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1 Introduction 

In this module we will concern ourselves with the question: 
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We first look at the reasons why we must ask this question in the context of the studies on Modeling 
and Simulation. 

We view a model of an event (or a phenomenon) as a ``list'' of the essential features that characterize 
it. For instance, to model a traffic jam, we try to identify the essential characteristics of a traffic 
jam. Overcrowding is one principal feature of traffic jams. Yet another feature is the lack of any 
movement of the vehicles trapped in a jam. To avoid traffic jams we need to study it and develop 
solutions perhaps in the form of a few traffic rules that can avoid jams. However, it would not be feasible 
to study a jam by actually trying to create it on a road. Either we study jams that occur by 
themselves ``naturally'' or we can try to simulate them. The former gives us ``live'' information, but we 
have no way of knowing if the information has a ``universal'' applicability - all we know is that it 
is applicable to at least one real life situation. The latter approach - simulation - permits us to 
experiment with the assumptions and collate information from a number of live observations so that 
good general, universal ``principles'' may be inferred. When we infer such principles, we gain knowledge 
of the issues that cause a traffic jam and we can then evolve a list of traffic rules that can avoid traffic jams. 

To simulate, we need a model of the phenomenon under study. We also need another well known 
system which can incorporate the model and ``run'' it. Continuing the traffic jam example, we can create 
a simulation using the principles of mechanical engineering (with a few more from other branches 
like electrical and chemical engineering thrown in if needed). We could create a sufficient number of 
toy vehicles. If our traffic jam model characterizes the vehicles in terms of their speed and size, we 
must ensure that our toy vehicles can have varying masses, dimensions and speeds. Our model 
might specify a few properties of the road, or the junction - for example the length and width of the 
road, the number of roads at the junction etc. A toy mechanical model must be crafted to simulate 
the traffic jam! 

Naturally, it is required that we be well versed with the principles of mechanical engineering - what it 
can do and what it cannot. If road conditions cannot be accurately captured in the mechanical model1, 
then the mechanical model would be correct only within a limited range of considerations that 
the simulation system - the principles of mechanical engineering, in our example - can capture. 

Today, computers are predominantly used as the system to perform simulation. In some cases 
usual engineering is still used - for example the test drive labs that car manufacturers use to test new 
car designs for, say safety. Since computers form the main system on which models are implemented 
for simulation, we need to study computation theory - the basic science of computation. This study gives 
us the knowledge of what computers can and cannot do. 

 
2 What is Computation ? 

Perhaps it may surprise you, but the idea of computation has emerged from deep investigation into 
the foundations of Mathematics. We will, however, motivate ourselves intuitively without going into 
the actual Mathematical issues. As a consequence, our approach in this module would be to know 
the Mathematical results in theory of Computation without regard to their proofs. We will treat 
excursions into the Mathematical foundations for historical perspectives, if necessary. Our definitions 
and statements will be rigorous and accurate. 

Historically, at the beginning of the 20  century, one of the questions that bothered mathematicians 
was about what an algorithm actually is. We informally know an algorithm: a certain sort of a 
general method to solve a family of related questions. Or a bit more precisely: a finite sequence of steps 
to be performed to reach a desired result. Thus, for instance, we have an addition algorithm of 
integers represented in the decimal form: Starting from the least significant place, add the 
corresponding digits and carry forward to the next place if needed, to obtain the sum. Note that 
an algorithm is a recipe of operations to be performed. It is an appreciation of the process, independent 
of the actual objects that it acts upon. It therefore must use the information about the nature (properties) 
of the objects rather than the objects themselves. Also, the steps are such that no intelligence is required 
- even a machine2 can do it! Given a pair of numbers to be added, just mechanically perform the steps 
in the algorithm to obtain the sum. It is this demand of not requiring any intelligence that makes 
computing machines possible. More important: it defines what computation is! 

Let me illustrate the idea of an algorithm more sharply. Consider adding two natural numbers3. 
The process of addition generates a third natural number given a pair of them. A simple way 
to mechanically perform addition is to tabulate all the pairs and their sum, i.e. a table of triplets of 
natural number with the first two being the numbers to be added and the third their sum. Of course, 
this table is infinite and the tabulation process cannot be completed. But for the purposes of mechanical - 
i.e. without ``intelligence'' - addition, the tabulation idea can work except for the inability to 
``finish'' tabulation. What we would really like to have is some kind of a ``black box machine'' to which 
we ``give'' the two numbers to be added, and ``out'' comes their sum. The kind of operations that such 
a box would essentially contain is given by the addition algorithm above: for integers represented in 
the decimal form, start from the least significant place, add the corresponding digits and carry forward 
to the next place if needed, for all the digits, to obtain the sum. Notice that the ``algorithm'' is not limited 
by issues like our inability to finish the table. Any natural number, howsoever large, is represented by 
a finite number of digits and the algorithm will eventually stop! Further, the algorithm is not 
particularly concerned about the pair of numbers that it receives to be processed. For any, and every, 
pair of natural numbers it works. The algorithm captures the computation process of addition, while 
the tabulation does not. The addition algorithm that we have presented, is however intimately tied to 
the representation scheme used to write the natural numbers. Try the algorithm for a 
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Roman representation of the natural numbers! 

We now have an intuitive feel of what computation seems to be. Since the 1920s Mathematics 
has concerned itself with the task of clearly understanding what computation is. Many models have 
been developed, and are being developed, that try to sharpen our understanding. In this module we 
will concern ourselves with four different approaches to modeling the idea of computation. The 
following sections, we will try to intuitively motivate them. Our approach is necessarily introductory and 
we leave a lot to be done. The approaches are: 

1.  The  Calculus, 
2.  The theory of Partial Recursive Functions, 
3.  Markov Algorithms, and 
4.  Turing Machines. 

 
3 The  Calculus 

This is the first systematic attempt to understand Computation. Historically, the issue was what was 
meant by an algorithm. A logician, Alonzo Church, created the  calculus in order to understand 
the nature of an algorithm. To get a feel of the approach, let us consider a very simple ``activity'' that 
we perform so routinely that we almost forget it's algorithmic nature - counting. 

An algorithm, or synonymously - a computation, would need some object to work upon. Let us call it . 
In other words, we need an ability to name an object. The algorithm would transform this object 
into something (possibly itself too). This transformation would be the actual ``operational details'' of 
the algorithm ``black box''. Let us call the resultant object . That there is some rule that transforms  

to  is written as: . Note that we concentrate on the process of transforming  to , and 

we have merely created a notation of expressing a transformation. Observe that this 
transformation process itself is another object, and hence can be named! For example, if 
the transformation generates the square of the number to which it is applied, then we name 

the transformation as: square. We write this as: . The final ability that an 

algorithm needs is that of it's transformation, named  being applied on the object named . This 

is written as . Thus when we want to square a natural number , we write it as . 

An algorithm is characterized by three abilities: 

1.  Object naming; technically the named object is called as a , 
2.  Transformation specification, technically known as abstraction, and 
3.  Transformation application, technically known as application. 

These three abilities are technically called as  terms. 

The addition process example can be used to illustrate the use of the above syntax of  calculus 
through the following remarks. (To relate better, we name variables with more than one letter 
words enclosed in single quotes; each such multi-letter name should be treated as one single symbol!) 

1.  `add', `x', `y' and `1' are variables (in the  calculus sense). 

2.   is the ``addition process'' of bound variables  and . The bound variables 

``hold the place'' in the transformation to be performed. They will be replaced by the actual numbers to 
be added when the addition process gets ``applied'' to them - See remark . Also the 
process specification has been done using the usual laws of arithmetic, hence  on the right 

hand side4. 

3.   is the application of the abstraction in remark  to the  term . 

An application means replacing every occurrence of the first bound variable, if any, in the body of the 
term be applied (the left term) by the term being applied to (the right term).  being the first 

bound variable, it's every occurrence in the body  is replaced by  due to the application. 

This gives us the  term: , i.e. a process that can add the value 1 to it's input 

as ``signalled'' by the bound variable that ``holds the place'' in the processing. 
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4.  We usually name  as `inc' or '1+'. 

 
3.1 Conversions: 

We have acquired the ability to express the essential features of an algorithm. However, it still remains 
to capture the effect of the computation that a given algorithmic process embodies. A process 
involves replacing one set of symbols corresponding to the input with another set of 
symbols corresponding to the output. Symbol replacement is the essence of computing. We now 
present the ``manipulation'' rules of the  calculus called the conversion rules. 

We first establish a notation to express the act of substituting a variable  in an expression  by 

another variable  to obtain a new expression  as:  (  is  whose every  

is replaced by ). Since the  specifies the binding of a variable  in , it follows that  

must occur free in . Further, if  occurs free in  then this state of  must be preserved 

after substitution - the  in  and the  that would be substituting  are different! Hence we 

must demand that if  is to be used to substitute  in  then it must not occur free in . And finally, 

if  occurs bound in  then this state of  too must be preserved after substitution. We must 

therefore have that  must not occur bound in . In other words, the variable  does not occur 

(neither free nor bound) in expression . 

The conversions are: 

Since a bound variable in a  expression is simply a place holder, all that is required is that unique 
place holders be used to designate the correct places of each bound variable in the expression. As long 
as the uniqueness is preserved, it does not matter what name is actually used to refer to their 
respective places5. This freedom to associate any name to a bound variable is expressed by the 

 conversion rule which states the equivalence of  expressions whose bound variables have 
been merely renamed. The renaming of a bound variable  in an expression  to a variable 

 that does not occur in  is the  conversion: 

 conversion: Iff  does not occur in , 

  

As a consequence of  conversion, it is possible for us to substitute while avoiding accidental change 
in the nature of occurrences.  conversion is necessary to maintain the equivalence of the 
expressions before and after the substitution. 

This is the heart of capturing computation in the  calculus style as this conversion expresses the 
exact symbol replacement that computation essentially consists of. We observe that an 
application represents the action of an abstraction - the computational process - on some ``target'' 
object. Thus as a result of application, the ``target'' symbol must replace every occurrence of the 

bound variable in the abstraction that is being applied on it. This is the  conversion rule expressed 

using substitution as: 

 conversion: Iff  does not occur in , 
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Since computation essentially is symbol replacement, ``executing an algorithm on an input'' is expressed 

in the  calculus as ``performing  conversions on applications until no more conversion is 

possible''. The expression obtained when no more conversions are possible is the ``output'' or 
the ``answer''. 

For example, suppose we wish to apply the  expression  to , i.e. 

( ). But  already occurs bound in the old expression. Thus we first 

rename the  in the old expression to (say)  using  conversion to get: 

 and then substitute every  by  using  conversion. 

It expresses the fact that the expression that is free of any occurrences of the binding variable in a 
 abstraction is the expression itself. Thus: 

 conversion: Iff  does not occur in , then 

  

If a  expression  is transformed to an expression  by the application of any of the 
above conversion rules, we say that  reduces to  and denote it as . If no more 
conversion rules are applicable to an expression , then it is said to be in it's normal form. An 
expression  to which a conversion is applicable is referred to as the corresponding redex 

(reducible expression). Thus we speak of  redex,  redex etc. 

3.2 The  calculus in use 

3.2.1 The Natural Numbers in  calculus 

Natural numbers are the set  = {0, 1, 2, }. We ``know'' them as a set of values. However, we 
need to look at their behavioral properties to see their computational nature. We demonstrate this using 
the counting process. We associate a natural number with the instances of counting that are being 
applied to the object being counted. For instance, if the counting process is applied ``zero'' times to 
the object (i.e. the object does not exist for the purposes of being counted), then the we have 
the specification, i.e. a  term, for the natural number ``zero''. If the counting process is applicable to 
the object just once (i.e. there is only one instance of the object), then the function for that 
process represents the natural number ``one'', and so on. Let us name the counting process by the 

symbol . If  is the object that is being counted, then this motivates a  term for a ``zero'' as6: 
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where the  remains as it is in our thoughts, but no counting has been applied to it. Hence  forms 
the body of the  abstraction. A ``one'', a ``two'', or ``three'' are defined as: 

  

 

  

A look at Eqns.( - ) shows that a natural number is given by the number of occurrences of 

the application of  - our name for the counting process. 

At this point, let us pause for a moment and compare this way of thinking about numbers with 
the ``conventional'' way. Conventionally, we tend to associate numbers with objects rather than 
the process. Contrast: ``I counted ten tables'' with ``I could apply counting ten times to objects that 
were tables''. In the first case, ``ten'' is associated subconsciously to ``table'', while in the second case it 
is associated with the ``counting'' process! We are accustomed to the former way of looking at 
numbers, but there is no reason to not do it the second way. 

And finally, to present the power of pure symbolic manipulation, we observe that although we 
have motivated the above  expressions of the natural numbers as a result of applying the 

counting process , any process that can be sensibly applied to an object can be used in place of . 

For example, if  were the process that generates the double of a number, then the above  

expressions could be used to generate the even numbers by a simple ``application'' of  once (i.e. 1) 

to get the first even number, twice (i.e. 2) to get the second even number etc. We have simply used  

to denote the counting process to get a feel of how the  expressions above make sense. A 

natural number  is just  applications of (some)  to , i.e. . 

We now present the addition process7 from this  calculus view. The addition of two natural numbers 
 and  is simply the total number of applications of the counting process. To get the  expression 

that captures the addition process, we observe that the sum of  and  is just  further applications 

of the counting process  to  which has already been generated by using . Hence 

addition can be defined as: 

  

Note that in Eq.( ), the  expression  is applied to the  expression . Consider 

adding 1 and 2: 
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The add  expression takes the  expression form of two natural numbers  and  to be added 
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and yields a  expression that behaves exactly as the sum of these two numbers. Note that this 

resulting  expression expects two arguments namely  and  to be supplied when it is to be 

applied. The  expression that we write in the  calculus are simply some process 
specifications including of those objects that we formerly thought of as ``values''. 

This view of looking at computation from the ``processes'' point of view is referred to as the 
functional paradigm and this style of programming is called functional programming. 
Programming languages like Lisp, Scheme, ML and Haskell are based on this kind of view of 
programming - i.e. expressing ``algorithms'' as  expression. In fact, Scheme is often viewed as ``

 calculus on a computer''. For instance, we associate a name ``square'' to the operation ``multiply 
x (some object) by itself'' as (define square (lambda (x) (* x x))). In our  calculus 

notation, this would look like . 

 
3.2.2 The Booleans 

Conventionally, we have two ``values'' of the boolean type: True and False. We also have 
the conventional boolean ``functions'' like NOT, AND and OR. From a purely formal point of view, True 
and False are merely symbols; one and only one of each is returned as the ``result''/``value'' of a 
boolean expression (which we would like to view as a  expression). Therefore, a (simple!) encoding 
of these values is through the following two  abstractions: 

  

Note that Eqn.( ) is an abstraction that encodes the behavior of the value True and is thus a 
very computational view of the value8. Similarly Eqn.( ) is an abstraction that encodes the behavior of 
the value False. Since the encodings represent the selection of mutually ``opposite'' expressions from 
the two that would be given by a particular (function) application, we can say that the above 
equations indeed capture the behaviors of these ``values'' as ``functions''. This is also evident when 
we examine the  abstraction for (say) the IF boolean function and apply it to each of the 
above equations. The IF function behaves as: given a boolean expression and two  terms, return 
the first  term if the expression is `` True'' else return the second  term. As a  abstraction it 
is expressed as: 

  

i.e. apply the boolean expression  to  and . If  is True (i.e.  reduces to the  term True), 

then we must get  as a result of applying various conversions to Eqn.( ), else we must get . 

The AND boolean function behaves as: ``If p then q else false''. Accordingly, it can be encoded as 
the following  abstraction: 

  

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (8 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1191


Theory of Computation Lecture Notes

Note that in Eqn.( ) further reductions depend on the actual forms of  and . To see that the 

 abstractions indeed behave as our ``usual'' boolean functions and values, two approaches are 
possible. Either work out the reductions in detail for the complete truth tables of both the boolean 
functions, or noting the behavioral properties of these functions and the ``values'' that they could 
take, (intuitively ?) reason out the behavior. I will try the latter technique. Consider the AND function 

defined by Eqn.( ). It takes two arguments  and . If we apply it to Eqn.( ) and Eqn.( ) (i.e. 

AND TRUE FALSE), then the reduction would substitute Eqn.( ) for every occurrence of  and Eqn.(

) for every occurrence of  in Eqn.( ). This gives us a  abstraction to which have been applied 

two arguments, namely  and ! This abstraction behaves like TRUE and hence it yields 

it's first argument as the result. That is, a reduction of this  abstraction yields , i.e.  - 

the expected output. Note that no further reductions are possible. 

3.3 Few Important Theorems 

At this point, we would like to mention that the  calculusis extensively used to mathematically model 
and study computer programming languages. Very exciting and significant developments have 
occurred, and are occurring, in this field. 

Theorem 1   A function is representable in the  calculus if and only if it is Turing computable.

Theorem 2   If  =  then there exists  such that  and .

Theorem 3   If an expression E has a normal form, then repeatedly reducing the leftmost  or  redex 

- with any required  conversion, will terminate in the normal form.

3.4 Worked Examples 

We apply the IF  expression to True i.e. we work out an application of Eqn.( ) to Eqn.( ): 
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which will return the first object of the two to which the IF will actually get applied to (i.

e. ). Note that Eqns.( , ) capture the behavior of the objects 

that we are accustomed to see as ``values''. I cannot stress more that the ``valueness'' of these objects 
is not at all relevant to us from the  calculus point of view. The ``valueness'' cannot be captured as 
a ``computational'' process while the behavior can be. And if the behavior of the computational process 
is in every way identical to the value, there is little reason to impose any differentiation of the object as 
a ``value'' or as a ``function''. On the other hand, insisting on the ``valueness'' of the objects given by 
those equations forces us to invent unique symbols to be permanently bound to them. I also believe that 
it makes the essentially computational nature of these objects opaque to us. 

Let me also illustrate the construction of the  function that yields the successor of the number 
given to it. This function will be used in the Partial Recursive Functions model. The succ process is 
one more application of the counting process to the given natural number. We recall the definitions 
of natural numbers from Eqns.( - ). We observe that the natural number is defined by the number 

of applications of the counting process  to some object . Hence the bodies of the corresponding 

 expressions involve application of  to . This gives us a way to define the succ as an application 

of the process  to , the given natural number. This is what was used to define the add process in Eqn.

( ). Thus: 

  

3.5 Exercises 

1.  Construct the  expression for the following: 
1.  The OR boolean function which behaves as ``If p then true else q''. 
2.  The NOT boolean function which behaves as ``If p then False else True''. 
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2.  Evaluate, i.e. perform necessary conversions of the following  expression. 
1.  (IF FALSE) 
2.  (AND TRUE FALSE) 
3.  (OR TRUE FALSE) 
4.  (NOT TRUE) 
5.  (succ 1) 

 
4 The theory of Partial Recursive Functions 

We now introduce ourselves to another model that studies computation. This model appears to be 
most mathematical of all. However, in fact all the models are equally mathematical and exactly 
equivalent to each other. This approach was pioneered by the logician Kurt Gödel and almost 
immediately followed  calculus. Our purpose of introducing this view of computation is much 
more philosophical than any practical one that can directly be used in day to day software practice9. 
We would like to give a flavor of the questions that are asked for developing the theory of 
computation further. In this module, we will not concern ourselves about the developments that 
are occurring in this rich field, but we will give an idea of how the developments occur by giving a 
sample of questions (some of which have already been answered) that are asked. 

To capture the idea of computation, the theory of Partial Recursive Functions asks: Can we view 
a computational process as being generated by combining a few basic processes ? It therefore tries 
to identify the basic processes, called the initial functions. It then goes on to identify combining 
techniques, called operators that can generate new processes from the basic ones. The choice of the 
initial functions and the operators is quite arbitrary and we have our first set of questions that can 
develop the theory of computation further. For example, 

●     Is the choice of the initial functions unique ? 
●     Similarly, is the choice of the operators unique ? 
●     If different initial functions or operators are chosen will we have a more restricted theory of computation 

or a more general theory of computation ? 

 
4.1 Basic Concepts and Definitions 

We define the initial functions and the operators over the set  of natural numbers10. 

Initial Functions

Definition 1   the  function, 

Definition 2   the k-ary constant-0 function,  for , , i.e. , , , . 

The superscript  in  denotes the number of arguments that the constant function takes and 

the subscript is the value of the function, 0 in this case. Thus given  natural numbers , , , 

, we have 

 

Definition 3   the projection functions,  for  and , i.e. , , , , , 

, , . The superscript is the number of arguments of the particular projection function and 

the subscript is the argument to which the particular projection function projects. Thus given  
natural numbers , , , , we have 
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Function forming Operators

Definition 4   Generalized Function Composition: 

Given: , and  each ,  

Then: a new function  is obtained by the schema:  

  

Sometimes the notation  is used for  giving a more 

compact . This schema is called function composition and 

is denoted as Comp. Thus . When this schema is applied to a set 

of arguments , we have 

 

Definition 5   Primitive Recursion: 

Given:  and ,  

Then: a new function  is obtained by the schema 

1.  Base case:  

2.  Inductive case:  

This schema is called primitive recursion and is denoted by . Thus . 

Definition 6   Minimization: 

Given:   

Then: a new function  is obtained by the schema 

, 

such that  is defined and . This schema is denoted by  and the 

notation  is the least natural number  such that  holds; we vary  for 

a given ``fixed''  and look out for the least of those  for which the (k+1)-ary predicate 

 holds. We also write 
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to mean the least number  such that  is 0. The  is referred to as the least number operator. 

The set of functions obtained by the use of all the operators except the minimization operator, on the 
initial functions is called the set of primitive recursive functions. The set of functions obtained by the use 
of three operators on the initial functions is called the set of partially recursive functions or  

recursive functions. 

4.1.0.1 Remarks on Minimization: 

We are trying to develop a mathematical model of the intuitive idea of computation. The initial 
functions and the function forming operations that we have defined until minimization guarantee a value 
for every input combination11. However, there are computable processes that may not have values 
for some of the inputs, for instance division. We have not been able to capture the aspect of 
computation where results are available partially. The minimization schema is an attempt to capture 
this intuitive behaviour of computation - that sometimes we may have to deal with computational 
processes that may not always have a defined result. 

Note that  has the property that an  exists for every , then  is computable; given , we need 

to simply evaluate , ,  until we find an  such that . Such an  

is said to be regular. 

Now note that given some function we can check that it is primitive recursive. The next natural question 
is: can we check that it is  recursive too ? But being  recursive means that the minimization has 

been done over regular functions. After checking that the function is primitive recursive, we must 
further check if the minimization has been done over regular functions. ``Checking'' essentially means 
that for our ``candidate'' function, we determine if it is a regular function or not, i.e. if an  exists for 
every . Conceptually, we can list out all the regular functions and then compare the given function 

with each member of the list. Suppose all the possible regular functions are listed as , ,  

which means for every  for monotonically increasing  and  there is an  for  

such that . Since  is monotonically increasing, the 's are ordered. 

Consider the set of functions when . These are all the regular functions that take 2 (1 + 

1) arguments. That is the set , ,  etc. A simple way to construct a 

computable function that is not regular is to have  for the corresponding regular 

function . We can, therefore, always construct a function that is computable in 

the intuitive sense, but will not be a member of the list. Notice that this construction is based on 
ensuring that whatever  existed earlier, we simply make it non-existent! We can surely have 

computable functions for which the  may not exist even if  were well defined everywhere. 

Our ability to construct such a computable function is based on the assumption that we can form a list 
of regular functions. This ability to construct the list was required to determine - check - if a given 
function is regular! Accepting this assumption to be true would mean that we are still dealing with only 
well formed functions and an aspect of the notion of computability is not being taken into 
account. However, by not assuming an ability to determine the regular nature of a function, we can 
bring this aspect of computability into our mathematical structure. If we want an exhaustive system 
for representing all the computable functions, then we either have to give up the idea that only well 
defined functions will be represented or we must accept that the class of computable functions that will 

not be completely representable - i.e. they may be partial! Note that the inability to determine if  

is regular makes  a partial function since the least  may not necessarily exist and hence  could 

be undefined even if  is defined! In the interest of having an exhaustive system, we make the 

latter choice that the regular functions would not be listed12. 
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End Remarks 

By the way, a different choice of initial functions as: equal, succ and zero and the operators as: Comp 
and Conditional have the same power as the above formulation. This choice is due to John McCarthy 
and is the basis of the LisP programming language along with the  calculus. The Conditional, which 
is the same as the IF in the  calculus, can do both: primitive recursion and minimalization. 

4.2 Important Theorems 

Theorem 4   Every Primitive Recursive function is total13.

Theorem 5   There exists a computable function that is total but not primitive recursive.

Theorem 6   A number theoretic function is partial recursive if and only if it is Turing computable.

 
4.3 More Issues in Computation Theory 

The remarks on minimization in section ( ) give rise to a number of questions. In particular, they point 
out to the possibility that there may be some processes that are uncomputable - we cannot have 
an algorithm to do the job. For instance, the regular functions cannot be listed14. 

4.3.1 What can and cannot be computed 

It can be argued in many ways that there are some problems which cannot have an algorithm, i.e. 
they cannot be computed. For instance, note that the partial recursive functions model of computation 
uses natural numbers as the basis set over which computation is defined. Theorem  demonstrates 
that this model of computation is exactly equivalent to the Turing model (to be introduced 
later). Alternately, consider the  calculus model where Church numerals have been defined by 
explicitly invoking the counting method over: natural numbers again! Moreover, it is also (hopefully) 

evident that the process  that is used to refer to counting can actually be replaced by any procedure 

that operates over natural numbers, for example the ``doubling'' procedure. We also know by Theorem 
 that this model of computability is equivalent to the Turing model! Hence it is also equivalent to 

the partial recursive functions perspective! Thus it appears that natural numbers and operations over 
them are the basic ``primitives'' of computation. The counting arguments extend to the set of 
rational numbers which are said to be countable, but infinite since they can be placed in a 1-
1 correspondence with the set of natural numbers. However, when irrationals are introduced into 
the system, we are unable to use the counting arguments to come up with a ``new''/``better'' model 
of computation! This means that the current model of computation is unable to deal with processes 
that operate over irrationals, reals and so on. For instance, the limit of a sequence cannot be computed, 
i.e. there is no mechanical procedure (an algorithm) that we can use to compute the limit of a 
given sequence15. 

In general, the observations of the above paragraphs lead us to the fact that: there are processes 
which are not expressible as algorithms - i.e. they cannot be computed! To make things more difficult, 
the equivalences between the different perspectives of computation prompted Church and Turing 
to hypothesize16 that: Any model of computation cannot exceed the Turing model in power. In other 
words, we may not have a better model of computation. As yet this hypothesis has neither 
been mathematically proven, nor have we been able to come up with a better computation model! 

4.3.2 The Halting Problem 

The classic demonstration of the fact that there are some processes which cannot have an 
algorithm comes in the form of the Halting problem. The problem is: Can we conceive an algorithm 
that can tell us whether or not a given algorithm will terminate ? The answer is: NO. The argument 
that there cannot exist such an algorithm goes as: If there indeed were such an algorithm, say  
(halt), then we could construct a process, say (unhalt), that would use this algorithm as follows: If 
an algorithm  is certified to terminate by , then  loop infinitely, else  would itself halt. Now if 
we use  on  itself, the situation becomes:  halts if  does not and  does not halt if  
does. Finally, now if  is asked to tell us if  halts we land up in the following scenario:  would 

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (14 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot1221
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot466
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot474
http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot476


Theory of Computation Lecture Notes

halt only if  would not halt (since  makes a ``crooked'' use of ) and  would not halt if  
halts. This contradiction can only be resolved if  does not exist - i.e. there can not exist an 
algorithm that can certify if a given algorithm halts or not. 

The Halting problem demonstrates that we can imagine processes, but that does not mean that we 
can have an algorithm for them. The theory of partial recursive functions isolates this peculiar 
characteristic in the minimization operator Mn. Notice that the operator is defined using an 

existential process - i.e. we are required to find the least  amongst all possible  for 

a given . This  may or may not exist! The initial functions and other operators, Comp and Pr do 

not have such a peculiar characteristic! We refer to those problems for which an algorithm can 
be conceived as being decidable. Notice that the primitive recursive functions - the initial functions with 
the Comp and Pr operators - are decidable. In contrast to other models, the theory of partial 
recursive functions isolates the undecidability issue explicitly in the Mn operator. In situations when 
we need to be concerned of the solvability of the problem, it might help to examine the consequences 
of the Mn operator. Other models, though equivalent, may not prove to be so focussed. This illustrates 
that we can use the different models in appropriate situations to most simply solve the problem at hand. 

4.4 Worked Examples 

Q. Show that the addition function is primitive recursive. 

A. We express the addition function over  recursively as: 

1.   

2.   

Observing that:  we can write  as . We 

also express  as . Therefore, 

  

Hence we can write the recursive definition of addition as: 

1.   

2.   

But this is the primitive recursion schema. Hence 

addition : Pr[ , Comp[succ, ]] 

4.5 Exercises 

1.  Given the recursive definition of multiplication as: 
1.  mult(n, 0) = 0, 
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2.  mult(n, m+1) = mult(n, m) + n, 
use the initial functions to show that multiplication is primitive recursive. 

2.  Show the the exponentiation function (over natural numbers) is primitive recursive. 

 
5 Markov Algorithms 

We now examine the third of our chosen approaches towards developing the idea of a computation 
- Markov Algorithms. The essence of this approach, first presented by A. Markov, is that a computation 
can be looked upon as a specification of the symbol replacements that must be done to obtain the 
desired result. This is based on the appreciation that a computation process, in it's raw essence 
replaces one symbol by another, and the specification is made in terms of rules - quite naturally called 
as production rules - that produce symbols17. We need to first introduce a number of concepts before 
we can show that Markov Algorithms can (and do) represent the computations of number 
theoretic functions. However, along the way we wish to show that the Markov Algorithm view 
of computation yields another interesting perspective: computation as string processing. We will 
just mention that a language called SNOBOL evolved from this perspective, although it is no longer 
much in use. However, languages like Perl - which are very much in use in practice, are excellent 
vehicles to study this approach and I believe that our abilities with Perl can be enhanced by the study 
of this approach. 

5.1 The Basic Machinery 

Let  be an alphabet (i.e. a set of (some) characters). By a Markov Algorithm 

Scheme (MAS) or schema we mean a finite sequence of productions, i.e. rewrite rules. Consider a 
two member sequence of productions: 

1.   
2.   

A word over  is any sequence, including the empty sequence , of alphabets from . The set of 
all words over  is called a language and typically denoted by  or . Consider an input word,  
= ``baba''. Applying a production rule means substituting it's right hand side for the leftmost occurrence 
of it's left hand side in the input word. Thus, we apply rule  to the input word  to get  as:  

  

We keep on applying rule  to  to obtain , ,  until it no longer applies. Then we repeat 

the process using the next rule. Hence,  

  

The production rule  can no longer be applied to . So we start applying the next rule starting from 
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the leftmost character of .  

  

The production rule  is not applicable to . We are required to attempt applying it, determine 

it's inapplicability and continue to the next rule. Rule  is applicable to . Hence:  

  

Neither rule  nor  can be applied to . The substitution process stops at this point. The above 

MAS has transformed the input ``baba'' to ``cc''. We write this as: ``baba''  ``cc''18. The general 
effect of the above MAS is to replace every occurrence of `a' in the input by `c' and to eliminate 
every occurrence of `b' in the input. The table below illustrates it's working for a few more input strings.  

  

The substitution process terminates if the attempt to apply the last production rule is unsuccessful. 
The string that remains is the output of the MAS. Note that the MAS captures a certain substitution 
process - that of replacing every `a' by `c' and eliminating `b' (i.e. replacing every `b' by ). The 
process that the MAS captures is called as the Markov Algorithm. MASs are usually denoted by  

and the corresponding Markov algorithms are denoted by . There is another way an MAS 

can terminate for an input: we may have a rule whose application itself terminates the 
``substitution process''! Such a rule is expressed by having it's right hand side start with a ``.'' (dot) and 
is called as a terminal production. Note that for a given input, it is possible that a terminal production 
rule may not be applicable at all! We repeat: For a terminal production, the substitution process 
ceases immediately upon successful application even if the production could yet be applied to the 
resulting word. 

In summary, a MAS is applied to an input string as: Start applying from the topmost rule to the string. 
Start from the leftmost substring in the string to find a match with the left hand side of the 
current production rule. If a match is found, then replace that substring with the right hand side of 
the production rule to obtain a new string which is given as the next input to the MAS (i.e. we start 
the process of applying the MAS again). If no substring matches the left hand side of the rule, continue 
to the next rule. If we encounter as terminal production, or if no left hand side matches are successful, 
then we terminate and the resulting string is the output of the MAS. Worked example  illustrates the 
use of a terminal production. 
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5.1.0.1 Using Marker Symbols in MAS: 

Sometimes it is useful to have special symbols like #, $, %,  such as markers in addition to the 
alphabet . However, the words that go as input and emerge at the output of an MAS always come 
from  and the markers only are used to express the substitutions that need to be performed. The set 
of markers that a particular MAS uses adds to the set  and forms the work alphabet that is denoted 

by . Consider ,  and a MAS as  

  

The MA corresponding to the above MAS appends ``ab'' to any string over . Note that the output 
string of the above MAS is necessarily a word from . 

We now define a MAS formally. 

Definition 7   Markov Algorithm Schema: A Markov Algorithm Schema S is any triple  

where  is a non empty input alphabet,  is a finite work alphabet with  and  is a 

finite ordered sequence of production rules either of the form  or of the form  where 

both  and  are possibly non empty words over .

5.2 Markov Algorithms as Language Acceptors and Recognisers 

This section mainly preparatory one for the ``machine'' view of computation that will be later useful 
when discussing Turing machines. Since by computation we mean a procedure that is so 
clearly mechanical that a machine can do it, we frequently use the word ``machine'' in place of 
an ``algorithm''. 

Definition 8   A machine19 accepts a language  if 

1.  given an arbitrary word , the machine responds ``affirmatively'', and 

2.  if , the machine does not respond affirmatively. 

What will constitute an affirmative response must be separately stated in advance. A non 

affirmative response for  would mean that either that the machine is unable to respond, or 

it responds negatively. A machine that responds negatively for  is said to be a recogniser. 

We conventionally denote a machine state that accepts a word by the symbol 1. The symbol 0 is used 
to denote the rejection state (for a language recogniser). 

Definition 9   Let  be a MAS with input alphabet  and a work alphabet  with 
20. Then  accepts a word  if . If MAS accepts , then  - 

the corresponding Markov Algorithm - also accepts .

Definition 10   A MAS  (as well as ) accept a language L if  accepts all and only the words in 

L. Such an L is said to be Markov acceptable language.
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Definition 11   Let  be a MAS with input alphabet  and work alphabet  such that 

. Then  recognises  over  if 

1.  , ,     (accepting 1) 

2.  , ,     (rejecting 0) 

If a MAS  recognises L, then  is also said to be recognise L. L is said to be Markov 

recognizable. Worked example  shows an MAS that accepts a language 

. Worked example  shows an MAS that recognises a 

language . 

 
5.3 Number Theoretic Functions and Markov Algorithms 

The MAS point of view of computation views computations as symbol transformations guided 
by production rules. To be applicable to a given domain the semantic entities in that domain must 
be symbolically represented. In other words, a symbolic representation scheme must be conceived 
to represent objects of the domain. To express number theoretic functions, we need to fix a scheme 
to represent a natural number using some symbols. 

Let a natural number  be represented by a string of  s. Thus . A string  

(  is the set of non empty strings over ) will be termed as a numeral. A pair of natural numbers, 

say , will be represented by the corresponding numerals separated by . 

Thus . 

Worked example  shows an MAS defines the computation of the  function. 

Definition 12   A MAS S computes a k-ary partial number theoretic function  provided that 

1.  if  is applied to input word , where  is defined for  (i.e.  

is defined), then  yields ; and 

2.  if  is applied to input word , where  is not defined for , then 

1.  either  does not halt, 
2.  or if S does halt, then it's output is not of the form . 

Exercises  and  show a few MASs that compute partial number theoretic functions. If an MAS 
exists that computes a number theoretic function, then the function is said to be Markov computable. 

5.4 A Few Important Theorems 

We state without proof, the main theorem. 

Theorem 7   Let f be a number theoretic function. Then f is Markov computable if and only if it is 
partial recursive.
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5.5 Worked Examples 

1.  Consider the alphabet  and the MAS given by: 

1.   
2.   
3.       (Note the ``.'') 

Given the input word  = ``baba'', we have:  

  

2.  Let , where  and  and  is: 

1.   

2.   

3.   

The above MAS accepts . Consider an input word  = ``abab''.  

  

3.  Let , where  and  and  is: 

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (20 of 37) [12/23/2006 1:17:43 PM]



Theory of Computation Lecture Notes

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

The above MAS recognises . Consider an input word  = ``aba''.  

  

4.  The  function: This is defined by the MAS  and  of an  be (i) . 

5.6 Exercises 

1.  Apply the MAS in worked example  to the input words: ``aaab'', ``baaa'' and ``abcd''. 
2.  Check that worked example  cannot recognise a word that is not in . 
3.  Check that worked example  can accept a word in  as well as reject a word that is not in . 

4.  Consider the MAS given by , and . What unary partial number 

theoretic function does this MAS compute ? 

5.  Let . What partial number theoretic functions do the following MASs compute ? 

1.   where  is: 

1.   

2.   

3.   

4.   

2.   where  is: 
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1.   

2.   

3.   

4.   

5.   

 
6 Turing Machines 

This model is the most popular model of computation and is what is normally presented in 
most undergraduate and graduate texts on Computation theory. It was conceived by Alan M. Turing in 
the thirties with a view to mathematically define the notion of an algorithm. Turing was working with 
Church during that time. During this time Gödel had presented his famous Incompleteness theorem 
and was formulating the partial recursive functions approach to computation. Interestingly, neither 
Church nor Gödel were motivated to consider computation explicitly. Their interest was more in 
the foundational problems of Mathematics, as alluded to earlier. Alan Turing also was motivated by 
the foundational issues. However, his approach makes an explicit use of the idea of 
mechanical computation. He viewed those foundational problems in Mathematics in terms of 
purely mechanical computation that could be carried out by a machine. He concretely 
imagined ``mechanical computation'' being carried out by humans, called ``computers'', who would 
perform the steps of the algorithm exactly as specified without using any intelligence. His model 
of computation therefore gives a rather ``materially'' imaginable view of computation. The Turing 
model, though a rigourously mathematical model, therefore has a certain ``technological'' appeal 
that makes it21 attractive as the initial candidate for presenting the theory of Computation22. We will 
spend some time in it's study as most development in theoretical Computer Science has occurred with 
this perspective. On the face of it, this model appears to present a view of computation that does not 
seem anything like computing the value of a function. 

Consider the problem of determining if a given word, say , is a palindrome (i.e. reads 
the same backwards or forwards) or not. The algorithm that can tell us if a given word is a palindrome 
or not is quite straightforward. Our purpose here is to emphasize that there appear to be problems that 
are not numeric in nature. Notice that the algorithm divides all possible words that can be given as 
input into two sets: the set of palindromes and the set of words that are not palindromes. It appears 
to ``classify'' the word at input as belonging to either one of these sets, never both. This view 
of computation is called as the language recognition perspective of computation. The  calculus was 
a function computation view, while the Markov Algorithm approach transformed a given input symbol 
to an output symbol - a (symbol) transduction view of computation. Note that by a language we 
simply mean the set of words that are generated from some given alphabet. The language recognition 
view involves determining if an arbitrary word belongs to some language  or not, and  is given 
in advance. An algorithm that successfully does this is said to recognize . To get an idea of how 
the function computation paradigm looks like from this perspective consider the problem of determining if 
a natural number  is a prime number. We first construct a ``string representation'' of a natural number: 
A natural number  will be represented by a string of  s, i.e.  times, and is written as 

 for short. The set of all primes is the language . The 

question: ``is  prime ?'', is equivalent to asking: ``is it true that  ?'' 

 
6.1 On the Path towards Turing Machines 

We develop the notion of a Turing machine in steps. Along the way, we will meet a number of 
useful intermediates. The idea is to develop the concept of (abstract) machines starting from 
``simple'' ones, i.e. with a gradual increase in capabilities. We will draw parallels to the other models 
of computation if possible. 

 
6.1.1 Basic Machines 

A machine at it's simplest, would simply recognize an input from a set  and produce an output from 
the set . The sets  and  are finite. Thus a simple machine would recieve an input and produce 
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an output. For instance, a logic gate like (say) the AND gate would be a simple machine. A simple 
machine just responds (as opposed to reacts) to the current input stimuli. It has no memory to react 
on the basis of past history. In essence, a simple machine looks up a table of finite size; we can 
simply tabulate the output to be produced for a given input. As a result, a simple machine is unable to 
do more complicated tasks. For instance, a simple machine cannot alogrithmically add two  bit 
numbers. To do so would require remembering the necessary carry digits. But a simple machine has 
no memory to remember the past history! All it can do is look up a table of the size  and emit 

out the sum for the given input pair of numbers. The basic machine would be represented by a 
simple function that maps the input to the output. It's signature would be: 

  

 
6.1.2 Finite State Machines (FSMs) 

If we add an internal memory to a basic machine then we can build a machine that performs 
addition algorithmically since now the carry digits can be remembered locally. Let  be the set of 
possible configurations of a finite internal memory. ``Remembering past history'' would mean that 
the output produced would depend on both - the input set  and the internal memory state . Further, 
the given input could change the internal memory state which, in turn, would be used in a future output. 
A machine with an internal state is called a Finite State Machine (FSM). 

We can pictorially depict the operation of an FSM using a transition graph (also called as a 
transition diagram or a state diagram). Consider the problem of designing a machine that 
performs addition of binary numbers - the binary adder. 

Figure:Transition Graph for a Binary Adder Machine

Fig.( ) shows the picture. The labelled circles represent (internal) states and the directed arcs labelled 

in the form  represent that the input  causes an output  and shifts the state 

 to state 23. Once the starting state  and the input  are given, the 

machine behaviour is defined. While a picture is worth a thousand words, transition graphs become 
quite unwieldy when the number of states increases. We, therefore, turn to a more formal description 
of finite state machines. 

As pointed out above, a FSM is described by two functions whose signatures are: 

  

Eqn.( ) is called as the machine function and Eqn.( ) is the state function. A binary adder 
machine would be desgined as follows: 

The sets ,  and  are: 
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The machine function is:  

Table:Machine function for the 
Binary Adder machine. The entries 
in the table are the values from the 
output for various combinations of 

.

 

  

 
The state function is:  

Table:State function for the Binary 
Adder machine. The entries in the table 
are the values from the set for various 

combinations of .

 

  

 
Note that the finiteness of the sets ,  and  will limit our abilities, and we will overcome this 
aspect when we consider Turing machines. Also, since the machines are designed using finite sets, all 
the behaviour is completely deterministic - i.e. the machine behaviour can still be tabulated for 
every possible configuration. However, the existence of a memory has permitted us to react rather 
than just respond. 

As another illustration, consider designing a machine that can check if the natural number at it's input 
is divisible by three. The sets, the machine function and the state functions are: 
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The machine function is given in Table ( ) and the state function is given in Table ( ).  

Table:Machine function for the Divisibility-by-Three-
Tester machine. The entries in the table are the 

values from the set for various combinations of 
.

 

  

 
 

Table:State function for the Divisibility-by-Three-
Tester machine. The entries in the table are the 

values from the output for various combinations of 
.

 

  

 
The Divisibility-by-Three-Tester machine will be in state  if the number at it's input is divisible by 

three, not otherwise. The machine recognizes a number that is divisible by three as whenever 

the machine is finally in state  for a given input, we can surely say that the input is divisible. We 

also say that the machine decides if it's input is divisible by three. Notice that the output is 1 if the 
number is divisible, 0 otherwise. We need not actually examine the machine state! The machine is said 
to accept numbers that are divisible by three, and reject others. Finally, we observe that a number at 
the input is a sequence of symbols from the set . We have been calling the set  as the alphabet set 

 and the numbers that are generated as finite sequences of alphabets as words. With  being the 
set of all words generated from , in the present case  is just the set of natural numbers . 

FSMs cannot be used to recognize palindromes of any size. That is obvious because FSMs are finite 
and impose an upper limit on the length of the word that can be given at the input, while the algorithm 
to recognize a palindrome has to deal with a countably infinitely long sequence of symbols. In contrast, it 
is possible to construct a MAS that recognizes palindromes. That is because the MAS is not restricted 
to an upper limit of the word length. Arbitrarily long sequences of symbols can be remembered using 
an external countably infinite memory. Adding such a memory to an FSM gives us the Turing machine. 
We will take up Turing machines in a short while. 

 
6.1.3 Regular Sets and Regular Expressions 

As we have seen in the previous section, FSMs can recognize some kinds of sets, but cannot 
recognize others. We face the question: What kinds of sets are recognised by FSMs ? 

A special class of sets of words over , called regular sets, is recognized by FSMs24and is 
defined recursively as follows: 

Definition 13   

1.  Every finite set of words over  (including , the empty set) is a regular set. 
2.  If  and  are regular sets over , then  and  - the concatenation - are also regular. 

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (25 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot803


Theory of Computation Lecture Notes

The  of two subsets  and  of  is defined by: 

UV = {x  x = uv,  is in U and  is in V} 

3.  If  is a regular set over , then so is it's closure . 

The  operation defines on a set , a derived set having the empty word and all words formed 
by concatenating a finite number of words in S. i.e. 

, where  (  is the empty word symbol) and  
for . 

4.  No set is regular unless obtained by a finite number of applications of the above three definitions. 

The above definition of regular sets captures the notion of regular behaviour of objects. This can also 
be cast as a (behavioural) language that is used to express regular sets and the FSM. We take a set 
of alphabets, , and define regular behaviour recursively as follows: 

Definition 14   

1.  The alphabets,  and 25 are regular expressions over , 

2.  Every alphabet  is a regular expression over , 

3.  If  and  are regular expressions over , then so are , , and 

, where  indicates alternation (parallel path, either  or , corresponds to the set 

union operation),  denotes concatenation (series,  followed by ), and  denotes iteration 

(closure, zero or more of ). 

4.  The regular expressions are only those that are obtained by using the above three rules. 

The FSMs that correspond to the basic operations of alternation, concatenation and closure are show 
in Fig.( ). Notice that these can serve as the ``building blocks'' to convert a regular expression to 
it's transition graph and vice versa. In other words, given a regular expression, we can create it's 
FSM transition graph and given a FSM transition graph, we can write the regular expression. 
This conversion forms the basis of programs that manipulate regular expressions, for instance the 
Unix shells sh/csh/bash, grep, sed, scanners in compilers etc. 

Figure:The basic operations and their FSMs.

The correspondence between regular expressions and regular sets is as follows: Every regular 

expression  over  describes a set  of words over  (i.e. ) as follows: 

1.  If , then , a set consisting of the empty word, 

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/toc.html (26 of 37) [12/23/2006 1:17:43 PM]

http://www.cfdvs.iitb.ac.in/~amv/Computer.Science/courses/theory.of.computation/tocfootnode.html#foot811


Theory of Computation Lecture Notes

2.  If , then , the empty set, 

3.  If , then , 

4.  If  and  are regular expressions over  which describe the set of words  and , then 

1.  if , then , 

2.  if , then , 

3.  if , then } 

Remark 1   It is possible to define an enlarged class of regular expressions that have intersection 
and complementation over and above the operations of union, concatenation and closure.

 
6.1.4 Properties of FSMs 

6.1.4.1 Periodicity 

: FSMs lack of capacity to remember arbitrarily large amounts of information as there are only a 
finite number of states. This finiteness defines a limit to the length of the sequence that can 
be remembered. Also, an FSM will eventually repeat a state, or produce a sequence of states. 
This periodicity results in a useful characterisation of FSMs - the Pumping Lemma. The lemma 
simply states that given any sufficiently long string accepted by an FSM, we can find a substring near 
the beginning that may be repeated (pumped) as many times as we like and the resulting string will still 
be accepted by the FSM. 

6.1.4.2 Equivalence Class of Sequences 

: Two input sequences  and  are equivalent if the FSM is in the same state after executing 

them. Because the number of states are finite in an FSM, every input sequence will end up in some 
state. We can classify input sequences in terms of the states they reach. All input sequences that 
reach the same state are grouped as one. An FSM thus induces an equivalence class partitioning over 
the set of input sequences. 

6.1.4.3 Impossibility of Multiplication 

: It is impossible to carry out multiplication of arbitrarily long sequences of numbers using an FSM. This 
is because a FSM is finite and hence a limit is imposed on the length of the product. In contrast, addition 
- binary addition - is possible! Note that multiplication requires remembering the intermediate 
``products'' for later addition. 

6.1.4.4 Impossibility of Palindrome Recognition 

: A palindrome is a string that is symmetric - it reads the same both ways. To recognise an arbitrarily 
long palindrome, a machine would need an infinite memory to remember all the alphabets read for 
later comparison of symmetry. The finiteness of FSM does not permit such a memory and hence a 
FSM cannot recognise a palindrome 

6.1.4.5 Impossibility of Checking Well-formed Parentheses 

: The periodicity of an FSM implies that input sequences whose periodicity is greater or sequences that 
are not periodic cannot be accepted by a FSM since the FSM just does not have those many 
states. Hence well formed parentheses - balanced brackets - cannot be checked. 

 
6.2 The Pushdown Stack Memory Machine 

FSMs are limited due to their finite memories. A way of overcoming the limitations of FSMs is to 
introduce infinite memories. However, mere ``inifiniteness'' of the memory is not sufficient; a 
certain ``freedom'' to use the memory is also required. To illustrate this, we introduce a machine called 
as the Push Down Stack Memory Machine (PDM) that overcomes the limitations of FSMs by using 
an infinite memory. However, the use of memory is restricted in that the memory must be used as a 
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stack. A stack is a structure where the removal of objects from the memory is performed in the 
reverse order of their arrival into the memory. This behaviour is described as Last In First Out 
and abbreviated as LIFO. These machines are routinely applied to recognise context free grammars26 
of programming languages and are not as powerful as TMs. 

Our purpose in mentioning them here is two fold: on the one hand, we wish to indicate that 
some interesting and useful intermediates after FSMs but before TMs are possible. And secondly, 
we would invite you to explore and find out the properties of PDMs. For instance, FSMs were known to 
be unable to solve certain problems (balanced parentheses e.g.). Could a PDM solve it ? What 
problems would not be solved even by a PDM ? Naturally, the next questions could be like: what 
other kinds of ``restrictions'' on memory use are possible and what are the properties of the machines 
they give rise to ? 

6.3 The Turing Machine 

Figure:The Basic Turing Machine. Textually, the above figure would be 
represented as: BHaaaB, where His the head.

The Turing machine is pictured as being composed of a head that reads and writes symbols from a set 
of alphabet, , onto a cell of an external tape (Fig.( )). The tape is an infinite sequence of cells; 
each cell can contain one and only one symbol from . The Turing machine operates as follows: the 
head reads the symbol from the cell currently under it and responds to that symbol by either 
writing another symbol at the cell or not writing anything at all. It may then move one cell either to the 
left or to the right27. We are required to specify, in advance, the response of - i.e. what to write and 
where, if at all, to move - the head to every symbol that it reads. The external tape is initially blank. 
The symbols are first laid out on the tape starting from the left. If the head encounters a blank cell, 
the machine halts. 

To actually work with the machine scheme in the previous paragraph, we need to evolve notation 
to describe the details like the symbols - alphabet - that can appear on the tape, the starting position of 
the head, a detailed tabulation of the responses etc. By state of the machine, we wish to describe 
the instantaneous configuration of the machine which is made up of the head position on the tape and 
the alphabets on the tape. Note that the starting position is merely one of the states. As a result of 
reading the alphabet on the tape, the machine may write back or move it's head or do both. The 
machine response thus takes the machine into the next state which could be identical to the earlier one 

or a new one. Given a set  of  alphabets,  we can have  

responses as follows:  

Table: responses of a Turing machine for an alphabet with symbols. 
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The operation of a Turing machine  can be described by a quadruple: . This 

is read as: If state  reading symbol  then perform action  and enter state . For 

instance  would mean that if in state  reading symbol , then move head one cell to 

the right and enter state . This quadruple is called as an instruction (of ). Alternately, we can 

view an instruction as a function - denoted by  - that takes in the state and the alphabet being 

scanned and returns the action and the new state. Thus we also write:  for 

the above quadruple.  is not a number theoretic function since it takes state/symbol pair as 

an argument. It's domain is therefore, , where 

 is the set of states, and at least one of those states is a distinguished state - 

the start state - denoted by  or . Since  captures the ``motion'' from one state to another it 

is referred to as the transition function. Note that the initial tape contents and the initial head position 

are specified by . 

Consider the following figures that describe a Turing machine. 

Figure:Transition diagram of a Turing machine .

The ``arcs'' of the state diagram (look like straight lines here) are labelled by the instructions of 
the machine. Each circle represents a state of the machine. The machine goes to the state pointed to 
by the arc when it recieves the instruction labelled by the arc when in state from which the arc 
originates. The starting state is denoted by  and is drawn to the far left, usually. The first arc in Fig.(

) is labelled  and points to state . This is to be interpreted as: the machine must write a 

blank B it is currently scanning with the symbol  and then enter state . The machine state  

has been specified in advance to be a head over some cell of an entirely blank tape. Figs.( -
) pictorially depict the machine in each of the above states. 

Figure:Turing machine in state .  

Figure:Turing machine in state .  

Figure:Turing machine in state .  

Figure:Turing machine in state .  

Figure:Turing machine in state . 
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The working of the machine can now be described. It starts from a state  where the head is 

positioned on some cell of an entirely blank tape. It has been instructed that if in this state it scans a 

blank, then it is to write an  on that cell and enter state . Since it does scan a blank, it writes an 

 and enters state . Now in this state, when it scans and reads an , it moves one cell to the right 

and enters state . Here if it reads (i.e. scans) a blank (it does), then it writes a  and enters state 

. In this state, and the current head position, if it reads a  - which it does - then it moves one cell 

to the left and enters state . There are no further instructions. Hence the machine halts in state . 

In summary, the machine behavior is: When started scanning a cell on a completely blank tape, it 
writes the word ``ab'' and halts scanning the symbol ``a''. We say that the tape configuration is to 
be completely blank initially. In general, the contents of the tape together with the location of the head for 
a given Turing machine is referred to as the tape configuration. The tape configuration and the 
current machine state is referred to as the machine configuration. Note that if the tape configuration 

at  is not completely blank, and the machine starts scanning a non-black symbol, then it must 

halt immediately in state  since there are no instructions! Also, as suggested in the caption to Fig.(

), we will use a textual notation to describe the machine configuration. Finally, the state  is 

often abbreviated to just  in state diagrams. 

 
6.3.1 Formal Definitions 

6.3.1.1 Basic Definition: 
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Definition 15   A deterministic Turing machine M is anything of the form 

 

where  is a non empty finite set,  and  are non empty finite alphabets with , , 

and  is a (partial) function with domain and codomain given by 

 

Q is the set of states of M,  is the initial state of M,  is the input alphabet of M and  is its 

tape alphabet (or auxilliary alphabet) and  is the transition function.

6.3.1.2 Turing machines as language recognizers: 

We define the notion of language acceptance and rejection to introduce the language 
recognition paradigm for Turing machines. 

Definition 16   A Deterministic Turing machine M accepts a nonempty word w if, when started 
scanning the leftmost symbol of w on an input tape that contains w and is otherwise blank, M 
ultimately halts scanning a 1 on an otherwise blank tape. It accepts an empty word  is, when 
started scanning a blank on a completely blank tape, M ultimately halts scanning a 1 on an otherwise 
blank tape.

Definition 17   A Deterministic Turing machine M accepts a language L, if M accepts all, and only 
the words w in L. A language L is said to be Turing acceptable if there exists some deterministic 
Turing machine M that accepts L28.

Definition 18   Let L be a language over alphabet 29. A Deterministic Turing machine M 
recognizes language L if: 

1.  If w is an arbitrary nonempty word over  and M is started scanning the leftmost symbol of w on a 
tape that contains w and is otherwise blank, then M ultimately halts scanning a 1 on an otherwise 

blank tape is , but halts scanning a 0 on an otherwise blank tape if . 

2.  If M is started scanning a cell on a comlpetely blank tape, then M ultimately halts scanning a 1 on 

an otherwise blank tape if , but halts scanning a 0 on an otherwise blank tape if . 

A language L is termed Turing recognizable if there exists a Turing machine M that recognizes L.

Worked examples ,  and  illustrate the construction of Turing machines for this paradigm. 

6.3.1.3 Turing machines as function computers: 

We define computation of partial functions to introduce the function computation paradigm for 
Turing machines. As discussed in section ( ), we need to decide a scheme to represent natural 

numbers of a tape. We represent a natural number  by a string of  s. When we need 

to design a machine for functions that take more than one argument - e.g. addition - we will separate 
the arguments by a single blank. 

Definition 19   A Deterministic Turing machine M computes a k-ary partial number theoretic function f 

with  provided that: 

1.  If M started scanning the leftmost 1 of an unbriken string of  1s followed by a single blank 

followed by an unbroken string of  1s followed by a single blank  followed by an 

unbroken string of  1s followed by a single blank on an otherwise blank tape, where  

happens to be defined for arguments , , , , then M halts scanning the leftmost 1 of 
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an unbroken string of  1s on an otherwise blank tape. 

2.  If M started scanning the leftmost 1 of an unbriken string of  1s followed by a single blank 

followed by an unbroken string of  1s followed by a single blank  followed by an 

unbroken string of  1s followed by a single blank on an otherwise blank tape, where  

happens to be not defined for arguments , , , , then M does not halt scanning the leftmost 

1 of an unbroken string of 1s on an otherwise blank tape. 

Definition 20   A partial number theoretic function  is said to the Turing computable if there exists 

a Turing machine M that computes .

Worked example  illustrates the construction of Turing machines that compute functions. Note that: 

Remark 2   Every Turing machine with input alphabet  computes some unary partial 

number theoretic function.

6.3.1.4 Turing machines as transducers: 

Worked example  illustrates the construction of a Turing machine that works according to 
the transduction view of computation. 

 
6.4 A Few Important Theorems 

Theorem 8   The Blank Tape Theorem: There exists a Turing machine which when started on a 
blank tape, can write it's own description. It is a self reproducing machine.

Theorem 9   The Halting problem: There does not exist a Turing machine that can decide if 
the computation process generated by a Turing machine  will halt.

Theorem 10   It is not possible to decide - i.e. have an algorithm - whether a Turing machine will ever 

print a given symbol .

Theorem 11   It is not possible to decide if two Turing machines with the same alphabet are equivalent 
or not. In particular, this means that we cannot decide the equivalence of two arbitrary programs. 
This connection with program equivalence is possible because of the notion of an UTM discussed below.

Since we have already mentioned that the other perspectives of computation are equivalent to the 
Turing view, we do not state any theorem of equivalence at this point. Instead, we present the notion of 
a Universal Turing machine. Observe that the formal definition of a Turing machine is simply a scheme 
of describing machines. The question is: is it possible to have a Turing machine describe other 
Turing machines ? The following theorem - due to Alan Turing - asserts this to be true. 

 
6.4.0.1 The Universal Turing Machine (UTM) 

Theorem 12   There exists a Universal Turing machine.

An UTM would behave exactly as the Turing machine  that has been described to it. In other 
words, we can have a single machine to which we merely provide descriptions of the Turing machines 
we want it to behave like. This is why we can have a computer - a universal machine - to which 
we describe our desired machine as a program. 
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6.5 Chomsky Hierarchy and Markov Algorithms 

The Markov Algorithm view of Computation was in terms of production rules that specify the output 
symbol to replace an input symbol. If we place gradual restrictions on the way production rules are to 
be ``designed'' we have a correspondence between the grammar and the machine that recognises 
the grammar. There are four classes of grammars: 

1.  [Type 0] No restrictions on the production rules. This is the kind of grammar that we have studied 
in Markov Algorithms. TMs are required to recognise sentences generated by these grammars - in 
other words, Markov Algorithms are equivalent to Turing Machines! 

2.  [Type 1] Two restrictions are imposed: (i) production rules are of the form , and 

(ii) the start symbol  does not appear on the right hand side of a production. Because the replacement 

of  by  is dependent on the occurrence of  as prefix and  as suffix, the grammar is said to 

be Context Sensitive Grammars (CSGs). A class of machines called Linearly Bounded Machines 
(LBMs) are required to recognise sentences generated by these grammars. 

3.  [Type 2] The left hand side of each production rule is a non terminal symbol; the production rules are of 
the form . Start symbol is allowed to appear in the RHS of the rule. Such grammars are called 
as Context Free Grammars (CFGs) and PDMs recognise the sentences generated by such grammars. 
The grammars of most programming languages that we use are CFGs and hence their parsers are PDMs. 

4.  [Type 3] The productions of this class of grammars have a non terminal on the LHS and at most one 
non terminal on the RHS. These grammars are identical to regular expression languages and 
FSMs recognise the sentences they generate. They are called Regular Grammars. 

These classes of grammars was first proposed by Noam Chomsky and is called as the 
Chomsky hierarchy. From the description above, we also see that the various machines that we 
have encountered while developing the Turing machine view of Computation correspond to 
certain restrictions on the production rules of Markov Algorithm Schema. It is known that Panini, 
the Sanskrit grammarian has defined the Sanskrit language in terms of formal production rules in the 
same spirit as the above formal language theory[3]. 

 
6.6 Worked Examples 

1.  Same number of s and s: 

This machine behaves as: When starting scanning the leftmost symbol of word  consisting of 
an unbroken string of s and s in any order, the Turing machine halts scanning a single  on 
an otherwise blank tape if and only if the number of s in  is equal to the number of s in . 

For instance, for an initial machine configuration , the machine is required to halt in 
the configuration . 

Solution: To design the machine, we first ``think'' of an algorithm. The basic idea is to eliminate s 
and s in pairs until either: (i) every symbol has been eliminated, i.e. number of s in   number 
of s in , or (ii) some symbol is eliminated for which no companion is found, i.e. number of s in  

 number of s in . To find a pair of  and , we must have the machine scan a symbol, mark it 

and search for the companion symbol. If the companion symbol is found, then it must again be replaced 
by the same marker. This process must be repeated over every pair30. If no more pairs exist and no 
more symbols exist, then our machine has told us that the given input had the same number of s and 

s. Otherwise, it tells us that the number of s was different from the number of s. Notice that the 
tape of the machine will contain only the marker symbol and blanks if and only if the number of s and 

s are same! Let us use the  as the marker. Then for a word , we want the machine 
to halt with . The machine (Fig.( )) would be required to operate as follows: 
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Figure:Turing machine that detects same number of s and s in an input 
word. A state with a pair of concentric circles denotes the endstate; in this 

example is the end state.

2.  Machine that accepts : 

The problem is to design a Turing machine that accepts words from the language 

. These are strings of the form , ,  etc. Strings like  should not 

be accepted. 

Solution: As long as we are reading an , we replace it by a blank and move right. If we have read an 
, replaced it by a blank and moved right, then we must have the machine in the same state. If on 

the other hand, the machine reads anything but an , then we must take the machine state into 
a completely different ``cycle''. This other ``cycle'' may or may not halt the machine; we do not care as it 
is just an acceptor machine. The states 0, 1 and 2 accept the word if it is in , else the machine 
operates in the other states, i.e. 3, 4 and 5. That is what is essentially done in Fig.( ). 
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Figure:Turing machine that accepts 
.

3.  Machine that recognizes : 

The problem is to design a Turing machine that recognizes words from the language 

. These are strings of the form , ,  etc. Strings like  should be rejected. 

Solution: As long as we are reading an , we replace it by a blank and move right. If we have read an 
, replaced it by a blank and moved right, then we must have the machine in the same state. If on 

the other hand, the machine reads anything but an , then we must take the machine state into 
a completely different ``cycle''. For a recognizer machine, however, we must have this other 
``cycle'' terminate in a rejecting state, where the machine ends up writing a 0 on the tape. The states 0, 
1 and 2 accept a valid word in , while the others reject it if otherwise. That is what is essentially done 
in Fig.( ). 

Figure:Turing machine that recognizes 
.

4.  The succ function computer: 

Design a Turing machine that computes the successor of a natural number given on it's tape. A 

natural number  is represented as an unbroken sequence of  s (as in an MAS). 

Solution: Starting from the leftmost  of the number, we keep moving to the right until we scan a blank. 
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At this point, we simply write a  in place of the blank and stop. The state diagram of the machine 
is shown in Fig.( ). By the way, the diagram is incomplete. Please complete it. 

Figure:Turing machine that computes the 
succfunction.

5.  The Copying machine: 

The Copying machine problem is to design a Turing machine that given a string on the tape, writes a 
copy of the string after the string separated by a blank. Thus if the copying machine receives 

 as input, it outputs . 

Solution: See Fig.( ). 

Figure:Turing machine that copies it's input word.

6.7 Exercises 

1.  Design a Turing machine that adds two natural numbers. 
2.  Design a Turing machine that multiplies two natural numbers. (Hint: Use the copying machine and 

the representation scheme. 

 
7 An Overview of Related Topics 

A number of other models of computation exist, for example, Logic with Horn clauses, Register 
machines and the Abacus. Some models have been used to construct programming languages, 
for instance Prolog which is based on Logic with Horn clauses, and others are used to develop 
hardware concepts, for instance the Register machine. Some have even been ancient, like the 
Abacus, although I know of no evidence that the theory of computation was known to the 
ancients. Attempts at understanding the nature of algorithms has a long history too. The 
Russian mathematician, Leibnitz - a contemporary of Newton, attempted to understand it too. Given 
the variety of different models, we have a variety of approaches to solve programming problems. In 
fact, we may consider the act of writing programs as designing specific machines. 
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7.1 Computation Models and Programming Paradigms 

The  calculus approach views computation through an explicit consideration of the behavioural 
aspects of objects that can undergo computation. This view gives us the functional paradigm 
of programming. On the other hand, the Markov algorithm perspective views computation as 
symbol transformations explicitly, a view that gives us the transduction (of input symbols to 
output symbols) paradigm. Finally, the explicit consideration of the actions involved in computation - 
the Turing approach, gives us the procedural view of programming. We know that all these approaches 
are equivalent and there should be no reason to prefer one over the other. Indeed, we ought to select 
the paradigm that best suits the problem at hand. However, practice deviates from such 
``ideal'' considerations and we find the procedural style dominantly used in software development. 

 
7.2 Complexity Theory 

 
8 Concluding Remarks 
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