
Theory of Computation Lecture Notes

Theory of Computation
Lecture Notes

Abhijat Vichare

August 2005

Contents

● 1 Introduction
● 2 What is Computation ?
● 3 The λ Calculus

�❍ 3.1 Conversions:
�❍ 3.2 The calculus in use
�❍ 3.3 Few Important Theorems
�❍ 3.4 Worked Examples
�❍ 3.5 Exercises

● 4 The theory of Partial Recursive Functions

�❍ 4.1 Basic Concepts and Definitions
�❍ 4.2 Important Theorems
�❍ 4.3 More Issues in Computation Theory
�❍ 4.4 Worked Examples
�❍ 4.5 Exercises

● 5 Markov Algorithms

�❍ 5.1 The Basic Machinery
�❍ 5.2 Markov Algorithms as Language Acceptors and Recognisers
�❍ 5.3 Number Theoretic Functions and Markov Algorithms
�❍ 5.4 A Few Important Theorems
�❍ 5.5 Worked Examples
�❍ 5.6 Exercises

● 6 Turing Machines

�❍ 6.1 On the Path towards Turing Machines
�❍ 6.2 The Pushdown Stack Memory Machine
�❍ 6.3 The Turing Machine
�❍ 6.4 A Few Important Theorems
�❍ 6.5 Chomsky Hierarchy and Markov Algorithms
�❍ 6.6 Worked Examples
�❍ 6.7 Exercises

● 7 An Overview of Related Topics

�❍ 7.1 Computation Models and Programming Paradigms
�❍ 7.2 Complexity Theory

● 8 Concluding Remarks
● Bibliography

1 Introduction

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/ (1 of 41) [12/23/2006 1:14:53 PM]

Theory of Computation Lecture Notes

Theory of Computation
Lecture Notes

Abhijat Vichare

August 2005

Contents

● 1 Introduction
● 2 What is Computation ?
● 3 The λ Calculus

�❍ 3.1 Conversions:
�❍ 3.2 The calculus in use
�❍ 3.3 Few Important Theorems
�❍ 3.4 Worked Examples
�❍ 3.5 Exercises

● 4 The theory of Partial Recursive Functions

�❍ 4.1 Basic Concepts and Definitions
�❍ 4.2 Important Theorems
�❍ 4.3 More Issues in Computation Theory
�❍ 4.4 Worked Examples
�❍ 4.5 Exercises

● 5 Markov Algorithms

�❍ 5.1 The Basic Machinery
�❍ 5.2 Markov Algorithms as Language Acceptors and Recognisers
�❍ 5.3 Number Theoretic Functions and Markov Algorithms
�❍ 5.4 A Few Important Theorems
�❍ 5.5 Worked Examples
�❍ 5.6 Exercises

● 6 Turing Machines

�❍ 6.1 On the Path towards Turing Machines
�❍ 6.2 The Pushdown Stack Memory Machine
�❍ 6.3 The Turing Machine
�❍ 6.4 A Few Important Theorems
�❍ 6.5 Chomsky Hierarchy and Markov Algorithms
�❍ 6.6 Worked Examples
�❍ 6.7 Exercises

● 7 An Overview of Related Topics

�❍ 7.1 Computation Models and Programming Paradigms
�❍ 7.2 Complexity Theory

● 8 Concluding Remarks
● Bibliography

1 Introduction

In this module we will concern ourselves with the question:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (1 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

We first look at the reasons why we must ask this question in the context of the studies on Modeling
and Simulation.

We view a model of an event (or a phenomenon) as a ``list'' of the essential features that characterize
it. For instance, to model a traffic jam, we try to identify the essential characteristics of a traffic
jam. Overcrowding is one principal feature of traffic jams. Yet another feature is the lack of any
movement of the vehicles trapped in a jam. To avoid traffic jams we need to study it and develop
solutions perhaps in the form of a few traffic rules that can avoid jams. However, it would not be feasible
to study a jam by actually trying to create it on a road. Either we study jams that occur by
themselves ``naturally'' or we can try to simulate them. The former gives us ``live'' information, but we
have no way of knowing if the information has a ``universal'' applicability - all we know is that it
is applicable to at least one real life situation. The latter approach - simulation - permits us to
experiment with the assumptions and collate information from a number of live observations so that
good general, universal ``principles'' may be inferred. When we infer such principles, we gain knowledge
of the issues that cause a traffic jam and we can then evolve a list of traffic rules that can avoid traffic jams.

To simulate, we need a model of the phenomenon under study. We also need another well known
system which can incorporate the model and ``run'' it. Continuing the traffic jam example, we can create
a simulation using the principles of mechanical engineering (with a few more from other branches
like electrical and chemical engineering thrown in if needed). We could create a sufficient number of
toy vehicles. If our traffic jam model characterizes the vehicles in terms of their speed and size, we
must ensure that our toy vehicles can have varying masses, dimensions and speeds. Our model
might specify a few properties of the road, or the junction - for example the length and width of the
road, the number of roads at the junction etc. A toy mechanical model must be crafted to simulate
the traffic jam!

Naturally, it is required that we be well versed with the principles of mechanical engineering - what it
can do and what it cannot. If road conditions cannot be accurately captured in the mechanical model1,
then the mechanical model would be correct only within a limited range of considerations that
the simulation system - the principles of mechanical engineering, in our example - can capture.

Today, computers are predominantly used as the system to perform simulation. In some cases
usual engineering is still used - for example the test drive labs that car manufacturers use to test new
car designs for, say safety. Since computers form the main system on which models are implemented
for simulation, we need to study computation theory - the basic science of computation. This study gives
us the knowledge of what computers can and cannot do.

2 What is Computation ?

Perhaps it may surprise you, but the idea of computation has emerged from deep investigation into
the foundations of Mathematics. We will, however, motivate ourselves intuitively without going into
the actual Mathematical issues. As a consequence, our approach in this module would be to know
the Mathematical results in theory of Computation without regard to their proofs. We will treat
excursions into the Mathematical foundations for historical perspectives, if necessary. Our definitions
and statements will be rigorous and accurate.

Historically, at the beginning of the 20 century, one of the questions that bothered mathematicians
was about what an algorithm actually is. We informally know an algorithm: a certain sort of a
general method to solve a family of related questions. Or a bit more precisely: a finite sequence of steps
to be performed to reach a desired result. Thus, for instance, we have an addition algorithm of
integers represented in the decimal form: Starting from the least significant place, add the
corresponding digits and carry forward to the next place if needed, to obtain the sum. Note that
an algorithm is a recipe of operations to be performed. It is an appreciation of the process, independent
of the actual objects that it acts upon. It therefore must use the information about the nature (properties)
of the objects rather than the objects themselves. Also, the steps are such that no intelligence is required
- even a machine2 can do it! Given a pair of numbers to be added, just mechanically perform the steps
in the algorithm to obtain the sum. It is this demand of not requiring any intelligence that makes
computing machines possible. More important: it defines what computation is!

Let me illustrate the idea of an algorithm more sharply. Consider adding two natural numbers3.
The process of addition generates a third natural number given a pair of them. A simple way
to mechanically perform addition is to tabulate all the pairs and their sum, i.e. a table of triplets of
natural number with the first two being the numbers to be added and the third their sum. Of course,
this table is infinite and the tabulation process cannot be completed. But for the purposes of mechanical -
i.e. without ``intelligence'' - addition, the tabulation idea can work except for the inability to
``finish'' tabulation. What we would really like to have is some kind of a ``black box machine'' to which
we ``give'' the two numbers to be added, and ``out'' comes their sum. The kind of operations that such
a box would essentially contain is given by the addition algorithm above: for integers represented in
the decimal form, start from the least significant place, add the corresponding digits and carry forward
to the next place if needed, for all the digits, to obtain the sum. Notice that the ``algorithm'' is not limited
by issues like our inability to finish the table. Any natural number, howsoever large, is represented by
a finite number of digits and the algorithm will eventually stop! Further, the algorithm is not
particularly concerned about the pair of numbers that it receives to be processed. For any, and every,
pair of natural numbers it works. The algorithm captures the computation process of addition, while
the tabulation does not. The addition algorithm that we have presented, is however intimately tied to
the representation scheme used to write the natural numbers. Try the algorithm for a

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (2 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot72
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot82
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1150

Theory of Computation Lecture Notes

Roman representation of the natural numbers!

We now have an intuitive feel of what computation seems to be. Since the 1920s Mathematics
has concerned itself with the task of clearly understanding what computation is. Many models have
been developed, and are being developed, that try to sharpen our understanding. In this module we
will concern ourselves with four different approaches to modeling the idea of computation. The
following sections, we will try to intuitively motivate them. Our approach is necessarily introductory and
we leave a lot to be done. The approaches are:

1. The Calculus,
2. The theory of Partial Recursive Functions,
3. Markov Algorithms, and
4. Turing Machines.

3 The Calculus

This is the first systematic attempt to understand Computation. Historically, the issue was what was
meant by an algorithm. A logician, Alonzo Church, created the calculus in order to understand
the nature of an algorithm. To get a feel of the approach, let us consider a very simple ``activity'' that
we perform so routinely that we almost forget it's algorithmic nature - counting.

An algorithm, or synonymously - a computation, would need some object to work upon. Let us call it .
In other words, we need an ability to name an object. The algorithm would transform this object
into something (possibly itself too). This transformation would be the actual ``operational details'' of
the algorithm ``black box''. Let us call the resultant object . That there is some rule that transforms

to is written as: . Note that we concentrate on the process of transforming to , and

we have merely created a notation of expressing a transformation. Observe that this
transformation process itself is another object, and hence can be named! For example, if
the transformation generates the square of the number to which it is applied, then we name

the transformation as: square. We write this as: . The final ability that an

algorithm needs is that of it's transformation, named being applied on the object named . This

is written as . Thus when we want to square a natural number , we write it as .

An algorithm is characterized by three abilities:

1. Object naming; technically the named object is called as a ,
2. Transformation specification, technically known as abstraction, and
3. Transformation application, technically known as application.

These three abilities are technically called as terms.

The addition process example can be used to illustrate the use of the above syntax of calculus
through the following remarks. (To relate better, we name variables with more than one letter
words enclosed in single quotes; each such multi-letter name should be treated as one single symbol!)

1. `add', `x', `y' and `1' are variables (in the calculus sense).

2. is the ``addition process'' of bound variables and . The bound variables

``hold the place'' in the transformation to be performed. They will be replaced by the actual numbers to
be added when the addition process gets ``applied'' to them - See remark . Also the
process specification has been done using the usual laws of arithmetic, hence on the right

hand side4.

3. is the application of the abstraction in remark to the term .

An application means replacing every occurrence of the first bound variable, if any, in the body of the
term be applied (the left term) by the term being applied to (the right term). being the first

bound variable, it's every occurrence in the body is replaced by due to the application.

This gives us the term: , i.e. a process that can add the value 1 to it's input

as ``signalled'' by the bound variable that ``holds the place'' in the processing.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (3 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot111

Theory of Computation Lecture Notes

4. We usually name as `inc' or '1+'.

3.1 Conversions:

We have acquired the ability to express the essential features of an algorithm. However, it still remains
to capture the effect of the computation that a given algorithmic process embodies. A process
involves replacing one set of symbols corresponding to the input with another set of
symbols corresponding to the output. Symbol replacement is the essence of computing. We now
present the ``manipulation'' rules of the calculus called the conversion rules.

We first establish a notation to express the act of substituting a variable in an expression by

another variable to obtain a new expression as: (is whose every

is replaced by). Since the specifies the binding of a variable in , it follows that

must occur free in . Further, if occurs free in then this state of must be preserved

after substitution - the in and the that would be substituting are different! Hence we

must demand that if is to be used to substitute in then it must not occur free in . And finally,

if occurs bound in then this state of too must be preserved after substitution. We must

therefore have that must not occur bound in . In other words, the variable does not occur

(neither free nor bound) in expression .

The conversions are:

Since a bound variable in a expression is simply a place holder, all that is required is that unique
place holders be used to designate the correct places of each bound variable in the expression. As long
as the uniqueness is preserved, it does not matter what name is actually used to refer to their
respective places5. This freedom to associate any name to a bound variable is expressed by the

 conversion rule which states the equivalence of expressions whose bound variables have
been merely renamed. The renaming of a bound variable in an expression to a variable

 that does not occur in is the conversion:

 conversion: Iff does not occur in ,

As a consequence of conversion, it is possible for us to substitute while avoiding accidental change
in the nature of occurrences. conversion is necessary to maintain the equivalence of the
expressions before and after the substitution.

This is the heart of capturing computation in the calculus style as this conversion expresses the
exact symbol replacement that computation essentially consists of. We observe that an
application represents the action of an abstraction - the computational process - on some ``target''
object. Thus as a result of application, the ``target'' symbol must replace every occurrence of the

bound variable in the abstraction that is being applied on it. This is the conversion rule expressed

using substitution as:

 conversion: Iff does not occur in ,

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (4 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot127

Theory of Computation Lecture Notes

Since computation essentially is symbol replacement, ``executing an algorithm on an input'' is expressed

in the calculus as ``performing conversions on applications until no more conversion is

possible''. The expression obtained when no more conversions are possible is the ``output'' or
the ``answer''.

For example, suppose we wish to apply the expression to , i.e.

(). But already occurs bound in the old expression. Thus we first

rename the in the old expression to (say) using conversion to get:

 and then substitute every by using conversion.

It expresses the fact that the expression that is free of any occurrences of the binding variable in a
 abstraction is the expression itself. Thus:

 conversion: Iff does not occur in , then

If a expression is transformed to an expression by the application of any of the
above conversion rules, we say that reduces to and denote it as . If no more
conversion rules are applicable to an expression , then it is said to be in it's normal form. An
expression to which a conversion is applicable is referred to as the corresponding redex

(reducible expression). Thus we speak of redex, redex etc.

3.2 The calculus in use

3.2.1 The Natural Numbers in calculus

Natural numbers are the set = {0, 1, 2, }. We ``know'' them as a set of values. However, we
need to look at their behavioral properties to see their computational nature. We demonstrate this using
the counting process. We associate a natural number with the instances of counting that are being
applied to the object being counted. For instance, if the counting process is applied ``zero'' times to
the object (i.e. the object does not exist for the purposes of being counted), then the we have
the specification, i.e. a term, for the natural number ``zero''. If the counting process is applicable to
the object just once (i.e. there is only one instance of the object), then the function for that
process represents the natural number ``one'', and so on. Let us name the counting process by the

symbol . If is the object that is being counted, then this motivates a term for a ``zero'' as6:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (5 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1153

Theory of Computation Lecture Notes

where the remains as it is in our thoughts, but no counting has been applied to it. Hence forms
the body of the abstraction. A ``one'', a ``two'', or ``three'' are defined as:

A look at Eqns.(-) shows that a natural number is given by the number of occurrences of

the application of - our name for the counting process.

At this point, let us pause for a moment and compare this way of thinking about numbers with
the ``conventional'' way. Conventionally, we tend to associate numbers with objects rather than
the process. Contrast: ``I counted ten tables'' with ``I could apply counting ten times to objects that
were tables''. In the first case, ``ten'' is associated subconsciously to ``table'', while in the second case it
is associated with the ``counting'' process! We are accustomed to the former way of looking at
numbers, but there is no reason to not do it the second way.

And finally, to present the power of pure symbolic manipulation, we observe that although we
have motivated the above expressions of the natural numbers as a result of applying the

counting process , any process that can be sensibly applied to an object can be used in place of .

For example, if were the process that generates the double of a number, then the above

expressions could be used to generate the even numbers by a simple ``application'' of once (i.e. 1)

to get the first even number, twice (i.e. 2) to get the second even number etc. We have simply used

to denote the counting process to get a feel of how the expressions above make sense. A

natural number is just applications of (some) to , i.e. .

We now present the addition process7 from this calculus view. The addition of two natural numbers
 and is simply the total number of applications of the counting process. To get the expression

that captures the addition process, we observe that the sum of and is just further applications

of the counting process to which has already been generated by using . Hence

addition can be defined as:

Note that in Eq.(), the expression is applied to the expression . Consider

adding 1 and 2:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (6 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot182

Theory of Computation Lecture Notes

The add expression takes the expression form of two natural numbers and to be added

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (7 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

and yields a expression that behaves exactly as the sum of these two numbers. Note that this

resulting expression expects two arguments namely and to be supplied when it is to be

applied. The expression that we write in the calculus are simply some process
specifications including of those objects that we formerly thought of as ``values''.

This view of looking at computation from the ``processes'' point of view is referred to as the
functional paradigm and this style of programming is called functional programming.
Programming languages like Lisp, Scheme, ML and Haskell are based on this kind of view of
programming - i.e. expressing ``algorithms'' as expression. In fact, Scheme is often viewed as ``

 calculus on a computer''. For instance, we associate a name ``square'' to the operation ``multiply
x (some object) by itself'' as (define square (lambda (x) (* x x))). In our calculus

notation, this would look like .

3.2.2 The Booleans

Conventionally, we have two ``values'' of the boolean type: True and False. We also have
the conventional boolean ``functions'' like NOT, AND and OR. From a purely formal point of view, True
and False are merely symbols; one and only one of each is returned as the ``result''/``value'' of a
boolean expression (which we would like to view as a expression). Therefore, a (simple!) encoding
of these values is through the following two abstractions:

Note that Eqn.() is an abstraction that encodes the behavior of the value True and is thus a
very computational view of the value8. Similarly Eqn.() is an abstraction that encodes the behavior of
the value False. Since the encodings represent the selection of mutually ``opposite'' expressions from
the two that would be given by a particular (function) application, we can say that the above
equations indeed capture the behaviors of these ``values'' as ``functions''. This is also evident when
we examine the abstraction for (say) the IF boolean function and apply it to each of the
above equations. The IF function behaves as: given a boolean expression and two terms, return
the first term if the expression is `` True'' else return the second term. As a abstraction it
is expressed as:

i.e. apply the boolean expression to and . If is True (i.e. reduces to the term True),

then we must get as a result of applying various conversions to Eqn.(), else we must get .

The AND boolean function behaves as: ``If p then q else false''. Accordingly, it can be encoded as
the following abstraction:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (8 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1191

Theory of Computation Lecture Notes

Note that in Eqn.() further reductions depend on the actual forms of and . To see that the

 abstractions indeed behave as our ``usual'' boolean functions and values, two approaches are
possible. Either work out the reductions in detail for the complete truth tables of both the boolean
functions, or noting the behavioral properties of these functions and the ``values'' that they could
take, (intuitively ?) reason out the behavior. I will try the latter technique. Consider the AND function

defined by Eqn.(). It takes two arguments and . If we apply it to Eqn.() and Eqn.() (i.e.

AND TRUE FALSE), then the reduction would substitute Eqn.() for every occurrence of and Eqn.(

) for every occurrence of in Eqn.(). This gives us a abstraction to which have been applied

two arguments, namely and ! This abstraction behaves like TRUE and hence it yields

it's first argument as the result. That is, a reduction of this abstraction yields , i.e. -

the expected output. Note that no further reductions are possible.

3.3 Few Important Theorems

At this point, we would like to mention that the calculusis extensively used to mathematically model
and study computer programming languages. Very exciting and significant developments have
occurred, and are occurring, in this field.

Theorem 1 A function is representable in the calculus if and only if it is Turing computable.

Theorem 2 If = then there exists such that and .

Theorem 3 If an expression E has a normal form, then repeatedly reducing the leftmost or redex

- with any required conversion, will terminate in the normal form.

3.4 Worked Examples

We apply the IF expression to True i.e. we work out an application of Eqn.() to Eqn.():

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (9 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

which will return the first object of the two to which the IF will actually get applied to (i.

e.). Note that Eqns.(,) capture the behavior of the objects

that we are accustomed to see as ``values''. I cannot stress more that the ``valueness'' of these objects
is not at all relevant to us from the calculus point of view. The ``valueness'' cannot be captured as
a ``computational'' process while the behavior can be. And if the behavior of the computational process
is in every way identical to the value, there is little reason to impose any differentiation of the object as
a ``value'' or as a ``function''. On the other hand, insisting on the ``valueness'' of the objects given by
those equations forces us to invent unique symbols to be permanently bound to them. I also believe that
it makes the essentially computational nature of these objects opaque to us.

Let me also illustrate the construction of the function that yields the successor of the number
given to it. This function will be used in the Partial Recursive Functions model. The succ process is
one more application of the counting process to the given natural number. We recall the definitions
of natural numbers from Eqns.(-). We observe that the natural number is defined by the number

of applications of the counting process to some object . Hence the bodies of the corresponding

 expressions involve application of to . This gives us a way to define the succ as an application

of the process to , the given natural number. This is what was used to define the add process in Eqn.

(). Thus:

3.5 Exercises

1. Construct the expression for the following:
1. The OR boolean function which behaves as ``If p then true else q''.
2. The NOT boolean function which behaves as ``If p then False else True''.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (10 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

2. Evaluate, i.e. perform necessary conversions of the following expression.
1. (IF FALSE)
2. (AND TRUE FALSE)
3. (OR TRUE FALSE)
4. (NOT TRUE)
5. (succ 1)

4 The theory of Partial Recursive Functions

We now introduce ourselves to another model that studies computation. This model appears to be
most mathematical of all. However, in fact all the models are equally mathematical and exactly
equivalent to each other. This approach was pioneered by the logician Kurt Gödel and almost
immediately followed calculus. Our purpose of introducing this view of computation is much
more philosophical than any practical one that can directly be used in day to day software practice9.
We would like to give a flavor of the questions that are asked for developing the theory of
computation further. In this module, we will not concern ourselves about the developments that
are occurring in this rich field, but we will give an idea of how the developments occur by giving a
sample of questions (some of which have already been answered) that are asked.

To capture the idea of computation, the theory of Partial Recursive Functions asks: Can we view
a computational process as being generated by combining a few basic processes ? It therefore tries
to identify the basic processes, called the initial functions. It then goes on to identify combining
techniques, called operators that can generate new processes from the basic ones. The choice of the
initial functions and the operators is quite arbitrary and we have our first set of questions that can
develop the theory of computation further. For example,

● Is the choice of the initial functions unique ?
● Similarly, is the choice of the operators unique ?
● If different initial functions or operators are chosen will we have a more restricted theory of computation

or a more general theory of computation ?

4.1 Basic Concepts and Definitions

We define the initial functions and the operators over the set of natural numbers10.

Initial Functions

Definition 1 the function,

Definition 2 the k-ary constant-0 function, for , , i.e. , , , .

The superscript in denotes the number of arguments that the constant function takes and

the subscript is the value of the function, 0 in this case. Thus given natural numbers , , ,

, we have

Definition 3 the projection functions, for and , i.e. , , , , ,

, , . The superscript is the number of arguments of the particular projection function and

the subscript is the argument to which the particular projection function projects. Thus given
natural numbers , , , , we have

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (11 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot349
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot360

Theory of Computation Lecture Notes

Function forming Operators

Definition 4 Generalized Function Composition:

Given: , and each ,

Then: a new function is obtained by the schema:

Sometimes the notation is used for giving a more

compact . This schema is called function composition and

is denoted as Comp. Thus . When this schema is applied to a set

of arguments , we have

Definition 5 Primitive Recursion:

Given: and ,

Then: a new function is obtained by the schema

1. Base case:

2. Inductive case:

This schema is called primitive recursion and is denoted by . Thus .

Definition 6 Minimization:

Given:

Then: a new function is obtained by the schema

,

such that is defined and . This schema is denoted by and the

notation is the least natural number such that holds; we vary for

a given ``fixed'' and look out for the least of those for which the (k+1)-ary predicate

 holds. We also write

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (12 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

to mean the least number such that is 0. The is referred to as the least number operator.

The set of functions obtained by the use of all the operators except the minimization operator, on the
initial functions is called the set of primitive recursive functions. The set of functions obtained by the use
of three operators on the initial functions is called the set of partially recursive functions or

recursive functions.

4.1.0.1 Remarks on Minimization:

We are trying to develop a mathematical model of the intuitive idea of computation. The initial
functions and the function forming operations that we have defined until minimization guarantee a value
for every input combination11. However, there are computable processes that may not have values
for some of the inputs, for instance division. We have not been able to capture the aspect of
computation where results are available partially. The minimization schema is an attempt to capture
this intuitive behaviour of computation - that sometimes we may have to deal with computational
processes that may not always have a defined result.

Note that has the property that an exists for every , then is computable; given , we need

to simply evaluate , , until we find an such that . Such an

is said to be regular.

Now note that given some function we can check that it is primitive recursive. The next natural question
is: can we check that it is recursive too ? But being recursive means that the minimization has

been done over regular functions. After checking that the function is primitive recursive, we must
further check if the minimization has been done over regular functions. ``Checking'' essentially means
that for our ``candidate'' function, we determine if it is a regular function or not, i.e. if an exists for
every . Conceptually, we can list out all the regular functions and then compare the given function

with each member of the list. Suppose all the possible regular functions are listed as , ,

which means for every for monotonically increasing and there is an for

such that . Since is monotonically increasing, the 's are ordered.

Consider the set of functions when . These are all the regular functions that take 2 (1 +

1) arguments. That is the set , , etc. A simple way to construct a

computable function that is not regular is to have for the corresponding regular

function . We can, therefore, always construct a function that is computable in

the intuitive sense, but will not be a member of the list. Notice that this construction is based on
ensuring that whatever existed earlier, we simply make it non-existent! We can surely have

computable functions for which the may not exist even if were well defined everywhere.

Our ability to construct such a computable function is based on the assumption that we can form a list
of regular functions. This ability to construct the list was required to determine - check - if a given
function is regular! Accepting this assumption to be true would mean that we are still dealing with only
well formed functions and an aspect of the notion of computability is not being taken into
account. However, by not assuming an ability to determine the regular nature of a function, we can
bring this aspect of computability into our mathematical structure. If we want an exhaustive system
for representing all the computable functions, then we either have to give up the idea that only well
defined functions will be represented or we must accept that the class of computable functions that will

not be completely representable - i.e. they may be partial! Note that the inability to determine if

is regular makes a partial function since the least may not necessarily exist and hence could

be undefined even if is defined! In the interest of having an exhaustive system, we make the

latter choice that the regular functions would not be listed12.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (13 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1218
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1219

Theory of Computation Lecture Notes

End Remarks

By the way, a different choice of initial functions as: equal, succ and zero and the operators as: Comp
and Conditional have the same power as the above formulation. This choice is due to John McCarthy
and is the basis of the LisP programming language along with the calculus. The Conditional, which
is the same as the IF in the calculus, can do both: primitive recursion and minimalization.

4.2 Important Theorems

Theorem 4 Every Primitive Recursive function is total13.

Theorem 5 There exists a computable function that is total but not primitive recursive.

Theorem 6 A number theoretic function is partial recursive if and only if it is Turing computable.

4.3 More Issues in Computation Theory

The remarks on minimization in section () give rise to a number of questions. In particular, they point
out to the possibility that there may be some processes that are uncomputable - we cannot have
an algorithm to do the job. For instance, the regular functions cannot be listed14.

4.3.1 What can and cannot be computed

It can be argued in many ways that there are some problems which cannot have an algorithm, i.e.
they cannot be computed. For instance, note that the partial recursive functions model of computation
uses natural numbers as the basis set over which computation is defined. Theorem demonstrates
that this model of computation is exactly equivalent to the Turing model (to be introduced
later). Alternately, consider the calculus model where Church numerals have been defined by
explicitly invoking the counting method over: natural numbers again! Moreover, it is also (hopefully)

evident that the process that is used to refer to counting can actually be replaced by any procedure

that operates over natural numbers, for example the ``doubling'' procedure. We also know by Theorem
 that this model of computability is equivalent to the Turing model! Hence it is also equivalent to

the partial recursive functions perspective! Thus it appears that natural numbers and operations over
them are the basic ``primitives'' of computation. The counting arguments extend to the set of
rational numbers which are said to be countable, but infinite since they can be placed in a 1-
1 correspondence with the set of natural numbers. However, when irrationals are introduced into
the system, we are unable to use the counting arguments to come up with a ``new''/``better'' model
of computation! This means that the current model of computation is unable to deal with processes
that operate over irrationals, reals and so on. For instance, the limit of a sequence cannot be computed,
i.e. there is no mechanical procedure (an algorithm) that we can use to compute the limit of a
given sequence15.

In general, the observations of the above paragraphs lead us to the fact that: there are processes
which are not expressible as algorithms - i.e. they cannot be computed! To make things more difficult,
the equivalences between the different perspectives of computation prompted Church and Turing
to hypothesize16 that: Any model of computation cannot exceed the Turing model in power. In other
words, we may not have a better model of computation. As yet this hypothesis has neither
been mathematically proven, nor have we been able to come up with a better computation model!

4.3.2 The Halting Problem

The classic demonstration of the fact that there are some processes which cannot have an
algorithm comes in the form of the Halting problem. The problem is: Can we conceive an algorithm
that can tell us whether or not a given algorithm will terminate ? The answer is: NO. The argument
that there cannot exist such an algorithm goes as: If there indeed were such an algorithm, say
(halt), then we could construct a process, say (unhalt), that would use this algorithm as follows: If
an algorithm is certified to terminate by , then loop infinitely, else would itself halt. Now if
we use on itself, the situation becomes: halts if does not and does not halt if
does. Finally, now if is asked to tell us if halts we land up in the following scenario: would

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (14 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1221
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot466
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot474
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot476

Theory of Computation Lecture Notes

halt only if would not halt (since makes a ``crooked'' use of) and would not halt if
halts. This contradiction can only be resolved if does not exist - i.e. there can not exist an
algorithm that can certify if a given algorithm halts or not.

The Halting problem demonstrates that we can imagine processes, but that does not mean that we
can have an algorithm for them. The theory of partial recursive functions isolates this peculiar
characteristic in the minimization operator Mn. Notice that the operator is defined using an

existential process - i.e. we are required to find the least amongst all possible for

a given . This may or may not exist! The initial functions and other operators, Comp and Pr do

not have such a peculiar characteristic! We refer to those problems for which an algorithm can
be conceived as being decidable. Notice that the primitive recursive functions - the initial functions with
the Comp and Pr operators - are decidable. In contrast to other models, the theory of partial
recursive functions isolates the undecidability issue explicitly in the Mn operator. In situations when
we need to be concerned of the solvability of the problem, it might help to examine the consequences
of the Mn operator. Other models, though equivalent, may not prove to be so focussed. This illustrates
that we can use the different models in appropriate situations to most simply solve the problem at hand.

4.4 Worked Examples

Q. Show that the addition function is primitive recursive.

A. We express the addition function over recursively as:

1.

2.

Observing that: we can write as . We

also express as . Therefore,

Hence we can write the recursive definition of addition as:

1.

2.

But this is the primitive recursion schema. Hence

addition : Pr[, Comp[succ,]]

4.5 Exercises

1. Given the recursive definition of multiplication as:
1. mult(n, 0) = 0,

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (15 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

2. mult(n, m+1) = mult(n, m) + n,
use the initial functions to show that multiplication is primitive recursive.

2. Show the the exponentiation function (over natural numbers) is primitive recursive.

5 Markov Algorithms

We now examine the third of our chosen approaches towards developing the idea of a computation
- Markov Algorithms. The essence of this approach, first presented by A. Markov, is that a computation
can be looked upon as a specification of the symbol replacements that must be done to obtain the
desired result. This is based on the appreciation that a computation process, in it's raw essence
replaces one symbol by another, and the specification is made in terms of rules - quite naturally called
as production rules - that produce symbols17. We need to first introduce a number of concepts before
we can show that Markov Algorithms can (and do) represent the computations of number
theoretic functions. However, along the way we wish to show that the Markov Algorithm view
of computation yields another interesting perspective: computation as string processing. We will
just mention that a language called SNOBOL evolved from this perspective, although it is no longer
much in use. However, languages like Perl - which are very much in use in practice, are excellent
vehicles to study this approach and I believe that our abilities with Perl can be enhanced by the study
of this approach.

5.1 The Basic Machinery

Let be an alphabet (i.e. a set of (some) characters). By a Markov Algorithm

Scheme (MAS) or schema we mean a finite sequence of productions, i.e. rewrite rules. Consider a
two member sequence of productions:

1.
2.

A word over is any sequence, including the empty sequence , of alphabets from . The set of
all words over is called a language and typically denoted by or . Consider an input word,
= ``baba''. Applying a production rule means substituting it's right hand side for the leftmost occurrence
of it's left hand side in the input word. Thus, we apply rule to the input word to get as:

We keep on applying rule to to obtain , , until it no longer applies. Then we repeat

the process using the next rule. Hence,

The production rule can no longer be applied to . So we start applying the next rule starting from

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (16 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot514

Theory of Computation Lecture Notes

the leftmost character of .

The production rule is not applicable to . We are required to attempt applying it, determine

it's inapplicability and continue to the next rule. Rule is applicable to . Hence:

Neither rule nor can be applied to . The substitution process stops at this point. The above

MAS has transformed the input ``baba'' to ``cc''. We write this as: ``baba'' ``cc''18. The general
effect of the above MAS is to replace every occurrence of `a' in the input by `c' and to eliminate
every occurrence of `b' in the input. The table below illustrates it's working for a few more input strings.

The substitution process terminates if the attempt to apply the last production rule is unsuccessful.
The string that remains is the output of the MAS. Note that the MAS captures a certain substitution
process - that of replacing every `a' by `c' and eliminating `b' (i.e. replacing every `b' by). The
process that the MAS captures is called as the Markov Algorithm. MASs are usually denoted by

and the corresponding Markov algorithms are denoted by . There is another way an MAS

can terminate for an input: we may have a rule whose application itself terminates the
``substitution process''! Such a rule is expressed by having it's right hand side start with a ``.'' (dot) and
is called as a terminal production. Note that for a given input, it is possible that a terminal production
rule may not be applicable at all! We repeat: For a terminal production, the substitution process
ceases immediately upon successful application even if the production could yet be applied to the
resulting word.

In summary, a MAS is applied to an input string as: Start applying from the topmost rule to the string.
Start from the leftmost substring in the string to find a match with the left hand side of the
current production rule. If a match is found, then replace that substring with the right hand side of
the production rule to obtain a new string which is given as the next input to the MAS (i.e. we start
the process of applying the MAS again). If no substring matches the left hand side of the rule, continue
to the next rule. If we encounter as terminal production, or if no left hand side matches are successful,
then we terminate and the resulting string is the output of the MAS. Worked example illustrates the
use of a terminal production.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (17 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1229

Theory of Computation Lecture Notes

5.1.0.1 Using Marker Symbols in MAS:

Sometimes it is useful to have special symbols like #, $, %, such as markers in addition to the
alphabet . However, the words that go as input and emerge at the output of an MAS always come
from and the markers only are used to express the substitutions that need to be performed. The set
of markers that a particular MAS uses adds to the set and forms the work alphabet that is denoted

by . Consider , and a MAS as

The MA corresponding to the above MAS appends ``ab'' to any string over . Note that the output
string of the above MAS is necessarily a word from .

We now define a MAS formally.

Definition 7 Markov Algorithm Schema: A Markov Algorithm Schema S is any triple

where is a non empty input alphabet, is a finite work alphabet with and is a

finite ordered sequence of production rules either of the form or of the form where

both and are possibly non empty words over .

5.2 Markov Algorithms as Language Acceptors and Recognisers

This section mainly preparatory one for the ``machine'' view of computation that will be later useful
when discussing Turing machines. Since by computation we mean a procedure that is so
clearly mechanical that a machine can do it, we frequently use the word ``machine'' in place of
an ``algorithm''.

Definition 8 A machine19 accepts a language if

1. given an arbitrary word , the machine responds ``affirmatively'', and

2. if , the machine does not respond affirmatively.

What will constitute an affirmative response must be separately stated in advance. A non

affirmative response for would mean that either that the machine is unable to respond, or

it responds negatively. A machine that responds negatively for is said to be a recogniser.

We conventionally denote a machine state that accepts a word by the symbol 1. The symbol 0 is used
to denote the rejection state (for a language recogniser).

Definition 9 Let be a MAS with input alphabet and a work alphabet with
20. Then accepts a word if . If MAS accepts , then -

the corresponding Markov Algorithm - also accepts .

Definition 10 A MAS (as well as) accept a language L if accepts all and only the words in

L. Such an L is said to be Markov acceptable language.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (18 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot579
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot588

Theory of Computation Lecture Notes

Definition 11 Let be a MAS with input alphabet and work alphabet such that

. Then recognises over if

1. , , (accepting 1)

2. , , (rejecting 0)

If a MAS recognises L, then is also said to be recognise L. L is said to be Markov

recognizable. Worked example shows an MAS that accepts a language

. Worked example shows an MAS that recognises a

language .

5.3 Number Theoretic Functions and Markov Algorithms

The MAS point of view of computation views computations as symbol transformations guided
by production rules. To be applicable to a given domain the semantic entities in that domain must
be symbolically represented. In other words, a symbolic representation scheme must be conceived
to represent objects of the domain. To express number theoretic functions, we need to fix a scheme
to represent a natural number using some symbols.

Let a natural number be represented by a string of s. Thus . A string

(is the set of non empty strings over) will be termed as a numeral. A pair of natural numbers,

say , will be represented by the corresponding numerals separated by .

Thus .

Worked example shows an MAS defines the computation of the function.

Definition 12 A MAS S computes a k-ary partial number theoretic function provided that

1. if is applied to input word , where is defined for (i.e.

is defined), then yields ; and

2. if is applied to input word , where is not defined for , then

1. either does not halt,
2. or if S does halt, then it's output is not of the form .

Exercises and show a few MASs that compute partial number theoretic functions. If an MAS
exists that computes a number theoretic function, then the function is said to be Markov computable.

5.4 A Few Important Theorems

We state without proof, the main theorem.

Theorem 7 Let f be a number theoretic function. Then f is Markov computable if and only if it is
partial recursive.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (19 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

5.5 Worked Examples

1. Consider the alphabet and the MAS given by:

1.
2.
3. (Note the ``.'')

Given the input word = ``baba'', we have:

2. Let , where and and is:

1.

2.

3.

The above MAS accepts . Consider an input word = ``abab''.

3. Let , where and and is:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (20 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

1.

2.

3.

4.

5.

6.

7.

8.

The above MAS recognises . Consider an input word = ``aba''.

4. The function: This is defined by the MAS and of an be (i) .

5.6 Exercises

1. Apply the MAS in worked example to the input words: ``aaab'', ``baaa'' and ``abcd''.
2. Check that worked example cannot recognise a word that is not in .
3. Check that worked example can accept a word in as well as reject a word that is not in .

4. Consider the MAS given by , and . What unary partial number

theoretic function does this MAS compute ?

5. Let . What partial number theoretic functions do the following MASs compute ?

1. where is:

1.

2.

3.

4.

2. where is:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (21 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

1.

2.

3.

4.

5.

6 Turing Machines

This model is the most popular model of computation and is what is normally presented in
most undergraduate and graduate texts on Computation theory. It was conceived by Alan M. Turing in
the thirties with a view to mathematically define the notion of an algorithm. Turing was working with
Church during that time. During this time Gödel had presented his famous Incompleteness theorem
and was formulating the partial recursive functions approach to computation. Interestingly, neither
Church nor Gödel were motivated to consider computation explicitly. Their interest was more in
the foundational problems of Mathematics, as alluded to earlier. Alan Turing also was motivated by
the foundational issues. However, his approach makes an explicit use of the idea of
mechanical computation. He viewed those foundational problems in Mathematics in terms of
purely mechanical computation that could be carried out by a machine. He concretely
imagined ``mechanical computation'' being carried out by humans, called ``computers'', who would
perform the steps of the algorithm exactly as specified without using any intelligence. His model
of computation therefore gives a rather ``materially'' imaginable view of computation. The Turing
model, though a rigourously mathematical model, therefore has a certain ``technological'' appeal
that makes it21 attractive as the initial candidate for presenting the theory of Computation22. We will
spend some time in it's study as most development in theoretical Computer Science has occurred with
this perspective. On the face of it, this model appears to present a view of computation that does not
seem anything like computing the value of a function.

Consider the problem of determining if a given word, say , is a palindrome (i.e. reads
the same backwards or forwards) or not. The algorithm that can tell us if a given word is a palindrome
or not is quite straightforward. Our purpose here is to emphasize that there appear to be problems that
are not numeric in nature. Notice that the algorithm divides all possible words that can be given as
input into two sets: the set of palindromes and the set of words that are not palindromes. It appears
to ``classify'' the word at input as belonging to either one of these sets, never both. This view
of computation is called as the language recognition perspective of computation. The calculus was
a function computation view, while the Markov Algorithm approach transformed a given input symbol
to an output symbol - a (symbol) transduction view of computation. Note that by a language we
simply mean the set of words that are generated from some given alphabet. The language recognition
view involves determining if an arbitrary word belongs to some language or not, and is given
in advance. An algorithm that successfully does this is said to recognize . To get an idea of how
the function computation paradigm looks like from this perspective consider the problem of determining if
a natural number is a prime number. We first construct a ``string representation'' of a natural number:
A natural number will be represented by a string of s, i.e. times, and is written as

 for short. The set of all primes is the language . The

question: ``is prime ?'', is equivalent to asking: ``is it true that ?''

6.1 On the Path towards Turing Machines

We develop the notion of a Turing machine in steps. Along the way, we will meet a number of
useful intermediates. The idea is to develop the concept of (abstract) machines starting from
``simple'' ones, i.e. with a gradual increase in capabilities. We will draw parallels to the other models
of computation if possible.

6.1.1 Basic Machines

A machine at it's simplest, would simply recognize an input from a set and produce an output from
the set . The sets and are finite. Thus a simple machine would recieve an input and produce

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (22 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot707
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1230

Theory of Computation Lecture Notes

an output. For instance, a logic gate like (say) the AND gate would be a simple machine. A simple
machine just responds (as opposed to reacts) to the current input stimuli. It has no memory to react
on the basis of past history. In essence, a simple machine looks up a table of finite size; we can
simply tabulate the output to be produced for a given input. As a result, a simple machine is unable to
do more complicated tasks. For instance, a simple machine cannot alogrithmically add two bit
numbers. To do so would require remembering the necessary carry digits. But a simple machine has
no memory to remember the past history! All it can do is look up a table of the size and emit

out the sum for the given input pair of numbers. The basic machine would be represented by a
simple function that maps the input to the output. It's signature would be:

6.1.2 Finite State Machines (FSMs)

If we add an internal memory to a basic machine then we can build a machine that performs
addition algorithmically since now the carry digits can be remembered locally. Let be the set of
possible configurations of a finite internal memory. ``Remembering past history'' would mean that
the output produced would depend on both - the input set and the internal memory state . Further,
the given input could change the internal memory state which, in turn, would be used in a future output.
A machine with an internal state is called a Finite State Machine (FSM).

We can pictorially depict the operation of an FSM using a transition graph (also called as a
transition diagram or a state diagram). Consider the problem of designing a machine that
performs addition of binary numbers - the binary adder.

Figure:Transition Graph for a Binary Adder Machine

Fig.() shows the picture. The labelled circles represent (internal) states and the directed arcs labelled

in the form represent that the input causes an output and shifts the state

 to state 23. Once the starting state and the input are given, the

machine behaviour is defined. While a picture is worth a thousand words, transition graphs become
quite unwieldy when the number of states increases. We, therefore, turn to a more formal description
of finite state machines.

As pointed out above, a FSM is described by two functions whose signatures are:

Eqn.() is called as the machine function and Eqn.() is the state function. A binary adder
machine would be desgined as follows:

The sets , and are:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (23 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot745

Theory of Computation Lecture Notes

The machine function is:

Table:Machine function for the
Binary Adder machine. The entries
in the table are the values from the
output for various combinations of

.

The state function is:

Table:State function for the Binary
Adder machine. The entries in the table
are the values from the set for various

combinations of .

Note that the finiteness of the sets , and will limit our abilities, and we will overcome this
aspect when we consider Turing machines. Also, since the machines are designed using finite sets, all
the behaviour is completely deterministic - i.e. the machine behaviour can still be tabulated for
every possible configuration. However, the existence of a memory has permitted us to react rather
than just respond.

As another illustration, consider designing a machine that can check if the natural number at it's input
is divisible by three. The sets, the machine function and the state functions are:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (24 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

The machine function is given in Table () and the state function is given in Table ().

Table:Machine function for the Divisibility-by-Three-
Tester machine. The entries in the table are the

values from the set for various combinations of
.

Table:State function for the Divisibility-by-Three-
Tester machine. The entries in the table are the

values from the output for various combinations of
.

The Divisibility-by-Three-Tester machine will be in state if the number at it's input is divisible by

three, not otherwise. The machine recognizes a number that is divisible by three as whenever

the machine is finally in state for a given input, we can surely say that the input is divisible. We

also say that the machine decides if it's input is divisible by three. Notice that the output is 1 if the
number is divisible, 0 otherwise. We need not actually examine the machine state! The machine is said
to accept numbers that are divisible by three, and reject others. Finally, we observe that a number at
the input is a sequence of symbols from the set . We have been calling the set as the alphabet set

 and the numbers that are generated as finite sequences of alphabets as words. With being the
set of all words generated from , in the present case is just the set of natural numbers .

FSMs cannot be used to recognize palindromes of any size. That is obvious because FSMs are finite
and impose an upper limit on the length of the word that can be given at the input, while the algorithm
to recognize a palindrome has to deal with a countably infinitely long sequence of symbols. In contrast, it
is possible to construct a MAS that recognizes palindromes. That is because the MAS is not restricted
to an upper limit of the word length. Arbitrarily long sequences of symbols can be remembered using
an external countably infinite memory. Adding such a memory to an FSM gives us the Turing machine.
We will take up Turing machines in a short while.

6.1.3 Regular Sets and Regular Expressions

As we have seen in the previous section, FSMs can recognize some kinds of sets, but cannot
recognize others. We face the question: What kinds of sets are recognised by FSMs ?

A special class of sets of words over , called regular sets, is recognized by FSMs24and is
defined recursively as follows:

Definition 13

1. Every finite set of words over (including , the empty set) is a regular set.
2. If and are regular sets over , then and - the concatenation - are also regular.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (25 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot803

Theory of Computation Lecture Notes

The of two subsets and of is defined by:

UV = {x x = uv, is in U and is in V}

3. If is a regular set over , then so is it's closure .

The operation defines on a set , a derived set having the empty word and all words formed
by concatenating a finite number of words in S. i.e.

, where (is the empty word symbol) and
for .

4. No set is regular unless obtained by a finite number of applications of the above three definitions.

The above definition of regular sets captures the notion of regular behaviour of objects. This can also
be cast as a (behavioural) language that is used to express regular sets and the FSM. We take a set
of alphabets, , and define regular behaviour recursively as follows:

Definition 14

1. The alphabets, and 25 are regular expressions over ,

2. Every alphabet is a regular expression over ,

3. If and are regular expressions over , then so are , , and

, where indicates alternation (parallel path, either or , corresponds to the set

union operation), denotes concatenation (series, followed by), and denotes iteration

(closure, zero or more of).

4. The regular expressions are only those that are obtained by using the above three rules.

The FSMs that correspond to the basic operations of alternation, concatenation and closure are show
in Fig.(). Notice that these can serve as the ``building blocks'' to convert a regular expression to
it's transition graph and vice versa. In other words, given a regular expression, we can create it's
FSM transition graph and given a FSM transition graph, we can write the regular expression.
This conversion forms the basis of programs that manipulate regular expressions, for instance the
Unix shells sh/csh/bash, grep, sed, scanners in compilers etc.

Figure:The basic operations and their FSMs.

The correspondence between regular expressions and regular sets is as follows: Every regular

expression over describes a set of words over (i.e.) as follows:

1. If , then , a set consisting of the empty word,

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (26 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot811

Theory of Computation Lecture Notes

2. If , then , the empty set,

3. If , then ,

4. If and are regular expressions over which describe the set of words and , then

1. if , then ,

2. if , then ,

3. if , then }

Remark 1 It is possible to define an enlarged class of regular expressions that have intersection
and complementation over and above the operations of union, concatenation and closure.

6.1.4 Properties of FSMs

6.1.4.1 Periodicity

: FSMs lack of capacity to remember arbitrarily large amounts of information as there are only a
finite number of states. This finiteness defines a limit to the length of the sequence that can
be remembered. Also, an FSM will eventually repeat a state, or produce a sequence of states.
This periodicity results in a useful characterisation of FSMs - the Pumping Lemma. The lemma
simply states that given any sufficiently long string accepted by an FSM, we can find a substring near
the beginning that may be repeated (pumped) as many times as we like and the resulting string will still
be accepted by the FSM.

6.1.4.2 Equivalence Class of Sequences

: Two input sequences and are equivalent if the FSM is in the same state after executing

them. Because the number of states are finite in an FSM, every input sequence will end up in some
state. We can classify input sequences in terms of the states they reach. All input sequences that
reach the same state are grouped as one. An FSM thus induces an equivalence class partitioning over
the set of input sequences.

6.1.4.3 Impossibility of Multiplication

: It is impossible to carry out multiplication of arbitrarily long sequences of numbers using an FSM. This
is because a FSM is finite and hence a limit is imposed on the length of the product. In contrast, addition
- binary addition - is possible! Note that multiplication requires remembering the intermediate
``products'' for later addition.

6.1.4.4 Impossibility of Palindrome Recognition

: A palindrome is a string that is symmetric - it reads the same both ways. To recognise an arbitrarily
long palindrome, a machine would need an infinite memory to remember all the alphabets read for
later comparison of symmetry. The finiteness of FSM does not permit such a memory and hence a
FSM cannot recognise a palindrome

6.1.4.5 Impossibility of Checking Well-formed Parentheses

: The periodicity of an FSM implies that input sequences whose periodicity is greater or sequences that
are not periodic cannot be accepted by a FSM since the FSM just does not have those many
states. Hence well formed parentheses - balanced brackets - cannot be checked.

6.2 The Pushdown Stack Memory Machine

FSMs are limited due to their finite memories. A way of overcoming the limitations of FSMs is to
introduce infinite memories. However, mere ``inifiniteness'' of the memory is not sufficient; a
certain ``freedom'' to use the memory is also required. To illustrate this, we introduce a machine called
as the Push Down Stack Memory Machine (PDM) that overcomes the limitations of FSMs by using
an infinite memory. However, the use of memory is restricted in that the memory must be used as a

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (27 of 37) [12/23/2006 1:17:43 PM]

Theory of Computation Lecture Notes

stack. A stack is a structure where the removal of objects from the memory is performed in the
reverse order of their arrival into the memory. This behaviour is described as Last In First Out
and abbreviated as LIFO. These machines are routinely applied to recognise context free grammars26
of programming languages and are not as powerful as TMs.

Our purpose in mentioning them here is two fold: on the one hand, we wish to indicate that
some interesting and useful intermediates after FSMs but before TMs are possible. And secondly,
we would invite you to explore and find out the properties of PDMs. For instance, FSMs were known to
be unable to solve certain problems (balanced parentheses e.g.). Could a PDM solve it ? What
problems would not be solved even by a PDM ? Naturally, the next questions could be like: what
other kinds of ``restrictions'' on memory use are possible and what are the properties of the machines
they give rise to ?

6.3 The Turing Machine

Figure:The Basic Turing Machine. Textually, the above figure would be
represented as: BHaaaB, where His the head.

The Turing machine is pictured as being composed of a head that reads and writes symbols from a set
of alphabet, , onto a cell of an external tape (Fig.()). The tape is an infinite sequence of cells;
each cell can contain one and only one symbol from . The Turing machine operates as follows: the
head reads the symbol from the cell currently under it and responds to that symbol by either
writing another symbol at the cell or not writing anything at all. It may then move one cell either to the
left or to the right27. We are required to specify, in advance, the response of - i.e. what to write and
where, if at all, to move - the head to every symbol that it reads. The external tape is initially blank.
The symbols are first laid out on the tape starting from the left. If the head encounters a blank cell,
the machine halts.

To actually work with the machine scheme in the previous paragraph, we need to evolve notation
to describe the details like the symbols - alphabet - that can appear on the tape, the starting position of
the head, a detailed tabulation of the responses etc. By state of the machine, we wish to describe
the instantaneous configuration of the machine which is made up of the head position on the tape and
the alphabets on the tape. Note that the starting position is merely one of the states. As a result of
reading the alphabet on the tape, the machine may write back or move it's head or do both. The
machine response thus takes the machine into the next state which could be identical to the earlier one

or a new one. Given a set of alphabets, we can have

responses as follows:

Table: responses of a Turing machine for an alphabet with symbols.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (28 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot846
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot857

Theory of Computation Lecture Notes

The operation of a Turing machine can be described by a quadruple: . This

is read as: If state reading symbol then perform action and enter state . For

instance would mean that if in state reading symbol , then move head one cell to

the right and enter state . This quadruple is called as an instruction (of). Alternately, we can

view an instruction as a function - denoted by - that takes in the state and the alphabet being

scanned and returns the action and the new state. Thus we also write: for

the above quadruple. is not a number theoretic function since it takes state/symbol pair as

an argument. It's domain is therefore, , where

 is the set of states, and at least one of those states is a distinguished state -

the start state - denoted by or . Since captures the ``motion'' from one state to another it

is referred to as the transition function. Note that the initial tape contents and the initial head position

are specified by .

Consider the following figures that describe a Turing machine.

Figure:Transition diagram of a Turing machine .

The ``arcs'' of the state diagram (look like straight lines here) are labelled by the instructions of
the machine. Each circle represents a state of the machine. The machine goes to the state pointed to
by the arc when it recieves the instruction labelled by the arc when in state from which the arc
originates. The starting state is denoted by and is drawn to the far left, usually. The first arc in Fig.(

) is labelled and points to state . This is to be interpreted as: the machine must write a

blank B it is currently scanning with the symbol and then enter state . The machine state

has been specified in advance to be a head over some cell of an entirely blank tape. Figs.(-
) pictorially depict the machine in each of the above states.

Figure:Turing machine in state .

Figure:Turing machine in state .

Figure:Turing machine in state .

Figure:Turing machine in state .

Figure:Turing machine in state .

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (29 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

The working of the machine can now be described. It starts from a state where the head is

positioned on some cell of an entirely blank tape. It has been instructed that if in this state it scans a

blank, then it is to write an on that cell and enter state . Since it does scan a blank, it writes an

 and enters state . Now in this state, when it scans and reads an , it moves one cell to the right

and enters state . Here if it reads (i.e. scans) a blank (it does), then it writes a and enters state

. In this state, and the current head position, if it reads a - which it does - then it moves one cell

to the left and enters state . There are no further instructions. Hence the machine halts in state .

In summary, the machine behavior is: When started scanning a cell on a completely blank tape, it
writes the word ``ab'' and halts scanning the symbol ``a''. We say that the tape configuration is to
be completely blank initially. In general, the contents of the tape together with the location of the head for
a given Turing machine is referred to as the tape configuration. The tape configuration and the
current machine state is referred to as the machine configuration. Note that if the tape configuration

at is not completely blank, and the machine starts scanning a non-black symbol, then it must

halt immediately in state since there are no instructions! Also, as suggested in the caption to Fig.(

), we will use a textual notation to describe the machine configuration. Finally, the state is

often abbreviated to just in state diagrams.

6.3.1 Formal Definitions

6.3.1.1 Basic Definition:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (30 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

Definition 15 A deterministic Turing machine M is anything of the form

where is a non empty finite set, and are non empty finite alphabets with , ,

and is a (partial) function with domain and codomain given by

Q is the set of states of M, is the initial state of M, is the input alphabet of M and is its

tape alphabet (or auxilliary alphabet) and is the transition function.

6.3.1.2 Turing machines as language recognizers:

We define the notion of language acceptance and rejection to introduce the language
recognition paradigm for Turing machines.

Definition 16 A Deterministic Turing machine M accepts a nonempty word w if, when started
scanning the leftmost symbol of w on an input tape that contains w and is otherwise blank, M
ultimately halts scanning a 1 on an otherwise blank tape. It accepts an empty word is, when
started scanning a blank on a completely blank tape, M ultimately halts scanning a 1 on an otherwise
blank tape.

Definition 17 A Deterministic Turing machine M accepts a language L, if M accepts all, and only
the words w in L. A language L is said to be Turing acceptable if there exists some deterministic
Turing machine M that accepts L28.

Definition 18 Let L be a language over alphabet 29. A Deterministic Turing machine M
recognizes language L if:

1. If w is an arbitrary nonempty word over and M is started scanning the leftmost symbol of w on a
tape that contains w and is otherwise blank, then M ultimately halts scanning a 1 on an otherwise

blank tape is , but halts scanning a 0 on an otherwise blank tape if .

2. If M is started scanning a cell on a comlpetely blank tape, then M ultimately halts scanning a 1 on

an otherwise blank tape if , but halts scanning a 0 on an otherwise blank tape if .

A language L is termed Turing recognizable if there exists a Turing machine M that recognizes L.

Worked examples , and illustrate the construction of Turing machines for this paradigm.

6.3.1.3 Turing machines as function computers:

We define computation of partial functions to introduce the function computation paradigm for
Turing machines. As discussed in section (), we need to decide a scheme to represent natural

numbers of a tape. We represent a natural number by a string of s. When we need

to design a machine for functions that take more than one argument - e.g. addition - we will separate
the arguments by a single blank.

Definition 19 A Deterministic Turing machine M computes a k-ary partial number theoretic function f

with provided that:

1. If M started scanning the leftmost 1 of an unbriken string of 1s followed by a single blank

followed by an unbroken string of 1s followed by a single blank followed by an

unbroken string of 1s followed by a single blank on an otherwise blank tape, where

happens to be defined for arguments , , , , then M halts scanning the leftmost 1 of

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (31 of 37) [12/23/2006 1:17:44 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot931
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot934

Theory of Computation Lecture Notes

an unbroken string of 1s on an otherwise blank tape.

2. If M started scanning the leftmost 1 of an unbriken string of 1s followed by a single blank

followed by an unbroken string of 1s followed by a single blank followed by an

unbroken string of 1s followed by a single blank on an otherwise blank tape, where

happens to be not defined for arguments , , , , then M does not halt scanning the leftmost

1 of an unbroken string of 1s on an otherwise blank tape.

Definition 20 A partial number theoretic function is said to the Turing computable if there exists

a Turing machine M that computes .

Worked example illustrates the construction of Turing machines that compute functions. Note that:

Remark 2 Every Turing machine with input alphabet computes some unary partial

number theoretic function.

6.3.1.4 Turing machines as transducers:

Worked example illustrates the construction of a Turing machine that works according to
the transduction view of computation.

6.4 A Few Important Theorems

Theorem 8 The Blank Tape Theorem: There exists a Turing machine which when started on a
blank tape, can write it's own description. It is a self reproducing machine.

Theorem 9 The Halting problem: There does not exist a Turing machine that can decide if
the computation process generated by a Turing machine will halt.

Theorem 10 It is not possible to decide - i.e. have an algorithm - whether a Turing machine will ever

print a given symbol .

Theorem 11 It is not possible to decide if two Turing machines with the same alphabet are equivalent
or not. In particular, this means that we cannot decide the equivalence of two arbitrary programs.
This connection with program equivalence is possible because of the notion of an UTM discussed below.

Since we have already mentioned that the other perspectives of computation are equivalent to the
Turing view, we do not state any theorem of equivalence at this point. Instead, we present the notion of
a Universal Turing machine. Observe that the formal definition of a Turing machine is simply a scheme
of describing machines. The question is: is it possible to have a Turing machine describe other
Turing machines ? The following theorem - due to Alan Turing - asserts this to be true.

6.4.0.1 The Universal Turing Machine (UTM)

Theorem 12 There exists a Universal Turing machine.

An UTM would behave exactly as the Turing machine that has been described to it. In other
words, we can have a single machine to which we merely provide descriptions of the Turing machines
we want it to behave like. This is why we can have a computer - a universal machine - to which
we describe our desired machine as a program.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (32 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

6.5 Chomsky Hierarchy and Markov Algorithms

The Markov Algorithm view of Computation was in terms of production rules that specify the output
symbol to replace an input symbol. If we place gradual restrictions on the way production rules are to
be ``designed'' we have a correspondence between the grammar and the machine that recognises
the grammar. There are four classes of grammars:

1. [Type 0] No restrictions on the production rules. This is the kind of grammar that we have studied
in Markov Algorithms. TMs are required to recognise sentences generated by these grammars - in
other words, Markov Algorithms are equivalent to Turing Machines!

2. [Type 1] Two restrictions are imposed: (i) production rules are of the form , and

(ii) the start symbol does not appear on the right hand side of a production. Because the replacement

of by is dependent on the occurrence of as prefix and as suffix, the grammar is said to

be Context Sensitive Grammars (CSGs). A class of machines called Linearly Bounded Machines
(LBMs) are required to recognise sentences generated by these grammars.

3. [Type 2] The left hand side of each production rule is a non terminal symbol; the production rules are of
the form . Start symbol is allowed to appear in the RHS of the rule. Such grammars are called
as Context Free Grammars (CFGs) and PDMs recognise the sentences generated by such grammars.
The grammars of most programming languages that we use are CFGs and hence their parsers are PDMs.

4. [Type 3] The productions of this class of grammars have a non terminal on the LHS and at most one
non terminal on the RHS. These grammars are identical to regular expression languages and
FSMs recognise the sentences they generate. They are called Regular Grammars.

These classes of grammars was first proposed by Noam Chomsky and is called as the
Chomsky hierarchy. From the description above, we also see that the various machines that we
have encountered while developing the Turing machine view of Computation correspond to
certain restrictions on the production rules of Markov Algorithm Schema. It is known that Panini,
the Sanskrit grammarian has defined the Sanskrit language in terms of formal production rules in the
same spirit as the above formal language theory[3].

6.6 Worked Examples

1. Same number of s and s:

This machine behaves as: When starting scanning the leftmost symbol of word consisting of
an unbroken string of s and s in any order, the Turing machine halts scanning a single on
an otherwise blank tape if and only if the number of s in is equal to the number of s in .

For instance, for an initial machine configuration , the machine is required to halt in
the configuration .

Solution: To design the machine, we first ``think'' of an algorithm. The basic idea is to eliminate s
and s in pairs until either: (i) every symbol has been eliminated, i.e. number of s in number
of s in , or (ii) some symbol is eliminated for which no companion is found, i.e. number of s in

 number of s in . To find a pair of and , we must have the machine scan a symbol, mark it

and search for the companion symbol. If the companion symbol is found, then it must again be replaced
by the same marker. This process must be repeated over every pair30. If no more pairs exist and no
more symbols exist, then our machine has told us that the given input had the same number of s and

s. Otherwise, it tells us that the number of s was different from the number of s. Notice that the
tape of the machine will contain only the marker symbol and blanks if and only if the number of s and

s are same! Let us use the as the marker. Then for a word , we want the machine
to halt with . The machine (Fig.()) would be required to operate as follows:

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (33 of 37) [12/23/2006 1:17:44 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1001

Theory of Computation Lecture Notes

Figure:Turing machine that detects same number of s and s in an input
word. A state with a pair of concentric circles denotes the endstate; in this

example is the end state.

2. Machine that accepts :

The problem is to design a Turing machine that accepts words from the language

. These are strings of the form , , etc. Strings like should not

be accepted.

Solution: As long as we are reading an , we replace it by a blank and move right. If we have read an
, replaced it by a blank and moved right, then we must have the machine in the same state. If on

the other hand, the machine reads anything but an , then we must take the machine state into
a completely different ``cycle''. This other ``cycle'' may or may not halt the machine; we do not care as it
is just an acceptor machine. The states 0, 1 and 2 accept the word if it is in , else the machine
operates in the other states, i.e. 3, 4 and 5. That is what is essentially done in Fig.().

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (34 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

Figure:Turing machine that accepts
.

3. Machine that recognizes :

The problem is to design a Turing machine that recognizes words from the language

. These are strings of the form , , etc. Strings like should be rejected.

Solution: As long as we are reading an , we replace it by a blank and move right. If we have read an
, replaced it by a blank and moved right, then we must have the machine in the same state. If on

the other hand, the machine reads anything but an , then we must take the machine state into
a completely different ``cycle''. For a recognizer machine, however, we must have this other
``cycle'' terminate in a rejecting state, where the machine ends up writing a 0 on the tape. The states 0,
1 and 2 accept a valid word in , while the others reject it if otherwise. That is what is essentially done
in Fig.().

Figure:Turing machine that recognizes
.

4. The succ function computer:

Design a Turing machine that computes the successor of a natural number given on it's tape. A

natural number is represented as an unbroken sequence of s (as in an MAS).

Solution: Starting from the leftmost of the number, we keep moving to the right until we scan a blank.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (35 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

At this point, we simply write a in place of the blank and stop. The state diagram of the machine
is shown in Fig.(). By the way, the diagram is incomplete. Please complete it.

Figure:Turing machine that computes the
succfunction.

5. The Copying machine:

The Copying machine problem is to design a Turing machine that given a string on the tape, writes a
copy of the string after the string separated by a blank. Thus if the copying machine receives

 as input, it outputs .

Solution: See Fig.().

Figure:Turing machine that copies it's input word.

6.7 Exercises

1. Design a Turing machine that adds two natural numbers.
2. Design a Turing machine that multiplies two natural numbers. (Hint: Use the copying machine and

the representation scheme.

7 An Overview of Related Topics

A number of other models of computation exist, for example, Logic with Horn clauses, Register
machines and the Abacus. Some models have been used to construct programming languages,
for instance Prolog which is based on Logic with Horn clauses, and others are used to develop
hardware concepts, for instance the Register machine. Some have even been ancient, like the
Abacus, although I know of no evidence that the theory of computation was known to the
ancients. Attempts at understanding the nature of algorithms has a long history too. The
Russian mathematician, Leibnitz - a contemporary of Newton, attempted to understand it too. Given
the variety of different models, we have a variety of approaches to solve programming problems. In
fact, we may consider the act of writing programs as designing specific machines.

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (36 of 37) [12/23/2006 1:17:44 PM]

Theory of Computation Lecture Notes

7.1 Computation Models and Programming Paradigms

The calculus approach views computation through an explicit consideration of the behavioural
aspects of objects that can undergo computation. This view gives us the functional paradigm
of programming. On the other hand, the Markov algorithm perspective views computation as
symbol transformations explicitly, a view that gives us the transduction (of input symbols to
output symbols) paradigm. Finally, the explicit consideration of the actions involved in computation -
the Turing approach, gives us the procedural view of programming. We know that all these approaches
are equivalent and there should be no reason to prefer one over the other. Indeed, we ought to select
the paradigm that best suits the problem at hand. However, practice deviates from such
``ideal'' considerations and we find the procedural style dominantly used in software development.

7.2 Complexity Theory

8 Concluding Remarks

Bibliography

1
Models of Computation and Formal Languages, R. Gregory Taylor, Oxford University Press, 1998.

2
Introductory Theory of Computer Science, E. V. Krishnamurthy, East-West Press, 1983.

3
http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Panini.html.

Abhijat Vichare 2005-11-09

Email: amv[at]cfdvs.iitb.ac.
in

© Abhijat Vichare
Disclaimer

Last Site Update: Nov. 09,
2005

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (37 of 37) [12/23/2006 1:17:44 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/systems.programming/About_Me/disclaimer.html

	www.cfdvs.iitb.ac.in
	Theory of Computation Lecture Notes

