
the veri�er �as provided by computational soundness�� The answer to the question
of whether or not this tradeo� is worthwhile seems to be application dependent�
and one should also take into account the availability and complexity of the corre
sponding protocols�

C�	�	�� De�nitional variations

We consider several de�nitional issues regarding the notion of zeroknowledge �as
de�ned in De�nition C����

Universal and black�box simulation� A strengthening of De�nition C�� is
obtained by requiring the existence of a universal simulator� denoted C� that can
simulate �the interactive gain of� any veri�er strategy B� when given the veri�er
s
program an auxiliaryinput� that is� in terms of De�nition C��� one should replace
C��x� z� by C�x� z� hB�i�� where hB�i denotes the description of the program of B�

C��� ZEROKNOWLEDGE 	�

�which may depend on x and on z�� That is� we e�ectively restrict the simulation
by requiring that it be a uniform �feasible� function of the veri�er
s program �rather
than arbitrarily depend on it�� This restriction is very natural� because it seems
hard to envision an alternative way of establishing the zeroknowledge property of
a given protocol� Taking another step� one may argue that since it seems infea
sible to reverseengineer programs� the simulator may as well just use the veri�er
strategy as an oracle �or as a �blackbox��� This reasoning gave rise to the notion
of black�box simulation� which was introduced and advocated in ���� and further
studied in numerous works� The belief was that inherent limitations regarding
blackbox simulation represent inherent limitations of zeroknowledge itself� For
example� it was believed that the fact that the parallel version of the interactive
proof of Construction ���	 cannot be simulated in a blackbox manner �unless NP
is contained in BPP� implies that this version is not zeroknowledge �as per De�ni
tion C�� itself�� However� the �underlying� belief that any zeroknowledge protocol
can be simulated in a blackbox manner was refuted recently by Barak �����

Honest veri�er versus general cheating veri�er� De�nition C�� refers to
all feasible veri�er strategies� which is most natural in the cryptographic setting
because zeroknowledge is supposed to capture the robustness of the prover un
der any feasible �i�e�� adversarial� attempt to gain something by interacting with
it� A weaker and still interesting notion of zeroknowledge refers to what can be
gained by an �honest veri�er� �or rather a semihonest veri�er�	 that interacts
with the prover as directed� with the exception that it may maintain �and out
put� a record of the entire interaction �i�e�� even if directed to erase all records of
the interaction�� Although such a weaker notion is not satisfactory for standard
cryptographic applications� it yields a fascinating notion from a conceptual as well
as a complexitytheoretic point of view� Furthermore� every proof system that is
zero�knowledge with respect to the honest�veri�er can be transformed into a stan�
dard zero�knowledge proof �without using intractability assumptions and in case
of �publiccoin� proofs this is done without signi�cantly increasing the prover
s
computational e�ort� see �������

Statistical versus Computational Zero�Knowledge� Recall that De�nition C��
postulates that for every probability ensemble of one type �i�e�� representing the
veri�er
s output after interaction with the prover� there exists a �similar� ensemble
of a second type �i�e�� representing the simulator
s output�� One key parameter is
the interpretation of �similarity�� Three interpretations� yielding di�erent notions
of zeroknowledge� have been commonly considered in the literature�

�The term �honest veri�er� is more appealing when considering an alternative �equivalent�
formulation of De�nition C�	� In the alternative de�nition �see �
�� Sec� ���������� the simulator
is �only� required to generate the veri�er�s view of the real interaction� where the veri�er�s view
includes its �common and auxiliary� inputs� the outcome of its coin tosses� and all messages it
has received�

 	�APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

�� Perfect Zero�Knowledge requires that the two probability ensembles be iden
tically distributed�

�� Statistical �or Almost�Perfect� Zero�Knowledge requires that these probability
ensembles be statistically close �i�e�� the variation distance between them is
negligible��

�� Computational �or rather general� Zero�Knowledge requires that these proba
bility ensembles be computationally indistinguishable�

Indeed� Computational ZeroKnowledge is the most liberal notion� and is the notion
considered in De�nition C��� We note that the class of problems having statistical
zeroknowledge proofs contains several problems that are considered intractable�
The interested reader is referred to ������

Strict versus expected probabilistic polynomial�time� The notion of prob
abilistic polynomialtime �which is mentioned both with respect to the veri�er and
the simulator�� has been given two interpretations�

�� Strict probabilistic polynomial�time� That is� there exist a �polynomial in the
length of the input� bound on the number of steps in each possible run of the
machine� regardless of the outcome of its coin tosses�

�� Expected probabilistic polynomial�time� The standard approach is to look at
the runningtime as a random variable and bound its expectation �by a poly
nomial in the length of the input�� However� as observed by Levin �see
x�	�������� this de�nitional approach is quite problematic and an alternative
treatment of the aforementioned random variable is preferable�

Consequently� the notion of expected polynomialtime raises a variety of conceptual
and technical problems� For that reason� whenever possible� one should prefer
the more robust �and restricted� notion of strict �probabilistic� polynomialtime�
Thus� with the exception of constant�round zeroknowledge protocols� whenever we
talked of a probabilistic polynomialtime veri�er �resp�� simulator� we mean one
in the strict sense� In contrast� with a couple of exceptions �e�g�� ������ all results
regarding constant�round zeroknowledge protocols refer to a strict polynomial
time veri�er and an expected polynomialtime simulator� which is indeed a small
cheat�

C�	�	�� Related notions� POK� NIZK� and WI

We brie�y discuss the notions of proofs of knowledge �POK�� noninteractive zero
knowledge �NIZK�� and witness indistinguishable proofs �WI��

�The actual de�nition of Perfect Zero�Knowledge allows the simulator to fail �while outputting
a special symbol� with negligible probability� and the output distribution of the simulator is
conditioned on its not failing�

C��� ZEROKNOWLEDGE 	�

Proofs of Knowledge� Loosely speaking� proofs of knowledge �cf� ��	 �� are
interactive proofs in which the prover asserts �knowledge� of some object �e�g��
a �coloring of a graph�� and not merely its existence �e�g�� the existence of a �
coloring of the graph� which in turn is equivalent to the assertion that the graph
is �colorable�� See further discussion in Section ������ We mention that �proofs of
knowledge�� and in particular zeroknowledge �proofs of knowledge�� have many
applications to the design of cryptographic schemes and cryptographic protocols�
One famous application of zeroknowledge proofs of knowledge is to the construc
tion of identi�cation schemes �e�g�� the FiatShamir scheme��

Non�Interactive Zero�Knowledge� The model of noninteractive zeroknowledge
proof systems consists of three entities� a prover� a veri�er and a uniformly selected
reference string �which can be thought of as being selected by a trusted third party��
Both the veri�er and prover can read the reference string �as well as the common in
put�� and each can toss additional coins� The interaction consists of a single message
sent from the prover to the veri�er� who is then left with the �nal decision �whether
or not to accept the common input�� The �basic� zeroknowledge requirement refers
to a simulator that outputs pairs that should be computationally indistinguishable
from the distribution �of pairs consisting of a uniformly selected reference string and
a random prover message� seen in the real model�� Noninteractive zeroknowledge
proof systems have numerous applications �e�g�� to the construction of publickey
encryption and signature schemes� where the reference string may be incorporated
in the publickey�� Several di�erent de�nitions of noninteractive zeroknowledge
proofs were considered in the literature �see ���� Sec� ���	� and ���� Sec� ���������
Constructing noninteractive zeroknowledge proofs seems more di�cult than con
structing interactive zeroknowledge proofs� Still� based on standard intractability
assumptions �e�g�� intractability of factoring�� it is known how to construct a non
interactive zeroknowledge proof for any NPset�

Witness Indistinguishability� The notion of witness indistinguishability was
suggested in ���� as a meaningful relaxation of zeroknowledge� Loosely speaking�
for any NPrelation R� a proof �or argument� system for the corresponding NPset
is called witness indistinguishable if no feasible veri�er may distinguish the case in
which the prover uses one NPwitness to x �i�e�� w� such that �x�w�� � R� from
the case in which the prover is using a di�erent NPwitness to the same input x
�i�e�� w� such that �x�w�� � R�� Clearly� any zeroknowledge protocol is witness
indistinguishable� but the converse does not necessarily hold� Furthermore� it seems
that witness indistinguishable protocols are easier to construct than zeroknowledge
ones� Another advantage of witness indistinguishable protocols is that they are
closed under arbitrary concurrent composition� whereas �in general� zeroknowledge
protocols are not closed even under parallel composition� Witness indistinguishable
protocols turned out to be an important tool in the construction of more complex

	Note that the veri�er does not e�ect the distribution seen in the real model� and so the basic
de�nition of zero�knowledge does not refer to it� The veri�er �or rather a process of adaptively
selecting assertions to be proved� is referred to in the adaptive variants of the de�nition�

 	�APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

protocols� We refer� in particular� to the technique of ���� for constructing zero
knowledge proofs �and arguments� based on witness indistinguishable proofs �resp��
arguments��

C�� Encryption Schemes

The problem of providing secret communication over insecure media is the tra
ditional and most basic problem of cryptography� The setting of this problem
consists of two parties communicating through a channel that is possibly tapped
by an adversary� The parties wish to exchange information with each other� but
keep the �wiretapper� as ignorant as possible regarding the contents of this infor
mation� The canonical solution to this problem is obtained by the use of encryption
schemes� Loosely speaking� an encryption scheme is a protocol allowing these par
ties to communicate secretly with each other� Typically� the encryption scheme
consists of a pair of algorithms� One algorithm� called encryption� is applied by the
sender �i�e�� the party sending a message�� while the other algorithm� called decryp�
tion� is applied by the receiver� Hence� in order to send a message� the sender �rst
applies the encryption algorithm to the message� and sends the result� called the
ciphertext� over the channel� Upon receiving a ciphertext� the other party �i�e�� the
receiver� applies the decryption algorithm to it� and retrieves the original message
�called the plaintext��

In order for the foregoing scheme to provide secret communication� the receiver
must know something that is not known to the wiretapper� �Otherwise� the wire
tapper can decrypt the ciphertext exactly as done by the receiver�� This extra
knowledge may take the form of the decryption algorithm itself� or some parame
ters and�or auxiliary inputs used by the decryption algorithm� We call this extra
knowledge the decryption�key� Note that� without loss of generality� we may assume
that the decryption algorithm is known to the wiretapper� and that the decryp
tion algorithm operates on two inputs� a ciphertext and a decryptionkey� �This
description implicitly presupposes the existence of an e�cient algorithm for gener
ating �random� keys�� We stress that the existence of a decryptionkey� not known
to the wiretapper� is merely a necessary condition for secret communication�

Evaluating the �security� of an encryption scheme is a very tricky business�
A preliminary task is to understand what is �security� �i�e�� to properly de�ne
what is meant by this intuitive term�� Two approaches to de�ning security are
known� The �rst ��classical�� approach� introduced by Shannon ������ is informa�
tion theoretic� It is concerned with the �information� about the plaintext that is
�present� in the ciphertext� Loosely speaking� if the ciphertext contains informa
tion about the plaintext then the encryption scheme is considered insecure� It has
been shown that such high �i�e�� �perfect�� level of security can be achieved only
if the key in use is at least as long as the total amount of information sent via the
encryption scheme ������ This fact �i�e�� that the key has to be longer than the
information exchanged using it� is indeed a drastic limitation on the applicability
of such �perfectlysecure� encryption schemes�

The second ��modern�� approach� followed in the current text� is based on

C��� ENCRYPTION SCHEMES 	

computational complexity� This approach is based on the thesis that it does not
matter whether the ciphertext contains information about the plaintext� but rather
whether this information can be e�ciently extracted� In other words� instead of
asking whether it is possible for the wiretapper to extract speci�c information� we
ask whether it is feasible for the wiretapper to extract this information� It turns
out that the new �i�e�� �computational complexity�� approach can o�er security
even when the key is much shorter than the total length of the messages sent via
the encryption scheme�

The computational complexity approach enables the introduction of concepts
and primitives that cannot exist under the information theoretic approach� A typ
ical example is the concept of public�key encryption schemes� introduced by Di�e
and Hellman ���� �with the most popular candidate suggested by Rivest� Shamir�
and Adleman ������� Recall that in the foregoing discussion we concentrated on
the decryption algorithm and its key� It can be shown that the encryption algo
rithm must also get� in addition to the message� an auxiliary input that depends on
the decryptionkey� This auxiliary input is called the encryption�key� Traditional
encryption schemes� and in particular all the encryption schemes used in the millen
nia until the ���	
s� operate with an encryptionkey that equals the decryptionkey�
Hence� the wiretapper in these schemes must be ignorant of the encryptionkey�
and consequently the key distribution problem arises� that is� how can two par
ties wishing to communicate over an insecure channel agree on a secret encryp
tion�decryption key� �The traditional solution is to exchange the key through an
alternative channel that is secure� though much more expensive to use�� The com
putational complexity approach allows the introduction of encryption schemes in
which the encryptionkey may be given to the wiretapper without compromising
the security of the scheme� Clearly� the decryptionkey in such schemes is di�erent
from the encryptionkey� and furthermore it is infeasible to obtain the decryption
key from the encryptionkey� Such encryption schemes� called public�key schemes�
have the advantage of trivially resolving the key distribution problem �because the
encryptionkey can be publicized�� That is� once some Party X generates a pair of
keys and publicizes the encryptionkey� any party can send encrypted messages to
Party X such that Party X can retrieve the actual information �i�e�� the plaintext��
whereas nobody else can learn anything about the plaintext�

In contrast to publickey schemes� traditional encryption schemes in which the
encryptionkey equals the descriptionkey are called private�key schemes� because
in these schemes the encryptionkey must be kept secret �rather than be public
as in publickey encryption schemes�� We note that a full speci�cation of either
schemes requires the speci�cation of the way in which keys are generated� that is� a
�randomized� keygeneration algorithm that� given a security parameter� produces
a �random� pair of corresponding encryption�decryption keys �which are identical
in case of privatekey schemes��

Thus� both privatekey and publickey encryption schemes consist of three ef
�cient algorithms� a key generation algorithm denoted G� an encryption algorithm
denoted E� and a decryption algorithm denoted D� For every pair of encryption
and decryption keys �e� d� generated by G� and for every plaintext x� it holds that

 	�APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Dd�Ee�x�� � x� where Ee�x�
def
� E�e� x� and Dd�y�

def
� D�d� y�� The di�erence be

tween the two types of encryption schemes is re�ected in the de�nition of security�
the security of a publickey encryption scheme should hold also when the adversary
is given the encryptionkey� whereas this is not required for a privatekey encryp
tion scheme� In the following de�nitional treatment we focus on the publickey case
�and the privatekey case can be obtained by omitting the encryptionkey from the
sequence of inputs given to the adversary��

C���� De�nitions

A good disguise should not reveal the person�s height�

Sha� Goldwasser and Silvio Micali� ����

For simplicity� we �rst consider the encryption of a single message �which� for fur
ther simplicity� is assumed to be of length that equals the security parameter� n����

As implied by the foregoing discussion� a publickey encryption scheme is said to
be secure if it is infeasible to gain any information about the plaintext by looking
at the ciphertext �and the encryptionkey�� That is� whatever information about
the plaintext one may compute from the ciphertext and some apriori informa
tion� can be essentially computed as e�ciently from the apriori information alone�
This fundamental de�nition of security� called semantic security� was introduced
by Goldwasser and Micali ��	���

De�nition C��� �semantic security�� A publickey encryption scheme �G�E�D�
is semantically secure if for every probabilistic polynomial�time algorithm� A� there
exists a probabilistic polynomial�time algorithm B such that for every two functions
f� h � f	� �g�f	� �g� and all probability ensembles fXngn�N that satisfy jh�x�j �
poly�jxj� and Xn � f	� �gn� it holds that

Pr�A�e� Ee�x�� h�x���f�x�� � Pr�B��n� h�x���f�x�� $ ��n�

where the plaintext x is distributed according to Xn� the encryption�key e is dis�
tributed according to G��n�� and � is a negligible function�

That is� it is feasible to predict f�x� from h�x� as successfully as it is to predict
f�x� from h�x� and �e� Ee�x��� which means that nothing is gained by obtaining
�e� Ee�x��� Note that no computational restrictions are made regarding the func
tions h and f � We stress that the foregoing de�nition �as well as the next one�
refers to publickey encryption schemes� and in the case of privatekey schemes
algorithm A is not given the encryptionkey e�

The following technical interpretation of security states that it is infeasible to
distinguish the encryptions of any two plaintexts �of the same length�� As we shall
see� this de�nition �also originating in ��	��� is equivalent to De�nition C��� �and
meeting it requires a probabilistic encryption algorithm��

�
In the case of public�key schemes no generality is lost by these simplifying assumptions� but in
the case of private�key schemes one should consider the encryption of polynomially�many messages
�as we do at the end of this section��

C��� ENCRYPTION SCHEMES 	�

De�nition C��� �indistinguishability of encryptions�� A publickey encryption
scheme �G�E�D� has indistinguishable encryptions if for every probabilistic polynomial�
time algorithm� A� and all sequences of triples� �xn� yn� zn�n�N� where jxnj � jynj �
n and jznj � poly�n��

jPr�A�e� Ee�xn�� zn����� Pr�A�e� Ee�yn�� zn����j � ��n�

Again� e is distributed according to G��n�� and � is a negligible function�

In particular� zn may equal �xn� yn�� Thus� it is infeasible to distinguish the en
cryptions of any two �xed messages �such as the allzero message and the allones
message�� Thus� the following motto is adequate too�

A good disguise should not allow a mother to distinguish her own children�

Sha� Goldwasser and Silvio Micali� ����

De�nition C��� is more appealing in most settings where encryption is considered
the end goal� De�nition C��� is used to establish the security of candidate en
cryption schemes as well as to analyze their application as modules inside larger
cryptographic protocols� Thus� the equivalence of these de�nitions is of major
importance�

Equivalence of De�nitions C��� and C��� � proof ideas� Intuitively� in
distinguishability of encryptions �i�e�� of the encryptions of xn and yn� is a special
case of semantic security� speci�cally� it corresponds to the case that Xn is uni
form over fxn� yng� the function f indicates one of the plaintexts and h does not
distinguish them �i�e�� f�w� � � i� w � xn and h�xn� � h�yn� � zn� where zn is
as in De�nition C����� The other direction is proved by considering the algorithm
B that� on input ��n� v� where v � h�x�� generates �e� d� � G��n� and outputs
A�e� Ee��

n�� v�� where A is as in De�nition C���� Indistinguishability of encryptions
is used to prove that B performs as well as A �i�e�� for every h� f and fXngn�N�
it holds that Pr�B��n� h�Xn���f�Xn�� � Pr�A�e� Ee��

n�� h�Xn���f�Xn�� approx
imately equals Pr�A�e� Ee�Xn�� h�Xn���f�Xn����

Probabilistic Encryption� A secure public�key encryption scheme must em
ploy a probabilistic �i�e�� randomized� encryption algorithm� Otherwise� given the
encryptionkey as �additional� input� it is easy to distinguish the encryption of
the allzero message from the encryption of the allones message��� This explains
the association of the robust security de�nitions and the method of probabilistic
encryption� an association that goes back to the title of the pioneering work of
Goldwasser and Micali ��	���

��The same holds for �stateless� private�key encryption schemes� when considering the security
of encrypting several messages �rather than a single message as done above�� For example� if one
uses a deterministic encryption algorithm then the adversary can distinguish two encryptions of
the same message from the encryptions of a pair of di�erent messages�

 	�APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Further discussion� We stress that �the equivalent� De�nitions C��� and C���
go way beyond saying that it is infeasible to recover the plaintext from the ci
phertext� The latter statement is indeed a minimal requirement from a secure
encryption scheme� but is far from being a su�cient requirement� Typically� en
cryption schemes are used in applications where even obtaining partial information
on the plaintext may endanger the security of the application� When designing an
applicationindependent encryption scheme� we do not know which partial informa
tion endangers the application and which does not� Furthermore� even if one wants
to design an encryption scheme tailored to a speci�c application� it is rare �to say
the least� that one has a precise characterization of all possible partial information
that endanger this application� Thus� we need to require that it is infeasible to
obtain any information about the plaintext from the ciphertext� Furthermore� in
most applications the plaintext may not be uniformly distributed and some apriori
information regarding it may be available to the adversary� We require that the
secrecy of all partial information is preserved also in such a case� That is� even
in presence of apriori information on the plaintext� it is infeasible to obtain any
�new� information about the plaintext from the ciphertext �beyond what is feasible
to obtain from the apriori information on the plaintext�� The de�nition of seman
tic security postulates all of this� The equivalent de�nition of indistinguishability
of encryptions is useful in demonstrating the security of candidate constructions as
well as for arguing about their e�ect as part of larger protocols�

Security of multiple messages� De�nitions C��� and C��� refer to the se
curity of an encryption scheme that is used to encrypt a single plaintext �per a
generated key�� Since the plaintext may be longer than the key��� these de�ni
tions are already nontrivial� and an encryption scheme satisfying them �even in
the privatekey model� implies the existence of oneway functions� Still� in many
cases� it is desirable to encrypt many plaintexts using the same encryptionkey�
Loosely speaking� an encryption scheme is secure in the multiplemessages setting
if conditions as in De�nition C��� �resp�� De�nition C���� hold when polynomially
many plaintexts are encrypted using the same encryptionkey �cf� ���� Sec� �������
In the public�key model� security in the singlemessage setting implies security in
the multiplemessages setting� We stress that this is not necessarily true for the
private�key model�

C���� Constructions

It is common practice to use �pseudorandom generators� as a basis for private
key encryption schemes� We stress that this is a very dangerous practice when
the �pseudorandom generator� is easy to predict �such as the �linear congruential
generator��� However� this common practice becomes sound provided one uses

��Recall that for sake of simplicity we have considered only messages of length n� but the
general de�nitions refer to messages of arbitrary �polynomial in n� length� We comment that� in
the general form of De�nition C���� one should provide the length of the message as an auxiliary
input to both algorithms �A and B��

C��� ENCRYPTION SCHEMES 	�

pseudorandom generators �as de�ned in Section C������ An alternative and more
�exible construction follows�

Private�Key Encryption Scheme based on Pseudorandom Functions�
We present a simple construction that uses pseudorandom functions as de�ned in
Section C����� The key generation algorithm consists of selecting a seed� denoted
s� for a �pseudorandom� function� denoted fs� To encrypt a message x � f	� �gn
�using key s�� the encryption algorithm uniformly selects a string r � f	� �gn and
produces the ciphertext �r� x 	 fs�r��� where 	 denotes the exclusiveor of bit
strings� To decrypt the ciphertext �r� y� �using key s�� the decryption algorithm
just computes y 	 fs�r�� The proof of security of this encryption scheme consists
of two steps �suggested as a general methodology in Section C������

�� Proving that an idealized version of the scheme� in which one uses a uniformly
selected function F �f	� �gnf	� �gn� rather than the pseudorandom function
fs� is secure�

�� Concluding that the real scheme is secure �because� otherwise one could dis
tinguish a pseudorandom function from a truly random one��

Note that we could have gotten rid of the randomization �in the encryption process�
if we had allowed the encryption algorithm to be history dependent �e�g�� use a
counter in the role of r�� This can be done if all parties that use the same key
�for encryption� coordinate their encryption actions �by maintaining a joint state
�e�g�� counter��� Indeed� when using a privatekey encryption scheme� a common
situation is that the same key is only used for communication between two speci�c
parties� which update a joint counter during their communication� Furthermore�
if the encryption scheme is used for fifo communication between the parties and
both parties can reliably maintain the counter value� then there is no need �for
the sender� to send the counter value� �The resulting scheme is related to �stream
ciphers� which are commonly used in practice��

We comment that the use of a counter �or any other state� in the encryption
process is not reasonable in the case of publickey encryption schemes� because it
is incompatible with the canonical usage of such schemes �i�e�� allowing all parties
to send encrypted messages to the �owner of the encryptionkey� without engaging
in any type of further coordination or communication�� Furthermore �unlike in the
case of privatekey schemes�� probabilistic encryption is essential for a secure public
key encryption scheme even in the case of encrypting a single message� Following
Goldwasser and Micali ��	��� we now demonstrate the use of probabilistic encryption
in the construction of publickey encryption schemes�

Public�Key Encryption Scheme based on Trapdoor Permutations� We
present two constructions that employ a collection of trapdoor permutations� as
de�ned in De�nition C��� Let ffi � Di Digi be such a collection� and let b
be a corresponding hardcore predicate� The key generation algorithm consists of
selecting a permutation fi along with a corresponding trapdoor t� and outputting

 �	APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

�i� t� as the keypair� To encrypt a �single� bit 	 �using the encryptionkey i��
the encryption algorithm uniformly selects r � Di� and produces the ciphertext
�fi�r�� 	 	 b�r��� To decrypt the ciphertext �y� � �using the decryptionkey t�� the
decryption algorithm computes 	 b�f��i �y�� �using the trapdoor t of fi�� Clearly�
�	 	 b�r�� 	 b�f��i �fi�r��� � 	� Indistinguishability of encryptions is implied by
the hypothesis that b is a hardcore of fi� We comment that this scheme is quite
wasteful in bandwidth� nevertheless� the paradigm underlying its construction �i�e��
applying the trapdoor permutation to a randomized version of the plaintext rather
than to the actual plaintext� is valuable in practice�

A more e�cient construction of a publickey encryption scheme� which uses
the same keygeneration algorithm� follows� To encrypt an
bit long string x
�using the encryptionkey i�� the encryption algorithm uniformly selects r � Di�
computes y � b�r� � b�fi�r�� � � � b�f ���i �r�� and produces the ciphertext �f �i �r�� x 	
y�� To decrypt the ciphertext �u� v� �using the decryptionkey t�� the decryption
algorithm �rst recovers r � f��i �u� �using the trapdoor t of fi�� and then obtains
v	b�r��b�fi�r�� � � � b�f ���i �r��� Note the similarity to the BlumMicali Construction
�depicted in Eq� ������� and the fact that the proof of the pseudorandomness of
Eq� ����� can be extended to establish the computational indistinguishability of
�b�r� � � � b�f ���i �r��� f �i �r�� and �r�� f �i �r��� for random and independent r � Di and
r� � f	� �g�� Indistinguishability of encryptions follows� and thus the second scheme
is secure� We mention that� assuming the intractability of factoring integers� this
scheme has a concrete implementation with e�ciency comparable to that of RSA�

C���� Beyond Eavesdropping Security

Our treatment so far has referred only to a �passive� attack in which the adversary
merely eavesdrops the line over which ciphertexts are sent� Stronger types of at
tacks �i�e�� �active� ones�� culminating in the socalled Chosen Ciphertext Attack�
may be possible in various applications� Speci�cally� in some settings it is feasible
for the adversary to make the sender encrypt a message of the adversary
s choice�
and in some settings the adversary may even make the receiver decrypt a ciphertext
of the adversary
s choice� This gives rise to chosen plaintext attacks and to chosen
ciphertext attacks� respectively� which are not covered by the security de�nitions
considered in Sections C� �� and C� ��� Here we brie�y discuss such �active� at
tacks� focusing on chosen ciphertext attacks �of the strongest type known as �a
posteriori� or �CCA����

Loosely speaking� in a chosen ciphertext attack� the adversary may obtain the
decryptions of ciphertexts of its choice� and is deemed successful if it learns some
thing regarding the plaintext that corresponds to some di�erent ciphertext �see ����
Sec� ������� That is� the adversary is given oracle access to the decryption function
corresponding to the decryptionkey in use �and� in the case of privatekey schemes�
it is also given oracle access to the corresponding encryption function�� The adver
sary is allowed to query the decryption oracle on any ciphertext except for the �test
ciphertext� �i�e�� the very ciphertext for which it tries to learn something about
the corresponding plaintext�� It may also make queries that do not correspond to
legitimate ciphertexts� and the answer will be accordingly �i�e�� a special %failure

C��� SIGNATURES AND MESSAGE AUTHENTICATION ��

symbol�� Furthermore� the adversary may e�ect the selection of the test cipher
text �by specifying a distribution from which the corresponding plaintext is to be
drawn��

Privatekey and publickey encryption schemes secure against chosen ciphertext
attacks can be constructed under �almost� the same assumptions that su�ce for
the construction of the corresponding passive schemes� Speci�cally�

Theorem C��� Assuming the existence of oneway functions� there exist private
key encryption schemes that are secure against chosen ciphertext attack�

Theorem C��	 Assuming the existence of enhanced�� trapdoor permutations�
there exist publickey encryption schemes that are secure against chosen cipher�
text attack�

Both theorems are proved by constructing encryption schemes in which the adver
sary
s gain from a chosen ciphertext attack is eliminated by making it infeasible
�for the adversary� to obtain any useful knowledge via such an attack� In the case
of privatekey schemes �i�e�� Theorem C����� this is achieved by making it infeasible
�for the adversary� to produce legitimate ciphertexts �other than those explicitly
given to it� in response to its request to encrypt plaintexts of its choice�� This�
in turn� is achieved by augmenting the ciphertext with an �authentication tag�
that is hard to generate without knowledge of the encryptionkey� that is� we use a
messageauthentication scheme �as de�ned in Section C���� In the case of public
key schemes �i�e�� Theorem C����� the adversary can certainly generate ciphertexts
by itself� and the aim is to make it infeasible �for the adversary� to produce legit
imate ciphertexts without �knowing� the corresponding plaintext� This� in turn�
will be achieved by augmenting the plaintext with a noninteractive zeroknowledge
�proof of knowledge� of the corresponding plaintext�

Security against chosen ciphertext attack is related to the notion of non�malleability
of the encryption scheme� Loosely speaking� in a nonmalleable encryption scheme
it is infeasible for an adversary� given a ciphertext� to produce a valid ciphertext
for a related plaintext �e�g�� given a ciphertext of a plaintext �x� for an unknown x�
it is infeasible to produce a ciphertext to the plaintext 	x�� For further discussion
see ���� Sec� ��� ��

C�� Signatures and Message Authentication

Both signature schemes and message authentication schemes are methods for �vali
dating� data� that is� verifying that the data was approved by a certain party �or set
of parties�� The di�erence between signature schemes and message authentication
schemes is that signatures should be �universally veri�able�� whereas authentica
tion tags are only required to be veri�able by parties that are also able to generate
them�

��Loosely speaking� the enhancement refers to the hardness condition of De�nition C��� and
requires that it be hard to recover f��

i �y� also when given the coins used to sample y �rather
than merely y itself�� See �

� Apdx� C����

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Signature Schemes� The need to discuss �digital signatures� �cf� ���� �� �� has
arisen with the introduction of computer communication to the business environ
ment �in which parties need to commit themselves to proposals and�or declarations
that they make�� Discussions of �unforgeable signatures� did take place also prior
to the computer age� but the objects of discussion were handwritten signatures
�and not digital ones�� and the discussion was not perceived as related to �cryp
tography�� Loosely speaking� a scheme for unforgeable signatures should satisfy the
following�

� each user can e�ciently produce its own signature on documents of its choice�

� every user can e�ciently verify whether a given string is a signature of another
�speci�c� user on a speci�c document� but

� it is infeasible to produce signatures of other users to documents they did not
sign�

We note that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures� The ingredients
are each person
s ability to sign for itself� a universally agreed veri�cation proce
dure� and the belief �or assertion� that it is infeasible �or at least hard� to forge
signatures �i�e�� produce some other person
s signatures to documents that were
not signed by it such that these �unauthentic� signatures are accepted by the
veri�cation procedure��

Message authentication schemes� Message authentication is a task related
to the setting considered for encryption schemes� that is� communication over an
insecure channel� This time� we consider an active adversary that is monitoring
the channel and may alter the messages sent over it� The parties communicating
through this insecure channel wish to authenticate the messages they send such
that their counterpart can tell an original message �sent by the sender� from a
modi�ed one �i�e�� modi�ed by the adversary�� Loosely speaking� a scheme for
message authentication should satisfy the following�

� each of the communicating parties can e�ciently produce an authentication
tag to any message of its choice�

� each of the communicating parties can e�ciently verify whether a given string
is an authentication tag of a given message� but

� it is infeasible for an external adversary �i�e�� a party other than the commu
nicating parties� to produce authentication tags to messages not sent by the
communicating parties�

Note that� in contrast to the speci�cation of signature schemes� we do not require
universal veri�cation� only the designated receiver is required to be able to verify
the authentication tags� Furthermore� we do not require that the receiver can not
produce authentication tags by itself �i�e�� we only require that external parties can

C��� SIGNATURES AND MESSAGE AUTHENTICATION ��

not do so�� Thus� message authentication schemes cannot convince a third party
that the sender has indeed sent the information �rather than the receiver having
generated it by itself�� In contrast� signatures can be used to convince third parties�
in fact� a signature to a document is typically sent to a second party so that in
the future this party may �by merely presenting the signed document� convince
third parties that the document was indeed generated �or sent or approved� by the
signer�

C��� De�nitions

Formally speaking� both signature schemes and message authentication schemes
consist of three e�cient algorithms� key generation� signing and veri�cation� As in
the case of encryption schemes� the keygeneration algorithm� denoted G� is used
to generate a pair of corresponding keys� one is used for signing �via algorithm S�
and the other is used for veri�cation �via algorithm V �� That is� Ss��� denotes a
signature produced by algorithm S on input a signingkey s and a document ��
whereas Vv��� �� denotes the verdict of the veri�cation algorithm V regarding the
document � and the alleged signature � relative to the veri�cationkey v� Needless
to say� for any pair of keys �s� v� generated by G and for every �� it holds that
Vv��� Ss���� � ��

The di�erence between the two types of schemes is re�ected in the de�nition of
security� In the case of signature schemes� the adversary is given the veri�cation
key� whereas in the case of message authentication schemes the veri�cationkey
�which may equal the signingkey� is not given to the adversary� Thus� schemes
for message authentication can be viewed as a privatekey version of signature
schemes� This di�erence yields di�erent functionalities �even more than in the case
of encryption�� In typical use of a signature scheme� each user generates a pair of
signing and veri�cation keys� publicizes the veri�cationkey and keeps the signing
key secret� Subsequently� each user may sign documents using its own signingkey�
and these signatures are universally veri�able with respect to its public veri�cation
key� In contrast� message authentication schemes are typically used to authenticate
information sent among a set of mutually trusting parties that agree on a secret
key� which is being used both to produce and verify authenticationtags� �Indeed�
it is assumed that the mutually trusting parties have generated the key together or
have exchanged the key in a secure way� prior to the communication of information
that needs to be authenticated��

We focus on the de�nition of secure signature schemes� and consider very pow
erful attacks on the signature scheme as well as a very liberal notion of breaking
it� Speci�cally� the attacker is allowed to obtain signatures to any message of its
choice� One may argue that in many applications such a general attack is not pos
sible �because messages to be signed must have a speci�c format�� Yet� our view
is that it is impossible to de�ne a general �i�e�� applicationindependent� notion
of admissible messages� and thus a general�robust de�nition of an attack seems
to have to be formulated as suggested here� �Note that at worst� our approach is
overly cautious�� Likewise� the adversary is said to be successful if it can produce
a valid signature to any message for which it has not asked for a signature during

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

its attack� Again� this means that the ability to form signatures to �nonsensical�
messages is also viewed as a breaking of the scheme� Yet� again� we see no way
to have a general �i�e�� applicationindependent� notion of �meaningful� messages
�such that only forging signatures to them will be considered a breaking of the
scheme��

De�nition C��� �secure signature schemes � a sketch�� A chosen message attack
is a process that� on input a veri�cation�key� can obtain signatures �relative to
the corresponding signingkey� to messages of its choice� Such an attack is said to
succeed �in existential forgery� if it outputs a valid signature to a message for which
it has not requested a signature during the attack� A signature scheme is secure �or
unforgeable� if every feasible chosen message attack succeeds with at most negligible
probability� where the probability is taken over the initial choice of the key�pair as
well as over the adversary	s actions�

We stress that plain RSA �alike plain versions of Rabin
s scheme ����� and the
DSS� is not secure under the above de�nition� However� it may be secure if the
message is �randomized� before RSA �or the other schemes� is applied�

C��� Constructions

Secure message authentication schemes can be constructed using pseudorandom
functions� Speci�cally� the keygeneration algorithm consists of selecting a seed
s � f	� �gn for such a function� denoted fs �f	� �g�f	� �gn� and the �only valid�
tag of message x with respect to the key s is fs�x�� As in the case of our private
key encryption scheme� the proof of security of the current message authentication
scheme consists of two steps�

�� Proving that an idealized version of the scheme� in which one uses a uniformly
selected function F �f	� �g�f	� �gn� rather than the pseudorandom function
fs� is secure �i�e�� unforgeable��

�� Concluding that the real scheme is secure �because� otherwise one could dis
tinguish a pseudorandom function from a truly random one��

Note that this message authentication scheme makes an �extensive use of pseu
dorandom functions� �i�e�� the pseudorandom function is applied directly to the
message� which requires a generalized notion of pseudorandom functions �cf� end
of Section C������� More e�cient schemes can be constructed either based on a
more restricted use of a pseudorandom function or based on other cryptographic
primitives�

Constructing secure signature schemes seems more di�cult than constructing
message authentication schemes� Nevertheless� secure signature schemes can be
constructed based on the same assumptions�

Theorem C��� The following three conditions are equivalent�

�� One�way functions exist�

� Secure signature schemes exist�

C��� SIGNATURES AND MESSAGE AUTHENTICATION �

�� Secure message authentication schemes exist�

We stress that� unlike in the case of publickey encryption schemes� the construction
of signature schemes �which may be viewed as a publickey analogue of message
authentication� does not require a trapdoor property�

How to construct secure signature schemes

Three central paradigms used in the construction of secure signature schemes are
the �refreshing� of the �e�ective� signingkey� the usage of an �authentication tree��
and the �hashing paradigm� �to be all discussed in the sequel�� In addition to
being used in the proof of Theorem C���� these three paradigms are of independent
interest�

The refreshing paradigm� Introduced in ��	��� the refreshing paradigm is aimed
at limiting the potential dangers of chosen message attacks� This is achieved by
signing the actual document using a newly �and randomly� generated instance of
the signature scheme� and authenticating �the veri�cationkey of� this random in
stance with respect to the �xed publickey� That is� consider a basic signature
scheme �G�S� V � used as follows� Suppose that the user U has generated a key
pair� �s� v� � G��n�� and has placed the veri�cationkey v on a public�le� When
a party asks U to sign some document �� the user U generates a new ��fresh��
keypair� �s�� v�� � G��n�� signs v� using the original signingkey s� signs � using
the new signingkey s�� and presents �Ss�v

��� v�� Ss����� as a signature to �� An
alleged signature� ���� v

�� ���� is veri�ed by checking whether both Vv�v
�� ��� � �

and Vv���� ��� � � hold� Intuitively� the gain in terms of security is that a full
�edged chosen message attack cannot be launched on a �xed instance of �G�S� V �
�i�e�� on the �xed veri�cationkey that resides in the public�le and is known to
the attacker�� All that an attacker may obtain �via a chosen message attack on
the new scheme� is signatures� relative to the original signingkey s of �G�S� V ��
to random strings �distributed according to G��n�� as well as additional signatures
that are each relative to a random and independently distributed signingkey�

Authentication trees� The security bene�ts of the refreshing paradigm are in
creased when combining it with the use of authentication trees� The idea is to use
the public veri�cationkey for authenticating several �e�g�� two� fresh instances of
the signature scheme� use each of these instances for authenticating several addi
tional fresh instances� and so on� Thus� we obtain a tree of fresh instances of the
basic signature scheme� where each internal node authenticates its children� We
can now use the leaves of this tree for signing actual documents� where each leaf is
used at most once� Thus� a signature to an actual document consists of

�� a signature to this document authenticated with respect to the veri�cation
key associated with some leaf� and

�� a sequence of veri�cationkeys associated with the nodes along the path from
the root to this leaf� where each such veri�cationkey is authenticated with
respect to the veri�cationkey of its parent�

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

We stress that the same signature� relative to the key of the parent node� is used
for authenticating the veri�cationkeys of all its children� Thus��� each instance of
the signature scheme is used for signing at most one string �i�e�� a single sequence of
veri�cationkeys if the instance resides in an internal node� and an actual document
if the instance resides in a leaf�� Hence� it su�ces to use a signature scheme that is
secure as long as it is used for legitimately signing a single string� Such signature
schemes� called one�time signature schemes� are easier to construct than standard
signature schemes� especially if one only wishes to sign strings that are signi�cantly
shorter than the signingkey �resp�� than the veri�cationkey�� For example� using
a oneway function f � we may let the signingkey consist of a sequence of n pairs of
strings� let the corresponding veri�cationkey consist of the corresponding sequence
of images of f � and sign an nbit long message by revealing the adequate preimages�
�That is� the signingkey consist of a sequence ��s��� s

�
��� ���� �s

�
n� s

�
n�� � f	� �g�n� � the

corresponding veri�cationkey is �f�s���� f�s
�
���� ���� �f�s

�
n�� f�s

�
n���� and the signa

ture of the message 	� � � �	n is �s��� � ���� s�nn ���

The hashing paradigm� Note� however� that in the foregoing authentication
tree� the instances of the signature scheme �associated with internal nodes� are used
for signing a pair of veri�cationkeys� Thus� we need a onetime signature scheme
that can be used for signing messages that are longer than the veri�cationkey�
Here is where the hashing paradigm comes into play� This paradigm refers to the
common practice of signing documents via a two stage process� First the actual
document is hashed to a �relatively� short string� and next the basic signature
scheme is applied to the resulting string� This practice �as well as other usages of
the hashing paradigm� is sound provided that the hashing function belongs to a
family of collision�free hashing �a�k�a collision�resistant hashing� functions� Loosely
speaking� given a hash function that is randomly selected in such a family� it is
infeasible to �nd two di�erent strings that are hashed by this function to the same
value� We also refer the interested reader to a variant of the hashing paradigm that
uses the seemingly weaker notion of a family of Universal One�Way Hash Functions
�see ����� or ���� Sec� ��������

C� General Cryptographic Protocols

The design of secure protocols that implement arbitrary desired functionalities is
a major part of modern cryptography� Taking the opposite perspective� the design
of any cryptographic scheme may be viewed as the design of a secure protocol for
implementing a corresponding functionality� Still� we believe that it makes sense to

��A naive implementation of the foregoing �full�#edged� signature scheme calls for storing in
�secure� memory all the instances of the basic �one�time� signature scheme that are generated
throughout the entire signing process �which refers to numerous documents�� However� we note
that it su�ces to be able to reconstruct the random�coins used for generating each of these
instances� and the former can be determined by a pseudorandom function �applied to the name
of the corresponding vertex in the tree�� Indeed� the seed of this pseudorandom function will be
part of the signing�key of the resulting �full�#edged� signature scheme�

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

di�erentiate between basic cryptographic primitives �which involve little interac
tion� like encryption and signature schemes on one hand� and general cryptographic
protocols on the other hand�

In this section� we survey general results concerning secure multiparty com
putations� where the twoparty case is an important special case� In a nutshell�
these results assert that one can construct protocols for securely computing any
desirable multiparty functionality� Indeed� what is striking about these results is
their generality� and we believe that the wonder is not diminished by the �various
alternative� conditions under which these results hold�

A general framework for casting �mparty� cryptographic �protocol� problems
consists of specifying a random process�� that maps m inputs to m outputs� The
inputs to the process are to be thought of as the local inputs of m parties� and the
m outputs are their corresponding local outputs� The random process describes
the desired functionality� That is� if the m parties were to trust each other �or trust
some external party�� then they could each send their local input to the trusted
party� who would compute the outcome of the process and send to each party the
corresponding output� A pivotal question in the area of cryptographic protocols is
to what extent can this �imaginary� trusted party be �emulated� by the mutually
distrustful parties themselves�

The results surveyed in this section describe a variety of models in which such
an �emulation� is possible� The models vary by the underlying assumptions re
garding the communication channels� numerous parameters governing the extent
of adversarial behavior� and the desired level of emulation of the trusted party �i�e��
level of �security��� Our treatment refers to the security of standalone executions�
The preservation of security in an environment in which many executions of many
protocols are attacked is beyond the scope of this section� and the interested reader
is referred to ���� Sec� �������

C���� The De�nitional Approach and Some Models

Before describing the aforementioned results� we further discuss the notion of
�emulating a trusted party�� which underlies the de�nitional approach to secure
multiparty computation� This approach follows the simulation paradigm �cf� Sec
tion C����� which deems a scheme to be secure if whatever a feasible adversary can
obtain after attacking it� is also feasibly attainable by a benign behavior� In the
general setting of multiparty computation we compare the e�ect of adversaries
that participate in the execution of the actual protocol to the e�ect of adversaries
that participate in an imaginary execution of a trivial �ideal� protocol for com
puting the desired functionality with the help of a trusted party� If whatever the
adversaries can feasibly obtain in the real setting can also be feasibly obtained in

��That is� we consider the secure evaluation of randomized functionalities� rather than �only�
the secure evaluation of functions� Speci�cally� we consider an arbitrary �randomized� process

F that on input �x�� ���� xm�� �rst selects at random �depending only on �
def
�
Pm

i��
jxij� an m�

ary function f � and then outputs the m�tuple f�x�� ���� xm� � �f��x�� ���� xm�� ���� fm�x�� ���� xm���

In other words� F �x�� ���� xm� � F ��r� x�� ���� xm�� where r is uniformly selected in f�� �g�� �with
�� � poly����� and F � is a function mapping �m� ���long sequences to m�long sequences�

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

the ideal setting then the actual protocol �emulates the ideal setting� �i�e�� �em
ulates a trusted party��� and thus is deemed secure� This basic approach can be
applied in a variety of models� and is used to de�ne the goals of security in these
models��� We �rst discuss some of the parameters used in de�ning various models�
and next demonstrate the application of this approach in two important cases� For
further details� see ���� Sec� ��� and �� ����

C����� Some parameters used in de�ning security models

The following parameters are described in terms of the actual �or real� computation�
In some cases� the corresponding de�nition of security is obtained by imposing
some restrictions or provisions on the ideal model� For example� in the case of two
party computation �see xC�������� secure computation is possible only if premature
termination is not considered a breach of security� In that case� the suitable security
de�nition is obtained �via the simulation paradigm� by allowing �an analogue of�
premature termination in the ideal model� In all cases� the desired notion of security
is de�ned by requiring that for any adequate adversary in the real model� there exist
a corresponding adversary in the corresponding ideal model that obtains essentially
the same impact �as the realmodel adversary��

The communication channels� The standard assumption in cryptography is
that the adversary may tap all communication channels �between honest parties��
but cannot modify �or omit or insert� messages sent over them� In contrast� one
may postulate that the adversary cannot obtain messages sent between a pair of
honest parties� yielding the socalled private�channel model� Most works in the area
assume that communication is synchronous and that pointtopoint channels exist
between every pair of processors �i�e�� a complete network��

Set�up assumptions� Unless stated di�erently� no setup assumptions are made
�except for the obvious assumption that all parties have identical copies of the
protocol
s program��

Computational limitations� Typically� the focus is on computationallybounded
adversaries �e�g�� probabilistic polynomialtime adversaries�� However� the private
channel model allows for the �meaningful� consideration of computationallyunbounded
adversaries��	

��A few technical comments are in place� Firstly� we assume that the inputs of all parties
are of the same length� We comment that as long as the lengths of the inputs are polynomially
related� the foregoing convention can be enforced by padding� On the other hand� some length
restriction is essential for the security results� because in general it is impossible to hide all
information regarding the length of the inputs to a protocol� Secondly� we assume that the
desired functionality is computable in probabilistic polynomial�time� because we wish the secure
protocol to run in probabilistic polynomial�time �and a protocol cannot be more e�cient than
the corresponding centralized algorithm�� Clearly� the results can be extended to functionalities
that are computable within any given �time�constructible� time bound� using adequate padding�

��We stress that� also in the case of computationally�unbounded adversaries� security should
be de�ned by requiring that for every real adversary� whatever the adversary can compute after

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

Restricted adversarial behavior� The parameters of the model include ques
tions like whether the adversary is �active� or �passive� �i�e�� whether a dishonest
party takes active steps to disrupt the execution of the protocol or merely gathers
information� and whether or not the adversary is �adaptive� �i�e�� whether the set
of dishonest parties is �xed before the execution starts or is adaptively chosen by
an adversary during the execution��

Restricted notions of security� One important example is the willingness to
tolerate �unfair� protocols in which the execution can be suspended �at any time�
by a dishonest party� provided that it is detected doing so� We stress that in case the
execution is suspended� the dishonest party does not obtain more information than
it could have obtained when not suspending the execution� �What may happen is
that the honest parties will not obtain their desired outputs� but will detect that
the execution was suspended�� We stress that the motivation to this restricted
model is the impossibility of obtaining general secure twoparty computation in
the unrestricted model�

Upper bounds on the number of dishonest parties� These are assumed
in some models� when required� For example� in some models� secure multiparty
computation is possible only if a majority of the parties is honest�

C����� Example� Multi�party protocols with honest majority

Here we consider an active� nonadaptive� computationallybounded adversary� and
do not assume the existence of private channels� Our aim is to de�ne multiparty
protocols that remain secure provided that the honest parties are in majority�
�The reason for requiring an honest majority will be discussed at the end of this
subsection��

We �rst observe that in any multiparty protocol� each party may change its
local input before even entering the execution of the protocol� However� this is
unavoidable also when the parties utilize a trusted party� Consequently� such an
e�ect of the adversary on the real execution �i�e�� modi�cation of its own input
prior to entering the actual execution� is not considered a breach of security� In
general� whatever cannot be avoided when the parties utilize a trusted party� is
not considered a breach of security� We wish secure protocols �in the real model�
to su�er only from whatever is unavoidable also when the parties utilize a trusted
party� Thus� the basic paradigm underlying the de�nitions of secure multi�party
computations amounts to requiring that the only situations that may occur in the
real execution of a secure protocol are those that can also occur in a corresponding
ideal model �where the parties may employ a trusted party�� In other words� the

participating in the execution of the actual protocol is computable within comparable time by
an imaginary adversary participating in an imaginary execution of the trivial ideal protocol �for
computing the desired functionality with the help of a trusted party�� That is� although no
computational restrictions are made on the real�model adversary� it is required that the ideal�
model adversary that obtains the same impact does so within comparable time �i�e�� within time
that is polynomially related to the running time of the real�model adversary being simulated��

 �	APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

�e�ective malfunctioning� of parties in secure protocols is restricted to what is
postulated in the corresponding ideal model�

When de�ning secure multiparty protocols �with honest majority�� we need to
pinpoint what cannot be avoided in the ideal model �i�e�� when the parties utilize
a trusted party�� Since we are interested in executions in which the majority of
parties are honest� we consider an ideal model in which any minority group �of the
parties� may collude as follows�

�� Firstly this dishonest minority shares its original inputs and decides together
on replaced inputs to be sent to the trusted party� �The other parties send
their respective original inputs to the trusted party��

�� Upon receiving inputs from all parties� the trusted party determines the cor
responding outputs and sends them to the corresponding parties� �We stress
that the information sent between the honest parties and the trusted party
is not seen by the dishonest colluding minority��

�� Upon receiving the outputmessage from the trusted party� each honest party
outputs it locally� whereas the dishonest colluding minority may determine
their outputs based on all they know �i�e�� their initial inputs and their re
ceived outputs��

A secure multi�party computation with honest majority is required to emulate this
ideal model� That is� the e�ect of any feasible adversary that controls a minority of
the parties in a real execution of such a �real� protocol� can be essentially simulated
by a �di�erent� feasible adversary that controls the corresponding parties in the
ideal model�

De�nition C�� �secure protocols � a sketch�� Let f be an m�ary functionality
and ' be an m�party protocol operating in the real model�

� For a real�model adversary A� controlling some minority of the parties �and
tapping all communication channels�� and an m�sequence x� we denote by
real��A�x� the sequence of m outputs resulting from the execution of ' on
input x under the attack of the adversary A�

� For an ideal�model adversary A�� controlling some minority of the parties�
and an m�sequence x� we denote by idealf�A��x� the sequence of m outputs
resulting from the foregoing three�step ideal process� when applied to input x
under the attack of the adversary A��

We say that ' securely implements f with honest majority if for every feasible real�
model adversary A� controlling some minority of the parties� there exists a feasible
ideal�model adversary A�� controlling the same parties� such that the probability en�
sembles freal��A�x�gx and fidealf�A��x�gx are computationally indistinguishable
�as in De�nition C����

Thus� security means that the e�ect of each minority group in a real execution
of a secure protocol is �essentially restricted� to replacing its own local inputs

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

�independently of the local inputs of the majority parties� before the protocol
starts� and replacing its own local outputs �depending only on its local inputs and
outputs� after the protocol terminates� �We stress that in the real execution the
minority parties do obtain additional pieces of information� yet in a secure protocol
they gain nothing from these additional pieces of information� because they can
actually reproduce those by themselves��

The fact that De�nition C��� refers to a model without private channels is
re�ected in the fact that our �sketchy� de�nition of the realmodel adversary al
lowed it to tap the channels� which in turn e�ects the set of possible ensembles
freal��A�x�gx� When de�ning security in the privatechannel model� the real
model adversary is not allowed to tap channels between honest parties� and this
again e�ects the possible ensembles freal��A�x�gx� On the other hand� when we
wish to de�ne security with respect to passive adversaries� both the scope of the
realmodel adversaries and the scope of the idealmodel adversaries changes� In the
realmodel execution� all parties follow the protocol but the adversary may alter
the output of the dishonest parties arbitrarily depending on their intermediate in
ternal states �during the entire execution�� In the corresponding idealmodel� the
adversary is not allowed to modify the inputs of dishonest parties �in Step ��� but
is allowed to modify their outputs �in Step ���

We comment that a de�nition analogous to De�nition C��� can be presented also
in the case that the dishonest parties are not in minority� In fact� such a de�nition
seems more natural� but the problem is that such a de�nition cannot be satis�ed�
That is� most �natural� functionalities do not have a protocol for computing them
securely in the case that at least half of the parties are dishonest and employ an
adequate adversarial strategy� This follows from an impossibility result regarding
twoparty computation� which essentially asserts that there is no way to prevent a
party from prematurely suspending the execution� On the other hand� secure multi
party computation with dishonest majority is possible if premature suspension of
the execution is not considered a breach of security �see xC��������

C����� Another example� Two�party protocols allowing abort

In light of the last paragraph� we now consider multiparty computations in which
premature suspension of the execution is not considered a breach of security� For
simplicity� we focus on the special case of twoparty computations �As in xC�������
we consider a nonadaptive� active� computationallybounded adversary��

Intuitively� in any twoparty protocol� each party may suspend the execution
at any point in time� and furthermore it may do so as soon as it learns the desired
output� Thus� in case the output of each parties depends on both inputs� it is always
possible for one of the parties to obtain the desired output while preventing the
other party from fully determining its own output��
 The same phenomenon occurs
even in case the two parties just wish to generate a common random value� Thus�
when considering active adversaries in the twoparty setting� we do not consider

��In contrast� in the case of an honest majority �cf�� xC�������� the honest party that fails to
obtain its output is not alone� It may seek help from the other honest parties� which together
and being in majority can do things that dishonest minorities cannot do� See xC�������

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

such premature suspension of the execution a breach of security� Consequently� we
consider an ideal model where each of the two parties may �shutdown� the trusted
�third� party at any point in time� In particular� this may happen after the trusted
party has supplied the outcome of the computation to one party but before it has
supplied the outcome to the other� Thus� an execution in the corresponding ideal
model proceeds as follows�

�� Each party sends its input to the trusted party� where the dishonest party
may replace its input or send no input at all �which can be treated as sending
a default value��

�� Upon receiving inputs from both parties� the trusted party determines the
corresponding pair of outputs� and sends the �rst output to the �rst party�

�� In case the �rst party is dishonest� it may instruct the trusted party to halt�
otherwise it always instructs the trusted party to proceed� If instructed to
proceed� the trusted party sends the second output to the second party�

�� Upon receiving the outputmessage from the trusted party� an honest party
outputs it locally� whereas a dishonest party may determine its output based
on all it knows �i�e�� its initial input and its received output��

A secure two�party computation allowing abort is required to emulate this ideal
model� That is� as in De�nition C���� security is de�ned by requiring that for
every feasible realmodel adversary A� there exists a feasible idealmodel adversary
A�� controlling the same party� such that the probability ensembles representing
the corresponding �real and ideal� executions are computationally indistinguish
able� This means that each party
s �e�ective malfunctioning� in a secure protocol
is restricted to supplying an initial input of its choice and aborting the computation
at any point in time� �Needless to say� the choice of the initial input of each party
may not depend on the input of the other party��

We mention that an alternative way of dealing with the problem of premature
suspension of execution �i�e�� abort� is to restrict our attention to single�output
functionalities� that is� functionalities in which only one party is supposed to obtain
an output� The de�nition of secure computation of such functionalities can be made
identical to De�nition C���� with the exception that no restriction is made on the
set of dishonest parties �and in particular one may consider a single dishonest party
in the case of twoparty protocols�� For further details� see ���� Sec� �������

C���� Some Known Results

We next list some of the models for which general secure multiparty computation
is known to be attainable �i�e�� models in which one can construct secure multi
party protocols for computing any desired functionality�� We mention that the �rst
results of this type were obtained by Goldreich� Micali� Wigderson and Yao ����
��	� ����

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

In the standard channel model� Assuming the existence of enhanced�� trap�
door permutations� secure multiparty computation is possible in the following three
models �cf� ���� ��	� ��� and details in ���� Chap� ����

�� Passive adversary� for any number of dishonest parties �see ���� Sec� ������

�� Active adversary that may control only a minority of the parties �see ����
Sec� �� �����

�� Active adversary� for any number of dishonest parties� provided that suspen
sion of execution �as discussed in xC������� is not considered a violation of
security �see ���� Sec� ��� and �� � ���

In all these cases� the adversary is computationallybounded and nonadaptive� On
the other hand� the adversary may tap the communication lines between honest
parties �i�e�� we do not assume �private channels� here�� The results for active ad
versaries assume a broadcast channel� Indeed� the latter can be implemented �while
tolerating any number of dishonest parties� using a signature scheme and assuming
that each party knows �or can reliably obtain� the veri�cationkey corresponding
to each of the other parties�

In the private channels model� Making no computational assumptions and
allowing computationallyunbounded adversaries� but assuming private channels�
secure multiparty computation is possible in the following two models �cf� ���� 	���

�� Passive adversary that may control only a minority of the parties�

�� Active adversary that may control only less than one third of the parties�

In both cases the adversary may be adaptive�

C���� Construction Paradigms and Two Simple Protocols

We brie�y sketch a couple of paradigms used in the construction of secure multi
party protocols� We focus on the construction of secure protocols for the model of
computationallybounded and nonadaptive adversaries ���� ��	� ���� These con
structions proceed in two steps �see details in ���� Chap� ���� First a secure protocol
is presented for the model of passive adversaries �for any number of dishonest par
ties�� and next such a protocol is �compiled� into a protocol that is secure in one
of the two models of active adversaries �i�e�� either in a model allowing the adver
sary to control only a minority of the parties or in a model in which premature
suspension of the execution is not considered a violation of security�� These two
steps are presented in the following two corresponding subsections� in which we
also present two relatively simple protocols for two speci�c tasks� which in turn are
used extensively in the general protocols�

Recall that in the model of passive adversaries� all parties follow the prescribed
protocol� but at termination the adversary may alter the outputs of the dishonest

�	See Footnote ���

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

parties depending on their intermediate internal states �during the entire execu
tion�� Below� we refer to protocols that are secure in the model of passive �resp��
active� adversaries by the term passively�secure �resp�� actively�secure��

C����� Passively�secure computation with shares

For any m � �� suppose that m parties� each having a private input� wish to ob
tain the value of a predetermined margument function evaluated at their sequence
of inputs� Below� we outline a passivelysecure protocol for achieving this goal�
We mention that the design of passivelysecure multiparty protocol for any func
tionality �allowing di�erent outputs to di�erent parties as well as handling also
randomized computations� reduces easily to the aforementioned task�

We assume that the parties hold a circuit for computing the value of the function
on inputs of the adequate length� and that the circuit contains only and and not

gates� The key idea is having each party �secretly share� its input with everybody
else� and having the parties �secretly transform� shares of the input wires of the
circuit into shares of the output wires of the circuit� thus obtaining shares of the
outputs �which allows for the reconstruction of the actual outputs�� The value
of each wire in the circuit is shared such that all shares yield the value� whereas
lacking even one of the shares keeps the value totally undetermined� That is� we
use a simple secret sharing scheme such that a bit b is shared by a random sequence
of m bits that sumup to b mod �� First� each party shares each of its input bits
with all parties �by secretly sending each party a random value and setting its own
share accordingly�� Next� all parties jointly scan the circuit from its input wires to
its output wires� processing each gate as follows�

� When encountering a gate� the parties already hold shares of the values of
the wires entering the gate� and their aim is to obtain shares of the value of
the wires exiting the gate�

� For a notgate this is easy� the �rst party just �ips the value of its share�
and all other parties maintain their shares�

� Since an andgate corresponds to multiplication modulo �� the parties need
to securely compute the following randomized functionality �in which the xi
s
denote shares of one entrywire� the yi
s denote shares of the second entry
wire� the zi
s denote shares of the exitwire� and the shares indexed by i are
held by Party i��

��x�� y��� ���� �xm� ym�� � �z�� ���� zm� � where �C���
mX
i��

zi �

�
mX
i��

xi

�
�
�

mX
i��

yi

�
�

�C���

That is� the zi
s are random subject to Eq� �C����

Finally� the parties send their shares of each circuitoutput wire to the designated
party� which reconstructs the value of the corresponding bit� Thus� the parties have

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS �

propagated shares of the circuitinput wires into shares of the circuitoutput wires�
by repeatedly conducting passivelysecure computation of the mary functionality
of Eq� �C���. �C���� That is� securely evaluating the entire �arbitrary� circuit
�reduces� to securely conducting a speci�c �very simple� multiparty computation�
But things get even simpler� the key observation is that�

mX
i��

xi

�
�
�

mX
i��

yi

�
�

mX
i��

xiyi $
X

�i�jm
�xiyj $ xjyi� � �C���

Thus� the mary functionality of Eq� �C���. �C��� can be computed as follows
�where all arithmetic operations are mod ���

�� Each Party i locally computes zi�i
def
� xiyi�

�� Next� each pair of parties �i�e�� Parties i and j� securely compute random
shares of xiyj $ yixj � That is� Parties i and j �holding �xi� yi� and �xj � yj��
respectively�� need to securely compute the randomized twoparty function
ality ��xi� yi�� �xj � yj�� � �zi�j � zj�i�� where the z
s are random subject to
zi�j $ zj�i � xiyj $ yixj � Equivalently� Party j uniformly selects zj�i � f	� �g�
and Parties i and j securely compute the following deterministic functionality

��xi� yi�� �xj � yj � zj�i�� � �zj�i $ xiyj $ yixj � ��� �C���

where � denotes the empty string�

�� Finally� for every i � �� ����m� the sum
Pm

j�� zi�j yields the desired share of
Party i�

The foregoing construction is analogous to a construction that was outlined in �����
A detailed description and full proofs appear in ���� Sec� ����� and �� ����

The foregoing construction reduces the passivelysecure computation of any
mary functionality to the implementation of the simple �ary functionality of
Eq� �C���� The latter can be implemented in a passivelysecure manner by using
a �outof� Oblivious Transfer� Loosely speaking� a ��out�of�k Oblivious Transfer
is a protocol enabling one party to obtain one of k secrets held by another party�
without the second party learning which secret was obtained by the �rst party�
That is� it allows a passivelysecure computation of the twoparty functionality

�i� �s�� ���� sk�� � �si� ��� �C� �

Note that any function f � �k� � f	� �g� f	� �g� � f�g can be computed in a
passivelysecure manner by invoking a �outofk Oblivious Transfer on inputs i
and �f��� y�� ���� f�k� y��� where i �resp�� y� is the initial input of the �rst �resp��
second� party�

A passively�secure ��out�of�k Oblivious Transfer� Using a collection of en
hanced trapdoor permutations� ff� � D� D�g��I and a corresponding hardcore
predicate b� we outline a passivelysecure implementation of the functionality of
Eq� �C� �� when restricted to singlebit secrets�

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Inputs� The �rst party� hereafter called the receiver� has input i � f�� �� ���� kg� The
second party� called the sender� has input �	�� 	�� ���� 	k� � f	� �gk�

Step S�� The sender selects at random a permutation f� along with a correspond
ing trapdoor� denoted t� and sends the permutation f� �i�e�� its index �� to
the receiver�

Step R�� The receiver uniformly and independently selects x�� ���� xk � D�� sets
yi � f��xi� and yj � xj for every j �� i� and sends �y�� y�� ���� yk� to the
sender�

Thus� the receiver knows f��� �yi� � xi� but cannot predict b�f
��
� �yj�� for any

j �� i� Needless to say� the last assertion presumes that the receiver follows
the protocol �i�e�� we only consider passivesecurity��

Step S� Upon receiving �y�� y�� ���� yk�� using the invertingwithtrapdoor algo
rithm and the trapdoor t� the sender computes zj � f��� �yj�� for every
j � f�� ���� kg� It sends the ktuple �	� 	 b�z��� 	� 	 b�z��� ���� 	k 	 b�zk��
to the receiver�

Step R� Upon receiving �c�� c�� ���� ck�� the receiver locally outputs ci 	 b�xi��

We �rst observe that this protocol correctly computes �outofk Oblivious Trans
fer� that is� the receiver
s local output �i�e�� ci	b�xi�� indeed equals �	i	b�f��� �f��xi����	
b�xi� � 	i� Next� we o�er some intuition as to why this protocol constitutes a
privatelysecure implementation of �outofk Oblivious Transfer� Intuitively� the
sender gets no information from the execution because� for any possible value of i�
the senders sees the same distribution� speci�cally� a sequence of k uniformly and
independently distributed elements of D�� �Indeed� the key observation is that ap
plying f� to a uniformly distributed element of D� yields a uniformly distributed
element of D��� As for the receiver� intuitively� it gains no computational knowl
edge from the execution because� for j �� i� the only information that the receiver
has regarding 	j is the triplet ��� xj � 	j 	 b�f��� �xj���� where xj is uniformly dis
tributed in D�� and from this information it is infeasible to predict 	j better than
by a random guess��� �See ���� Sec� ������ for a detailed proof of security��

C����� From passively�secure protocols to actively�secure ones

We show how to transform any passivelysecure protocol into a corresponding
activelysecure protocol� The communication model in both protocols consists of
a single broadcast channel� Note that the messages of the original protocol may
be assumed to be sent over a broadcast channel� because the adversary may see
them anyhow �by tapping the pointtopoint channels�� and because a broadcast

�
The latter intuition presumes that sampling D� is trivial �i�e�� that there is an easily com�
putable correspondence between the coins used for sampling and the resulting sample�� whereas
in general the coins used for sampling may be hard to compute from the corresponding outcome�
This is the reason that an enhanced hardness assumption is used in the general analysis of the
foregoing protocol�

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

channel is trivially implementable in the case of passive adversaries� As for the re
sulting activelysecure protocol� the broadcast channel it uses can be implemented
via an �authenticated� Byzantine Agreement protocol� thus providing an emulation
of this model on the standard pointtopoint model �in which a broadcast channel
does not exist�� We mention that authenticated Byzantine Agreement is typically
implemented using a signature scheme �and assuming that each party knows the
veri�cationkey corresponding to each of the other parties��

Turning to the transformation itself� the main idea is using zeroknowledge
proofs �as described in xC������� in order to force parties to behave in a way that is
consistent with the �passivelysecure� protocol� Actually� we need to con�ne each
party to a unique consistent behavior �i�e�� according to some �xed local input and a
sequence of coin tosses�� and to guarantee that a party cannot �x its input �and�or
its coin tosses� in a way that depends on the inputs �and�or coin tosses� of honest
parties� Thus� some preliminary steps have to be taken before the stepbystep
emulation of the original protocol may start� Speci�cally� the compiled protocol
�which� like the original protocol� is executed over a broadcast channel� proceeds
as follows�

�� Committing to the local input� Prior to the emulation of the original protocol�
each party commits to its input �using a commitment scheme as de�ned
in xC�������� In addition� using a zeroknowledge proofofknowledge �see
Section ������� each party also proves that it knows its own input� that is�
it proves that it can decommit to the commitment it sent� �These zero
knowledge proofofknowledge prevent dishonest parties from setting their
inputs in a way that depends on inputs of honest parties��

�� Generation of local random tapes� Next� all parties jointly generate a se
quence of random bits for each party such that only this party knows the
outcome of the random sequence generated for it� and everybody else gets a
commitment to this outcome� These sequences will be used as the random
inputs �i�e�� sequence of coin tosses� for the original protocol� Each bit in the
randomsequence generated for Party X is determined as the exclusiveor of
the outcomes of instances of an �augmented� cointossing protocol �cf� ����
Sec� ������ �� that Party X plays with each of the other parties� The lat
ter protocol provides the other parties with a commitment to the outcome
obtained by Party X�

�� E�ective prevention of premature termination� In addition� when compiling
�the passivelysecure protocol to an activelysecure protocol� for the model
that allows the adversary to control only a minority of the parties� each party
shares its input and randominput with all other parties using a �Veri�able
Secret Sharing� �VSS� protocol �cf� ���� Sec� �� � ����� Loosely speaking� a
VSS protocol allows sharing a secret in a way that enables each participant
to verify that the share it got �ts the publicly posted information� which
includes commitments to all shares� where a su�cient number of the latter
allow for the e�cient recovery of the secret� The use of VSS guarantees that
if Party X prematurely suspends the execution� then the honest parties can

 ��APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

together reconstruct all Party X
s secrets and carry on the execution while
playing its role� This step e�ectively prevents premature termination� and is
not needed in a model that does not consider premature termination a breach
of security�

�� Step�by�step emulation of the original protocol� Once all the foregoing steps
are completed� the new protocol emulates the steps of the original protocol�
In each step� each party augments the message determined by the original
protocol with a zeroknowledge proof that asserts that the message was in
deed computed correctly� Recall that the next message �as determined by
the original protocol� is a function of the sender
s own input� its random
input� and the messages it has received so far �where the latter are known to
everybody because they were sent over a broadcast channel�� Furthermore�
the sender
s input is determined by its commitment �as sent in Step ��� and
its randominput is similarly determined �in Step ��� Thus� the next mes
sage �as determined by the original protocol� is a function of publicly known
strings �i�e�� the said commitments as well as the other messages sent over
the broadcast channel�� Moreover� the assertion that the next message was
indeed computed correctly is an NPassertion� and the sender knows a cor
responding NPwitness �i�e�� its own input and randominput as well as the
corresponding decommitment information�� Thus� the sender can prove in
zeroknowledge �to each of the other parties� that the message it is sending
was indeed computed according to the original protocol�

The above compilation was �rst outlined in ���� ���� A detailed description and
full proofs appear in ���� Sec� ��� and �� ��

A secure coin�tossing protocol� Using a commitment scheme� we outline a
secure �ordinary as opposed to augmented� cointossing protocol�

Step C�� Party � uniformly selects 	 � f	� �g and sends Party � a commitment�
denoted c� to 	�

Step C� Party � uniformly selects 	� � f	� �g� and sends 	� to Party ��

Step C�� Party � outputs the value 	 	 	�� and sends 	 along with the decommit
ment information� denoted d� to Party ��

Step C�� Party � checks whether or not �	� d� �t the commitment c it has obtained
in Step �� It outputs 	 	 	� if the check is satis�ed and halts with output �
otherwise� where � indicates that Party � has e�ectively aborted the protocol
prematurely�

Outputs� Party � always outputs b
def
� 	 	 	�� whereas Party � either outputs b

or ��

Intuitively� Steps C��C� may be viewed as �tossing a coin into the well�� At
this point �i�e�� after Step C��� the value of the coin is determined �essentially

C��� GENERAL CRYPTOGRAPHIC PROTOCOLS ��

as a random value�� but only one party �i�e�� Party �� �can see� �i�e�� knows� this
value� Clearly� if both parties are honest then they both output the same uniformly
chosen bit� recovered in Steps C� and C�� respectively� Intuitively� each party
can guarantee that the outcome is uniformly distributed� and Party � can cause
premature termination by improper execution of Step �� Formally� we have to show
how the e�ect of any realmodel adversary can be simulated by an adequate ideal
model adversary �which is allowed premature termination�� This is done in ����
Sec� ���������

C���� Concluding Remarks

In Sections C����C���� we have mentioned numerous de�nitions and results regard
ing secure multiparty protocols� where some of these de�nitions are incomparable
to others �i�e�� they neither imply the others nor are implies by them�� For example�
in xC������ and xC������� we have presented two alternative de�nitions of �secure
multiparty protocols�� one requiring an honest majority and the other allowing
abort� These de�nitions are incomparable and there is no generic reason to prefer
one over the other� Actually� as mentioned in xC������� one could formulate a nat
ural de�nition that implies both de�nitions �i�e�� waiving the bound on the number
of dishonest parties in De�nition C����� Indeed� the resulting de�nition is free of
the annoying restrictions that were introduced in each of the two aforementioned
de�nitions� the �only� problem with the resulting de�nition is that it cannot be
satis�ed �in general�� Thus� for the �rst time in this appendix� we have reached a
situation in which a natural �and general� de�nition cannot be satis�ed� and we are
forced to choose between two weaker alternatives� where each of these alternatives
carries fundamental disadvantages�

In general� Section C�� carries a stronger �avor of compromise �i�e�� recognizing
inherent limitations and settling for a restricted meaningful goal� than previous
sections� In contrast to the impression given in other parts of this appendix� it is
now obvious that we cannot get all that we may want �and this is without men
tioning the problems involved in preserving security under concurrent composition�
cf� ���� Sec� �������� Instead� we should study the alternatives� and go for the one
that best suits our real needs�

Indeed� as stated in Section C��� the fact that we can de�ne a cryptographic
goal does not mean that we can satisfy it as de�ned� In case we cannot satisfy
the initial de�nition� we should search for relaxations that can be satis�ed� These
relaxations should be de�ned in a clear manner such that it would be obvious what
they achieve �and what they fail to achieve�� Doing so will allow a sound choice of
the relaxation to be used in a speci�c application� This seems to be a good point
to end the current appendix�

A good compromise is one in which the most impor
tant interests of all parties are satis�ed�

Adv� Klara GoldreichIngwer �������		��

 �	APPENDIX C� ON THE FOUNDATIONS OF MODERN CRYPTOGRAPHY

Appendix D

Probabilistic Preliminaries

and Advanced Topics in

Randomization

What is this� Chicken Curry and Seafood Salad�
Fine� but in the same plate� This is disgusting�

Johan H/astad at Grendel
s� Cambridge ���� �

Summary� This appendix lumps together some preliminaries regard
ing probability theory and some advanced topics related to the role
and use of randomness in computation� Needless to say� each of these
appears in a separate section�

The probabilistic preliminaries include our conventions regarding ran
dom variables� which are used throughout the book� Also included are
overviews of three useful inequalities� Markov Inequality� Chebyshev
s
Inequality� and Cherno� Bound�

The advanced topics include hashing� sampling� and randomness ex
traction� For hashing� we describe constructions of pairwise �and twise
independent� hashing functions� and variants of the Leftover Hashing
Lemma �which are used a few times in the main text�� We then review
the �complexity of sampling�� that is� the number of samples and the
randomness complexity involved in estimating the average value of an
arbitrary function de�ned over a huge domain� Finally� we provide an
overview on the question of extracting almost perfect randomness from
sources of weak �or defected� randomness�

 ��

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

D�� Probabilistic preliminaries

Probability plays a central role in complexity theory �see� for example� Chapters ��
��� We assume that the reader is familiar with the basic notions of probability
theory� In this section� we merely present the probabilistic notations that are used
throughout the book� and three useful probabilistic inequalities�

D���� Notational Conventions

Throughout the entire book we will refer only to discrete probability distributions�
Speci�cally� the underlying probability space will consist of the set of all strings
of a certain length
� taken with uniform probability distribution� That is� the
sample space is the set of all
bit long strings� and each such string is assigned
probability measure ���� Traditionally� random variables are de�ned as functions
from the sample space to the reals� Abusing the traditional terminology� we use the
term random variable also when referring to functions mapping the sample space
into the set of binary strings� We often do not specify the probability space� but
rather talk directly about random variables� For example� we may say that X is a
random variable assigned values in the set of all strings such that Pr�X�		� � �

�
and Pr�X � ���� � �

� � �Such a random variable may be de�ned over the sample
space f	� �g�� so that X���� � 		 and X�		� � X�	�� � X��	� � ����� One
important case of a random variable is the output of a randomized process �e�g�� a
probabilistic polynomialtime algorithm� as in Section �����

All our probabilistic statements refer to �functions of� random variables that
are de�ned beforehand� Typically� we may write Pr�f�X����� where X is a random
variable de�ned beforehand �and f is a function�� An important convention is that
all occurrences of the same symbol in a probabilistic statement refer to the same
�unique� random variable� Hence� if B��� �� is a Boolean expression depending on
two variables� andX is a random variable then Pr�B�X�X�� denotes the probability
that B�x� x� holds when x is chosen with probability Pr�X �x�� For example� for
every random variable X � we have Pr�X �X � � �� We stress that if we wish to
discuss the probability that B�x� y� holds when x and y are chosen independently
with identical probability distribution� then we will de�ne two independent random
variables each with the same probability distribution� Hence� if X and Y are
two independent random variables then Pr�B�X�Y �� denotes the probability that
B�x� y� holds when the pair �x� y� is chosen with probability Pr�X�x� � Pr�Y �y��
For example� for every two independent random variables� X and Y � we have
Pr�X�Y � � � only if both X and Y are trivial �i�e�� assign the entire probability
mass to a single string��

Throughout the entire book� Un denotes a random variable uniformly dis
tributed over the set of strings of length n� Namely� Pr�Un � �� equals ��n if
� � f	� �gn and equals 	 otherwise� We will often refer to the distribution of Un
as the uniform distribution �neglecting to qualify that it is uniform over f	� �gn�� In
addition� we will occasionally use random variables �arbitrarily� distributed over
f	� �gn or f	� �g�n�� for some function
 �NN � Such random variables are typi
cally denoted by Xn� Yn� Zn� etc� We stress that in some cases Xn is distributed

D��� PROBABILISTIC PRELIMINARIES ��

over f	� �gn� whereas in other cases it is distributed over f	� �g�n�� for some func
tion
���� which is typically a polynomial� We will often talk about probability
ensembles� which are in�nite sequence of random variables fXngn�N such that
each Xn ranges over strings of length bounded by a polynomial in n�

Statistical di�erence� The statistical distance �a�k�a variation distance� between
the random variables X and Y is de�ned as

�

�
�
X
v

jPr�X � v�� Pr�Y � v�j � max
S

fPr�X � S�� Pr�Y � S�g� �D���

We say that X is ��close �resp�� ��far� to Y if the statistical distance between them
is at most �resp�� at least� ��

D���� Three Inequalities

The following probabilistic inequalities are very useful� These inequalities refer to
random variables that are assigned real values and provide upperbounds on the
probability that the random variable deviates from its expectation�

Markov Inequality� The most basic inequality is Markov Inequality that applies
to any random variable with bounded maximum or minimum value� For simplicity�
it is stated for random variables that are lowerbounded by zero� and reads as
follows� Let X be a non�negative random variable and v be a non�negative real
number� Then

Pr �X�v� � E�X�

v
�D���

Equivalently� Pr�X � r � E�X�� � �
r � The proof amounts to the following sequence�

E�X� �
X
x

Pr�X�x� � x

�
X
x�v

Pr�X�x� � 	 $
X
x�v

Pr�X�x� � v

� Pr�X�v� � v

Chebyshev�s Inequality� Using Markov
s inequality� one gets a potentially
stronger bound on the deviation of a random variable from its expectation� This
bound� called Chebyshev
s inequality� is useful when having additional informa
tion concerning the random variable �speci�cally� a good upper bound on its vari

ance�� For a random variable X of �nite expectation� we denote by Var�X�
def
�

E��X � E�X���� the variance of X � and observe that Var�X� � E�X�� � E�X���
Chebyshev
s inequality then reads as follows� Let X be a random variable� and
� � 	� Then

Pr �jX � E�X�j��� � Var�X�

�� �
�D���

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

Proof� We de�ne a random variable Y
def
� �X � E�X���� and apply Markov in

equality� We get

Pr �jX � E�X�j��� � Pr
�
�X � E�X��� � ��

�
� E��X � E�X����

��

and the claim follows�

Corollary �Pairwise Independent Sampling�� Chebyshev
s inequality is particu
larly useful in the analysis of the error probability of approximation via repeated
sampling� It su�ces to assume that the samples are picked in a pairwise indepen
dent manner� where X�� X�� ���� Xn are pairwise independent if for every i �� j and
every �� � it holds that Pr�Xi��
 Xj ��� � Pr�Xi��� � Pr�Xj ���� The corol
lary reads as follows� Let X�� X�� ���� Xn be pairwise independent random variables
with identical expectation� denoted �� and identical variance� denoted 	�� Then�
for every � � 	� it holds that

Pr

�����Pn
i��Xi

n
� �

���� � �

�
� 	�

��n �
�D���

Proof� De�ne the random variables Xi
def
� Xi � E�Xi�� Note that the X i
s are

pairwise independent� and each has zero expectation� Applying Chebyshev
s in
equality to the random variable

Pn
i��

Xi

n � and using the linearity of the expectation
operator� we get

Pr

������
nX
i��

Xi

n
� �

����� � �

�
� Var

�Pn
i��

Xi

n

�
��

�
E
h�Pn

i��Xi

��i
�� � n�

Now �again using the linearity of expectation�

E

��� nX
i��

Xi

��
�� �

nX
i��

E
h
X

�
i

i
$

X
�i��jn

E
�
XiXj

�
By the pairwise independence of the Xi
s� we get E�XiXj � � E�Xi� � E�Xj �� and
using E�Xi� � 	� we get

E

��� nX
i��

Xi

��
�� � n � 	�

The corollary follows�

D��� PROBABILISTIC PRELIMINARIES �

Cherno� Bound� When using pairwise independent sample points� the error
probability in the approximation is decreasing linearly with the number of sample
points �see Eq� �D����� When using totally independent sample points� the error
probability in the approximation can be shown to decrease exponentially with
the number of sample points� �The random variables X�� X�� ���� Xn are said to
be totally independent if for every sequence a�� a�� ���� an it holds that Pr�
ni��Xi�
ai� �

Qn
i�� Pr�Xi�ai��� Probability bounds supporting the foregoing statement are

given next� The �rst bound� commonly referred to as Cherno	 Bound� concerns 	�
random variables �i�e�� random variables that are assigned as values either 	 or ���
and asserts the following� Let p � �

� � and X�� X�� ���� Xn be independent ��� random
variables such that Pr�Xi � �� � p� for each i� Then� for every � � �	� p��� p��� we
have

Pr

�����Pn
i��Xi

n
� p

���� � �

�
� � � e� ��

�p���p�
�n � � � e����n �D� �

Proof Sketch� We upperbound Pr�
Pn

i��Xi � pn � �n�� and Pr�pn�Pn
i��Xi �

�n� is bounded similarly� Letting Xi
def
� Xi � E�Xi�� we apply Markov Inequality

to the random variable e�
P

n

i	�
Xi � where � � 	 is determined to optimize the

expressions that we derive �hint� � � +���p��� p�� will do�� Thus� Pr�
Pn

i��Xi �
�n� is upperbounded by

E�e�
P

n

i	�
Xi �

e��n
� e���n �

nY
i��

E�e�Xi �

where the equality is due to the independence of the random variables� To simplify
the rest of the proof� we establish a suboptimal bound as follows� Using a Taylor
expansion of ex �e�g�� ex � � $ x$ x� for x � �� and observing that E�Xi� � 	� we

get E�e�Xi � � �$��E�X
�
i �� which equals �$��p���p�� Thus� Pr�Pn

i��Xi�pn � �n�
is upperbounded by e���n � �� $ ��p��� p��n � exp����n$ ��p��� p�n�� which

is optimized at � � ����p��� p�� yielding exp�� ��

�p��p� � n�� Needless to say� this

method can be applied in more general settings �e�g�� for Xi � �	� �� rather than
Xi � f	� �g��

A more general bound� which refers to independent copies of a general �bounded�
random variable� is given next �and is commonly referred to as Hoefding Inequality���

Let X�� X�� ���� Xn be n independent random variables with identical probability dis�
tribution� each ranging over the �real� interval �a� b�� and let � denote the expected
value of each of these variables� Then� for every � � 	�

Pr

�����Pn
i��Xi

n
� �

���� � �

�
� � � e� ���

�b�a��
�n

�D���

Hoefding Inequality is useful in estimating the average value of a function de�ned
over a large set of values� especially when the desired error probability needs to

�A more general form requires the Xi�s to be independent� but not necessarily identical� and

uses �
def
� �

n

Pn

i��
E�Xi�� See ���� Apdx� A��

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

be negligible �i�e�� decrease faster than any polynomial in the relevant parameter��
Such an estimate can be obtained provided that we can e�ciently sample the set
and have a bound on the possible values �of the function��

Pairwise independent versus totally independent sampling� Referring to
Eq� �D���� consider� for simplicity� the case that a � 	 � � � b � �� In this case�
n independent samples give an approximation that deviates by � from the expect
value �i�e�� �� with probability� denoted �� that is exponentially decreasing with
��n� Such an approximation is called an ��� ���approximation� and can be achieved
using n � O���� � log������ sample points� Thus� the number of sample points
is polynomially related to ��� and logarithmically related to ���� In contrast�
by Eq� �D���� an ��� ��approximation by n pairwise independent samples calls for
setting n � O���� � ����� We stress that� in both cases the number of samples is
polynomially related to the desired accuracy of the estimation �i�e�� ��� The only
advantage of totally independent samples over pairwise independent ones is in the
dependency of the number of samples on the error probability �i�e�� ���

D�� Hashing

Hashing is extensively used in complexity theory� The typical application is map
ping arbitrary �unstructured� sets �almost uniformly� to a structured set of ad
equate size� Speci�cally� hashing is supposed to map an arbitrary �msubset of
f	� �gn to f	� �gm in an �almost uniform� manner�

For a �xed set S of cardinality �m� a �� mapping fS � S f	� �gm does
exist� but it is not necessarily an e�cient one �e�g�� it may require �knowing� the
entire set S�� Clearly� no single function f � f	� �gn f	� �gm can map each �m
subset of f	� �gn to f	� �gm in a �� manner �or even approximately so�� However�
a random function f � f	� �gn f	� �gm has the property that� for every �m
subset S � f	� �gn� with overwhelmingly high probability f maps S to f	� �gm
such that no point in the range has too many f preimages in S� The problem
is that a truly random function is unlikely to have a succinct representation �let
alone an e�cient evaluation algorithm�� We thus seek families of functions that
have a similar property� but do have a succinct representation as well as an e�cient
evaluation algorithm�

D���� De�nitions

Motivated by the foregoing discussion� we consider families of functions fHm
n gm�n

Such that the following properties hold�

�� For every S � f	� �gn� with high probability� a function h selected uniformly
in Hm

n maps S to f	� �gm in an �almost uniform� manner� For example� we
may require that� for any jSj � �m and each point y� with high probability
over the choice of h� it holds that jfx � S � h�x� � ygj � poly�n��

D�	� HASHING ��

�� The functions in Hm
n have succinct representation� For example� we may

require that Hm
n � f	� �g�n�m�� for some polynomial
�

�� The functions in Hm
n can be e�ciently evaluated� That is� there exists a

polynomialtime algorithm that� on input a representation of a function� h
�in Hm

n �� and a string x�f	� �gn� returns h�x�� In some cases we make even
more stringent requirements regarding the algorithm �e�g�� that it runs in
linear space��

Condition � was left vague on purpose� At the very least� we require that the
expected size of fx � S � h�x� � yg equals jSj��m� We shall see �in Section D�����
that di�erent interpretations of Condition � are satis�ed by di�erent families of
hashing functions� We focus on twise independent hashing functions� de�ned next�

De�nition D�� �twise independent hashing functions�� A family Hm
n of func�

tions from n�bit strings to m�bit strings is called t�wise independent if for every t
distinct domain elements x�� ���� xt � f	� �gn and every y�� ���� yt � f	� �gm it holds
that

Prh�Hm
n
�
ti��h�xi� � yi� � ��t�m

That is� a uniformly chosen h � Hm
n maps every t domain elements to the range in

a totally uniform manner� Note that for t � �� it follows that the probability that
a random h � Hm

n maps two distinct domain elements to the same image equals
��m� Such �families of� functions are called universal �cf� ������ but we will focus
on the stronger condition of twise independence�

D���� Constructions

The following constructions are merely a reinterpretation of the constructions
presented in x�� ����� �Alternatively� one may view the constructions presented
in x�� ���� as a reinterpretation of the following two constructions��

Construction D�� �twise independent hashing�� For t�m� n � N such that m �
n� consider the following family of hashing functions mapping n�bit strings to m�
bit strings� Each t�sequence s � �s�� s�� ���� st��� � f	� �gt�n describes a function
hs � f	� �gn f	� �gm such that hs�x� equals the m�bit pre�x of the binary repre�

sentation of
Pt��

j�� sjx
j � where the arithmetic is that of GF��n�� the �nite �eld of

�n elements�

Proposition ���� implies that Construction D�� constitutes a family of twise inde
pendent hash functions� Typically� we will use either t � � or t � +�n�� To make
the construction totally explicit� we need an explicit representation of GF��n��
see details following Proposition ����� An alternative construction for the case
of t � � may be obtained analogously to the pairwise independent generator of
Proposition ��� � Recall that a Toeplitz matrix is a matrix with all diagonals being
homogeneous� that is� T � �ti�j� is a Toeplitz matrix if ti�j � ti���j��� for all i� j�

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

Construction D�� �Alternative pairwise independent hashing�� For m � n� con�
sider the family of hashing functions in which each n�by�m Toeplitz matrix T and
an m�dimensional vector b describes a function hT�b � f	� �gn f	� �gm such that
hT�b�x� � Tx$ b�

Proposition ��� implies that Construction D�� constitutes a family of pairwise
independent hash functions� Note that a nbym Toeplitz matrix can be speci�ed
by n$m� � bits� yielding a description length of n$�m� � bits� An alternative
construction �analogous to Eq� ������ and requiringm�n$m bits of representation�
uses arbitrary nbym matrices rather than Toeplitz matrices�

D���� The Leftover Hash Lemma

We now turn to the �almost uniform� cover condition �i�e�� Condition �� mentioned
in Section D����� One concrete interpretation of this condition is given by the
following lemma �and another is implied by it� see Theorem D� ��

Lemma D�	 Let m � n be integers� Hm
n be a family of pairwise independent hash

functions� and S � f	� �gn� Then� for every y � f	� �gm and every � � 	� for all
but at most an �m

��jSj fraction of h � Hm
n it holds that

jfx � S � h�x� � ygj � ��& �� � jSj
�m �

�D���

By pairwise independence �or rather even by ��wise independence��� the expected
size of fx � S � h�x� � yg is jSj��m� where the expectation is taken uniformly over
all h � Hm

n � The lemma upper bounds the fraction of h
s that deviate from the
expected behavior �i�e�� for which jh���y�� Sj �� ��& �� � jSj��m�� Needless to say�
the bound is meaningful only in case jSj � �m �or alternatively for � � ��� Setting
� � �

p
�m�jSj �and focusing on the case that jSj � �m�� we infer that for all but at

most an � fraction of h � Hm
n it holds that jfx � S � h�x� � ygj � ��& �� � jSj��m�

Thus� each range element has approximately the right number of hpreimages in
the set S� under almost all h � Hm

n �

Proof� Fixing an arbitrary set S � f	� �gn and an arbitrary y � f	� �gm� we
estimate the probability that a uniformly selected h � Hm

n violates Eq� �D���� We
de�ne random variables �x� over the aforementioned probability space� such that
�x � �x�h� equal � if h�x� � y and �x � 	 otherwise� The expected value ofP

x�S �x is �
def
� jSj � ��m� and we are interested in the probability that this sum

deviates from the expectation� Applying Chebyshev
s Inequality� we get

Pr

��������
X
x�S

�x

����� � � � �
�
�

�

����

because Var�
P

x�S �x� � jSj � ��m by the pairwise independence of the �x
s and the
fact that E��x� � ��m� The lemma follows�

D�	� HASHING ��

A generalization �called mixing�� The proof of Lemma D�� can be easily
extended to show that for every set T � f	� �gm and every � � 	� for all but
at most an �m

jT j�jSj�� fraction of h � Hm
n it holds that jfx � S � h�x� � Tgj �

�� & �� � jT j � jSj��m� �Hint� rede�ne �x � ��h� � � if h�x� � T and �x � 	
otherwise�� This assertion is meaningfull provided that jT j � jSj � �m���� and in
the case that m � n it is called a mixing property�

An extremely useful corollary� The aforementioned generalization of Lemma D��
asserts that most functions behave well with respect to any �xed sets of preimages
S � f	� �gn and images T � f	� �gm� A seemingly stronger statement� which is
�nontrivially� implied by Lemma D�� itself� is that for all adequate sets S most
functions h � Hm

n map S to f	� �gm in an almost uniform manner�� This is a
consequence of the following theorem�

Theorem D�� �a�k�a Leftover Hash Lemma�� Let Hm
n and S � f	� �gn be as in

Lemma D��� and de�ne � � �
p
�m�jSj� Consider random variable X and H that

are uniformly distributed on S and Hm
n � respectively� Then� the statistical distance

between �H�H�X�� and �H�Um� is at most ���

Using the terminology of Section D��� we say that Hm
n yields a strong extractor

�with parameters to be spelled out there��

Proof� Let V denote the set of pairs �h� y� that violate Eq� �D���� and V
def
�

�Hm
n � f	� �gm� n V � Then for every �h� y� � V it holds that

Pr��H�H�X�� � �h� y�� � Pr�H � h� � Pr�h�X� � y�

� ��& �� � Pr��H�Um� � �h� y���

On the other hand� by Lemma D�� �which asserts Pr��H� y� � V � � � for every
y � f	� �gm� and the setting of �� we have Pr��H�Um� � V � � �� It follows that

Pr��H�H�X�� � V � � �� Pr��H�H�X�� � V �

� �� Pr��H�Um�� � V � $ � � ���

Using all these upperbounds� we upperbounded the statistical di�erence between
�H�H�X�� and �H�Um�� denoted (� by separating the contribution of V and V �
Speci�cally� we have

(�
�

�
�

X
h�y��Hm

n �f���gm
jPr��H�H�X����h� y��� Pr��H�Um���h� y��j

� �

�
$

�

�
�
X

h�y��V
jPr��H�H�X����h� y��� Pr��H�Um���h� y��j

� �

�
$

�

�
�
X

h�y��V
�Pr��H�H�X����h� y�� $ Pr��H�Um���h� y���

�That is� for X and � as in Theorem D�� and any � �� for all but at most an � fraction of
the functions h � Hm

n it holds that h�X� is ���
���close to Um�

 �	APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

� �

�
$

�

�
� ���$ ��

and the claim follows�

An alternative proof of Theorem D��� De�ne the collision probability of a
random variable Z� denote cp�Z�� as the probability that two independent samples

of Z yield the same result� Alternatively� cp�Z�
def
�
P

z Pr�Z � z��� Theorem D�
follows by combining the following two facts�

�� A general fact� If Z � �N � and cp�Z� � �� $ �����N then Z is ��close to the
uniform distribution on �N ��

We prove the contrapositive� Assuming that the statistical distance between
Z and the uniform distribution on �N � equals �� we show that cp�Z� �
��$�����N � This is done by de�ning L

def
� fz � Pr�Z � z� � ��Ng� and lower

bounding cp�Z� by using the fact that the collision probability is minimized
on uniform distributions� Speci�cally� considering the uniform distributions
on L and �N � n L respectively� we have

cp�Z� � jLj �

Pr�Z � L�

jLj
��

$ �N � jLj� �

Pr�Z � �N � n L�

N � jLj
��
�

�D���

Using � � � � Pr�Z � L�� where � � jLj�N � the r�h�s of Eq� �D��� equals

� $
�

����� � � $ ����

�� The collision probability of �H�H�X�� is at most ��$ ��m�jSj����jHm
n j � �m��

�Furthermore� this holds even if Hm
n is only universal��

The proof is by a straightforward calculation� Speci�cally� note that cp�H�H�X�� �
jHm

n j���Eh�Hm
n
�cp�h�X���� whereas Eh�Hm

n
�cp�h�X��� � jSj��Px��x��S Pr�H�x�� �

H�x���� The sum equals jSj $ �jSj� � jSj� � ��m� and so cp�H�H�X�� �
jHm

n j�� � ���m $ jSj����
Note that it follows that �H�H�X�� is

p
�m��jSjclose to �H�Um�� which is a

stronger bound than the one provided in Theorem D� �

Stronger uniformity via higher independence� Recall that Lemma D�� as
serts that for each point in the range of the hash function� with high probability
over the choice of the hash function� this �xed point has approximately the expected
number of preimages in S� A stronger condition asserts that� with high probability
over the choice of the hash function� every point in its range has approximately
the expected number of preimages in S� Such a guarantee can be obtained when
using nwise independent hashing functions�

Lemma D�� Let m � n be integers� Hm
n be a family of n�wise independent hash

functions� and S � f	� �gn� Then� for every � � �	� ��� for all but at most an
�m � �n ��m���jSj�n�� fraction of the functions h � Hm

n � it is the case that Eq� �D���
holds for every y � f	� �gm�

D��� SAMPLING ��

Indeed� the lemma should be used with �m � ��jSj��n� In particular� using m �
log� jSj�log�� n��

�� guarantees that with high probability each range elements has
��& �� � jSj��m preimages in S� Under this setting of parameters jSj��m � n����
which is poly�n� whenever � � ��poly�n�� Needless to say� this guarantee is stronger
than the conclusion of Theorem D� �

Proof� The proof follows the footsteps of the proof of Lemma D��� taking advan
tage of the fact that here the random variables �i�e�� the �x
s� are nwise indepen
dent� For t � n��� this allows using the socalled �tth moment analysis� which
generalizes the second moment analysis of pairwise independent samplying �pre
sented in Section D������ As in the proof of Lemma D��� we �x any S and y� and
de�ne �x � �x�h� � � if and only if h�x� � y� Letting � � E�

P
x�S �x� � jSj��m

and �x � �x � E��x�� we start with Markov inequality�

Pr

��������
X
x�S

�x

����� � � � �
�

�
E��
P

x�S �x�
�t�

��t��t

�

P
x������x�t�S E�

Q�t
i�� �xi �

��t � �jSj��m��t
�D���

Using �twise independence� we note that only the terms in Eq� �D��� that do not
vanish are those in which each variable appears with multiplicity� This mean that
only terms having less than t distinct variables contribute to Eq� �D���� Now� for

every j � t� we have less than
�jSj
j

� � ��t-� � ��t-�j-� � jSjj terms with j distinct

variables� and each such term contributes less than ���m�j to the sum� Thus�
Eq� �D��� is upperbounded by

�t-

��jSj��m��t �
tX

j��

�jSj��m�j
j-

� � � �t-�t-

���jSj��m�t �

�t � �m
��jSj

�t
where the �rst inequality assumes jSj � n�m �since the claim hold vacuously other
wise�� This upperbounds the probability that a random h � Hm

n violates Eq� �D���
with reprect to a �xed y� Using a union bound on all y � f	� �gm� the lemma fol
lows�

D�� Sampling

In many settings repeated sampling is used to estimate the average of a huge set of
values� Namely� given a �value� function � �f	� �gnR� one wishes to approximate

*�
def
� �

�n

P
x�f���gn ��x� without having to inspect the value of � at each point of the

domain� The obvious thing to do is sampling the domain at random� and obtaining
an approximation to *� by taking the average of the values of � on the sample points�
It turns out that certain �pseudorandom� sequences of sample points may serve
almost as well as truly random sequences of sample points� and thus the current
problem is indeed related to Section �� �

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

D���� Formal Setting

It is essential to have the range of � be bounded �or else no reasonable approx
imation is possible�� For simplicity� we adopt the convention of having �	� �� be
the range of �� and the problem for other �predetermined� ranges can be treated
analogously� Our notion of approximation depends on two parameters� accuracy
�denoted �� and error probability �denoted ��� We wish to have an algorithm that�
with probability at least �� �� gets within � of the correct value� This leads to the
following de�nition�

De�nition D� �sampler�� A sampler is a randomized oracle machine that on
input parameters n �length�� � �accuracy� and � �error�� and oracle access to any
function � � f	� �gn �	� ��� outputs� with probability at least �� �� a value that is

at most � away from *�
def
� �

�n

P
x�f���gn ��x�� Namely�

Pr�jsampler��n� �� ��� *�j � �� � �

where the probability is taken over the internal coin tosses of the sampler� also
called its random seed�
A non�adaptive sampler is a sampler that consists of two deterministic algorithms�
a sample generating algorithm� G� and a evaluation algorithm� V � On input n� �� �
and a random seed of adequate length� algorithm G generates a sequence of queries�
denoted s�� ���� sm � f	� �gn� Algorithm V is given the corresponding ��values �i�e��
��s��� ���� ��sm�� and outputs an estimate to *��

We are interested in �the complexity of sampling� quanti�ed as a function of the
parameters n� � and �� Speci�cally� we will consider three complexity measures�
The sample complexity �i�e�� the number of oracle queries made by the sampler�� the
randomness complexity �i�e�� the length of the random seed used by the sampler��
and the computational complexity �i�e�� the runningtime of the sampler�� We say
that a sampler is e�cient if its runningtime is polynomial in the total length of
its queries �i�e�� polynomial in both its sample complexity and in n�� We will focus
on e�cient samplers� Furthermore� we will focus on e�cient samplers that have
optimal �upto a constant factor� sample complexity� and will wish the randomness
complexity to be as low as possible�

D���� Known Results

We note that all the following positive results refer to nonadaptive samplers�
whereas the lower bound hold also for general samplers� For more details on these
results� see ���� Sec� ������ and the references therein�

The naive sampler� The straightforward method �or the naive sampler� consists
of uniformly and independently selecting su�ciently many sample points �queries��
and outputting the average value of the function on these points� Using Cherno�

Bound it follows that O� log��
��� � sample points su�ce� As indicated next� the naive

D��� SAMPLING ��

sampler is optimal �upto a constant factor� in its sample complexity� but is quite
wasteful in randomness�

It is known that "� log��
��� � samples are needed in any sampler� and that that
samplers that make s�n� �� �� queries require randomness at least n $ log������ �
log� s�n� �� �� � O���� These lower bounds are tight �as demonstrated by non
explicit and ine�cient samplers�� These facts guide our quest for improvements�
which is aimed at �nding more randomnesse�cient ways of e�ciently generating
sample sequences that can be used in conjunction with an appropriate evaluation
algorithm V � �We stress that V need not necessarily take the average of the values
of the sampled points��

The pairwise�independent sampler� Using a pairwiseindependence genera
tor �cf� x�� ����� for generating sample points� along with the natural evaluation
algorithm �which outputs the average of the values of these points�� we can ob
tain a great saving in the randomness complexity� In particular� using a seed of
length �n� we can generate O������� pairwiseindependent sample points� which
�by Eq� �D���� su�ce for getting accuracy � with error �� Thus� this �Pairwise
Independent� sampler uses �n coin tosses rather than the "��log��������� �n� coin
tosses used by the naive sampler� Furthermore� for constant � � 	� the Pairwise
Independent Sampler is optimal upto a constant factor in both its sample and
randomness complexities� However� for small � �i�e�� � � o����� this sampler is
wasteful in sample complexity�

The Median�of�Averages sampler� A new idea is required for going fur
ther� and a relevant tool � random walks on expander graphs �see Sections �� ��
and E��� � is needed too� Speci�cally� we combine the PairwiseIndependent Sam
pler with the Expander Random Walk Generator �see Proposition ����� to obtain
a new sampler� The new sampler uses a tlong random walk on an expander with

vertex set f	� �g�n for generating a sequence of t
def
� O�log������ related seeds for

t invocations of the Pairwise�Independent Sampler� where each of these invoca
tions uses the corresponding �n bits to generate a sequence of O������ samples in
f	� �gn� Furthermore� each of these invocations returns a value that� with prob
ability at least 	��� is �close to *�� Theorem ���� �see also Exercise ����� is used
to show that� with probability at least �� exp��t� � �� �� most of these t invo
cations return an �close approximation� Hence� the median among these t values
is an ��� ���approximation to the correct value� The resulting sampler� called the

MedianofAverages Sampler� has sample complexity O� log��
��� � and randomness
complexity �n $ O�log������� which is optimal upto a constant factor in both
complexities�

Further improvements� The randomness complexity of the MedianofAverages
Sampler can be improved from �n$O�log������ to n$O�log�������� while main

taining its �optimal� sample complexity �of O� log��
��� ��� This is done by replacing
the Pairwise Independent Sampler by a sampler that picks a random vertex in a
suitable expander and samples all its neighbors�

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

Averaging Samplers� Averaging �a�k�a� �Oblivious�� samplers are nonadaptive
samplers in which the evaluation algorithm is the natural one� that is� it merely
outputs the average of the values of the sampled points� Indeed� the Pairwise
Independent Sampler is an averaging sampler� whereas the MedianofAverages
Sampler is not� Interestingly� averaging samplers have applications for which ordi
nary nonadaptive samplers do not su�ce� Averaging samplers are closely related
to randomness extractors� de�ned and discussed in Section D���

An odd perspective� Recall that a nonadaptive sampler consists of a sample
generator G and an evaluator V such that for every � �f	� �gn �	� �� it holds that

Prs������sm��GUk��jV ���s��� ���� ��sm��� *�j � �� � ��

Thus� we may view G as a pseudorandom generator that is subjected to a distin
guishability test that is determined by a �xed algorithm V and an arbitrary function

� �f	� �gn �	� ��� where we assume that Pr�jV ���U
��
n �� ���� ��U

m�
n ��� *�j � �� � ��

What is a bit odd here is that� except for the case of averaging samplers� the
distinguishability test contains a central component �i�e�� the evaluator V � that is
potentially custommade to help the generator G pass the test��

D���� Hitters

Hitters may be viewed as a relaxation of averaging samplers� Speci�cally� consider
ing only Boolean functions� hitters are required to generate a sample that contains
a point evaluating to � whenever at least an � fraction of the function values equal ��
That is� a hitter is a randomized algorithm that on input parameters n �length��
� �accuracy� and � �error�� outputs a list of nbit strings such that� for every set
S � f	� �gn of density greater than �� with probability at least � � �� the list
contains at least one element of S� Note the correspondance to the ��� ��hitting
problem de�ned in Section �� ���

Needless to say� any nonadaptive sampler yields a hitter �with respect to the
same parameters n� � � ��� and ���� However� hitting is strictly easier than
evaluating the density of the target set� O����� �pairwise independent� random
samples su�ce to hit any set of density � with constant probability� whereas "������
samples are needed for approximating the average value of a Boolean function up
to accuracy � �with constant error probability�� Indeed� adequate simpli�cations
of the samplers discussed in Appendix D���� yield hitters with sample complexity
proportional to ��� �rather than to ������

�Another aspect in which samplers di�er from the various pseudorandom generators discussed
in Chapter
 is in the aim to minimize� rather than maximize� the number of blocks �denoted
here by m� in the output sequence� However� also in case of samplers the aim is to maximize the
block�length �denoted here by n��

�Note that in this context adaptivity does not provide any advatage� since one may assume
without loss of generality that all prior samples missed the target set S�

D��� RANDOMNESS EXTRACTORS �

D�� Randomness Extractors

Extracting almostperfect randomness from sources of weak �i�e�� defected� ran
domness is crucial for the actual use of randomized algorithms� procedures and
protocols� The latter are analyzed assuming that they are given access to a perfect
random source� while in reality one typically has access only to sources of weak
�i�e�� highly imperfect� randomness� Randomness extractors are e�cient proce
dures that �possibly with the help of little extra randomness� enhance the quality
of random sources� converting any source of weak randomness to an almost perfect
one� In addition� randomness extractors are related to several other fundamental
problems� to be further discussed later�

One key parameter� which was avoided in the foregoing discussion� is the class of
weak random sources from which we need to extract almost perfect randomness� It
is preferable to make as little assumptions as possible regarding the weak random
source� In other words� we wish to consider a wide class of such sources� and
require that the randomness extractor �often referred to as the extractor� �works
well� for any source in this class� A general class of such sources is de�ned in
xD������� but �rst we wish to mention that even for very restricted classes of sources
no deterministic extractor can work�� To overcome this impossibility result� two
approaches are used�

Seeded extractors� The �rst approach consists of considering randomized ex
tractors that use a relatively small amount of randomness �in addition to
the weak random source�� That is� these extractors obtain two inputs� a
short truly random seed and a relatively long sequence generated by an arbi
trary source that belongs to the speci�ed class of sources� This suggestion is
motivated in two di�erent ways�

�� The application may actually have access to an almostperfect random
source� but bits from this source are much more expensive than bits
from the weak �i�e�� lowquality� random source� Thus� it makes sense
to obtain few highquality bits from the almostperfect source and use
them to �purify� the cheap bits obtained from the weak �lowquality�
source�

�� In some applications �e�g�� when using randomized algorithms�� it may
be possible to scan over all possible values of the seed and run the algo
rithm using the corresponding extracted randomness� That is� we obtain
a sample r from the weak random source� and invoke the algorithm on
extract�s� r�� for every possible seed s� ruling by majority� �This al
ternative is typically not applicable to cryptographic and�or distributed
settings��

Few independent sources� The second approach consists of considering deter
ministic extractors that obtain samples from a few �say two� independent

�For example� consider the class of sources that output n�bit strings such that no string
occurs with probability greater than ���n��� �i�e�� twice its probability weight under the uniform
distribution��

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

sources of weak randomness� Such extractors are applicable in any setting
�including in cryptography�� provided that the application has access to the
required number of independent weak random sources�

In this section we focus on the �rst type of extractors �i�e�� the seeded extractors��
This choice is motivated both by the relatively more mature state of the research
in that direction and the closer connection between this direction and other topics
in complexity�

D���� De�nitions and various perspectives

We �rst present a de�nition that corresponds to the foregoing motivational discus
sion� and later discuss its relation to other topics in complexity�

D�	���� The Main De�nition

A very wide class of weak random sources corresponds to sources for which no
speci�c output is too probable� That is� the class is parameterized by a �probability�
bound � and consists of all sources X such that for every x it holds that Pr�X �
x� � �� In such a case� we say that X has min�entropy� at least log������� Indeed�
we represent sources as random variables� and assume that they are distributed over
strings of a �xed length� denoted n� An �n� k��source is a source that is distributed
over f	� �gn and has minentropy at least k�

An interesting special case of �n� k�sources is that of sources that are uniform
over a subset of �k strings� Such sources are called �n� k���at� A simple but useful
observation is that each �n� k�source is a convex combination of �n� k��at sources�

De�nition D�� �extractor for �n� k�sources��

�� An algorithm Ext �f	� �gd�f	� �gnf	� �gm is called an extractor with error
� for the class C if for every source X in C it holds that Ext�Ud� X� is ��close
to Um� If C is the class of �n� k��sources then Ext is called a �k� ���extractor�

� An algorithm Ext is called a strong extractor with error � for C if for every
source X in C it holds that �Ud�Ext�Ud� X�� is ��close to �Ud� Um�� A strong
�k� ���extractor is de�ned analogously�

Using the �decomposition� of �n� k�sources to �n� k��at sources� it follows that
Ext is a �k� ���extractor if and only if it is an extractor with error � for the class
of �n� k���at sources� �A similar claim holds for strong extractors�� Thus� much of
the technical analysis is conducted with respect to the class of �n� k��at sources�

�Recall that the entropy of a random variableX is de�ned as
P

x
Pr�X � x� log���
Pr�X � x���

Indeed the min�entropy of X equals minxflog���
Pr�X � x��g� and is always upper�bounded by
its entropy�

D��� RANDOMNESS EXTRACTORS ��

For example� it is easy to see that� for d � log��n��
�� $O���� there exists a �k� ��

extractor Ext � f	� �gd � f	� �gn f	� �gk� �The proof is by the Probabilistic
Method and uses a union bound on the set of all �n� k��at sources��	

We seek� however� explicit extractors� that is� extractors that are implementable
by polynomialtime algorithms� We note that the evaluation algorithm of any fam
ily of pairwise independent hash functions mapping nbit strings to mbit strings
constitutes a �strong� �k� ��extractor for � � ��k�m��� �see the alternative proof of
Theorem D� �� However� these extractors necessarily use a long seed �i�e�� d � �m
must hold �and in fact d � n$�m�� holds in Construction D����� In Section D����
we survey constructions of e�cient �k� ��extractors that obtain logarithmic seed
length �i�e�� d � O�log�n������ But before doing so� we provide a few alternative
perspectives on extractors�

An important note on logarithmic seed length� The case of logarithmic
seed length is of particular importance for a variety of reasons� Firstly� when
emulating a randomized algorithm using a defected random source �as in Item � of
the motivational discussion of seeded extractors�� the overhead is exponential in the
length of the seed� Thus� the emulation of a generic probabilistic polynomialtime
algorithm can be done in polynomial time only if the seed length is logarithmic�
Similarly� the applications discussed in xD������ and xD������ are feasible only if
the seed length is logarithmic� Lastly� we note that logarithmic seed length is an
absolute lowerbound for �k� ��extractors� whenever n � k$k��� �and m � � and
� � �����

D�	���� Extractors as averaging samplers

There is a close relationship between extractors and averaging samplers �which
are mentioned towards the end of Section D���� We �rst show that any averaging
sampler gives rise to an extractor� Let G � f	� �gn �f	� �gm�t be the sample gen
erating algorithm of an averaging sampler having accuracy � and error probability
�� That is� G uses n bits of randomness and generates t sample points in f	� �gm
such that for every f � f	� �gm �	� �� with probability at least ��� the average of

the f values of these points is in the interval �f & ��� where f
def
� E�f�Um��� De�ne

Ext � �t� � f	� �gn f	� �gm such that Ext�i� r� is the ith sample generated by
G�r�� We shall prove that Ext is a �k� ���extractor� for k � n� log�������

Suppose towards the contradiction that there exists a �n� k��at source X such
that for some S � f	� �gm it is the case that Pr�Ext�Ud� X� � S� � Pr�Um � S�$���
where d � log� t and �t� � f	� �gd� De�ne

B � fx � f	� �gn � Pr�Ext�Ud� x� � S� � �jSj��m� $ �g�
Then� jBj � � � �k � � � �n� De�ning f�z� � � if z � S and f�z� � 	 otherwise� we

have f
def
� E�f�Um�� � jSj��m� But� for every r � B the f average of the sample

�The probability that a random function Ext � f�� �gd � f�� �gn � f�� �gk is not an extractor

with error � for a �xed �n� k��#at source is upper�bounded by ��
k � exp��$��dk����� which is

smaller than �

�
�n

�k

�
�

 ��APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

G�r� is greater than f $ �� in contradiction to the hypothesis that the sampler has
error probability � �with respect to accuracy ���

We now turn to show that extractors give rise to averaging samplers� Let Ext �
f	� �gd � f	� �gn f	� �gm be a �k� ��extractor� Consider the sample generation

algorithm G � f	� �gn �f	� �gm��d de�ne by G�r� � �Ext�s� r��s�f���gd � We prove
that it corresponds to an averaging sampler with accuracy � and error probability
� � ��n�k����

Suppose towards the contradiction that there exists a function f � f	� �gm
�	� �� such that for ��n � �k�� strings r � f	� �gn the average f value of the

sample G�r� deviates from f
def
� E�f�Um�� by more than �� Suppose� without loss

of generality� that for at least half of these r
s the average is greater than f $ ��
and let B denote the set of these r
s� Then� for X that is uniformly distributed on
B and is thus a �n� k�source� we have

E�f�Ext�Ud� X��� � E�f�Um�� $ ��

which �using jf�z�j � � for every z� contradicts the hypothesis that Ext�Ud� X� is
�close to Um�

D�	���� Extractors as randomness�e�cient error�reductions

As may be clear from the foregoing discussion� extractors yield randomnesse�cient
methods for errorreduction� Indeed� error�reduction is a special case of the sam�
pling problem� obtained by considering Boolean functions� Speci�cally� for a two
sided error decision procedure A� consider the function fx � f	� �g�jxj� f	� �g
such that fx�r� � � if A�x� r� � � and fx�r� � 	 otherwise� Assuming that
the probability that A is correct is at least 	� $ � �say � � ����� error reduc
tion amounts to providing a sampler with accuracy � and any desired error prob
ability � � � for the Boolean function fx� In particular� any �k� ��extractor
Ext � f	� �gd � f	� �gn f	� �g�jxj� with k � n � log����� � � will do� provided
�d is feasible �e�g�� �d � poly���jxj��� where ���� represents the randomness com
plexity of the original algorithm A�� The question of interest here is how does n
�which represents the randomness complexity of the corresponding sampler� grow
as a function of ��jxj� and ��

Error�reduction using the extractor Ext� �poly���jxj����f	� �gnf	� �g�jxj�
error probability randomness complexity

original algorithm ��� ��jxj�
resulting algorithm � �may depend on jxj� n �function of ��jxj� and ��

Jumping ahead �see Part � of Theorem D��	�� we note that for every � � �� one
can obtain n � O���jxj��$� log������� for any � � ��poly�jxj��� Note that� for � �
��O�jxj��� this bound on the randomnesscomplexity of errorreduction is better
than the bound of n � ��jxj� $ O�log������ that is provided �for the reduction of
onesided error� by the Expander RandomWalk Generator �of Section �� ���� albeit
the number of samples here is larger �i�e�� poly���jxj���� rather than O�log��������

D��� RANDOMNESS EXTRACTORS ��

Mentioning the reduction of one�sided error probability� brings us to a cor
responding relaxation of the notion of an extractor� which is called a disperser�
Loosely speaking� a �k� ��disperser is only required to hit �with positive probabil
ity� any set of density greater than � in its image� rather than produce a distribution
that is �close to uniform�

De�nition D�� �dispersers�� An algorithm Dsp � f	� �gd � f	� �gn f	� �gm is
called a �k� ���disperser if for every �n� k��source X the support of Dsp�Ud� X� covers
at least ��� �� � �m points� Alternatively� for every set S � f	� �gm of size greater
than ��m it holds that Pr�Dsp�Ud� X� � S� � 	�

Dispersers can be used for the reduction of onesided error analogously to the
use of extractors for the reduction of twosided error� Speci�cally� regarding the
aforementioned function fx �and assuming that either Pr�fx�U�jxj�� � �� � � or

fx�U�jxj�� � 	�� we may use any �k� ��disperser Dsp � f	� �gd�f	� �gn f	� �g�jxj�
in attempt to �nd a point z such that fx�z� � �� Indeed� if Pr�fx�U�jxj�� � �� � �

then jfz � ��s�f	� �gd� fx�Dsp�s� z�� � 	gj � �k� and thus the onesided error can
be reduced from �� � to ��n�k� while using n random bits� �Note that dispersers
are closely related to hitters �cf� Appendix D������ analogously to the relation of
extractors and averaging samplers��

D�	���	 Other perspectives

Extractors and dispersers have an appealing interpretation in terms of bipartite
graphs� Starting with dispersers� we view a disperser Dsp � f	� �gd � f	� �gn
f	� �gm as a bipartite graphG � ��f	� �gn� f	� �gm�� E� such that E � f�x�Dsp�s� x�� �
x � f	� �gn� s � f	� �gdg� This graph has the property that any subset of �k ver
tices on the left �i�e�� in f	� �gn� has a neighborhood that contains at least a �� �
fraction of the vertices of the right� which is remarkable in the typical case where
d is small �e�g�� d � O�log n���� and n � k � m whereas m � "�k� �or at least
m � k����� Furthermore� if Dsp is e�ciently computable then this bipartite graph
is strongly constructible in the sense that� given a vertex on the left� one can e�
ciently �nd all its neighbors� An extractor Ext � f	� �gd� f	� �gn f	� �gm yields
an analogous graph with a even stronger property� the neighborhood multiset of
any subset of �k vertices on the left covers the vertices on the right in an almost
uniform manner�

An odd perspective� In addition to viewing extractors as averaging samplers�
which in turn may be viewed within the scope of the pseudorandomness paradigm�
we mention here an even more odd perspective� Speci�cally� randomness extractors
may be viewed as randomized �by the seed� algorithms designed on purpose such
that to be fooled by any weak random source �but not by an even worse source��
Consider a �k� ��extractor Ext � f	� �gd � f	� �gn f	� �gm� for say � � ���		�
m � k � ��logn��� and d � O�log n���� and a potential test TS� parameterized
by a set S � f	� �gm� such that Pr�TS�x� � �� � Pr�Ext�Ud� x� � S� �i�e�� on
input x � f	� �gn� the test uniformly selects s � f	� �gd and outputs � if and

 	APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

only if Ext�s� x� � S�� Then� for every �n� k�source X the test TS does not
distinguish X from Un �i�e�� Pr�TS�X�� � Pr�TS�Un�� & ��� because Ext�Ud� X�
is ��close to Ext�Ud� Un� �since each is �close to Um��� On the other hand� for
every �n� k � d � ���at source Y there exists a set S such that TS distinguish
Y from Un with gap 	�� �e�g�� for S that equals the support of Ext�Ud� Y �� it
holds that Pr�TS�Y �� � � and Pr�TS�Un�� � jSj � ��m $ � � ��� $ � � 	����
Furthermore� this class of tests detects as defected� with probability ���� any source
that has entropy below �k����d�
 Thus� this weird class of tests views each �n� k�
source as �pseudorandom� while detecting sources of lower entropy �e�g�� entropy
lower than �k���� d� as nonpseudorandom� Indeed� this perspective stretches the
pseudorandomness paradigm quite far�

D���� Constructions

Recall that we seek explicit constructions of extractors� that is� functions Ext �
f	� �gd � f	� �gn f	� �gm that can be computed in polynomialtime� The ques
tion� of course� is of parameters� that is� having �k� ��extractors with m as large
as possible and d as small as possible� We �rst note that typically� m � k $
d � �� log������ � O���� and d � log���n � k����� � O��� must hold� regard
less of explicitness� The aforementioned bounds are in fact tight� that is� there
exists �nonexplicit� �k� ��extractors with m � k $ d � � log������ � O��� and
d � log���n� k�����$O���� The obvious goal is to meet these bounds via explicit
constructions�

D�	���� Some known results

Despite tremendous progress on this problem �and occasional claims regarding
�optimal� explicit constructions�� the ultimate goal was not reached yet� However�
we are pretty close� In particular� we have the following�

Theorem D��� �explicit constructions of extractors�� Explicit �k� ���extractors of
the form Ext � f	� �gd � f	� �gn f	� �gm exist in the following cases�

�� For any constant � � 	 and � � exp��k����� with d � O�logn��� and
m � ��� �� � �k �O�d���

� For any constants �� � � 	� with d � �� $ �� � log� n and m � k�poly�logn��

Part � is due to ��	�� and Part � is due to ������ where these works build on
previous ones �which are not cited here�� We note that� for sake of simplicity� we did
not quote the best possible bounds� Furthermore� we did not mention additional
incomparable results �which are relevant for di�erent ranges of parameters�� In
general� it seems that the �last word� has not been said yet� indeed the current

�For any such source Y � the distribution Z � Ext�Ud� Y � has entropy at most k
� � m
��
and thus is ����far from Um �and � ��far from Ext�Ud� Un��� The lower�bound on the statistical
distance of Z to Um can be proven by the contra�positive� if Z is 	�close to Um then its entropy
is at least �� � 	� �m� � �e�g�� by using Fano�s inequality� see ���� Thm� ���������

	That is� for � � �
� and m d�

D��� RANDOMNESS EXTRACTORS �

results are close to optimal� but this cannot be said about the way that they are
achieved� In view of the foregoing� we refrain from trying to provide an overview
of the proof of Theorem D��	� and review instead a conceptual insight that opened
the door to much of the recent developments in the area�

D�	���� The pseudorandomness connection

We conclude this section with an overview of a fruitful connection between extrac
tors and certain pseudorandom generators� The connection� discovered by Tre
visan ������ is surprising in the sense that it goes in a nonstandard direction� it
transforms certain pseudorandom generators into extractors� As argued throughout
this book �most conspicuously at the end of Section ������� computational objects
are typically more complex than the corresponding information theoretical objects�
Thus� if pseudorandom generators and extractors are at all related �which was not
suspected before ������ then this relation should not be expected to help in the con
struction of extractors� which seem an information theoretic object� Nevertheless�
the discovery of this relation did yield a breakthrough in the study of extractors���

But before describing the connection� let us wonder for a moment� Just looking
at the syntax� we note that pseudorandom generators have a single input �i�e�� the
seed�� while extractors have two inputs �i�e�� the nbit long source and the dbit
long seed�� But taking a second look at the Nisan�Wigderson Generator �i�e�� the
combination of Construction ���� with an ampli�cation of worstcase to average
case hardness�� we note that this construction can be viewed as taking two inputs�
a dbit long seed and a �hard� predicate on d�bit long strings �where d� � "�d�����

Now� an appealing idea is to use the nbit long source as a �truthtable� description
of a �worsecase� hard predicate �which indeed means setting n � �d

�

�� The key
observation is that even if the source is only weakly random we expect it to represent
a predicate that is hard on the worst�case�

Recall that the aforementioned construction is supposed to yield a pseudoran
dom generator whenever it starts with a hard predicate� In the current context�
where there are no computational restrictions� pseudorandomness is supposed to
hold against any �computationally unbounded� distinguisher� and thus here pseudo
randomness means being statistically close to the uniform distribution �on strings
of the adequate length� denoted
�� Intuitively� this makes sense only if the ob
served sequence is shorter that the amount of randomness in the source �and seed��
which is indeed the case �i�e��
 � k $ d� where k denotes the minentropy of the
source�� Hence� there is hope to obtain a good extractor this way�

To turn the hope into a reality� we need a proof �which is sketched next�� Look
ing again at the Nisan�Wigderson Generator� we note that the proof of indistin
guishability of this generator provides a blackbox procedure for computing the un
derlying predicate when given oracle access to any potential distinguisher� Specif

�
We note that once the connection became better understood� in#uence started going in the
�right� direction� from extractors to pseudorandom generators�

��Indeed� to �t the current context� we have modi�ed some notations� In Construction
��� the
length of the seed is denoted by k and the length of the input for the predicate is denoted by m�

 �APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

ically� in the proofs of Theorems ���� and ���� �which holds for any
 � ��d
������

this blackbox procedure was implemented by a relatively small circuit �which de
pends on the underlying predicate�� Hence� this procedure contains relatively little
information �regarding the underlying predicate�� on top of the observed
bit long
output of the extractor�generator� Speci�cally� for some �xed polynomial p� the
amount of information encoded in the procedure �and thus available to it� is upper

bound by b
def
� p�
�� while the procedure is suppose to compute the underlying

predicate correctly on each input� That is� this amount of information is supposed
to fully determine the underlying predicate� which in turn is identical to the nbit
long source� Thus� if the source has minentropy exceeding b� then it cannot be
fully determine using only b bits of information� It follows that the foregoing con
struction constitutes a �b$O���� ����extractor �outputting
 � b��� bits�� where
the constant ��� is the one used in the proof of Theorem ���� �and the argument
holds provided that b � n����� Note that this extractor uses a seed of length
d � O�d�� � O�log n�� The argument can be extended to obtain �k� poly���k��
extractors that output k��� bits using a seed of length d � O�log n�� provided that
k � n����

We note that the foregoing description has only referred to two abstract prop
erties of the Nisan�Wigderson Generator� ��� the fact that this generator uses
any worstcase hard predicate as a blackbox� and ��� the fact that its analysis
uses any distinguisher as a blackbox� In particular� we viewed the ampli�cation
of worstcase hardness to inapproximability �performed in Theorem ����� as part
of the construction of the pseudorandom generator� An alternative presentation�
which is more selfcontained� replaces the ampli�cation step of Theorem ���� by a
direct argument in the current �information theoretic� context and plugs the result
ing predicate directly into Construction ����� The advantages of this alternative
include using a simpler ampli�cation �since ampli�cation is simpler in the informa
tion theoretic setting than in the computational setting�� and deriving transparent
construction and analysis �which mirror Construction ���� and Theorem ����� re
spectively��

The alternative presentation� The foregoing analysis transforms a generic dis
tinguisher into a procedure that computes the underlying predicate correctly on
each input� which fully determines this predicate� Hence� an upperbound on the
information available to this procedure yields an upperbound on the number of
possible outcomes of the source that are bad for the extractor� In the alternative
presentation� we transforms a generic distinguisher into a procedure that approx
imates the underlying predicate� that is� the procedure yields a function that is
relatively close to the underlying predicate� If the potential underlying predicates
are far apart� then this yields the desired bound �on the number of bad source
outcomes that correspond to such predicates�� Thus� the idea is to encode the nbit
long source by an error correcting code of length n� � poly�n� and relative distance
	� ����n��� and use the resulting codeword as a truthtable of a predicate for Con
struction ����� Such codes �coupled with e�cient encoding algorithms� do exist �see

��Recalling that n � �d
�
� the restriction � � ���d

�� implies � � n�����

D��� RANDOMNESS EXTRACTORS �

xE����� �� and the bene�t in using them is that each n�bit long string �determined
by the information available to the aforementioned approximation procedure� may
be �	� � ���n��close to at most O�n�� codewords�� �which correspond to poten
tial predicates�� That is� the resulting extractor converts the n�bit input x into a
codeword x� � f	� �gn�� viewed as a predicate over f	� �gd� �where d� � log� n

��� and
evaluates this predicate at the
 projections of the d�bit long seed� where these pro�
jections are determined by the corresponding set system �i�e�� the
long sequence
of d�subsets of �d��� The analysis mirrors the proof of Theorem ����� and yields

a bound of �O�
�� � O�n�� on the number of bad outcomes for the source� where

O�
�� upperbounds the information available to the approximation procedure and
O�n�� upperbounds the number of sourceoutcomes that when encoded are each
�	� � ���n��close to the approximation procedure�

D�	���� Recommended reading

The interested reader is referred to a survey of Shaltiel ������ This survey con
tains a comprehensive introduction to the area� including an overview of the ideas
that underly the various constructions� In particular� the survey describes the ap
proaches used before the discovery of the pseudorandomness connection� the con
nection itself �and the constructions that arise from it�� and the �third generation�
of constructions that followed�

The aforementioned survey predates the more recent constructions �of extrac
tors� that extract a constant fraction of the minentropy using a logarithmically
long seed �cf� Part � of Theorem D��	�� Such constructions were �rst presented
in �� �� and improved �using di�erent ideas� in ��	��� Indeed� we refer to reader
to ��	��� which provides a selfcontained description of the best known extractor
�for almost all setting of the relevant parameters��

��See Appendix E�����

 �APPENDIXD� PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

Appendix E

Explicit Constructions

It is easier for a camel to go through the eye of a
needle� than for a rich man to enter into the kingdom
of God�

Matthew� ������

Complexity theory provides a clear de�nition of the intuitive notion of an explicit
construction� Furthermore� it also suggests a hierarchy of di�erent levels of ex
plicitness� referring to the ease of constructing the said object� The basic levels of
explicitness are provided by considering the complexity of fully constructing the
object �e�g�� the time it takes to print the truthtable of a �nite function�� In this
context� explicitness often means outputting a full description of the object in time
that is polynomial in the length of that description� Stronger levels of explicitness
emerge when considering the complexity of answering natural queries regarding the
object �e�g�� the time it takes to evaluate a �xed function at a given input�� In this
context� �strong� explicitness often means answering such queries in polynomial
time� The aforementioned themes are demonstrated in our brief overview of explicit
constructions of error correcting codes and expander graphs� These constructions
are� in turn� used in various parts of the main text�

Summary� We review several popular constructions of error correcting
codes� culminating with the construction of a concatenated code that
combines a ReedSolomon code with a �mildly explicit� construction of
a small code� We also review brie�y the notions of locally testable and
locally decodable codes� and a useful �list decoding bound� �i�e�� bound
ing the number of codewords that are close to any single sequence��

We review the two standard de�nitions of expanders� two levels of ex
plicitness� and two properties of expanders that are related to �single
step and multistep� random walks on them� We then review two ex
plicit constructions of expander graphs�

 � APPENDIX E� EXPLICIT CONSTRUCTIONS

E�� Error Correcting Codes

In this section we highlight some issues and aspects of coding theory that are most
relevant to the current book� The interested reader is referred to ��	�� for a more
comprehensive treatment of the computational aspects of coding theory� Structural
aspects of coding theory� which are at the traditional focus of that �eld� are covered
in standard textbook such as �� ���

Loosely speaking� an error correcting code is a mapping of strings to longer
strings such that any two di�erent strings are mapped to a corresponding pair of
strings that are far apart �and not merely di�erent�� Speci�cally� C � f	� �gk
f	� �gn is a �binary� code of distance d if for every x �� y � f	� �gk it holds that C�x�
and C�y� di�er on at least d bit positions�

It will be useful to extend this de�nition to sequences over an arbitrary alphabet
�� and to use some notations� Speci�cally� for x � �m� we denote the ith symbol
of x by xi �i�e�� x � x� � � �xm�� and consider codes over � �i�e�� mappings of �
sequences to �sequences�� The mapping �code� C � �k �n has distance d if
for every x �� y � �k it holds that jfi � C�x�i �� C�y�igj � d� The members of
fC�x� � x � �kg are called codewords �and in some texts this set itself is called a
code��

In general� we de�ne a metric� called Hamming distance� over the set of nlong
sequences over �� The Hamming distance between y and z� where y� z � �n� is
de�ned as the number of locations on which they disagree �i�e�� jfi � yi �� zigj�� The
Hamming weight of such sequences is de�ned as the number of nonzero elements
�assuming that one element of � is viewed as zero�� Typically� � is associated
with an additive group� and in this case the distance between y and z equals the
Hamming weight of w � y � z� where wi � yi � zi �for every i��

Asymptotics� We will actually consider in�nite families of codes� that is� fCk �

�k
k �

nk�
k gk�S � where S � N �and typically S � N�� �N�B�� we allow �k to

depend on k�� We say that such a family has distance d � N N if for every
k � S it holds that Ck has distance d�k�� Needless to say� both n � n�k� �called
the blocklength� and d�k� depend on k� and the aim is to have a linear dependence
�i�e�� n�k� � O�k� and d�k� � "�n�k���� In such a case� one talks of the relative rate
of the code �i�e�� the constant k�n�k�� and its relative distance �i�e�� the constant
d�k��n�k���

In general� we will often refer to relative distances between sequences� For
example� for y� z � �n� we say that y and z are ��close �resp�� ��far� if jfi � yi ��
zigj � � � n �resp�� jfi � yi �� zigj � � � n��

Explicitness� A mild notion of explicitness refers to constructing the list of all
codewords in time that is polynomial in its length �which is exponential in k��
A more standard notion of explicitness refers to generating a speci�c codeword
�i�e�� producing C�x� when given x�� which coincides with the encoding task men
tioned next� Stronger notions of explicitness refer to other computational problems
concerning codes �see next��

E��� ERROR CORRECTING CODES �

Computational problems� The most basic computational tasks associated with
codes are encoding and decoding �under noise�� The de�nition of the encoding task
is straightforward �i�e�� map x � �k

k to Ck�x��� and an e�cient algorithm is required
to compute each symbol in Ck�x� in poly�k� log j�kj�time�� When de�ning the de

coding task we note that �minimum distance decoding� �i�e�� given w � �
nk�
k �

�nd x such that Ck�x� is closest to y �in Hamming distance�� is just one natural
possibility� Two related variants� regarding a code of distance d� are�

Unique decoding� Given w � �
nk�
k that is at Hamming distance less than d�k���

from some codeword Ck�x�� retrieve the corresponding decoding of Ck�x�
�i�e�� retrieve x��

Needless to say� this task is wellde�ned because there cannot be two di�erent
codewords that are each at Hamming distance less than d�k��� from w�

List decoding� Given w � �
nk�
k and a parameter d� � d�k���� output a list of all

x � �k
k that are at Hamming distance at most d� from w�

Typically� one considers the case that d� � d�k�� See Section E���� for discus
sion of upperbounds on the number of codewords that are within a certain
distance from a generic sequence�

Two additional computational tasks are considered in Section E�����

Linear codes� Associating �k with some �nite �eld� we call a code Ck � �k
k

�
nk�
k linear if it satis�es Ck�x $ y� � Ck�x� $ Ck�y�� where x and y �resp�� Ck�x�

and Ck�y�� are viewed as kdimensional �resp�� n�k�dimensional� vectors over �k�
and the arithmetic is of the corresponding vector space� A useful property of linear
codes is that their distance equals the Hamming weight of the lightest codeword
other than Ck�	

k�� that is� minx��yfjfi � Ck�x�i �� Ck�y�igjg equals minx���kfjfi �
Ck�x�i �� 	gjg� Another useful property is that the code is fully speci�ed by a
kbyn�k� matrix� called the generating matrix� that consists of the codewords of
some �xed basis of �k

k� That is� the set of all codewords is obtained by taking all
j�kjk di�erent linear combination of the rows of the generating matrix�

E���� A few popular codes

Our focus will be on explicitly constructible codes� that is� �families of� codes of the

form fCk � �k
k �

nk�
k gk�S that are coupled with e�cient encoding and decoding

algorithms� But before presenting a few such codes� let us consider a nonexplicit
construction�

Proposition E�� �random linear codes�� Let c � � and n� d � N N be such that�
for all su�ciently large k� it holds that n�k� � max�c�k����H��d�k��n�k���� �d�k���

�This formulation is not the one common in coding theory� but it is the most natural one for
our applications� On one hand� this formulation is applicable also to codes with super�polynomial
block�length� On the other hand� this formulation does not support a discussion of practical
algorithms that compute the codeword faster than by computing each of its bits separately�

 � APPENDIX E� EXPLICIT CONSTRUCTIONS

where H����
def
� � log������ $ �� � �� log������ � ���� Then� for all su�ciently

large k� with high probability� a random linear transformation of f	� �gk to f	� �gnk�
constitutes a code of distance d�k��

Thus� for every constant � � �	� 	� � there exists a constant � � 	 and an in�nite
family of codes fCk � f	� �gk f	� �gk��gk�N of relative distance �� Speci�cally�
� � ���H������c will do�

Proof� We consider a uniformly selected kbyn�k� generating matrix over GF����
and upperbound the probability that it yields a linear code of distance less than
d�k�� We use a union bound on all possible �k�� linear combinations of the rows of
the generating matrix� where for each such combination we compute the probability
that it yields a vector of Hamming weight less than d�k�� Observe that the result
of each such linear combination is uniformly distributed over f	� �gnk�� and thus

has Hamming weight less than d�k� with probability
Pdk���

i��

�
nk�
i

� � ��nk� �

����H�dk��nk����nk��� Using �� �H��d�k��n�k��� � n�k� � c � k� the proposition
follows�

E������ A mildly explicit version of Proposition E��

Note that Proposition E�� yields a �deterministic� exp�k � n�k��time algorithm
that �nds a linear code of distance d�k�� The time bound can be improved to
exp�k$ n�k��� by observing that we may choose the rows of the generating matrix
one by one� making sure that all nonempty linear combinations of the current rows
have weight at least d�k�� Note that the proof of Proposition E�� can be adapted
to assert that as long as we have less than k rows a random choice of the next row
will do with high probability� Note that in the case that n�k� � O�k�� this yields
an algorithm that runs in time that is polynomial in the size of the code �i�e�� the
number of codewords�� Needless to say� this mild level of explicitness is inadequate
for most coding applications� however� it will be useful to us in xE����� �

E������ The Hadamard Code

The Hadamard code is the longest �nonrepetitive� linear code over f	� �g � GF����
That is� x � f	� �gk is mapped to the sequence of all n�k� � �k possible linear
combinations of its bits �i�e�� bit locations in the codewords are associated with kbit

strings� and location � � f	� �gk in the codeword of x holds the value
Pk

i�� �ixi��
It can be veri�ed that each nonzero codeword has weight �k��� and thus this code
has relative distance d�k��n�k� � ��� �albeit its blocklength n�k� is exponential
in k��

Turning to the computational aspects� we note that encoding is very easy� As
for decoding� the warmup discussion at the beginning of the proof of Theorem ���
provides a very fast probabilistic algorithm for unique decoding� whereas Theo
rem ��� provides a very fast probabilistic algorithm for list decoding�

We mention that the Hadamard code has played a key role in the proof of the
PCP Theorem �Theorem ������ see x��������

E��� ERROR CORRECTING CODES �

A propos long codes� We note that the longest �nonrepetitive� binary code
�called the Long�Code and introduced in ����� is extensively used in the design of
�advanced� PCP systems �see� e�g�� ����� ������ In this code� a kbit long string

x is mapped to the sequence of n�k� � ��
k

values� each corresponding to the
evaluation of a di�erent Boolean function at x� that is� bit locations in the code
words are associated with Boolean functions such that the location associated with
f �f	� �gkf	� �g in the codeword of x holds the value f�x��

E������ The Reed�Solomon Code

A ReedSolomon code is de�ned for a nonbinary alphabet� which is associated
with a �nite �eld of n elements� denoted GF�n�� For any k � n� we consider the
mapping of univariate degree k � � polynomials over GF�n� to their evaluation at
all �eld elements� That is� p � GF�n�k �viewed as such a polynomial�� is mapped
to the sequence �p����� ���� p��n��� where ��� ���� �n is a canonical enumeration of
the elements of GF�n���

The ReedSolomon code o�ers in�nite families of codes with constant rate and
constant relative distance �e�g�� by taking n�k� � �k and d�k� � �k�� but the
alphabet size grows with k �or rather with n�k� � k�� E�cient algorithms for
unique decoding and list decoding are known �see ��	�� and references therein��
These computational tasks correspond to the extrapolation of polynomials based
on a noisy version of their values at all possible evaluation points�

E�����	 The Reed�Muller Code

ReedMuller codes generalize ReedSolomon codes by considering multivariate
polynomials rather than univariate polynomials� Consecutively� the alphabet may
be any �nite �eld� and in particular the twoelement �eld GF���� ReedMuller
codes �and variants of them� are extensively used in complexity theory� for ex
ample� they underly Construction ���� and the PCP constructed at the end of
x�������� The relevant property of these codes is that� under a suitable setting of
parameters that satis�es n�k� � poly�k�� they allow super fast �codeword testing�
and �selfcorrection� �see discussion in Section E������

For any prime power q and parameters m and r� we consider the set� denoted
Pm�r� of all mvariate polynomials of total degree at most r over GF�q�� Each
polynomial in Pm�r is represented by the k � logq jPm�rj coe�cients of all relevant

monomials� where in the case that r � q it holds that k �
�
m�r
m

�
� We consider

the code C � GF�q�k GF�q�n� where n � qm� mapping mvariate polynomials of
total degree at most r to their values at all qm evaluation points� That is� the m
variate polynomial p of total degree at most r is mapped to the sequence of values
�p����� ���� p��n��� where ��� ���� �n is a canonical enumeration of all the mtuples
of GF�q�� The relative distance of this code is lowerbounded by �q � r��q�

�Alternatively� we may map �v�� ���� vk� � GF�n�k to �p����� ���� p��n��� where p is the unique
univariate polynomial of degree k � � that satis�es p��i� � vi for i � �� ���� k� Note that this
modi�cation amounts to a linear transformation of the generating matrix�

 �	 APPENDIX E� EXPLICIT CONSTRUCTIONS

In typical applications one sets r � +�m� logm� and q � poly�r�� which yields
k � mm and n � poly�r�m � poly�mm�� Thus we have n�k� � poly�k� but not
n�k� � O�k�� As we shall see in Section E����� the advantage �in comparison to the
ReedSolomon code� is that codeword testing and selfcorrection can be performed
at complexity related to q � poly�log n�� Actually� in most complexity applications�
a variant in which only mvariate polynomials of individual degree r� � r�m are
used� In this case� an alternative presentation analogous to the one presented in
Footnote � is preferred� The information is viewed as a function f � Hm GF�q��
where H � GF�q� is of size r� $ �� and is encoded by the evaluation at all points
in GF�q�m of the mvariate polynomial of individual degree r� that extends the
function f �

E������ Binary codes of constant relative distance and constant rate

Recall that we seek binary codes of constant relative distance and constant rate�
Proposition E�� asserts that such codes exists� but does not provide an explicit
construction� The Hadamard code is explicit but does not have a constant rate �to
say the least �since n�k� � �k���� The ReedSolomon code has constant relative
distance and constant rate but uses a nonbinary alphabet �which grows at least
linearly with k�� We achieve the desired construction by using the paradigm of con
catenated codes ����� which is of independent interest� �Indeed� concatenated codes
may be viewed as a simple version of the proof composition paradigm presented in
x���������

Intuitively� concatenated codes are obtained by �rst encoding information� viewed
as a sequence over a large alphabet� by some code and next encoding each resulting
symbol� which is viewed as a sequence of over a smaller alphabet� by a second code�
Formally� consider �� � �k�

� and two codes� C� � �k�
� �n�

� and C� � �k�
� �n�

� �
Then� the concatenated code of C� and C�� maps �x�� ���� xk�� � �k�

� � �k�k�
� to

�C��y��� ���� C��yn���� where �y�� ���� yn�� � C��x�� ���� xk���

Note that the resulting code C � �k�k�
� �n�n�

� has constant rate and con
stant relative distance if both C� and C� have these properties� Encoding in
the concatenated code is straightforward� To decode a corrupted codeword of
C� we view the input as an n�long sequence of blocks� where each block is an
n�long sequence over ��� Applying the decoder of C� to each block� we obtain
n� sequences �each of length k�� over ��� and interpret each such sequence as
a symbol of ��� Finally� we apply the decoder of C� to the resulting n�long
sequence �over ���� and interpret the resulting k�long sequence �over ��� as a
k�k�long sequence over ��� The key observation is that if w � �n�n�

� is �����close
to C�x�� ���� xk� � � �C��y��� ���� C��yn��� then at least ��� ��� �n� of the blocks of w
are ���close to the corresponding C��yi��

�

We are going to consider the concatenated code obtained by using the Reed

�Binary Reed�Muller codes also fail to simultaneously provide constant relative distance and
constant rate�

�This observation o�ers unique decoding from a fraction of errors that is the product of the
fractions �of error� associated with the two original codes� Stronger statements regarding unique
decoding of the concatenated code can be made based on more re�ned analysis �cf� ������

E��� ERROR CORRECTING CODES ��

Solomon Code C� � GF�n��
k� GF�n��

n� as the large code� setting k� � log� n��
and using the mildly explicit version of Proposition E��� C� � f	� �gk� f	� �gn� as
the small code� We use n� � �k� and n� � O�k��� and so the concatenated code is
C � f	� �gk f	� �gn� where k � k�k� and n � n�n� � O�k�� The key observation
is that C� can be constructed in exp�k��time� whereas here exp�k�� � poly�k��
Furthermore� both encoding and decoding with respect to C� can be performed in
time exp�k�� � poly�k�� Thus� we get�

Theorem E�� �an explicit good code�� There exists constants �� � � 	 and an
explicit family of binary codes of rate � and relative distance at least �� That is�
there exists a polynomial�time �encoding� algorithm C such that jC�x�j � jxj�� �for
every x� and a polynomial�time �decoding� algorithm D such that for every y that
is ����close to some C�x� it holds that D�y� � x� Furthermore� C is a linear code�

The linearity of C is justi�ed by using a ReedSolomon code over the extension �eld
F � GF��k��� and noting that this code induces a linear transformation over GF����
Speci�cally� the value of a polynomial p over F at a point � � F can be obtained
as a linear transformation of the coe�cient of p� when viewed as k�dimensional
vectors over GF����

Relative distance approaching one half� Starting with a ReedSolomon code
of relative distance �� and a smaller code C� of relative distance ��� we obtain a
concatenated code of relative distance ����� Note that� for any constant �� � ��
there exists a ReedSolomon code C� � GF�n��

k� GF�n��
n� of relative distance

�� and constant rate �i�e�� �� ���� Giving up on constant rate� we may start with
a ReedSolomon code of blocklength n��k�� � poly�k�� and distance n��k�� � k�
over �n��k���� and use a Hadamard code �encoding �n��k��� by f	� �gn�k��� in the
role of the small code C�� This yields a �concatenated� binary code of block length
n�k� � n��k�

� and distance �n��k�� k� � n��k���� Thus� the resulting explicit code
has relative distance approximately ������ �k�

p
n�k���

E���� Two additional computational problems

In this section we brie�y review relaxations of two traditional coding theoretic tasks�
The purpose of these relaxations is enabling superfast �randomized� algorithms
that provide meaningful information� Speci�cally� these algorithms may run in sub
linear �e�g�� polylogarithmic� time� and thus cannot possibly solve the unrelaxed
version of the problem�

Local testability� This task refers to testing whether a given word is a codeword
�in a predetermine code�� based on �randomly� inspecting few locations in the
word� Needless to say� we can only hope to make an approximately correct
decision� that is� accept each codeword and reject with high probability each
word that is far from the code� �Indeed� this task is within the framework of
property testing� see Section �	������

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

Local decodability� Here the task is to recover a speci�ed bit in the plaintext by
�randomly� inspecting few locations in a mildly corrupted codeword� This
task is somewhat related to the task of selfcorrection �i�e�� recovering a spec
i�ed bit in the codeword itself� by inspecting few locations in the mildly
corrupted codeword��

Note that the Hadamard code is both locally testable and locally decodable as well
as selfcorrectable �based on a constant number of queries into the word�� these facts
were demonstrated and extensively used in x�������� However� the Hadamard code
has an exponential blocklength �i�e�� n�k� � �k�� and the question is whether one
can achieve analogous results with respect to a shorter code �e�g�� n�k� � poly�k���
As hinted in xE������� the answer is positive �when we refer to performing these
operations in time that is polylogarithmic in k��

Theorem E�� For some constant � � 	 and polynomials n� q � N N � there
exists an explicit family of codes fCk � �q�k��k �q�k��nk�gk�N of relative distance
� that can be locally testable and locally decodable in poly�log k��time� That is� the
following three conditions hold�

�� Encoding� There exists a polynomial time algorithm that on input x � �q�k��k

returns Ck�x��

� Local Testing� There exists a probabilistic polynomial�time oracle machine T
that given k �in binary�� and oracle access to w � �q�k��nk� distinguishes the
case that w is a codeword from the case that w is ����far from any codeword�
Speci�cally�

a� For every x � �q�k��k it holds that Pr�TCkx��k���� � ��

b� For every w � �q�k��nk� that is ����far from any codeword of Ck it holds
that Pr�Tw�k���� � ����

As usual� the error probability can be reduced by repetitions�

�� Local Decoding� There exists a probabilistic polynomial�time oracle machine
D that given k and i � �k� �in binary� and oracle access to any w � �q�k��nk�

that is ����close to Ck�x� returns xi� that is� Pr�D
w�k� i��xi� � ����

Self correction holds too� there exists a probabilistic polynomial�time oracle
machine M that given k and i � �n�k�� �in binary� and oracle access to any
w � �q�k��nk� that is ����close to Ck�x� returns Ck�x�i� that is� Pr�D

w�k� i��
Ck�x�i� � ����

We stress that all these oracle machines work in time that is polynomial in the bi
nary representation of k� which means that they run in time that is polylogarithmic
in k� The code asserted in Theorem E�� is a �small modi�cation of a� ReedMuller
code� for r � m� logm � q�k� � poly�r� and �n�k�� � GF�q�k��m �see xE���������

�Thus� the running time of T is poly�jkj� � poly�log k��
�The modi�cation is analogous to the one presented in Footnote �� For a suitable choice of

k points ��� ���� �k � GF�q�k��m� we map v�� ���� vk to �p����� ���� p��n��� where p is the unique
m�variate polynomial of degree at most r that satis�es p��i� � vi for i � �� ���� k�

E��� ERROR CORRECTING CODES ��

The aforementioned oracle machines query the oracle w � �n�k�� GF�q�k��
at a nonconstant number of locations� Speci�cally� selfcorrection for location
i � GF�q�k��m is performed by selecting a random line �over GF�q�k��m� that
passes through i� recovering the values assigned by w to all q�k� points on this
line� and performing univariate polynomial extrapolation �under mild noise�� Lo
cal testability is easily reduced to selfcorrection� and �under the aforementioned
modi�cation� local decodability is a special case of selfcorrection�

Constant number of queries� The local testing and decoding algorithms as
serted in Theorem E�� make a polylogarithmic number of queries into the oracle�
In contrast� the Hadamard code supports these operation using a constant number
of queries� Can this be obtained with much shorter codewords� For local testability
the answer is de�nitely positive� One can obtain such locally testable codes with
length that is nearly linear �i�e�� linear up to polylogarithmic factors� see ���� �����
For local decodability based on a constant number of queries� the shortest known
code has superpolynomial length �see ������� In light of this state of a�airs� we
advocate a relaxation of the local decodability task �e�g�� the one studied in ������

The interested reader is referred to ����� which includes more details on locally
testable and decodable codes as well as a wider perspective� �Note� however� that
this survey was written prior to ���� and ������ which address two major open
problems discussed in ������

E���� A list decoding bound

A necessary condition for the feasibility of the list decoding task is that the list
of codewords that are close to the given word is short� In this section we present
an upperbound on the length of such lists� noting that this bound has found
several applications in complexity theory �and speci�cally to studies related to the
contents of this book�� In contrast� we do not present far more famous bounds
�which typically refer to the relation among the main parameters of codes �i�e��
k� n and d��� because they seem irrelevant to the contents of this book�

We start with a general statement that refers to any alphabet � � �q�� and later
specialize it to the case that q � �� Especially in the general case� it is natural and
convenient to consider the agreement �rather than the distance� between sequences
over �q�� Furthermore� it is natural to focus on agreement rate of at least ��q� and
it is convenient to state the following result in terms of the �excessive agreement
rate� �i�e�� the excess beyond ��q��	

Lemma E�	 �Part � of ��	�� Thm� � ��� Let C � �q�k �q�n be an arbitrary

code of distance d � n � �n�q�� and let �C
def
� �� � �d�n�� � ���q� � 	 denote

the corresponding upper�bound on the excessive agreement rate between codewords�

�Indeed� we only consider codes with distance d � ��� �
q� �n and words that are at distance
at most d from the code� Note that �
q is a natural threshold for an upper�bound on the relative
agreement between sequences over �q�� because a random sequence is expected to agree with any
�xed sequence on a �
q fraction of the locations�

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

Suppose that � � �	� �� satis�es

� �

s

�� �

q

�
� �C

�

�E���

Then� for any w � �q�n� the number of codewords that agree with w on at least
����q� $ �� � n positions �i�e�� are at distance at most ��� ����q� $ ��� � n from w�
is upper�bounded by

��� ���q��� � ��� ���q�� � �C
�� � ��� ���q�� � �C �

�E���

In the binary case �i�e�� q � ��� Eq� �E��� requires � �
p
�C�� and Eq� �E��� yields

the upperbound ��� ��C�����
� � ��C�� We highlight two speci�c cases�

�� At the end of xD������� we refer to this bound �for the binary case� while
setting �C � ���k�� and � � ��k� Indeed� in this case �����C�����

����C� �
O�k���

�� In the case of the Hadamard code� we have �C � 	� Thus� for every w �
f	� �gn and every � � 	� the number of codewords that are �	� � ��close to
w is at most ��������

In the general case �and speci�cally for q � �� it is useful to simplify Eq� �E��� by
� � minfp�C� ���q� $

p
�C � ���q�g and Eq� �E��� by �

����C �

E�� Expander Graphs

Loosely speaking� expander graphs are graphs of small degree that exhibit various
properties of cliques� In particular� we refer to properties such as the relative sizes
of cuts in the graph� and the rate at which a random walk converges to the uniform
distribution �relative to the logarithm of the graph size to the base of its degree��

Some technicalities� Typical presentations of expander graphs refer to one of
several variants� For example� in some sources� expanders are presented as bipartite
graphs� whereas in others they are presented as ordinary graphs �and are in fact
very far from being bipartite�� We shall follow the latter convention� Furthermore�
at times we implicitly consider an augmentation of these graphs where selfloops
are added to each vertex� For simplicity� we also allow parallel edges�

We often talk of expander graphs while we actually mean an in�nite collection
of graphs such that each graph in this collection satis�es the same property �which
is informally attributed to the collection�� For example� when talking of a dregular
expander �graph� we actually refer to an in�nite collection of graphs such that each
of these graphs is dregular� Typically� such a collection �or family� contains a single
N vertex graph for every N � S� where S is an in�nite subset of N � Throughout
this section� we denote such a collection by fGNgN�S� with the understanding that
GN is a graph with N vertices and S is an in�nite set of natural numbers�

E�	� EXPANDER GRAPHS �

E���� De�nitions and Properties

We consider two de�nitions of expander graphs� two di�erent notions of explicit
constructions� and two useful properties of expanders�

E������ Two Mathematical De�nitions

We start with two di�erent de�nitions of expander graphs� These de�nitions are
qualitatively equivalent and even quantitatively related� We start with an algebraic
de�nition� which seems technical in nature but is actually the de�nition typically
used in complexity theoretic applications� since it directly implies various �mixing
properties� �see xE�������� We later present a very natural combinatorial de�nition
�which is the source of the term �expander���

The algebraic de�nition �spectral gap�� Identifying graphs with their adja
cency matrix� we consider the eigenvalues �and eigenvectors� of a graph �or rather
of its adjacency matrix�� Any dregular graph G � �V�E� has the uniform vector
as an eigenvector corresponding to the eigenvalue d� and if G is connected and not
bipartite then �the absolute values of� all other eigenvalues are strictly smaller than
d� The second eigenvalue� denoted ���G� � d� of such a graph G is thus a tight
upperbound on the absolute value of all the other eigenvalues� Using the connec
tion to the combinatorial de�nition� it follows that ���G� � d � "���jV j�� holds
�for every connected nonbipartite dregular graph G�� The algebraic de�nition of
expanders refers to an in�nite family of dregular graphs and requires the existence
of a constant eigenvalue bound that holds for all the graphs in the family�

De�nition E�� An in�nite family of d�regular graphs� fGNgN�S� where S � N �
satis�es the eigenvalue bound � if for every N � S it holds that ���GN � � ��

In such a case we say that the family has spectral gap d � �� It will be often
convenient to consider relative �or normalized� versions of these quantities� obtained
by division by d�

The combinatorial de�nition �expansion�� Loosely speaking� expansion re
quires that any �not too big� set of vertices of the graph has a relatively large set
of neighbors� Speci�cally� a graph G � �V�E� is c�expanding if� for every set S � V
of cardinality at most jV j��� it holds that

)G�S�
def
� fv � �u�S s�t� fu� vg�Eg �E���

has cardinality at least �� $ c� � jSj� Equivalently �assuming the existence of self
loops on all vertices�� we may require that j)G�S� n Sj � c � jSj� Clearly� every
connected graph G � �V�E� is ���jV j�expanding� The combinatorial de�nition of
expanders refers to an in�nite family of dregular graphs and requires the existence
of a constant expansion bound that holds for all the graphs in the family�

De�nition E�� An in�nite family of d�regular graphs� fGNgN�S is c�expanding if
for every N � S it holds that GN is c�expanding�

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

The two de�nitions of expander graphs are related �see ��	� Sec� ���� or ���	�
Sec� �� ���

Theorem E� Let G be a non�bipartite d�regular graph�

�� The graph G is c�expanding for c � �d� ���G����d�

� If G is c�expanding then d� ���G� � c���� $ �c���

Thus� any nonzero bound on the combinatorial expansion of a family of dregular
graphs yields a nonzero bound on its spectral gap� and vice versa� Note� however�
that the backandforth translation between these de�nitions is not tight� The
applications presented in the main text refer to the algebraic de�nition� and the
loss incurred in Theorem E�� is immaterial for them�

Ampli�cation� The quality of expander graphs improves by raising them to
any power t � � �i�e�� raising their adjacency matrix to the tth power�� which
corresponds to considering graphs in which tpaths are replaced by edges� Using
the algebraic de�nition� we have ���G

t� � ���G�t� but indeed the degree also gets
raised to the power t� Still� the ratio ���G

t��dt deceases with t� An analogous
phenomenon occurs also under the combinatorial de�nition� provided that some
suitable modi�cations are applied� For example� if G � �V�E� is cexpanding �i�e��
for every S � V it holds that j)G�S�j � min��� $ c� � jSj� jV j����� then for every
S � V it holds that j)Gt�S�j � min��� $ c�t � jSj� jV j����

The optimal eigenvalue bound� For every dregular graph G � �V�E�� it
holds that ���G� � ��G � pd� �� where �G � ��O��� logd jV j�� Thus� �pd� � is
a lowerbound on the eigenvalue bound of any in�nite family of dregular graphs�

E������ Two levels of explicitness

A mild level of explicit constructiveness refers to the complexity of constructing the
entire object �i�e�� graph�� Thus� an in�nite family of graphs fGNgN�S is said to
be explicitly constructible if there exists a polynomial�time algorithm that� on input
�N �where N � S�� outputs the list of the edges in the N�vertex graph GN �

The aforementioned level of explicitness su�ces when the application requires
holding the entire graph and�or when the runningtime of the application is lower
bounded by the size of the graph� In contrast� other applications only refer to a
huge virtual graph �which is much bigger than their running time�� and only require
the computation of the neighborhood relations in such a graph� In this case� the
following stronger level of explicitness is relevant�

A strongly explicit construction of an in�nite family of �dregular� graphs fGNgN�S
is a polynomial�time algorithm that on input N �in binary�� a vertex v in the N�
vertex graph GN and an index i �i � f�� ���� dg�� returns the ith neighbor of v� That
is� the neighbor is determined in time that is polylogarithmic in the size of the
graph� Needless to say� the strong level of explicitness implies the basic level�

E�	� EXPANDER GRAPHS ��

An additional requirement� which is often forgotten but is very important� refers
to the �tractability� of the set S� Speci�cally� we require the existence of an e�cient
algorithm that given any n � N �nds an s�S such that n � s � �n� Corresponding
to the foregoing de�nitions� e�cient may mean either running in time poly�n� or
running in time poly�log n�� The requirement that n � s � �n su�ces in most
applications� but in some cases a smaller interval �e�g�� n � s � n$

p
n� is required�

whereas in other cases a larger interval �e�g�� n � s � poly�n�� su�ces�

Greater �exibility� In continuation to the foregoing paragraph� we comment
that expanders can be combined in order to obtain expanders for a wider range
of sizes� For example� two dregular cexpanding graphs� G� � �V�� E�� and G� �
�V�� E�� where jV�j � jV�j and c � �� can be combined into a �d $ ��regular c��
expanding graph on jV�j$ jV�j vertices by connecting the two graphs with a perfect
matching of V� and jV�j of the vertices of V� �and adding selfloops to the remaining
vertices of V��� More generally� the dregular cexpanding graphs� G� � �V�� E��

through Gt � �Vt� Et�� where N
def
�
Pt��

i�� jVij � jVtj� yield a �d $ ��regular c��

expanding graph on
Pt

i�� jVij vertices by using a perfect matching of �t��i��Vi and
N of the vertices of Vt�

E������ Two properties

The following two properties provide a quantitative interpretation to the statement
that expanders approximate the complete graph� The deviation from the latter is
represented by an error term that is linear in ��d�

The mixing lemma� The following lemma is folklore and has appeared in many
papers� Loosely speaking� the lemma asserts that expander graphs �for which d �
�� have the property that the fraction of edges between two large sets of vertices
approximately equals the product of the densities of these sets� This property is
called mixing�

Lemma E�� �Expander Mixing Lemma�� For every d�regular graph G � �V�E�
and for every two subsets A�B � V it holds that���� j�A�B� �E�j

jE�j � jAj
jV j �

jBj
jV j
���� � ���G�

pjAj � jBj
d � jV j � ���G�

d
�E���

where E� denotes the set of directed edges that correspond to the undirected edges
of G �i�e�� E� � f�u� v� � fu� vg�Eg and jE�j � djV j��

Proof� Let N
def
� jV j and �

def
� ���G�� For any subset of the vertices S � V � we

denote its density in V by ��S�
def
� jSj�N � Hence� Eq� �E��� is restated as���� j�A�B� � E�j

d �N � ��A� � ��B�

���� � �
p
��A� � ��B�

d �

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

We proceed by providing bounds on the value of j�A�B��E�j� To this end we let
a denote the N dimensional Boolean vector having � in the ith component if and
only if i � A� The vector b is de�ned similarly� Denoting the adjacency matrix of
the graph G by M � �mi�j�� we note that j�A � B� � E�j equals a�Mb �because
�i� j� � �A � B� � E� if and only if it holds that i � A� j � B and mi�j � ���
We consider the orthogonal eigenvector basis� e�� ���� eN � where e� � ��� ���� ��� and
ei
�ei � N for each i� and write each vector as a linear combination of the vectors

in this basis� Speci�cally� we denote by ai the coe�cient of a in the direction of ei�
that is� ai � �a�ei��N and a �

P
i aiei� Note that a� � �a�e���N � jAj�N � ��A�

and
PN

i�� a
�
i � �a�a��N � jAj�N � ��A�� Similarly for b� It now follows that

j�A�B� � E�j � a�M

�
b�e� $

NX
i��

biei

�

� ��B� � a�Me� $

NX
i��

bi � a�Mei

� ��B� � d � a�e� $
NX
i��

bi�i � a�ei

where �i denotes the i
th eigenvalue of M �and indeed �� � d�� Thus�

j�A�B� � E�j
dN

� ��B���A� $

NX
i��

�ibiai
d

�
�
��B���A� & �

d
�
NX
i��

aibi

�

Using
PN

i�� a
�
i � ��A� and

PN
i�� b

�
i � ��B�� and applying CauchySchwartz In

equality� we bound
PN

i�� aibi by
p
��A���B�� The lemma follows�

The random walk lemma� Loosely speaking� the �rst part of the following
lemma asserts that� as far as remaining trapped in some subset of the vertex set
is concerned� a random walk on an expander approximates a random walk on the
complete graph�

Lemma E�� �Expander Random Walk Lemma�� Let G � ��N �� E� be a d�regular
graph� and consider walks on G that start from a uniformly chosen vertex and take

�� additional random steps� where in each such step we uniformly selects one out
of the d edges incident at the current vertex and traverses it�

Theorem �
�� �restated�� Let W be a subset of �N � and �
def
� jW j�N � Then the

probability that such a random walk stays in W is at most

� �

�$ ��� �� � ���G�

d

����
�

�E� �

E�	� EXPANDER GRAPHS ��

Exercise �
�� �restated�� For any W�� ����W��� � �N �� the probability that a random
walk of length
 intersects W� �W� � � � � �W��� is at most

p
�� �

���Y
i��

q
�i $ ���d��� �E���

where �i
def
� jWij�N �

The basic principle underlying Lemma E�� was discovered by Ajtai� Komlos� and
Szemer#edi ���� who proved a bound as in Eq� �E���� The better analysis yielding
Theorem ���� is due to Kahale ����� Cor� ����� A more general bound that refer
to the probability of visiting W for a number of times that approximates jW j�N
is given in ������ which actually considers an even more general problem �i�e��
obtaining Cherno�type bounds for random variables that are generated by a walk
on an expander��

Proof of Equation �E���� The basic idea is to view the random walk as
the evolution of a corresponding probability vector under suitable transformations�
The transformations correspond to taking a random step in G and to passing
through a �sieve� that keeps only the entries that correspond to the current set
Wi� The key observation is that the �rst transformation shrinks the component
that is orthogonal to the uniform distribution� whereas the second transformation
shrinks the component that is in the direction of the uniform distribution� Details
follow�

Let A be a matrix representing the random walk on G �i�e�� A is the adjacency

matrix of G divided by d�� and let &� denote the absolute value of the second

largest eigenvalue of A �i�e�� &�
def
� ���G��d�� Note that the uniform distribution�

represented by the vector u � �N��� ���� N����� is the eigenvector of A that is
associated with the largest eigenvalue �which is ��� Let Pi be a 	� matrix that
has �entries only on its diagonal� and furthermore entry �j� j� is set to � if and
only if j � Wi� Then� the probability that a random walk of length
 intersects
W� �W� � � � � �W��� is the sum of the entries of the vector

v
def
� P���A � � �P�AP�AP�u� �E���

We are interested in upperbounding kvk�� and use kvk� � p
N � kvk� where kzk�

and kzk denote the L�norm and L�norm of z� respectively �e�g�� kuk� � � and
kuk � N������ The key observation is that the linear transformation PiA shrinks
every vector�

Main Claim
 For every z� it holds that kPiAzk � ��i $ &������ � kzk�
Proof
 Intuitively� A shrinks the component of z that is orthogonal to u� whereas Pi
shrinks the component of z that is in the direction of u� Speci�cally� we decompose
z � z� $ z� such that z� is the projection of z on u and z� is the component
orthogonal to u� Then� using the triangle inequality and other obvious facts �which

 �	 APPENDIX E� EXPLICIT CONSTRUCTIONS

imply kPiAz�k � kPiz�k and kPiAz�k � kAz�k�� we have

kPiAz� $ PiAz�k � kPiAz�k$ kPiAz�k
� kPiz�k$ kAz�k
� p

�i � kz�k$ &� � kz�k

where the last inequality uses the fact that Pi shrinks any uniform vector by elimi
nating ���i of its elements� whereas A shrinks the length of any eigenvector except
u by a factor of at least &�� Using the CauchySchwartz inequality
� we get

kPiAzk �
q
�i $ &�� �

p
kz�k� $ kz�k�

�

q
�i $ &�� � kzk

where the equality is due to the fact that z� is orthogonal to z��

Recalling Eq� �E��� and using the Main Claim �and kvk� �
p
N � kvk�� we get

kvk� �
p
N � kP���A � � �P�AP�AP�uk

�
p
N �

�
���Y
i��

q
�i $ &��

�
� kP�uk�

Finally� using kP�uk �
p
��N � ���N�� �

p
���N � we establish Eq� �E����

Rapid mixing� A property related to Lemma E�� is that a random walk starting
at any vertex converges to the uniform distribution on the expander vertices after
a logarithmic number of steps� Using notation as in the proof of Eq� �E���� we
claim that for every starting distribution s �including one that assigns all weight to

a single vertex�� it holds that kA�s � uk� � p
N � &��� which is meaningful for any

 � 	� �log����N � The claim is proved by recalling that kA�s�uk� �
p
N �kA�s�uk

and using the fact that s� u is orthogonal to u �because the former is a zerosum

vector�� Thus� kA�s � uk � kA��s � u�k � &��ks � uk and using ks � uk � � the
claim follows�

E���� Constructions

Many explicit constructions of expanders were discovered� starting in �� �� and
culminating in the optimal construction of �� �� where � � �

p
d� �� Most of these

constructions are quite simple �see� e�g�� xE�������� but their analysis is based on
nonelementary results from various branches of mathematics� In contrast� the
construction of Reingold� Vadhan� and Wigderson ������ presented in xE�������

�That is� we get
p
�ikz�k � ��kz�k �

p
�i � ��� �

p
kz�k� � kz�k�� by using

Pn

i��
ai � bi ��Pn

i��
ai�
��	� � �Pn

i��
bi
�
��	�

� with n � �� a� �
p
�i� b� � kz�k� etc�

E�	� EXPANDER GRAPHS ��

is based on an iterative process� and its analysis is based on a relatively simple
algebraic fact regarding the eigenvalues of matrices�

Before turning to these explicit constructions we note that it is relatively easy
to prove the existence of �regular expanders� by using the Probabilistic Method
�cf� ��	�� and referring to the combinatorial de�nition of expansion�

Theorem E��� For some constant � � � there exists a family of ��� ���expanders
for any even graph size�

Proof Sketch�� As a warmup� one may establish the existence of dregular ex
panders� for some constant d� In particular� foreseeing the case of d � �� consider
a random graph G on the vertex set V � f	� ���� n� �g constructed by augmenting
the �xed edge set ffi� i $ � mod ng � i � 	� ���� n � �g with d � � uniformly �and

independently� chosen perfect matchings of the vertices of F
def
� f	� ���� �n���� �g

to the vertices of L
def
� fn��� ���� n � �g� For a su�ciently small universal con

stant � � 	� we upperbound the probability that such a random graph is not
�expanding� Noting that for every set S it holds that j)G�S�F ��F j � jS�F j��
�and similarly for L�� we focus on the sizes of j�)G�S � F � � L� n)G�S � L�j
and j�)G�S � L� � F � n)G�S � F �j� Assuming without loss of generality that
jS � F j � jS � Lj� we upperbound the probability that there exists a set S � V
of size at most n�� such that j�)G�S � F � � L� n)G�S � L�j � �jSj� Fixing a set
S� the corresponding probability is upperbounded by pd��S � where pS denotes the
probability that a uniformly selected matching of F to L matches S � F to a set
that contains less than �jSj elements in L n)G�S � L�� That is�

pS
def
�

�jSj��X
i��

�jLj��
i

� � � �
jS�F j�i

�� jLj
jS�F j

� �
�n�����

�jSj
� � ����jSjjS�F j

��
n��
jS�F j

�
where
 � j)G�S�L��Lj� Indeed� we may focus on the case that jS�F j �
$�jSj
�because in the other case pS � 	�� and observe that for every � � ��� there exists

a su�ciently small � � 	 such that pS �
�
n
jSj
���

� The claim follows for d � � by

using a union bound on all sets �and setting � � �����
To deal with the case d � �� we use a more sophisticated union bound� Specif

ically� �xing an adequate constant t � � �e�g�� t � ��
p
��� we decompose S into

S� and S��� where S� contains the elements of S that reside on tlong arithmetic
subsequences of S that use an step increment of either � or �� and S�� � S n S��
It can be shown that j)G�S��� n Sj � jS��j��t �hint� an arithmetic subsequence has
neighborhood greater than itself whereas a suitable partition of the elements to
such subsequences guarantees that the overall excess is at least half the individual

	The proof is much simpler in the case that one refers to the alternative de�nition of combi�
natorial expansion in which for each relevant set S it holds that j(G�S� n Sj � � � jSj� In this
case� for a su�ciently small � � and all su�ciently large n� a random ��regular n�vertex graph
is ��expanding with overwhelmingly high probability� The proof proceeds by considering a �not
necessarily simple� graph G generated by three perfect matchings of the elements of �n�� For
every S � �n� of size at most n
� and for every set T of size �jSj� we consider the probability that
(G�S� � S � T � The argument is concluded by applying a union bound�

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

count�� Thus� if jS��j � �jSj�t then j)G�S��� nSj � jSj�t�� Hence� it su�ces to con
sider the case jS��j � �jSj�t �and t � �� and prove that j)G�S��j � ��$ ���t�� � jS�j�
The gain is that� when applying the union bound� it su�ces to consider less thanPn��t

j�� �
j � �n�j� � �

n
�n��t

�
possible sets S� of size n�� which are each a union of at

most n��t arithmetic sequences that use an step increment of either � or ��

E������ The Margulis�Gabber�Galil Expander

For every natural number m� consider the graph with vertex set Zm � Zm and
edge set in which every hx� yi � Zm �Zm is connected to the vertices hx& y� yi�
hx& �y $ ��� yi� hx� y & xi� and hx� y & �x$ ��i� where the arithmetic is modulo m�
This yields an extremely simple and explicit �regular graph with second eigenvalue
that is bounded by a constant � � � that is independent of m� Thus we get�

Theorem E��� For some constant � � � there exists a strongly explicit construc�
tion of a family of ��� ���expanders for graph sizes fm� � m�Ng� Furthermore� the
neighbors of a vertex can be computed in logarithmic�space���

An appealing property of Theorem E��� is that� for every n � N � it directly yields
expanders with vertex set f	� �gn� This is obvious in case n is even� but can be
easily achieved also for odd n �e�g�� use two copies of the graph for n � �� and
connect the two copies by the obvious perfect matching��

Theorem E��� is due to Gabber and Galil ��	�� building on the basic approach
suggested by Margulis �� ��� We mention again that the optimal construction
of �� �� achieves � � �

p
d� �� but there are annoying restrictions on the degree d

�i�e�� d� � should be a prime congruent to � modulo �� and on the graph sizes for
which this construction works�

E������ The Iterated Zig�Zag Construction

The starting point of the following construction is a very good expander G of
constant size� which may be found by an exhaustive search� The construction
of a large expander graph proceeds in iterations� where in the ith iteration the
current graph Gi and the �xed graph G are combined� resulting in a larger graph
Gi��� The combination step guarantees that the expansion property of Gi�� is at
least as good as the expansion of Gi� while Gi�� maintains the degree of Gi and
is a constant times larger than Gi� The process is initiated with G� � G� and
terminates when we obtain a graph Gt of approximately the desired size �which
requires a logarithmic number of iterations��

�
In fact� under a suitable encoding of the vertices and for m that is a power of two� the
neighbors can be computed by a on�line algorithm that uses a constant amount of space� The
same holds also for a variant in which each vertex hx� yi is connected to the vertices hx� �y� yi�
hx� ��y � ��� yi� hx� y � �xi� and hx� y � ��x� ��i� �This variant yields a better known bound on
�� i�e�� � � �

p
� � �������

E�	� EXPANDER GRAPHS ��

1

2

35

6
1

2

35

6

4

4

u v

In this example G� is �regular and G is a �regular graph having six
vertices� In the graph G� �not shown�� the 	nd edge of vertex u is
incident at v� as its �th edge� The wide �segment line shows one of
the corresponding edges of G�#z G� which connects the vertices hu� �i
and hv� �i�

Figure E��� Detail of the zigzag product of G� and G�

The Zig�Zag product� The heart of the combination step is a new type of
�graph product� called Zig�Zag product� This operation is applicable to any pair
of graphs G � ��D�� E� and G� � ��N �� E��� provided that G� �which is typically
larger than G� is Dregular� For simplicity� we assume that G is dregular �where
typically d � D�� The Zig�Zag product of G� and G� denoted G�#z G� is de�ned as
a graph with vertex set �N � � �D� and an edge set that includes an edge between
hu� ii � �N �� �D� and hv� ji if and only if �i� k�� �
� j� � E and the kth edge incident
at u equals the
th edge incident at v� See Figure E�� as well as further clari�cation
that follows�

Teaching note� The following paragraph� which provides a formal description of the

zig�zag product� can be ignored in �rst reading but is useful for more advanced discus�

sion�

It will be convenient to represent graphs like G� by their edge rotation function�
denoted R� � �N ���D� �N ���D�� such that R��u� i� � �v� j� if �u� v� is the ith edge
incident at u as well as the jth edge incident at v� For simplicity� we assume that G
is edgecolorable with d colors� which in turn yields a natural edge rotation function
�i�e�� R�i� �� � �j� �� if the edge �i� j� is colored ��� We will denote by E��i� the
vertex reached from i � �D� by following the edge colored � �i�e�� E��i� � j i�
R�i� �� � �j� ���� The Zig�Zag product of G� and G� denoted G�#z G� is then de�ned
as a graph with the vertex set �N �� �D� and the edge rotation function

�hu� ii� h�� �i� � �hv� ji� h�� �i� if R��u�E��i�� � �v� E�j��� �E���

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

That is� edges are labeled by pairs over �d�� and the h�� �ith edge out of vertex

hu� ii � �N ���D� is incident at the vertex hv� ji �as its h�� �ith edge� if R�u�E��i�� �
�v� E�j��� �That is� based on h�� �i� we take a Gstep from hu� ii to hu�E��i�i�
then viewing hu�E��i�i � �u�E��i�� as an edge of G� we rotate it to �v� j�� def

�
R��u�E��i��� and take a Gstep from hv� j�i to hv� E�j

��i� while de�ning j � E�j
��

and using j� � E�E�j
��� � E�j���

Clearly� the graph G�#z G is d�regular and has D � N vertices� The key fact�
proved in ����� �using techniques as in xE�������� is that the relative eigenvalue
of the zigzag product is upperbounded by the sum of the relative eigenvalues of
the two graphs �i�e�� *���G

�#z G� � *���G
��$ *���G�� where *����� denotes the relative

eigenvalue of the relevant graph�� The �qualitative� fact that G�#z G is an expander
if both G� and G are expanders is very intuitive �e�g�� consider what happens if
G� or G is a clique�� Things are even more intuitive if one considers the �related�
replacement product of G� and G� denoted G�#r G� where there is an edge between
hu� ii � �N � � �D� and hv� ji if and only if either u � v and �i� j� � E or the ith

edge incident at u equals the jth edge incident at v���

The iterated construction� The iterated expander construction uses the afore
mentioned zigzag product as well as graph squaring� Speci�cally� the construction
starts with the d�regular graph G� � G� � ��D�� E��� where D � d� and *���G� �
���� and proceeds in iterations such that Gi�� � G�

i#z G for i � �� �� ���� t��� That
is� in each iteration� the current graph is �rst squared and then composed with the
�xed �dregular Dvertex� graph G via the zigzag product� This process maintains
the following two invariants�

�� The graph Gi is d
�regular and has Di vertices�

�The degree bound follows from the fact that a zigzag product with a d
regular graph always yields a d�regular graph��

�� The relative eigenvalue of Gi is smaller than one half�

�Here we use the fact that *���G
�
i��#z G� � *���G

�
i��� $ *���G�� which in turn

equals *���Gi����$*���G� � ������$������ Note that graph squaring is used
to reduce the relative eigenvalue of Gi before increasing it by zigzag product
with G��

To ensure that we can construct Gi� we should show that we can actually construct
the edge rotation function that correspond to its edge set� This boils down to
showing that� given the edge rotation function of Gi��� we can compute the edge
rotation function of G�

i�� as well as of its zigzag product with G� Note that
this computation amounts to two recursive calls to computations regarding Gi��
�and two computations that correspond to the constant graph G�� But since the
recursion depth is logarithmic in the size of the �nal graph� the time spend in the
recursive computation is polynomial in the size of the �nal graph� This su�ces for
the minimal notion of explicitness� but not for the stronger one�

��As an exercise� the reader is encouraged to show that if both G� and G are expanders according
to the combinatorial de�nition then so is G��r G�

E�	� EXPANDER GRAPHS �

The strongly explicit version� To achieve a strongly explicit construction� we
slightly modify the iterative construction� Rather than letting Gi�� � G�

i#z G� we
let Gi�� � �Gi � Gi�

�#z G� where G� � G� denotes the tensor product of G� with
itself� that is� if G� � �V �� E�� then G� �G� � �V � � V �� E���� where

E�� � f�hu�� u�i� hv�� v�i� � �u�� v��� �u�� v���E�g

with an edge rotation function

R���hu�� u�i� hi�� i�i� � �hv�� v�i� hj�� j�i�

where R��u�� i�� � �v�� j�� and R��u�� i�� � �v�� j��� �We still use G� � G��� Using
the fact that tensor product preserves the relative eigenvalue �while squaring the
degree� and using a dregular G � ��D�� E� with D � d
� we note that the modi�ed

Gi � �Gi�� � Gi����#z G is a d�regular graph with �D�i������ � D � D�i��

vertices� and *���Gi� � ��� �because *����Gi���Gi����#z G� � *���Gi����$*���G���
Computing the neighbor of a vertex in Gi boils down to a constant number of such
computations regarding Gi��� but due to the tensor product operation the depth
of the recursion is only doublelogarithmic in the size of the �nal graph �and hence
logarithmic in the length of the description of vertices in it��

Digest� In the �rst construction� the zigzag product was used both in order to
increase the size of the graph and to reduce its degree� However� as indicated by
the second construction �where the tensor product of graphs is the main vehicle
for increasing the size of the graph�� the primary e�ect of the zigzag product is to
reduce the degree� and the increase in the size of the graph is merely a sidee�ect
�which is actually undesired in Section ������ In both cases� graph squaring is used
in order to compensate for the modest increase in the relative eigenvalue caused
by the zigzag product� In retrospect� the second construction is the �correct�
one� because it decouples three di�erent e�ects� and uses a natural operation to
obtain each of them� Increasing the size of the graph is obtained by tensor product
of graphs �which in turn increases the degree�� a degree reduction is obtained by
the zigzag product �which in turn increases the relative eigenvalue�� and graph
squaring is used in order to reduce the relative eigenvalue�

Stronger bound regarding the e�ect of the zig�zag product� In the fore
going description we relied on the fact� proved in ������ that the relative eigen
value of the zigzag product is upperbounded by the sum of the relative eigenval
ues of the two graphs� Actually� a stronger upperbound is proved in ������ For
g�x� y� � ��� y�� � x��� it holds that

*���G
�#z G� � g�*���G

��� *���G�� $
q
g�*���G��� *���G��� $ *���G�� �E���

� �g�*���G
��� *���G�� $ *���G�

� ��� *���G��� � *���G�� $ *���G��

 �� APPENDIX E� EXPLICIT CONSTRUCTIONS

Thus� we get *���G
�#z G� � *���G

�� $ *���G�� Furthermore� Eq� �E��� yields a non
trivial bound for any *���G

��� *���G� � �� even in case *���G
�� is very close to � �as

in the proof of Theorem ���� Speci�cally� Eq� �E��� is upperbounded by

g�*���G
��� *���G�� $

s

�� *���G��

�

��

$ *���G��

�
��� *���G��� � *���G��

�
$

� $ *���G��

�

� �� ��� *���G��� � ��� *���G
���

�
�E��	�

Thus� ��*���G
�#z G� � ���*���G��� ����*���G

������ In particular� if *���G� � ��
p
�

then � � *���G
�#z G� � �� � *���G

������ This fact plays an important role in the
proof of Theorem ���

Appendix F

Some Omitted Proofs

A word of a Gentleman is better than a proof�
but since you are not a Gentleman
 please provide a proof�

Leonid A Levin ������

The proofs presented in this appendix were not included in the main text for a
variety of reasons �e�g�� they were deemed too technical and�or outofpace for the
corresponding location�� On the other hand� our presentation of these proofs is
su�ciently di�erent from the original and�or standard presentation� and so we see
a bene�t in including these proofs in the current book�

Summary� We present proofs of the following results�

�� PH is reducible to �P �and in fact to 	P� via randomized Karp
reductions� The proof follows the underlying ideas of Toda
s orig
inal proof� but the actual presentation is quite di�erent�

�� For any integral function f that satis�es f�n� � f�� ���� poly�n�g� it
holds that IP�f� � AM�O�f�� and AM�O�f�� � AM�f�� The
proofs di�er from the original proofs �provided in ��	�� and �����
respectively� only in secondary details� still these details seem sig
ni�cant�

F�� Proving that PH reduces to �P

Recall that Theorem ���� asserts that PH is Cookreducible to �P �via determin
istic reductions�� Here we prove a closely related result �also due to Toda �������
which relaxes the requirement from the reduction �allowing it to be randomized�
but uses an oracle to a seemingly weaker class� The latter class is denoted 	P
and is the �modulo � analogue� of �P� Speci�cally� a Boolean function f is
in 	P if there exists a function g � �P such that for every x it holds that

 ��

 �� APPENDIX F� SOME OMITTED PROOFS

f�x� � g�x� mod �� Equivalently� f is in 	P if there exists a search problem
R � PC such that f�x� � jR�x�j mod �� where R�x� � fy � �x� y� � Rg� �The
	 symbol in the notation 	P actually represents parity� which is merely addition
modulo �� Indeed� a notation such as ��P would have been more appropriate��

Theorem F�� Every set in PH is reducible to 	P via a probabilistic polynomial�
time reduction� Furthermore� the reduction is many�to�one and fails with negligible
error probability�

The proof follows the underlying ideas of the original proof ������ but the actual
presentation is quite di�erent� Alternative proofs of Theorem F�� can be found
in ���	� �	���

Teaching note� It is quite easy to prove a non�uniform analogue of Theorem F���

which asserts that AC� circuits can be approximated by the circuits consisting of an

unbounded parity of conjunctions� where each conjunction has polylogarithmic fan�in�

Turning this argument into a proof of Theorem F�� requires careful implementation as

well as using transitions of the type presented in Exercise ���� Furthermore� such a

presentation tends to obscure the conceptual steps that underly the argument�

Proof Sketch� The proof uses three main ingredients� The �rst ingredient is
the fact that NP is reducible to 	P via a probabilistic polynomialtime Karp
reduction� and that this reduction in �highly structured� �see Footnote ��� The
second ingredient is the fact that errorreduction is available in the current context�
resulting in reductions that have exponentially vanishing error probability�� The
third ingredient is the extension of the �rst ingredient to �k �via Proposition �����
These ingredients correspond to the three main steps of the proof�

Rather than presenting the proof at an abstract level �while using suitable def
initions�� we prefer a concrete presentation in which the third step is performed
by an extension of the �rst step� In particular� this allows performing the third
step at a level that clari�es what exactly is going on� In addition� it o�ers the
opportunity for revisiting the standard presentations of the �rst step� while cor
recting what we consider to be a conceptual error in these presentations� Thus�
we begin by dealing with the easy case of NP �and coNP�� and then turn the
implementation of errorreduction �in the current context�� Such error�reduction
is crucial as a starting point for the third step� which deals with the case of ���
When completing the third step� we will have all the ingredients needed for the
general case �of dealing with �k for any k � ��� and we will thus conclude with a
few comments regarding the latter case� Admittingly� the description of the last
part is very sketchy and an actual implementation would be quite cumbersome�
however� the ideas are all present in the case of ��� Furthermore� we believe that
the case of �� is of signi�cant interest per se�

�We comment that such an error�reduction is not available in the context of reductions to
unique solution problems� This comment is made in view of the similarity between the reduction
of NP to �P and the reduction of NP to problems of unique solution�

F��� PROVING THAT PH REDUCES TO �P ��

Let us �rst prove that every set in NP is reducible to 	P via a probabilistic
polynomialtime Karpreduction� Indeed� this follows immediately from the NP
hardness of deciding unique solution for some relationsR � PC �i�e�� Theorem ������
because the corresponding modulo � counter �i�e�� �R mod �� solves the unique
solution problem associated with this relation �i�e�� deciding the existence of unique
solutions for R��� Still� for the sake of selfcontainment and concreteness� let us
consider an alternative proof��

Step �� a direct proof for the case of NP
 As in the proof of Theorem ����� we
start with any R � PC and our goal is reducing SR � fx � jR�x�j��g to 	P by a
randomized Karpreduction�� The standard way of obtaining such a reduction �e�g��
in ���	� ���� �	�� ����� consists of just using the reduction presented in the proof of
Theorem ����� but we believe that this way is conceptually wrong� Recall that the
proof of Theorem ���� consists of implementing a randomized sieve that has the
following property� For any x � SR� with noticeable probability� a single element
of R�x� passes the sieve �and this event can be detected by an oracle to a unique
solution problem�� Indeed� an adequate oracle in 	P correctly detects the case in
which a single element of R�x� passes the sieve� However� by de�nition� this oracle
correctly detects the more general case in which any odd number of elements of R�x�
pass the sieve� Thus� insisting on a random sieve that allows the passing of a single
element of R�x� seems an overkill �or at least is conceptually wrong�� Instead�
we should just apply a less stringent random sieve that� with noticeable probability�
allows the passing of an odd number of elements of R�x�� The adequate tool for this
sieve is a smallbias generator �see Section �� ���� Speci�cally� we use a strongly
e�cient generator �see x�� ������ denoted G � f	� �gk f	� �g�k�� where G�Uk� has
bias at most ��� and
�k� � exp�"�k��� That is� given a seed s � f	� �gk and index
i � �
�k��� we can produce the adequate bit� denoted G�s� i�� in polynomialtime�
Assuming� without loss of generality� that R�x� � f	� �gpjxj� for some polynomial
p� we consider the relation

R�
def
� f�hx� si� y� � �x� y��R
G�s� y���g �F���

�Speci�cally� Theorem ���	 asserts that� for some complete problems R � PC� deciding
membership in any NP�set is reducible in probabilistic polynomial�time to the promise prob�
lem �USR� SR�� where USR � fx � jR�x�j � �g and SR � fx � jR�x�j � �g� The point is that

the function �R�x� def
� jR�x�j mod � solves the latter promise problem that is� �USR� SR� is re�

ducible to �R by the identity mapping� Thus� any reduction to the promise problem �USR� SR�
constitutes a reduction to �R�

�Indeed� the presentation can be modi�ed such that the following direct proof is omitted� In
this case� we shall only use the fact that each set in NP is reducible to �P by a randomized Karp�
reduction� Actually� we will have to rely on the fact that the reduction is �highly structured�
in the sense that� for any polynomially bounded relation R� it reduces SR to �R� by randomly
mapping x to hx� si such that R� satis�es y�R��hx� si� if and only if y�R�x� � ��x� s� y�� where
� is some polynomial�time computable predicate�

�As in Theorem ���	� if any search problem in PC is reducible to R via a parsimonious reduc�
tion� then we can reduce SR to �R� Speci�cally� we shall show that SR is randomly reducible
to �R�� for some R� � PC� and a reduction of SR to �R follows �by using the parsimonious
reduction of R� to R��

 �	 APPENDIX F� SOME OMITTED PROOFS

where y � f	� �gpjxj� � ��pjxj�� and s � f	� �gOjyj� such that
�jsj� � �jyj� In
other words� R��hx� si� � fy � y � R�x�
 G�s� y� � �g� Then� for every x �
SR� with probability at least ���� a uniformly selected s � f	� �gOjyj� satis�es
jR��hx� si�j � � �mod ��� whereas for every x �� SR and every s � f	� �gOjyj� it
holds that jR��hx� si�j � 	� A key observation is that R� � PC �and thus 	R� is
in 	P�� Thus� deciding membership in SR is randomly reducible to 	R� �by the
manytoone randomized mapping of x to hx� si� where s is uniformly selected in
f	� �gOpjxj���� Since the foregoing holds for any R � PC� it follows that NP is
reducible to 	P via randomized Karpreductions�

Dealing with coNP
 We may Cookreduce coNP to NP and thus prove that coNP
is randomly reducible to 	P � but we wish to highlight the fact that a randomized
Karpreduction will also do� Starting with the reduction presented for the case
of sets in NP � we note that for S � coNP we obtain a relation R� such that
x � S is indicated by jR��hx� �i�j � 	 �mod ��� We wish to �ip the parity such
that x � S will be indicated by jR��hx� �i�j � � �mod ��� and this can be done by
augmenting the relation R� with a single dummy solution per each x� For example�
we may rede�ne R��hx� si� as f	y � y�R��hx� si�g�f�	pjxj�g� Indeed� we have just
demonstrated and used the fact that 	P is closed under complementation�

We note that dealing with the cases of NP and coNP is of interest only because
we reduced these classes to 	P rather than to �P � In contrast� even a reduction
of �� to �P is of interest� and thus the reduction of �� to 	P �presented in
Step �� is interesting� This reduction relies heavily on the fact that errorreduction
is applicable to the context of randomized Karpreductions to 	P�

Step �� error reduction
 An important observation� towards the core of the proof�
is that it is possible to drastically decrease the �onesided� error probability in
randomized Karpreductions to 	P � Speci�cally� let R� be as in Eq� �F��� and t

be any polynomial� Then� a binary relation R
t�
� that satis�es

jRt�
� �hx� s�� ���� stjxj�i�j � � $

tjxj�Y
i��

�� $ jR��hx� sii�j� �F���

o�ers such an errorreduction� because jRt�
� �hx� s�� ���� stjxj�i�j is odd if and only if

for some i � �t�jxj�� it holds that jR��hx� sii�j is odd� Thus�

Prs������st�jxj� �jRt�
� �hx� s�� ���� stjxj�i�j � 	 �mod ���

� Prs�jR��hx� si�j � 	 �mod ���tjxj�

where s� s�� ����� stjxj� are uniformly and independently distributed in f	� �gOpjxj��
�and p is such that R�x� � f	� �gpjxj��� This means that the onesided error
probability of a randomized reduction of SR to 	R� �which maps x to hx� si� can
be drastically decreased by reducing SR to 	Rt�

� � where the reduction maps x
to hx� s�� ���� stjxj�i� Speci�cally �for SR � NP�� error probability � �e�g�� � �
���� in the case that we desire an �odd outcome� �i�e�� x � SR� is reduced to

F��� PROVING THAT PH REDUCES TO �P ��

error probability �t� whereas zero error probability in the case of a desired �even

outcome� �i�e�� x � SR� is preserved� A key question is whether	Rt�
� is in	P� that

is� whether R
t�
� �as postulated in Eq� �F���� can be implemented in PC� The answer

is positive� and this can be shown by using a Cartesian product construction �and

adding some dummy solutions�� For example� let R
t�
� �hx� s�� ���� stjxj�i� consists of

tuples h	�� y�� ���� ytjxj�i such that either 	� � � and y� � � � � � ytjxj� � 	pjxj���

or 	� � 	 and for every i � �t�jxj�� it holds that yi � �f	g�R��hx� sii��� f�	pjxj�g�
We wish to stress that� when starting with R� as in Eq� �F���� the forgoing

process of errorreduction can be used for obtaining error probability that is upper
bounded by exp��q�jxj�� for any desired polynomial q� The importance of this
comment will become clear shortly�

Step �� the case of ��
 With the foregoing preliminaries� we are now ready to
handle the case of S � ��� By Proposition ���� there exists a polynomial p and a
set S� � '� � coNP such that S � fx � �y � f	� �gpjxj� s�t� �x� y� � S�g� Using
S� � coNP � we apply the forgoing reduction of S� to 	P as well as an adequate
errorreduction that yields an upperbound of � � ��pjxj� on the error probability�
where � � ��� is unspeci�ed at this point� �For the case of �� the setting � � ���
will do� but for the dealing with �k we will need a much smaller value of � � 	��

Thus� for t � O�p log������� we obtain a relation R
t�
� � PC such that the following

holds� for every x and y�f	� �gpjxj� � with probability at least �� � � ��pjxj� over
the random choice of s� � f	� �gpolyjxj�� it holds that x� def� �x� y� � S� if and only

if jRt�
� �hx�� s�i�j is odd�� Using a union bound �over all possible y � f	� �gpjxj���

it follows that� with probability at least � � � over the choice of s�� it holds that

x � S if and only if there exists a y such that jRt�
� �h�x� y�� s�i�j is odd� Now� as in

the treatment of NP � we wish to reduce the latter �existential problem� to 	P�
That is� we wish to de�ne a relation R� � PC such that for a randomly selected
s the value jR��hx� s� s�i�j mod � provides an indication to whether or not x � S

�by indicating whether or not there exists a y such that jRt�
� �h�x� y�� s�i�j is odd��

Analogously to Eq� �F���� consider the binary relation

I�
def
� f�hx� s� s�i� y� � jRt�

� �h�x� y�� s�ij � ��mod ��
G�s� y���g� �F���

In other words� I��hx� s� s�i� � fy � jRt�
� �h�x� y�� s�ij � ��mod ��
 G�s� y� � �g�

Indeed� if x � S then� with probability at least ��� over the random choice of s� and
probability at least ��� over the random choice of s� it holds that jI��hx� s� s�i�j is
odd� whereas for every x �� S and every choice of s it holds that Prs� �jI��hx� s� s�i�j �

�Recall that js�j � t�jx�j� � O�p��jx�j��� where R��x�� � f�� �gp��jx�j� is the �witness�relation�

corresponding to S� �i�e�� x� � S� if and only if R��x�� � f�� �gp��jx�j��� Thus� R��hx�� s�i� �
f�� �gp��jx�j�� and R

�t�
� �hx�� s�i� is a subset of f�� �g�t�jx�j���p��jx�j���� Note that �since we

started with S� � coNP� the error probability occurs on no�instances of S�� whereas yes�instances
are always accepted� However� to simplify the exposition� we allow possible errors also on yes�
instances of S�� This does not matter because we will anyhow have an error probability on
yes�instances of S �see Footnote ���

 �� APPENDIX F� SOME OMITTED PROOFS

	� � � � ��� Note that� for � � ���� it follows that for every x � S we have
Prs�s� �jI��hx� s� s�i�j � � �mod ��� � �� � ���� � ���� whereas for every x �� S
we have Prs�s� �jI��hx� s� s�i�j � � �mod ��� � � � ���� Thus� jI��hx� �� �i�j mod �
provides a randomized indication to whether or not x � S� but it is not clear
whether I� is in PC �and in fact I� is likely not to be in PC�� The key observation
is that

jR��hx� s� s�i�j � jI��hx� s� s�i�j �mod �� �F���

where R��hx� s� s�i� def
�
n
hy� zi � �h�x� y�� s�i� z��Rt�

�
G�s� y���
o

�with hy� zi � f	� �gpjxj� � f	� �gpolyjxj��� This observation �i�e�� Eq� �F���� is

justi�ed by letting �y�z � � �resp�� �y� indicates the event �h�x� y�� s�i� z� � R
t�
�

�resp�� the event G�s� y����� noting that

jR��hx� s� s�i�j mod � � 	y�z��y�z
 �y�

jI��hx� s� s�i�j mod � � 	y��	z�y�z�
 �y�

and using the equivalence of the two corresponding Boolean expressions� The
punchline is that R� � PC� It follows that S is randomly Karpreducible to 	P
�by the manytoone randomized mapping of x to hx� s� s�i� where �s� s�� is uniformly
selected in f	� �gOpjxj�� � f	� �gpolyjxj���

Again� errorreduction may be applied to this reduction �of �� to 	P� such that
it can be used for dealing with ��� A technical di�culty arises since the foregoing
reduction has twosided error probability� where one type �or �side�� of error is due

to the error in the reduction of S� � coNP to 	Rt�
� �which occurs on noinstances

of S�� and the second type �or �side�� of error is due to the �new� reduction of S to
	R� �and occurs on the yesinstances of S�� However� the error probability in the
�rst reduction is �or can be made� very small and can be ignored when applying
errorreduction to the second reduction� See following comments�

The general case
 First note that� as in the case of coNP � we can obtain a similar
reduction for '� � co��� It remains to extend the treatment of �� to �k� for every
k � �� Indeed� S � �k is treated by considering a polynomial p and a set S� � 'k��
such that S � fx � �y � f	� �gpjxj� s�t� �x� y��S�g� Next� we use a relation R

tk�
k

such that� with overwhelmingly high probability over the choice of s� the value

jRtk�
k �h�x� y�� s�i�j mod � indicates whether or not �x� y� � S�� Using the ideas

underlies the treatment of NP �and ��� we check whether for some y it holds that

jRtk�
k �h�x� y�� s�i�j � � �mod ��� This yields a relation Rk�� such that for random

s� s� the value jRk���hx� s� s�i�j mod � indicates whether or not x � S� Finally� we
apply error reduction� while ignoring the probability that s� is bad� and obtain

�In continuation to Footnote �� we note that actually� if x � S then� for every choice of s��

there exists a y such that jR�t�
� �h�x� y�� s�i�j is odd� Thus� for every x � S and s�� with probability

at least �
� over the random choice of s� it holds that jI��hx� s� s�i�j is odd� On the other hand� if

x �� S then Prs� ��y�jR�t�
� �h�x� y�� s�i�j � ��mod ��� � �� �� Thus� for every x �� S and s� it holds

that Prs� �jI��hx� s� s�i�j � �� � �� ��

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � ��

the desired relation R
tk���
k�� � This means that if we wish to upperbound the error

probability in the reduction �of S� to 	Rtk���
k�� by �k��� then the error probability

in the reduction �of S�� to 	Rtk�
k should be upperbounded by �k � �k�� � ��pjxj�

�and tk should be set accordingly�� Thus� the proof that PH is randomly reducible
to 	P actually proceed �top down� �at least partially�� that is� starting with an
arbitrary S � �k� we �rst determine the auxiliary sets �as per Proposition ����
as well as the errorbounds that should be proved for the reductions of these sets
�which reside in lower levels of PH�� and only then we establish the existence of
such reductions� Indeed� this latter �and main� step is done �bottom up� using the
reduction �to 	P� of the set in the ith level when reducing �to 	P� the set in the
i$ �st level�

F�� Proving that IP�f� � AM�O�f�� � AM�f�

Using the notations presented in x�������� we restate two results mentioned there�

Theorem F�� �Rounde�cient emulation of IP by AM�� Let f � NN be a
polynomially bounded function� Then IP�f� � AM�f $ ���

We comment that� in light of the following linear speedup in roundcomplexity for
AM� it su�ces to establish IP�f� � AM�O�f���

Theorem F�� �Linear speedup for AM�� Let f � NN be a polynomially
bounded function� Then AM��f� � AM�f $ ���

Combining these two theorems� we obtain a linear speedup for IP � that is� for any
polynomially bounded f � N �N n f�g�� it holds that IP�O�f�� � AM�f� �
IP�f�� In this appendix we prove both theorems�

We mention that the proof of Theorem F�� relies on the fact that� for every f �
errorreduction is possible for IP�f�� Speci�cally� errorreduction can be obtained
via parallel repetitions �see ���� Apdx� C����� We note that errorreduction �in the
context of AM�f�� is implicit also in the proof of Theorem F�� �and is explicit in
the original proof of ������

F���� Emulating general interactive proofs by AM	games

In this section we prove Theorem F��� Our proof di�ers from the original proof of
Goldwasser and Sipser ��	�� only in the conceptualization and implementation of
the iterative emulation process�

F������ The basic approach

Our aim is to transform a general interactive proof system �P� V � into a publiccoin
interactive proof system for the same problem� Suppose� without loss of generality�
that P constitutes an optimal prover with respect to V �i�e�� P maximizes the
acceptance probability of V on any input�� Then� for any yesinstance� the set

 �� APPENDIX F� SOME OMITTED PROOFS

of coin sequences that make V accept when interacting with this optimal prover
contains all possible outcomes� whereas for a noinstance this set is very small� The
idea is having a publiccoin system in which the prover prove to the veri�er that
the said set is big� Such a proof system can be constructed using ideas as in the
case of approximate counting �see the proof of Theorem ������ while replacing the
NPoracle with a prover that is required to prove the correctness of its answers�
Implementing this idea requires taking a closer look at the set of coin sequences
that make V accept an input�

We demonstrate the implementation of the foregoing approach by considering
an interactive proof system �such as Construction ���� in which the veri�er V
sends a single message to which the prover P responses� Further suppose that�
when the common input is a yesinstance� each possible message of V is equally
likely �which holds for a minor modi�cation of Construction �����	 Speci�cally�
suppose that on input x� the veri�er V tosses
 �
�jxj� coins and sends one out of
M possible messages �as determined by the input and the coin sequence�� Then�
in the public�coin system� the prover will claim that in the original proof there
are M possible V messages such that the original prover can respond to each of
them in a way that is accepted by ���M corresponding coin sequences of V � To
prove this claim� the prover lets the veri�er select at random one of the possible M
messages �e�g�� by selecting coins for V �� denoted �� and the prover send back an
adequate P message� denoted �� and proves that � would have been accepted by
���M possible coin sequences of V � The latter proof follows the idea of the proof
of Theorem ����� The veri�er applies a random sieve that lets only a ����M���

fraction of the elements pass� and the prover proves that some adequate sequence
of V coins has passed this sieve� The latter claim is proved by merely presenting
such a sequence� denoted r� and the veri�er can check whether indeed r passes the
sieve as well as �ts the initial message � and would have made V accept the prover
message � �i�e�� V would have accepted the input� on coins r� when receiving the
prover message ��� We stress that the foregoing interaction �and in particular the
random sieve� can be implemented in the publiccoin model�

A few technical problems arise� Firstly� recall that the random sieve only allows
for an approximation of set sizes� However� since the gap between the acceptance
probability of yesinstances and noinstances is big enough �or can be made big
enough by parallel repetition�� this su�ces� Secondly� in general� it is not necessar
ily the case that each possible message of V is equally likely� However� the prover
may cluster the V messages into few �say
� clusters such that the messages in
each cluster are sent �by V � with roughly the same probability �say� up to a factor
of two�� Focusing on the cluster having the largest probability weight� the prover
can proceed as in the simple case� This has a potential of cutting the probabilistic
gap between yesinstances and noinstances by a factor related to the number of
clusters times the approximation level within clusters �e�g�� a factor of O�
��
� but

�In the original protocol� the veri�er selects at random one of the two input graphs� and sends
a random isomorphic copy of it� In the modi�cation� the veri�er creates a random isomorphic
copy of each of the two input graphs� and sends them in a random order�

�The loss is due to the fact that the distribution of �probability� weights may not be identical
on all instances� For example� in one case �e�g�� of some yes�instance� all clusters may have equal

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � �

this loss is negligible in comparison to the initial gap �which can be obtained via
errorreduction�� Lastly� there is the fact that we only dealt with a twomessage
system �i�e�� IP�����

It is tempting to say that the general case of IP�f� can be dealt by recursion �or
rather iterations�� and indeed this is almost the case� Recall that our treatment of
the case of IP��� boils down to having the veri�er choose a random V message� ��
and having the prover send a P response� �� and �nally prove that � is acceptable
by many V coins� In other words� the prover should prove that in the conditional
probability space de�ned by V message �� the original veri�er V accepts with high
probability� In the general case �of IP�f��� the latter claim refers to the probability
of accepting in the residual interaction� which consists of f � � messages� and thus
the very same protocol can be applied iteratively �until we get to the last message�
which is dealt as in the case of IP����� The only problem is that� in the residual
interactions� it may not be easy for the veri�er to select a random V message �as
done in the case of IP����� Instead� the veri�er will be assisted by the prover�
while making sure that it is not being fooled by the prover� Indeed� this calls
for an adequate �random selection� protocol� which need to be implemented in
the publiccoin model� For simplicity� we may consider the problem of selecting a
uniform sequence of coins in the residual probability space� because such a sequence
determines the desired random V message�

F������ Random selection

Various types of �random selection� protocols have appeared in the literature �see�
e�g�� ����� Sec� ������ The common theme in these protocols is that they allow
for a probabilistic polynomialtime player �called the veri�er� to sample a set�
denoted S � f	� �g�� while being assisted by a second player �called the prover�
that is powerful but not trustworthy� These nicknames �t the common conventions
regarding interactive proofs and are further justi�ed by the typical applications of
such protocols as subroutines within an interactive proof system �where indeed the
�rst party is played by the higherlevel veri�er while the second party is played by
the higherlevel prover�� The various types of random selection protocols di�er by
what is known about the set S and what is required from the protocol�

Here we will assume that the veri�er is given a parameter N � which is supposed
to equal jSj� and the performance guarantee of the protocol will be meaningful
only for sets of size at most N � We desire a constantround �preferably tworound�
publiccoin protocol for this setting such that the following holds� with respect to
a security parameter � � ��poly�
��

�� If both players are honest and N � jSj then the veri�er
s output is �close to
the uniform distribution over S� Furthermore� the veri�er always outputs an
element of S�

�� For any set S� � f	� �g� if the veri�er follows the protocol then� no matter

weight� and thus a corresponding factor is lost� while in another case �e�g�� of some no�instance�
all the probability mass may be concentrated in a single cluster�

 �� APPENDIX F� SOME OMITTED PROOFS

how the prover behaves� the veri�er
s output resides in S� with probability
at most poly�
��� � �jS�j�N��

Note that the second property is meaningful only for sets S� having size that is
�signi�cantly� smaller than N � We shall be using such a protocol while setting �
to be a constant �say� � � �����

A threeround publiccoin protocol can be obtained by using the ideas that
underly Construction ����� Speci�cally� we set m � max�	� log�N � O�log
����
in order to guarantee that if jSj � N then� with overwhelmingly high probability�
each cell de�ned by the hashing function contains �� & �� � jSj��m elements of S�
In the protocol� the prover selects a good hashing function �i�e�� one de�ning such
a good partition of S� and sends it to the veri�er� which answers with a uniformly
selected cell� to which the prover responds with a uniformly selected element of S
that resides in this cell��

Note that this protocol satis�es the aforementioned properties� In particular�
the second property follows because for every possible hashing function� the fraction
of cells containing an element of S� is at most jS�j��m� which is upperbounded by
poly�
��� � jS�j�N � We stress that the protocol is indeed in the publiccoin model�
and comment that the fact that it uses three messages rather than two will have a
minor e�ect on our application�

F������ The iterated partition protocol

The random selection protocol discussed in xF������ is meaningful only with respect
to sets �i�e�� S�� that are smaller than the given parameter N � Here we explain why
this su�ces for our goals� We start with some notations�

Fixing any input x to �P� V �� we denote by t � t�jxj� the number of pairs of com
munication rounds �assuming that the veri�er takes the �rst move in �P� V ���� and
by
 �
�jxj� � t the number of coins tossed by V � Recall that we assume that P is
an optimal prover �with respect to V �� and that �without loss of generality� P is de
terministic� Let us denote by hP� V �r�i�x� the full transcript of the interaction of P
and V on input x� when V uses coins r� that is� hP� V �r�i�x� � ���� ��� ���� �t� �t� 	�
if 	 � V �x� r� ��� ���� �t� � f	� �g is V
s �nal verdict and for every i � �� ���� t it holds
that �i � V �x� r� ��� ���� �i��� and �i � P �x� ��� ���� �i�� For any partial transcript
ending with a Pmessage� � � ���� ��� ���� �i��� �i���� we denote by ACCx��� the
set of coin sequences that are consistent with the partial transcript � and lead V
to accept x when interacting with P � that is� r � ACCx��� if and only if for some
�� � f	� �g�t�i��polyjxj� it holds that hP� V �r�i�x� � ���� ��� ���� �i��� �i��� ��� ���

	A more natural version of this protocol consists of having the veri�er select at random a
hashing function as well as a cell� and asks the prover for a list of ��� �� �N
�m elements in this
cell� The veri�er then outputs an element that is uniformly selected in the list� This protocol
provides a stronger guarantee with respect to cheating provers� the veri�er�s output resides in S�

with probability at most �jS�j
N���� However� even in case the prover is honest� this protocol does
not guarantee that the veri�er always outputs an element of S� because it may happen �rarely�
that the hashing function selected by the veri�er is not good� For this reason� we preferred the
version presented in the main text�

�
We note if the prover takes the �rst move in �P�V � then its �rst message can be emulated
with no cost �in the number of rounds��

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � ��

The same notation is also used for a partial transcript ending with a Vmessage�
that is� r � ACCx���� ��� ���� �i� if and only if hP� V �r�i�x� � ���� ��� ���� �i� �

�� ��
for some ���

Motivation� By suitable error reduction� we may assume that �P� V � has sound
ness error � � ��jxj� that is smaller than poly�
��t� Thus� for any yesinstance x it
holds that jACCx���j � ��� whereas for any noinstance x it holds that jACCx���j �
� � ��� Indeed� the gap between the initial set sizes is huge� and we can maintain a
gap between the sizes of the corresponding residual sets �i�e�� ACCx���� ��� ���� �i��
provided that we lose at most a factor of poly�
� per each round� The key ob
servations is that� for any partial transcript � � ���� ��� ���� �i��� �i���� it holds
that

jACCx���j �
X
�

jACCx��� ��j� �F� �

whereas jACCx��� ��j � maxfjACCx��� �� ��jg� Clearly� we can prove that jACCx��� ��j
is big by providing an adequate � and proving that jACCx��� �� ��j is big� Likewise�
proving that jACCx���j is big reduces to proving that the sum

P
� jACCx��� ��j is

big� The problem is that this sum may contain exponentially many terms� and so we
cannot even a�ord reading the value of each of these terms��� As hinted in xF�������
we may cluster these terms into
 clusters� such that the jth cluster contains sets of
cardinality approximately �j �i�e�� �
s such that �j � jACCx��� ��j � �j���� One
of these clusters must account for a ���
 fraction of the claimed size of jACCx���j�
and so we focus on this cluster� that is� the prover we construct will identify a suit
able j �i�e�� such that there are at least jACCx���j��
 elements in the sets of the
jth cluster�� and prove that there are at least N � jACCx���j���
 � �j��� sets �i�e��
ACCx��� ��
s� each of size at least �j � Note that this establishes that jACCx���j
is bigger than N � �j � jACCx���j�O�
�� which means that we lost a factor of O�
�
of the size of ACCx���� But as stated before� we may a�ord such a lost�

Before we turn to the actual protocol� let us discuss the method of proving that
that there are at least N sets �i�e�� ACCx��� ��
s� each of size at least �j � This
claim is proved by employing the random selection protocol �with size parameter
set to N� with the goal of selecting such a set �or rather its index ��� If indeed
N such sets exists then the �rst property of the protocol guarantees that such a
set is always chosen� and we will proceed to the next iteration with this set� which
has size at least �j �and so we should be able to establish a corresponding lower
bound there�� Thus�� entering the current iteration with a valid claim� we proceed
to the next iteration with a new valid claim� On the other hand� suppose that
jACCx���j � N � �j � Then� the second property of the protocol implies�� that�
with probability at least � � ����t�� the selected � is such that jACCx��� ��j �
poly�
� � jACCx���j�N � �j � whereas at the next iteration we will need to prove

��Furthermore� we cannot a�ord verifying more than a single claim regarding the value of one
of these terms� because examining at least two values per round will yield an exponential blow�up
�i�e�� time complexity that is exponential in the number of rounds��

��For a loss factor L � poly���� consider the set S� � f� � jACCx��� ��j � L � jACCx���j
Ng�
Then jS�j � N
L� and it follows that an element in S� is selected with probability at most
poly���
L� which is upper�bounded by �
�t when using a suitable choice of L�

 �� APPENDIX F� SOME OMITTED PROOFS

that the selected set has size at least �j � Thus� entering the current iteration with
a false claim that is wrong by a factor F � with probability at least �� ����t�� we
proceed to the next iteration with a claim that is wrong by a factor of at least
F�poly�
��

We note that� although the foregoing motivational discussion refers to proving
lowerbounds on various set sizes� the actual implementation refers to randomly
selecting elements in such sets� If the sets are smaller than claimed� the selected
elements are likely to reside outside these sets� which will be eventually detected�

Construction F�	 �the actual protocol�� On common input x� the �t�round in�
teraction of P and V is �quasiemulated� in t iterations� where t � t�jxj�� The ith
iteration starts with a partial transcript �i�� � ���� ��� ���� �i��� �i��� and a claimed
bound Mi��� where in the �rst iteration �� is the empty sequence and M� � ���
The ith iteration proceeds as follows�

�� The prover determines an index j such that the cluster Cj � f� � �j �
jACCx��i��� ��j � �j��g has size at least N

def
� Mi�����j��
�� and sends j

to the veri�er� Note that if jACCx��i���j �Mi�� then such a j exists�

� The prover invokes the random selection protocol with size parameter N in
order to select � � Cj � where for simplicity we assume that Cj � f	� �g��
Recall that this public�coin protocol involves three messages with the �rst and
last message being sent by the prover� Let us denote the outcome of this
protocol by �i�

�� The prover determines �i such that ACCx��i��� �i� �i� � ACCx��i��� �i� and
sends �i to the veri�er�

Towards the next iterationMi � �j and �i � ���� ��� ���� �i� �i� � ��i��� �i� �i��

After the last iteration��� the prover invokes the random selection protocol with size
parameter N � Mt in order to select r � ACCx���� ��� ���� �t� �t�� Upon obtain�
ing this r� the veri�er accepts if and only if V �x� r� ��� ���� �t� � � and for every
i � �� ���� t it holds that �i � V �x� r� ��� ���� �i���� where the �i	s and �i	s are as
determined in the foregoing iterations�

Note that the three steps of each iteration involve a single message by the public
coin veri�er� and thus the foregoing protocol can be implemented using �t $ �
messages�

Clearly� if x is a yesinstance then the prover can make the veri�er accept
with probability one �because an adequately large cluster exists at each iteration�
and the random selection protocol guarantees that the selected �i will reside in
this cluster�� Thus� at the last invocation of the random selection protocol� the
veri�er always obtains r � ACCx��t� and accepts� On the other hand� if x is a
noinstance then by using the low soundness error of �P� V � we can establish the

��Alternatively� we may modify �P� V � by adding a last V �message in which V sends its internal
coin tosses �i�e�� r�� In this case� the additional invocation of the random selection protocol occurs
as a special case of handling the added t � �st iteration�

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � ��

soundness of Construction F��� This is proved in the following claim� which refers
to a polynomial p that is su�ciently large�

Claim F�� Suppose that jACCx���j � �t�� � ��� where � � ��p�
�� Then� the
veri�er of Construction F�� accepts x with probability smaller than ����

Proof Sketch� We �rst prove that� for every i � �� ���� t� if jACCx��i���j �
�t���i����Mi�� then� with probability at least ������t�� it holds that jACCx��i�j �
�t���i �Mi� Let j be the value selected by the prover in Step � �of iteration i��
and de�ne S� � f� � jACCx��i��� ��j � �t���i � �jg� Then jS�j � �t���i�j �
�t���i��� �Mi��� and so jS�j � � � �Mi����j� � �
� �N � where N � Mi�����j��
�
is as used in Step � �of this iteration�� By the second property of the random selec
tion protocol it follows that Pr��i � S� � poly�
��� � poly�
��p�
�� which is smaller
than ���t provided that the aforementioned polynomial p is su�ciently large� Thus�
with probability at least � � ����t�� it holds that jACCx��i��� �i�j � �t���i � �j �
The ith claim follows by recalling that Mi � �j �in Step �� and that for every � it
holds that jACCx��i��� �i� ��j � jACCx��i��� �i�j�

Recalling that jACCx����j � �t�� �M�� with probability at least ���� we have
jACCx��t�j � � �Mt� In this case� the random selection protocol produces an ele
ment of ACCx��t� with probability at most ���� and the veri�er rejects otherwise
�because the conditions that the veri�er checks regarding the output r of the ran
dom selection protocol are logically equivalent to r � ACCx��t��� The main claim
follows�

F���� Linear speed	up for AM

In this section we prove Theorem F��� Our proof di�ers from the original proof of
Babai and Moran ���� in the way we analyze the basic switch �of MA to AM��

We assume that the reader is familiar with the terminology of publiccoin �a�k�a
ArthurMerlin� interactive proofs� where the veri�er is called Arthur and the prover
is called Merlin� The execution of such a proof system� on any �xed common input
x� can be viewed as a game �indexed by x� between an honest Arthur and powerful
Merlin� These parties alternate in taking moves such that Arthur takes random
moves and Merlin takes optimal moves with respect to a �xed �polynomialtime
computable� predicate vx that is evaluated on the full transcript of the game	s
execution� The value of the game is de�ned as the expected value of an execution of
the game� where the expectation is taken over Arthur
s moves �and Merlin
s moves
are assumed to be optimal��

Recall that AM � AM��� denotes a tworound system in which Arthur moves
�rst and does not toss coins after receiving Merlin
s answer� whereasMA � AM���
denotes a oneround system in which Merlin sends a single message and Arthur
tosses additional coins after receiving this message� We may assume� without loss
of generality� that all messages of Arthur are of the same length� denoted
 �
�jxj��
Similarly� each of Merlin
s messages is of length m � m�jxj��

 �	 APPENDIX F� SOME OMITTED PROOFS

F������ The basic switch �from MA to AM�

The basic idea is to transform an MAgame �i�e�� a twomove game in which Merlin
moves �rst and Arthur follows� into an AMgame �in which Arthur moves �rst and
Merlin follows�� Recall that� in the original game� �rst Merlin sends a message
� � f	� �gm� then Arthur responds with a random � � f	� �g�� and the value
of this execution of the game is given by vx��� �� � f	� �g� In the new game
�see Figure F���� the order of these moves will be switched� but to limit Merlin
s
potential gain from the switch we require it to provide a single answer that should
��t� several random messages of Arthur� That is� for a parameter t to be speci�ed�
�rst Arthur send a random sequence ����� ���� �t�� � f	� �gt��� then Merlin responds
with a string � � f	� �gm� and the value of this transcript of the new game is de�ned
as the conjunction of the values vx��� �

i��� for i � �� ���� t� Intuitively� Merlin gets
the advantage of choosing its move after seeing Arthur
s move�s�� but Merlin
s
choice must �t the t choices of Arthur
s move� which intuitively leaves Merlin with
little gain �if t is su�ciently large��

ArthurMerlin

β

α

ArthurMerlin

β

αα . . .(1) (t)

The original MA game The new AM game

The value of the transcript ��� �� of the original MAgame is given
by vx��� ��� whereas the value of the transcript ���

��� ���� �t��� �� of
the new AMgame is given by
ti��vx��� �i���

Figure F��� The transformation of an MAgame into an AMgame�

Recall that the value� v�x� of the transcript ��� �� of the new game� where � �
����� ���� �t��� is de�ned as
ti��vx��� �i��� Thus� the value of the new game is
de�ned as

E��max

f
ti��vx��� �i��g�� �F���

which is upperbounded by

E�

�
max

�

t

tX
i��

vx��� �
i��

!�
�

�F���

Note that the upperbound provided in Eq� �F��� is tight in the case that the value
of the original MAgame equals one �i�e�� if x is a yesinstance�� and that in this case
the value of the new game is one �because in this case there exists a move � such
that vx��� �� � � holds for every ��� However� the interesting case� where Merlin
may gain something by the switch is when the value of the original MAgame is

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � ��

strictly smaller than one �i�e�� when x is a noinstance�� The main observation is�
for a suitable choice of t� it is highly improbable that Merlin	s gain from the switch
is signi�cant�

Recall that in the original MAgame Merlin selects � obliviously of Arthur
s
choice of �� and thus Merlin
s �pro�t� �i�e�� the value of the game� is represented
by maxfE��vx��� ���g� In the new AMgame� Merlin selects � based on the
sequence � chosen by Arthur� and we have upperbouded its �pro�t� �in the new
AMgame� by Eq� �F���� Merlin
s gain from the switch is thus the excess pro�t �of
the new AMgame as compared to the original MAgame�� We upperbound the
probability that Merlin	s gain from the switch exceeds a parameter� denoted �� as
follows�

px�

def
� Pr�����������t��

�
max

�

t
�

tX
i��

vx��� �
i��

!
� max

fE��vx��� ���g$ �

�

� Pr�����������t��

�
���f	� �gm s�t�

������t �
tX

i��

vx��� �
i��� E��vx��� ���

����� � �

�
� �m � exp��"��� � t���

where the last inequality is due to combining the Union Bound with the Cherno�
Bound� Denoting by Vx � maxfE��vx��� ���g the value of the original game�
we upperbound Eq� �F��� by px�
 $ Vx $ �� Using t � O��m $ k����� we have
px�
 � ��k� and thus

V �
x

def
� E�

�
max

�

t

tX
i��

vx��� �
i��

!�
� max

fE��vx��� ���g$ � $ ��k� �F���

Needless to say� Eq� �F��� is lowerbounded by Vx �since Merlin may just use the
optimal move of the MAgame�� In particular� using � � ��k � ��� and assuming
that Vx � ���� we obtain V �

x � ���� Thus� starting from an MA proof system for
some set� we obtain an AM proof system for the same set� that is� we just proved
that MA � AM�

Extension� We note that the foregoing transformation as well as its analysis does
not refer to the fact that vx��� �� is e�ciently computable from ��� ��� Further
more� it does not refer to the fact that vx��� �� is in f	� �g� Thus� we may apply the
foregoing transformation to the any two consecutive MerlinArthur moves in any
publiccoin interactive proof� provided that all subsequent moves are performed
in t copies� where each copy corresponds to a di�erent �i� used in the switch�
That is� if the jth move is by Merlin then we can switch the players in the j and
j $ � moves� by letting Arthur take the jth move� sending ����� ���� �t��� followed
by Merlin
s move� answering �� Subsequent moves will be played in t copies such
that the ith copy corresponds to the moves �i� and �� The value of the new
game may increase by at most ��k $ � � ���� and so we obtain an �equivalent�
game with the two steps switched� Schematically� acting on the middle MA �in
dicated in bold font�� we can replace �AM�j�AMA�MA�j� by �AM�j�AAM�MA�j� �

 �� APPENDIX F� SOME OMITTED PROOFS

which in turn allows the collapse of two consecutive Amoves �and two consec
utive Mmoves if j� � ��� In particular �using only the case j� � 	�� we get
A�MA�j�� � A�MA�j � � � � � AMA � AM� Thus� for any constant f � we get
AM�f� � AM����

We stress that the foregoing switching process can be applied only a constant
number of times� because each time we apply the switch the length of messages
increases by a factor of t � "�m�� Thus� a di�erent approach is required to deal
with a nonconstant number of messages �i�e�� unbounded function f��

F������ The augmented switch �from �MAMA�j to �AMA�jA�

Sequential applications of the �MAtoAM switch� allows for reducing the number
of rounds by any additive constant� However� each time this switch is applied�
all subsequent moves are performed t times �in parallel�� That is� the �MAto
AM switch� splits the rest of the game to t independent copies� and thus this
switch cannot be performed more than a constant number of times� Fortunately�
Eq� �F��� suggests a way of shrinking the game back to a single copy� just have
Arthur select i � �t� uniformly and have the parties continue with the ith copy��� In
order to avoid introducing an ArthurMerlin alternation� the extra move of Arthur
is postpone to after the following move of Merlin �see Figure F���� Schematically
�indicating the action by bold font�� we replace MAMA by AMMAA�AMA
�rather than replacing MAMA by AMAMA and obtaining no reduction in the
number of movealternations��

ArthurMerlin ArthurMerlin

. . .

The MAMA game The AMA game

(1)α1 α1
(t)

1

α1

α

β

β2

2

1β
(1)β β

α2

i

(t)
2 2

The value of the transcript ���� ��� ��� ��� of the original MAMA
game is given by vx���� ��� ��� ���� whereas the value of the tran

script ���
��
� � ���� �

t�
� �� ���� �

��
� � ���� �

t�
� �� �i� ���� of the new AMAgame

is given by vx���� �
i�
� � �

i�
� � ����

Figure F��� The transformation of MAMA into AMA�

��Indeed� the relaxed form of Eq� �F��� plays a crucial role here �in contrast to Eq� �F�����

F�	� PROVING THAT IP�F � � AM�O�F �� � AM�F � ��

The value of game obtained via the aforementioned augmented switch is given
by Eq� �F���� which can be written as

E�����������t� �max

fEi��t��vx��� �i���g��

which in turn is upperbounded �in Eq� �F���� by maxfE��vx��� ���g $ � $ ��k�
As in xF������� the argument applies to any two consecutive MerlinArthur moves
in any publiccoin interactive proof� Recall that in order to avoid the introduction
of an extra Arthur move� we actually postpone the last move of Arthur to after the
next move of Merlin� Thus� we apply the augmented switch to any block of four con
secutive moves that start with a Merlin move� transforming the schematic sequence
MAMA into AMMAA�AMA �see Figure F���� The key point is that the moves
that take place after the said block� remain intact� Thus� we may apply the aug
mented �MAtoAM switch� �which is actually an �MAMAtoAMA switch�� con
currently to disjoint segments of the game� Schematically� we can replace �MAMA�j

by �AMA�j � A�MA�j � Note that Merlin
s gain from each such switch is upper

bounded by � $ ��k� but selecting t � eO�f�jxj�� � m�jxj�� � poly�jxj� allows to
upperbound the total gain by a constant �using� say� � � ��k � ���f�jxj��� We
thus obtain AM��f� � AM��f $ ��� and Theorem F�� follows�

 �� APPENDIX F� SOME OMITTED PROOFS

Appendix G

Some Computational

Problems

Although we view speci�c �natural� computational problems as secondary to �nat
ural� complexity classes� we do use the former for clari�cation and illustration�
This appendix provides de�nitions of these computational problems�

We start by addressing the central issue of the representation of the various
objects� The general principle is that elements of all sets are �compactly� repre
sented as binary strings �without much redundancy�� For example� the elements of
a �nite set S �e�g�� the set of vertices in a graph or the set of variables appearing
in a Boolean formula� will be represented as binary strings of length log� jSj�

G�� Graphs

Graph theory has long become recognized as one of the more
useful mathematical subjects for the computer science student to
master� The approach which is natural in computer science is the
algorithmic one� our interest is not so much in existence proofs or
enumeration techniques� as it is in �nding e�cient algorithms for
solving relevant problems� or alternatively showing evidence that
no such algorithms exist� Although algorithmic graph theory was
started by Euler� if not earlier� its development in the last ten
years has been dramatic and revolutionary�

Shimon Even� Graph Algorithms ����

A simple graph G� �V�E� consists of a �nite set of vertices V and a �nite set of
edges E� where each edge is an unordered pair of vertices� that is� E � ffu� vg �
u� v�V
u ��vg� This formalism does not allow selfloops and parallel edges� which
are allowed in general �i�e�� nonsimple� graphs� where E is a multiset that may
contain singletons �i�e�� selfloops�� The vertex u is called an end�point of the edge

 �

 �� APPENDIX G� SOME COMPUTATIONAL PROBLEMS

fu� vg� and the edge fu� vg is said to be incident at v� In such a case we say that
u and v are adjacent in the graph� and that u is a neighbor of v� The degree of a
vertex in G is de�ned as the number of edges that are incident at this vertex�

We will consider various substructures of graphs� the simplest one being paths�
A path in a graph G��V�E� is a sequence of vertices �v�� ���� v�� such that for every

i � �
�
def
� f�� ����
g it holds that vi�� and vi are adjacent in G� Such a path is said

to have length
� A simple path is a path in which each vertex appears at most
once� which implies that the longest possible simple path in G has length jV j � ��
The graph is called connected if there exists a path between each pair of vertices
in it�

A cycle is a path in which the last vertex equals the �rst one �i�e�� v� � v���
The cycle �v�� ���� v�� is called simple if
 � � and jfv�� ���� v�gj �
 �i�e�� if vi � vj
then i � j �mod
�� and the cycle �u� v� u� is not considered simple�� A graph is
called acyclic �or a forest� if it has no simple cycles� and if it is also connected then
it is called a tree� Note that G��V�E� is a tree if and only if it is connected and
jEj � jV j � �� and there is a unique simple path between each pair of vertices in a
tree�

A subgraph of the graph G��V�E� is any graph G���V �� E�� satisfying V � � V
and E� � E� Note that a simple cycle in G is a connected subgraph of G in which
each vertex has degree exactly two� An induced subgraph of the graph G��V�E�
is any subgraph G���V �� E�� that contain all edges of E that are contained in V ��
In such a case� we say that G� is the subgraph induced by V ��

Directed graphs� We will also consider �simple� directed graphs �a�k�a digraphs��
where edges are ordered pairs of vertices� In this case the set of edges is a subset
of V � V n f�v� v� � v � V g� and the edges �u� v� and �v� u� are called anti�parallel�
General �i�e�� nonsimple� directed graphs are de�ned analogously� The edge �u� v�
is viewed as going from u to v� and thus is called an out�going edge of u �resp��
in�coming edge of v�� The out�degree �resp�� in�degree� of a vertex is the number of
its outgoing edges �resp�� incoming edges�� Directed paths and the related objects
are de�ned analogously� for example� v�� ���� v� is a directed path if for every i � �
�
it holds that �vi��� vi� is a directed edge �which is directed from vi�� to vi�� It is
common to consider also a pair of antiparallel edges as a simple directed cycle�

A directed acyclic graph �DAG� is a digraph that has no directed cycles� Every
DAG has at least one vertex having outdegree �resp�� indegree� zero� called a sink
�resp�� a source�� A simple directed acyclic graph G � �V�E� is called an inward
�resp�� outward� directed tree if jEj � jV j � � and there exists a unique vertex�
called the root� having outdegree �resp�� indegree� zero� Note that each vertex
in an inward �resp�� outward� directed tree can reach the root �resp�� is reachable
from the root� by a unique directed path��

�Note that in any DAG� there is a directed path from each vertex v to some sink �resp�� from
some source to each vertex v�� In an inward �resp�� outward� directed tree this sink �resp�� source�
must be unique� The condition jEj � jV j � � enforces the uniqueness of these paths� because
�combined with the reachability condition� it implies that the underlying graph �obtained by
disregarding the orientation of the edges� is a tree�

G�	� BOOLEAN FORMULAE ��

Representation� Graphs are commonly represented by their adjacency matrix
and�or their incidence lists� The adjacency matrix of a simple graph G��V�E� is a
jV jbyjV j Boolean matrix in which the �i� j�th entry equals � if and only if i and
j are adjacent in G� The incidence list representation of G consists of jV j sequences
such that the ith sequence is an ordered list of the set of edges incident at vertex i�

Computational problems� Simple computational problems regarding graphs
include determining whether a given graph is connected �and�or acyclic� and �nd
ing shortest paths in a given graph� Another simple problem is determining whether
a given graph is bipartite� where a graph G��V�E� is bipartite �or ��colorable� if
there exists a �coloring of its vertices that does not assign neighboring vertices the
same color� All these problems are easily solvable by BFS�

Moving to more complicated tasks that are still solvable in polynomialtime� we
mention the problem of �nding a perfect matching �or a maximum matching� in a
given graph� where a matching is a subgraph in which all vertices have degree �� a
perfect matching is a matching that contains all the graph
s vertices� and a maximum
matching is a matching of maximum cardinality �among all matching of the said
graph��

Turning to NPcomplete problems� we mention the problem of determining
whether a given graph is �colorable �i�e�� G�C�� A few additional NPcomplete
problems follow�

� A Hamiltonian path �resp�� Hamiltonian cycle� in the graph G � �V�E� is a
simple path �resp�� cycle� that passes through all the vertices of G� Such a
path �resp�� cycle� has length jV j�� �resp�� jV j�� The problem is to determine
whether a given graph contains a Hamiltonian path �resp�� cycle��

� An independent set �resp�� clique� of the graph G��V�E� is a set of vertices
V � � V such that the subgraph induced by V � contains no edges �resp��
contains all possible edges�� The problem is to determine whether a given
graph has an independent set �resp�� a clique� of a given size�

A vertex cover of the graph G��V�E� is a set of vertices V � � V such that
each edge in E has at least one endpoint in V �� Note that V � is a vertex
cover of G if and only if V n V � is an independent set of V �

A natural computational problem which is believed to be neither in P nor NP
complete is the graph isomorphism problem� The input consists of two graphs�
G���V�� E�� and G���V�� E��� and the question is whether there exist a �� and
onto mapping � � V� V� such that fu� vg is in E� if and only if f��u�� ��v�g is in
E�� �Such a mapping is called an isomorphism��

G�� Boolean Formulae

In x�������� Boolean formulae are de�ned as a special case of Boolean circuits
�x��������� Here we take the more traditional approach� and de�ne Boolean for
mulae as structured sequences over an alphabet consisting of variable names and

 �� APPENDIX G� SOME COMPUTATIONAL PROBLEMS

various connectives� It is most convenient to de�ne Boolean formulae recursively
as follows�

� A variable is a Boolean formula�

� If ��� ���� �t are Boolean formulae and � is a tary Boolean operation then
����� ���� �t� is a Boolean formula�

Typically� we consider three Boolean operations� the unary operation of negation
�denoted neg or ��� and the �bounded or unbounded� conjunction and disjunction
�denoted
 and �� respectively�� Furthermore� the convention is to shorthand ����
by ��� and to write �
ti���i� or ���
� � �
�t� instead of
���� ���� �t�� and similarly
for ��

Two important special cases of Boolean formulae are CNF and DNF formulae�
A CNF formula is a conjunction of disjunctions of variables and�or their negation�
that is�
ti���i is a CNF if each �i has the form ��tij���i�j�� where each �i�j is either
a variable or a negation of a variable �and is called a literal�� If for every i it holds
that ti � � then we say that the formula is a �CNF� Similarly� DNF formulae are
de�ned as disjunctions of conjunctions of literals�

The value of a Boolean formula under a truth assignment to its variables is
de�ned recursively along its structure� For example�
ti���i has the value true

under an assignment if and only if every �i has the value true under � We say
that a formula � is satis�able if there exists a truth assignment to its variables
such that the value of � under is true�

The set of satis�able CNF �resp�� �CNF� formulae is denoted SAT �resp�� �SAT��
and the problem of deciding membership in it is NPcomplete� The set of tau
tologies �i�e�� formula that have the value true under any assignment�� even when
restricted to �DNF formulae� is coNPcomplete�

Quanti�ed Boolean Formulae� In contrast to the foregoing that refers to un
quanti�ed Boolean formulae� a quanti�ed Boolean formula is a formula augmented
with quanti�ers that refer to each variable appearing in it� That is� if � is a
formula in the Boolean variables x�� ���� xn and Q�� ���� Qn are Boolean quanti�ers
�i�e�� each Qi is either � or �� then Q� x� � � �Qn xn ��x�� ���� xn� is a quanti�ed
Boolean formula� A k�alternating quanti�ed Boolean formula is a quanti�ed Boolean
formula with up to k alternations between existential and universal quanti�ers�
starting with an existential quanti�er� For example� �x��x��x���x�� x�� x�� is a �
alternating quanti�ed Boolean formula� �We say that a quanti�ed Boolean formula
is satis�able if it evaluates to true��

The set of satis�able kalternating quanti�ed Boolean formulae is denoted kQBF

and is �kcomplete� whereas the set of all satis�able quanti�ed Boolean formulae
is denoted QBF and is PSPACEcomplete�

The foregoing de�nition refers to the canonical form of quanti�ed Boolean for
mulae� in which all the quanti�ers appear at the leftmost side of the formula�
A more general de�nition allows each variable to be quanti�ed at an arbitrary
place to the left of its leftmost occurrence in the formula �e�g�� ��x����x�� �x� �
x��
 ��x���x� � x���� Note that such generalized formulae �used in the proof of

G��� FINITE FIELDS� POLYNOMIALS AND VECTOR SPACES ��

Theorems �� and ���� can be transformed to the canonical form by �pulling� all
quanti�ers to the left of the formula �e�g�� �x��x��x� ��x� � x��
 �x� � x�����

G�� Finite Fields� Polynomials and Vector Spaces

Various algebraic objects� computational problems and technique play an impor
tant role in complexity theory� The most dominant objects are �nite �elds as well
as vector spaces and polynomials over such �elds�

Finite Fields� We denote by GF�q� the �nite �eld of q elements and note that
q may be either a prime or a prime power� In the �rst case� GF�q� is viewed
as consisting of the elements f	� ���� q � �g with addition and multiplication being
de�ned modulo q� Indeed� GF��� is an important special case� In the case that
q � pe� where p is a prime and e � �� the standard representation of GF�pe� refers
to an irreducible polynomial of degree e over GF�p�� Finding such polynomials is
a nontrivial computational problem �see ������ Fortunately� for e � � � �e� �with
e� being an integer�� the polynomial xe $ xe�� $ � is irreducible over GF���� which
means that we can avoid trouble in this important case� In any case� if f is an
irreducible polynomial of degree e over GF�p� then GF�pe� can be represented as
the set of polynomial with degree at most e � � over GF�p� with addition and
multiplication de�ned modulo the polynomial f �

The set of degree d�� polynomials over a �nite �eld F �of cardinality at least d�
forms a ddimensional vector space over F �e�g�� consider the basis f�� x� ���� xd��g��
Indeed� the standard representation of this vector space refers to the basis �� x� ���� xd���
and using it the polynomial

Pd��
i�� cix

i is represented as the vector �c�� c�� ���� cd����
An alternative basis is obtained by considering the evaluation at d distinct points
��� ���� �d � F � that is� the degree d � � polynomial p is represented by the se
quence of values �p����� ���� p��d��� Needless to say� moving from one representa
tion to another amounts to applying an adequate linear transformation� that is� for
p�x� �

Pd��
i�� cix

i� we have�BBB�
p����
p����

���
p��d�

	CCCA �

�BBB�
� �� � � � �d���

� �� � � � �d���
���

��� � � � ���

� �d � � � �d��d

	CCCA
�BBB�

c�
c�
���

cd��

	CCCA �G���

where the �full rank� matrix in Eq� �G��� is called a Vandermonde matrix�

G�� The Determinant and the Permanent

Recall that the permanent of an n�by�n matrix M � �ai�j� is de�ned as the sumP
�

Qn
i�� ai��j� taken over all permutations of the set f�� ���� ng� This is related

to the de�nition of the determinant in which the same sum is used except that
some elements are negated� that is� the determinant of M � �ai�j� is de�ned as

�		 APPENDIX G� SOME COMPUTATIONAL PROBLEMS

P
��������

Qn
i�� ai��j�� where 	��� � � if � is an even permutation �i�e�� can be

expressed by an even number of transpositions� and 	��� � �� otherwise�
The corresponding computational problems �i�e�� computing the determinant or

permanent of a given matrix� seem to have vastly di�erent complexities� The de
terminant is easy to compute once the matrix has been transformed into triangular
form �i�e�� ai�j � 	 for every i � j�� which in turn can be done in polynomial
time� In contrast� computing the permanent of matrices with entries in f	� �g is
�Pcomplete �see Theorem ���	��

G�� Primes and Composite Numbers

A prime is a natural number that is not divisible by any natural number other than
itself and �� A natural number that is not a prime is called composite� and its prime
factorization is the set of primes that divide it� that is� if N �

Qt
i�� P

ei
i � where the

Pi
s are distinct primes �greater than �� and ei � �� then fPi � i � �� ���� tg is the
prime factorization of N � �If t � � then N is a prime power��

Two famous computational problems� identi�ed by Gauss as fundamental ones�
are testing primality �i�e�� given a natural number� determine whether it is prime or
composite� and factoring composite integers �i�e�� given a composite number� �nd
its prime factorization�� Needless to say� in both cases� the input is presented
in binary representation� Whereas testing primality is in P �see ��� �and x�������
showing that the problem is in BPP��� it is conjectured that factoring composite
integers is intractable� In fact� many popular candidates for various cryptographic
systems are based on this conjecture�

Extracting modular square roots� Two related computational problems are
extracting �modular� square roots �for prime and composite moduli�� Speci�cally�
a quadratic residue modulo a prime P is an integer s such that there exists a number
r satisfying s � r� �mod P �� The corresponding search problem �i�e�� given such
P and s� �nd r� can be solved in probabilistic polynomialtime �see Exercise ��� ��
The corresponding problem for composite moduli is computationally equivalent
to factoring �see ������� furthermore� extracting square roots modulo N is easily
reducible to factoring N � and factoring N is randomly reducible to extracting
square roots modulo N �even in a typicalcase sense�� We mention that even the
problem of deciding whether or not a given integer s has a modular square root
modulo a given composite is conjectured to be hard�

Bibliography

��� S� Aaronson� Complexity Zoo� A continueously updated website at
http�		qwiki
caltech
edu	wiki	Complexity Zoo	�

��� L�M� Adleman and M� Huang� Primality Testing and Abelian Varieties Over
Finite Fields� SpringerVerlag Lecture Notes in Computer Science �Vol� � ����
����� Preliminary version in ��th STOC� �����

��� M� Agrawal� N� Kayal� and N� Saxena� PRIMES is in P� Annals of Mathe�
matics� Vol� ��	 ���� pages �������� �		��

��� M� Ajtai� J� Komlos� E� Szemer#edi� Deterministic Simulation in LogSpace�
In ��th ACM Symposium on the Theory of Computing� pages ������	� �����

� � R� Aleliunas� R�M� Karp� R�J� Lipton� L� Lov#asz and C� Racko�� Random
walks� universal traversal sequences� and the complexity of maze problems� In
�th IEEE Symposium on Foundations of Computer Science� pages ��������
�����

��� N� Alon� L� Babai and A� Itai� A fast and Simple Randomized Algorithm
for the Maximal Independent Set Problem� J� of Algorithms� Vol� �� pages
 ��� ��� �����

��� N� Alon and R� Boppana� The monotone circuit complexity of Boolean func
tions� Combinatorica� Vol� � ���� pages ����� �����

��� N� Alon� E� Fischer� I� Newman� and A� Shapira� A Combinatorial Charac
terization of the Testable Graph Properties� It
s All About Regularity� In
��th ACM Symposium on the Theory of Computing� pages � ����	� �		��

��� N� Alon� O� Goldreich� J� H/astad� R� Peralta� Simple Constructions of Almost
kwise Independent Random Variables� Journal of Random Structures and
Algorithms� Vol� �� No� �� pages �����	�� ����� Preliminary version in ��st
FOCS� ���	�

��	� N� Alon and J�H� Spencer� The Probabilistic Method� John Wiley . Sons�
Inc�� �����

�	�

�	� BIBLIOGRAPHY

���� R� Armoni� On the derandomization of spacebounded computations� In
the proceedings of Random��� SpringerVerlag� Lecture Notes in Computer
Science �Vol� � ���� pages ��� �� �����

���� S� Arora� Approximation schemes for NPhard geometric optimization prob
lems� A survey� Math� Programming� Vol� ��� pages ������ July �		��

���� S� Arora abd B� Barak� Complexity Theory� A Modern Approach� Cambridge
University Press� to appear�

���� S� Arora� C� Lund� R� Motwani� M� Sudan and M� Szegedy� Proof Veri�cation
and Intractability of Approximation Problems� Journal of the ACM� Vol� � �
pages 	�� � ����� Preliminary version in ��rd FOCS� �����

�� � S� Arora and S� Safra� Probabilistic Checkable Proofs� A New Characteriza
tion of NP� Journal of the ACM� Vol� � � pages �	����� ����� Preliminary
version in ��rd FOCS� �����

���� H� Attiya and J� Welch� Distributed Computing� Fundamentals� Simulations
and Advanced Topics� McGrawHill� �����

���� L� Babai� Trading Group Theory for Randomness� In ��th ACM Symposium
on the Theory of Computing� pages �������� ��� �

���� L� Babai� L� Fortnow� and C� Lund� NonDeterministic Exponential Time has
TwoProver Interactive Protocols� Computational Complexity� Vol� �� No� ��
pages ���	� ����� Preliminary version in ��st FOCS� ���	�

���� L� Babai� L� Fortnow� L� Levin� and M� Szegedy� Checking Computations in
Polylogarithmic Time� In �rd ACM Symposium on the Theory of Computing�
pages ������ �����

��	� L� Babai� L� Fortnow� N� Nisan and A� Wigderson� BPP has Subexponen
tial Time Simulations unless EXPTIME has Publishable Proofs� Complexity
Theory� Vol� �� pages �	������ �����

���� L� Babai and S� Moran� ArthurMerlin Games� A Randomized Proof System
and a Hierarchy of Complexity Classes� Journal of Computer and System
Science� Vol� ��� pp� � ������ �����

���� E� Bach and J� Shallit� Algorithmic Number Theory �Volume I� E�cient
Algorithms�� MIT Press� �����

���� B� Barak� NonBlackBox Techniques in Crypptography� PhD Thesis� Weiz
mann Institute of Science� �		��

���� W� Baur and V� Strassen� The Complexity of Partial Derivatives� Theor�
Comput� Sci� ��� pages ������	� �����

BIBLIOGRAPHY �	�

�� � P� Beame and T� Pitassi� Propositional Proof Complexity� Past� Present� and
Future� In Bulletin of the European Association for Theoretical Computer
Science� Vol� � � June ����� pp� ������

���� M� Bellare� O� Goldreich� and E� Petrank� Uniform Generation of NP
witnesses using an NPoracle� Information and Computation� Vol� ���� pages
 �	� ��� �			�

���� M� Bellare� O� Goldreich and M� Sudan� Free Bits� PCPs and Non
Approximability � Towards Tight Results� SIAM Journal on Computing�
Vol� ��� No� �� pages �	���� � ����� Extended abstract in ��th FOCS� ��� �

���� S� BenDavid� B� Chor� O� Goldreich� and M� Luby� On the Theory of Average
Case Complexity� Journal of Computer and System Science� Vol� �� ���� pages
�������� �����

���� A� BenDor and S� Halevi� In nd Israel Symp� on Theory of Computing and
Systems� IEEE Computer Society Press� pages �	����� �����

��	� M� BenOr� O� Goldreich� S� Goldwasser� J� H/astad� J� Kilian� S� Micali
and P� Rogaway� Everything Provable is Probable in ZeroKnowledge� In
Crypto��� SpringerVerlag Lecture Notes in Computer Science �Vol� �	���
pages ��� �� ���	

���� M� BenOr� S� Goldwasser� J� Kilian and A� Wigderson� MultiProver Inter
active Proofs� How to Remove Intractability� In �th ACM Symposium on
the Theory of Computing� pages �������� �����

���� M� BenOr� S� Goldwasser and A� Wigderson� Completeness Theorems for
NonCryptographic FaultTolerant Distributed Computation� In �th ACM
Symposium on the Theory of Computing� pages ���	� �����

���� E� BenSasson� O� Goldreich� P� Harsha� M� Sudan� and S� Vadhan� Robust
PCPs of proximity� Shorter PCPs and Applications to Coding� In ��th ACM
Symposium on the Theory of Computing� pages ���	� �		�� Full version in
ECCC� TR	�	��� �		��

���� E� BenSasson and M� Sudan� Simple PCPs with Polylog Rate and Query
Complexity� ECCC� TR	�	�	� �		��

�� � L� Berman and J� Hartmanis� On isomorphisms and density of NP and other
complete sets� SIAM Journal on Computing� Vol� � ���� ����� pages �	 �����

���� M� Blum� A MachineIndependent Theory of the Complexity of Recursive
Functions� Journal of the ACM� Vol� �� ���� pages ��	��	 � �����

���� M� Blum and S� Micali� How to Generate Cryptographically Strong Sequences
of PseudoRandom Bits� SIAM Journal on Computing� Vol� ��� pages � 	�
���� ����� Preliminary version in �rd FOCS� �����

�	� BIBLIOGRAPHY

���� M� Blum� M� Luby and R� Rubinfeld� SelfTesting�Correcting with Appli
cations to Numerical Problems� Journal of Computer and System Science�
Vol� ��� No� �� pages ��� � � �����

���� A� Bogdanov� K� Obata� and L� Trevisan� A lower bound for testing �
colorability in boundeddegree graphs� In ��rd IEEE Symposium on Foun�
dations of Computer Science� pages ����	�� �		��

��	� A� Bogdanov and L� Trevisan� On worstcase to averagecase reductions for
NP problems� In Proc� ��th IEEE Symposium on Foundations of Computer
Science� pages �	������ �		��

���� A� Bogdanov and L� Trevisan� Averagecase complexity� Foundations and
Trends in Theoretical Computer Science� to appear�

���� R� Boppana� J� H/astad� and S� Zachos� Does CoNP Have Short Interactive
Proofs! Information Processing Letters� � � May ����� pages �������

���� R� Boppana and M� Sipser� The complexity of �nite functions� In Handbook
of Theoretical Computer Science� Volume A � Algorithms and Complexity�
J� van Leeuwen editor� MIT Press�Elsevier� ���	� pages � ���	��

���� A� Borodin� Computational Complexity and the Existence of Complexity
Gaps� Journal of the ACM� Vol� �� ���� pages � ������ �����

�� � A� Borodin� On Relating Time and Space to Size and Depth� SIAM Journal
on Computing� Vol� � ���� pages �������� �����

���� G� Brassard� D� Chaum and C� Cr#epeau� Minimum Disclosure Proofs of
Knowledge� Journal of Computer and System Science� Vol� ��� No� �� pages
� ������ ����� Preliminary version by Brassard and Cr#epeau in �th FOCS�
�����

���� L� Carter and M� Wegman� Universal Hash Functions� Journal of Computer
and System Science� Vol� ��� ����� pages ����� ��

���� G�J� Chaitin� On the Length of Programs for Computing Finite Binary Se
quences� Journal of the ACM� Vol� ��� pages ��� �	� �����

���� A�K� Chandra� D�C� Kozen and L�J� Stockmeyer� Alternation� Journal of the
ACM� Vol� ��� pages �������� �����

� 	� D� Chaum� C� Cr#epeau and I� Damg/ard� Multiparty unconditionally Secure
Protocols� In �th ACM Symposium on the Theory of Computing� pages
������ �����

� �� B� Chor and O� Goldreich� On the Power of Two�Point Based Sampling�
Jour� of Complexity� Vol � ����� pages ����	�� Preliminary version dates
��� �

BIBLIOGRAPHY �	

� �� A� Church� An Unsolvable Problem of Elementary Number Theory� Amer�
J� of Math�� Vol� �� pages �� ����� �����

� �� N� Creignou� S� Khanna� and M� Sudan� Complexity Classi�cations of
Boolean Constraint Satisfaction Problems� SIAM Monographs on Discrete
Mathematics and Applications� �		��

� �� A� Cobham� The Intristic Computational Di�culty of Functions� In Proc�
���� Iternational Congress for Logic Methodology and Philosophy of Science�
pages ����	� �����

� � S�A� Cook� The Complexity of Theorem Proving Procedures� In �rd ACM
Symposium on the Theory of Computing� pages � ��� �� �����

� �� S�A� Cook� A overview of Computational Complexity� Turing Award Lecture�
CACM� Vol� �� ���� pages �	���	�� �����

� �� S�A� Cook� A Taxonomy of Problems with Fast Parallel Algorithms� Infor�
mation and Control� Vol� ��� pages ����� ��� �

� �� S�A� Cook and R�A� Reckhow� Stephen A� Cook� Robert A� Reckhow� The
Relative E�ciency of Propositional Proof Systems� J� of Symbolic Logic�
Vol� �� ���� pages ��� 	� �����

� �� D� Coppersmith and S� Winograd� Matrix multiplication via arithmetic pro
gressions� Journal of Symbolic Computation� �� pages � ����	� ���	�

��	� T�M� Cover and G�A� Thomas� Elements of Information Theory� John Wiley
. Sons� Inc�� NewYork� �����

���� P� Crescenzi and V� Kann� A compendium of NP Optimization problems�
Available at http�		www
nada
kth
se	+viggo	wwwcompendium	

���� W� Di�e� and M�E� Hellman� New Directions in Cryptography� IEEE Trans�
on Info� Theory� IT�� �Nov� ������ pages ����� ��

���� I� Dinur� The PCP Theorem by Gap Ampli�cation� In ��th ACM Symposium
on the Theory of Computing� pages ����� 	� �		��

���� I� Dinur and O� Reingold� Assignmenttesters� Towards a combinatorial proof
of the PCPTheorem� In ��th IEEE Symposium on Foundations of Computer
Science� pages � ����� �		��

�� � I� Dinur and S� Safra� The importance of being biased� In ��th ACM Sym�
posium on the Theory of Computing� pages ������ �		��

���� J� Edmonds� Paths� Trees� and Flowers� Canad� J� Math�� Vol� ��� pages
�������� ��� �

���� S� Even� Graph Algorithms� Computer Science Press� �����

�	� BIBLIOGRAPHY

���� S� Even� A�L� Selman� and Y� Yacobi� The Complexity of Promise Problems
with Applications to PublicKey Cryptography� Information and Control�
Vol� ��� pages � ������ �����

���� U� Feige� S� Goldwasser� L� Lov#asz and S� Safra� On the Complexity of
Approximating the Maximum Size of a Clique� Unpublished manuscript�
���	�

��	� U� Feige� S� Goldwasser� L� Lov#asz� S� Safra� and M� Szegedy� Approximating
Clique is almost NPcomplete� Journal of the ACM� Vol� ��� pages ��������
����� Preliminary version in �nd FOCS� �����

���� U� Feige� D� Lapidot� and A� Shamir� Multiple NonInteractive Zero
Knowledge Proofs Under General Assumptions� SIAM Journal on Com�
puting� Vol� �� ���� pages ����� �����

���� U� Feige and A� Shamir� Witness Indistinguishability and Witness Hiding
Protocols� In nd ACM Symposium on the Theory of Computing� pages
�������� ���	�

���� E� Fischer� The art of uninformed decisions� A primer to property test
ing� Bulletin of the European Association for Theoretical Computer Science�
Vol� � � pages ������� �		��

���� G�D� Forney� Concatenated Codes� MIT Press� Cambridge� MA �����

�� � L� Fortnow� R� Lipton� D� van Melkebeek� and A� Viglas� Timespace lower
bounds for satis�ability� Journal of the ACM� Vol� � ���� pages �� ��� �
November �		 �

���� L� Fortnow� J� Rompel and M� Sipser� On the power of multiprover interac
tive protocols� In �rd IEEE Symp� on Structure in Complexity Theory� pages
� ������ ����� See errata in �th IEEE Symp� on Structure in Complexity
Theory� pages �������� ���	�

���� S� Fortune� A Note on Sparse Complete Sets� SIAM Journal on Computing�
Vol� �� pages �������� �����

���� M� F0urer� O� Goldreich� Y� Mansour� M� Sipser� and S� Zachos� On Complete
ness and Soundness in Interactive Proof Systems� Advances in Computing
Research� a research annual� Vol� �Randomness and Computation� S� Mi
cali� ed��� pages �������� �����

���� M�L� Furst� J�B� Saxe� and M� Sipser� Parity� Circuits� and the Polynomial
Time Hierarchy� Mathematical Systems Theory� Vol� �� ���� pages ������
����� Preliminary version in nd FOCS� �����

��	� O� Gaber and Z� Galil� Explicit Constructions of Linear Size Superconcen
trators� Journal of Computer and System Science� Vol� ��� pages �	����	�
�����

BIBLIOGRAPHY �	�

���� M�R� Garey and D�S� Johnson� Computers and Intractability� A Guide to the
Theory of NP�Completeness� W�H� Freeman and Company� New York� �����

���� J� von zur Gathen� Algebraic Complexity Theory� Ann� Rev� Comput� Sci��
Vol� �� pages �������� �����

���� O� Goldreich� Foundation of Cryptography � Class Notes� Computer Science
Dept�� Technion� Israel� Spring ����� Superseded by ���� ����

���� O� Goldreich� A Note on Computational Indistinguishability� Information
Processing Letters� Vol� ��� pages �������� May ���	�

�� � O� Goldreich� Notes on Levin
s Theory of AverageCase Complexity� ECCC�
TR��	 �� Dec� �����

���� O� Goldreich� Modern Cryptography� Probabilistic Proofs and Pseudorandom�
ness� Algorithms and Combinatorics series �Vol� ���� Springer� �����

���� O� Goldreich� Foundation of Cryptography� Basic Tools� Cambridge Univer
sity Press� �		��

���� O� Goldreich� Foundation of Cryptography� Basic Applications� Cambridge
University Press� �		��

���� O� Goldreich� Short Locally Testable Codes and Proofs �Survey�� ECCC�
TR	 	��� �		 �

��	� O� Goldreich� On Promise Problems �a survey in memory of Shimon Even
���� �		���� ECCC� TR	 	��� �		 �

���� O� Goldreich� S� Goldwasser� and S� Micali� How to Construct Random
Functions� Journal of the ACM� Vol� ��� No� �� pages �����	�� �����

���� O� Goldreich� S� Goldwasser� and A� Nussboim� On the Implementation of
Huge Random Objects� In ��th IEEE Symposium on Foundations of Com�
puter Science� pages ������ �		��

���� O� Goldreich� S� Goldwasser� and D� Ron� Property testing and its connection
to learning and approximation� Journal of the ACM� pages � ��� 	� July
�����

���� O� Goldreich and H� Krawczyk� On the Composition of ZeroKnowledge
Proof Systems� SIAM Journal on Computing� Vol� � � No� �� February �����
pages �������� Preliminary version in ��th ICALP� ���	�

�� � O� Goldreich and L�A� Levin� Hardcore Predicates for any OneWay Func
tion� In �st ACM Symposium on the Theory of Computing� pages � ����
�����

�	� BIBLIOGRAPHY

���� O� Goldreich� S� Micali and A� Wigderson� Proofs that Yield Nothing but
their Validity or All Languages in NP Have ZeroKnowledge Proof Systems�
Journal of the ACM� Vol� ��� No� �� pages �������� ����� Preliminary version
in �th FOCS� �����

���� O� Goldreich� S� Micali and A� Wigderson� How to Play any Mental Game �
A Completeness Theorem for Protocols with Honest Majority� In ��th ACM
Symposium on the Theory of Computing� pages �������� �����

���� O� Goldreich� N� Nisan and A� Wigderson� On Yao
s XORLemma� ECCC�
TR� 	 	� ��� �

���� O� Goldreich and D� Ron� Property testing in bounded degree graphs� Algo�
rithmica� pages �	������ �		��

��		� O� Goldreich and D� Ron� A sublinear bipartite tester for bounded degree
graphs� Combinatorica� Vol� �� ���� pages �� ����� �����

��	�� O� Goldreich� R� Rubinfeld and M� Sudan� Learning polynomials with queries�
the highly noisy case� SIAM J� Discrete Math�� Vol� �� ���� pages � � �	�
�			�

��	�� O� Goldreich� S� Vadhan and A� Wigderson� On interactive proofs with a
laconic provers� Computational Complexity� Vol� ��� pages �� �� �		��

��	�� O� Goldreich and A� Wigderson� Computational Complexity� In The Prince�
ton Companion to Mathematics� to appear�

��	�� S� Goldwasser and S� Micali� Probabilistic Encryption� Journal of Computer
and System Science� Vol� ��� No� �� pages ��	����� ����� Preliminary version
in ��th STOC� �����

��	 � S� Goldwasser� S� Micali and C� Racko�� The Knowledge Complexity of
Interactive Proof Systems� SIAM Journal on Computing� Vol� ��� pages ����
�	�� ����� Preliminary version in ��th STOC� ��� � Earlier versions date to
�����

��	�� S� Goldwasser� S� Micali� and R�L� Rivest� A Digital Signature Scheme Secure
Against Adaptive ChosenMessage Attacks� SIAM Journal on Computing�
April ����� pages �����	��

��	�� S� Goldwasser and M� Sipser� Private Coins versus Public Coins in Interactive
Proof Systems� Advances in Computing Research� a research annual� Vol�
�Randomness and Computation� S� Micali� ed��� pages ����	� ����� Extended
abstract in ��th STOC� �����

��	�� S�W� Golomb� Shift Register Sequences� HoldenDay� ����� �Aegean Park
Press� revised edition� ������

��	�� V� Guruswami� C� Umans� and S� Vadhan� Extractors and condensers from
univariate polynomials� ECCC� TR	����� �		��

BIBLIOGRAPHY �	�

���	� J� Hartmanis and R�E� Stearns� On the Computational Complexity of of
Algorithms� Transactions of the AMS� Vol� ���� pages �� ��	�� ��� �

����� J� H/astad� Almost Optimal Lower Bounds for Small Depth Circuits� Ad�
vances in Computing Research� a research annual� Vol� �Randomness and
Computation� S� Micali� ed��� pages ������	� ����� Extended abstract in
��th STOC� �����

����� J� H/astad� Clique is hard to approximate within n���� Acta Mathematica�
Vol� ���� pages �	 ����� ����� Preliminary versions in �th STOC ������
and ��th FOCS �������

����� J� H/astad� Getting optimal inapproximability results� Journal of the ACM�
Vol� ��� pages ����� �� �		�� Extended abstract in �th STOC� �����

����� J� H/astad� R� Impagliazzo� L�A� Levin and M� Luby� A Pseudorandom Gen
erator from any Oneway Function� SIAM Journal on Computing� Volume
��� Number �� pages ���������� ����� Preliminary versions by Impagliazzo
et� al� in �st STOC ������ and H/astad in nd STOC ����	��

��� � J� H/astad and S� Khot� Query e�cient PCPs with pefect completeness� In
�nd IEEE Symposium on Foundations of Computer Science� pages ��	�����
�		��

����� A� Healy� RandomnessE�cient Sampling within NC�� Journal of Com�
putational Complexity� to appear� Preliminary version in ��th RANDOM�
�		��

����� A� Healy� S� Vadhan and E� Viola� Using nondeterminism to amplify hardness�
In ��th ACM Symposium on the Theory of Computing� pages �����	�� �		��

����� D� Hochbaum �ed��� Approximation Algorithms for NP�Hard Problems� PWS�
�����

����� J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory� Languages
and Computation� AddisonWesley� �����

���	� S� Hoory� N� Linial� and A� Wigderson� Expander Graphs and their Applica�
tions� Bull� AMS� Vol� �� ���� pages ���� ��� �		��

����� N� Immerman� Nondeterministic Space is Closed Under Complementation�
SIAM Journal on Computing� Vol� ��� pages ��	����� �����

����� R� Impagliazzo� Hardcore Distributions for Somewhat Hard Problems� In
��th IEEE Symposium on Foundations of Computer Science� pages ��� � �
��� �

����� R� Impagliazzo and L�A� Levin� No Better Ways to Generate Hard NP In
stances than Picking Uniformly at Random� In ��st IEEE Symposium on
Foundations of Computer Science� pages �������� ���	�

��	 BIBLIOGRAPHY

����� R� Impagliazzo and A� Wigderson� P�BPP if E requires exponential circuits�
Derandomizing the XOR Lemma� In �th ACM Symposium on the Theory
of Computing� pages ��	����� �����

��� � R� Impagliazzo and A� Wigderson� Randomness vs Time� Derandomization
under a Uniform Assumption� Journal of Computer and System Science�
Vol� �� ���� pages ������� �		��

����� R� Impagliazzo and M� Yung� Direct ZeroKnowledge Computations� In
Crypto��� SpringerVerlag Lecture Notes in Computer Science �Vol� �����
pages �	� �� �����

����� M� Jerrum� A� Sinclair� and E� Vigoda� A PolynomialTime Approximation
Algorithm for the Permanent of a Matrix with NonNegative Entries� Journal
of the ACM� Vol� � ���� pages �������� �		��

����� M� Jerrum� L� Valiant� and V�V� Vazirani� Random Generation of Combina
torial Structures from a Uniform Distribution� Theoretical Computer Science�
Vol� ��� pages �������� �����

����� N� Kahale� Eigenvalues and Expansion of Regular Graphs� Journal of the
ACM� Vol� �� � �� pages �	�����	�� September ��� �

���	� R� Kannan� H� Venkateswaran� V� Vinay� and A�C� Yao� A Circuitbased
Proof of Toda
s Theorem� Information and Computation� Vol� �	� ���� pages
�������� �����

����� R�M� Karp� Reducibility among Combinatorial Problems� In Complexity
of Computer Computations� R�E� Miller and J�W� Thatcher �eds��� Plenum
Press� pages � ��	�� �����

����� R�M� Karp and R�J� Lipton� Some connections between nonuniform and uni
form complexity classes� In �th ACM Symposium on the Theory of Com�
puting� pages �	��	�� ���	�

����� R�M� Karp and M� Luby� MonteCarlo algorithms for enumeration and re
liability problems� In �th IEEE Symposium on Foundations of Computer
Science� pages ���� �����

����� R�M� Karp and V� Ramachandran� Parallel Algorithms for SharedMemory
Machines� In Handbook of Theoretical Computer Science� Vol A� Algorithms
and Complexity� ���	�

��� � M� Karchmer and A� Wigderson� Monotone Circuits for Connectivity Require
Superlogarithmic Depth� SIAM J� Discrete Math�� Vol� � ���� pages � ��� �
���	� Preliminary version in �th STOC� �����

����� M�J� Kearns and U�V� Vazirani� An introduction to Computational Learning
Theory� MIT Press� �����

BIBLIOGRAPHY ���

����� S� Khot and O� Regev� Vertex Cover Might be Hard to Approximate to
within �� �� In ��th IEEE Conference on Computational Complexity� pages
�������� �		��

����� V�M� Khrapchenko� A method of determining lower bounds for the com
plexity of Pischemes� In Matematicheskie Zametki �	 ����pages ������ ����
�in Russian�� English translation in Mathematical Notes of the Academy of
Sciences of the USSR �	 ��� ����� pages ��������

����� J� Kilian� A Note on E�cient ZeroKnowledge Proofs and Arguments� In
�th ACM Symposium on the Theory of Computing� pages �������� �����

���	� D�E� Knuth� The Art of Computer Programming� Vol� � �Seminumerical
Algorithms�� AddisonWesley Publishing Company� Inc�� ���� ��rst edition�
and ���� �second edition��

����� A� Kolmogorov� Three Approaches to the Concept of �The Amount Of In
formation�� Probl� of Inform� Transm�� Vol� ���� ��� �

����� E� Kushilevitz and N� Nisan� Communication Complexity� Cambridge Uni
versity Press� �����

����� R�E� Ladner� On the Structure of Polynomial Time Reducibility� Journal of
the ACM� Vol� ��� ��� � pages � �����

����� C� Lautemann� BPP and the Polynomial Hierarchy� Information Processing
Letters� ��� pages �� ����� �����

��� � F�T� Leighton� Introduction to Parallel Algorithms and Architectures� Arrays�
Trees� Hypercubes� Morgan Kaufmann Publishers� San Mateo� CA� �����

����� L�A� Levin� Universal Search Problems� Problemy Peredaci Informacii ��
pages �� ����� ����� Translated in problems of Information Transmission ��
pages �� �����

����� L�A� Levin� Randomness Conservation Inequalities� Information and Inde
pendence in Mathematical Theories� Information and Control� Vol� ��� pages
� ���� �����

����� L�A� Levin� Average Case Complete Problems� SIAM Journal on Computing�
Vol� � � pages �� ����� �����

����� L�A� Levin� Fundamentals of Computing� SIGACT News� Education Forum�
special �		th issue� Vol� �� ���� pages �����	� �����

�� 	� M� Li and P� Vitanyi� An Introduction to Kolmogorov Complexity and its
Applications� Springer Verlag� August �����

�� �� N� Livne� All Natural NPC Problems Have AverageCase Complete Versions�
ECCC� TR	����� �		��

��� BIBLIOGRAPHY

�� �� C�J� Lu� O� Reingold� S� Vadhan� and A� Wigderson� Extractors� optimal up
to constant factors� In ��th ACM Symposium on the Theory of Computing�
pages �	������ �		��

�� �� A� Lubotzky� R� Phillips� and P� Sarnak� Ramanujan Graphs� Combinatorica�
Vol� �� pages �������� �����

�� �� M� Luby and A� Wigderson� Pairwise Independence and Derandomization�
TR� 	� � International Computer Science Institute �ICSI�� Berkeley� ��� �
ISSN �	� �����

�� � C� Lund� L� Fortnow� H� Karlo�� and N� Nisan� Algebraic Methods for In
teractive Proof Systems� Journal of the ACM� Vol� ��� No� �� pages � ������
����� Preliminary version in ��st FOCS� ���	�

�� �� F� MacWilliams and N� Sloane� The theory of error�correcting codes� North
Holland� �����

�� �� G�A� Margulis� Explicit Construction of Concentrators� �In Russian�� Prob�
Per� Infor�� Vol� � ���� pages ����	� ����� English translation in Problems of
Infor� Trans�� pages �� ����� ��� �

�� �� S� Micali� Computationally Sound Proofs� SIAM Journal on Computing�
Vol� �	 ���� pages �� ������� �			� Preliminary version in ��th FOCS� �����

�� �� G�L� Miller� Riemann
s Hypothesis and Tests for Primality� Journal of Com�
puter and System Science� Vol� ��� pages �		����� �����

���	� P�B� Miltersen and N�V� Vinodchandran� Derandomizing ArthurMerlin
Games using Hitting Sets� Journal of Computational Complexity� Vol� �� ����
pages � ������ �		 � Preliminary version in ��th FOCS� �����

����� R� Motwani and P� Raghavan� Randomized Algorithms� Cambridge University
Press� ��� �

����� M� Naor� Bit Commitment using Pseudorandom Generators� Journal of
Cryptology� Vol� �� pages � ��� �� �����

����� J� Naor and M� Naor� Smallbias Probability Spaces� E�cient Constructions
and Applications� SIAM Journal on Computing� Vol ��� ����� pages ����� ��
Preliminary version in nd STOC� ���	�

����� M� Naor and M� Yung� Universal OneWay Hash Functions and their Crypto
graphic Application� In �st ACM Symposium on the Theory of Computing�
����� pages ������

��� � M� Nguyen� S�J� Ong� S� Vadhan� Statistical ZeroKnowledge Arguments for
NP from Any OneWay Function� In ��th IEEE Symposium on Foundations
of Computer Science� pages ���� �		��

BIBLIOGRAPHY ���

����� N� Nisan� Pseudorandom bits for constant depth circuits� Combinatorica�
Vol� �� ���� pages ����	� �����

����� N� Nisan� Pseudorandom Generators for Space Bounded Computation� Com�
binatorica� Vol� �� ���� pages �������� �����

����� N� Nisan� RL � SC� Journal of Computational Complexity� Vol� �� pages
���� �����

����� N� Nisan and A� Wigderson� Hardness vs Randomness� Journal of Computer
and System Science� Vol� ��� No� �� pages �������� �����

���	� N� Nisan and D� Zuckerman� Randomness is Linear in Space� Journal of
Computer and System Science� Vol� � ���� pages ��� �� �����

����� C�H� Papadimitriou� Computational Complexity� Addison Wesley� �����

����� C�H� Papadimitriou and M� Yannakakis� Optimization� Approximation� and
Complexity Classes� In �th ACM Symposium on the Theory of Computing�
pages �������� �����

����� N� Pippenger and M�J� Fischer� Relations among complexity measures� Jour�
nal of the ACM� Vol� �� ���� pages �������� �����

����� E� Post� A Variant of a Recursively Unsolvable Problem� Bull� AMS� Vol� ��
pages �������� �����

��� � M�O� Rabin� Digitalized Signatures� In Foundations of Secure Computation
�R�A� DeMillo et� al� eds��� Academic Press� �����

����� M�O� Rabin� Digitalized Signatures and Public Key Functions as Intractable
as Factoring� MIT�LCS�TR���� �����

����� M�O� Rabin� Probabilistic Algorithm for Testing Primality� Journal of Num�
ber Theory� Vol� ��� pages �������� ���	�

����� R� Raz� A Parallel Repetition Theorem� SIAM Journal on Computing�
Vol� �� ���� pages �����	�� ����� Extended abstract in �th STOC� ��� �

����� R� Raz and A� Wigderson� Monotone Circuits for Matching Require Linear
Depth� Journal of the ACM� Vol� �� ���� pages �������� ����� Preliminary
version in nd STOC� ���	�

���	� A� Razborov� Lower bounds for the monotone complexity of some Boolean
functions� In Doklady Akademii Nauk SSSR� Vol� ���� No� �� ��� � pages
�����	�� English translation in Soviet Math� Doklady� ��� pages � ��� ��
��� �

����� A� Razborov� Lower bounds on the size of boundeddepth networks over a
complete basis with logical addition� In Matematicheskie Zametki� Vol� ���
No� �� pages ����	�� ����� English translation in Mathematical Notes of the
Academy of Sci� of the USSR� Vol� �� ���� pages �������� �����

��� BIBLIOGRAPHY

����� A�R� Razborov and S� Rudich� Natural Proofs� Journal of Computer and
System Science� Vol� ���� pages ���� � �����

����� O� Reingold� Undirected STConnectivity in LogSpace� In ��th ACM Sym�
posium on the Theory of Computing� pages ������ � �		 �

����� O� Reingold� S� Vadhan� and A� Wigderson� Entropy Waves� the ZigZag
Graph Product� and New ConstantDegree Expanders and Extractors� An�
nals of Mathematics� Vol� � ���� pages � ������ �		�� Preliminary version
in ��st FOCS� pages ����� �			�

��� � H�G� Rice� Classes of Recursively Enumerable Sets and their Decision Prob
lems� Trans� AMS� Vol� ��� pages � � �� �� ��

����� R�L� Rivest� A� Shamir and L�M� Adleman� A Method for Obtaining Digital
Signatures and Public Key Cryptosystems� CACM� Vol� ��� Feb� ����� pages
��	�����

����� D� Ron� Property testing� In Handbook on Randomization� Volume II�
pages ������� �		�� �Editors� S� Rajasekaran� P�M� Pardalos� J�H� Reif
and J�D�P� Rolim��

����� R� Rubinfeld and M� Sudan� Robust characterization of polynomials with
applications to program testing� SIAM Journal on Computing� Vol� � ����
pages � ������ �����

����� M� Saks and S� Zhou� RSPACE�S� � DSPACE�S����� In ��th IEEE Sym�
posium on Foundations of Computer Science� pages ����� �� ��� �

���	� W�J� Savitch� Relationships between nondeterministic and deterministic tape
complexities� JCSS� Vol� � ���� pages ������� ���	�

����� A� Selman� On the structure of NP� Notices Amer� Math� Soc�� Vol� �� ����
page ��	� �����

����� R� Shaltiel� Recent Developments in Explicit Constructions of Extractors� In
Current Trends in Theoretical Computer Science� The Challenge of the New
Century� Vol �� Algorithms and Complexity� World scieti�c� �		�� �Editors�
G� Paun� G� Rozenberg and A� Salomaa�� Preliminary version in Bulletin of
the EATCS ��� pages ���� � �		��

����� R� Shaltiel and C� Umans� Simple Extractors for All MinEntropies and a
New PseudoRandom Generator� In �nd IEEE Symposium on Foundations
of Computer Science� pages ����� �� �		��

����� C�E� Shannon� A Symbolic Analysis of Relay and Switching Circuits� Trans�
American Institute of Electrical Engineers� Vol� �� pages �������� �����

��� � C�E� Shannon� A mathematical theory of communication� Bell Sys� Tech�
Jour�� Vol� ��� pages ����� �� �����

BIBLIOGRAPHY ��

����� C�E� Shannon� Communication Theory of Secrecy Systems� Bell Sys� Tech�
Jour�� Vol� ��� pages � ���� � �����

����� A� Shamir� IP � PSPACE� Journal of the ACM� Vol� ��� No� �� pages
�������� ����� Preliminary version in ��st FOCS� ���	�

����� A� Shpilka� Lower Bounds for Matrix Product� SIAM Journal on Computing�
pages ��� ��		� �		��

����� M� Sipser� A Complexity Theoretic Approach to Randomness� In ��th ACM
Symposium on the Theory of Computing� pages ��	��� � �����

��		� M� Sipser� Introduction to the Theory of Computation� PWS Publishing
Company� �����

��	�� R� Smolensky� Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity� In ��th ACM Symposium on the Theory of Computing
pages ������ �����

��	�� R�J� Solomono�� A Formal Theory of Inductive Inference� Information and
Control� Vol� ���� pages ����� �����

��	�� R� Solovay and V� Strassen� A Fast MonteCarlo Test for Primality� SIAM
Journal on Computing� Vol� �� pages ���� � ����� Addendum in SIAM Jour�
nal on Computing� Vol� �� page ���� �����

��	�� D�A� Spielman� Advanced Complexity Theory� Lectures �	 and ���
Notes �by D� Lewin and S� Vadhan�� March ����� Available
from http�		www
cs
yale
edu	homes	spielman	AdvComplexity	����	as
lect��
ps and lect��
ps�

��	 � L�J� Stockmeyer� The PolynomialTime Hierarchy� Theoretical Computer
Science� Vol� �� pages ����� �����

��	�� L� Stockmeyer� The Complexity of Approximate Counting� In ��th ACM
Symposium on the Theory of Computing� pages �������� �����

��	�� V� Strassen� Algebraic Complexity Theory� In Handbook of Theoretical Com�
puter Science� Volume A � Algorithms and Complexity� J� van Leeuwen edi
tor� MIT Press�Elsevier� ���	� pages ��������

��	�� M� Sudan� Decoding of Reed Solomon codes beyond the errorcorrection
bound� Journal of Complexity� Vol� �� ���� pages ��	����� �����

��	�� M� Sudan� Algorithmic introduction to coding theory� Lecture notes� Avail
able from http�		theory
csail
mit
edu	1madhu	FT��	� �		��

���	� M� Sudan� L� Trevisan� and S� Vadhan� Pseudorandom generators without
the XOR Lemma� Journal of Computer and System Science� Vol� ��� No� ��
pages �������� �		��

��� BIBLIOGRAPHY

����� R� Szelepcsenyi� A Method of Forced Enumeration for Nondeterministic Au
tomata� Acta Informatica� Vol� ��� pages �������� �����

����� S� Toda� PP is as hard as the polynomialtime hierarchy� SIAM Journal on
Computing� Vol� �	 � �� pages �� ����� �����

����� B�A� Trakhtenbrot� A Survey of Russian Approaches to Perebor �Brute Force
Search� Algorithms� Annals of the History of Computing� Vol� � ���� pages
�������� �����

����� L� Trevisan� Constructions of NearOptimal Extractors Using Pseudo
Random Generators� In ��st ACM Symposium on the Theory of Computing�
pages �������� �����

��� � V� Trifonov� An O�log n log logn� Space Algorithm for Undirected st
Connectivity� In ��th ACM Symposium on the Theory of Computing� pages
�������� �		 �

����� C�E� Turing� On Computable Numbers� with an Application to the Entschei
dungsproblem� Proc� Londom Mathematical Soceity� Ser� �� Vol� ��� pages
��	��� � ����� A Correction� ibid�� Vol� ��� pages ��� ���

����� C� Umans� Pseudorandom generators for all hardness� Journal of Computer
and System Science� Vol� �� ���� pages ������	� �		��

����� S� Vadhan� A Study of Statistical ZeroKnowledge Proofs� PhD
Thesis� Department of Mathematics� MIT� ����� Available from
http�		www
eecs
harvard
edu	+salil	papers	phdthesis�abs
html�

����� S� Vadhan� An Unconditional Study of Computational Zero Knowledge� In
��th IEEE Symposium on Foundations of Computer Science� pages ������ �
�		��

���	� L�G� Valiant� The Complexity of Computing the Permanent� Theoretical
Computer Science� Vol� �� pages �����	�� �����

����� L�G� Valiant� A theory of the learnable� CACM� Vol� ������ pages ����������
�����

����� L�G� Valiant and V�V� Vazirani� NP Is as Easy as Detecting Unique Solutions�
Theoretical Computer Science� Vol� �� ���� pages � ���� �����

����� J� von Neumann� First Draft of a Report on the EDVAC� ��� � Contract No�
W��	ORD���� Moore School of Electrical Engineering� Univ� of Penn��
Philadelphia� Reprinted �in part� in Origins of Digital Computers� Selected
Papers� SpringerVerlag� Berlin Heidelberg� pages �������� �����

����� J� von Neumann� Zur Theorie der Gesellschaftsspiele� Mathematische An�
nalen� �		� pages �� ���	� �����

��� � I� Wegener� The Complexity of Boolean Functions� WileyTeubner� �����

BIBLIOGRAPHY ���

����� I� Wegener� Branching Programs and Binary Decision Diagrams � Theory and
Applications� SIAM Monographs on Discrete Mathematics and Applications�
�			�

����� A� Wigderson� The amazing power of pairwise independence� In �th ACM
Symposium on the Theory of Computing� pages �� ����� �����

����� A�C� Yao� Theory and Application of Trapdoor Functions� In �rd IEEE
Symposium on Foundations of Computer Science� pages �	���� �����

����� A�C� Yao� Separating the PolynomialTime Hierarchy by Oracles� In �th
IEEE Symposium on Foundations of Computer Science� pages ��	� ��� �

���	� A�C� Yao� How to Generate and Exchange Secrets� In �th IEEE Symposium
on Foundations of Computer Science� pages �������� �����

����� S� Yekhanin� New Locally Decodable Codes and Private Information Re
trieval Schemes� ECCC� TR	����� �		��

Index

Author Index
Adleman� L�M�� ���� 	�
Agrawal� M�� ���
Ajtai� M�� ���
Aleliunas� R�� ���
Arora� S�� ���
Babai� L�� ���� ���� ��
Barak� B�� ���
BenOr� M�� ���
Blum� M�� ���� ���� ���� ���
Borodin� A�� ���� ���
Brassard� G�� ���
Chaitin� G�J�� ���� �	�
Chaum� D�� ���
Church� A�� ��
Cobham� A�� ��
Cook� S�A�� �		� �	�� ��	
Cr#epeau� C�� ���
Di�e� W�� ���� 	�
Dinur� I�� ���
Edmonds� J�� ��
Even� S�� �	�
Feige� U�� ���� ���
Fortnow� L�� ���
Furst� M�L�� ���
Goldreich� O�� ���� ���� ���� ����

���� ���� �	
Goldwasser� S�� ���� ���� ���� ����

���� 	�� 	 � 	�� ��
H/astad� J�� ���� ���� ���
Hartmanis� J�� ���
Hellman� M�E�� ���� 	�
Huang� M�� ���
Immerman� N�� ���
Impagliazzo� R�� ���� ���� ���
Jerrum� M�� ��	

Karchmer� M�� ���
Karlo�� H�� ���
Karp� R�M�� �		� �	�� ���� ���
Kayal� N�� ���
Kilian� J�� ���� ���
Kolmogorov� A�� ���� �	�
Komlos� J�� ���
Ladner� R�E�� �	�
Lautemann� C�� ���
Levin� L�A�� �		� �	�� ���� ����

���� ���� ���
Lipton� R�J�� ���� ���
Lov#asz� L�� ���� ���� ���
Luby� M�� ���
Lund� C�� ���� ���
Micali� S�� ���� ���� ���� ����

�		� ���� 	�� 	 � 	�� �	
Miller� G�L�� ���
Moran� S�� ��
Motwani� R�� ���
Naor� J�� ���
Naor� M�� ���
Nisan� N�� ���� ���� ���� ���
Papadimitriou� C�H�� � 	
Rabin� M�O�� ���� ��
Racko�� C�� ���� ���� ���
Raz� R�� ���
Razborov� A�R�� ���
Reingold� O�� ���� ��
Rivest� R�L�� 	�
Ron� D�� ���
Rubinfeld� R�� ���
Safra� S�� ���� ���� ���
Savitch� W�J�� ���
Saxe� J�B�� ���
Saxena� N�� ���

���

INDEX ���

Selman� A�L�� �	�
Shamir� A�� ���� 	�
Shannon� C�E�� ��� ���� ��	� 	�
Sipser� M�� ���� ��	� ���� ��
Solomonov� R�J�� ���
Solovay� R�� ���
Stearns� R�E�� ���
Stockmeyer� L�J�� ���� ��	
Strassen� V�� ���
Sudan� M�� ���� ���� ���
Szegedy� M�� ���� ���
Szelepcsenyi� R�� ���
Szemer#edi� E�� ���
Toda� S�� ��	� �
Trevisan� L�� ���� ��
Turing� A�M�� ��� � �
Vadhan� S�� ���� ��
Valiant� L�� ��	
Vazirani� V�V�� ��	
Wigderson� A�� ���� ���� ���� ����

 �	� ��
Yacobi� Y�� �	�
Yannakakis� M�� � 	
Yao� A�C�� ���� ���� ���� ����

 �	
Zuckerman� D�� ���

Algorithms� see Computability the
ory

Approximate counting� �������� ����
��

satisfying assignments to a DNF�
�������

Approximation� ��	����
Counting� see Approximate count

ing
Hardness� see Hardness of Ap

proximation
Arithmetic Circuits� �������
Average Case Complexity� �������

BlumMicali Generator� see Pseudo
random Generators

Boolean Circuits� ���� � � ���� ����
���� ���� �	�� �������

bounded fanin� ��

constantdepth� � � ���� �������
depth� �
Monotone� � � ��	����
Natural Proofs� �	�
size� ������ ���
unbounded fanin� ��� �
uniform� ��� ��� �������� � ��

� �
Boolean Formulae� �	� ���� � ����

���� � � ��
clauses� �
CNF� ��� � ���� ��
DNF� � � ��
literals� �
Monotone� ���
Quanti�ed� ��� ��

Chebyshev Inequality� ��� ��
Cherno� Bound� ��
Chinese Reminder Theorem� �	�
ChurchTuring Thesis� ��� ��� �
Circuits� see Boolean Circuits
CNF� see Boolean Formulae
CobhamEdmonds Thesis� � � 	� ���

��	� ���
Coding Theory� �� ��

concatenated codes� �� �
Connection to Hardness Ampli

�cation� � �� ������	
good codes� �
Hadamard Code� � �� ���� ����

���� �
List Decoding� � �� ������	� 	�

 � ��
locally decodable� �	� ��
locally testable� �� ��
Long Code� �
ReedMuller Code� �� �
ReedSolomon Code� �
Unique Decoding�

Commitment schemes� ���
Communication Complexity� ���
Complexity classes

	P� � � ��
�P� �	������ ���� � � ��
AC	� ��	� ���� ���

��	 INDEX

AM� ���
BPL� �	�� ���� �������� ���
BPP� �����		� �	���	 � �	������

���� ���
coNL� ���� �������
coNP� ��� ������ ���� �� � ����

���� ���
coRP� �� ��	�
Dspace� ��	� ���� ���
Dtime� ���
DTISP� � �
E� ���
EXP� ��� ���� ���
IP� see Interactive Proof systems�

� �� � �� ���� ��
L� � �� �� ���
MA� �		� ���
NC� � �� ���� ���
NEXP� ���
NL� ���� �� ����� �	���	�� ����

���
NP� ������ ���� ���� ���� ����

���� �� � �� � ���� ���� � ��
� �� ���� �� � �������� ����
���� ���� ���� �� � ���

as proof system� � �
as search problem� �� �
Optimal search� �����
traditional de�nition� ���	� ��	�
���� ���� ���

NPC� see NPCompleteness
Nspace� ���
two models� ������

Ntime� ���
P� ������ ���� �� � ���� ���� � ��

� �� �� � ���� ���� ���� ���
as search problem� �� �

P�poly� �������� �������� ���
PCP� see Probabilistically Check

able Proof systems
Permanent� �	�� ���
PH� �������� ���� �	���	 � ����

 � � ��
PSPACE� �������� � �� ���
quasiP� ���� ���

RL� �	���	�� ���� ���
RP� �����	�� ���
SC� � �� ���
SZK� ���
TC	� ���
ZK� see ZeroKnowledge proof sys

tems� ���� ��
ZPP� �		��	�� ���

Computability theory� �����
Computational Indistinguishability� ��	�

���� ���� �� ����� ���� ��	�
���

multiple samples� �������
nontriviality� ���
The Hybrid Technique� �����		�

�	�� ���� ���� ���
Computational Learning Theory� �	�
Computational problems

�SAT� ��
�XC� ��
Bounded Halting� ��
Bounded NonHalting� ��
CEVL� �
Clique� ��� �������
CSAT� � ���
CSP� �������
Directed Connectivity� �� �����

�	�
Exact Set Cover� ��
Factoring Integers� ��� �	�� �	 �

���� ���� 	�� ��
Graph �Colorability� � � ���
Graph Isomorphism� � � ��	
Graph NonIsomorphism� �
Halting Problem� ����	� ��� ���

� �
Independent Set� ��
kQBF� �� � ��
Perfect Matching� �	������ ���
Primality Testing� �	�� ��������

 ��
QBF� �������� � �� ��	� �		� ���

 ��
SAT� ������ � ���� ��� ��
Set Cover� ��

INDEX ���

Testing polynomial identity� �� �
���

Undirected Connectivity� � ������
�	���	�

Vertex Cover� ��� ���� ��
Computational Tasks andModels� ���

��
ComputationallySound proof systems

Arguments� ���
Constantdepth circuits� see Boolean

Circuits
Constraint satisfaction problems� see

CSP
Cookreductions� see Reduction
Counting Problems� �	�����

Approximation� see Approximate
counting

perfect matching� �	�����
satisfying assignments to a DNF�

�	�
Cryptography� ���� ��

Computational Indistinguishabil
ity� see Computational In
distinguishability

Encryption Schemes� 	�� 	�
General Protocols� ��� ��
HardCore Predicates� see One

Way Functions
Message Authentication Schemes�

 	�� ��
Modern vs Classical� ���� 	�
OneWay Functions� see OneWay

Functions
PseudorandomFunctions� see Pseu

dorandom Functions
PseudorandomGenerators� see Pseu

dorandom Generators
Signature Schemes� 	�� ��
ZeroKnowledge� see ZeroKnowledge

proof systems
CSP� see Computational problems

Decision problems� �	���� �� �� ����
��	

unique solutions� see Unique so
lutions

Diagonalization� �� ����
Direct Product Theorems� ��������

���
Dispersers� ��

Error Correcting Codes� see Coding
Theory

Errorreduction� ���� ��	� ���� ����
���� �������� ���� ���� � ��
� �� �� � ���� ���� �		� ��

randomnesse�cient� ��� ��
Expander Graphs� ��	� ���� ��� ��
Extractors� see Randomness Extrac

tors

Finite automata� ��
Finite �elds� ��
Fourier coe�cients� ���

G0odel
s Incompleteness Theorem� � �
Game Theory

Minmax principle� �������
Gap Problems� see Promise Problems
Gap Theorems� see Time Gaps
GF���� ��
GF��n�� ��
Graph theory� ��� �

Hadamard Code� see Coding Theory
Halting Problem� see Computational

problems
Hard Regions� see Inapproximable Pred

icates
Hardness of Approximation

MaxClique� ���
The PCP connection� ��������

�������
Hashing� ��� ��

as a random sieve� �������� �� �
���

CollisionFree� ��
CollisionResistant� ��
Extraction Property� �
highly independent� � � ��� ��
Leftover Hash Lemma� ��
Mixing Property� ���� ��

��� INDEX

pairwise independent� � � ��
Universal� �	�� �
Universal OneWay� ��

Hierarchy Theorems� see Time Hier
archies

Hitters� ��
Hoefding Inequality� ��

Inapproximable Predicates� � �����
hard regions� ������

Information Theory� � �� ���� ���
Interactive Proof systems� ������ �

�������
algebraic methods� � �
ArthurMerlin� ���� ���� ��� ��
computationalsoundness� �� � ���
constantround� ���� ���� ���
for Graph NonIsomorphism� �
for PSPACE� � ����	
Hierarchy� �������� ��� ��
linear speedup� ���
power of the prover� ������
publiccoin� ���� ���� ���� ���

 ��
twosided error� ���� ���

Karpreductions� see Reduction
Knowledge Complexity� ���
Kolmogorov Complexity� ������ ���

���� �	�

Levinreductions� see Reduction
Linear Feedback Shift Registers� ���
List Decoding� see Coding Theory
Low Degree Tests� see Property Test

ing
Lower Bounds� �������

Markov Inequality� ��
Minmax principle� see Game Theory
Monotone circuits� see Boolean Cir

cuits
MultiProver Interactive Proof systems�

���� ���

NisanWigderson Generator� see Pseu
dorandom Generators

NonInteractive ZeroKnowledge� 	�
Notation

asymptotic� ��
combinatorial� ��
graph theory� ��
integrality issues� ��

NPCompleteness� �	���� ������ � �
������ � ���

OneWay Functions� ����� �� ���� ����
�� � ���� ���� �������

HardCore Predicates� � ��� ��
���� ���

Strong vs Weak� ����� �
Optimal search for NP� �����
Oracle machines� �����

P versus NP Question� ������ ����
���� ��	� ���� ���

PCP� see Probabilistically Checkable
Proof systems

Polynomialtime Reductions� see Re
duction

Post Correspondence Problem� ��� ��
Probabilistic LogSpace� �	���	�
Probabilistic PolynomialTime� �� �

�	�
Probabilistic Proof Systems� �����	�
Probabilistically Checkable Proof sys

tems� �������
adaptive� ���� ���
Approximation� see Hardness of

Approximation
for NEXP� ���
for NP� ��	����� �� ����
freebit complexity� ���� �	�
nonadaptive� ���� ��	� �� � ����

���� ���
nonbinary queries� ���
of proximity� ���� ���
proof length� ���
query complexity� ���
Robustness� �������� ���

Probability Theory
conventions� �	� ��
inequalities� ��� ��

INDEX ���

Promise Problems� ��� �	���� ��� ����
���� �������

Gap Problems� �������
Proof Complexity� ���� �������
Proofs of Knowledge� �������� 	�
Property Testing� �������

Codeword Testing� see Coding The
ory

Low Degree Tests� ���� ���� ���
SelfCorrecting� see SelfCorrecting
SelfTesting� see SelfTesting

Pseudorandom Functions� �	�� ����
�������

Pseudorandom Generators� �� ���
archetypical case� �����	�� ���
BlumMicali Construction� �	��

 	�
conceptual discussion� �	���	��

������
Connection to Extractors� ���

 �
derandomization� �	���	 � �	��

�� � ���
high end� ���
low end� ���

discrepancy sets� ���
expander randomwalks� ���� ��	�

���
Extractors� see Randomness Ex

tractors
general paradigm� �������� ����

���
generalpurpose� �����	�� ���
hitting� ��	����� ��
NisanWigderson Construction� ����

��	��� � ���� ���� ��
pairwise independence� �� � ����

���
samplers� see Sampling
small bias� ������	� ���
special purpose� �������� ���
universal sets� ���
unpredictability� �	���	�� ���� ���
versus space� �� ����� ���

Random variables� �	� ��

pairwise independent� ��

totally independent� ��� ��

Randomized Computation

LogSpace� see Probabilistic Log
Space

PolynomialTime� see Probabilis
tic PolynomialTime

Proof Systems� see Probabilistic
Proof Systems

Reductions� see Reductions

Sublinear Time� see Property Test
ing

Randomness Extractors� ���� ��� �

Connection to Errorreduction� ���
 ��

Connection to Pseudorandomness�
 ��� �

Connection to Samplers� � � ��

usingWeak Random Sources� ���
 ��

Reductions

among distributional problems� ����
���� ������	� ���

CookReductions� ������ ������
������ �	������ �������

Downwards selfreducibility� �	��
���

gap amplifying� ��

KarpReductions� ���� � ������
������ �	 ��	�� ���� ���

LevinReductions� ���� � ��� ���
��

parsimonious� �	�� �	 ��	�� ����
��

Polynomialtime Reductions� ���
��� ���� ���� ���

Randomized Reductions� ��������
���

Reducibility Argument� ���� � ��
� �� � �� ���� ���

Selfreducibility� ����	� ���

Spacebounded� � ��� �� � �� ��
��	����� �� ����

Turingreductions� �	� �����

��� INDEX

worstcase to averagecase� � ��
���

Rice
s Theorem� �	

Samplers� see Sampling
Sampling� ��� ��

Averaging Samplers� ��� � � ��
Search problems� ����	� 	� �� ��

 �� ������	
Uniform generation� see Uniform

generation
unique solutions� see Unique so

lutions
SelfCorrecting� ��	����� �������� ��

 �	� ��
Selfreducibility� see Reduction
SelfTesting� ���� ���� �
Space Complexity� ��� �� ����

Circuit Evaluation� � ��� �
composition lemmas� ����� �� ���
conventions� �������
Logarithmic Space� � �����
NonDeterminism� �������
Polynomial Space� �������
Pseudorandomness� see Pseudo

random Generators
Randomness� see Probabilistic Log

Space
Reductions� see Reductions
sublogarithmic� ���
versus time complexity� ����� �

Space Gaps� ��	� � �
Space Hierarchies� ��	� � �
Spaceconstructible� ���
Speedup Theorems� ������	
stCONN� see Directed Connectivity

Time complexity� ��� �����
Time Gaps� �������
Time Hierarchies� �������
Timeconstructible� ���� ���� ���� �	�
Turing machines� �����

multitape� ��� ���
nondeterministic� ���	
singletape� ��

with advice� ������ �������� ��	�
���� �	�

Turingreductions� see Reductions

UCONN� see Undirected Connectiv
ity

Uncomputable functions� �����
Undecidability� ��� ��� � �
Uniform generation� �������
Unique solutions� �	�� �������� ����

������	
Universal algorithms� ������ ��� ���
Universal machines� �����

Witness Indistinguishability� 	�

Yao
s XOR Lemma� � �� �������� ����
���

derandomized version� �� ����

ZeroKnowledge proof systems� �� �
���� �������� ���� 	�� � �
 ��

AlmostPerfect� ��
blackbox simulation� ���
Computational� ���� 		
for �Colorability� ���
for Graph NonIsomorphism� ��	
for NP� ���
Honest veri�er� ���
Knowledge Complexity� ���
Perfect� ���� �� � 		
Statistical� ���� �� � 		
Strict vs Expected� 		
universal simulation� ���

