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CHAPTER 1

Introduction

From an operational point of view, data mining is an integrated process of data
analysis that consists of a series of activities that go from the definition of the
objectives to be analysed, to the analysis of the data up to the interpretation and
evaluation of the results. The various phases of the process are as follows:

Definition of the objectives for analysis. It is not always easy to define sta-
tistically the phenomenon we want to analyse. In fact, while the company
objectives that we are aiming for are usually clear, they can be difficult to for-
malise. A clear statement of the problem and the objectives to be achieved is is
of the utmost importance in setting up the analysis correctly. This is certainly
one of the most difficult parts of the process since it determines the methods
to be employed. Therefore the objectives must be clear and there must be no
room for doubt or uncertainty.

Selection, organisation and pre-treatment of the data. Once the objectives of
the analysis have been identified it is then necessary to collect or select the
data needed for the analysis. First of all, it is necessary to identify the data
sources. Usually data is taken from internal sources that are cheaper and more
reliable. This data also has the advantage of being the result of the experiences
and procedures of the company itself. The ideal data source is the company
data warehouse, a ‘store room’ of historical data that is no longer subject to
changes and from which it is easy to extract topic databases (data marts) of
interest. If there is no data warehouse then the data marts must be created by
overlapping the different sources of company data.

In general, the creation of data marts to be analysed provides the funda-
mental input for the subsequent data analysis. It leads to a representation of
the data, usually in table form, known as a data matrix that is based on the
analytical needs and the previously established aims.

Once a data matrix is available it is often necessary to carry out a process of
preliminary cleaning of the data. In other words, a quality control exercise is
carried out on the data available. This is a formal process used to find or select
variables that cannot be used, that is, variables that exist but are not suitable
for analysis. It is also an important check on the contents of the variables and

Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05886-2



2 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

the possible presence of missing or incorrect data. If any essential information
is missing it will then be necessary to supply further data. (See Agresti (1990).

Exploratory analysis of the data and their transformation. This phase involves
a preliminary exploratory analysis of the data, very similar to on-line analytical
process (OLAP) techniques. It involves an initial evaluation of the importance
of the collected data. This phase might lead to a transformation of the original
variables in order to better understand the phenomenon or which statistical
methods to use. An exploratory analysis can highlight any anomalous data,
data that is different from the rest. This data will not necessarily be elimi-
nated because it might contain information that is important in achieving the
objectives of the analysis. We think that an exploratory analysis of the data is
essential because it allows the analyst to select the most appropriate statistical
methods for the next phase of the analysis. This choice must consider the
quality of the available data. The exploratory analysis might also suggest the
need for new data extraction, if the collected data is considered insufficient
for the aims of the analysis.

Specification of statistical methods. There are various statistical methods that
can be used, and thus many algorithms available, so it is important to have a
classification of the existing methods. The choice of which method to use in the
analysis depends on the problem being studied or on the type of data available.
The data mining process is guided by the application. For this reason, the clas-
sification of the statistical methods depends on the analysis’s aim. Therefore,
we group the methods into two main classes corresponding to distinct/different
phases of the data analysis.
• Descriptive methods. The main objective of this class of methods (also

called symmetrical, unsupervised or indirect) is to describe groups of data
in a succinct way. This can concern both the observations, which are clas-
sified into groups not known beforehand (cluster analysis, Kohonen maps)
as well as the variables that are connected among themselves according to
links unknown beforehand (association methods, log-linear models, graph-
ical models). In descriptive methods there are no hypotheses of causality
among the available variables.

• Predictive methods. In this class of methods (also called asymmetrical,
supervised or direct) the aim is to describe one or more of the variables in
relation to all the others. This is done by looking for rules of classification
or prediction based on the data. These rules help predict or classify the
future result of one or more response or target variables in relation to
what happens to the explanatory or input variables. The main methods
of this type are those developed in the field of machine learning such
as neural networks (multilayer perceptrons) and decision trees, but also
classic statistical models such as linear and logistic regression models.

Analysis of the data based on the chosen methods. Once the statistical methods
have been specified they must be translated into appropriate algorithms for
computing the results we need from the available data. Given the wide range
of specialised and non-specialised software available for data mining, it is not
necessary to develop ad hoc calculation algorithms for the most ‘standard’
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applications. However, it is important that those managing the data mining
process have a good understanding of the different available methods as well
as of the different software solutions, so that they can adapt the process to the
specific needs of the company and can correctly interpret the results of the
analysis.

Evaluation and comparison of the methods used and choice of the final
model for analysis. To produce a final decision it is necessary to choose
the best ‘model’ from the various statistical methods available. The choice
of model is based on the comparison of the results obtained. It may be that
none of the methods used satisfactorily achieves the analysis aims. In this
case it is necessary to specify a more appropriate method for the analysis.
When evaluating the performance of a specific method, as well as diagnostic
measures of a statistical type, other things must be considered such as the
constraints on the business both in terms of time and resources, as well as
the quality and the availability of data. In data mining it is not usually a good
idea to use just one statistical method to analyse data. Each method has the
potential to highlight aspects that may be ignored by other methods.

Interpretation of the chosen model and its use in the decision process. Data
mining is not only data analysis, but also the integration of the results into the
company decision process. Business knowledge, the extraction of rules and
their use in the decision process allow us to move from the analytical phase
to the production of a decision engine. Once the model has been chosen and
tested with a data set, the classification rule can be generalised. For example,
we will be able to distinguish which customers will be more profitable or
to calibrate differentiated commercial policies for different target consumer
groups, thereby increasing the profits of the company.
Having seen the benefits we can get from data mining, it is crucial to implement
the process correctly in order to exploit it to its full potential. The inclusion of
the data mining process in the company organisation must be done gradually,
setting out realistic aims and looking at the results along the way. The final
aim is for data mining to be fully integrated with the other activities that are
used to support company decisions. This process of integration can be divided
into four phases:
• Strategic phase. In this first phase we study the business procedures in

order to identify where data mining could be more beneficial. The results
at the end of this phase are the definition of the business objectives for
a pilot data mining project and the definition of criteria to evaluate the
project itself.

• Training phase. This phase allows us to evaluate the data mining activ-
ity more carefully. A pilot project is set up and the results are assessed
using the objectives and the criteria established in the previous phase. A
fundamental aspect of the implementation of a data mining procedure is
the choice of the pilot project. It must be easy to use but also important
enough to create interest.

• Creation phase. If the positive evaluation of the pilot project results in
implementing a complete data mining system it will then be necessary to
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establish a detailed plan to reorganise the business procedure in order to
include the data mining activity. More specifically, it will be necessary
to reorganise the business database with the possible creation of a data
warehouse; to develop the previous data mining prototype until we have
an initial operational version and to allocate personnel and time to follow
the project.

• Migration phase. At this stage all we need to do is to prepare the organ-
isation appropriately so that the data mining process can be successfully
integrated. This means teaching likely users the potential of the new sys-
tem and increasing their trust in the benefits that the system will bring to
the company. This means constantly evaluating (and communicating) the
results obtained from the data mining process.



PART I

Methodology
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CHAPTER 2

Organisation of the data

Data analysis requires the data to be organised into an ordered database. We will
not discuss how to create a database in this book. The way in which the data
is analysed depends on how the data is organised within the database. In our
information society there is an abundance of data which calls for an efficient
statistical analysis. However, an efficient analysis assumes and requires a valid
organisation of the data.

It is of strategic importance for all medium-sized and large companies to have a
unified information system, called a data warehouse, that integrates, for example,
the accounting data with the data arising from the production process, the contacts
with the suppliers (supply chain management), the sales trends and the contacts
with the customers (customer relationship management). This system provides
precious information for business management. Another example is the increasing
diffusion of electronic trade and commerce and, consequently, the abundance of
data about web sites visited together with payment transactions. In this case it is
essential for the service supplier to understand who the customers are in order
to plan offers. This can be done if the transactions (which correspond to clicks
on the web) are transferred to an ordered database that can later be analysed.

Furthermore, since the information which can be extracted from a data mining
process (data analysis) depends on how the data is organised it is very important
that the data analysts are also involved in setting up the database itself. How-
ever, frequently the analyst finds himself with a database that has already been
prepared. It is then his/her job to understand how it has been set up and how
it can be used to achieve the stated objectives. When faced with poorly set-up
databases it is a good idea to ask for these to be reviewed rather than trying to
laboriously extract information that might ultimately be of little use.

In the remainder of this chapter we will describe how to transform the database
so that it can be analysed. A common structure is the so-called data matrix. We
will then consider how sometimes it is a good idea to transform a data matrix in
terms of binary variables, frequency distributions, or in other ways. Finally, we
will consider examples of more complex data structures.

2.1 Statistical units and statistical variables

From a statistical point of view, a database should be organised according to
two principles: the statistical units, the elements in the reference population that
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8 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

are considered important for the aims of the analysis (for example, the supply
companies, the customers, or the people who visit the site); and the statistical
variables, characteristics measured for each statistical unit (for example, if the
customer is the statistical unit, customer characteristics might include the amounts
spent, methods of payment and socio-demographic profiles).

The statistical units may be the entire reference population (for example, all
the customers of the company) or just a sample. There is a large body of work
on the statistical theory of sampling and sampling strategies, but we will not go
into details here (see Barnett, 1974).

Working with a representative sample rather than the entire population may
have several advantages. On the one hand it can be expensive to collect complete
information on the entire population, while on the other hand the analysis of large
data sets can be time-consuming, in terms of analysing and interpreting the results
(think, for example, about the enormous databases of daily telephone calls which
are available to mobile phone companies).

The statistical variables are the main source of information for drawing conclu-
sions about the observed units which can then be extended to a wider population.
It is important to have a large number of statistical variables; however, such
variables should not duplicate information. For example, the presence of the
customers’ annual income may make the monthly income variable superfluous.

Once the units and the variables have been established, each observation is
related to a statistical unit, and, correspondingly, a distinct value (level) for each
variable is assigned. This process leads to a data matrix.

Two different types of variables arise in a data matrix: qualitative and quan-
titative. Qualitative variables are typically expressed verbally, leading to distinct
categories. Some examples of qualitative variables include sex, postal codes, and
brand preference.

Qualitative variables can be sub-classified into nominal, if their distinct cate-
gories appear without any particular order, or ordinal, if the different categories
are ordered. Measurement at a nominal level allows us to establish a relation of
equality or inequality between the different levels (=, �=). Examples of nominal
measurements are the colour of a person’s eyes and the legal status of a com-
pany. The use of ordinal measurements allows us to establish an ordered relation
between the different categories. More precisely, we can affirm which category
is bigger or better (=, >, <) but we cannot say by how much. Examples of
ordinal measurements are the computing skills of a person and the credit rate of
a company.

Quantitative variables, on the other hand, are numerical – for example age
or income. For these it is also possible to establish connections and numerical
relations among their levels. They can be classified into discrete quantitative
variables, when they have a finite number of levels (for example, the number of
telephone calls received in a day), and continuous quantitative variables, if the
levels cannot be counted (for example, the annual revenues of a company).

Note that very often the levels of ordinal variables are ‘labelled’ with numbers.
However, this labelling does not make the variables into quantitative ones.
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Once the data and the variables have been classified into the four main
types (qualitative nominal and ordinal, quantitative discrete and continuous),
the database must be transformed into a structure which is ready for a
statistical analysis, the data matrix. The data matrix is a table that is usually
two-dimensional, where the rows represent the n statistical units considered
and the columns represent the p statistical variables considered. Therefore
the generic element (i, j) of the matrix i = 1, . . . , n and j = 1, . . . , p is a
classification of the statistical unit i according to the level of the j th variable.

The data matrix is where data mining starts. In some cases, as in, for example,
a joint analysis of quantitative variables, it acts as the input of the analysis phase.
In other cases further pre-processing is necessary. This leads to tables derived
from data matrices. For example, in the joint analysis of qualitative variables it
is a good idea to transform the data matrix into a contingency table. This is a
table with as many dimensions as the number of qualitative variables that are
in the data set. We shall discuss this point in more detail in the context of the
representation of the statistical variables in frequency distributions.

2.2 Data matrices and their transformations

The initial step of a good statistical data analysis has to be exploratory. This is
particularly true of applied data mining, which essentially consists of searching
for relationships in the data at hand, not known a priori. Exploratory data analysis
is usually carried out through computationally intensive graphical representations
and statistical summary measures, relevant for the aims of the analysis.

Exploratory data analysis might thus seem, on a number of levels, equivalent
to data mining itself. There are two main differences, however. From a statistical
point of view, exploratory data analysis essentially uses descriptive statistical
techniques, while data mining, as we will see, can use both descriptive and infer-
ential methods, the latter being based on probabilistic methods. Also there is a
considerable difference in the purpose of the two analyses. The prevailing pur-
pose of an exploratory analysis is to describe the structure and the relationships
present in the data, perhaps for subsequent use in a statistical model. The pur-
pose of a data mining analysis is the production of decision rules based on the
structures and models that describe the data. This implies, for example, a con-
siderable difference in the use of alternative techniques. An exploratory analysis
often consists of several different exploratory techniques, each one capturing dif-
ferent potentially noteworthy aspects of the data. In data mining, on the other
hand, the various techniques are evaluated and compared in order to choose one
for later implementation as a decision rule. A further discussion of the differences
between exploratory data analysis and data mining can be found in Coppi (2002).

The next chapter will explain exploratory data analysis. First, we will discuss
univariate exploratory analysis, the examination of available variables one at a
time. Even though the observed data is multidimensional and, therefore, we need
to consider the relationships between the available variables, we can gain a great
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deal of insight by examining each variable on its own. We will then consider
multivariate aspects, starting with bivariate relationships.

Often it seems natural to summarise statistical variables with a frequency dis-
tribution. As it happens for all procedures of this kind, the summary makes the
analysis and presentation of the results easier but it also naturally leads to a loss
of information. In the case of qualitative variables the summary is justified by the
need to be able to carry out quantitative analysis on the data. In other situations,
such as in the case of quantitative variables, the summary is done essentially
with the aim of simplifying the analysis.

We start with the analysis of a single variable (univariate analysis). It is easier
to extract information from a database by starting with univariate analysis and
then going on to a more complicated analysis of multivariate type. The determi-
nation of the univariate distribution frequency starting off from the data matrix
is often the first step of a univariate exploratory analysis. To create a frequency
distribution for a variable it is necessary to establish the number of times each
level appears in the data. This number is called the absolute frequency. The levels
and their frequency together give the frequency distribution.

Multivariate frequency distributions are represented in contingency tables. To
make our explanation clearer we will consider a contingency table with two
dimensions. Given such a data structure it is easy to calculate descriptive mea-
sures of association (odds ratios) or dependency (chi-square).

The transformation of the data matrix into univariate and multivariate fre-
quency distributions is not the only possible transformation. Other transforma-
tions can also be very important in simplifying the statistical analysis and/or the
interpretation of the results. For example, when the p variables of the data matrix
are expressed in different units of measure it is a good idea to standardise the
variables, subtracting the mean of each one and dividing it by the square root
of its variance. The variable thus obtained has mean equal to zero and variance
equal to unity.

The transformation of data is also a way of solving quality problems because
some data may be missing or may have anomalous values (outliers). Two main
approaches are used with missing data: (a) it may be removed; (b) it may be
substituted it by means of an appropriate function of the remaining data. A
further problem occurs with outliers. Their identification is often itself a reason
for data mining. Unlike what happens with missing data, the discovery of an
anomalous value requires a formal statistical analysis, and usually it cannot be
eliminated. For example, in the analysis of fraud detection (related to telephone
calls or credit cards, for example), the aim of the analysis is to identify suspicious
behaviour. For more information about the problems related to data quality, see
Han and Kamber (2001).

2.3 Complex data structures

The application aims of data mining may require a database not expressible in
terms of the data matrix we have used up to now. For example, there are often
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other aspects of data collection to consider, such as time and/or space. In this
kind of application the data is often presented aggregated or divided (for example,
into periods or regions) and this is an important aspect that must be considered
(on this topic see Diggle et al., 1994).

The most important case refers to longitudinal data – for example, the com-
parison in n companies of the p budget variables in q subsequent years. In this
case there will be a three-way matrix that can be described by three dimensions:
n statistical units, p statistical variables and q time periods. Another important
example of data matrices with more than two dimensions concerns the presence
of data related to different geographic areas. In this case, as in the previous one,
there is a three-way matrix with space as the third dimension – for example, the
sales of a company in different regions or the satellite surveys of the environ-
mental characteristics of different regions. In such cases, data mining should use
times series methods (for an introduction see Chatfield, 1996) or spatial statistics
(for an introduction see Cressie, 1991).

However, more complex data structures may arise. Three important examples
are text data, web data, and multimedia data. In the first case the available
database consists of a library of text documents, usually related to each other. In
the second case, the data is contained in log files that describe what each visitor
does at a web site during a session. In the third case, the data can be made up of
texts, images, sounds and other forms of audio-visual information that is typically
downloaded from the internet and that describes an interaction with the web site
more complex than the previous example. Obviously this type of data implies a
more complex analysis. The first challenge in analysing this kind of data is how
to organize it. This has become an important research topic in recent years (see
Han and Kamber, 2001). In Chapter 6 we will show how to analyze web data
contained in a log file.

Another important type of complex data structure arises from the integration
of different databases. In modern applications of data mining it is often neces-
sary to combine data that come from different sources, for example internal and
external data about operational losses, as well as perceived expert opinions (as
in Chapter 12). For further discussion about this problem, also known as data
fusion, see Han and Kamber (2001).

Finally, let us mention that some data are now observable in continuous rather
than discrete time. In this case the observations for each variable on each unit are
a function rather than a point value. Important examples include monitoring the
presence of polluting atmospheric agents over time and surveys on the quotation
of various financial shares. These are examples of continuous time stochastic
processes which are described, for instance, in Hoel et al. (1972).

2.4 Summary

In this chapter we have given an introduction to the organisation and structure of
the databases that are the object of the data mining analysis. The most important
point is that the planning and creation of the database cannot be ignored but it is
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one of the most important data mining phases. We see data mining as a process
consisting of design, collection and data analysis. The main objectives of the data
mining process are to provide companies with useful/new knowledge in the sphere
of business intelligence. The elements that are part of the creation of the database
or databases and the subsequent analysis are closely interconnected. Although
the chapter summarises the important aspects given the statistical rather than
computing nature of the book, we have tried to provide an introductory overview.

We conclude this chapter with some useful references for the topics introduced
in this chapter. The chapter started with a description of the various ways in which
we can structure databases. For more details on these topics, see Han and Kamber
(2001), from a computational point of view; and Berry and Linoff (1997, 2000)
from a business-oriented point of view. We also discussed fundamental classical
topics, such as measurement scales. This leads to an important taxonomy of
the statistical variables that is the basis of the operational distinction of data
mining methods that we adopt here. Then we introduced the concept of data
matrices. The data matrix allows the definition of the objectives of the subsequent
analysis according to the formal language of statistics. For an introduction to
these concepts, see Hand et al. (2001). We also introduced some transformations
on the data matrix, such as the calculation of frequency distributions, variable
transformations and the treatment of anomalous or missing data. For all these
topics, which belong the preliminary phase of data mining, we refer the reader to
Hand et al. (2001), from a statistical point of view, and Han and Kamber (2001),
from a computational point of view. Finally, we briefly described complex data
structures; for more details the reader can also consult Hand et al. (2001) and
Han and Kamber (2001).



CHAPTER 3

Summary statistics

In this chapter we introduce univariate summary statistics used to summarize
the distribution of univariate variables. We then consider multivariate distribu-
tions, starting with summary statistics for bivariate distributions and then moving
on to multivariate exploratory analysis of qualitative data. In particular, we
compare some of the numerous summary measures available in the statistical
literature. Finally, in consideration of the difficulty in representing and display-
ing high-dimensional data and results, we discuss a popular statistical method for
reducing dimensionality, principal components analysis.

3.1 Univariate exploratory analysis

3.1.1 Measures of location

The most common measure of location is the (arithmetic) mean, which can be
computed only for quantitative variables. The mean of a set x1, x2, . . . , xN of N

observations is given by

x = x1 + x2 + · · · + xN

N
=

∑ xi

N
.

We note that, in the calculation of the arithmetic mean, the biggest observations,
can counterbalance and even overpower the smallest ones. Since, all the obser-
vations are used in the computation of the mean, its value can be influenced by
outlying observations In financial data where extreme observations are common,
this happens often and, therefore, alternatives to the mean are probably preferable
as measures of location.

The previous expression for the arithmetic mean can be calculated on the data
matrix. Table 3.1 shows the structure of a data matrix and Table 3.2 an example.
When univariate variables are summarised with the frequency distribution, the
arithmetic mean can also be calculated directly from the frequency distribution.
This computation leads, of course, to the same mean value and saves comput-
ing time. The formula for computing the arithmetic mean from the frequency
distribution is given by

x =
∑

x∗
i pi.
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Table 3.1 Data matrix.
1 j p

1 X 1,1 X 1,j X 1,p
..
.

i X i ,1 X i ,j X i ,p
...

n X n,1 X n,j X n,p

Table 3.2 Example of a data matrix.

Y X1 X2 . . . X5 . . . . . . . . . . . . . . . X20

N 1 1 1 18 . . . 1049 . . . 1
. . .

N 34 1 4 24 . . . 1376 . . . 1
. . .

. . .

N 1000 0 1 30 . . . 6350 . . . 1

This formula is known as the weighted arithmetic mean, where the x∗
i indicate

the distinct levels that the variable can take on and pi is the relative frequency
of each of these levels.

We list below the most important properties of the arithmetic mean:

• The sum of the deviations from the mean is zero:
∑

(xi − x) = 0.
• The arithmetic mean is the constant that minimises the sum of the squares

of the deviations of each observation from the constant itself: mina

∑
(xi −

a)2 = x.
• The arithmetic mean is a linear operator: N−1 ∑

(a + bxi) = a + bx.

A second simple measure of position or location is the modal value or mode.
The mode is a measure of location computable for all kinds of variables, including
qualitative nominal ones. For qualitative or discrete quantitative characters, the
mode is the level associated with the greatest frequency. To estimate the mode
of a continuous variable, we generally discretize the values that the variables
assumes in intervals and compute the mode as the interval with the maximum
density (corresponding to the maximum height of the histogram). To obtain a
unique mode the convention is to use the middle value of the mode’s interval.

Finally, another important measure of position is the median. Given an ordered
sequence of observations, the median is the value such that half of the observa-
tions are greater than and half are smaller than it. The median can be computed
for quantitative variables and ordinal qualitative variables. Given N observations
in non-decreasing order the median is:
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• if N is odd, the observation which occupies position (N+1)/2;
• if N is even, the mean of the observations that occupy positions N /2 and

(N /2)+1.

Note that the median remains unchanged if the smallest and largest obser-
vations are substituted with any other value that is lower (or greater) than the
median. For this reason, unlike the mean, anomalous or extreme values do not
influence the median value.

The comparison between the mean and the median can be usefully employed to
detect the asymmetry of a distribution. Figure 3.1 shows three different frequency
distributions, which are skewed to the right, symmetric, and skewed to the left,
respectively.

As a generalisation of the median, one can consider the values that break
the frequency distribution into parts, of preset frequencies or percentages. Such
values are called quantiles or percentiles. Of particular interest are the quartiles,
which correspond to the values which divide the distribution into four equal
parts. The first, second, and third quartiles, denoted by q1, q2, q3, are such that
the overall relative frequency with which we observe values less than q1 is 0.25,
less than q2 is 0.5 and less than q3 is 0.75. Observe that q2 coincides with the
median.

3.1.2 Measures of variability

In addition to the measures giving information about the position of a distribution,
it is important also to summarise the dispersion or variability of the distribution
of a variable. A simple indicator of variability is the difference between the
maximum value and the minimum value observed for a certain variable, known
as the range. Another measure that can be easily computed is interquartile range
(IQR), given by the difference between the third and first quartiles, q3 − q1.
While the range is highly sensitive to extreme observations, the IQR is a robust
measure of spread for the same reason that the median is a robust measure of
location.

(a) (b) (c)

Figure 3.1 Frequency distributions (histograms) describing symmetric and asymmetric
distributions: (a) mean > median; (b) mean = median; (c) mean < median.
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However, such indexes are not often used. The most commonly used measure
of variability for quantitative data is the variance. Given a set x1, x2, . . . , xN of
N observations of a quantitative variable X, with arithmetic mean x, the variance
is defined by

σ 2(X) = 1

N

∑
(xi − x)2,

which is approximately the average squared deviation from the mean. When
calculated on a sample rather than the whole population it is also denoted by
s2. Note that when all the observations assume the same value the variance is
zero. Unlike the mean, the variance is not a linear operator, since Var(a + bX) =
b2Var(X).

The units of measure of the variance are the the units of measure of X squared.
That is, if X is measured in metres, then the variance is measured in metres
squared. For this reason the square root of the variance, known as the standard
deviation, is preferred. Furthermore, to facilitate comparisons between different
distributions, the coefficient of variation (CV) is often used. The CV equals the
standard deviation divided by the absolute value of the arithmetic mean of the
distribution (obviously defined only when the latter is non-zero). The CV is a
unitless measure of spread.

3.1.3 Measures of heterogeneity

The measures of variability discussed in the previous section cannot be computed
for qualitative variables. It is therefore necessary to develop an index able to
measure the dispersion of the distribution also for this type of data. This is
possible by resorting to the concept of heterogeneity of the observed distribution
of a variable. Tables 3.3 and 3.4 show the structure of a frequency distribution,
in terms of absolute and relative frequencies, respectively.

Consider the general representation of the frequency distribution of a quali-
tative variable with k levels (Table 3.4). In practice it is possible to have two
extreme situations between which the observed distribution will lie. Such situa-
tions are the following:

• Null heterogeneity, when all the observations have X equal to the same level.
That is, if pi = 1 for a certain i, and pi = 0 for the other k − 1 levels.

Table 3.3 Univariate frequency
distribution.

Levels Absolute frequencies

x∗
1 n1

x∗
2 n2
..
.

..

.

x∗
k nk
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Table 3.4 Univariate relative
frequency distribution.

Levels Relative frequencies

x∗
1 p1

x∗
2 p2
.
..

.

..

x∗
k pk

• Maximum heterogeneity, when the observations are uniformly distributed
amongst the k levels, that is pi = 1/k for all i = 1, . . . , k.

A heterogeneity index will have to attain its minimum in the first situation and
its maximum in the second. We now introduce two indexes that satisfy such
conditions.

The Gini index of heterogeneity is defined by

G = 1 −
k∑

i=1

p2
i .

It can be easily verified that the Gini index is equal to 0 in the case of perfect
homogeneity and 1 − 1/k in the case of maximum heterogeneity. To obtain a
‘normalised’ index, which assumes values in the interval [0,1], the Gini index
can be rescaled by its maximum value, giving the following relative index of
heterogeneity:

G′ = G

(k − 1)/k
.

The second index of heterogeneity is the entropy, defined by

E = −
k∑

i=1

pi log pi.

This index equals 0 in the case of perfect homogeneity and log k in the case of
maximum heterogeneity. To obtain a ‘normalised’ index, which assumes values in
the interval [0,1], E can be rescaled by its maximum value, giving the following
relative index of heterogeneity:

E′ = E

log(k)
.

3.1.4 Measures of concentration

A statistical concept which is very much related to heterogeneity is that of con-
centration. In fact, a frequency distribution is said to be maximally concentrated
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when it has null heterogeneity and minimally concentrated when it has a maximal
heterogeneity. It is interesting to examine intermediate situations, where the two
concepts find a different interpretation. In particular, the concept of concentration
applies to variables measuring transferable goods (both quantitative and ordinal
qualitative). The classical example is the distribution of a fixed amount of income
among N individuals, which we shall use as a running example.

Consider N non-negative quantities measuring a transferable characteristic
placed in non-decreasing order: 0 ≤ x1 ≤ . . . ≤ xN . The aim is to understand
the concentration of the characteristic among the N quantities, corresponding to
different observations. Let N x = ∑

xi be the total available amount, where x is
the arithmetic mean. Two extreme situations can arise:

• x1 = x2 = . . . = xN = x, corresponding to minimum concentration (equal
income across the N units for the running example);

• x1 = x2 = . . . = xN−1 = 0, xN = Nx, corresponding to maximum concen-
tration (only one unit has all the income).

In general, it is of interest to evaluate the degree of concentration, which
usually will be between these two extremes. To achieve this aim we will construct
a measure of the concentration. Define

Fi = i

N
, for i = 1, . . . , N,

Qi = x1 + x2 + · · · + xi

N x
=

∑i
j=1 xj

N x
, for i = 1, . . . , N.

For each i, Fi is the cumulative percentage of units considered, up to the ith,
while Qi describes the cumulative percentage of the characteristic that belongs
to the same first i units. It can be shown that:

0 ≤ Fi ≤ 1 ; 0 ≤ Qi ≤ 1,

Qi ≤ Fi,

FN = QN = 1.

Let F0 = Q0 = 0 and consider the N+1 pairs of coordinates (0,0),
(F1, Q1), . . . , (FN−1,QN−1), (1,1). If we plot these points in the plane and
join them with line segments, we obtain a piecewise linear curve called the
concentration curve (Figure 3.2). From the curve one can clearly see the
departure of the observed situation from the case of minimal concentration, and,
similarly, from the case of maximum concentration, described by a curve almost
coinciding with the x-axis (at least until the (N − 1)th point).

A summary index of concentration is the Gini concentration index, based on
the differences Fi − Qi . There are three points to note:

• For minimum concentration, Fi − Qi = 0, i = 1, 2, . . . , N .
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Figure 3.2 Representation of the concentration curve.

• For maximum concentration, Fi − Qi = Fi, i = 1, 2, . . . , N − 1 and FN −
QN = 0.

• In general, 0 < Fi − Qi < Fi, i = 1, 2, . . . , N − 1, with the differences
increasing as maximum concentration is approached.

The concentration index, denoted by R, is defined by the ratio between the
quantity

∑N−1
i=1 (Fi − Qi) and its maximum value, equal to

∑N−1
i=1 Fi . Thus,

R =
∑N−1

i=1 (Fi − Qi)∑N−1
i=1 Fi

and R assumes value 0 for minimal concentration and 1 for maximum concen-
tration.

3.1.5 Measures of asymmetry

In order to obtain an indication of the asymmetry of a distribution it may be
sufficient to compare the mean and median. If these measures are almost the
same, the variable under consideration should have a symmetric distribution. If
the mean exceeds the median the data can be described as skewed to the right,
while if the median exceeds the mean the data can be described as skewed to
the left. Graphs of the data using bar diagrams or histograms are useful for
investigating the shape of the variables distribution.

A further graphical tool that permits investigation of the form of a distribution
is the boxplot. The box plot, as shown in Figure 3.3, shows the median (Me) and

*  *

MeQ1 Q3

T1 T2

outliers

Figure 3.3 A boxplot.
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the first and third quartiles (Q1 and Q3) of the distribution of a variable. It also
shows the lower and upper limits, T1 and T2, defined by

T1 = max(minimum value observed, Q1 − 1.5 IQR),

T2 = min(minimum value observed, Q3 + 1.5 IQR).

Examination of the boxplot allows us to identify the asymmetry of the dis-
tribution of interest. If the distribution were symmetric the median would be
equidistant from Q1 and Q3. Otherwise, the distribution would be skewed. For
example, when the distance between Q3 and the median is greater than the
distance between Q1 and the median, the distribution is skewed to the right.
The boxplot also indicates the presence of anomalous observations or outliers.
Observations smaller than T1 or greater than T2 can indeed be seen as outliers,
at least on an exploratory basis.

We now introduce a summary statistical index than can measures the degree
of symmetry or asymmetry of a distribution. The proposed asymmetry index is
function of a quantity known as the third central moment of the distribution:

μ3 =
∑

(xi − x)3

N
.

The index of asymmetry, known as skewness, is then defined by

γ = μ3

s3
,

where s is the standard deviation. We note that, as it is evident from its definition,
the skewness can be obtained only for quantitative variables. In addition, we note
that the proposed index can assume any real value (that is, it is not normalised).
We observe that if the distribution is symmetric, γ = 0; if it is skewed to the
left, γ < 0; finally, if it is skewed to the right, γ > 0.

3.1.6 Measures of kurtosis

When the variables unders study are continuous, it is possible to approximate,
or better, to interpolate the frequency distribution (histogram) with a density
function. In particular, in the case in which the number of classes of the histogram
is very large and the width of each class is limited, it can be assumed that the
histogram can be approximated with a normal or Gaussian density function,
having a bell shape (see Figure 3.4).

The normal distribution is an important theoretical model frequently used in
inferential statistical analysis. Therefore it may be reasonable to construct a
statistical index that measures the ‘distance’ of the observed distribution from
the theoretical situation corresponding to perfect normality. A simple index that
allows us to check if the examined data follows a normal distribution is the index
of kurtosis, defined by

β = μ4

μ2
2
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Figure 3.4 Normal approximation to the histogram.

where

μ4 =
∑

(xi − x)4

N
and μ2 =

∑
(xi − x)2

N
.

Note that the proposed index can be obtained only for quantitative variables
and can assume any real positive value. In particular cases, if the variable is
perfectly normal, β = 3. Otherwise, if β < 3 the distribution is called hyponor-
mal (thinner with respect to the normal distribution having the same variance,
so there is a lower frequency of values very distant from the mean); and if
β > 3 the distribution is called hypernormal (fatter with respect to the normal
distribution, so there is a greater frequency for values very distant from the
mean).

There are other graphical tools useful for checking whether the data at hand can
be approximated with a normal distribution. The most common is the so-called
quantile–quantile (QQ) plot. This is a graph in which the observed quantiles
from the observed data are compared with the theoretical ones that would be
obtained if the data came exactly from a normal distribution (Figure 3.5). If the
points plotted fall near the 45◦ line passing through the origin, then the observed
data have a distribution ‘similar’ a normal distribution.

To conclude this section on univariate analysis, we note that with most of
the popular statistical software packages it is easy to produce the measures and
graphs described in this section, together with others.
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(a) (b)

(c) (d)

theoretical
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theoretical

observed
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obs.
observed

Figure 3.5 Theoretical examples of QQ plots: (a) hyponormal distribution; (b) hypernormal
distribution; (c) left asymmetric distribution; (d) right asymmetric distribution.

3.2 Bivariate exploratory analysis of quantitative data

The relationship between two variables can be graphically represented by a scat-
terplot like that in Figure 3.6. A real data set usually contains more than two
variables. In such a case, it is still possible to extract interesting information from
the analysis of every possible bivariate scatterplot between all pairs of the vari-
ables. We can create a scatterplot matrix in which every element is a scatterplot
of the two corresponding variables indicated by the row and the column.

In the same way as for univariate exploratory analysis, it is useful to develop
statistical indexes that further summarise the frequency distribution, improving
the interpretation of data, even though we may lose some information about the
distribution. In the bivariate and, more generally, multivariate case, such indexes
allow us not only to summarise the distribution of each data variable, but also
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Figure 3.6 Example of a scatterplot diagram.

to learn about the relationship among variables (corresponding to the columns
of the data matrix). In the rest of this section we focus on quantitative variables
for which summary indexes are more easily computed. Later, we will see how
to develop summary indexes that describe the relationship between qualitative
variables.

Concordance is the tendency to observe high (low) values of a variable together
with high (low) values of another. Discordance, on the other hand, is the tendency
of observing low (high) values of a variable together with high (low) values of
the other. The most common summary measure of concordance is the covariance,
defined as

Cov(X, Y ) = 1

N

N∑
i=1

[xi − μ(X)][yi − μ(Y )],

where μ(X) and μ(Y ) indicate the mean of the variables X and Y , respectively.
The covariance takes positive values if the variables are concordant and negative
values if they are discordant. With reference to the scatterplot representation,
setting the point (μ(X), μ(Y )) as the origin, Cov(X, Y ) tends to be positive
when most of the observations are in the upper right-hand and lower left-hand
quadrants, and negative when most of the observations are in the lower right-hand
and upper left-hand quadrants.

The covariance can be directly calculed from the data matrix. In fact, since
there is a covariance for each pair of variables, this calculation gives rise to a
new data matrix, called the variance–covariance matrix (see Table 3.5). In this
matrix the rows and columns correspond to the available variables. The main
diagonal contains the variances, while the cells off the main diagonal contain
the covariances between each pair of variables. Note that since Cov(Xj , Xi) =
Cov(Xi, Xj ), the resulting matrix will be symmetric.

We remark that the covariance is an absolute index. That is, with the covariance
it is possible to identify the presence of a relationship between two quantities
but little can be said about the degree of such relationship. In other words, in
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Table 3.5 Variance–covariance matrix.

X1 . . . Xj . . . Xh

X1 Var(X1) . . . Cov(X1, Xj ) . . . Cov(X1, Xh)
. . . . . . . . . . . . . . . . . .

Xj Cov(Xj,X1) Var(Xj ) . . . . . .

. . . . . . . . . . . . . . . . . .

Xh Cov(Xh,X1) . . . . . . . . . Var(Xh)

order to use the covariance as an exploratory index it is necessary to normalise
it, so that it becomes a relative index. It can be shown that the maximum value
that Cov(X, Y ) can assume is σxσy , the product of the two standard deviations
of the variables. On the other hand, the minimum value that Cov(X,Y ) can
assume is −σxσy . Furthermore, Cov(X, Y ) takes its maximum value when the
observed data lie on a line with positive slope and its minimum value when all
the observed data lie on a line with negative slope. In light of this, we define the
(linear) correlation coefficient between two variables X and Y as

r(X, Y ) = Cov(X, Y )

σ (X)σ(Y )
.

The correlation coefficient r(X, Y ) has the following properties:

• r(X, Y ) takes the value 1 when all the points corresponding to the paired
observations lie on a line with positive slope, and it takes the value −1 when
all the points lie on a line with negative slope. Due to this property r is
known as the linear correlation coefficient.

• When r(X, Y ) = 0 the two variables are not linearly related, that is, X and
Y are uncorrelated.

• In general, −1 ≤ r(X, Y ) ≤ 1.

As for the covariance, it is possible to calculate all pairwise correlations directly
from the data matrix, thus obtaining a correlation matrix (see Table 3.6).

From an exploratory point of view, it is useful to have a threshold-based
rule that tells us when the correlation between two variables is ‘significantly’
different from zero. It can be shown that, assuming that the observed sample

Table 3.6 Correlation matrix.

X1 . . . Xj . . . Xh

X1 1 . . . Cor(X1, Xj ) . . . Cor(X1, Xh)
. . . . . . . . . . . . . . . . . .

Xj Cor(Xj,X1) 1 . . . . . .

. . . . . . . . . . . . . . . . . .

Xh Cor(Xh,X1) . . . . . . . . . 1
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comes from a bivariate normal distribution, the correlation between two variables
is significantly different from zero when∣∣∣∣∣

r(X, Y )√
1 − r2(X, Y )

√
n − 2

∣∣∣∣∣ > tα/2,

where tα/2 is the 100(1 − α/2)% percentile of a Student’s t distribution with
n − 2 degrees of freedom, n being the number of observations. For example, for
a large sample, and a significance level of α = 0.05 (which sets the probability
of incorrectly rejecting a null correlation), the threshold is t0.025 = 1.96.

3.3 Multivariate exploratory analysis of quantitative data

We now show how the use of matrix notation allows us to summarise multivariate
relationships among the variables in a more compact way. This also facilitates
explanation of multivariate exploratory analysis in general terms, without neces-
sarily going through the bivariate case. In this section we assume that the data
matrix contains exclusively quantitative variables. In the next section we will
deal with qualitative variables.

Let X be a data matrix with n rows and p columns. The main summary
measures can be expressed directly in terms of matrix operations on X. For
example, the arithmetic mean of the variables, described by a p-dimensional
vector X, can be obtained directly from the data matrix as

X = 1

n
1 X,

where 1 indicates a (row) vector of length n with all elements equal to 1. As
previously mentioned, it is often better to standardise the variables in X. To
achieve this aim, we first need to subtract the mean from each variable. The
matrix containing the deviations from each variable’s mean is given by

X̃ = X − 1

n
J X,

where J is a n × n matrix with all the elements equal to 1.
Consider now the variance–covariance matrix, S. This is a p × p square matrix

containing the variance of each variable on the main diagonal. The off-diagonal
elements contain the p(p − 1)/2 covariances between all the pairs of the p

variables. In matrix notation we can write:

S = 1

n
X̃′X̃

where X̃′ represents the transpose of X̃. The (i, j )th element of the matrix is
equal to

Si,j = 1

n

n∑
�=1

(x�i − xi)(x�j − xj ).
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S is symmetric and positive definite, meaning that for any non-zero vector
x, x′Sx > 0.

It may be appropriate, for example in comparing different databases, to sum-
marise the whole variance–covariance matrix with a real number that expresses
the ‘overall variability’ of the system. There are two measures available for this
purpose. The first measure, the trace, denoted by tr, is the sum of the elements
on the main diagonal of S, the variances of the variables:

tr(S) =
p∑

s=1

σ 2
s .

It can be shown that the trace of S is equal to the sum of the eigenvalues of S:

tr(S) =
p∑

s=1

λs.

A second measure of overall variability is defined by the determinant of S, and
it is often called the Wilks generalised variance: W = |S |.

In the previous section we saw that it is easy to transform the variance–
covariance matrix into the correlation matrix, making the relationships more
easily interpretable. The correlation matrix, R, is given by

R = 1

n
Z′Z,

where Z = X̃F is a matrix containing the standardised variables and F is a
p × p matrix that has diagonal elements equal to the reciprocal of the standard
deviations of the variables,

F = [diag(s11, . . . , spp)]−1.

We note that, although the correlation matrix is very informative on the presence
of statistical (linear) relationships between the variables of interest, in reality
it calculates such relationship marginally for every pair of variables, without
taking into account the influence of the other variables on such relationship.

In order to ‘filter’ the correlations from spurious effects induced by other
variables, a useful concept is that of partial correlation. The partial correlation
measures the linear relationship between two variables with the others held fixed.
Let rij |REST be the partial correlation observed between the variables Xi and Xj ,
given all the remaining variables, and let K = R−1, the inverse of the correlation
matrix; then the partial correlation is given by

rij |REST = −kij

[kiikjj ]1/2
,

where kii,kjj , and kij are respectively the (i, i)th, (j, j )th and (i, j )th elements
of the matrix K. The importance of reasoning in terms of partial correlations is
particularly evident in databases characterised by strong correlations between the
variables.
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3.4 Multivariate exploratory analysis of qualitative data

We now discuss the exploratory analysis of multivariate data of qualitative type.
Hitherto we have used the concept of covariance and correlation as the main
measures of statistical relationships among quantitative variables. In the case of
ordinal qualitative variables, it is possible to extend the notion of covariance
and correlation via the concept of ranks. The correlation between the ranks of
two variables is known as the Spearman correlation coefficient. More generally,
transforming the levels of the ordinal qualitative variables into the corresponding
ranks allows most of the analysis applicable to quantitative data to be extended
to the ordinal qualitative case.

However, if the data matrix contains qualitative data at the nominal level the
notion of covariance and correlation cannot be used. In this section we consider
summary measures for the intensity of the relationships between qualitative vari-
ables of any kind. Such measures are known as association indexes. Although
suited for qualitative variables, these indexes can be applied to discrete quanti-
tative variables as well (although this entails a loss of explanatory power).

In the examination of qualitative variables a fundamental part is played by the
frequencies with which the levels of the variables occur. The usual starting point
for the analysis of qualitative variables is the creation or computation of contin-
gency tables (see Table 3.7). We note that qualitative data are often available in
the form of a contingency table and not in the data matrix format. To emphasise
this difference, we now introduce a slightly different notation.

Given a qualitative variable X which assumes the levels X1, . . . , XI , collected
in a population (or sample) of n units, the absolute frequency ni of the level
Xi (i = 1, . . . , I ) is the number of times that the level Xi is observed in the
sample or population. Denote by nij the frequency associated with the pair of
levels (Xi, Yj ), for i = 1, 2, . . . , I and j = 1, 2, . . . , J , of the variables X and
Y . The nij are also called cell frequencies. Then ni+ = ∑J

j=1 nij is the marginal
frequency of the ith row of the table and represents the total number of obser-
vations that assume the ith level of X (i = 1, 2, . . . , I ); and n+j = ∑I

i=1 nij is
the marginal frequency of the j th column of the table and represents the total

Table 3.7 A two-way contingency table.

X\Y y∗
1 y∗

2 . . . y∗
j . . . y∗

k

x∗
1 nxy(x

∗
1 , y∗

1 ) nxy(x
∗
1 , y∗

2 ) . . . nxy(x
∗
1 , y∗

j ) . . . nxy(x
∗
1 , y∗

k ) nx(x
∗
1 )

x∗
2 nxy(x

∗
2 , y∗

1 ) nxy(x
∗
2 , y∗

2 ) . . . nxy(x
∗
2 , y∗

j ) . . . nxy(x
∗
2 , y∗
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number of observations that assume the j th level of Y (j = 1, 2, . . . , J ). Note
that for any contingency table the following relationship (called marginalization)
holds:

I∑
i=1

ni+ =
J∑

j=1

n+j =
I∑

i=1

J∑
j=1

nij = n.

We note that given an n × p data matrix (i.e. a data matrix containing p

distinct variables), it is possible to construct p(p − 1)/2 two-way contingency
tables, correspondending to all possible pairs among the p qualitative variables.
However, it is usually best to generate only the contingency tables for those pairs
of variables that might exhibit an interesting relationship.

3.4.1 Independence and association

In order to develop indexes to describe the relationship between qualitative vari-
ables it is necessary to first introduce the concept of statistical independence. Two
variables X and Y are said to be independent, for a sample of n observations, if

ni1

n+1
= . . . = niJ

n+J

= ni+
n

,∀ i = 1, 2, . . . , I,

or, equivalently,

n1j

n1+
= . . . = nIj

nI+
= n+j

n
,∀ j = 1, 2, . . . , J.

If this occurs it means that, with reference to the first equation, the (bivariate) joint
analysis of the two variables X and Y does not given any additional knowledge
about X than can be gained from the univariate analysis of the variable X; the
same is true for the variable Y in the second equation. When this happens Y

and X are said to be statistically independent. Note that the concept of statistical
independence is symmetric: if X is independent of Y then Y is independent of X.

The previous conditions can be equivalently, and more conveniently, expressed
as function of the marginal frequencies ni+ and n+j . In this case X and Y are
independent if

nij = ni+n+j

n
, ∀i = 1, 2, . . . , I ; ∀j = 1, 2, . . . , J.

In terms of relative frequencies this is equivalent to

pXY (xi, yj ) = pX(xi)pY (yj ), for every i and for every j.

When working with real data the statistical independence condition is almost
never satisfied exactly; in other words, real data often show some degree of
dependence among the variables.

We note that the notion of statistical independence applies to both qualitative
and quantitative variables. On the other hand, measures of dependence are defined
differently depending on whether the variables are quantitative or qualitative. In
the first case it is possible to calculate summary measures (called correlation
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measures) that work both on the levels and on the frequencies. In the second
case the summary measures (called association measures) must depend on the
frequencies, since the levels are not metric.

For the case of quantitative variables an important relationship holds between
statistical independence and the absence of correlation. If two variables X and
Y are statistically independent then also Cov(X, Y ) = 0 and r(X, Y ) = 0. The
converse is not necessarily true: two variables may be such that r(X, Y ) = 0,
even though they are not independent. In other words, the absence of correlation
does not imply statistical independence.

The study of association is more complicated than the study of correlation
because there are a multitude of association measures. Here we examine
three different classes of these: distance measures, dependency measures, and
model-based measures.

3.4.2 Distance measures

As already remarked, independence between two variables, X and Y, holds when

nij = ni+n+j

n
, ∀i = 1, 2, . . . , I ; ∀j = 1, 2, . . . , J.

for all joint frequencies of the contingency table. One way to provide a summary
measure of the association between two variables is based on the calculation of
a ‘global’ measure of disagreement between the frequencies actually observed
(nij ) and those expected under the assumption of independence between the two
variables (ni·n·j

/
n). The original statistic proposed by Karl Pearson is the most

widely used measure for assessing the hypothesis of independence between X

and Y . In the general case, such a measure is defined by

X2 =
I∑

i=1

J∑
j=1

(nij − n∗
ij )

n∗
ij

2

,

where
n∗

ij = ni+n+j

n
, i = 1, 2, . . . , I ; j = 1, 2, . . . , J.

Note that X2 = 0 if the X and Y variables are independent. In fact in such a
case, the factors in the numerator are all zero.

We note that the X2 statistic can be written in the equivalent form

X2 = n

⎡
⎣ I∑

i=1

J∑
j=1

n2
ij

ni+n+j

− 1

⎤
⎦

which emphasizes the dependence of the statistic on the number of observations,
n; this is a potential problem since the value of X2 increases with the sample
size n. To overcome this problem, alternative measures have been proposed that
are function of the previous statistic.
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A first measure is

φ2 = X2

n
=

I∑
i=1

J∑
j=1

n2
ij

ni+n+j

− 1,

usually called the mean contingency. The square root of φ2 is instead called
phi coefficient. Note that, in the case of a 2 × 2 contingency table representing
binary variables, the φ2 coefficient is normalised as it takes values between 0
and 1 and, furthermore, it can be shown that

φ2 = Cov2(X, Y )

Var(X)Var(Y )
.

Therefore, the φ2 coefficient, in the case of 2 × 2 tables, is equivalent to the
squared linear correlation coefficient.

However, in the case of contingency tables larger than 2 × 2, the φ2 index
is not normalised. The Cramer index normalises the X2 measure, so that it can
be used for making comparisons. The Cramer index is obtained by dividing X2

by the maximum value it can assume for a given contingency table; this is a
common approach used in descriptive statistics for normalising measures. Since
such maximum can be shown to be the smaller of I − 1 and J − 1, where I and
J are the number of rows and columns of the contingency table respectively, the
Cramer index is equal to

V 2 = X2

nmin[I − 1, J − 1]
.

It can be shown that 0 ≤ V 2 ≤ 1 for any I × J contingency table and in partic-
ular, V 2 = 0 if and only if X and Y are independent. On the other hand, V 2 = 1
in case of maximum dependency between the two variables. V 2 takes value 1 in
three instances:

(a) There is maximum dependency of Y on X when in every row of the table
there is only one non-zero frequency. This happens when every level of X

corresponds to one and only one level of Y . If this holds, then V 2 = 1 and
I ≥ J .

(b) There is maximum dependency of X on Y when in every column of the
table there is only one non-zero frequency. This means that every level of
Y corresponds to one and only one level of X. This condition occurs when
V 2 = 1 and J ≥ I .

(c) If both of the two previous conditions are simultaneously satisfied, that is,
if I = J , when V 2 = 1 the two variables are maximally dependent.

In our exposition we have referred to the case of two-way contingency tables,
involving two variables, with an arbitrary number of levels. However, the mea-
sures presented in this subsection can be easily applied to multi-way tables,
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extending the number of summands in the definition of X2, to account for all
table cells.

In conclusion, the association indexes based on the X2 Pearson statistic mea-
sure the distance between the relationship of X and Y and the case of inde-
pendence. They represent a generic notion of association, in the sense that
they measure exclusively the distance from the independence situation, with-
out informing on the nature of the relationship between X and Y . On the other
hand, these indexes are rather general, as they can be applied in the same fashion
to all kinds of contingency tables. Furthermore, the X2 statistic has an asymptotic
probabilistic (theoretical) distribution and, therefore, can also be used to assess
an inferential threshold to evaluate inductively whether the examined variables
are significantly dependent.

3.4.3 Dependency measures

The measures of association seen so far are all functions of the X2 statistics
and thus have the disadvantage of being hard to interpret in the majority of
real applications. This important point was underlined by Goodman and Kruskal
(1979), who proposed an alternative approach for measuring the association in a
contingency table. The set-up followed by Goodman and Kruskal is based on the
definition of indexes suited for the specific investigation context in which they are
applied. In other words, such indexes are characterised by an operational meaning
that defines the nature of the dependency between the available variables.

We now examine two such measures. Suppose that, in a two-way contingency
table, Y is the ‘dependent’ variable and X the ‘explanatory’ variable. It is of
interest to evaluate whether, for a generic observation, knowing the category of
X can reduce the uncertainty as to what the corresponding category of Y might
be. The ‘degree of uncertainty’ as to the category of a qualitative variable is
usually expressed via a heterogeneity index.

Let δ(Y ) indicate a heterogeneity measure for the marginal distribution of Y ,
expressed by the vector of marginal relative frequencies, {f+1, f+2, . . . , f+J }.
Similarly, let δ(Y |i) be the same measure calculated on the distribution of
Y conditional on the ith row of the variable X of the contingency table,
{f1|i , f2|i , . . . , fJ |i}.

An association index based on the ‘proportional reduction in the heterogeneity’
(error proportional reduction index, EPR), is then given (see for instance, Agresti,
1990) by

EPR = δ(Y ) − M[δ(Y |X)]

δ(Y )
,

where M[δ(Y |X)] is the mean heterogeneity calculated with respect to the dis-
tribution of X, namely

M[δ(Y |X)] =
∑

i

fi·δ(Y |i),
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with
fi· = ni+

/
n(i = 1, 2, . . . , I ).

The above index measures the proportion of heterogeneity of Y (calculated
through δ) that can be ‘explained’ by the relationship with X.

Depending on the choice of the heterogeneity index δ, different association
measures can be obtained. Usually, the choice is between the Gini index and the
entropy index. In the first case it can be shown that the EPR index gives rise to
the so-called concentration coefficient, τY |X:

τY |X =
∑∑

f 2
ij

/
fi+ − ∑

f 2
+j

1 − ∑
j f 2

+j

.

In the second case, using the entropy index in the ERP expression, we obtain the
so-called uncertainty coefficient, UY |X:

UY |X = −
∑

i

∑
j fij log(fij

/
fi+ · f+j )∑

j f+j log f+j

,

where, in the case of null frequencies, by convention log 0 = 0. It can be shown
that both τY |X and UY |X take values in the [0,1] interval. Note, in particular, that:

τY |X = UY |X if and only if the variables are independent;
τY |X = UY |X = 1 if and only if Y has maximum dependence on X.

The indexes described have a simple operational interpretation regarding spe-
cific aspects of the dependence link between the variables. In particular, both
τY |X and UY |X represent alternative quantifications of the reduction of the Y het-
erogeneity that can be explained through the dependence of Y on X. From this
viewpoint they are, in comparison to the distance measures of associations, rather
specific.

On the other hand, they are less general than the distance measures. Their
application requires the identification of a causal link from one variable
(explanatory) to another (dependent), while the X2-based indexes are symmetric.
Furthermore, the previous indexes cannot easily be extended to contingency
tables with more than two variables, and cannot be used to derive an inferential
threshold.

3.4.4 Model-based measures

The last set of association measures that we present is different from the previous
two sets in the that it does not depend on the marginal distributions of the
variables. For ease of notation, we will assume a probability model in which
cell relative frequencies are replaced by cell probabilities. The cell probabilities
can be interpreted as relative frequencies as the sample size tends to infinity,
therefore they have the same properties as relative frequencies.
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Consider a 2 × 2 contingency table summarising the joint distribution of the
variables X and Y ; the rows report the values of X (X = 0,1) and the columns
the values of Y (Y = 0,1). Let π11, π00, π10 and π01 denote the probability
that an observation is classified in one of the four cells of the table. The odds
ratio is a measure of association that constitutes a fundamental parameter in the
statistical models for the analysis of qualitative data. Let π1|1 and π0|1 denote the
conditional probabilities of having a 1 (a success) and a 0 (a failure) in row 1,
and π1|0 and π0|0 the same probabilities for row 0. The odds of success for row
1 are defined by

odds1 = π1|1
π0|1

= P(Y = 1|X = 1)

P (Y = 0|X = 1)
,

and for row 0 by

odds0 = π1|0
π0|0

= P(Y = 1|X = 0)

P (Y = 0|X = 0)
.

The odds are always non-negative, with a value greater than 1 when a success
(level 1) is more probable than a failure (level 0), that is, when P(Y = 1|X =
1) > P (Y = 0|X = 1). For example, if the odds equal 4 this means that a success
is four times more probable than a failure. In other words, one expects to observe
four successes for every failure (i.e. four successes in five events). Conversely,
if the are odds are 1/4 = 0.25 then a failure is four times more probable than a
success, and one expects to observe one success for every four failures (i.e. one
success in five events).

The ratio between the above two odds values is called the odds ratio:

θ = odds1

odds0
= π1|1

/
π0|1

π1|0
/
π0|0

.

From the definition of the odds, and using the definition of joint probability, it
can easily be shown that:

θ = π11 · π00

π10 · π01
.

This expression shows that the odds ratio is a cross product ratio, the product of
probabilities on the main diagonal divided by the product of the probabilities off
the main diagonal of a contingency table.

In the actual computation of the odds ratio, the probabilities will be replaced
with the observed frequencies, leading to the expression

θij = n11n00

n10n01
.

We now list some properties of the odds ratio, without proof.

1. The odds ratio can be equal to any non-negative number, that is, it can take
values in the interval [0, +∞).

2. When X and Y are independent π1|1 = π1|0, so that odds1 = odds0 and θ = 1.
On the other hand, depending on whether the odds ratio is greater or smaller
than 1 it is possible to evaluate the sign of the association:



34 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

• for θ > 1 there is a positive association, since the odds of success are
greater in row 1 than in row 0;

• for 0 < θ < 1 there is a negative association, since the odds of success
are greater in row 0 that in row 1.

3. When the order of the rows or the order of the columns is reversed, the
new value of θ is the reciprocal of the original value. On the other hand,
the odds ratio does not change value when the orientation of the table is
reversed so that the rows become columns and the columns become rows.
This means that the odds ratio deals with the variables symmetrically and,
therefore, it is not necessary to identify one variable as dependent and the
other as explanatory.

The odds ratio can be used as an exploratory tool aimed at building a proba-
bilistic model, similarly to the linear correlation coefficient.

Concerning the construction of a decision rule that determines whether a certain
observed value of the odds ratio indicates a significant association between the
corresponding variables, it is possible to derive a confidence interval, as was
done for the correlation coefficient. The interval leads to a rule for detecting a
significant association when

| log θij |>zα/2

√√√√∑
ij

1√
nij

,

where zα/2 is the 100(1 − α/2)% percentile of a standard normal distribution.
For instance, when α = 0.05, zα/2 = 1.96. We remark that the confidence interval
used in this case is only approximate, but that the approximation improves with
the sample size.

So far we have defined the odds ratio for 2 × 2 contingency tables. How-
ever, odds ratios can be calculated in a similar fashion for larger contingency
tables. The odds ratio for I × J tables can be defined with reference to each of

the

(
I

2

)
= I (I − 2)

/
2 pairs of rows in combination with each of the

(
J

2

)
=

J (J − 2)
/

2 pairs of columns. There are

(
I

2

)(
J

2

)
odds ratios of this type. As

the number of odds ratios to be calculated can become enormous, it is wise to
choose parsimonious representations.

3.5 Reduction of dimensionality

In the analysis of complex multivariate data sets, it is often necessary to reduce
the dimensionality of the problem, expressed by the number of variables present.
For example, it is impossible to visualise graphs for a dimension greater than
3. A technique that is typically used to achieve this task is the linear operation
known as principal components transformation. It must be emphasised that this
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can be used only for quantitative variables or, possibly, for binary variables.
However, in practice, it is often applied to labelled qualitative data for exploratory
purposes as well. In any case, the method constitutes an important reference for
all dimensionality reduction techniques.

The underlying idea of the method is to transform p statistical variables (usu-
ally correlated) in terms of k < p uncorrelated linear combinations, organised
according to the explained variability. Consider a matrix of data X, with n rows
and p columns. The starting point of the analysis is the variance–covariance
matrix, S = n−1X̃′X̃ (see Table 3.5). In order to simplify the notation, in the rest
of this section it will be assumed that the observations are already expressed
in terms of deviations from the mean and, therefore, X = X̃. We remark that,
whenever the variables are expressed according to different measurement scales,
it is best to standardise all the variables before calculating S. Alternatively, it is
sufficient to substitute S with the correlation matrix R, since R = n−1Z′Z (see
Table 3.6). In any case, it is assumed that both S and R are of full rank; this
implies that none of the variables considered is a perfect linear function of the
others (or a linear combination of them).

The computational algorithm for principal components can be described in an
iterative way. Note that in this section the symbols that represent vectors are
underlined (this is the conventional notation in linear algebra), so that they can
be distinguished from matrices (indicated with capital letters) and from scalar
constants (denoted by a standard character).

Definition. The first principal component of the data matrix X is a vector
described by the following linear combination of the variables:⎛

⎜⎝
Y11
...

Yn1

⎞
⎟⎠ = a11

⎛
⎜⎝

x11
...

xn1

⎞
⎟⎠ + a21

⎛
⎜⎝

x12
...

xn2

⎞
⎟⎠ + · · · + ap1

⎛
⎜⎝

x1p

...

xnp

⎞
⎟⎠ ,

that is, in matrix terms,

Y1 =
p∑

j=1

aj1Xj = Xa1.

Furthermore, in the previous expression, the vector of the coefficients (also called
weights) a1 = (a11, a21, . . . , ap1)

′ is chosen to maximise the variance of the vari-
able Y1. In order to obtain a unique solution it is required that the weights
are normalised, constraining the sum of their squares to be 1. Therefore, the
first principal component is determined by the vector of weights a1 such that
max Var(Y1) = max(a1, Sa1), under the constraint a′

1a1 = 1, which normalises
the vector.

The solution of the previous problem is obtained using Lagrange multipliers.
It can be shown that, in order to maximise the variance of Y1, the weights
can be chosen to be the eigenvector corresponding to the largest eigenvalue of
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the variance–covariance matrix S. We omit the proof, which can be found in a
multivariate statistic text, such as Mardia et al. (1979).

Definition. The second principal component of the data matrix X is the linear
combination:⎛

⎜⎝
Y12
...

Yn2

⎞
⎟⎠ = a12

⎛
⎜⎝

x11
...

xn1

⎞
⎟⎠ + a22

⎛
⎜⎝

x12
...

xn2

⎞
⎟⎠ + · · · + ap2

⎛
⎜⎝

x1p

...

xnp

⎞
⎟⎠ ,

that is, in matrix terms,

Y2 =
p∑

j=1

aj2Xj = Xa2,

where the vector of the coefficients a2 = (a12, . . . , ap2)
′ is chosen in such a way

that max Var(Y2) = max(a2, Sa2), under the constraints a′
2a2 = 1 and a′

2a1 = 0.
Note the second constraint, which requires the two vectors a2 and a1 orthogonal.
This means that the first and second components will be uncorrelated. The expres-
sion for the second principal component can be obtained through the method of
Lagrange multipliers, and a2 is the eigenvector (normalised and orthogonal to
a1) corresponding to the second largest eigenvalue of S.

This process can be used recursively to define the kth principal component, with
k less than the number of variables p. In general, the vth principal component,
for v = 1, . . . , k, is given by the linear combination

Yv =
p∑

j=1

ajvXj = Xav

in which the vector of the coefficients av is the eigenvector of S corresponding
to the vth largest eigenvalue. This eigenvector is normalised and orthogonal to
all the previous eigenvectors.

3.5.1 Interpretation of the principal components

The main difficulty with the principal components is their interpretation. This
is because each principal component is a linear combination of all the avail-
able variables, hence they do not have a clear measurement scale. To facilitate
their interpretation, we will now introduce the concepts of absolute and relative
importance of the principal components.

We begin with the absolute importance. To solve the maximisation problem
that leads the principal components, it can be shown that Sav = λvav . Therefore,
the variance of the vth principal component corresponds to the vth eigenvalue of
the data matrix:

Var(Yv) = Var(Xav) = a′
vSav = λv.
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The covariance between the principal components satisfies

Cov(Yi , Yj ) = Cov(Xai , Xaj ) = a′
iSaj = a′

iλj aj = 0,

because ai and aj are assumed to be orthogonal. This implies that the principal
components are uncorrelated. The variance–covariance matrix between them is
thus expressed by the diagonal matrix

Var(Y ) =

⎡
⎢⎣

λ1 0
. . .

0 λk

⎤
⎥⎦ .

Consequently, the following ratio expresses the proportion of variability that
is ‘maintained’ in the transformation from the original p variables to k < p

principal components:
tr(VarY )

tr(VarX)
=

∑k
i=1 λi∑p

i=1 λi

.

This equation expresses a cumulative measure of the quota of variability (and
therefore of the statistical information) ‘reproduced’ by the first k components,
with respect to the overall variability present in the original data matrix, as
measured by the trace of the variance–covariance matrix. Therefore, it can be
used as a measure of absolute importance of the chosen k principal components,
in terms of ‘quantity of information’ maintained by going from p variables to k

components.
We now examine the relative importance of each principal component (with

respect to the single original variables). To achieve this aim we first obtain the
general expression for the linear correlation between a principal component and
an original variable. We have that

Cov(Yj , X) = Cov(Xaj , X) = Saj = λj aj

and, therefore, Cov(Yj , Xi) = λjaij . Furthermore, writing s2
i for Var(Xi) and

recalling that Var(Yv) = λv , we have that

Corr(Yj , Xi) =
√

λjaji

si

.

Notice that the algebraic sign and the value of the coefficient (called also load-
ing) aji , determine the sign and the strength of the correlation between the j th
component and the ith original variable. It also follows that the portion of vari-
ability of an original variable, say Xi , explained by k principal components can
be described by the expression

k∑
j=1

Corr2(Yj ,Xi) = λ1a
2
1i + · · · + λka

2
ki

s2
i

,
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which describes the quota of variability (information) of each explanatory variable
that is maintained in going from the original variables to the principal compo-
nents. This permits us to interpret each principal component talking about the
variables with which it is mostly correlated (in absolute value).

We conclude this subsection with three remarks on principal components anal-
ysis:

• The method of principal components permit us to reduce the complexity of
a data matrix, in terms of number of variables, going from a data matrix
Xn·p to a matrix with fewer columns, according to the transformation Yn·k =
Xn·pAp·k, where Ap·k is the matrix obtained stacking columnwise the eigen-
vectors corresponding to the principal components. The resulting transformed
observations are usually called principal components scores and ‘reproduce’
the data matrix in a space of lower dimension.

• The principal components can be calculated by extracting the eigenvalues and
the corresponding eigenvectors from the correlation matrix R instead than
from the variance–covariance matrix S. The principal components obtained
from R are not the same as those obtained from S. In order to choose which
matrix to start from, in general, use R when the variables are expressed in
different measurement scales. Note also that, using R, the interpretation of
the importance of components is simpler. In fact, since the tr(R) = p, the
degree of absolute importance of k components is given by:

tr(VarY )

tr(VarX)
=

∑k
i=1 λi

p

while the degree of relative importance of a principal component, with respect
to a variable, is

Corr(Yj ,Xi) =
√

λiaji .

• How many principal components should we choose? This is a critical point,
for which there are different empirical criteria. One solution involves consid-
ering all the components that have an absolute degree of importance larger
than a certain threshold thought to be reasonable, such as 50%. Or else, if
R has been used, it is possible to choose all the principal components with
corresponding eigenvalues greater than 1; since the overall variance equals p,
the average variance of the components should be approximately equal to 1.
Finally, a graphical instrument that is quite useful for determining the num-
ber of components is the so called ‘scree plot’, which plots on the x-axis the
index of the component (1, 2, 3, . . . , k), and on the y-axis the corresponding
eigenvalue. An empirical rule suggests choosing, as number of components,
the value corresponding to the point where there is a significant ‘fall’ in the
y-axis.

As alternatives to the empirical criteria here presented, there are inferential
type criteria that require the assumption of a specific probability model; for more
details, see Mardia et al. (1979).
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3.6 Further reading

Exploratory analysis has developed as an autonomous field of statistics, in parallel
with the development of the computing resources. It is possible to date the initial
developments in the field to the publication of the texts by Benzécri (1973) and
Tukey (1977).

Having briefly described the main analogies and differences between data min-
ing and exploratory analysis, in this chapter we described the main exploratory
data analysis methods. We began by focusing on univariate exploratory analysis.
This phase is often fundamental to understanding what might be discovered dur-
ing a data mining analysis. It often reveals problems with data quality, such as
missing items and anomalous data.

Since the observed reality is typically multidimensional, the next phase in
exploratory analysis is multivariate in nature. Given the difficulty in visualis-
ing multidimensional phenomena, many analyses focus on bivariate exploratory
analysis, and on how the relationships found in a bivariate analysis can modify
themselves, conditioning the analysis on the other variables. Similar consider-
ations apply to qualitative variables, for example comparing the marginal odds
ratios with those calculated conditionally. In the latter case a phenomenon known
as Simpson’s paradox (see, for example, Agresti, 1990) is observed, for which
a certain observed marginal association can completely change direction when
conditioning the odds ratio on the level of additional variables.

We focused on some important matrix representations which are of use when
conducting a more comprehensive multidimensional exploratory analysis of the
data. We refer the reader interested in the use of matrix calculations in statistics to
Searle (1982). Multidimensional exploratory data analysis remains an active area
of research in statistics thanks to developments in computer science. We expect,
therefore, that there will be substantial advances in this research area in the near
future. For a review of some of these developments, particularly multidimensional
graphics, see Hand et al. (2001) or, from a computational statistics viewpoint,
the text of Venables and Ripley (2002).

We then introduced the multidimensional analysis of qualitative data. This
topic also remains an active research area, and the existence of a large number of
indexes shows that the subject has yet to be consolidated. We put the available
indexes into three principal classes: distance measures, dependence measures
and model-based indexes. Distance measures are applicable to any contingency
table. Dependence measures, in contrast, give precise information on the type
of dependence among the variables under examination, but are hardly applicable
to contingency tables of dimension greater than 2. Model-based indexes are a
possible compromise. They are sufficiently broad and offer a good amount of
information. In addition, they have the advantage of characterizing the most
important statistical models for the analysis of qualitative data: the logistic and
loglinear regression models. For an introduction to the descriptive analysis of
qualitative data, see Agresti (1990).

An alternative approach to the multidimensional visualization of data is the
reduction to the principal components. The method has been described from an
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applied point of view; for more details on the formal aspects of this method,
see Mardia et al. (1979). The method of principal components has a very impor-
tant role in factor analysis. This method assumes a probability model, usually
Gaussian. It decomposes the variance–covariance matrix into two parts, one
part common to all the variables corresponding to the presence of underlying
latent (unobserved or unmeasurable) variables, and the other part specific to each
variable. In this framework, the chosen principal components identify the latent
variables and are interpretated accordingly. In addition, it is possible to employ
methods of ‘rotation’ of the components (latent factors) that modify the weight
coefficients, improving the interpretability. For further details on factor analysis
we refer the reader to Bollen (1989).

Principal components analysis is probably one of the simplest data reduction
methodsas it is based on linear transformations. Essentially, the scores obtained
transform the original data into linear projections on the reduced space, minimis-
ing the Euclidean distance between the coordinates in the original space and the
transformed data. Other types of transformations include wavelet methods, based
on Fourier transforms, as well as the methods of projection pursuit, which look
for the best directions of projection on a reduced space. For both techniques we
refer the reader to other data mining texts, such as Hand et al. (2001) or Hastie
et al. (2001).

Methods of data or dimension reduction are also available for qualitative data.
For a contingency table with two dimensions, correspondence analysis produces
a row (column) profile for every row (column), corresponding to the condi-
tional frequency distribution of the row (column). Dimension reduction is then
performed by projecting such profiles in a space of lower dimension that repro-
duces as much of the original inertia as possible, the latter being related to the
X2 statistics. Correspondence analysis can also be applied to contingency tables
of arbitrary dimension (represented through the so-called Burt matrix). For an
introduction to correspondence analysis, see, for instance, Greenacre (1983).



CHAPTER 4

Model specification

This chapter introduces the main data mining methods. It is appropriate to divide
these into two main groups. The first group (Sections 4.1–4.8) consists of meth-
ods that do not necessarily require the specification of a probability model. In
fact, many of these methods were developed by computer scientists rather than
statisticians. Recently however, statisticians have adopted these methods because
of their effectiveness in solving data mining problems.

For the second group of methods (Sections 4.9–4.15) it is essential to adopt
a probability model which describes the data generating mechanism. The intro-
duction of such a framework allows more subtle information to be extracted
from the data; on the other hand, it requires more assumptions to be made. Most
of the methods belonging to this second group were developed by statisticians.
However, they have also been adopted by computer scientists working in data
mining, because of their greater accuracy.

Section 4.1 deals with the important concepts of proximity and distance
between statistical observations, which is the foundation for many of the methods
discussed in the chapter. Section 4.2 deals with clustering methods, the aim of
which is to classify observations into homogeneous groups. Clustering is prob-
ably the best known descriptive data mining method. In Section 4.3 we present
linear regression from a non-probabilistic viewpoint. This is the most important
prediction method for continuous variables. We will present the probability
aspects of linear regression in Section 4.11. In Section 4.4 we examine, again
from a non-probabilistic viewpoint, the main prediction method for qualitative
variables: logistic regression. Another important predictive methodology is
represented by tree models, which can be used both for regression and clustering
purposes. These are presented in Section 4.5. Concerning clustering, there is a
fundamental difference between cluster analysis, on the one hand, and logistic
regression and tree models, on the other. In the latter case, the clustering is
supervised, that is, measured against a reference variable (target or response),
whose values are known. The former case, in contrast, is unsupervised: there are
no reference variables, and the clustering analysis determines the nature and the
number of groups and allocates the observations in them. In Sections 4.6 and 4.7
we introduce two further classes of predictive models, neural networks and
nearest-neighbour models. Then in Section 4.8 we describe two very important
local data mining methods: association and sequence rules.
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In Section 4.9 we introduce data mining methods that require the specifica-
tion of an underlying probability model. Such methods allow more powerful and
more interpretable results to be derived, since they can make use of concepts of
statistical inference. We start the section with an introduction to the measurement
of uncertainty using probability and to the basic concepts of statistical inference.
In particular, we introduce the Gaussian distribution, the most popular paramet-
ric probability model. We then move, in Section 4.10, to non-parametric and
semiparametric modelling of the data, and show how these approaches can be
used. We introduce a probability approach to cluster analysis, based on mixture
models, as well as the basic ideas behind kernel density estimation.

Section 4.11 introduces the normal linear model as the main tool in modelling
the relationship between one or more response variables and one or more explana-
tory variables, with the aim of constructing a decision rule which permits us to
predict the values of the response variables, given the values of the explanatory
variables.

In Section 4.12 we introduce a more general class of parametric models, based
on the exponential family of distributions, and thus derive a more general class of
linear models (called generalised linear models), that contains, as special cases,
the linear model and the logistic regression model. Another important class of
generalised linear models are the log-linear models, introduced in Section 4.13,
which constitute the most important data mining tool for descriptively analysing
the relationships between qualitative variables. In Section 4.14 we extend the
logic of this modelling with graphical models.

Finally, in Section 4.15 we introduce survival analysis models, originally devel-
oped for medical applications, but now increasingly used in the business field as
well.

4.1 Measures of distance

In this chapter we will often discuss methods suitable for classifying and group-
ing observations into homogeneous groups. In other words, we will consider the
relationships between the rows of the data matrix which correspond to obser-
vations. In order to compare observations, we need to introduce the idea of a
distance measure, or proximity, among them. The indexes of proximity between
pairs of observations furnish indispensable preliminary information for identify-
ing homogeneous groups. More precisely, an index of proximity between any
two observations xi and xj can be defined as a function of the corresponding
row vectors in the data matrix:

IPij = f (x′
i , x

′
j ), i, j = 1, 2, . . . , n.

We will use an example from Chapter 6 as a running example in this section.
We have n = 32711 visitors to a website and p = 35 dichotomous variables
that define the behaviour of each visitor. In this case, a proximity index will
be a function of two 35-dimensional row vectors. Knowledge of the indexes of
proximity for every pair of visitors allows us to select those among them who
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are more similar, or at least less different, with the purpose of identifying some
groups as the most homogeneous among them.

When the variables of interest are quantitative, the indexes of proximity typ-
ically used are called distances. If the variables are qualitative, the distance
between observations can be measured by indexes of similarity. If the data are
contained in a contingency table, the chi-squared distance can also be employed.
There are also indexes of proximity that are used on a mixture of qualitative and
quantitative variables. We will examine the Euclidean distance for quantitative
variables, and some indexes of similarity for qualitative variables.

4.1.1 Euclidean distance

Consider a data matrix containing only quantitative (or binary) variables. If x and
y are rows from the data matrix then a function d(x, y) is said to be a distance
between two observations if it satisfies the following properties:

• Non-negativity. d(x, y) ≥ 0, for all x and y.
• Identity. d(x, y) = 0 ⇔ x = y, for all x andy.
• Symmetry. d(x, y) = d(y, x), for all x and y.
• Triangular inequality. d(x, y) ≤ (x, z) + d(y, z), for all x, y and z.

To achieve a grouping of all observations, the distance is usually considered
between all observations present in the data matrix. All such distances can be
represented in a matrix of distances. A distance matrix can be represented in the
following way:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . d1i . . . d1n

...
. . .

...
...

di1 . . . 0 . . . din

...
...

. . .
...

dn1 . . . dni . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the generic element dij is a measure of distance between the row vectors
xi and xj . The Euclidean distance is the most commonly used distance measure.
It is defined, for any two units indexed by i and j , as the square root of the
difference between the corresponding vectors, in the p-dimensional Euclidean
space:

2dij = d(xi, xj ) =
[

p∑
s=1

(
xis − xjs

)2]1/2

.

The Euclidean distance can be strongly influenced by a single large difference
in one dimension of the values, because the square will greatly magnify that
difference. Dimensions having different scales (e.g. some values measured in
centimetres, others in metres) are often the source of these overstated differences.
To overcome such limitation, the Euclidean distance is often calculated, not on
the original variables, but on useful transformations of them. The most common
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choice is to standardise the variables. After standardisation, every transformed
variable contributes to the calculation of the distance with equal weight. When the
variables are standardised, they have zero mean and unit variance; furthermore,
it can be shown that, for i, j = 1, . . . , p:

2d
2
ij = 2(1 − rij ),

rij = 1 − d2
ij /2,

where rij is the correlation coefficient between the observations xi and xj . Thus
the Euclidean distance between two observations is a function of the correlation
coefficient between them.

4.1.2 Similarity measures

Given a finite set of observations ui ∈ U , a function S(ui, uj ) = Sij from U × U

to R is called an index of similarity if it satisfies the following properties:

• Non-negativity. Sij ≥ 0, for all ui, uj ∈ U .
• Normalisation. Sii = 1, for all ui ∈ U .
• Symmetry. Sij = Sji , for all ui, uj ∈ U .

Unlike distances, the indexes of similarity can be applied to all kinds of variables,
including qualitative variables. They are defined with reference to the observation
indexes, rather than to the corresponding row vectors, and they assume values in
the closed interval [0, 1], making them easy to interpret.

The complement of an index of similarity is called an index of dissimilarity
and represents a class of indexes of proximity wider than that of the distances. In
fact, as a distance, a dissimilarity index satisfies the properties of non-negativity
and symmetry. However, the property of normalisation is not equivalent to the
property of identity of the distances. Finally, dissimilarities do not have to satisfy
the triangle inequality.

As we have observed, indexes of similarity can be calculated, in principle, for
quantitative variables. But they would be of limited use since they would tell us
only whether two observations had, for the different variables, observed values
equal or different, without saying anything about the size of the difference. From
an operational viewpoint, the principal indexes of similarity make reference to
data matrices containing binary variables. More general cases, with variables
having more than two levels, can be brought back to this setting through the
technique of binarisation.

Consider data on n visitors to a website, which has P pages. Correspondingly,
there are P binary variables, which assume the value 1 if the specific page has
been visited, or else the value 0. To demonstrate the application of similarity
indexes, we now analyse only data concerning the behaviour of the first two
visitors (2 of the n observations) to the website described in Chapter 6, among
the P = 28 web pages that they can visit. Table 4.1 summarises the behaviour
of the two visitors, treating each page as a binary variable.
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Table 4.1 Classification of the visited web pages.

Visitor B

Visitor A

0

PA = 4

CA = 21

25

1

CP = 2

AP = 1

3

Total

6

22

P = 28

1

0

Total

Note that, of the 28 pages considered, two have been visited by both visitors.
In other words, 2 represent the absolute frequency of contemporary occurrences
(CP , for co-presence, or positive matches) for the two observations. In the lower
right-hand corner of the table, there is a frequency of 21 equal to the number
of pages that are visited neither by A nor by B. This frequency corresponds to
contemporary absences in the two observations (CA, for co-absences or negative
matches). Finally, the frequencies of 4 and 1 indicate the number of pages that
only one of the two navigators visits (PA for presence–absence and AP for
absence–presence, where the first letter refers to visitor A and the second to
visitor B).

The latter two frequencies denote the differential aspects between the two vis-
itors and therefore must be treated in the same way, being symmetrical. The
co-presence is aimed at determining the similarity among the two visitors, a fun-
damental condition because they could belong to the same group. The co-absence
is less important, perhaps of negligible importance for determining the similar-
ities between the two units. In fact, the indexes of similarity developed in the
statistical literature differ in how they treat the co-absence, as we now describe.

Russel–Rao similarity index
The Russel–Rao similarity index is a function of the co-presences and is equal to
the ratio between the number of the co-presences and the total number of binary
variables considered, P :

Sij = CP

P
.

From Table 4.1 we have

Sij = 2

28
≈ 0.07.

Jaccard similarity index
This index is the ratio between the number of co-presences and the total number
of variables, excluding those that manifest co-absences:

Sij = CP

CP + PA + AP
.
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Note that this index cannot be defined if two visitors or, more generally, the
two observations, manifest only co-absences (CA = P). In the example above
we have

Sij = 2

7
≈ 0.29.

Sokal–Michener similarity index
This is the ratio between the number of co-presences or co-absences and the total
number of the variables:

Sij = CP + CA

P
.

In our example

Sij = 23

28
≈ 0.82.

For the Sokal–Michener index (also called the simple matching coefficient or,
in a slight abuse of terminology, the binary distance) it is simple to demonstrate
that its complement to one (a dissimilarity index) corresponds to the average
of the squared Euclidean distance between the two vectors of binary variables
associated to the observations:

1 − Sij = 1

P
(2d

2
ij ).

It is one of the commonly used indexes of similarity.

4.1.3 Multidimensional scaling

In the previous subsections we have seen how to calculate proximities between
observations, on the basis of a given data matrix, or a table derived from it.
Sometimes, only the proximities between observations are available, for instance
in terms of a distance matrix, and it is desired to reconstruct the values of the
observations. In other cases, the proximities are calculated using a dissimilarity
measure and it is desired to reproduce them in terms of a Euclidean distance, to
obtain a representation of the observations in a two-dimensional plane. Mul-
tidimensional scaling methods are aimed at representing observations whose
observed values are unknown (or not expressed numerically) in a low-dimensional
Euclidean space (usually R

2). The representation is achieved by preserving the
original distances as far as possible.

Section 3.5 explained how to use the method of principal components on a
quantitative data matrix in a Euclidean space. It turns the data matrix into a
lower-dimensional Euclidean projection by minimising the Euclidean distance
between the original observations and the projected ones. Similarly, multidimen-
sional scaling methods look for low-dimensional Euclidean representations of the
observations, representations which minimise an appropriate distance between
the original distances and the new Euclidean distances. Multidimensional scaling
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methods differ in how such distance is defined. The most common choice is the
stress function, defined by

√√√√ n∑
i=1

n∑
j=1

(δij − dij )2,

where the δij are the original distances (or dissimilarities) between each pair of
observations, and the dij are the corresponding distances between the reproduced
coordinates.

Metric multidimensional scaling methods look for k real-valued n-dimensional
vectors, each representing one coordinate measurement of the n observations,
such that the n × n distance matrix between the observations, expressed by dij ,
minimises the squared stress function. Typically, k = 2, so that the results of
the procedure can be conveniently represented in a scatterplot. The illustrated
solution is also known as least squares scaling. A variant of least squares scaling
is Sammon mapping, that minimises

√√√√ n∑
i=1

n∑
j=1

(δij − dij )2

δij

,

thereby preserving smaller distances.
When the proximities between objects are expressed by a Euclidean distance,

it can be shown that the solution of the previous problem corresponds to the prin-
cipal component scores that would be obtained if the data matrix were available.

It is possible to define non-metric multidimensional scaling methods, where
the relationship preserved between the original and the reproduced distances is
not necessarily Euclidean. For further details, see Mardia et al. (1979).

4.2 Cluster analysis

This section is about methods for grouping a given set of observations, known
as cluster analysis. Cluster analysis is the best-known descriptive data mining
method. Given a data matrix composed of n observations (rows) and p variables
(columns), the objective of cluster analysis is to cluster the observations into
groups that are internally homogeneous (internal cohesion) and heterogeneous
from group to group (external separation). Note that the constitution of homoge-
neous groups of observations can be interpreted as a reduction of the dimension
of the space R

n, but not in the same way as in principal components analysis
(Section 3.5). In fact, in a cluster analysis, the n observations are grouped into g

subsets (with g < n), whereas in principal components analysis the p statistical
variables are transformed into k new variables (with k < p). There are several
ways to perform a cluster analysis. It is therefore important to have a clear
understanding of how the analysis will proceed. Here are some important points
to consider.
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Choice of variables to be used
The choice of variables to be used for clustering has to consider all the relevant
aspects to achieve the stated objectives. Bear in mind that using variables of little
importance will inevitably worsen the results. This is a crucial problem since it
will strongly condition the final result. In general, clustering can be considered
satisfactory when it does not show an excessive sensitivity to small changes
in the set of variables used. Before doing a cluster analysis, it is prudent to
conduct accurate exploratory investigations that are able to suggest possible final
configurations for the clustering. To help with visualisation and interpretation of
the results, it is often appropriate to reduce the dimensionality of the data matrix,
perhaps through the method of the principal components.

During the exploratory phase, pay particular attention to anomalous obser-
vations that might negatively affect the analysis. Some data mining textbooks
(e.g. Han and Kamber, 2001) link the methods of cluster analysis with those
that search for outliers. Although there are similarities, we take the view that
one should choose cluster analysis to classify the data into groups and outlier
detection to search for anomalous observations.

Method of group formation
We can distinguish hierarchical and non-hierarchical methods. Hierarchical meth-
ods allow us to get a succession of groupings (called partitions or clusters) with a
number of groups from n to 1, starting from the simplest, where all the observa-
tions are separated, to the situation where all the observations belong to a unique
group. The non-hierarchical methods allow us to gather the n units directly into
a number of previously defined groups.

Type of proximity index
Depending to the nature of the available variables, it is necessary to define a
measure of proximity among the observations, to be used for calculating distances
between them. If the variables are predominantly quantitative, use the Euclidean
distance; if they are predominantly qualitative, use an index of similarity; finally,
if they are available in a contingency table format, use the chi-squared distance
between the levels. As shown in Section 4.1, most measures of proximity can
be interpreted as distances, so we will make exclusive reference to this concept.
Remember the importance of standardising the variables so that all carry the
same weight in the final results.

Besides establishing a measure of proximity between observations, for hier-
archical clustering methods we need to establish how to calculate the distances
between groups. It is usually appropriate to use the same type of distance as the
distance between observations. It remains to establish which units (or synthesis
of them) to use as ‘representative’ of the group. This depends on the hierarchical
clustering method.
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Choice of evaluation criteria
Evaluating the results of the grouping obtained means verifying that the groups
are consistent with the primary objective of the cluster analysis and that they
therefore satisfy the conditions of internal cohesion and external separation.
Choosing the number of groups is of fundamental importance. There is a trade-off
between obtaining homogeneous groups, which typically increases the number
of groups, and the need for a parsimonious representation, which reduces the
number of groups. We will return to this point.

4.2.1 Hierarchical methods

Hierarchical clustering methods allow us to get a family of partitions, each asso-
ciated with the subsequent levels of grouping among the observations, calculated
on the basis of the available data. The different families of partitions can be graph-
ically represented through a tree-like structure called a hierarchical clustering tree
or dendrogram. This structure associates with every step of the hierarchical pro-
cedure, corresponding to a fixed number of groups g, one and only one clustering
of the observations in the g groups.

A hierarchical clustering tree can be represented as in Figure 4.1, where for
simplicity we suppose there are only five observations available, numbered from 1
to 5. The branches of the tree describe subsequent clusterings of the observations.
At the root of the tree, all the observations are contained in only one class. The
branches of the tree indicate divisions of the observations into clusters. The five
terminal nodes indicate the situation where each observation belongs to a separate
group.

Agglomerative clustering is when the groups are formed from the branches
to the root (from left to right in Figure 4.1). Divisive clustering is when the
groups are formed from the root to the branches. Statistical software packages
usually report the whole dendrogram, from the root to a number of terminal
branches equal to the number of observations. It then remains to choose the
optimal number of groups. This will identify the result of the cluster analysis,
since in a dendrogram the choice of the number of groups g identifies a unique

1

2
Root

Branches 3

4

5

Figure 4.1 Structure of the dendrogram.
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Table 4.2 Partitions corresponding to
the dendrogram in Figure 4.1.

Number of clusters Clusters

5 (1) (2) (3) (4) (5)
4 (1,2) (3) (4) (5)
3 (1,2) (3,4) (5)
2 (1,2) (3,4,5)
1 (1,2,3,4,5)

partition of the observations. For example, the partitions of the five observations
described by the dendrogram in Figure 4.1 can be represented as in Table 4.2.

Table 4.2 shows that the partitions described by a dendrogram are nested. This
means that, in the hierarchical methods, the elements that are united (or divided)
at a certain step will remain united (separated) until the end of the clustering
process. Supposing we consider an agglomerative method that proceeds from five
groups to one group; then units 1 and 2 are united at the second step and remain
in the same group until the end of the procedure. Nesting reduces the number of
partitions to compare, making the procedure computationally more efficient, but
the disadvantage is not being able ‘to correct’ errors of clustering committed in
the preceding steps. Here is an outline for an agglomerative clustering algorithm:

1. Initialisation. Given n statistical observations to classify, every element rep-
resents a group (in other words, the procedure starts with n clusters). The
clusters will be identified with a number that goes from 1 to n.

2. Selection. The two ‘nearest’ clusters are selected, in terms of the distance
initially fixed, for example, in terms of the Euclidean distance.

3. Updating. The number of clusters is updated (to n − 1) through the union,
in a unique cluster, of the two groups selected in step 2. The matrix of the
distances is updated, taking the two rows (and two columns) of distances
between the two clusters and replacing them with only one row (and one
column) of distances, ‘representative’ of the new group. Different clustering
methods define this representation in different ways.

4. Repetition. Steps 2 and 3 are performed n − 1 times.
5. End. The procedure stops when all the elements are incorporated in a unique

cluster.

We will now look at some of the different clustering methods mentioned in
step 3. They will be introduced with reference to two groups, C1 and C2. Some
methods require only the distance matrix and some require the distance matrix
plus the original data matrix. These examples require only the distance matrix:

• Single linkage. The distance between two groups is defined as the mini-
mum of the n1n2 distances between each observation of group C1 and each
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observation of group C2:

d (C1, C2) = min (drs) , with r ∈ C1, s ∈ C2.

• Complete linkage. The distance between two groups is defined as the max-
imum of the n1n2 distances between each observation of a group and each
observation of the other group:

d (C1, C2) = max(drs), with r ∈ C1, s ∈ C2.

• Average linkage. The distance between two groups is defined as the arith-
metic average of the n1n2 distances between each of the observations of a
group and each of the observations of the other group:

d (C1, C2) = 1

n1n2

n1∑
r=1

n2∑
s=1

drs, with r ∈ C1, s ∈ C2.

Two methods that require the data matrix as well as the distance matrix are
the centroid method and Ward’s method.

Centroid method
The distance between two groups C1 and C2, having nl and n2 observations
respectively, is defined as the distance between the respective centroids (usually
the means), x1 and x2:

d (C1, C2) = d (x1, x2) .

To calculate the centroid of a group of observations we need the original data,
and we can obtain that from the data matrix. It will be necessary to replace
the distances with respect to the centroids of the two previous clusters by the
distances with respect to the centroid of the new cluster. The centroid of the new
cluster can be obtained from

x1n1 + x2n2

n1 + n2
.

Note the similarity between this method and the average linkage method: the
average linkage method considers the average of the distances among the obser-
vations of each of the two groups, while the centroid method calculates the
centroid of each group and then measures the distance between the centroids.

Ward’s method
In choosing the groups to be joined, Ward’s method minimises an objective
function using the principle that clustering aims to create groups which have
maximum internal cohesion and maximum external separation.

The total deviance (T ) of the p variables, corresponding to n times the trace of
the variance–covariance matrix, can be divided in two parts: the deviance within
the groups (W ) and the deviance between the groups (B), so that T = W + B.
This is analogous to dividing the variance into two parts for linear regression
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(Section 4.3). In that case B is the variance explained by the regression and W

is the residual variance, the variance not explained by the regression. In formal
terms, given a partition into g groups, the total deviance of the p variables
corresponds to the sum of the deviances of the single variables, with respect to
the overall mean xs , defined by

T =
p∑

s=1

n∑
i=1

(xis − xs)
2.

The deviance within groups is given by the sum of the deviances of each group,

W =
g∑

k=1

Wk,

where Wk represents the deviance of the p variables in the kth group (number
nk and centroid xk = [

x1k, . . . , xpk

]′
), given by

Wk =
p∑

s=1

nk∑
i=1

(xis − xsk)
2.

The deviance between groups is given by the sum (calculated on all the variables)
of the weighted deviances of the group means with respect to the corresponding
general averages:

B =
p∑

s=1

g∑
k=1

nk (xsk − xs)
2.

Using Ward’s method, groups are joined so that the increase in W is smaller and
the increase in B is larger. This achieves the greatest possible internal cohesion
and external separation. Notice that it does not require preliminary calculation of
the distance matrix. Ward’s method can be interpreted as a variant of the centroid
method, which does require the distance matrix.

How do we choose which method to apply?
In practice, there is no method that can give the best result with every type of
data. Experiment the different alternatives and compare them in terms of the
chosen criteria. A number of criteria are discussed in the following subsection
and more generally in Chapter 5.

Divisive clustering algorithms
The algorithms used for divisive clustering are very similar to those used for
tree models (Section 4.5). In general, they are less used in routine applications,
as they tend to be more computationally intensive. However, although naı̈ve
implementation of divisive methods requires n2 distance calculations on the first
iteration, subsequent divisions are on much smaller cluster sizes. Also, efficient
implementations do not compute all pairwise distances but only those that are
reasonable candidates for being the closest together.
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4.2.2 Evaluation of hierarchical methods

A hierarchical algorithm produces a family of partitions of the n initial statistical
units, or better still, a succession of n clusterings of the observations, with the
number of groups decreasing from n to 1. To verify that the partitions achieve
the primary objective of the cluster analysis – internal cohesion and external
separation – the goodness of the partition obtained should be measured at every
step of the hierarchical procedure.

A first intuitive criterion for goodness of the clustering is the distance between
the joined groups at every step; the process can be stopped when the distance
increases abruptly. A criterion used more frequently is based on the decomposi-
tion of the total deviance of the p variables, as in Ward’s method. The idea is
to have a low deviance within the groups (W ) and a high deviance between the
groups (B). For a partition of g groups here is a synthetic index that expresses
this criterion:

R2 = 1 − W

T
= B

T
.

Since T = W + B, the index R2 ∈ [0, 1]; if the value of R2 approaches 1, it
means that the corresponding partition is optimal, since the observations belong-
ing to the same group are very similar (low W ) and the groups are well sepa-
rated (high B). Correspondingly, the goodness of the clustering decreases as R2

approaches 0.
Note that R2 = 0 when there is only one group and R2 = 1 when there are as

many groups as observations. As the number of groups increases, the homogene-
ity within the groups increases (as each group contains fewer observations), and
so does R2. But this leads to a loss in the parsimony of the clustering. Therefore
the maximisation of R2 cannot be considered the only criterion for defining the
optimal number of groups. Ultimately it would lead to a clustering (for which
R2 = 1) of n groups, each having one unit.

A common measure to accompany R2 is the pseudo-F criterion. Let c be a
certain level of the procedure, corresponding to a number of groups equal to c,
and let n be the number of observations available. The pseudo-F criterion is
defined as

F=
c

B/(c − 1)

W/(n − c)
.

Generally Fc decreases with c since the deviance between groups should decrease
and the deviance within groups should increase. If there is an abrupt fall, it means
that very different groups are united among them. The advantage of the pseudo-F
criterion is that, by analogy with what happens in the context of the normal lin-
ear model (Section 4.11), it is possible to show how to build a decision rule
that allows us to establish whether to accept the fusion among the groups (null
hypothesis) or to stop the procedure, choosing the less parsimonious represen-
tation (alternative hypothesis). This decision rule is specified by a confidence
interval based on the F distribution, with (c − 1) and (n − c) degrees of free-
dom. But in applying the decision rule, we assume that the observations follow
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a normal distribution, reducing the advantages of a model-free formulation, such
as that adopted here.

An alternative to R2 is the root mean square standard deviation (RMSSTD).
This only considers the part of the deviance in the additional groups formed at
each step of the hierarchical clustering. Considering the hth step (h = 2, . . . , n −
1) of the procedure, the RMSSTD is defined as:

RMSSTD =
√

Wh

p (nh − 1)
,

where Wh is the deviance in the group constituted at step h of the procedure, nh

is its numerosity and p is the number of available variables. A strong increase
in RMSSTD from one step to the next shows that the two groups being united
are strongly heterogeneous and therefore it would be appropriate to stop the
procedure at the earlier step.

Another index that, similar to RMSSTD, measures the ‘additional’ contribu-
tion of the hth step of the procedure is the so-called ‘semipartial’ R2 (SPRSQ),
given by

SPRSQ = Wh − Wr − Ws

T
,

where h is the new group, obtained at step h as a fusion of groups r and s. T is
the total deviance of the observations, while Wh, Wr and Ws are the deviance of
the observations in groups h, r and s, respectively. In other words, the SPRSQ
measures the increase in the within-group deviance W obtained by joining groups
r and s. An abrupt increase in SPSRQ indicates that heterogeneous groups are
being united and therefore it is appropriate to stop at the previous step.

We believe that choosing one index from the ‘global’ indexes R2 and pseudo-F
and one index from the ‘local’ indexes RMSSTD and SPRSQ allows us to eval-
uate adequately the degree of homogeneity of the obtained groups in every step
of a hierarchical clustering and therefore to choose the best partition.

Table 4.3 gives an example of cluster analysis, obtained with Ward’s method,
in which the indexes R2 and SPRSQ are indeed able to give an indication of the

Table 4.3 Output of a cluster analysis.

NCL Clusters Joined FREQ SPRSQ RSQ

11 CL19 CL24 13 0.0004 0.998
10 CL14 CL18 42 0.0007 0.997
9 CL11 CL13 85 0.0007 0.996
8 CL16 CL15 635 0.0010 0.995
7 CL17 CL26 150 0.0011 0.994
6 CL9 CL27 925 0.0026 0.991
5 CL34 CL12 248 0.0033 0.988
4 CL6 CL10 967 0.0100 0.978
3 CL4 CL5 1215 0.0373 0.941
2 CL7 CL3 1365 0.3089 0.632
1 CL2 CL8 2000 0.6320 0.000
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number of partitions to choose. A number of cluster (NCL) equal to 3 is more
than satisfactory, as indicated by the row third from last, in which clusters 4 and
5 are united (obtained in correspondence of NCL equal to 4 and 5). In fact, the
further step of uniting groups 7 and 3 leads to a relevant reduction in R2 and to
an abrupt increase in SPRSQ. On the other hand, Choosing NCL equal to 4 does
not give noticeable improvements in R2. Note that the cluster joined at NCL =
3 contains 1215 observations (FREQ).

To summarise, there is no unequivocal criterion for evaluating the methods of
cluster analysis but a whole range of criteria. Their application should strike a
balance between simplicity and information content.

4.2.3 Non-hierarchical methods

The non-hierarchical methods of clustering allow us to obtain one partition of the
n observations in g groups (g < n), with g defined a priori. Unlike what happens
with hierarchical methods, the procedure gives as output only one partition that
satisfies determined optimality criteria, such as the attainment of the grouping
that allows us to get the maximum internal cohesion for the specified number of
groups. For any given value of g, according to which it is intended to classify the
n observations, a non-hierarchical algorithm classifies each of the observations
only on the basis of the selected criterion, usually stated by means of an objective
function. In general, a non-hierarchical clustering can be summarised by the
following algorithm:

1. Choose the number of groups g and choose an initial clustering of the n

statistical units in that number of groups.
2. Evaluate the ‘transfer’ of each observation from the initial group to another

group. The purpose is to maximise the internal cohesion of the groups. The
variation in the objective function determined by the transfer is calculated
and, if relevant, the transfer becomes permanent.

3. Repeat step 2 until a stopping rule is satisfied.

Non-hierarchical algorithms are generally much faster than hierarchical ones,
because they employ an interactive structure calculation which does not require us
to determine the distance matrix. The construction of non-hierarchical algorithms
tends to make them more stable with respect to data variability. Furthermore,
non-hierarchical algorithms are suitable for large data sets where hierarchical
algorithms would be too slow. Nevertheless, there can be many possible ways
of dividing n observations into g non-overlapping groups, especially for real
data, and it is impossible to obtain and compare all these combinations. This
can make it difficult to do a global maximisation of the objective function, and
non-hierarchical algorithms may produce constrained solutions, often correspond-
ing to local maxima of the objective function.

In a non-hierarchical clustering we need to begin by defining the number of
the groups. This is usually done by conducting the analysis with different values
of g (and different algorithm initialisations) and determining the best solution by
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comparing appropriate indexes for the goodness of the clustering (such as R2 or
the pseudo-F index).

The most commonly used method of non-hierarchical clustering is the k-means
method, where k indicates the number of groups established a priori (g in this
section). The k-means algorithm performs a clustering of the n starting ele-
ments, in g distinct groups (with g previously fixed), according to the following
operational flow:

1. Initialisation. Having determined the number of groups, g points, called
seeds, are defined in the p-dimensional space. The seeds constitute the
centroids (measures of position, usually means) of the clusters in the ini-
tial partition. There should be sufficient distance between them to improve
the properties of convergence of the algorithm. For example, to space the
centroids adequately in R

p, one can select g observations (seeds) whose
reciprocal distance is greater than a predefined threshold, and greater than the
distance between them and the observations. Once the seeds are defined, an
initial partition of the observations is constructed, allocating each observation
to the group whose centroid is closest.

2. Transfer evaluation. The distance of each observation from the centroids
of the g groups is calculated. The distance between an observations and the
centroid of the group to which it has been assigned has to be a minimum;
if it is not a minimum, the observations will be moved to the cluster whose
centroid is closest. The centroids of the old group and the new group are
then recalculated.

3. Repetition. We repeat step 2 until we reach a suitable stabilisation of the
groups.

To calculate the distance between the observations and the centroids of the groups,
the k-means algorithm employs the Euclidean distance: at the t th iteration, the dis-
tance between the ith observation and the centroid of group l (with i = 1, 2, . . . , n

and l = 1, 2, . . . , g) will be equal to

d
(
xi, x

(t)
l

)
=
√√√√ p∑

s=1

(
xis − x

(t)
sl

)2
,

where x
(t)
l =

[
x

(t)
1l , . . . , x

(t)
pl

]′
is the centroid of group l calculated at the t th

iteration. This shows that the k-means method searches for the partition of the
n observations in g groups (with g fixed in advance) that satisfies a criterion
of internal cohesion based on the minimisation of the within-group deviance W ,
therefore the goodness of the obtained partition can be evaluated by calculating
the index R2 of the pseudo-F statistic. A disadvantage of the k-means method is
the possibility of obtaining distorted results when there are outliers in the data.
Then the non-anomalous units will tend to be classified into very few groups,
but the outliers will tend to be put in very small groups on their own. This can
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create so-called ‘elephant clusters’ – clusters too big and containing most of the
observations.

4.3 Linear regression

In clustering and, more generally, in descriptive methods, the variables were
treated in a symmetric way. We now consider the common situation where
we wish to deal with the variables in a non-symmetric way, to derive a pre-
dictive model for one (or more) response variables, on the basis of one (or
more) of the others. This section focuses on quantitative response variables and
the next section focuses on qualitative response variables. Chapter 1 introduced
the distinction between descriptive and predictive data mining methods. Linear
regression is a predictive data mining method.

We will initially suppose that only two variables are available. Later we will
consider the multivariate case.

4.3.1 Bivariate linear regression

In many applications it is interesting to evaluate whether one variable, called
the dependent variable or the response, can be caused, explained and therefore
predicted as a function of another, called the independent variable, the explana-
tory variable, the covariate or the feature. We will use Y for the dependent (or
response) variable and X for the independent (or explanatory) variable. The sim-
plest statistical model that can describe Y as a function of X is linear regression.
The linear regression model specifies a noisy linear relationship between vari-
ables Y and X, and for each paired observation (xi , yi) this can be expressed by
the so-called regression function,

yi = a + bxi + ei, i = 1, 2, . . . , n,

where a is the intercept of the regression function, b is the slope coefficient of
the regression function, also called regression coefficient, and ei is the random
error of the regression function, relative to the ith observation.

Note that the regression function has two main parts: the regression line and
the error term. The regression line can be constructed empirically, starting with
the matrix of available data. The error term describes how well the regression line
approximates the observed response variable. From an exploratory point of view,
determination of the regression line can be described as a problem of fitting a
straight line to the observed dispersion diagram. The regression line is described
the linear function:

ŷi = a + bxi, i = 1, 2, . . . , n,

where ŷi denotes the fitted ith value of the dependent variable, calculated on
the basis of the ith value of the explanatory variable, xi . Having defined the
regression line, it follows that the error term ei in the expression for the regression
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Figure 4.2 Representation of the regression line.

function represents, for each observation yi , the residual, that is, the difference
between the observed response values, yi , and the corresponding values fitted
with the regression line, ŷi :

ei = yi − ŷi .

Each residual can be interpreted as the part of the corresponding value that is
not explained by the linear relationship with the explanatory variable. What we
have just described can be represented graphically, as in Figure 4.2. To obtain
the analytic expression for the regression line it is sufficient to calculate the
parameters a and b on the basis of the available data. The method of least
squares is often used for this purpose. It chooses the straight line that minimises
the sum of the squares of the errors of the fit (SSE), defined by

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − a − bxi)
2.

To find the minimum of SSE we need to take the first partial derivatives of the
SSE function with respect to a and b then equate them to zero. Since the sum
of the squares of the errors is a quadratic function, if an extremal point exists
then it is a minimum. Therefore the parameters of the regression line are found
by solving the following system of equations,called normal equations:

∂
∑

(yi − a − bxi)
2

∂a
= −2

∑
i

(yi − a − bxi) = 0,

∂
∑

(yi − a − bxi)
2

∂b
= −2

∑
i

xi(yi − a − bxi) = 0.

From the first equation we obtain

a =
∑ yi

n
− b

∑ xi

n
= μY − bμX.
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Substituting this into the second equation and simplifying gives

b =
∑

xiyi/n −
∑

yi

∑
xi/n2

∑
x2

i /n −
(∑

xi/n
)2

= Cov(X, Y )

Var(X)
= r(X, Y )

σY

σX

,

where μY and μX are the means, σY and σX the standard deviations of the
variables Y and X, while r(X,Y ) indicates the correlation coefficient between X

and Y .
Regression is a simple and powerful predictive tool. To use it in real situations,

it is only necessary to calculate the parameters of the regression line, according
to the previous formulae, on the basis of the available data. Then a value for Y is
predicted simply by substituting a value for X into the equation of the regression
line. The predictive ability of the regression line is a function of the goodness of
fit of the regression line, which is very seldom perfect.

If the variables were both standardised, with zero mean and unit variance, then
a = 0 and b = r(X, Y ). Then yi = r(X, Y )xi and the regression line of X, as a
function of Y , is simply obtained by inverting the linear relation between Y and
X. Even though not generally true, this particular case shows the link between a
symmetric analysis of the relationships between variables (described by the linear
correlation coefficient) and an asymmetric analysis (described by the regression
coefficient b).

Here is a simple regression model for the weekly returns of an investment
fund. The period considered goes from 4 October 1994 to 4 October 1999. The
objective of the analysis is to study the dependence of the returns on the weekly
variations of a stock market index typically used as benchmark (predictor) of the
returns themselves, which is named MSCI WORLD.

Figure 4.3 shows the behaviour of a simple regression model for this data set,
along with the scatterplot matrix. The intercept parameter a has been set to zero
before adapting the model. This was done to obtain a fitted model that would the
closest possible to the theoretical financial model known as capital asset pricing
model. The slope parameter of the regression line in Figure 4.3 is calculated

R
E 
N 
D

WORLD

5

5
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−5

0

0

Figure 4.3 Example of a regression line fit.
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on the basis of the data, according to the formula previously presented, from
which it turns out that b = 0.8331. Therefore, the obtained regression line can
be analytically described by the equation

REND = 0.8331 WORLD,

where REND is the response variable and WORLD the explanatory variable. The
main utility of this model is in prediction: on the basis of the fitted model, we
can forecast that if the WORLD index increases by 10% in a week, the fund
returns will increase by 8.331%.

4.3.2 Properties of the residuals

We will now look at some important properties of the regression residuals that will
permit us to draw some operational conclusions for the diagnostic phase of the
model. We will also see an important geometric interpretation of the regression
line, an interpretation we can use in the multivariate case. From the first normal
equation we have that

n∑
i=1

ei =
n∑

i=1

(yi − ŷi ) = 0,

which shows that the sum of the residuals is null. If in the regression line we set
b = 0, the arithmetic mean is obtained as a particular linear fit of the dispersion
diagram. Such a fit predicts Ywith a constant function, ignoring the information
provided by X. This property of the regression line coincides, in this particular
case, with one of the properties of the arithmetic mean.

From the second normal equation we have that

n∑
i=1

eixi =
n∑

i=1

(yi − ŷi )xi = 0.

This shows that the residuals are uncorrelated with the explanatory variable. It
can also be shown that

n∑
i=1

ei ŷi =
∑

ei (a + bxi) = a
∑

ei + b
∑

eixi = 0,

and, therefore, the residuals are uncorrelated also with the fitted Y values.
To investigate the goodness of fit of the regression line, these properties of

the residuals suggest that we plot the residuals against the explanatory variable
and that we plot the residuals against the fitted values. Both should show a null
correlation in mean, and it is interesting to see whether this null correlation is
uniform for all the observations considered or whether it arises from compensa-
tion of underfit (i.e. the fitted values are smaller than the observed values) and
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overfit (i.e. the fitted values are greater than the observed values). Compensation
of underfit or overfit reduces the validity of the fit. Figure 4.3 shows a uniform
distribution of the residuals. There is a slight difference in behaviour between the
central part of the regression line, where the variability of the residuals is much
larger than in the rest. But this difference does not undermine the excellent fit of
the regression line to the data.

The following geometric interpretation is developed for the bivariate case but
it can also be extended to the multivariate case. The columns of the data matrix
are vectors of dimension n. Therefore they can be thought of as belonging to a
linear space. If the variables are quantitative, this space will be the Euclidean
space R

n. In the bivariate case under examination in R
n there will be the vectors

y, x and also μ = (1, . . . , 1)′, the column vector needed to obtain the arithmetic
means of Y and X. In geometric terms, the regression line is a linear combination
of two vectors, ŷ = aμ + bx, determined by two parameters aand b. Therefore
it identifies a linear subspace (hyperplane) of R

n of dimension 2. In general, if
we consider k explanatory variables, we obtain a linear subspace of dimension
k + 1.

To determine a and b we apply the method of least squares. In geometric terms,
we determine a vector in R

n that minimises the Euclidean distance between the
observed vector y in the space R

n and the estimated vector ŷ belonging to the
subspace of dimension k = 2 in R

n. The square of this distance is given by

d2(y, ŷ) =
∑

(yi − ŷi)
2.

The least squares method minimises the above distance by setting ŷ equal to the
projection of the vector y on the subspace of dimension 2. The properties of
the residuals help us to understand what this projection means. The projection
ŷ is orthogonal to the vector of the residuals e (third property). The residuals
are orthogonal to x (second property) and to μ (first property). We can therefore
conclude that the least squares method defines a right-angled triangle, having y
as the hypotenuse and ŷ and e as the other two sides.

A least squares principle also forms the basis of principal component anal-
ysis (Section 3.5); the difference is that in linear regression the distance to be
minimised is measured with respect to the response variable only, whereas in
principal component analysis it is measured in terms of all variables. We expand
on these ideas in the next subsection, on goodness of fit, but first let us see
how to interpret the arithmetic mean in geometric terms. The arithmetic mean is
definable as the constant quantity, a, that minimises the expression

d2(y, a) =
∑

(yi − a)2

which represents the distance between y in R
n and a constant, a, belonging to

the subspace of the real numbers of dimension 1 in R
n. Therefore the arithmetic

mean is also a solution of the least squares method – it is the projection ŷ of the
vector of the observations y in the subspace R.
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4.3.3 Goodness of fit

The regression line represents a linear fit of the dispersion diagram and therefore
involves a degree of approximation. We want to measure the accuracy of that
approximation. An important judgement criterion is based on a decomposition
of the variance of the dependent variable. Recall that the variance is a mea-
sure of variability, and variability in statistics means ‘information’. By applying
Pythagoras’ theorem to the right-angled triangle in Section 4.3.2, we obtain

∑
(yi − y)2 =

∑
(ŷi − y)2 +

∑
(yi − ŷi )

2.

This identity establishes that the total sum of squares (SST), on the left, equals
the sum of squares explained by the regression (SSR) plus the sum of squares of
the errors (SSE). It can also be written as

SST = SSR + SSE .

These three quantities are called deviances; if we divide them by the number of
observations n, and denote statistical variables using the corresponding capital
letters, we obtain

Var(Y ) = Var(Ŷ ) + Var(E).

We have decomposed the variance of the response variable into two components:
the variance ‘explained’ by the regression line, and the ‘residual’ variance. This
leads to our main index for goodness of fit of the regression line; it is the index
of determination R2, defined by

R2 = Var(Ŷ )

Var(Y )
= 1 − Var(E)

Var(Y )
.

The coefficient R2 is equivalent to the square of the linear correlation coefficient,
so it takes values between 0 and 1. It is equal to 0 when the regression line
is constant (Y = y, i.e. b = 0); it is equal to 1 when the fit is perfect (the
residuals are all null). In general, a high value of R2 indicates that the dependent
variable Y can be well predicted by a linear function of X. The R2 coefficient
of cluster analysis can be derived in exactly the same way by substituting the
group means for the fitted line. From the definition of R2, notice that Var(E) =
Var(Y )(1 − R2). This relationship shows how the error in predicting Y reduces
from Var(Y ), when the predictor is the mean (Y = y), to Var(E), when the
predictor is ŷi = a + bxi . Notice that the linear predictor is at least as good as
the mean predictor and its superiority increases with R2 = r2(X, Y ).

Figure 4.3 has R2 equal to 0.81. This indicates a good fit of the regression
line to the data. For the time being, we cannot establish a threshold value for R2,
above which we can say that the regression is valid, and vice versa. We can do
this if we assume a normal linear model, as in Section 4.11.

R2 is only a summary index. Sometimes it is appropriate to augment it with
diagnostic graphical measures, which permit us to understand where the regres-
sion line approximates the observed data well and where the approximation is



MODEL SPECIFICATION 63

2

−2

−6 −4 −2 2 4

0

0

R
E 
N 
D

R

P REND

Figure 4.4 Diagnostic plot of a regression model.

poorer. Most of these tools plot the residuals and see what they look like. If
the linear regression model is valid, the Y points should be distributed around
the fitted line in a random way, without showing obvious trends. It may be a
good starting point to examine the plot of the residuals against the fitted values
of the response variable. If the plot indicates a difficult fit, look at the plot of
the residuals with respect to the explanatory variable and try to see where the
explanatory variable is above or below the fit. Figure 4.4 is a diagnostic plot
of the residuals (R REND) against the fitted values (P REND) for the financial
data in Figure 4.3. The diagnostic confirms a good fit of the regression line.
Determination of the regression line can be strongly influenced by the presence
of anomalous values, or outliers. This is because the calculation of the parame-
ters is fundamentally based on determining mean measures, so it is sensitive to
the presence of extreme values. Before fitting a regression model, it is wise to
conduct accurate exploratory analysis to identify anomalous observations. Plot-
ting the residuals against the fitted values can support the univariate analysis of
Section 3.1 in locating such outliers.

4.3.4 Multiple linear regression

We now consider a more general (and realistic) situation, in which there is more
than one explanatory variable. Suppose that all variables contained in the data
matrix are explanatory, except for the variable chosen as response variable. Let
k be the number of such explanatory variables. The multiple linear regression is
defined, for i = 1, 2, . . . , n, by

yi = a + b1xi1 + b2xi2 + . . . + bkxik + ei

or, equivalently, in more compact matrix terms,

Y = Xb + E,
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where, for all the n observations considered, Y is a column vector with n rows
containing the values of the response variable; X is a matrix with n rows and
k + 1 columns containing for each column the values of the explanatory variables
for the n observations, plus a column (to refer to the intercept) containing n values
equal to 1; b is a vector with k + 1 rows containing all the model parameters to
be estimated on the basis of the data (the intercept and the k slope coefficients
relative to each explanatory variable); and E is a column vector of length n

containing the error terms. Whereas in the bivariate case the regression model
was represented by a line, now it corresponds to a (k + 1)-dimensional plane,
called the regression plane. Such a plane is defined by the equation

ŷi = a + b1xi1 + b2xi2 + · · · + bkxik.

To determine the fitted plane it is necessary to estimate the vector of the param-
eters (a, b1, . . . , bk) on the basis of the available data. Using the least squares
optimality criterion, as before, the b parameters will be obtained by minimising
the square of the Euclidean distance:

d2(y, ŷ) =
n∑

i=1

(yi − ŷi)
2.

We can obtain a solution in a similar way to bivariate regression; in matrix terms
it is given by Ŷ = Xβ, where

β = (
X′X

)−1 X′Y .

Therefore, the optimal fitted plane results to be defined by

Ŷ = X
(
X′X

)−1 X′Y = HY.

In geometric terms, the previous expression establishes that the optimal plane
is obtained as the projection of the observed vector y ∈ R

n on to the (k +
1)-dimensional hyperplane. Here the projection operator is the matrix H; in bivari-
ate regression with a = 0 the projection operator is b. In fact, for k = 1 the two
parameters in β coincide with parameters a and b in the bivariate case. The
properties of the residuals we obtained for the bivariate case can be extended to
the multivariate case.

We now apply multiple regression to the investment fund data we have been
investigating. We assume a multifactorial model, in conformity with the theory
of the arbitrage pricing theory (APT) model. Instead of considering the WORLD
index as a unique explanatory variable, we use five indexes relative to spe-
cific geographic areas – JAPAN, PACIFIC, EURO, NORDAM, COMIT – as the
explanatory variables of the fund return (REND). Table 4.4 summarises the out-
come. Notice that the indexes EURO and NORDAM have the strongest effect
on the fund return, giving estimated values for the slope regression coefficients
that are noticeably greater than the other indexes. For goodness of fit we can still
use the variance decomposition identity we obtained for bivariate regression,

Var(Y ) = Var(Ŷ ) + Var(E),
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Table 4.4 Least squares estimates
from a multiple regression model.

Variable Parameter estimate

INTERCEPT −0.0077
COMIT −0.0145
JAPAN 0.0716
PACIFIC 0.0814
EURO 0.3530
NORDAM 0.3535

with Ŷnow indicating the regression plane fit. This permits us to define the
coefficient of multiple determination as a summary index for the plane’s goodness
of fit:

R2 = Var(Ŷ )

Var(Y )
= 1 − Var(E)

Var(Y )
.

The terminology adopted reflects the fact that the plane’s goodness of fit depends
on the joint effect of the explanatory variables on the response variable. In bivari-
ate regression R2 is simply the square of the linear correlation coefficient of the
response variable with the single explanatory variable; in multivariate regression
the relationship is not so straightforward, due to the presence of more than one
explanatory variable. An important aim of multivariate regression is to under-
stand not only the absolute contribution of the fitted plane to explaining the
variability of Y , as expressed by R2, but also to determine the partial contribu-
tion of each explanatory variable. We now examine in greater detail the variance
decomposition identity. It can be demonstrated that

Var (Y ) =
k∑

j=1

bj Cov(Xj , Y ) + Var(E).

But in general,

bj 	= Cov(Xj , Y )

Var (Xi)
.

If the previous equation were true we would obtain

Var (Y ) =
k∑

j=1

Var(Y )r2(Xj , Y ) + Var(E)

and, therefore,

Var(Ŷ ) = Var
(
Ŷ1
)+ Var

(
Ŷ2
)+ · · · + Var

(
Ŷk

)
so that

R2 =
k∑

j=1

r2
Y,Xj

.
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The variance of Y explained by the fitting plane would be equal to the sum of
the variance of Y explained by each of the fitting lines, constructed separately
for each of the explanatory variables.

However, this situation occurs only when the explanatory variables are
uncorrelated – for example, if the explanatory variables are principal compo-
nents, obtained using the method in Section 3.5. In general it can be shown that
the overall contribution of the fitted plane depends on the single contributions
through the recursive relationship

R2 =
k∑

j=1

r2
Y,Xj |Xi<j

(
1 − R2

Y,X1,...,Xj−1

)
,

where R2
Y,X1,...,Xj−1

denotes the coefficient of multiple correlation between Y

and the fitted plane determined by the explanatory variables X1, . . . , Xj−1, and
rY,Xj |Xi<j

denotes the coefficient of partial correlation between Y and Xj , con-
ditional on the ‘previous’ variables X1, . . . , Xj−1. To clarify how his works in
practice, consider the case of two explanatory variables (k = 2). Fitting first X1

and then X2, we get

R2 = r2
Y,X1

+ r2
Y,X2|X1

(
1 − R2

Y,X1

)
.

The term in parentheses takes the amount of variance not explained by the regres-
sion (of Y on X1) and reduces it by a fraction equal to the square of the partial
correlation coefficient between itself and the response variable, conditional on
the variable X1 already being present.

To summarise, a single explanatory variable, say Xj , makes an additive con-
tribution to the fitting plane, therefore R2 increases as the number of variables
increases. However, the increase is not necessarily equal to r2

Y,Xj
. This occurs

only in the uncorrelated case. In general, it can be smaller or greater depending
on the degree of correlation of the response variable with those already present,
and of the latter with Xj .

When the explanatory variables are correlated, the coefficient of regression
estimated for a certain variable can change its sign and magnitude according to
the order with which the explanatory variables are inserted in the fitted plane.
This can easily be verified with a real application and it emphasises the impor-
tance of ordering the explanatory variables. Software packages order the variables
according to their predictive capacity, obtained from an exploratory analysis.
They might order the variables according to the absolute value of the linear
correlation coefficient r(X, Y ).

Note the importance of the partial correlation coefficient in explaining an extra
variable’s contribution to the fitted plane. Consider a fitted plane with k explana-
tory variables. Suppose we want to add a (k + 1)th explanatory variable. The
contribution of this variable will be the increase in the variance explained by
the plane, from Var

(
Ŷk

)
to Var

(
Ŷk+1

)
. This contribution can be measured by the

difference
Var

(
Ŷk+1

)− Var
(
Ŷk

)
.
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The square of the coefficient of partial correlation relates this additional contri-
bution to the variance not explained by the fitted plane Ŷk:

r2
Y,Xk+1|X1,...,Xk

= Var
(
Ŷk+1

)− Var
(
Ŷk

)
Var(Y ) − Var(Ŷk)

.

In our financial example the model with the five explanatory variables has a
coefficient of multiple determination equal to 0.8191. Among the five considered
explanatory variables, the COMIT variable has a coefficient of partial correlation
with the response variable, given all the other explanatory variables, equal to
about 0.0003. This suggests the possible elimination of the COMIT variable,
as it appears substantially irrelevant after having inserted the other explanatory
variables. In fact, the coefficient of multiple determination relative to the fit of a
model that explains the return as a function of the other four explanatory variables
is equal to 0.8189, only slightly inferior to 0.8191.

4.4 Logistic regression

Section 4.3 considered a predictive model for a quantitative response variable;
this section considers a predictive model for a qualitative response variable.
A qualitative response problem can often be decomposed into binary response
problems (e.g. Agresti, 1990). The building block of most qualitative response
models is the logistic regression model, one of the most important predictive
data mining methods. Let yi (i = 1, 2, . . . , n) be the observed values of a binary
response variable, which can take only the values 0 or 1. The level 1 usually
represents the occurrence of an event of interest, often called a ‘success’. A
logistic regression model is defined in terms of fitted values to be interpreted as
probabilities (Section 4.9) that the event occurs in different subpopulations:

πi = P (Yi = 1) , i = 1, 2, . . . , n.

More precisely, a logistic regression model specifies that an appropriate function
of the fitted probability of the event is a linear function of the observed values
of the available explanatory variables. Here is an example:

log

[
πi

1 − πi

]
= a + b1xi1 + b2xi2 + · · · + bkxik.

The left-hand side defines the logit function of the fitted probability, logit (πi),
as the logarithm of the odds for the event, namely, the natural logarithm of
the ratio between the probability of occurrence (success) and the probability of
non-occurrence (failure):

logit (πi) = log

[
πi

1 − πi

]
.

Once πi is calculated, on the basis of the data, a fitted value for each binary
observation ŷi can be obtained, introducing a cut-off threshold value of πi above
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which ŷi = 1 and below which ŷi = 0. The resulting fit will seldom be perfect, so
there will typically be a fitting error that will have to be kept as low as possible.
Unlike linear regression, the observed response values cannot be decomposed
additively as the sum of a fitted value and an error term.

The choice of the logit function to describe the link between πi and the linear
combination of the explanatory variables is motivated by the fact that with this
choice such probability tends towards 0 and 1 gradually. And these limits are
never exceeded, guaranteeing that πi is a valid probability. A linear regression
model would be inappropriate for predicting a binary response variable, for the
simple reason that a linear function is unlimited, so the model could predict values
for the response variable outside the interval [0,1], which would be meaningless.
But other types of link are possible (see Section 4.12).

4.4.1 Interpretation of logistic regression

The logit function implies that the dependence of πi on the explanatory variables
is described by a sigmoid or S-shaped curve. By inverting the expression that
defines the logit function, we obtain

πi = exp(a + b1xi1 + b2xi2 + . . . . + bkxik)

1 + exp(a + b1xi1 + b2xi2 + . . . . + bkxik)
.

This relationship corresponds to the function known as ‘logistic curve’, often
employed in diffusion problems, including the launch of a new product or the
diffusion of a reserved piece of information. These applications usually concern
the simple case of only one explanatory variable, corresponding to a bivariate
logistic regression model,

πi = ea+b1xi1

1 + ea+b1xi1
.

Here the value of the success probability varies according to the observed values
of the unique explanatory variable. This simplified case is useful to visualise the
behaviour of the logistic curve, and to make two more remarks about interpreta-
tion. Figure 4.5 shows the graph of the logistic function that links the probability
of success πi to the possible values of the explanatory variable xi , corresponding
to two different signs of the coefficient β. We have assumed the more general
setting, in which the explanatory variable is continuous and, therefore, the suc-
cess probability can be written as π(x). In the case of the discrete or qualitative
explanatory variables the results will be a particular case of what we will now
describe. Notice that the parameter β determines the rate of growth or increase
of the curve; the sign of β indicates if the curve increases or decreases and the
magnitude of β determines the rate of that increase or decrease:

• When β > 0, π (x) increases as x increases.
• When β < 0, π (x) decreases as x increases.

Furthermore, for β → 0 the curve tends to become a horizontal straight line. In
particular, when β = 0, Y is independent of X.



MODEL SPECIFICATION 69

x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π 
(x

)

π 
(x

)

β>0

x

 β<0

Figure 4.5 The logistic function.

Although the probability of success is a logistic function and therefore not
linear in the explanatory variables, the logarithm of the odds is a linear function
of the explanatory variables:

log

(
π (x)

1 − π (x)

)
= α + βx.

Positive log-odds favour Y = 1 whereas negative log-odds favour Y = 0. The
log-odds expression establishes that the logit increases by β units for a unit
increase in x. It could be used during the exploratory phase to evaluate the
linearity of the observed logit. A good linear fit of the explanatory variable with
respect to the observed logit will encourage us to apply the logistic regression
model. The concept of the odds was introduced in Section 3.4. For the logistic
regression model, the odds of success can be expressed by

π (x)

1 − π (x)
= eα+βx = eα(eβ)x.

This exponential relationship offers a useful interpretation of the parameter β: a
unit increase in x multiplies the odds by a factor eβ . In other words, the odds at
level x + 1 equal the odds at level x multiplied by eβ . When β = 0 we obtain
eβ = 1, therefore the odds do not depend on X.

What about the fitting algorithm, the properties of the residuals, and goodness
of fit indexes? These concepts can be introduced by interpreting logistic regres-
sion as a linear regression model for appropriate transformation of the variables.
They are examined as part of the broader field of generalised linear models
(Section 4.12), which should make them easier to understand. A real application
of the model is also postponed until Section 4.12.
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4.4.2 Discriminant analysis

Linear regression and logistic regression models are essentially scoring models:
they assign a numerical score to each value to be predicted. These scores can
be used to estimate the probability that the response variable assumes a pre-
determined set of values or levels (e.g. all positive values if the response is
continuous or a given level if it is binary). Scores can then be used to classify
the observations into disjoint classes. This is particularly useful to classify new
observations not already present in the database. This objective is more natural
for logistic regression models, where predicted scores can be converted in binary
values, thus classifying observations in two classes: those predicted to be 0 and
those predicted to be 1. To do this, we need a threshold or cut-off rule. This type
of predictive classification rule is studied by the classical theory of discriminant
analysis. We consider the simple (and common) case in which each observation
is to be classified using a binary response: it is either in class 0 or in class 1.
The more general case is similar, but more complex to illustrate.

The choice between the two classes is usually based on a probabilistic criterion:
choose the class with the highest probability of occurrence, on the basis of the
observed data. This rationale, which is optimal when equal misclassification costs
are assumed (Section 4.9), leads to an odds-based rule that allows us to assign
an observation to class 1 (rather than class 0) when the odds in favour of class
1 are greater than 1, and vice versa. Logistic regression can be expressed as a
linear function of log-odds, therefore a discriminant rule can be expressed in
linear terms, by assigning the ith observations to class 1 if

a + b1xi1 + b2xi2 + . . . . + bkxik > 0.

With a single predictor variable, the rule simplifies to

a + bxi > 0.

This rule is known as the logistic discriminant rule; it can be extended to quali-
tative response variables with more than two classes.

An alternative to logistic regression is linear discriminant analysis, also known
as Fisher’s rule. It is based on the assumption that, for each given class of the
response variable, the explanatory variables are multivariate normally distributed
with a common variance–covariance matrix. Then it is also possible to obtain a
rule in linear terms. For a single predictor, the rule assigns observation i to class
1 if

log
n1

n0
− (x1 − x0)

2

2s2
+ xi(x1 − x0)

s2
> 0,

where n1 and n0 are the number of observations in classes 1 and 0; x1 and x0

are the observed means of the predictor X in the two classes, 1 and 0; and s2

is the variance of X for all the observations. Both Fisher’s rule and the logistic
discriminant rule can be expressed in linear terms, but the logistic rule is simpler
to apply and interpret and does not require probability assumptions. Fisher’s
rule is more explicit than the linear discriminant rule. By assuming a normal
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distribution, we can add more information to the rule, such as the assessment of
its sampling variability.

4.5 Tree models

While linear and logistic regression methods produce a score and then possibly a
classification according to a discriminant rule, tree models begin by producing a
classification of observations into groups and then obtain a score for each group.
Tree models are usually divided into regression trees, when the response variable
is continuous, and classification trees, when the response variable is quantitative
discrete or qualitative (categorical). However, as most concepts apply equally
well to both, here we do not distinguish between them, unless otherwise specified.
Tree models can be defined as a recursive procedure, through which a set of n

statistical units are progressively divided into groups, according to a division rule
that aims to maximise a homogeneity or purity measure of the response variable
in each of the obtained groups. At each step of the procedure, a division rule is
specified by the choice of an explanatory variable to split and the choice of a
splitting rule for the variable, which establishes how to partition the observations.

The main result of a tree model is a final partition of the observations. To
achieve this it is necessary to specify stopping criteria for the division process.
Suppose that a final partition has been reached, consisting of g groups (g < n).
Then for any given response variable observation yi , a regression tree produces
a fitted value ŷi that is equal to the mean response value of the group to which
the observation i belongs. Let m be such a group; formally we have that

ŷi =
∑nm

l=1
ylm

nm

.

For a classification tree, fitted values are given in terms of fitted probabilities
of affiliation to a single group. Suppose only two classes are possible (binary
classification); the fitted success probability is therefore

πi =
∑nm

l=1
ylm

nm

,

where the observations ylm can take the value 0 or 1, and therefore the fitted
probability corresponds to the observed proportion of successes in group m.
Notice that both ŷi and πi are constant for all the observations in the group.

The output of the analysis is usually represented as a tree; it looks very similar
to the dendrogram produced by hierarchical clustering (Section 4.2). This implies
that the partition performed at a certain level is influenced by the previous choices.

For classification trees, a discriminant rule can be derived at each leaf of the
tree. A typical rule is to classify all observations belonging to a terminal node
in the class corresponding to the most frequent level (mode). This corresponds
to the so-called ‘majority rule’. Other ‘voting’ schemes are also possible but, in
the absence of other considerations, this rule is the most reasonable. Therefore
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each of the leaves points out a clear allocation rule of the observations, which
is read by going through the path that connects the initial node to each of them.
Every path in a tree model thus represents a classification rule. Compared with
discriminant models, tree models produce rules that are less explicit analytically
but easier to understand graphically.

Tree models can be considered as non-parametric predictive models, since they
do not require assumptions about the probability distribution of the response
variable. In fact, this flexibility means that tree models are generally applicable,
whatever the nature of the dependent variable and the explanatory variables. But
this greater flexibility may have disadvantages, such as a greater demand for
computational resources. Furthermore, their sequential nature and their algorith-
mic complexity can make them dependent on the observed data, and even a small
change might alter the structure of the tree. It is difficult to take a tree structure
designed for one context and generalise it to other contexts.

Despite their graphical similarities, there are important differences between
hierarchical cluster analysis and classification trees. Classification trees are pre-
dictive rather than descriptive. Cluster analysis performs an unsupervised clas-
sification of the observations on the basis of all available variables, whereas
classification trees perform a classification of the observations on the basis of
all explanatory variables and supervised by the presence of the response (target)
variable. A second important difference concerns the partition rule. In classifi-
cation trees the segmentation is typically carried out using only one explanatory
variable at a time (the maximally predictive explanatory variable), whereas in
hierarchical clustering the division (agglomerative) rule between groups is estab-
lished on the basis of considerations on the distance between them, calculated
using all the available variables.

We now describe in more detail the operational choices that have to be made
before fitting a tree model to the data. It is appropriate to start with an accurate
preliminary exploratory analysis. First, it is necessary to verify that the sample
size is sufficiently large. This is because subsequent partitions will have fewer
observations, for which the fitted values may have a lot of variance. Second,
it is prudent to conduct accurate exploratory analysis on the response variable,
especially to identify possible anomalous observations that could severely distort
the results of the analysis. Pay particular attention to the shape of the response
variable’s distribution. For example, if the distribution is strongly asymmetrical,
the procedure may lead to isolated groups with few observations from the tail of
the distribution. Furthermore, when the dependent variable is qualitative, ideally
the number of levels should not be too large. Large numbers of levels should be
reduced to improve the stability of the tree and to achieve improved predictive
performance.

After the preprocessing stage, choose an appropriate tree model algorithm,
paying attention to how it performs. The two main aspects are the division criteria
and the methods employed to reduce the dimension of the tree. The most popular
algorithm in the statistical community is the CART algorithm (Breiman et al.,
1984), which stands for ‘classification and regression trees’. Other algorithms
include CHAID (Kass, 1980), C4.5 and its later version, C5.0 (Quinlan, 1993).
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C4.5 and C5.0 are widely used by computer scientists. The first versions of C4.5
and C5.0 were limited to categorical predictors, but the most recent versions
are similar to CART. We now look at two key aspects of the CART algorithm:
division criteria and pruning, employed to reduce the complexity of a tree.

4.5.1 Division criteria

The main distinctive element of a tree model is how the division rule is chosen
for the units belonging to a group, corresponding to a node of the tree. Choosing
a division rule means choosing a predictor from those available, and choosing
the best partition of its levels. The choice is generally made using a goodness
measure of the corresponding division rule. This allows us to determine, at each
stage of the procedure, the rule that maximises the goodness measure. A goodness
measure �(t) is a measure of the performance gain in subdividing a (parent)
node t according to a segmentation into a number of (child) nodes. Let tr , r =
1, . . . , s, denote the child groups generated by the segmentation (s = 2 for a
binary segmentation) and let pr denote the proportion of observations, among
those in t , that are allocated to each child node, with

∑
pr = 1. The criterion

function is usually expressed as

�(s, t) = I (t) −
s∑

r=1

I (tr )pr,

where the symbol I denotes an impurity function. High values of the criterion
function imply that the chosen partition is a good one. The concept of impurity
is used to measure the variability of the response values of the observations. In
a regression tree, a node will be pure if it has null variance (all observations are
equal) and impure if the variance of the observations is high. More precisely, for
a regression tree, the impurity at node m is defined by

IV (m) =
∑nm

l=1
(ylm − ŷm)2

nm

,

where ŷm is the fitted mean value for group m. For regression trees impurity
corresponds to the variance; for classification trees alternative measures should
be considered. Here we present three choices. The misclassification impurity is
given by

IM(m) =
∑nm

l=1
1(ylm, yk)

nm

= 1 − πk,

where yk is the modal category of the node, with fitted probability πk , and the
function 1(·, ·) denotes the indicator function, which takes the value 1 if ylm = yk

and 0 otherwise. The Gini impurity is

IG(m) = 1 −
k(m)∑
i=1

π2
i ,
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where the πi are the fitted probabilities of the levels present at node m, which
are at most k(m). Finally, the entropy impurity is

IE(m) = −
k(m)∑
i=1

πi logπi,

with πi as above. Notice that the Gini impurity and entropy impurity correspond
to the application of the indexes of heterogeneity (Section 3.1.3) to the obser-
vations at node m. Compared to the misclassification impurity, both are more
sensitive to changes in the fitted probabilities; they decrease faster than the mis-
classification rate as the tree grows. Therefore, to obtain a parsimonious tree,
choose the misclassification impurity.

Besides giving a useful split criterion, an impurity measure can be used to
give an overall assessment of a tree. Let N(T ) be the number of leaves (terminal
nodes) of a tree T . The total impurity of T is given by

I (T ) =
N(T )∑
m=1

I (tm)pm

where pm are the observed proportions of observations in the final classification.
In particular, the misclassification impurity constitutes a very important assess-
ment of the goodness of fit of a classification tree. Even when the number of
leaves coincides with the number of levels of the response variable, it need not be
that all the observations classified in the same node actually have the same level
of the response variable. The percentage of misclassifications, or the percent-
age of observations classified with a level different from the observed value, is
also called misclassification error or misclassification rate; it is another important
overall assessment of a classification tree.

The impurity measure used by CHAID is the distance between the observed
and expected frequencies; the expected frequencies are calculated using the
hypotheses for homogeneity for the observations in the considered node. This
split criterion function is the Pearson X2 index. If the decrease in X2 is signif-
icant (i.e. the p-value is lower than a prespecified level α) then a node is split;
otherwise it remains unsplit and becomes a leaf.

4.5.2 Pruning

In the absence of a stopping criterion, a tree model could grow until each node
contains identical observations in terms of values or levels of the dependent vari-
able. This obviously does not constitute a parsimonious segmentation. Therefore
it is necessary to stop the growth of the tree at a reasonable dimension. The
ideal final tree configuration is both parsimonious and accurate. The first prop-
erty implies that the tree has a small number of leaves, so that the predictive rule
can be easily interpreted. The second property implies a large number of leaves
that are maximally pure. The final choice is bound to be a compromise between
the two opposing strategies. Some tree algorithms use stopping rules based on
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thresholds on the number of the leaves, or on the maximum number of steps
in the process. Other algorithms introduce probabilistic assumptions on the vari-
ables, allowing us to use suitable statistical tests. In the absence of probabilistic
assumptions, the growth is stopped when the decrease in impurity is too small.
The results of a tree model can be very sensitive to the choice of a stopping rule.

The CART method uses a strategy somewhat different from the stepwise stop-
ping criteria; it is based on the concept of pruning. First the tree is built to its
greatest size. This might be the tree with the greatest number of leaves, or the tree
in which every node contains only one observation or observations all with the
same outcome value or level. Then the tree is ‘trimmed’ or ‘pruned’ according to
a cost-complexity criterion. Let T be a tree, and let T0 denote the tree of greatest
size. From any tree a subtree can be obtained by collapsing any number of its
internal (non-terminal) nodes. The idea of pruning is to find a subtree of T0 in an
optimal way, so as to minimise a loss function. The loss function implemented
in the CART algorithm depends on the total impurity of the tree T and the tree
complexity:

Cα(T ) = I (T ) + αN(T )

where, for a tree T , I (T ) is the total impurity function calculated at the leaves,
and N(T ) is the number of leaves; with α a constant that penalises complexity
linearly. In a regression tree the impurity is a variance, so the total impurity can
be determined as

I (T ) =
N(T )∑
m=1

IV (m)nm.

We have seen how impurity can be calculated for classification trees. Although
any of the three impurity measures can be used, the misclassification impurity
is usually chosen in practice. Notice that the minimisation of the loss function
leads to a compromise between choosing a complex model (low impurity but high
complexity cost) and choosing a simple model (high impurity but low complexity
cost). The choice depends on the chosen value of α. For each α it can be shown
that there is a unique subtree of T0 that minimises Cα(T ).

A possible criticism of this loss function is that the performance of each tree
configuration is evaluated with the same data used for building the classification
rules, which can lead to optimistic estimates of the impurity. This is particularly
true for large trees, due to the phenomenon we have already seen for regres-
sion models: the goodness of fit to the data increases with the complexity, here
represented by the number of leaves. An alternative pruning criterion is based
on the predictive misclassification errors, according to a technique known as
cross-validation (Section 5.4). The idea is to split the available data set, use one
part to train the model (i.e. to build a tree configuration), and use the second
part to validate the model (i.e. to compare observed and predicted values for
the response variable), thereby measuring the impurity in an unbiased fashion.
The loss function is thus evaluated by measuring the complexity of the model
fitted on the training data set, whose misclassification errors are measured on the
validation data set.
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Figure 4.6 Misclassification rates.

To further explain the fundamental difference between training and validation
error, Figure 4.6 takes a classification tree and illustrates the typical behaviour of
the misclassification errors on the training and validation data sets, as functions
of model complexity. I (T ) is always decreasing on the training data. I (T ) is
non-monotone on the validation data; it usually follows the behaviour described
in the figure, which allows us to choose the optimal number of leaves as the
value of N(T ) such that I (T ) is minimum. For simplicity, Figure 4.6 takes
α = 0. When greater values for the complexity penalty are specified, the optimal
number of nodes decreases, reflecting aversion to complexity.

The misclassification rate is not the only possible performance measure to
use during pruning. Since the costs of misclassification can vary from one class
to another, the misclassification impurity could be replaced by a simple cost
function that multiplies the misclassification impurity by the costs attached to the
consequence of such errors. This is further discussed in Section 5.5.

The CHAID algorithm uses chi-squared testing to produce an implicit stopping
criterion based on testing the significance of the homogeneity hypothesis; the
hypothesis is rejected for large values of χ2. If homogeneity is rejected for
a certain node, then splitting continues, otherwise the node becomes terminal.
Unlike the CART algorithm, CHAID prefers to stop the growth of the tree through
a stopping criterion based on the significance of the chi-squared test, rather than
through a pruning mechanism.

4.6 Neural networks

Neural networks can be used for many purposes, notably descriptive and pre-
dictive data mining. They were originally developed in the field of machine
learning to try to imitate the neurophysiology of the human brain through the
combination of simple computational elements (neurons) in a highly intercon-
nected system. They have become an important data mining method. However,
the neural networks developed since the 1980s have only recently have received
the attention from statisticians (e.g. Bishop, Ripley, 1995, 1996). Despite contro-
versies over the real ‘intelligence’ of neural networks, there is no doubt that they
have now become useful statistical models. In particular, they show a notable
ability to fit observed data, especially with high-dimensional databases, and data
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sets characterised by incomplete information, errors or inaccuracies. We will
treat neural networks as a methodology for data analysis; we will recall the
neurobiological model only to illustrate the fundamental principles.

A neural network is composed of a set of elementary computational units,
called neurons, connected together through weighted connections. These units
are organised in layers so that every neuron in a layer is exclusively connected
to the neurons of the preceding layer and the subsequent layer. Every neuron, also
called a node, represents an autonomous computational unit and receives inputs
as a series of signals that dictate its activation. Following activation, every neuron
produces an output signal. All the input signals reach the neuron simultaneously,
so the neuron receives more than one input signal, but it produces only one output
signal. Every input signal is associated with a connection weight. The weight
determines the relative importance the input signal can have in producing the final
impulse transmitted by the neuron. The connections can be exciting, inhibiting
or null according to whether the corresponding weights are respectively positive,
negative or null. The weights are adaptive coefficients that, by analogy with the
biological model, are modified in response to the various signals that travel on
the network according to a suitable learning algorithm. A threshold value, called
bias, is usually introduced. Bias is similar to an intercept in a regression model.

In more formal terms, a generic neuron j , with a threshold θj , receives n

input signals x = [x1, x2, . . . , xn] from the units to which it is connected in
the previous layer. Each signal is attached with an importance weight wj =[
w1j , w2j , . . . , wnj

]
.

The same neuron elaborates the input signals, their importance weights, and
the threshold value through a combination function. The combination function
produces a value called the potential, or net input. An activation function trans-
forms the potential into an output signal. Figure 4.7 schematically represents the
activity of a neuron. The combination function is usually linear, therefore the
potential is a weighted sum of the input values multiplied by the weights of
the respective connections. The sum is compared with the threshold value. The
potential of a neuron j is defined by the linear combination

Pj =
n∑

i=1

(
xiwij − θj

)
.

To simplify this expression, the bias term can be absorbed by adding a further
input with constant value, x0 = 1, connected to the neuron j through a weight
w0j = −θj :

Pj =
n∑

i=0

xiwij .

Now consider the output signal. The output of the j th neuron, yj , is obtained by
applying the activation function to the potential Pj :

yj = f
(
x, wj

) = f
(
Pj

) = f

(
n∑

i=0

xiwij

)
.
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Figure 4.7 Representation of the activity of a neuron in a neural network.

The quantities in bold are vectors.
In the definition of a neural network model, the activation function is typically

one of the elements to specify. Three types are commonly employed: linear,
stepwise and sigmoidal. A linear activation function is defined by

f
(
Pj

) = α + βPj ,

where Pj is defined on the set of real numbers, and α and β real constants; α = 0
and β = 1 is a particular case called the identity function, usually employed when
the model requires the output of a neuron is exactly equal to its level of activation
(potential). Notice the strong similarity between the linear activation function and
the expression for a regression line (Section 4.3). In fact, a regression model can
be seen as a simple type of neural network.

A stepwise activation function is defined by

f
(
Pj

) =
{
α, Pj ≥ θj ,

β, Pj < θj .

It can assume only two values depending on whether or not the potential exceeds
the threshold θj . For α = 1, β = 0 and θj = 0 we obtain the so-called sign
activation function, which takes the value 0 if the potential is negative and +1
if the potential is positive.

Sigmoidal, or S-shaped, activation functions are probably the most commonly
used. They produce only positive output; the domain of the function is the interval
[0, 1]. They are widely used because they are non-linear and also because they
are easily differentiable and understandable. A sigmoidal activation function is
defined by

f
(
Pj

) = 1

1 + e−αPj
,

where α is a positive parameter that regulates the slope of the function.
Another type of activation function, the softmax function, is typically used to

normalise the output of different but related nodes. Consider g of such nodes,
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and let their outputs be vj , j = 1, . . . , g. The softmax function normalises the
vj so that they sum to 1:

softmax
(

vj

)
= exp

(
vj

)
∑g

h=1
exp (vh)

, j = 1, . . . , g.

The softmax function is used in supervised classification problems, where the
response variable can take g alternative levels.

4.6.1 Architecture of a neural network

The neurons of a neural network are organised in layers. These layers can be of
three types: of input, of output or hidden. The input layer receives information
only from the external environment; each neuron in it usually corresponds to
an explanatory variable. The input layer does not perform any calculation; it
transmits information to the next level. The output layer produces the final results,
which are sent by the network to the outside of the system. Each of its neurons
corresponds to a response variable. In a neural network there are generally two or
more response variables. Between the output and the input layer there can be one
or more intermediate levels, called hidden layers because they are not directly in
contact with the external environment. These layers are exclusively for analysis;
their function is to take the relationship between the input variables and the
output variables and adapt it more closely to the data. In the literature there is
no standard convention for calculating the number of layers in a neural network.
Some authors count all the layers of neurons and others count the number of
layers of weighted neurons. We will use the weighted neurons and count the
number of layers that are to be learnt from the data. The ‘architecture’ of a
neural network refers to the network’s organisation: the number of layers, the
number of units (neurons) belonging to each layer, and the manner in which the
units are connected. Network architecture can be represented using a graph, hence
people often use the term ‘network topology’ instead of ‘network architecture’.
Four main characteristics are used to classify network topology:

• degree of differentiation of the input and output layer;
• number of the layers;
• direction of the flow of computation;
• type of connections.

The simplest topology is called autoassociative; it has a single layer of intra-
connected neurons. The input units coincide with the output units; there is no
differentiation. We will not consider this type of network, as it is of no statistical
interest. Networks with a single layer of weighted neurons are known as single
layer perceptrons. They have n input units (x1, . . . , xn) connected to a layer of
p output units

(
y1, . . . , yp

)
, through a system of weights. The weights can be
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represented in matrix form:⎡
⎢⎢⎢⎢⎢⎢⎣

w11 . . . w1j . . . w1p

...
...

...
...

...

wi1 . . . wij . . . wip

...
...

...
...

...

wn1 . . . wnj . . . wnp

⎤
⎥⎥⎥⎥⎥⎥⎦

,

for i = 1, . . . , n and j = 1, . . . , p; wij is the weight of the connection between
the ith neuron of the input layer and the j th neuron of the output layer.

Neural networks with more than one layer of weighted neurons, which con-
tain one or more hidden layers, are called multilayer perceptrons, and we will
concentrate on these. A two-layer network has one hidden layer; there are n

neurons in the input layer, h in the hidden layer and p in the output layer.
Weights wik (i = 1, . . . , n; k = 1, . . . , h) connect the input layer nodes with the
hidden layer nodes; weights zkj (k = 1, . . . , h; j = 1, . . . , p) connect the hid-
den layer nodes with the output layer nodes. The neurons of the hidden layer
receive information from the input layer, weighted by the weights wik , and pro-
duce outputs hk = f (x, wk), where f is the activation function of the units in
the hidden layer. The neurons of the output layer receive the outputs from the
hidden layer, weighted by the weights zkj , and produce the final network outputs
yj = g

(
h, zj

)
. The output of neuron j in the output layer is

yj = g

(∑
k

hkzkj

)
= g

(∑
k

zkjf

(∑
i

xiwik

))
.

This equation shows that the output values of a neural network are determined
recursively and typically in a non-linear way.

Different information flows lead to different types of network. In feedforward
networks the information moves in only one direction, from one layer to the next,
and there are no return cycles. In feedback networks it is possible for information
to return to previous layers. If each unit of a layer is connected to all the units
of the next layer, the network is described as totally interconnected; if each unit
is connected to every unit of every layer, the network is described as totally
connected.

Networks can also be classified into three types according to their connection
weightings: networks with fixed weights, supervised networks and unsupervised
networks. We shall not consider networks with fixed weights as they cannot learn
from the data and they cannot constitute a statistical model. Supervised networks
use a supervising variable, a concept introduced in Section 4.5. With a super-
vised network, there can be information about the value of a response variable
corresponding to the values of the explanatory variables; this information can be
used to learn the weights of the neural network model. The response variable
behaves as a supervisor for the problem. When this information is not available,
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the learning of the weights is exclusively based on the explanatory variables and
there is no supervisor. Here is the same idea expressed more formally:

• Supervised learning. Assume that each observation is described by a pair of
vectors (xi , ti) representing the explanatory and response variables, respec-
tively. Let D = {(x1, t1) , . . . , (xn, tn)} represent the set of all available obser-
vations. The problem is to determine a neural network yi = f (xi ), i =
1, . . . , n, such that the sum of the distances d(yi , ti ) is minimum. Notice
the analogy with linear regression models.

• Unsupervised learning. Each observation is described by only one vector,
with all available variables, D = {(x1) , . . . , (xn)}. The problem is the par-
titioning of the set D into subsets such that the vectors xi belonging to the
same subset are ‘close’ in comparison to a fixed measure of distance. This
is basically a classification problem.

We now examine the multilayer perceptron, an example of a supervised net-
work, and the Kohonen network, an example of an unsupervised network.

4.6.2 The multilayer perceptron

The multilayer perceptron is the most commonly used architecture for predictive
data mining. It is a feedforward network, with possibly several hidden layers, one
input layer and one output layer, totally interconnected. It can be considered as a
highly non-linear generalisation of the linear regression model when the output
variables are quantitative, or of the logistic regression model when the output
variables are qualitative.

Preliminary analysis
Multilayer perceptrons, and the neural networks in general, are often used ineffi-
ciently on real data because no preliminary considerations are applied. Although
neural networks are powerful computation tools for data analysis, they also
require exploratory analysis (Chapter 3).

Coding of the variables
The variables used in a neural networks can be classified according by type
(qualitative or quantitative) and by their role in the network (input or output).
Input and output in neural networks correspond to explanatory and response
variables in statistical methods. In a neural network, quantitative variables are
represented by one neuron. Qualitative variables, both explanatory and response,
are represented in a binary way using several neurons for every variable; the
number of neurons equals the number of levels of the variable. In practice the
number of neurons to represent a variable need not be exactly equal to the num-
ber of its levels. It is advisable to eliminate one level, and therefore one neuron,
since the value of that neuron will be completely determined by the others.
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Transformation of the variables
Once the variables are coded, a preliminary descriptive analysis may indicate the
need for some kind of transformation, perhaps to standardise the input variables
to weight them in a proper way. Standardisation of the response variable is not
strictly necessary. If a network has been trained with transformed input or output,
when it is used for prediction, the outputs must be mapped on to the original
scale.

Reduction of the dimensionality of the input variables
One of the most important forms of preprocessing is reduction of the dimension-
ality of the input variables. The simplest approach is to eliminate a subset of
the original inputs. Other approaches create linear or non-linear combinations of
the original variables to represent the input for the network. Principal component
methods can be usefully employed here (Section 3.5).

Choice of the architecture
The architecture of a neural network can have a fundamental impact on real
data. Nowadays, many neural networks optimise their architecture as part of the
learning process. Network architectures are rarely compared using the classical
methods described later in this chapter; this is because a neural network does not
need an underlying probabilistic model and seldom has one. Even when there is
an underlying probabilistic model, it is often very difficult to draw the distribution
of the statistical test functions. Instead it is possible to make comparison based
on the predictive performance of the alternative structures; an example is the
cross-validation method (Section 5.4).

Learning of the weights
Learning the weights in multilayer perceptrons appears to introduce no particu-
lar problems. Having specified an architecture for the network, the weights are
estimated on the basis of the data, as if they were parameters of a (complex)
regression model. But in practice there are at least two aspects to consider:

• The error function between the observed values and the fitted values could be
a classical distance function, such as the Euclidean distance or the misclas-
sification error, or it could depend in a probabilistic way on the conditional
distribution of the output variable with respect to the inputs.

• The optimisation algorithm needs to be a computationally efficient method
to obtain estimates of the weights by minimising the error function.

The error functions usually employed for multilayer perceptrons are based
on the maximum likelihood principle (Section 4.9). For a given training data
set D = {(x1, t1) , . . . , (xn, tn)}, this requires us to minimise the entropy error
function

E(w) = −
n∑

i=1

log p (ti |xi ; w),
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where p (ti |xi ; w) is the distribution of the response variable, conditional on the
values of the input values and weighting function. For more details, see Bishop
(1995). We now look at the form of the error function for the two principal appli-
cations of the multilayer perceptron: predicting a continuous response (predictive
regression) and a qualitative response (predictive classification).

Error functions for predictive regression
Every component ti,k of the response vector ti is assumed to be the sum of a
deterministic component and an error term, similar to linear regression:

ti,k = yi,k + εi,k, k = 1, . . . , q,

where yi,k = y (xi , w) is the kth component of the output vector yi . To obtain
more information from a neural network for this problem it can be assumed
that the error terms are normally distributed, similar to the normal linear model
(Section 4.11).

Since the objective of statistical learning is to minimise the error function in
terms of the weights, we can omit everything that does not depend on the weights.
We obtain

E(w) =
n∑

i=1

q∑
k=1

(ti,k − yi,k)
2.

This expression can be minimised using a least squares procedure (Section 4.3).
In fact, linear regression can be seen as a neural network model without hidden
layers and with a linear activation function.

Error functions for predictive classification
Multilayer perceptrons can also be employed for solving classification problems.
In this type of application, a neural network is employed to estimate the proba-
bilities of affiliation of every observation to the various groups. There is usually
an output unit for each possible class, and the activation function for each output
unit represents the conditional probability P (Ck |x ), where Ck is the kth class
and x is the input vector. The output value yi,k represents the fitted probability
that the observation i belongs to the kth group Ck . To minimise the error function
with respect to the weights, we need to minimise

E(w) = −
n∑

i=1

q∑
k=1

[
ti,k log yi,k + (

1 − ti,k
)

log
(
1 − yi,k

)]
,

which represents a distance based on the entropy index of heterogeneity (Section
3.1). Notice that a particular case of the preceding expression can be obtained
for the logistic regression model.

In fact, logistic regression can be seen as a neural network model without hid-
den nodes and with a logistic activation function and softmax output function. In
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contrast to logistic regression, which produces a linear discriminant rule, a mul-
tilayer perceptron provides a non-linear discriminant rule which is not amenable
to simple analytical description.

Choice of optimisation algorithm
In general, the error function E(w) of a neural network is a function highly
non-linear in the weights, so there may be many minima that satisfy the condition
∇E = 0. Consequently, it may not be possible, in general, to find a globally
optimal solution, w*. Therefore, we must resort to iterative algorithms. We guess
an initial estimate w(0), then produce a sequence of points w(s), s = 1, 2, . . ., that
converge to a certain value ŵ. Here are the steps in more detail:

1. Choose a direction d(s) for the search.;
2. Choose a width (or momentum) α(s) and set w(s+1) = w(s) + α(s)d(s).
3. If a certain criterion of convergence is satisfied then set ŵ = w(s+1), other-

wise set s = s + 1 and return to step 1.

Iterative methods guarantee convergence towards minimum points for which
∇E = 0. Different algorithms have different ways of changing the vector of
weights �w(s) = α(s)d(s). A potential problem for most of them is getting stuck
in a local minimum; the choice of the initial weights determines the minimum
to which the algorithm will converge. It is extremely important to choose the
weights carefully to obtain a valid fit and a good convergence rate. The momen-
tum parameter also needs to be chosen carefully. If it is too small, the algorithm
will converge too slowly; if it is too large, the algorithm will oscillate in an
unstable way and may never converge.

One last choice for the analyst is when to interrupt the learning algorithm.
Here are some possibilities: stop after a defined number of iterations; stop after
a defined amount of computer time (CPU usage); stop when the error function
falls below a preset value; stop when the difference between two consecutive
values of the error function is less than a preset value; stop when the error of
classification or forecast, measured on an appropriate validation data set, starts
to grow (early stopping), similar to tree pruning (Section 4.5). For more details,
see Bishop (1995). It is not possible to establish in general which is the best
algorithm; performance varies from problem to problem.

Generalisation and prediction
The objective of training a neural network with data, that is, to determine its
weights on the basis of the available data set, is not to find an exact representation
of the training data, but to build a model that can be generalised or that allows
us to obtain valid classifications and predictions when fed with new data. Similar
to tree models, the performance of a supervised neural network can be evaluated
with reference to a training data set or a validation data set. If the network is
very complex, and the training is carried out for a large number of iterations,
the network can perfectly classify or predict the data in the training set. This
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could be desirable when the training sample represents a ‘perfect’ image of the
population from which it has been drawn, but it is counterproductive in real
applications since it implies reduced predictive capacities on a new set of data.
This phenomenon is known as overfitting. To illustrate the problem, consider
only two observations for an input variable and an output variable. A straight
line fits the data perfectly, but poorly predicts a third observation, especially if
it is radically different from the previous two. A simpler model, the arithmetic
mean of the two output observations, will fit the two points worse but may be a
reasonable predictor of the third point.

To limit the overfitting problem, it is important to control the degree of
complexity of the model. A model with few parameters will involve a mod-
est generalisation. A model which is too complex may even adapt to noise in
the data set, perhaps caused by measurement errors or anomalous observations;
this will lead to inaccurate generalisations. There are two main approaches to
controlling the complexity of a neural network. Regularisation is the addition of
a penalty term to the error function. Early stopping is the introduction of stopping
criteria in the iterative learning procedure.

In regularisation, overfitting is tackled directly when the weights are estimated.
More precisely, the weights are trained by minimising an error function of the
form

Ẽ(w) = E(w) + v�,

where E is an error function, � describes the complexity of the network and
v is a parameter that penalises for complexity. Notice again the analogies with
pruning in tree models (Section 4.5). A complex network that produces a good
fit to the training data will show a minimum value of E, whereas a very simple
function will have low value of �. Therefore, what will be obtained at the end of
the training procedure will be a compromise between a simple model and a good
fit to the data. A useful regularisation function is based on weight decay, which
involves taking � equal to the sum of the squares of the weights (including the
bias) of the neural network:

� = 1

2

∑
i

w2
i .

As an alternative to regularisation, early stopping uses the fact that the error
function usually shows an initial reduction followed by an increase; the increase
starts when the network begins to have problems with overfitting. Training can
be stopped when the lowest prediction error is observed.

Optimality properties of multilayer perceptrons
Multilayer perceptrons have optimal properties. Researchers have shown that,
given a sufficiently large number of nodes in the hidden layer, a simple neural
network structure (with two layers of weights, sigmoidal activation function for
the hidden nodes and identity activation function for the output nodes) is able to
approximate any functional form with arbitrary accuracy. This is known as the
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principle of universal approximation – the rate of convergence does not depend
on the dimension of the problem. If a network with only one hidden layer can
approximate any functional form with arbitrary accuracy, why use any other
network topology? One reason is that extra hidden layers may produce a more
efficient approximation that achieves the same level of accuracy using fewer
neurons and fewer weights.

Application
Here is a simple example to illustrate the application of neural networks. The
data set is a sample of 51 enterprises in the European software industry, for
which a series of binary variables have been measured. Here are some of them:
N (degree of incremental innovations: low/high); I (degree of radical innova-
tions: low/high); S (relationships of the enterprise with the software suppliers:
low/high); A (applicable knowledge of the employees of the enterprise: low/high);
M (scientific knowledge of the employees of the enterprise: low/high); H (rela-
tionships of the enterprise with the hardware suppliers: low/high). The variable
Y (revenues) is a continuous variable.

The objective of the analysis is to classify the 51 enterprises in the two groups
of the variable N , according to the values of the six remaining (explanatory)
variables, so to build a predictive model for the degree of incremental innovations.
Since we have only one response variable and six explanatory variables, the
network architecture will have one output variable and six input variables. It
remains to be seen how many neurons should be allocated to the hidden units.
Suppose that, for parsimony, there is only one hidden node in a unique hidden
layer. Finally, given the nature of the problem, a logistic activation function
is chosen for the hidden layer node and an identity activation function for the
output nodes. The following formula specifies the non-linear relationship for
the model:

logit(πN) = w08 + w18m + w28a + w38h + w48i + w58s + w68y + w78φ

(w07 + w17m + w27a + w37h + w47i + w57s + w67y),

where the left-hand side is the logit function for N = 1 and φ is the inverse
logistic function. Notice that a logistic regression model differs from this one in
not having the term w78φ(·). The process of learning the weights converges and
produces the following 15 final weights:

ω̂07 = 32.76, ω̂17 = 9.25, ω̂27 = 14.72,ω̂37 = 3.63, ω̂47 = −10.65,

ω̂57 = 10.39, ω̂67 = −22.34, ω̂08 = 0.06, ω̂78 = 10.89, ω̂18 = −1.44,

ω̂28 = −0.82, ω̂38 = −2.18, ω̂48 = −0.70, ω̂58 = −8.34, ω̂68 = 0.43.

As a simple measure of its performance, consider the number of misclassified
observations. Given the limited number of observations, at first the model was
initially trained and validated on the whole data set. Then, the 51 observations
were randomly divided into 39 observations for training and 12 observations
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for validation by considering the misclassifications of these 12 observations.
Adopting the threshold rule that N = 1 if the estimated value of πN is greater
than 0.5, the number of misclassifications is 9 on 51 training cases and 8 on
12 validation cases. The proposed model is too adaptive. It performs well on
training error but very poorly on classification ability. Application of a simpler
logistic regression model led to 15 out of 51 and 3 out of 12 errors. So compared
with the neural network model, the logistic regression is not as adaptive but more
predictive.

4.6.3 Kohonen networks

Self-organising maps (SOMs), or Kohonen networks, can be employed in a
descriptive data mining context, where the objective is to cluster the observa-
tions into homogeneous groups. In these models the parameters are constituted
by the weights of the net (the thresholds are not present) and learning occurs
in the absence of an output variable acting as supervisor. A model of this type
is generally specified by a layer of input neurons and a layer of output neu-
rons. For a given set of n observations, the n input nodes are represented by
p-dimensional vectors (containing qualitative and/or quantitative variables), each
of which represents one multivariate observation, whereas the output nodes are
described by discrete values, each of which corresponds to a group (cluster) of
the observations. The number of groups is typically unknown a priori.

The objective of Kohonen maps is to map every p-dimensional input observa-
tion to an output space represented by a spatial grid of output neurons. Adjacent
output nodes will be more similar than distant output nodes. The learning tech-
nique for the weights in a Kohonen map is based on competition among the
output neurons for assignment of the input vectors. For every assigned input
node, a neuron of winning output is selected on the basis of the distance function
in the input space.

Kohonen networks can be considered as a non-hierarchical method of cluster
analysis. As non-hierarchical methods of clustering, they assign an input vector to
the nearest cluster, on the basis of a predetermined distance function, but they try
to preserve a degree of dependence among the clusters by introducing a distance
between them. Consequently, each output neuron has its own neighbourhood,
expressed in terms of a distance matrix. The output neurons are characterised by
a distance function between them, described using the configuration of the nodes
in a one- or two-dimensional space. Figure 4.8 shows a two-dimensional grid
of output neurons. In such a 7 × 7 map, each neuron is described by a square
and the number on each square is the distance from the central neuron. Consider
the simplest algorithm, in which the topological structure of the output nodes is
constant during the learning process. Here are the basic steps:

1. Initialisation. Having fixed the dimensions of the output grid, the weights
that connect the input neurons to the output neurons are randomly initialised.
Let r be the number of iterations of the algorithm, and set r = 0.
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Figure 4.8 Example of output grid in a Kohonen network.

2. Selection of the winner. For each input neuron xj , select the winning output
neuron i∗ that minimises the Euclidean distance

∣∣|xj − wr
i

∣∣| between the
p-dimensional vector of input xj and the p-dimensional weight vector wi

that connects the j th input neuron of to the ith output neuron.
3. Updating of the weights. Let N (i∗) be a neighbourhood of the winning

output neuron i∗, implicitly specified by the distance function among the
output neurons. For every output neuron i ∈ {N (i∗) , i∗}, the weights are
updated according to the rule wr+1

i = wr
i + η

(
xj − wr

i

)
, where η is called

the rate of learning and is specified in advance. The rule updates only the
neighbours of the winning output neuron.

4. Normalisation of the weights. After the updating, the weights are nor-
malised so that they are consistent with the input measurement scales.

5. Looping through. The preceding steps are repeated, and the number of
iterations set to r = r + 1, until an appropriately stopping criterion is reached
or a maximum number of iterations is exceeded.

This algorithm can be modified in at least two important ways. One way is to
introduce a varying neighbourhood. After selecting the winning output neuron,
its neighbourhood is recomputed along with the relevant weights. Another way
is to introduce algorithms based on sensitivity to history. Then the learning
algorithm, hence the cluster allocation, can be made to depend on the frequency
of past allocations. This allows us to avoid phenomena that typically occur with
non-hierarchical clustering, such as obtaining one enormous cluster compared
to the others.

SOMs are an important methodology for descriptive data mining and they
represent a valid alternative to clustering methods. They are closely related to
non-hierarchical clustering algorithms, such as the k-means method. The fun-
damental difference between the two methodologies is that SOM algorithms
introduce a topological dependence between clusters. This can be extremely
important when it is fundamental to preserve the topological order among the
input vectors and the clusters. This is what happens in image analysis, where it
is necessary to preserve a notion of spatial correlation between the pixels of the
image. Clustering methods may overcentralise, since the mutual independence of
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the different groups leads to only one centroid being modified, leaving the cen-
troids of the other clusters unchanged; this means that one group gets bigger and
bigger while the other groups remain relatively empty. But if the neighbourhood
of every neuron is so small as to contain only one output neuron, the SOMs will
behave analogously to the k-means algorithm.

4.7 Nearest-neighbour models

Nearest-neighbour methods are a flexible class of predictive data mining methods
based on a combination of local models. This does not mean that they are local
in the sense of Section 4.8; they are still applied to the whole data set, but the
statistical analysis is split into separate local analyses. The basic idea is rather
simple and builds on the theory we have presented in previous sections. The
available variables are divided into the explanatory variables (x) and the target
variable (y). A sample of observations in the form (x, y) is collected to form
a training data set. For this training data set, a distance function is introduced
between the x values of the observations. This can be used to define, for each
observation, a neighbourhood formed by the observations that are the closest
to it, in terms of the distance between the x values. For a continuous response
variable, the nearest-neighbour fitted value for each observation’s response value
yi is defined by

ŷi = 1

k

∑
xj ∈N(xi)

yj .

This is the arithmetic mean of all response values, whose corresponding x values
are contained in the neighbourhood of xi , N(xi). Furthermore, k is a fixed con-
stant, that specifies the number of elements to be included in each neighbourhood.
The model can be easily applied to predict a future value of y, say y0, when the
values of the explanatory variables, say x0, are known. It is required to identify,
in the training data set, the k values of y belonging to the neighbourhood of the
unknown y0. This is done by taking the k explanatory variable observations in
the training data set, closest to x0. The arithmetic mean of these y values is the
prediction of y0. In contrast with linear regression, the nearest-neighbour fit is
simpler, as it is an arithmetic mean. However, it is not calculated over all observa-
tion points, but on a local neighbourhood. This implies that the nearest-neighbour
model fits the data more closely; on the other hand, this may lead to overfitting
and difficulty with generalisation.

Nearest-neighbour methods can also be used for predictive classification. To
classify an observation y, its neighbourhood is determined as before and the
fitted probabilities of each category are calculated as relative frequencies in the
neighbourhood. The class with the highest fitted probability is finally chosen.
Like tree models, nearest-neighbour models do not require a probability distri-
bution. But whereas classification trees partition the data into exclusive classes,
providing explicit predictive rules in terms of tree paths, the fitted values in
nearest-neighbour models are based on overlapping sets of observations, not on



90 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

explicit rules. These methods are also known as memory-based models, as they
require no model to be fitted, or function to be estimated. Instead they require
all observations to be maintained in memory, and when a prediction is required,
they recall items from memory and calculate what is required.

Two crucial choices in nearest neighbour-methods are the distance function
and the cardinality k of the neighbourhood. Distance functions are discussed in
Section 4.1. The cardinality k represents the complexity of the nearest-neighbour
model; the higher the value of k, the less adaptive the model. Indeed, the model
is often called the k-nearest-neighbour model to emphasise the importance of k.
In the limit, when k is equal to the number of observations, the nearest-neighbour
fitted values coincide with the sample mean. As we have seen for other models
in this chapter (e.g. Sections 4.5 and 4.6), k can be chosen to balance goodness
of fit with simplicity.

Possible disadvantages of these models are that computationally they are highly
intensive, especially when the data set contains many explanatory variables. In
this case the neighbourhood may be formed by distant points, therefore taking
their mean may not be a sensible idea. Among other possible data mining appli-
cations, they are used for detecting frauds involving telephone calls, credit cards,
etc. (Cortes and Pregibon, 2001). Impostors are discovered by identifying the
characteristics, or footprints, of previous instances of fraud and formulating a
rule to predict future occurrences.

4.8 Local models

So far we have looked at global models, but local models are also very important.
They look at selected parts of the data set (subsets of variables or subsets of
observations), rather than being applied to the whole data set. Hand et al. (2001)
use the concept of ‘pattern’ rather than the concept of ‘model’. Relevant examples
are association rules, developed in market basket analysis and web clickstream
analysis, and retrieval-by-content methods, developed for text mining. Another
important example is searching for outliers, introduced in Chapter 3 and revisited
several times in this book.

4.8.1 Association rules

Association rules were developed in the field of computer science and are often
used in important applications such as market basket analysis, to measure the
associations between products purchased by a particular consumer, and web click-
stream analysis, to measure the associations between pages viewed sequentially
by a website visitor. In general, the objective is to underline groups of items that
typically occur together in a set of transactions. The data on which association
rules are applied are usually in the form of a database of transactions. For each
transaction (a row in the database) the database contains the list of items that
occur. Note that each individual may appear more than once in the data set. In
market basket analysis a transaction means a single visit to a supermarket, for
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which the list of purchases is recorded; in web clickstream analysis a transaction
means a web session, for which the list of all visited web pages is recorded.

Rows typically have a different number of items, and this is a remarkable
difference with respect to data matrices. Alternatively, the database can be con-
verted into a binary data matrix, with transactions as rows and items as columns.
Let X1, . . . , Xp be a collection of random variables. In general, a pattern for
such variables identifies a subset of all possible observations over them. A use-
ful way to describe a pattern is through a collection of primitive patterns and
a set of logical connectives that can act on them. For two variables, Age and
Income, a pattern could be α = (Age < 30 ∧ Income > 100), where ∧ is the
logical ‘AND’ (intersection) operator. Another pattern could be β = (Gender =
male ∨ Education = high), where ∨ is the logical ‘OR’ (union) operator. The
primitive patterns in the first expression are Age <30 and Income 〉100; the prim-
itive patterns in the second expression are Gender = male and Education = high.
A rule is a logical statement between two patterns, say α and β, written as α → β.
This means that α and β occur together; in other words, if α occurs, then β also
occurs. It is an expression of the type ‘if condition, then result’.

Association rules consider rules between special types of pattern, called item
sets. In an item set, each variable is binary: it takes value 1 if a specific condition
is true, otherwise it takes value 0. Let A1, . . . , Ap denote a collection of such
binary variables, and j1, . . . , jk a subset of them. An item set is then defined
by a pattern of the type A = (Aj1 = 1 ∧ . . . ∧ Ajk = 1). Thus, in an item set,
primitive patterns always indicate that a particular variable is true, and the logical
connectives are only conjunctions (AND operators). An association rule is a state-
ment between two item sets that can be written in the form A → B, where both A

and B are item sets. For simplicity, the right-hand-side item set is usually formed
of a single primitive item, and we will do the same. Therefore an association rule
will have the form (Aj1 = 1 ∧ . . . ∧ Ajk = 1) → Ajk+1 = 1, where we have now
considered a subset containing k + 1 of the original p variables. More briefly,
such an association rule is usually written as (Aj1 = 1 ∧ . . . ∧ Ajk) → Ajk+1.

The order of an association rule usually refers to the total number of items
considered, here, k + 1. Suppose a supermarket has a total of 100 000 available
products. Each of them can correspond to a binary random variable, depending
on whether or not the product is bought in each transaction. A simple association
rule of order 3 would be (Milk ∧ Tea) → Biscuits. We shall simply write A → B

to indicate an association rule of the described type. A is the antecedent (or body
of the rule) and B is the consequent (or head of the rule). Chapters 7 and 8
consider specific applications and use real variables.

Each association rule describes a particular local pattern that selects a restricted
set of binary variables. In market basket analysis and web clickstream analysis,
rules are relationships between variables that are binary by nature. This need
not always be the case; continuous rules are also possible. Then the elements of
the rules would be intervals of the real line, conventionally assigned a value of
TRUE = 1. A rule of this kind is X > 0 → Y > 100. Here we shall be mainly
concerned with binary variables. The strength of an association rule is commonly
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measured using support, confidence and lift, also known as measures of a rule’s
‘statistical interestingness’ (Hand et al., 2001).

The main problem in association rule modelling is to find, from the available
database, a subset of association rules that are interesting. Interestingness can be
measured by various means, including subject-matter criteria and objective-driven
criteria. Here we consider statistical interestingness, which is related to the
observed frequency of the rules. For a given rule, say A → B, let NA→B be
its absolute frequency (count), that is, the number of times at which this rule
is observed at least once. In other words, NA→B measures the number of trans-
actions in which the rule is satisfied. This does not take into account repeated
sequences (occurring more than once), and this may sometimes be a limitation,
as in web clickstream analysis. The support for a rule A → B is obtained by
dividing the number of transactions which satisfy the rule by the total number of
transactions, N :

support {A → B} = NA→B

N
.

The support of a rule is a relative frequency that indicates the proportion of
transactions in which the rule is observed. When a large sample is considered,
the support approximates the rule’s probability of occurrence:

support {A → B} = Prob(A → B) = Prob (A and B occur).

The support is quite a useful measure of a rule’s interestingness; it is typically
employed to filter out rules that are less frequent. The confidence of the rule
A → B is obtained by dividing the number of transactions which satisfy the rule
by the number of transactions which contain the body of the rule, A:

confidence {A → B} = NA→B

NA

= NA→B/N

NA/N
= support {A → B}

support {A} .

The confidence expresses a relative frequency (a probability in the limit) that indi-
cates the proportion of times that, if a rule contains the body A, it will also contain
the head B. In other words, it is the frequency (or probability) of occurrence of
B, conditionally on A being true. Confidence is the most frequently used inter-
estingness measure of an association rule; it aims to measure the strength of the
relationship between two items. For instance, in market basket analysis, the higher
the confidence of the association rule A → B, the greater the probability that if
a customer buys products in A, he will also buy product B. In web clickstream
analysis, the higher the confidence of the sequence rule A → B, the greater the
probability that if a visitor looks at page A, she will also look at page B.

The language of conditional frequencies and conditional probabilities can be
employed to give a normalised strength of the relationship between items Aand
B. One common measure is the lift; this takes the confidence of a rule and relates
it to the support for the rule’s head:

lift {A → B} = confidence {A → B}
support {B} = support {A → B}

support {A} support {B} .
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Notice how the lift is a ratio between the relative frequency (probability) of
both items occurring together, and the relative frequency (probability) of the
same event but assuming the two items are independent. Therefore a lift value
greater than 1 indicates a positive association, and a value less than 1 a negative
association.

These three interestingness measures can be used to search for association rule
models in the data. This amounts to finding a set of rules that are statistically
interesting. As the number of possible rules is very large, we need some strate-
gies for model selection. One strategy, the forward approach, starts from the
simplest rules and proceeds by adding items. This is the approach employed in
the well-known Apriori algorithm (Agrawal et al., 1996). From a given set of
items, the algorithm starts by selecting a subset for which the support passes a
preset threshold t ; the other items are discarded. A higher threshold would reduce
the complexity of the final solution, as fewer items will be considered.

Next all pairs of items that have passed the previous selection are joined to
produce item sets with two items. Item sets are discarded if their support is below
the threshold t . The discarded item sets are stored as candidate association rules
of order 2; the item selected in this step is the head of the rule. The procedure is
repeated. At the mth step, item sets of size m are formed by taking all item sets
of size m − 1 that have survived and joining them with all those items that have
passed the first step. The item sets that do not pass the threshold are discarded
and stored to form an association rule of order m; the last item joined is the
head and all the previous items are the body. The procedure continues until no
rule passes the threshold. The higher the number of variables, with respect to
the number of observations, and the higher the threshold value, the quicker the
algorithm will terminate.

Notice that the algorithm incorporates a principle of nesting: if a rule of order
2 is discarded, all rules that contain it as antecedent will also be discarded. A
disadvantage of the algorithm is that rules with very high confidence or lift, but
low support, will not be discovered. Also the algorithm can find rules with high
support, high confidence and lift close to 1 (indicating that the two item sets
are approximately independent) and flag them as interesting. As the strength of
an association is not measured by the support, but by the confidence (or the
lift), the Apriori algorithm outputs only those rules that pass a fixed confidence
threshold.

An alternative way to generate association rules is by using tree models. This
can be seen as an instance of backward search, and is somewhat analogous to
pruning in tree models. Indeed, a tree model can be seen as a supervised generator
of item sets, each corresponding to the path from the root node to a leaf. In other
words, there are as many rules as the tree has leaves. As a tree gives a partition
of the observations into exclusive groups, the support and confidence of each
decision tree rule can be easily calculated by going through the nodes of the tree.
However, the association rules that can be produced by a tree are constructed
globally and may be too few and too long. To achieve a larger set of rules, fitted
locally, each tree model can be pruned using support and confidence thresholds.
The advantage of using a tree representation to construct rules is that pruning is



94 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

efficient because of their global modelling nature. Furthermore, they can easily
deal with all kinds of variables.

The interestingness measures we have used to find rules can also be used to
assess the final model (i.e. the list of rules we obtain) by combining the scores of
the individual rules. Alternatively, we can use the measures of association intro-
duced in Section 3.4 for analysing interrelationships between qualitative variables.
An important difference is that whereas the measures of association refer to all
possible pairs of values of the binary variables, association rules consider only
the pair (1,1). For instance, as in Section 3.4, the Pearson statistic X2 is a very
general measure of association. It can be used to give an interestingness measure
as well:

X2 {A → B} = (support {A → B} − support {A} support {B})2

support {A} support {B} .

This measure of interestingness can be extended to a large number of rules
and can be used to assess the departure from independence by appealing to
an inferential threshold (based on the chi-square distribution; see Section 4.9).
Inferential thresholds can also be derived for association rules. For instance, a
large-sample confidence interval for the logarithm of the lift is given by

log(lift) ± z1−α/2

√
1

support {A → B} − 1

N
+ 1

support {A} + 1

support {B} ,

where log(lift) is the observed lift and z1−α/2 is the 1 − α/2 quantile of the stan-
dard normal distribution. Exponentiating this expression leads to a confidence
interval for the lift. Not only does the width of the interval depend on the con-
fidence level α, it is also directly proportional to the information content of the
rule (support {A → B}, support {A} and support {B}) and inversely proportional
to the number of transactions N . In other words, the length of the interval, hence
the uncertainty on the interestingness of the relationship, decreases as the fre-
quency of the rule increases and in a balanced way (i.e. both the frequency of A

and the frequency of B increase).
A confidence interval permits us to decide on the statistical significance of an

association rule: if a value of 1 for the lift is within the confidence interval, the
rule is not significant. Note that when more than one rule is tested in this way,
the conclusions may be overly restrictive, as the tests are not truly independent.
In this case it may be appropriate to increase the width of the confidence intervals
and therefore reject fewer rules. To assess the validity of a set of rules, we can
also use rules based on the comparison between complementary rules, such as
A → B and A → B, where B is the complement of B (true when B is false,
and vice versa). A simple one is the odds, seen in Section 3.4:

odds {A → B} = support {A → B}
support

{
A → B

} .
The Gini index and the entropy index can also be applied in this context as
measures of heterogeneity for binary variables.
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We now consider a specific type of association rule, particularly relevant for
some applications. So far we have said that an association rule is simply a rule
of joint occurrence between two item sets, A and B. It is possible to attach
to this joint occurrence a meaning of logical precedence, so that the body of
the rule logically precedes the head of the rule. The resulting rule is called a
sequence. Association rules can be specifically calculated for sequences, by link-
ing the transaction data set to an ordering variable. A typical way of introducing
a logical precedence is through time. Sequences are not needed in market basket
analysis; although products are taken off the shelf in a temporal order, this order
is lost when the products are presented at the counter. On the other hand, web
clickstream data typically come in as a log file, which preserves the temporal
order in which the pages were visited. Therefore it is important to take account
of the order in which the pages were visited. When sequences are considered,
the meaning of support and confidence changes: support can be interpreted as
the number of times that A precedes B; confidence can be interpreted as the
conditional probability of B, conditional on A having already occurred.

A further distinction is between direct and indirect sequence rules. A sequence
rule is usually indirect, in the sense there may be other elements that logically
sit between the body and head of the rule, but they are not considered. For
example, if A and B are two web pages, the sequence rule A → B searches for
all occurrences in which A precedes B, even if other web pages were viewed
in between. To allow comparison with the results of global models, it may be
interesting to consider direct sequences. A direct sequence searches only for the
occurrences in which A exactly precedes B. Note the difference between asso-
ciation and sequence rules. Association rules produce a symmetric relationship,
hence the confidence is a measure of association between the binary variables in
the two item sets. Sequence rules produce an asymmetric relationship, hence the
confidence is a measure of how the variable in the head depends on the variables
in the body.

Association rules are probably the best-known local method for detecting rela-
tionships between variables. They can be used to mine very large data sets, for
which a global analysis may be too complex and unstable. Section 4.14 explains
two related types of global model that can provide a very helpful visual repre-
sentation of the association structures. These models are known as undirected
graphical models (for association modelling) and probabilistic expert systems
(for dependency modelling). Chapters 7 shows how such global models compare
with the local models presented here. Association rules per se cannot be used
predictively, as there would be more than one sequence to predict a given head of
a rule. Tree models can be used predictively and also provide a set of association
rules.

As one chapter is entirely devoted to local association models, there are no
practical examples in this section. Algorithmic aspects are discussed in Hand
et al. (2001), which contains a comprehensive description of how to find inter-
esting rules using the Apriori algorithm. The advantages of association rules are
their extreme simplicity and interpretational capacity; their disadvantages are the
lengthy computing times and analysis costs but, above all, the need for sensible
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pruning. Software packages produce huge numbers of rules, and without sensible
pruning, it is easy to get lost in the details and lose sight of the problem.

4.8.2 Retrieval by content

Retrieval-by-content models are local methods based on identifying a query object
of interest then searching the database for the k objects that are most similar to
it. In association rules the local aspect is in selecting the variables; in retrieval
by content the local aspect is in selecting the observations. The main problem is
in finding valid measures of proximity to identify observations that are ‘similar’.
Notable examples of retrieval by content are searching for information on the
internet using a search engine and, more generally, the analysis of text docu-
ments, or text mining. The technique is quite broad and can also be applied to
audio and video data. There are similarities with memory-based reasoning mod-
els (Section 4.7); the main differences are that retrieval by content is not aimed
at predicting target variable values, and it is not based on a global assessment
of distance between objects, but on distances from the query object. For more
details, see Hand et al. (2001).

4.9 Uncertainty measures and inference

So far we have not assumed any probabilistic hypothesis of type on the statistical
variables of interest. However, the observations considered are generally only a
subset from a target population of interest, a sample. Furthermore, the very large
size of the data often forces the analyst to consider only a sample of the available
data matrix, either for computational reasons (storage and/or processing memory)
or for interpretational reasons. Sampling theory gives a statistical explanation of
how to sample from a population in order to extract the desired information
efficiently; there is not space to cover it here, but Barnett (1974) is a good
reference. We shall assume that a sample has been drawn in a random way and
is ready for analysis. When dealing with a sample, rather than with the whole
population, it is necessary to introduce a probability model that can adequately
describe the sampling variability. More generally, a probability model is a useful
tool that is often used to model the informational uncertainty that affects most
of our everyday decisions.

The introduction of a probability model will lead us to take the estimated
statistical summaries and attach measures of variability that describe the degree
of uncertainty in the estimate due to sample variability. This will eventually lead
us to substitute parametric point estimates with so-called interval estimates; we
replace a number with an interval of numbers that contains the parameter of
interest in most cases. We can improve the diagnostic ability of a model by using
statistical hypothesis testing; for example, we can introduce a critical threshold
above which we retain a certain regression plane as a valid description of the
relationship between the variables or we treat a certain clustering of the data as a
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valid partitioning of the observations. For descriptions of the various probability
models, see Mood et al. (1991) or Bickel and Doksum (1977).

4.9.1 Probability

An event is any proposition that can be either true or false and is formally
a subset of the space �, which is called the space of all elementary events.
Elementary events are events that cannot be further decomposed, and cover all
possible occurrences. Let � be a class of subsets of �, called the event space.
A probability function P is a function defined on � that satisfies the following
axioms:

• P(A) ≥ 0, ∀ A ∈ �.
• P(�) = 1.
• If A1, A2, . . . is a sequence of events of � pairwise mutually exclusive (i.e.

Ai ∩ Aj = ∅ for i 	= j, i, j = 1, 2, . . .) and if A1 ∪ A2 ∪ . . . = ⋃∞
i=1 Ai ∈

�, then P
(⋃∞

i=1 Ai

) =
∑∞

i=1
P(Ai).

A probability function will also be referred to as a probability measure or simply
probability. The three axioms can be interpreted in the following way. The first
says that the probability is a non-negative function. The second says that the
probability of the event � is 1; � is an event that will always be true as it
coincides with all possible occurrences. Since any event is a subset of �, it
follows that the probability of any event is a real number in [0,1]. The third
axiom says that the probability of occurrence of any one of a collection of events
(possibly infinite, and mutually exclusive) is the sum of the probabilities of
occurrence of each of them. This is the formal, axiomatic definition of probability
due to Kolmogorov (1933). There are several interpretations of this probability.
These interpretations will help us from an operational viewpoint when we come
to construct a probability measure. In the classical interpretation, if an experiment
gives rise to a finite number n of possible results, then P(A) = nA/n, where nA

denotes the number of results in A (favourable results). In the more general
frequentist interpretation, the probability of an event coincides with the relative
frequency of the same event in a large (possibly infinite) sequence of repeated
trials in the same experimental conditions. The frequentist interpretation allows
us to take most of the concepts developed for frequencies (such as those in
Chapter 3) and extend them to the realm of probabilities. In the even more
general (although somewhat controversial) subjective interpretation, probability
is a degree of belief that an individual attaches to the occurrence of an event.
This degree of belief is totally subjective but not arbitrary, since probabilities
must obey coherency rules, corresponding to the above axioms and all the rules
derivable from them. The advantage of the subjective approach is that it is always
applicable, especially when an event cannot be repeated (a typical situation for
observational data and data mining, and unlike experimental data).

We can use the three axioms to deduce the basic rules of probability can be
deduced. Here are the complement rule and the union rule.
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• Complement rule. If A is any event in �, and A its complement (negation),
then P(A) = 1 − P(A).

• Union rule. For any pair of events A, B ∈ �, P(A ∪ B) = P(A) + P(B) −
P(A ∩ B), where the union event, A ∪ B, is true when either A or B is true;
while the intersection event A ∩ B is true when both A and B are true.

Probability has so far been defined in the absence of information. Similar to
the concept of relative frequency, we can define the probability of an event A

occurring, conditional on the information that the event B is true. Let A and B

be two events in �. The conditional probability of the event A, given that B is
true, is

P(A |B ) = P(A ∩ B)

P (B)
, with P(B) > 0.

This definition extends to any conditioning sets of events. Conditional probabil-
ities allow us to introduce further important rules.

• Intersection rule. Let A and B two events in �. Then P(A ∩ B) =
P(A |B)P (B) = P(B |A)P (A).

• Independence of events. If A is independent of B, then

P(A ∩ B) = P(A)P (B),

P (A|B) = P(A),

P (B|A) = P(B).

In other words, if two events are independent, knowing that one of them occurs
does not alter the probability that the other one occurs.

• Total probability rule. Consider n events Hi , i = 1, . . . , n, pairwise mutu-
ally exclusive and exhaustive, in � (equivalently, they form a partition of
�), with P(Hi) > 0. Then the probability of an event B in � is given by

P(B) =
n∑

i=1

P(B|Hi)P (Hi).

• Bayes’ rule. Consider n events Hi , i = 1, . . . , n, pairwise mutually exclu-
sive and exhaustive, in � (equivalently, they form a partition of �), with
P(Hi) > 0. Then the probability of an event B in � such that P(B) > 0is
given by

P(Hi |B) = P(B|Hi)P (Hi)∑
j

P (B|Hj)P (Hj )
.

The total probability rule plays a very important role in the combination of dif-
ferent probability statements; we will see an important application later. Bayes’
rule is also very important; also known as the ‘inversion rule’, it calculates the
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conditional probability of an event by using the reversed conditional probabilities.
Note also that the denominator of Bayes’ rule is the result of the total probabil-
ity rule; it acts as a normalising constant of the probabilities in the numerator.
This theorem lies at the heart of the inferential methodology known as Bayesian
statistics.

4.9.2 Statistical models

Suppose that, for the problem at hand, we have defined all the possible elementary
events �, as well as the event space �. Suppose also that, on the basis of one of
the operational notions of probability, we have constructed a probability measure,
P . The triplet (�, �, P) defines a probability space; is is the basic ingredient
for defining a random variable, hence for constructing a statistical model.

Given a probability space (�, �, P), a random variable is any function X(ω),
ω ∈ �, with values on the real line. The cumulative distribution of a random
variable X, denoted by F , is a function defined on the real line, with values
on [0,1], that satisfies F(x) = P(X ≤ x) for any real number x. The cumulative
distribution function (often called the distribution function for short) characterises
the probability distribution for X. It is the main tool for defining a statistical
model of the uncertainty concerning a variable X.

We now examine two special important cases of random variables, and look
at their distribution functions. A random variable is said to be discrete if it can
take only a finite, or countable, set of values. In this case

F(x) =
∑
X≤x

p(x), with p(x) = P(X = x).

Therefore in this case p(x), called the discrete probability function, also char-
acterises the distribution. Note that both quantitative discrete and qualitative
variables can be modelled with a discrete random variable, provided that numer-
ical codes are assigned to qualitative variables. They are collectively known as
categorical random variables.

A random variable is said to be continuous if there exists a function f , called
the density function, such that the distribution function can be obtained from it:

F(x) =
x∫

−∞
f (u)du, for any real number x.

Furthermore, the density function has the following two properties:

f(x) ≥ 0, ∀ x,

∞∫
−∞

f(x)dx = 1.

In view of its definition, the density function characterises a statistical model for
continuous random variables.
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By replacing relative frequencies with probabilities, we can treat random vari-
ables like the statistical variables seen in Chapter 3. For instance, the discrete
probability function can be taken as the limiting relative frequency of a dis-
crete random variable. On the other hand, the density function corresponds to
the height of the histogram of a continuous variable. Consequently, the concepts
in Chapter 3 – mean, variance, correlation, association, etc. – carry over to ran-
dom variables. For instance, the mean of a random variable, usually called the
expected value, is defined by

μ =
{ ∑

xipi if X is categorical,∫
xf (x)dx if X is continuous.

The concept of a random variable can be extended to cover random vectors
or other random elements, thereby defining a more complex statistical model.
Henceforth, we use notation for random variables, without loss of generality.

In general, a statistical model of uncertainty can be defined by the pair
(X, F (x)), where X is a random variable and F(x) is the cumulative distribution
attached to it. It is often convenient to specify I directly, choosing it from
a catalogue of models available in the statistical literature, models which
have been constructed specifically for certain problems. These models can be
divided into three main classes: parametric models, for which the cumulative
distribution is completely specified by a finite set of parameters, denoted by
θ ; non-parametric models, which require the whole specification of F ; and
semiparametric models, where the specification of F is eased by having some
parameters but these parameters do not fully specify the model.

We now examine the most frequently used parametric model, the Gaussian
distribution; Section 4.10 looks at non-parametric and semiparametric models.
Let Z be a continuous variable, with real values. Z is distributed according to a
standardised Gaussian (or normal) distribution if the density function is

f (z) = 1√
2π

e−z2/2.

This is a bell-shaped distribution (Section 3.1), with most of the probability
around its centre, which coincides with the mean, the mode and the median of
the distribution (equal to 0 for the standardised Gaussian distribution). Since
the distribution is symmetric, the probability of having a value greater than a
certain positive quantity is equal to the probability of having a value lower
than the negative of the same quantity – for example, P(Z > 2) = P(Z < −2).
Having defined the Gaussian as our reference model, we can use it to calculate
some probabilities of interest; these probabilities are areas under the density
function. We cannot calculate them in closed form, so we must use numerical
approximation. In the past this involved the use of statistical tables but now it can
be done with all the main data analysis packages. Here is a financial example.

Consider the valuation of the return on a certain financial activity. Suppose, as
is often done in practice, that the future distribution of this return, Z, expressed
in euros, follows the standardised Gaussian distribution. What is the probability
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of observing a return greater than ¤1? To solve this problem it is sufficient to
calculate the probability P(Z〉1). The solution is not expressible in closed form,
but using statistical software we find that the probability is equal to about 0.159.

Now suppose that a financial institution has to allocate an amount of capital
to be protected against the risk of facing a loss on a certain portfolio. This
problem is a simplified version of a problem faced by credit operators every
day – calculating value at risk (VaR). VaR is a statistical index that measures the
maximum loss to which a portfolio is exposed in a holding period �t and with a
fixed level α of desired risk. Let Z be the change in value of the portfolio during
the period considered, expressed in standardised terms. The VaR of the portfolio
is then the loss (corresponding to a negative return), implicitly defined by

P(Z ≤ −VaR) = 1 − α.

Suppose that the level of desired risk is 5%. This corresponds to fixing the
right-hand side at 0.95; the value of the area under the standardised density
curve to the right of the value VaR (i.e. to the right of the value – VaR) is then
equal to 0.05. Therefore, the VaR is given by the point on the x-axis of the
graph that corresponds to this area. The equation has no closed-form solution.
But statistical software easily computes compute that VaR = 1.64. Figure 4.9
illustrates the calculation of the VaR. The histogram shows the observed returns
and the continuous line is the standard Gaussian distribution, used to calculate
the VaR. In quantitative risk management this approach is known as the analytic
approach or the delta normal approach, in contrast to simulation-based methods.

So far we have considered the standardised Gaussian distribution, with mean
0 and variance 1. It is possible to obtain a family of Gaussian distributions that
differ only in their mean and variance. In other words, the Gaussian distribution
is a parametric statistical model, parameterised by two parameters. Formally, if
Z is a standard Gaussian random variable and X = σZ + μ then X is distributed
according to a Gaussian distribution with mean μ and variance σ2. The family
of Gaussian distributions is closed with respect to linear transformations; that is,
any linear transformation of a Gaussian variable is also Gaussian. As a result, the
Gaussian distribution is well suited to situations in which we hypothesise linear
relationships among variables.
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Figure 4.9 Calculation of VaR.
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Our definition of the Gaussian distribution can be extended to the multivariate
case. The resulting distribution is the main statistical model for the inferential
analysis of continuous random vectors. For simplicity, here is the bivariate case.
A two-dimensional random vector (X 1, X 2) has a bivariate Gaussian distribution
if there exist six real constants,

aij , 1 ≤ i, j ≤ 2,

μi, i = 1, 2,

and two independent standardised Gaussian random variables, Z1 and Z2, such
that

X1 = μ1 + a11Z1 + a12Z2,

X2 = μ2 + a21Z1 + a22Z2.

In matrix terms, the previous equation can be written as X = μ + AZ, which
easily extends to the multivariate case. In general, therefore, a multivariate normal
distribution is completely specified by two parameters, the mean vector μ and
the variance–covariance matrix � = AA′.

Using the Gaussian distribution, we can derive three distributions of special
importance in inferential analysis: the chi-squared distribution, the Student’s t

distribution and the F distribution.
The chi-squared distribution is obtained from a standardised Gaussian distri-

bution. If Z is a standardised Gaussian distribution, the random variable defined
by Z2 is said to follow a chi-squared distribution, with 1 degree of freedom,
denoted by χ2(1). More generally, a parametric family of chi-squared distribu-
tions, indexed by one parameter, is obtained from the fact that the sum of n

independent chi-squared distributions with 1 degree of freedom is a chi-squared
with n degrees of freedom, χ2(n). The chi-squared distribution has positive den-
sity only for positive real values. Probabilities from it have to be calculated
numerically, as for the Gaussian distribution. Finally, the chi-squared value has
an expected value equal to n and a variance equal to 2n.

The Student’s t distribution is characterised by a density symmetric around
zero, like the Gaussian but more peaked (i.e. with a higher kurtosis). It is
described by one parameter, the degrees of freedom, n. As n increases, the
Student’s t distribution approaches the Gaussian distribution. Formally, let Z be
a standardised Gaussian distributions, in symbols Z ∼ N (0,1), and let U be a
chi-squared distribution, with n degrees of freedom, U ∼ χ2

n . If Z and U are
independent, then

T = Z√
U/n

∼ t (n),

that is, T is a Student’s t distribution with n degrees of freedom. It can be
shown that the Student’s t distribution has an expected value of 0 and a variance
given by

Var(T ) = n

n − 2
, for n > 2.
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Finally, the F distribution is also asymmetric and defined only for positive
values, like the chi-squared distribution. It is obtained as the ratio between two
independent chi-squared distributions, U and V , with degrees of freedom m and
n, respectively:

F = U/m

V/n
.

The F distribution is therefore described by two parameters, m and n; it has an
expected value equal to n/(n − 2) and a variance which is a function of both m

and n. An F distribution with m = 1 is equal to the square of a Student’s t with
n degrees of freedom.

4.9.3 Statistical inference

Statistical inference is mainly concerned with the induction of general statements
on a population of interest, on the basis of the observed sample. First we need to
first derive the expression for the distribution function for a sample of observa-
tions from a statistical model. A sample of n observations on a random variable
X is a sequence of random variables X1, X2, . . . , Xn that are distributed identi-
cally to X. In most cases it is convenient to assume that the sample is a simple
random sample, with the observations drawn with replacement from the popula-
tion modelled by X. Then it follows that the random variables X1, X2, . . . , Xn

are independent and therefore constitute a sequence of independent and iden-
tically distributed (i.i.d.) random variables. Let X denote the random vector
formed by such a sequence of random variables, X = (X1, X2, . . . , Xn), and
x = (x1, x2, . . ., xn) denote the sample value actually observed. It can be shown
that, if the observations are i.i.d., the cumulative distribution of X simplifies to

F(x) =
n∏

i=1

F(xi),

with F(xi) the cumulative distribution of X, evaluated for each of the sample
values (x1, x2, . . . , xn). If x = (x1, x2, . . . , xn) are the observed sample values,
this expression gives a probability, according to the assumed statistical model, of
observing sample values less than or equal to the observed vales. Furthermore,
when X is a continuous random variable,

f (x) =
n∏

i=1

f (xi),

where f is the density function of X. And when X is a discrete random variable,

p(x) =
n∏

i=1

p(xi),

where p is the discrete probability function of X. If x = (x1, x2, . . . , xn) are
the observed sample values, this expression gives the probability, according to
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the assumed statistical model, of observing sample values exactly equal to the
observed vales. In other words, it measures how good the assumed model is
for the given data. A high value of p(x), possibly close to 1, implies that the
data are well described by the statistical model; a low value of p(x) implies that
the data are poorly described. Similar conclusions can be drawn for f (x) in the
continuous case. The difference is that the sample density f (x) is not constrained
to be in [0,1], unlike the sample probability p(x). Nevertheless, higher values of
f (x) also indicate that the data are well described by the model, and low values
indicate that the data are poorly described. In both cases we can say that p(x) or
f (x) express the likelihood of the model for the given data.

These are fundamentals ideas when considering inference. A statistical model
is a rather general model, in the sense that once a model is assumed to hold,
it remains to specify precisely the distribution function or, if the model is para-
metric, the unknown parameters. In general, there remain unknown quantities
to be specified. This can seldom be done theoretically, without reference to the
observed data. As the observed data are typically observed on a sample, the
main purpose of statistical inference is to ‘extend’ the validity of the calculations
obtained on the sample to the whole population. In this respect, when statis-
tical summaries are calculated on a sample rather than a whole population, it
is more correct to use the term ‘estimated’ rather than ‘calculated’, to reflect
the fact that the values obtained depend on the sample chosen and may there-
fore be different if a different sample is considered. The summary functions
that produce the estimates, when applied to the data, are called statistics. The
simplest examples of statistics are the sample mean and the sample variance;
other examples are the statistical indexes in Chapter 3, when calculated on a
sample.

The methods of statistical inference can be divided into estimation methods
and hypothesis testing procedures. Estimation methods derive statistics, called
estimators, of the unknown model quantities that, when applied to the sample
data, can produce reliable estimates of them. Estimation methods can be divided
into point estimate methods, where the quantity is estimated with a precise value,
and confidence interval methods, where the quantity is estimated to have a high
frequency of lying within a region, usually an interval of the real line. To provide
a confidence interval, estimators are usually supplemented by measures of their
sampling variability. Hypothesis testing procedures look at the use of the statistics
to take decisions and actions. More precisely, the chosen statistics are used to
accept or reject a hypothesis about the unknown quantities by constructing useful
rejection regions that impose thresholds on the values of the statistics.

We briefly present the most important inferential methods. For simplicity, we
refer to a parametric model. Starting with estimation methods, consider some
desirable properties for an estimator. An estimator T is said to be unbiased, for a
parameter θ , if E(T ) = θ . The difference E(T ) − θ is called bias of an estimator
and is null if the estimator is unbiased. For example, the sample mean

X = 1

n

n∑
i=1

Xi
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is always an unbiased estimator of the unknown population mean μ, as it can be
shown that E(X) = μ. On the other hand, the sample variance

S2 = 1

n

n∑
i=1

(Xi − X)2

is a biased estimator of the sample variance σ 2, as

E(S2) = n − 1

n
σ 2.

Its bias is therefore

bias(S2) = −1

n
σ 2.

This explains why an often used estimator of the population variance is the
unbiased sample variance

S2 = 1

n − 1

n∑
i=1

(Xi − X)2.

A related concept is the efficiency of an estimator, which is a relative concept.
Among a class of estimators, the most efficient estimator is usually the one
with the lowest mean squared error (MSE), which is defined on the basis of the
Euclidean distance by

MSE(T ) = E[(T – θ)2].

It can be shown that

MSE(T ) = [bias(T )]2 + Var(T ).

MSE thus has two components: the bias and the variance. As we shall see in
Chapter 5, there is usually a trade-off between these quantities: if one increases,
the other decreases. The sample mean can be shown to be the most efficient
estimator of the population mean. For large samples, this can be easily seen by
applying the definition.

Finally, an estimator is said to be consistent (in quadratic mean) if, for n → ∞,
lim(MSE(T )) = 0. This implies that, for n → ∞, P(lim |T − θ |) = 1; that is,
for a large sample, the probability that the estimator lies in an arbitrarily small
neighbourhood of θ approximates to 1. Notice that both the sample mean and
the sample variances introduced above are consistent.

In practice, the two most important estimation methods are the maximum
likelihood and Bayesian methods.

Maximum likelihood methods
Maximum likelihood methods start by considering the likelihood of a model
which, in the parametric case, is the joint density of X, expressed as a function
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of the unknown parameters θ :

p(x; θ) =
n∏

i=1

p(xi; θ),

where θ are the unknown parameters and X is assumed to be discrete.
The same expression holds for the continuous case, with p replaced by f . In

the rest of the text we will therefore use the discrete notation, without loss of
generality, case.

If a parametric model is chosen, the model is assumed to have a precise form,
and the only unknown quantities left are the parameters. Therefore the likelihood
is in fact a function of the parameters θ . To stress this fact, the previous expression
can be also denoted by L(θ ; x). Maximum likelihood methods suggest that, as
estimators of the unknown parameter θ , we take the statistics that maximise L(θ ;
x) with respect to θ . The heuristic motivation for maximum likelihood is that it
selects the parameter value that makes the observed data most likely under the
assumed statistical model. The statistics generated using maximum likelihood
are known as maximum likelihood estimators (MLEs) and have many desirable
properties. In particular, they can be used to derive confidence intervals. The
typical procedure is to assume that a large sample is available (this is often the
case in data mining), in which case the MLE is approximately distributed as a
Gaussian (normal) distribution. The estimator can thus be used in a simple way to
derive an asymptotic (valid for large samples) confidence interval. For example,
let T be an MLE and let Var(T ) be its asymptotic variance. Then a 100 (1 − θ)%
confidence interval is given by

(
T − z1−α/2

√
Var(T ), T + z1−α/2

√
Var(T )

)
,

where z1−α/2 is the 100(1 − α/2) percentile of the standardised normal distribu-
tion, such that the probability of obtaining a value less than z1−α/2 is equal to
1 − α/2. The quantity 1 − α is also known as the confidence level of the interval,
as it gives the confidence that the procedure is correct: in 100(1 − α)% of cases
the unknown quantity will fall within the chosen interval. It has to be specified
before the analysis. For the normal distribution, the estimator of μ is the sample
mean, X = n−1∑Xi . So a confidence interval for the mean, when the variance
σ 2 is assumed to be known, is given by

(
X − z1−α/2

√
Var(X),X + z1−α/2

√
Var(X)

)
, where Var(X) = σ 2

n
.

When the distribution is normal from the start, as in this case, the expression
for the confidence interval holds for any sample size. A common procedure
in confidence intervals is to assume a confidence level of 95%; in a normal
distribution this leads to z1−α/2 = 1.96.
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Bayesian methods
Bayesian methods use Bayes’ rule, which provides a powerful framework for
combining sample information with (prior) expert opinion to produce an updated
(posterior) expert opinion. In Bayesian analysis, a parameter is treated as a ran-
dom variable whose uncertainty is modelled by a probability distribution. This
distribution is the expert’s prior distribution p(θ ), stated in the absence of the
sampled data. The likelihood is the distribution of the sample, conditional on the
values of the random variable θ , p(x|θ). Bayes’ rule provides an algorithm to
update the expert’s opinion in light of the data, producing the so-called posterior
distribution p(θ |x):

p(θ |x) = c−1p(x|θ)p(θ),

with c = p(x), a constant that does not depend on the unknown parameter θ .
The posterior distribution represents the main tool of Bayesian inference. Once it
is obtained, it is easy to obtain any inference of interest. For instance, to obtain
a point estimate, we can take a summary of the posterior distribution, such as
the mean or the mode. Similarly, confidence intervals can be easily derived by
taking any two values of θ such that the probability of θ belonging to the interval
described by those two values corresponds to the given confidence level. As θ

is a random variable, it is now correct to interpret the confidence level as a
probability statement: 1 − α is the coverage probability of the interval, namely,
the probability that θ assumes values in the interval. The Bayesian approach is
thus a coherent and flexible procedure. On the other hand, it has the disadvantage
of requiring a more computationally intensive approach, as well as more careful
statistical thinking, especially in providing an appropriate prior distribution.

For the normal distribution example, assuming as a prior distribution for θ a
constant distribution (expressing a vague state of prior knowledge), the posterior
mode is equal to the MLE. Therefore, maximum likelihood estimates can be seen
as a special case of Bayesian estimates. More generally, it can be shown that,
when a large sample is considered, the Bayesian posterior distribution approaches
an asymptotic normal distribution, with the maximum likelihood estimate as
expected value. This reinforces the previous conclusion.

An important application of Bayes’ rule arises in predictive classification prob-
lems. As explained in Section 4.4, the discriminant rule establishes that an
observation x is allocated to the class with the highest probability of occurrence,
on the basis of the observed data. This can be stated more precisely by appealing
to Bayes’ rule. Let Ci , for i = 1, . . . , k, denote a partition of mutually exclusive
and exhaustive classes. Bayes’ discriminant rule allocates each observation x to
the class Ci that maximises the posterior probability:

p(Ci |x) = c−1p(x|Ci)p (Ci) , where c = p(x) =
k∑

i=1

p(Ci)p(x|Ci),

and x is the observed sample. Since the denominator does not depend on Ci , it is
sufficient to maximise the numerator. If the prior class probabilities are all equal
to k−1, maximisation of the posterior probability is equivalent to maximisation of
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the likelihood p(x|Ci). This is the approach often followed in practice. Another
common approach is to estimate the prior class probabilities with the observed
relative frequencies in a training sample. In any case, it can be shown that the
Bayes discriminant rule is optimal, in the sense that it leads to the least possible
misclassification error rate. This error rate is measured as the expected error
probability when each observation is classified according to Bayes’ rule:

pB =
∫ (

1 − max
i

p(Ci |x)

)
p(x)dx,

also known as the Bayes error rate. No other discriminant rule can do better than
a Bayes classifier; that is, the Bayes error rate is a lower bound on the misclassi-
fication rates. Only rules that derive from Bayes’ rule are optimal. For instance,
the logistic discriminant rule and the linear discriminant rule (Section 4.4) are
optimal, whereas the discriminant rules obtained from tree models, multilayer
perceptrons and nearest-neighbour models are optimal for a large sample size.

Hypothesis testing
We now briefly consider procedures for hypothesis testing. A statistical hypoth-
esis is an assertion about an unknown population quantity. Hypothesis testing is
generally performed in a pairwise way: a null hypothesis H0 specifies the hypoth-
esis to be verified, and an alternative hypothesis H1 specifies the hypothesis with
which to compare it. A hypothesis testing procedure is usually constructed by
finding a rejection (critical) rule such that H0 is rejected, when an observed sam-
ple statistic satisfies that rule, and vice versa. The simplest way to construct a
rejection rule is by using confidence intervals. Let the acceptance region of a
test be defined as the logical complement of the rejection region. An acceptance
region for a (two-sided) hypothesis can be obtained from the two inequalities
describing a confidence interval, swapping the parameter with the statistic and
setting the parameter value equal to the null hypothesis. The rejection region is
finally obtained by inverting the signs of the inequalities. For instance, in our
normal distribution example, the hypothesis H0: μ = 0 will be rejected against
the alternative hypothesis H1: μ 	= 0 when the observed value of X is outside
the interval (

0 − z1−α/2

√
Var(X), 0 + z1−α/2

√
Var(X)

)
.

The probability α has to be specified a priori and is called the significance
level of the procedure. It corresponds to the probability of a type I error, that
is, the probability of rejecting the null hypothesis when it is actually true. A
common assumption is to take α = 0.05, which corresponds to a confidence level
of 0.95. The probability is obtained, in this case, by summing two probabilities
relative to the random variable X: the probability that X < 0 − z1−α/2

√
Var(X)

and the probability that X > 0 + z1−α/2

√
Var(X). Notice that the rejection region

is derived by setting μ = 0. The significance level is calculated using the same
assumption. These are general facts: statistical tests are usually derived under the
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assumption that the null hypothesis is true. This is expressed by saying that the
test holds ‘under the null hypothesis’. The limits of the interval are known as
critical values. If the alternative hypothesis were one-sided, the rejection region
would correspond to only one inequality. For example, if H1: μ > 0, the rejection
region would be defined by the inequality X > 0 + z1−α

√
Var(X). The critical

value is different because the significance level is now obtained by considering
only one probability.

There are other methods for deriving rejection rules. An alternative approach
to testing the validity of a certain null hypothesis is by calculating the p-value
of the test. The p-value can be described as the probability, calculated under the
null hypothesis, of observing a test statistic more extreme than actually observed,
assuming the null hypothesis is true, where ‘more extreme’ means in the direction
of the alternative hypothesis. For a two-sided hypothesis, the p-value is usually
taken to be twice the one-sided p-value. In our normal distribution example,
the test statistic is X. Let x be the observed sample value of X. The p-value
would then be equal to twice the probability that X is greater than x: p-value =
2P(X > x). A small p-value will indicate that x is far from the null hypothesis,
which is thus rejected; a large p-value will mean that the null hypothesis cannot
be rejected. The threshold value is usually the significance level of the test,
which is chosen in advance. For instance, if the chosen significance level of
the test is α = 0.05, a p-value of 0.03 indicates that the null hypothesis can be
rejected, whereas a p-value of 0.18 indicates that the null hypothesis cannot be
rejected.

4.10 Non-parametric modelling

A parametric model is usually specified by making a hypothesis about the dis-
tribution and by assuming this hypothesis is true. But this can often be difficult
or uncertain. One possible way to overcome this is to use non-parametric proce-
dures, which eliminate the need to specify the form of the distribution in advance.
A non-parametric model only assumes that the observations come from a cer-
tain distribution function F , not specified by any parameters. But compared with
parametric models, non-parametric models are more difficult to interpret and esti-
mate. Semiparametric models are a compromise between parametric models and
non-parametric models.

A non-parametric model can be characterised by the distribution function or
by the density function, which need to be fully specified. First consider the
estimate of the distribution function. A valid estimator is the empirical distribution
function, usually denoted by S(x). Intuitively it is an analogous estimate of the
distribution function F(x) of the random variable X. Formally, the empirical
distribution function is calculated, at any point x, by taking the proportion of
sample observations less or equal to it,

S(x) = 1

n
#{xi ≤ x}.
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It can be shown that the expected value of S(x) is F(x) and that

Var(S(x)) = 1

n
F(x)(1 − F(x)).

Therefore the empirical distribution function is an unbiased estimator of F(x)

and it is consistent as, for n → ∞, Var(S(x)) → 0, so that MSE(S(x)) → 0.
The sample distribution function can be used to assess a parametric model’s

goodness of fit in an exploratory way. To evaluate the goodness of fit of a
distribution function, we usually use the Kolmogorov–Smirnov distance that
leads to the well-known statistical test of the same name. In this test the null
hypothesis refers to a particular distribution which we shall call F ∗(x) (this
distribution could be Gaussian, for example). Therefore we have

H0 :F (x) = F ∗ (x) ,

H1 :F (x) 	= F ∗ (x) .

To test H0 against H1 we consider the available random sample X1, . . . , Xn.
The idea is to compare the observed distribution function, S(x), with the the-
oretical distribution function F ∗ calculated with the observed values. The idea
of Kolmogorov and Smirnov is simple and clever. Since S(x) estimates F(x)

it is logical to hypothesise a ‘distance’” between S(x) and F(x). If S(x) and
F(x) are close enough (i.e. similar enough) the null hypothesis can be accepted,
otherwise it is rejected. But what kind of test statistics can we use to measure
the discrepancy between S(x) and F(x)? One of the easiest measurements is the
supremum of the vertical distance between the two functions. This is the statistic
suggested by Kolmogorov:

T1 = sup
−∞<x<+∞

∣∣S (x) − F ∗ (x)
∣∣ .

It relies on the usage of the uniform distance, explained in Section 5.1. For ‘high’
values of T1, the null hypothesis is rejected, while for ‘low’ values it is accepted.
The logic of the T1 statistic is obvious but the calculation of the probability
distribution is more complicated. Nevertheless, we can demonstrate that, under
the null hypothesis, the probability distribution of the statistical test based on T1

does not depend on the functional form of F ∗(x). This distribution is tabulated
and included in the main statistical packages. It is therefore possible to determine
critical values for T1 and obtain a rejection region of the null hypotheses. Alter-
natively, it is possible to obtain p-values for the test. The Kolmogorov–Smirnov
test is important in exploratory analysis. For example, when the QQ plot (Section
3.1) does not give any obvious indications that a certain empirical distribution
is normal or not, we can check whether the distance of the normal distribution
function from the empirical distribution function is large enough to be rejected.
Figure 4.10 illustrates how the Kolmogorov–Smirnov statistic works.

The simplest type of density estimator is the histogram. A histogram assigns a
constant density to each interval class. This density is easily calculated by taking
the relative frequency of observations in the class and dividing it by the class
width. For continuous densities, the histogram can be interpolated by joining



MODEL SPECIFICATION 111

1.0

.5
F* (

x) T1

S (x)

x

Figure 4.10 The Kolmogorov–Smirnov statistic.

all midpoints of the top segment of each bar. However, histograms can depend
heavily on the choice of the classes, as well as on the sample, especially when
considering a small sample. Kernel estimators represent a more refined class
of density estimators. They represent a descriptive model, that however works
locally, strongly analogous to nearest-neighbour models (Section 4.7). Consider
a continuous random variable X, with observed values x1, . . . , xn, and a kernel
density function K with a bandwidth h. The estimated density function at any
point x is

f̂ (x) = 1

n

n∑
i=1

K

(
x − xi

h

)
.

In practice the kernel function is usually chosen as a unimodal function, with a
mode at zero. A common choice is to take a normal distribution for the random
variable x − xi with zero mean and variance corresponding to h2, the square of
the bandwidth of the distribution. The quality of a kernel estimate then depends on
a good choice of the variance parameter h. The choice of h reflects the trade-off
between parsimony and goodness of fit that we have already encountered: a
low value of h is such that the estimated density values are fitted very locally,
possibly on the basis of a single data point; a high value leads to a global estimate,
smoothing the data too much. It is quite difficult to establish what a good value
of h should be. One possibility is to use computationally intensive methods, such
as cross-validation techniques. The training sample is used to fit the density, and
the validation sample to calculate the likelihood of the estimated density. A value
of h can then be chosen that leads to a high likelihood.

Estimating high-dimensional density functions is more difficult but kernel
methods can still be applied. Replacing the univariate normal kernel with a mul-
tivariate normal kernel yields a viable multivariate density estimator. Another
approach is to assume that the joint density is the product of univariate kernels.
However, the problem is that, as the number of variables increases, observations
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tend to be farther away and there is little data for the bandwidths. This parallels
what happens with nearest-neighbour models. Indeed, both are memory-based
and the main difference is in their goals; kernel models are descriptive and
nearest-neighbour models are predictive.

Kernel methods can be seen as a useful model for summarising a low-
dimensional data set in a non-parametric way. This can be a helpful step towards
the construction of a parametric model, for instance.

The most important semiparametric models are mixture models. These models
are suited to situations where the data set can be clustered into groups of obser-
vations, each with a different parametric form. The model is semiparametric
because the number of groups, hence the number of distributions to consider, is
unknown. The general form of a finite mixture distribution for a random variable
X is

f (x) =
g∑

i=1

wifi(x; θi),

where wi is the probability that an observation is distributed as the ith popula-
tion, with density fi and parameter vector θi . Usually the density functions are
all the same (often normal) and this simplifies the analysis. We can apply a sim-
ilar techniques to a random vector X. The model can be used for (model-based)
probabilistic cluster analysis. Its advantage is conducting cluster analysis in a
coherent probability framework, allowing us to draw conclusions based on infer-
ential results rather than on heuristics. Its disadvantage is that the procedure is
structurally complex and possibly time-consuming. The model can choose the
number of components (clusters) and estimate the parameters of each population
as well as the weight probabilities, all at the same time. The most challenging
aspect is usually to estimate the number of components, as mixture models are
non-nested so a log-likelihood test cannot be applied. Other methods are used,
such as AIC, BIC, cross-validation and Bayesian methods (Chapter 5). Once
the number of components is found, the unknown parameters are estimated by
maximum likelihood or Bayesian methods.

4.11 The normal linear model

The most widely applied statistical model is the normal linear model. A lin-
ear model is defined essentially by two main hypotheses. Given the explanatory
variables X1, . . . , Xp and the response variable Y , with x1i , . . . , xpi the observed
values of the explanatory variables X1, . . . , Xp corresponding to the ith observa-
tion, the first hypothesis supposes that the corresponding observations Y1, . . . , Yn

of the response variable Y are independent random variables, each normally
distributed with different expected values μ1, . . . , μn and equal variance σ2:

E(Yi |X1i = x1i , . . . , Xpi = xpi) = μi,

Var(Yi |X1i = x1i , . . . , Xpi = xpi) = σ 2, i = 1, . . . , n.
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Dropping the conditioning terms in the expressions for the means and variances,
we can write:

E(Yi) = μi,

Var(Yi) = σ 2, i = 1, . . . , n.

For each i = 1, . . . , n, let

x
i• =

⎡
⎢⎢⎣

x0i

x1i

. . .

xpi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
x1i

. . .

xpi

⎤
⎥⎥⎦ , β =

⎡
⎢⎢⎣

β0

β1

. . .

βp

⎤
⎥⎥⎦ .

The second hypothesis states that the mean value of the response variable is a
linear combination of the explanatory variables:

μi = x′
i•β = β0 + β1x1i + · · · + βpxpi, i = 1, . . . , n.

In matrix terms, setting Y = (Y1, . . . , Yn)
′,

X =

⎡
⎢⎣

x′
1•
...

x′
n•

⎤
⎥⎦ =

⎡
⎢⎢⎣

x01 x11 . . . xp1

x02 x12 . . . xp2

. . . . . . . . . . . .

x0n x1n . . . xpn

⎤
⎥⎥⎦

and with β as above, the previous two hypotheses can be summarised by saying
that Y is a multivariate normal variable with mean vector E(Y) = μ = Xβ and
variance–covariance matrix � = E[(Y − μ)(Y − μ)′] = σ 2In, where In is the
identity matrix of order n.

4.11.1 Main inferential results

Under the previous assumptions, we can derive some important inferential results
that build on the theory in Section 4.3.

Result 1. From a point estimate point of view, it can be demonstrated that the least
squares fitted parameters in Section 4.3 coincide with the maximum likelihood
estimators of β. We will use β̂ to refer to either of the two estimators.

Result 2. A confidence interval for a slope coefficient of the regression plane is

β = β̂ ± tn−p−1

(
1 − α

2

)
se
(
β̂
)
,

where tn−p−1 (1 − α/2) is the 100 (1 − α/2) percentile of a Student’s t dis-
tribution with n − p − 1 degrees of freedom and se

(
β̂
)

is an estimate of the
standard error of β̂.
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Result 3. To test the hypothesis that a slope coefficient is 0, a rejection region
is given by

R =
{
|T | ≥ tn−p−1

(
1 − α

2

)}
, whereT = β̂

se
(
β̂
) .

If the observed absolute value of the statistic T is contained in the rejec-
tion region, the null hypothesis of slope equal to 0 is rejected, and the slope
coefficient is statistically significant . In other words, the explanatory variable
considered significantly influences the response variable. Conversely, when
the observed absolute value of the statistic T falls outside the rejection region,
the explanatory variable is not significant. Alternatively, it is possible to cal-
culate the p-value of the test, the probability of observing a value of T greater
in absolute value than the observed value. If this p-value is small (e.g. lower
than α = 0.05), this means that the observed value is very distant from the null
hypothesis, therefore the null hypothesis is rejected (i.e. the slope coefficient
is significant).

Result 4. To test whether a certain regression plane, with p explanatory variables,
constitutes a significant linear model, it can be compared with a trivial model,
with only the intercept. The trivial model, set to be the null hypothesis H0, is
obtained by simultaneously setting all slope coefficients to 0. The regression
plane will be significant when the null hypothesis is rejected. A rejection region
is given by the inequality

F = R2/p

(1 − R2)/(n − p − 1)
≥ Fp,n−p−1(1 − α),

where R2 is the coefficient of determination seen in Section 4.3 and
Fp,n−p−1(1 − α) is the 100 (1 − α) percentile of an F distribution with p and
n − p − 1 degrees of freedom. The degrees of freedom of the denominator
represent the difference in dimension between the observation space (n) and
the fitting plane (p + 1); those of the numerator represent the difference in
dimension between the fitting plane (p + 1) and a fitting point (1) defined by
the only intercept. A p-value for the test can be calculated, giving further
support to the significance of the model.

Notice how we have introduced a precise threshold for evaluating whether
a certain regression model is valid in making predictions, in comparison with
the simple arithmetic mean. But this is a relative statement, which gives little
indication of how well the linear model fits the data at hand. A statistic like
this can be applied to cluster analysis, assuming that the available observations
come from a normal distribution. Then the degrees of freedom are c − 1 and
n − c. The statistic is called a pseudo-F statistic because, in the general case
of a non-normal distribution for the observations, the statistic does not have
an F distribution.

Result 5. To compare two nested regression planes that differ in a single explana-
tory variable, say the (p + 1)th, present in one model but not in the other, the
simpler model can be set as null hypothesis H0, so that the more complex
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model is chosen if the null hypotheses is rejected, and vice versa. A rejection
region can be defined by the inequality

F =
r2
Y,Xp+1|X1,...,Xp

/1

(1 − r2
Y,Xp+1|X1,...,Xp

)/n − p − 2
≥ F1,n−p−2(1 − α),

where r2
Y,Xp+1|X1,...,Xp

is the partial correlation coefficient between Xp+1 and
the response variable Y , conditional on all present explanatory variables, and
F1,n−p−2(1 − α) is the 100 (1 − α) percentile of an F distribution, with 1 and
n − p − 2 degrees of freedom.

Notice that the degrees of freedom of the denominator represent the difference
in dimension between the observation space (n) and the more complex fitting
plane (p + 2); the degrees of freedom of the numerator represent the difference
in dimension between the more complex fitting plane (p + 2) and the simpler one
(p + 1). Alternatively, we can do the comparison by calculating the p-value of
the test. This can usually be derived from the output table that contains the decom-
position of the variance, also called the analysis of variance (ANOVA) table. By
substituting the definition of the partial correlation coefficient r2

Y,Xp+1|X1,...,Xp
, we

can write the test statistic as

F = Var
(
Ŷp+1

)− Var
(
Ŷp

)
(Var(Y ) − Var(Ŷp+1))/(n − p − 2)

,

therefore this F test statistic can be interpreted as the ratio between the additional
variance explained by the (p + 1)th variable and the mean residual variance. In
other words, it expresses the relative importance of the (p + 1)th variable. This
test is the basis of a process which chooses the best model from a collection of
possible linear models that differ in their explanatory variables. The final model
is chosen through a series of hypothesis tests, each comparing two alternative
models. The simpler of the two models is taken as the null hypothesis and the
more complex model as the alternative hypothesis.

As the model space will typically contain many alternative models, we need to
choose a search strategy that will lead to a specific series of pairwise comparisons.
There are at least three alternative approaches. The forward selection procedure
starts with the simplest model, without explanatory variables. It then complicates
it by specifying in the alternative hypothesis H1 a model with one explanatory
variable. This variable is chosen to give the greatest increase in the explained
variability of the response. The F test is used to verify whether or not the added
variable leads to a significant improvement with respect to the model in H0. In
the negative case the procedure stops and the chosen model is the model in H0

(i.e. the simplest model). In the affirmative case the model in H0 is rejected and
replaced with the model in H1. An additional explanatory variable (chosen as
before) is then inserted in a new model in H1, and a new comparison is made.
The procedure continues until the F test does not reject the model in H0, which
thus becomes the final model.
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The backward elimination procedure starts with the most complex model, con-
taining all the explanatory variables. It simplifies it by making the null hypotheses
H0 equal to the original model minus one explanatory variable. The eliminated
variable is chosen to produce the smallest decrease in the explained variability
of the response. The F test is used to verify whether or not the elimination of
this variable leads to a significant improvement with respect to the model in H1.
In the negative case the chosen model is the model in H1 (i.e. the most complex
model) and the procedure stops. In the affirmative case the complex model in H1

is rejected and replaced with the model in H0. An additional variable is dropped
(chosen as before) and the resulting model is set as H0, then a new comparison is
made. The procedure continues until the F test rejects the null hypothesis. Then
the chosen model is the model in H1.

The stepwise procedure is essentially a combination of the previous two. It
begins with no variables; variables are then added one by one according to the
forward procedure. At each step of the procedure, a backward elimination is
carried out to verify whether any of the added variables should be removed.

Whichever procedure is adopted, the final model should be the same. This
is true most of the time but it cannot be guaranteed. The significance level
used in the comparisons is an important parameter as the procedure is carried
out automatically by the software and the software uses the same level for all
comparisons. For large samples, stepwise procedures are often rather unstable in
finding the best models. It is not a good idea to rely solely on stepwise procedures
for selecting models.

4.12 Generalised linear models

For several decades, the linear model has been the main statistical model for data
analysis. However, in many situations the hypothesis of linearity is not realistic.
The second restrictive element of the normal linear model is the assumption of
normality and constant variance of the response variable. In many applications
the observations are not normally distributed nor do they have a constant vari-
ance, and this limits the usefulness of the normal linear model. Developments
in statistical theory and computing power during the 1960s allowed researchers
to take their techniques for linear models and develop them in other contexts.
It turns out that many of the ‘nice’ proprieties of the normal distribution are
shared by a wider class of statistical models known as the exponential family of
distributions.

The numerical calculations for the parameter estimates have also benefited
from refinements; as well as working on linear combinations Xβ, we can now
work on functions of linear combinations such as g(Xβ). Improved computer
hardware and software have helped with effective implementation, culminating
in generalised linear models (Nelder and Wedderburn, 1972). In the normal lin-
ear model, the base distribution is the normal distribution; in generalised linear
models it is one of the exponential family of distributions.
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4.12.1 The exponential family

Consider a single random variable Y whose density function (or discrete prob-
ability function) depends on a single parameter θ (possibly vector-valued). The
probability distribution of the variable is said to belong to the exponential family
if the density can be written in the form

f (y; θ) = s (y) t (θ) ea(y)b(θ),

where a, b, s and t are known functions.
The symmetry existing between y and θ becomes more evident if the previous

equation is rewritten in the form

f (y; θ) = exp
[
a (y) b (θ) + c (θ) + d (y)

]
,

where s (y) = exp[d (y)] and t (θ) = exp[c (θ)]. If a (y) = y, the previous distri-
bution is said to be in canonical form, and b (θ) is called the natural parameter of
the distribution. If there are other parameters (say, φ), besides the parameter of
interest θ , they are considered as nuisance parameters that are usually dealt with
as if they were known. Many familiar distributions belong to the exponential
family; here are some of them.

Poisson distribution
The Poisson distribution is usually used to model the probability of observing
integer numbers, corresponding to counts in a fixed period of time (e.g. the
number of customers entering a supermarket in an hour, or the number of phone
calls received in a call centre in a day). The Poisson distribution is a discrete
distribution that assigns a non-zero probability to all the non-negative integers. It
is parameterised by a parameter that represents the mean value of the counts. If a
random variable Y has a Poisson distribution with mean λ, its discrete probability
function is

f (y; λ) = λye−λ

y!
,

where y takes the values 0, 1, 2, . . .. Through simple algebra it is possible to
rewrite the density as

f (y; λ) = exp
[
ylogλ − λ − log y!

]
,

which shows that the Poisson distribution belongs to the exponential family, in
canonical form, with natural parameter b (θ) = logλ.

Normal distribution
The normal distribution is a continuous distribution that assigns a positive density
to each real number. If Y is a normal random variable with mean μ and variance
σ 2, its density function is

f (y; μ) = 1

(2πσ 2)1/2
exp

[
− 1

2σ 2
(y − μ)2

]
,
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where μ is usually the parameter of interest and σ 2 is considered a nuisance
parameter. The density can be rewritten as

f (y;μ) = f (y;μ) = exp

[
y

μ

σ 2
− μ2

2σ 2
− 1

2
log
(
2πσ 2)− y2

2σ 2

]
,

which shows that the normal distribution belongs to the exponential family, in
canonical form, with natural parameter b (θ) = μ/σ 2.

Binomial distribution
The binomial distribution is used to model the probability of observing a number
of ‘successes’ (or events of interest) in a series of n independent binary trials
(e.g. how many among the n customers of a certain supermarket buy a certain
product, or how many among n loans assigned to a certain credit institution have
a good end). The binomial distribution is a discrete distribution that assigns a
non-zero probability to all the non-negative integers between 0 and n, represent-
ing the completed trials. It is parameterised by n and by the parameter π , which
represents the probability of obtaining a success in each trial. Suppose that the
random variable Y represents the number of successes in n binary independent
experiments, in which the probability of success is always equal to π . Then Y

has a binomial distribution with discrete probability function

f (y; π) =
(

n

y

)
πy (1 − π)n−y ,

where y takes the values 0, 1, 2, . . . , n. This function can be rewritten as

f (y; π) = exp

[
ylog

(
π

1 − π

)
+ nlog (1 − π) + log

(
n

y

)]
,

which shows that the binomial distribution belongs to the exponential family, in
canonical form, with natural parameter b (θ) = log[π/(1 − π)].

The exponential family of distribution is a very general class that contains these
three important probability models. The advantage of the general form is that it
is possible to obtain inferential results common to all the distributions belonging
to it. We will not dwell on these results, limiting ourselves to describing some
important consequences for data analysis. For more details, see Agresti (1990)
or Dobson (2002).

4.12.2 Definition of generalised linear models

A generalised linear model takes a function of the mean value of the response
variable and relates it to the explanatory variables through an equation having
linear form. It is specified by three components: a random component, which
identifies the response variable Y and assumes a probability distribution for it; a
systematic component, which specifies the explanatory variables used as predic-
tors in the model; and a link function, which describes the functional relation
between the systematic component and the mean value of the random component.
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Random component
For a sample of size n, the random component of a generalised linear model is
described by the sample random variables Y1, . . . , Yn; these are independent, each
has a distribution in exponential family form that depends on a single parameter
θi , and each is described by the density function

f (yi; θi) = exp
[
yib (θi) + c (θi) + d (yi)

]
.

All the distributions for the Yi have to be of the same form (e.g. all normal or
all binomial) but their θi parameters do not have to be the same.

Systematic component
The systematic component specifies the explanatory variables and their roles in
the model. It is given by a linear combination

η = β1x1 + · · · + βpxp =
p∑

j=1

βjxj .

The linear combination η is called the linear predictor. The Xj represent the
covariates, whose values are known (e.g. they can derive from the data matrix).
The βj are the parameters that describe the effect of each explanatory variable
on the response variable. The values of the parameters are generally unknown
and have to be estimated from the data. The systematic part can be written in
the following form:

ηi =
p∑

j=1

βjxij , i = 1, . . . , n,

where xij is the value of the j th explanatory variable for the ith observation. In
matrix form, we have

η = Xβ,

where η is a vector of order n × 1, X is a matrix of order n × p, called the model
matrix, and β is a vector of order p × 1, called the parameter vector.

Link function
The third component of a generalised linear model specifies the link between the
random component and the systematic component. Let the mean value of Yi be
denoted by

μi = E (Yi) , i = 1, . . . , n.

The link function specifies which function of μi linearly depends on the explana-
tory variables through the systematic component ηi . Let g (μi) be a (monotone
and differentiable) function of μi . The link function is defined by

g (μi) = ηi =
p∑

j=1

βjxij , i = 1, . . . , n.



120 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

Table 4.5 Main canonical links.

Distribution Canonical link

Normal g (μi) = μi

Binomial g (μi) = log
(

πi
1−πi

)
Poisson g (μi) = log μi

In other words, the link function describes how the explanatory variables affect
the mean value of the response variable, that is, through the (not necessarily lin-
ear) function g. How do we chose g? In practice, the more commonly used link
functions are canonical and define the natural parameter of the particular distri-
bution as a function of the mean response value. Table 4.5 shows the canonical
links for the three important distributions in Section 4.12.1. The same table can
be used to derive the most important examples of generalised linear models.
The simplest link function is the normal one. It directly models the mean value
through the identity link ηi = μi , thereby specifying a linear relationship between
the mean response value and the explanatory variables:

μi = β0 + β1xi1 + · · · + βpxip.

The normal distribution and the identity link give rise to the normal linear model
for continuous response variables (Section 4.11).

The binomial link function models the logarithm of the odds as a linear function
of the explanatory variables:

log

(
μi

1 − μi

)
= β0 + β1xi1 + · · · + βpxip, i = 1, . . . , n.

This type of link, called the logit link, is appropriate for binary response variables,
as in the binomial model. A generalised linear model that uses the binomial
distribution and the logit link is a logistic regression model (Section 4.4). For a
binary response variable, econometricians often use the probit link, which is not
canonical. This assumes that

�−1 (μi) = β0 + β1xi1 + · · · + βpxip, i = 1, . . . , n,

where �−1 is the inverse of the cumulative normal distribution function.
The Poisson canonical link function specifies a linear relationship between the

logarithm of the mean response value and the explanatory variables:

log (μi) = β0 + β1xi1 + · · · + βkxik, i = 1, . . . , n.

A generalised linear model that uses the Poisson distribution and a logarithmic
link is a log-linear model; it constitutes the main data mining tool for describing
associations between the available variables (see Section 4.13).
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Inferential results
We now consider inferential results that hold for the whole class of generalised
linear models; we will apply them logistic regression and log-linear models.
Parameter estimates are usually obtained using the method of maximum likeli-
hood. The method computes the derivative of the log-likelihood with respect to
each coefficient in the parameter vector β and sets it equal to zero, similarly to
the linear regression context in Section 4.3. But unlike what happens with the
normal linear model, the resultant system of equations is non-linear in the param-
eters and does not generally have a closed-form solution. So to obtain maximum
likelihood estimators of β we need to use iterative numerical methods, such as
the Newton–Raphson method or Fisher’s scoring method; for more details, see
Agresti (1990) or Hand et al. (2001).

Once the parameter vector β is estimated, its significance is usually assessed
by hypothesis testing. We will now see how to verify the significance of each
parameter in the model. Later we will compute the overall significance of a
model in the context of model comparison. Consider testing the null hypothesis
H0 : βi = 0 against the alternative H1 : βi 	= 0. A rejection region for H0 can
be defined using the asymptotic procedure known as Wald’s test. If the sample
size is sufficiently large, the statistic

Z = β̂i

σ (β̂i)

is approximately distributed as standardised normal; here σ
(
β̂i

)
denotes the stan-

dard error of the estimator in the numerator, Therefore, to decide whether to
accept or reject the null hypothesis, we can construct the rejection region

R = {|Z| ≥ z1−α/2
}
,

where z1−α/2 is the 100(1 − α/2) percentile of the standard normal distribution.
Alternatively, we can find the p-value and see whether it is less than a predefined
significance level (e.g. α = 0.05). If p < α then H0 is rejected. The square of
the Wald statistic Z has a chi-squared distribution with 1 degree of freedom, for
large samples. That means it is legitimate for us to construct a rejection region
or to assess a p-value.

Rao’s score statistic, often used as an alternative to the Wald statistic, computes
the derivative of the observed log-likelihood function evaluated at the parameter
values set by the null hypothesis, βi = 0. Since the derivative is zero at the point
of maximum likelihood, the absolute value of the score statistic tends to increase
as the maximum likelihood estimate β̂i gets more distant from zero. The score
statistic is equal to the square of the ratio between the derivative and its standard
error, and it is also asymptotically distributed as chi-squared with 1 degree of
freedom. For more details on hypotheses testing using generalised linear models,
see Dobson (2002), McCullagh and Nelder (1989) or Azzalini (1992).
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Model comparison
Fitting a model to data can be interpreted as a way of replacing a set of observed
data values with a set of estimated values obtained during the fitting process.
The number of parameters in the model is generally much lower than the number
of observations in the data. We can use these estimated values to predict future
values of the response variable from future values of the explanatory variables. In
general the fitted values, say μ̂i , will not be exactly equal to the observed values,
yi . The problem is to establish the distance between the μ̂i and the yi . In Chapter
5 we will start from this simple concept of distance between observed values and
fitted values, then show how it is possible to construct statistical measures to
compare statistical models and, more generally, data mining methods. In this
section we will consider the deviance and the Pearson statistic, two measures for
comparing the goodness of fit of different generalised linear models.

The first step in evaluating a model’s goodness of fit is to compare it with the
models that produce the best fit and the worst fit. The best-fit model is called
the saturated model; it has as many parameters as observations (n) and therefore
leads to a perfect fit. The worst-fit model is called the null model; it has only one
intercept parameter and leaves all response variability unexplained. The saturated
model attributes the whole response variability to the systematic component. In
practice the null model is too simple and the saturated model is not informative
because it does completely reproduces the observations. However, the saturated
model is a useful comparison when measuring the goodness of fit of a model
with p parameters. The resulting quantity is called the deviance, and it is defined
as follows for a model M (with p parameters) in the class of the generalised
linear models:

G2(M) = −2 log

{
L
(
β̂(M)

)
L
(
β̂(M∗)

)
}

,

where the quantity in the numerator is the likelihood function, calculated using
the maximum likelihood parameter estimates under model M , denoted by β̂(M);
and the quantity in the denominator is the likelihood function of the observa-
tions, calculated using the maximum likelihood parameter estimates under the
saturated model M∗. The expression in curly brackets is called the likelihood
ratio, and it seems an intuitive way to compare two models in terms of the
likelihood they receive from the observed data. Multiplying the natural loga-
rithm of the likelihood ratio by −2, we obtain the maximum likelihood ratio test
statistic.

The asymptotic distribution of the G2 statistic (under H0) is known: for a
large sample size, G2(M) is approximately distributed as chi-squared with n − k

degrees of freedom, where n is the number of observations and k is the number
of the estimated parameters under model M , corresponding to the number of
explanatory variables plus one (the intercept). The logic behind the use of G2 is
as follows. If the model M that is being considered is good, then the value of its
maximised likelihood will be closer to that of the maximised likelihood under
the saturated model M∗. Therefore ‘small’ values of G2 indicate a good fit.
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The asymptotic distribution of G2 can provide a threshold beneath which to
declare the simplified model M as a valid model. Alternatively, the significance
can be evaluated through the p-value associated with G2. In practice the p-value
represents the area to the right of the observed value for G2 in the χ2

n−k dis-
tribution. A model M is considered valid when the observed p-value is large
(e.g. greater than 5%). The value of G2 alone is not sufficient to judge a model,
because G2 increases as more parameters are introduced, similarly to what hap-
pens to R2 in the regression model. However, since the threshold value generally
decreases with the number of parameters, by comparing G2 and the threshold we
can reach a compromise between goodness of fit and model parsimony.

The overall significance of a model can also be evaluated by comparing it
against the null model. This can be done by taking the difference in deviance
between the model considered and the null model to obtain the statistic

D = −2 log

{
L
(
β̂(M0)

)
L
(
β̂(M)

)
}

.

Under the null hypothesis that the null model is true, D is asymptotically
distributed as χ2

p, where p is the number of explanatory variables in model M .
This can be obtained by noting that D = G2(M0) − G2(M) and recalling that
the two deviances independent and asymptotically distributed as chi-squared
random variables. From the additive property of the chi-squared distribution,
it follows that the degrees of freedom of D are (n − 1) − (n − p − 1) = p.
The model considered is accepted (i.e. the null model in the null hypothesis is
rejected) if the p-value is small. This is equivalent to the difference D between
the log-likelihoods being large. Rejection of the null hypothesis implies that at
least one parameter in the systematic component is significantly different from
zero. Statistical software often gives the log-likelihood maximised for each
model of analysis, corresponding to −2 log(L(β̂(M))), which can be seen as a
score of the model under consideration. To obtain the deviance, this should be
normalised by subtracting −2 log(L(β̂(M∗))). On the other hand, D is often
given with the corresponding p-values. This is analogous to the statistic in
Result 4 in Section 4.11.1 (page 114).

More generally, following the same logic used in the derivation of D, any two
models can be compared in terms of their deviances. If the two models are nested
(i.e. the systematic component of one of them is obtained by eliminating some
terms from the other one), the difference between the deviances is asymptotically
distributed as chi-squared with p − q degrees of freedom, where p − q represents
the number of variables excluded in the simpler model (which has q parameters)
but not in the other one (which has p parameters). If the difference between
the two is large (with respect to the critical value), the simpler model will be
rejected in favour of the more complex model, and similarly when the p-value
is small.

For the whole class of generalised linear models, it is possible to employ a
formal procedure in searching for the best model. As with linear models, this
procedure is usually forward, backward or stepwise elimination.



124 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

When the data analysed are categorical, or discretised to be such, an alternative
to G2 is Pearson’s X2:

X2 =
∑

i

(oi − ei)
2

ei

where, for each category i, oi represents the observed frequencies and ei rep-
resents the frequencies expected according to the model under examination. As
with the deviance G2, we are comparing the fitted model (which corresponds
to the ei) and the saturated model (which corresponds to the oi). However,
the distance function is not based on the likelihood, but on direct comparison
between observed and fitted values for each category. Notice that this statis-
tic generalises the Pearson X2 distance measure in Section 3.4. There the fitted
model particularised to the model under which the two categorical variables were
independent.

The Pearson statistic is asymptotically equivalent to G2, therefore under
H0, X

2 ≈ χ2
n−k . The choice between G2 and X2 depends on the goodness of

the chi-squared approximation. In general, it can be said that X2 is less affected
by small frequencies, particularly when they occur in large data sets – data sets
having many variables. The advantage of G2 lies in its additivity, so it easily
generalises to any pairwise model comparisons, allowing us to adopt a model
selection strategy.

The statistics G2 and X2 indicate a model’s overall goodness of fit; we need to
do further diagnostic analysis to look for local lack of fit. Before fitting a model,
it may be extremely useful to try some graphical representations. For example,
we could plot the observed frequencies of the various categories, or functions
of them, against the explanatory variables. It is possible to draw dispersion dia-
grams and fit straight lines for the response variable transformation described by
the canonical link (e.g. the logit function for logistic regression). This can be
useful in verifying whether the hypotheses behind the generalised linear model
are satisfied. If not, the graph itself may suggest further transformations of the
response variable or the explanatory variables. Once a model is chosen as the
best and fitted to the data, our main diagnostic tool is to analyse the residuals.
Unlike what happens in the normal linear model, for generalised linear models
there are different definitions of the residuals. Here we consider the deviance
residuals that are often used in applications. For each observation, the residual
from the deviance is defined by the quantity

Dri = (yi − μ̂i)
√

di.

This quantity increases (or decreases) depending on the difference between the
observed and fitted values of the response variable (yi − μ̂i) and is such that∑

D r2
i = G2. In a good model, the deviance residuals should be randomly dis-

tributed around zero, so plot the deviance residuals against the fitted values. For
a good model, the points in the plane should show no evident trend.
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4.12.3 The logistic regression model

The logistic regression model is an important model, and we can use our general
results to derive inferential results for it. The deviance of a model M takes the
form

G2(M) = 2
n∑

i=1

[
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)]
,

where the π̂i are the fitted probabilities of success, calculated on the basis of the
estimated β parameters for model M . Observe the similarity between this form
and

G2 = 2
∑

i

oi log
oi

ei

,

where oi stands for the observed frequencies yi and ni − yi , and ei stands for the
corresponding fitted frequencies niπ̂i and ni − niπ̂i . Note that G2 can be inter-
preted as a distance function, expressed in terms of entropy differences between
the fitted model and the saturated model.

The Pearson statistic for the logistic regression model, based on the X2 dis-
tance, takes the form

Z2 =
n∑

i=1

(yi − niπ̂i)
2

niπ̂i (1 − π̂i)
.

Both G2and X2 can be used to compare models in terms of distances between
observed and fitted values. The advantage of G2 lies in its modularity. For
instance, in the case of two nested logistic regression models MA, with q param-
eters, and MB , with p parameters (q < p), the difference between the deviances
is given by

D = G2 (MA) − G2 (MB) = 2
n∑

i=1

yi log

(
niπ̂

B
i

niπ̂
A
i

)
+ (ni − yi) log

(
niπ̂

B
i

niπ̂
A
i

)

= 2
n∑

i=1

oi log

(
eB
i

eA
i

)
≈ χ2

p−q,

where π̂A
i and π̂B

i denote the success probability fitted, on the basis of models
MA and MB , respectively. Note that the expression for the deviance boils down
into an entropy measure between probability models, exactly as before. This is
a general fact. The deviance residuals are defined by Finally, we remark that, in
the logistic regression model,:

Dri = ± (yi − π̂i) 21/2
[
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)]1/2

.
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4.13 Log-linear models

We can distinguish symmetric and asymmetric generalised linear models. If the
objective of the analysis is descriptive – to describe the associative structure
among the variables – the model is called symmetric. If the variables are divided
into two groups, response and explanatory – to predict the responses on the basis
of the explanatory variables – the model is asymmetric. Asymmetric models we
have seen are the normal linear model and the logistic regression model. We
will now consider the best-known symmetric model, the log-linear model. The
log-linear model is typically used for analysing categorical data, organised in
contingency tables. It represents an alternative way to express a joint probability
distribution for the cells of a contingency table. Instead of listing all the cell prob-
abilities, this distribution can be described using a more parsimonious expression
given by the systematic component.

4.13.1 Construction of a log-linear model

We now show how a log-linear model can be constructed, starting from three dif-
ferent distributional assumptions about the absolute frequencies of a contingency
table, corresponding to different sampling schemes for the data in the table. For
simplicity, but without loss of generality, we consider a two-way contingency
table of dimension I × J (I rows and J columns).

Scheme 1
The cell counts are independent random variables that have a Poisson distribution.
All the marginal counts, including the total number of observations n, are also
random and Poisson distributed. As the natural parameter of a Poisson distribution
with parameter mij is log(mij ), the relationship that links the expected value of
each cell frequency mij to the systematic component is

log
(
mij

) = ηij ,

for i = 1, . . . , I and j = 1, . . . , J . In the linear and logistic regression models,
the total amount of information (which determines the degrees of freedom) is
described by the number of observations of the response variable (denoted by
n), but in the log-linear model this corresponds to the number of cells of the
contingency table. In the estimation procedure, the expected frequencies will be
replaced by the observed frequencies, and this will lead us to estimate the param-
eters of the systematic component. For an I × J table there are two variables
in the systematic component. Let the levels of the two variables be denoted by
xi and xj , for i = 1, . . . , I and j = 1, . . . , J . The systematic component can
therefore be written as

ηi = u +
∑

i

uixi +
∑

j

ujxj

∑
ij

uij xixj
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This expression is called the log-linear expansion of the expected frequencies.
The terms ui and uj describe the single effects of each variable, corresponding
to the mean expected frequencies for each of their levels. The term uij describes
the joint effect of the two variables on the expected frequencies. The term u is
a constant that corresponds to the mean expected frequency over all table cells.

Scheme 2
The total number of observations n is not random, but a fixed constant. This
implies that the relative frequencies follow a multinomial distribution. Such a
distribution generalises the binomial to the case where there are more than two
alternative events for the variable considered. The expected values of the absolute
frequencies for each cell are given by mij = nπij . With n fixed, specifying a
statistical model for the probabilities πij is equivalent to modelling the expected
frequencies mij , as in Scheme 1.

Scheme 3
The marginal row (or column) frequencies are known. In this case it can be shown
that the cell counts are distributed as a product of multinomial distributions. It
is possible to show that we can define a log-linear model in the same way as
before.

Properties of the log-linear model
Besides being parsimonious, the log-linear model allows us easily to incorporate
in the probability distribution constraints that specify independence relationships
between variables. For example, using results introduced in Section 3.4, when two
categorical variables are independent, the joint probability of each cell probability
factorises as πij = πi+π+j , for i = 1, . . . , I and j = 1, . . . , J . And the additive
property of the logarithms implies that

log(mij ) = log n + log πi+ + log π+j .

This describes a log-linear model of independence that is more parsimonious than
the previous one, called the saturated model as it contains as many parameters as
there are table cells. In general, to achieve a unique estimate on the basis of the
observations, the number of terms in the log-linear expansion cannot be greater
than the number of cells in the contingency table. This implies some constraints
on the parameters of a log-linear model. Known as identifiability constraints,
they can be defined in different ways, but we will use a system of constraints
that equates to zero all the u-terms that contain at least one index equal to the
first level of a variable. This implies that, for a 2 × 2 table, relative to the binary
variables A and B, with levels 0 and 1, the most complex possible log-linear
model (saturated) is defined by

log
(
mij

) = u + uA
i + uB

j + uAB
ij
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with constraints such that: uA
i 	= 0 for i = 1 (i.e. if A = 1); uB

j 	= 0 for j = 1
(i.e. if B = 1); and uAB

ij 	= 0 for i = 1 and j = 1 (i.e. if A = 1 and B = 1). The
notation reveals that, in order to model the four cell frequencies in the table,
there is a constant term, u; two main effects terms that exclusively depend on
a variable, uA

i and uB
j ; and an interaction term that describes the association

between the two variables, uAB
ij . Therefore, following the stated constraints, the

model establishes that the logarithms of the four expected cell frequencies are
given by

log(m00) = u,

log(m10) = u + uA
i ,

log(m00) = u + uB
j ,

log(m00) = u + uA
i + uB

j + uAB
ij .

4.13.2 Interpretation of a log-linear model

Logistic regression models with categorical explanatory variables (also called
logit models) can be considered a particular case of the log-linear models. To
clarify this point, consider a contingency table with three dimensions for variables
A, B, C, and numbers of levels I , J , 2 respectively. Assume that C is the response
variable of the logit model. A logit model is expressed by

log

(
mij1

mij0

)
= α + βA

i + βB
j + βAB

ij .

All the explanatory variables of a logit model are categorical, so the effect of each
variable (e.g. variable A) is indicated only by the coefficient (e.g. βA

i ) rather than
by the product (e.g. βA). Besides that, the logit model has been expressed in terms
of the expected frequencies, rather than probabilities, as in the last section. This
is only a notational change, obtained through multiplying the numerator and the
denominator by n. This expression is useful to show that the logit model which
has C as response variable is obtained as the difference between the log-linear
expansions of log(mij1) and log(mij0). Indeed, the log-linear expansion for a
contingency table with three dimensions I × J × 2 has the more general form

log
(
mijk

) = u + uA
i + uB

j + uC
k + uAB

ij + uAC
ik + uBC

jk + uABC
ijk .

Substituting and taking the difference between the logarithms of the expected
frequencies for C = 1 and C = 0:

log
(
mij1

)− log
(
mij0

) = uC
1 + uAC

i1 + uBC
j1 + uABC

ij1 .

In other words, the u-terms that do not depend on the variable C cancel out.
All the remaining terms depend on C. By eliminating the symbol C from the
superscript, the value 1 from the subscript and relabelling the u-terms using α and
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β, we arrive at the desired expression for the logit model. Therefore a logit model
can be obtained from a log-linear model. The difference is that a log-linear model
contains not only the terms that describe the association between the explanatory
variables and the response – here the pairs AC, BC – but also the terms that
describe the association between the explanatory variables – here the pair AB .
Logit models do not model the association between the explanatory variables.

We now consider the relationship between log-linear models and odds ratios.
The logarithm of the odds ratio between two variables is equal to the sum of the
interaction u-terms that contain both variables. It follows that if in the log-linear
expansion considered there are no u-terms containing both the variables A and
B, say, then we obtain θAB = 1; that is, the two variables are independent.

To illustrate this concept, consider a 2 × 2 table and the odds ratio between
the binary variables Aand B:

θ = θ1

θ2
= π1|1

/
π0|1

π1|0
/
π0|0

= π11
/
π01

π10
/
π00

= π11π00

π01π10
.

Multiplying numerator and denominator by n2 and taking logarithms:

log(θ) = log(m11) + log(m00) − log(m10) − log(m01).

Substituting for each probability the corresponding log-linear expansion, we
obtain log(θ) = uAB

11 . Therefore the odds ratio between the variables A and B is
θ = exp(uAB

11 ). These previous relations, which are very useful for data interpre-
tation, depend on the identifiability constraints we have adopted.

We have shown the relationship between the odds ratio and the parameters
of a log-linear model for a 2 × 2 contingency table. This result is valid for
contingency tables of higher dimension, provided the variables are binary and,
as usually happens in a descriptive context, the log-linear expansion does not
contain interaction terms between more than two variables.

4.13.3 Graphical log-linear models

A key instrument in understanding log-linear models, and graphical models in
general, is the concept of conditional independence for a set of random variables;
this extends the notion of statistical independence between two variables, seen
in Section 3.4. Consider three random variables X, Y , and Z. X and Y are
conditionally independent given Z if the joint probability distribution of X and
Y , conditional on Z, can be decomposed into the product of two factors: the
conditional density of X given Z and the conditional density of Y given Z. In
formal terms, X and Y are conditionally independent of Z if f (x, y|Z = z) =
f (x|Z = z)f (y|Z = z) and we write X⊥Y |Z. An alternative way of expressing
this concept is that the conditional distribution of Y on both X and Z does not
depend on X. So, for example, if X is a binary variable and Z is a discrete
variable, then for every z and y we have

f (y|X = 1, Z = z) = f (y|X = 0, Z = z) = f (y|Z = z) .
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The notion of (marginal) independence between two random variables (Section
3.4) can be obtained as a special case of conditional independence. As seen for
marginal independence, conditional independence can simplify the expression
for and the interpretation of log-linear models. In particular, it can be extremely
useful in visualising the associative structure among all variables at hand, using
the so-called independence graphs. Indeed, a subset of log-linear models, called
graphical log-linear models, can be completely characterised in terms of condi-
tional independence relationships and therefore graphs. For these models, each
graph corresponds to a set of conditional independence constraints and each of
these constraints can correspond to a particular log-linear expansion.

The study of the relationship between conditional independence statements,
represented in graphs, and log-linear models has its origins in the work of Darroch
et al. (1980). We explain this relationship through an example. For a systematic
treatment, see Edwards (2000), Whittaker (1990) or Lauritzen (1996). We believe
that the introduction of graphical log-linear models helps to explain the problem
of model choice for log-linear models. Consider a contingency table of three
dimensions, each corresponding to a binary variable so that the total number of
cells in the contingency table is 23 = 8. The simplest log-linear graphical model
for a three-way contingency table assumes that the logarithm of the expected
frequency of every cell is

log
(
mjkl

) = u + uA
j + uB

k + uC
l .

This model does not contain interaction terms between variables, therefore the
three variables are mutually independent. In fact, the model can be expressed in
terms of cell probabilities as pjkl = pj++p+k+p++l , where the symbol + indi-
cates that the joint probabilities have been summed with respect to all the values
of the relative index. Note that, for this model, the three odds ratios between the
variables – (A, B), (A, C), (B, C) – are all equal to 1. To uniquely identify the
model it is possible to use a list of the terms, called generators, that correspond to
the maximal terms of interaction in the model. These terms are called maximals
in the sense that their presence implies the presence of interaction terms between
subsets of their variables. At the same time, their existence in the model is not
implied by any other term. For the previous model of mutual independence, the
generators are (A, B, C); they are the main effect terms as there are no other terms
in the model. To graphically represent conditional independence statements, we
can use conditional independence graphs. These are constructed by associating a
node with each variable and by placing a link (technically, an edge) to connect
a pair of variables whenever the corresponding random variables are dependent.
For the cases of mutual independence we have described, there are no edges and
therefore we obtain the representation in Figure 4.11.

Consider now a more complex log-linear model for the three variables,
described by the log-linear expansion

log
(
mjkl

) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl .

In this case, since the maximal terms of interaction are uAB
jk and uAC

jl , the gener-
ators of the model will be (AB, AC ). Notice that the model can be reformulated
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A

B C

Figure 4.11 Conditional independence graph for the mutual independence case.

in terms of cell probabilities as

πjkl = πjk+πj+l

πj++
or, equivalently, as

πjkl

πj++
= πjk+

πj++
πj+l

πj++
which, in terms of conditional independence, states that

P (B = k, C = l |A = j ) = P (B = k |A = j ) P (C = l |A = j ) .

The indicates that, in the conditional distribution (on A), B and C are
independent – in symbols, B⊥C|A. Therefore, the conditional independence
graph of the model is as in Figure 4.12. It can be demonstrated that, in this
case, the odds ratios between all variable pairs are different from 1, while the
two odds ratios for the two-way table between B and C, conditional to A, are
both equal to 1.

We finally consider the most complex (saturated) log-linear model for the three
variables,

log
(
mjkl

) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl + uBC

kl + uABC
jkl ,

which has (ABC ) as generator. This model does not establish any conditional
independence constraints on cell probabilities. Correspondingly, all odds ratios,
marginal and conditional, will be different from 1. The corresponding conditional
independence graph will be completely connected. The previous model (AB, AC )
can be considered as a particular case of the saturated model, obtained by setting
uBC

kl = 0 for all k and l and uABC
jkl = 0 for all j , k, l. Equivalently, it is obtained by

removing the edge between from B and C in the completely connected graph,
which corresponds to imposing the constraint that B and C are independent
conditionally on A. Notice that the mutual independence model is a particular

A

B C

Figure 4.12 Conditional independence graph corresponding to B⊥C|A.
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case of the saturated model obtained setting uBC
kl = uAC

jl = uAB
jk = uABC

jkl = 0, for
all j , k, l, or by removing all three edges in the complete graph. Consequently, the
differences between log-linear models can be expressed in terms of differences
between the parameters or as differences between graphical structures. We think
it is easier to interpret differences between graphical structures.

All the models in this example are graphical log-linear models. In general,
graphical log-linear models are definable as log-linear models that have as gen-
erators the cliques of the conditional independence graph. A clique is a subset of
completely connected and maximal nodes in a graph. For example, in Figure 4.12
the subsets AB and AC are cliques, and they are the generators of the model.
On the other hand, the subsets formed by the isolated nodes A, B and C are
not cliques. To better understand the concept of a graphical log-linear model,
consider a non-graphical model for the trivariate case. Take the model described
by the generator (AB, AC, BC ):

log
(
mjkl

) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl + uBC

kl .

Although this model differs from the saturated model by the absence of the
three-way interaction term uABC

jkl , its conditional independence graph is the same,
with one single clique, ABC . Therefore, since the model generator is different
from the set of cliques, the model is not graphical. To conclude, in this section
we have obtained a remarkable equivalence relation between: conditional inde-
pendence statements, graphical representations and probability models, with the
probability models represented in terms of cell probabilities, log-linear models
or sets of odds ratios.

4.13.4 Log-linear model comparison

For log-linear models, including graphical log-linear models, we can apply the
inferential theory derived for generalised linear models. We now turn to model
comparison, because the use of conditional independence graphs permits us to
interpret model comparison and choice between log-linear models in terms of
comparisons between sets of conditional independence constraints. In data mining
problems the number of log-linear models to compare increases rapidly with the
number of variables considered. Therefore a valid approach may be to restrict the
class of models. In particular, a parsimonious and efficient way to analyse large
contingency tables is to consider interaction terms in the log-linear expansion
that involve at most two variables. The log-linear models in the resulting class
are all graphical. Therefore we obtain an equivalence relationship between the
absence of an edge between two nodes, say i and j , conditional independence
between the corresponding variables, Xi and Xj (given the remaining ones), and
nullity of the interaction parameter indexed by both of them.

As we saw with generalised linear models, the most important tool for com-
paring models is the deviance. All three sampling schemes for log-linear models
lead to an equivalent expression for the deviance. Consider, for simplicity, a
log-linear model to analyse three categorical variables. The deviance of a model
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M is

G2(M) = 2
∑
jkl

njkl log

(
njkl

m̂jkl

)
= 2

∑
oi log

oi

ei

,

where m̂jkl = npjkl , the pjkl are the maximum likelihood estimates of the cell
probabilities, the oi are the observed cell frequencies and the ei are the cell
frequencies estimated according to the model M . Notice the similarity with the
deviance expression for the logistic regression model. What changes is essentially
the way in which the cell probabilities are estimated. In the general case of a
p-dimensional table, the definition is the same, but the index set changes:

G2(M0) = 2
∑
i∈I

ni log

(
ni

m̂0
i

)
,

where, for a cell i belonging to the index set I , ni is the frequency of observations
in the ith cell and m̂0

i are the expected frequencies for the considered model M0.
For model comparison, two nested models M0 and M1 can be compared using
the difference between their deviances:

D = G2
0 − G2

1 = 2
∑
i∈I

ni log

(
ni

m̂0
i

)
− 2

∑
i∈I

ni log

(
ni

m̂1
i

)
= 2

∑
i∈I

ni log

(
m̂1

i

m̂0
i

)
.

As in the general case, under H0, D has an asymptotic chi-squared distribution
whose degrees of freedom are obtained taking the difference in the number of
parameters for models M0 and M1.

The search for the best log-linear model can be carried out using a forward,
backward or stepwise procedure. For graphical log-linear models we can also
try adding or removing edges between variables rather than adding or remov-
ing interaction parameters. In the backward procedure we compare the deviance
between models that differ by the presence of an edge and at each step we elimi-
nate the less significant edge; the procedure stops when no arc removals produce
a p-value greater than the chosen significance level (e.g. 0.05). In the forward
procedure we add the most significance edges one at time until no arc additions
produce a p-value lower than the chosen significance level.

4.14 Graphical models

Graphical models are models that can be specified directly through conditional
independence relationships among the variables, represented in a graph. Although
the use of graphics with statistical models is not a new idea, the work of Darroch
et al. (1980) has combined the two concepts in a new and illuminating way. They
showed that a subset of the log-linear models, the log-linear graphical models,
can be easily interpreted in terms of conditional independence relationships. This
finding has led to the development of a wide class of statistical models, known as
graphical models, which provide considerable flexibility in specifying models to
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analyse databases of whatever dimension, containing both qualitative and quan-
titative variables, and admitting both symmetric and asymmetric relationships.
Graphical models contain, as special cases, important classes of generalised lin-
ear models, such as the three seen in this book. For a detailed treatment, see
Lauritzen (1996), Whittaker (1990) or Edwards (2000).

Here are some definitions we will need. A graph G = (V , E) is a structure
consisting of a finite number V of vertices (nodes) that correspond to the variables
present in the model, and a finite number of edges between them. In general,
the causal influence of one variable on another is indicated by a directed edge
(shown using an arrow), while a symmetric association is represented by an
undirected edge (shown using a line). Figure 4.13 is an example of an undirected
graph, containing only undirected edges. Figure 4.14 is a directed graph for the
same type of application, where we have introduced a new variable, X, which
corresponds to the return on investments of the enterprises. We have made a
distinction between vertices that represent categorical variables (empty circles)
and vertices that represent continuous variables (filled circles).

Two vertices X and Y belonging to V are adjacent, written X ∼ Y , if they are
connected by an undirected arc; that is, if both the pairs (X, Y ) and (Y, X) belong
to E. A node X is a parent of the node Y , written X → Y , if they are connected
by a directed edge from X to Y ; that is, if (X, Y ) ∈ E and (Y, X) /∈ E.

A complete graph is a graph in which all pairs of vertices are connected by an
edge. A sequence of vertices X0, . . . , Xn such that Xi−1 ∼ Xi for i = 1, . . . , n

is called a path of length n. A graph is connected when there exists at least one
path between each pair of vertices.

A

B

C

DE

Figure 4.13 Conditional independence graph for the final selected model.

A

C

X

Figure 4.14 Example of a directed graph.
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These are only some of the properties we can define for graphical models,
but they are sufficient to understand the probabilistic assumptions implied by a
conditional independence graph.

In general, a graphical model is a family of probability distributions that incor-
porates the rules of conditional independence described by a graph. The key to
interpreting a graphical model is the relationship between the graph and the
probability distribution of the variables. It is possible to distinguish three types
of graph, related to the three main classes of graphical models:

• Undirected graphs are used to model symmetric relations among the variables
(Figure 4.13); they give rise to the symmetric graphical models.

• Directed graphs are used to model asymmetric relations among the variables
(Figure 4.14); they give rise to recursive graphical models, also known as
probabilistic expert systems.

• Chain graphs contain both undirected and directed edges, therefore they
can model both symmetric and asymmetric relationships; they give rise to
graphical chain models (Cox and Wermuth, 1996).

4.14.1 Symmetric graphical models

In symmetric graphical models, the probability distribution is Markovian with
respect to the specified undirected graph. This is equivalent to imposing on the
distribution a number of probabilistic constraints known as Markov properties.
The constraints can be expressed in terms of conditional independence relation-
ships. Here are two Markov properties and how to interpret them:

• For the pairwise Markov property , if two nodes are not adjacent in the fixed
graph, the two corresponding random variables will be conditionally inde-
pendent, given the others. On the other, hand, if the specified probability
distribution is such that X ∼ Y | others, the edge between the nodes corre-
sponding to X and Y has to be omitted from the graph.

• For the global Markov property , if two sets of variables, U and V , are
graphically separated by a third set of variables, W , then U ∼ V |W . For
example, consider four discrete random variables, W,X, Y , and Z, whose
conditional independence relations are described by the graph in Figure 4.15,
from which we have that W and Z are separated from X and Y , and Y and
Z are separated from X. A Markovian distribution with respect to the graph
in Figure 4.15 has to satisfy the global Markov property and therefore we
have that W ∼ Z|(X, Y ) and Y ∼ Z|(W,X).

It is useful to distinguish three types of symmetric graphical models:

• Discrete graphical models coincide with log-linear graphical models and are
used when all the available variables are categorical.

• Graphical Gaussian models are used when the joint distribution of all vari-
ables is multivariate Gaussian.

• Mixed graphical models are used for a mixture of categorical variables and
multivariate Gaussian variables.
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Figure 4.15 Illustration of the global Markov property.

We have seen discrete graphical models in the Section 4.13.3. A similar type
of symmetric model, useful for descriptive data mining, can be introduced for
continuous variables. An exhaustive description of these models can be found in
Whittaker (1990), who has called them Gaussian graphical models even though
they were previously known in the statistical literature as covariance selection
models (Dempster, 1972). For these models, it is assumed that Y = (Y1, . . . , Yq)

is a vector of continuous variables with a normal multivariate distribution. Marko-
vian properties allow us to show that two variables are conditionally independent
on all the others, if and only if the element corresponding to the two variables
in the inverse of the variance–covariance matrix is null. This is equivalent to
saying that the partial correlation coefficient between the two variables, given the
others, is null. In terms of conditional independence graphs, given four variables
X, Y , W , Z, if the elements of the inverse of the variance–covariance matrix
kx,z and ky,w were null, the edges between the nodes X and Z and the nodes
Y and W would have to be absent. From a statistical viewpoint, a graphical
Gaussian model and, equivalently, a graphical representation are selected by suc-
cessively testing hypotheses of edge removal or addition. This is equivalent to
testing whether the corresponding partial correlation coefficients are zero.

Notice how the treatment of the continuous case is similar to the discrete
case. This has allowed us to introduce a very general class of mixed symmetric
graphical models. We now introduce them in a rather general way, including
continuous and discrete graphical models as special cases. Let V = � ∪ � be
the vertex set of a graph, partitioned into a set of |�| continuous variables, and a
set of |�| discrete variables. If with each vertex v is associated a random variable
Xv , the whole graph is associated with a random vector XV = (Xv, v ∼ V ). A
mixed graphical model is defined by a conditional Gaussian distribution for the
vector XV . Partition XV into a vector X� containing the categorical variables, and
a vector X� containing the continuous variables. Then XV follows a conditional
Gaussian distribution if it satisfies the following

• p(i) = P(X� = i) > 0;
• p(X�

∣∣X� = i) = N|�|(ξ(i), �(i)),
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where N denotes a Gaussian distribution of dimension |�|, with mean vector
ξ(i) = K(i)−1h(i) and variance–covariance matrix �(i) = K(i)−1, positive def-
inite. In words, a random vector has a conditional Gaussian distribution if the
distribution of the categorical variables is described by a set of positive cell
probabilities (this could happen through the specification of a log-linear model)
and the continuous variables are distributed, conditional on each joint level of
the categorical variables, as a Gaussian distribution with a null mean vector and
a variance–covariance matrix that can, in general, depend on the levels of the
categorical variables.

From a probabilistic viewpoint, a symmetric graphical model is specified by
a graph and a family of probability distributions, which has Markov properties
with respect to it. However, to use graphical models in real applications,
it is necessary to completely specify the probability distribution, usually by
estimating the unknown parameters on the basis of the data. This inferential
task, usually accomplished by maximum likelihood estimation, is called
quantitative learning. Furthermore, in data mining problems it is difficult to
avoid uncertainty when specifying a graphical structure, so alternative graphical
representations have to be compared and selected, again on the basis of the
available data; this constitutes the so-called structural learning task, usually
tackled by deviance-based statistical tests.

To demonstrate this approach, we can return to the European software industry
application in Section 4.6 and try to describe the associative structure among all
seven random variables considered. The graph in Figure 4.16 is based on hypothe-
ses formulated through subject matter research by industrial economics experts;
it shows conditional independence relationships between the available variables.
One objective of the analysis is to verify whether the graph in Figure 4.16 can
be simplified, maintaining a good fit to the data (structural learning). Another
objective is to verify some research hypothesis on the sign of the association
between some variables (quantitative learning).

We begin by assuming a probability distribution of conditional Gaussian type
and, given the reduced sample size (51 observations), a homogeneous model
(Lauritzen, 1996). A homogeneous model means that we assume the variance of
the continuous variable does not depend on the level of the qualitative variables.
So that we can measure explicitly the effect of the continuous variable Y on the

Y

A S I

M NH

Figure 4.16 Initial conditional independence graph.
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qualitative variables, we have decided to maintain, in all models considered, a
link between Y and the qualitative variables, even when it is not significant on
the basis of the data. It is opportune to start the selection from the given initial
research graph (Figure 4.16). Since the conditional Gaussian distribution has to
be Markovian with respect to the previous graph, all the parameters containing
the pairs {M, A}, {N, I }, {M, N}, {M, I }, {A,N}, {A, I } have to be 0, hence the
total number of parameters in the model corresponding to Figure 4.17 is 29.
Considering the small number of available observations, this model is clearly
overparameterised.

A very important characteristic of graphical models is to permit local calcula-
tions on each clique of the graph (Frydenberg and Lauritzen, 1989). For instance,
as the above model can be decomposed in four cliques, it is possible to estimate
the parameters separately, on each clique, using the 51 available observations
to estimate the 17 parameters of each marginal model. In fact, on the basis of
a backward selection procedure using a significance level of 5%, Giudici and
Carota (1992) obtained the final structural model shown in Figure 4.17. From the
figure we deduce that the only direct significant associations between qualitative
variables are between the pairs {H, I }, {N, S} and {N,H }. These associations
depend on the revenue Y but not on the remaining residual variables. Concern-
ing quantitative learning, the same authors have used their final model to calculate
the odds ratios between the qualitative variables, conditionally on the level of
Y . They obtained the following estimated conditional odds, relative to the pairs
{H, I }, {N, S} and {N,H }:

�∧
IH |R = exp(0.278 + 0.139R}, therefore �∧

IH |R > 1 for R > 0.135

(all enterprises);
�∧

NH |R = exp(−2.829 + 0.356R}, therefore �∧
NH |R > 1 for R > 2856

(only one enterprise);
�∧

NS|R = exp(−0.827 − 0.263R}, therefore �∧
NS|R > 1 for R < 23.21

(for 23 enterprises).

Y

A S I

M NH

Figure 4.17 Final conditional independence graph.
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The signs of the association can be summarised as follows: the association
between I and H is positive; the association between N and H is substan-
tially negative; the association between N and S is positive only for enterprises
having revenues less than the median.

From an economic viewpoint, these associations have a simple interpretation.
The relationship between I and H confirms that enterprises that adopt a strategy
of incremental innovations tend to increase their contacts with enterprises in the
hardware sector. The strategy of creating radically new products is based on an
opposite view. Looking at contacts exclusively within the software sector, small
enterprises (having revenues less than the median) tend to fear their innovations
could be stolen or imitated and they tend not to make contacts with other small
companies. Large companies (having revenues greater than the median) do not
fear imitation and tend to increase their contacts with other companies.

4.14.2 Recursive graphical models

Directed or recursive graphical models, also known as probabilistic expert sys-
tems, are an important and sophisticated tool for predictive data mining. Their
fundamental assumption is that the variables can be partially ordered so that every
variable is logically preceded by a set of others. This precedence can be inter-
preted as a probabilistic dependency and, more strongly, as a causal dependency.
Both interpretations exist in the field of probabilistic expert systems and this is
reflected in the terminology: casual network if there is a causal interpretation,
belief network if there is no causal interpretation.

To specify any recursive model, we need to specify a directed graph that
establishes the (causal) relationships among the variables. Once this graph is
specified, a recursive model is obtained by using a probability distribution that is
Markov with respect to the graph (e.g. Lauritzen, 1996). The Markov properties
include the following factorisation property of the probability distribution:

f (x1, . . . , xp) =
p∏

i=1

f (xi |pa(xi)),

where pa(xi) indicates the parent nodes of each of the p nodes considered. This
specifies that the probability distribution of the p variables is factorised into a
series of local terms, each of which describes the dependency of each of the
considered variables, xi , on the set of relevant explanatory variables, pa(xi). It
is a constructive way to specify a directed graphical model using a (recursive)
sequence of asymmetric models, each of which describes the predictor set of
each variable.

The conditional independence graphs are therefore directed, because the edges
represent ordered pairs of vertices. They are also constrained to be acyclic: no
sequence of connected vertices has to form a loop. Figure 4.18 is an example of
an acyclic directed conditional independence graph. It states, for instance, that
V3⊥V2 |V4 , and it corresponds to a recursive model that can be specified, for
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V1

V2

V3

V4

Figure 4.18 Example of a directed acyclic graph.

instance, by the factorisation

p (V1, V2, V3, V4) = p (V1) p (V2|V1) p (V4|V1, V2) p (V3|V4) .

When it comes to specifying the local probability distributions (e.g. the distri-
butions of V1, V2, V3, V4), we could specify a recursive model as a recursion
of generalised linear models. For example, Figure 4.18 corresponds to a model
defined by a linear regression of V3 on the explanatory variable V4, of V4 on the
explanatory variables V1 and V2, and of V2 on the explanatory variable V1.

From a predictive data mining perspective, the advantage of recursive models is
that they are simple to specify, interpret and summarise, thanks to the factorisation
of the model into many local models of reduced dimensions. On the other hand,
they do involve more sophisticated statistical thinking, especially in the context
of structural learning. However, few mainstream statistical packages implement
these types of model. Directed graphical models are typically used in artificial
intelligence applications, where they are known as probabilistic expert systems
or Bayesian networks (e.g. Heckerman, 1997).

Another important special case of directed graphical models are Markov chain
models, which are particularly useful for modelling time series data. In particular,
first-order Markov models are characterised by a short memory, and assume that
Xi+1⊥Xj<i |{Xi} , where Xi+1 is a random variable that describe the value of a
certain quantity at time i+1, i is the previous time point and j < i denote time
points further back in time. In other words, the future occurrence of a random
variable Xi+1 does not depend on the past values Xj<i , if the present value
Xi is known. If the data can be modelled by a Markov chain model, the joint
probability distribution will factorise as

f (x1, . . . , xp) =
p∏

i=1

f (xi |xi−1).

Recursive graphical models can also be used to classify observations, in which
case they are more commonly known as Bayesian networks. One of the simplest
and most useful Bayesian networka is the naive Bayes model. It arises when there
is one qualitative response variable that can assume M values, corresponding to
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M classes. The goal is to classify each observation into one of the three classes,
and p explanatory variables can be used, described by a random vector X. As
we have seen, the Bayes classifier allocates each observation to the class Ci that
maximises the posterior probability

p(Ci |X = x) = p(X = x|Ci)p(Ci)/p(X = x).

The naive Bayes model corresponds to a special case of this rule, obtained when
the explanatory variables that appear in the vector X are assumed to be condi-
tionally independent given the class label. A Bayesian network can be seen as a
more sophisticated and more realistic version of a Bayes classifier, which estab-
lishes that among the explanatory variables there are relationships of conditional
dependence specified by a directed graph.

4.14.3 Graphical models and neural networks

We have seen that the construction of a statistical model is a long and conceptually
complex process that requires the formulation of a series of formal hypotheses.
On the other hand, a statistical model allows us to make predictions and simulate
scenarios on the basis of explicit rules that are easily scalable – rules that can
be generalised to different data. We have seen how computationally intensive
techniques require a lighter analytical structure, allowing us to find precious
information rapidly from large volumes of data. Their disadvantages are low
transparency and low scalability. Here is a brief comparison to help underline the
different concepts. We shall compare neural networks and graphical models; they
can be seen as rather general examples of computational methods and statistical
methods, respectively.

The nodes of a graphical model represent random variables, whereas in neural
networks they are computational units, not necessarily random. In a graphical
model an edge represents a probabilistic conditional dependency between the
corresponding pair of random variables, whereas in a neural network an edge
describes a functional relation between the corresponding nodes. Graphical mod-
els are usually constructed in three phases: (a) the qualitative phase establishes
the conditional independence relationships among the random variables; (b) the
probabilistic phase associates the graph with a vector of random variables having
a Markovian distribution with respect to the graph; (c) the quantitative phase
assigns the parameters (if known) that characterise the distribution in (b). Neural
networks are constructed in three similar phases: (a) the qualitative phase estab-
lishes the organisation of the layers and the relationships among them; (b) the
functional phase specifies the functional relationships between the layers; (c) the
quantitative phase fixes the weights (if known) associated with the connections
among the different nodes.

We believe that these two methodologies can be used in a complementary
way. Taking a graphical model and introducing latent variables – variables that
are not observed – confers two extra advantages. First, it allows us to represent
a multilayer perceptron as a graphical model, so we can take formal statistical
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methods valid for graphical models and use them on neural networks (e.g. con-
fidence intervals, rejection regions, deviance comparisons). Second, the use of a
neural network in a preliminary phase could help to reduce the structural com-
plexity of graphical models, reducing the number of variables and edges present,
and doing it in a more computationally efficient way. Adding latent variables
to graphical models, corresponding to purely computational units, allows us to
enrich the model with non-linear components, as occurs with neural networks. For
more on the role of latent variables in graphical models, see Cox and Wermuth
(1996).

4.15 Survival analysis models

Survival analysis (e.g. Singer and Willet, 2003) focuses on the time between
entry to a study and some subsequent event. The standard approaches to survival
analysis are stochastic; that is, the times at which events occur are assumed to
be realisations of random processes. It follows that T , the event time for some
particular individual, is a random variable with a probability distribution. A use-
ful, model-free or non-parametric approach for all random variables uses the
cumulative distribution function (e.g. Hougaard 1995). The cumulative distribu-
tion function of a variable T , denoted by F(t), tells us the probability that the
variable will be less than or equal to some value t ; that is, F(t) = P {T ≤ t}. If
we know the value of F for every value of t , then we know all there is to know
about the distribution of T . In survival analysis it is more common to work with
a closely related function called the survivor function, defined as

S(t) = P {T > t} = 1 − F(t).

If the event of interest is a death (or, equivalently, a churn), the survivor function
gives the probability of surviving beyond t . Because S is a probability we know
that it is bounded by 0 and 1; and because T cannot be negative, we know
that S(0) = 1. Often the objective is to compare survivor functions for different
subgroups in a sample (clusters, regions, etc.). If the survivor function for one
group is always higher than the survivor function for another group, then the first
group clearly lives longer than the second group.

For continuous variables, another common way of describing their probability
distribution is the probability density function. This function is defined as

f (t) = dF (t)

dt
= −dS(t)

dt
;

that is, the probability density function is just the derivative or slope of the
cumulative distribution function. For continuous survival data, the hazard function
is more popular than the probability density function as a way of describing
distributions. The hazard function (e.g. Allison 1995) is defined as

h (t) = lim
εt→0

P {t ≤ T < t + εt |T ≥ t}
εt

.
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This definition quantifies the instantaneous risk that an event will occur at time t .
Since time is continuous, the probability that an event will occur exactly at time
t is necessarily 0. But we can talk about the probability that an event occurs in
the small interval between t and t + εt and we also want to make this probability
conditional on the individual surviving to time t . For this formulation the hazard
function is sometimes described as a conditional density and, when events are
repeatable, the hazard function is often referred to as the intensity function.
The survival function, the probability density function and the hazard function
are equivalent ways of describing a continuous probability distribution. Another
formula expresses the hazard in terms of the probability density function:

h(t) = f (t)

S(t)
,

which leads to

h(t) = − d

dt
log S(t).

Integrating both sides of this equation gives an expression for the survival func-
tion in terms of the hazard function:

S(t) = exp

⎛
⎝−

t∫
0

h(u) du

⎞
⎠ .

The hazard is a dimensional quantity that expresses the number of events per
interval of time.

The first step in the analysis of survival data (for descriptive purposes) is to
plot the survival function and the risk. The survival function is estimated by
the Kaplan–Meier method (Kaplan and Meier, 1958). Suppose that there are K

distinct event times, t1 < t2 < . . . < tk . At each time tj there are nj individuals
who are said to be at risk of an event; that is, they have not experienced an event
and they have not been censored prior to time tj . If any cases are censored at
exactly tj , there are also considered to be at risk at tj . Let dj be the number of
individuals who die at time tj . The Kaplan–Meier estimator is defined as

Ŝ(t) =
∏

j :tj ≤t

(
1 − dj

nj

)
, t1 ≤ t ≤ tk,

This formula says that, for a given time t , we take all the event times that are
less than or equal to t . For each of these event times, we compute the quantity in
parentheses, which can be interpreted as the conditional probability of surviving
to time tj+1, given that one has survived to time tj . Then we multiply all of these
survival probability together.

For predictive purposes, the most popular model is Cox regression (Cox, 1972).
Cox proposed a proportional hazards model and a new method of estimation
that came to be called partial likelihood or, more accurately, maximum partial
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likelihood. We start with the basic model that does not include time-dependent
covariate or non-proportional hazards. The model is usually written as

h(tij ) = h0(tj ) exp
[
β1X1ij + β2X2ij + · · · + βpXpij

]
.

It says that the hazard for individual i at time t is the product of two factors: a
baseline hazard function that is left unspecified, and a linear combination of a
set of p fixed covariates, which is then exponentiated. The baseline function can
be regarded as the hazard function for an individual whose covariates all have
values 0. The model is called the proportional hazards model because the hazard
for any individual is a fixed proportion of the hazard for any other individual.
To see this, take the ratio of the hazards for two individuals i and j :

hi(t)

hj (t)
= exp

{
β1
(
xi1 − xj1

)+ · · · + βp

(
xip − xjp

)}
.

What is important about this equation is that the baseline cancels out of the numer-
ator and denominator. As a result, the ratio of the hazards is constant over time.

4.16 Further reading

In the chapter we have reviewed the most important data mining methodologies,
beginning in Sections 4.1–4.8 with those that do not strictly require a probabilis-
tic model. The first section explained how to calculate a distance matrix from a
data matrix. Sometimes we want to build a data matrix from a distance matrix,
and one solution is the method of multidimensional scaling (e.g. Mardia et al.,
1979). Having applied multidimensional scaling, it is possible to represent the
row vectors (statistical observations) and the column vectors (statistical variables)
in a unique plot called a biplot; this helps us to make interesting interpretations
of the scores obtained. In general, biplots are used with tools for reducing dimen-
sionality, such as principal component analysis and correspondence analysis. For
an introduction to this important theme, see Gower and Hand (1996); in a data
mining context, see Hand et al. (2001).

The next section was concerned with cluster analysis, probably one of the
best-known techniques used in the statistical analysis of multidimensional data.
An interesting extension of cluster analysis is fuzzy classification; this allows a
‘weighted’ allocation of the observations to the clusters (Zadeh, 1977).

Multivariate linear regression is best dealt with using matrix notation. For
an introduction to matrix algebra in statistics, see Searle (1982). The logistic
regression model is for predicting categorical variables. The estimated cate-
gory probabilities can then be used to classify statistical observations in groups,
according to a supervised method. Probit models, well known in economics,
are essentially the same as logistic regression models, once the logistic link is
replaced by an inverse Gaussian link (e.g. Agresti, 1990).

Local model rules are still at an embryonic stage of development, at least
from a statistical viewpoint. Association rules seem ripe for a full statistical
treatment, and we have covered them in some depth. However, we have only
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briefly referred to retrieval-by-content methods, which are expected to gain in
importance in the foreseeable future, especially with reference to text mining.
See Hand et al. (2001) on retrieval by content and Zanasi (2003) on text mining.
The statistical understanding of local models will be an important area for future
research.

Tree models are probably the most popular data mining technique. A more
detailed account can be found in advanced data mining textbooks, such as Hastie
et al. (2001) and Hand et al. (2001). These texts offer a statistical treatment; a
computational treatment can be found in Han and Kamber (2001). The original
works on CART and CHAID are Breiman et al. (1984) and Kass (1980).

Neural networks and support vector machines are important classes of super-
vised models that originated in the machine learning communities. We have not
considered support vector machines in this book because they do not provide
explicit and transparent solutions and therefore are rarely used in business data
mining problems. The literature on neural networks is vast; for a classical statis-
tical approach, see Bishop (1995); for a Bayesian approach, consult Neal (1996).
Support vector machines are discussed by 1998), Vapnik (1995.

In recent years statistical models of increasing complexity have been devel-
oped that closely resemble neural networks but have a more statistical structure.
Examples are the projection pursuit models, the generalised additive models, and
the multivariate adaptive regression spline models. For a review, see Cheng and
Titterington (1994) and Hastie et al. (2001).

In Section 4.9–4.15 we have reviewed the main statistical models for data
mining applications. Their common feature is the presence of probability mod-
elling. We began with methods for modelling uncertainty and inference; there
are many textbooks on this. One to consult is Mood et al. (1991); another is
Azzalini (1992), which takes more of a modelling viewpoint. Non-parametric
models are distribution free, as they do not require heavy preliminary assump-
tions. They may be very useful, especially in an exploratory context. For a review
of non-parametric methods, see Gibbons and Chakraborti (1992). Semiparametric
models, based on mixture models, can provide a powerful probabilistic approach
to cluster analysis. For an introductory treatment from a data mining viewpoint,
see Hastie et al. (2001).

Introduction of the Gaussian distribution allows us to bring regression methods
into the field of normal linear models. For an introduction to the normal linear
model, see Mood et al. (1991) or a classic econometrics text such as Greene
(2000). The need for predictive tools for response variables that are neither con-
tinuous nor normal led to the development of generalised linear models from the
normal linear model. For an introduction, see Dobson (2002), McCullagh and
Nelder (1989), Nelder and Wedderburn (1972) and Agresti (1990).

Log-linear models are an important class generalised linear models. They are
symmetric models and are mainly used to obtain the associative structure among
categorical variables, whose observations are classified in multiple contingency
tables. Graphical log-linear models are particularly useful for data interpreta-
tion. For an introduction to log-linear models, see Agresti (1990) or Christensen
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(1997). For graphical log-linear models it is better to consult texts on graphical
models, such as Whittaker (1990).

We introduced the concept of conditional independence (and dependence);
graphical representation of conditional independence relationships allowed us to
take what we saw for graphical log-linear models and generalise it to a wider
class of statistical models, known as graphical models. Graphical models are
very general statistical models for data mining. In particular, they can adapt to
different analytical objectives, from predicting multivariate response variables
(recursive models) to finding associative structure (symmetric models), in the
presence of both qualitative and quantitative variables. For an introduction to
graphical models, see Edwards (2000), Whittaker (1990) or Lauritzen (1996).
For directed graphical models, also known as probabilistic expert systems, see
Cowell et al. (1999) or Jensen (1996).



CHAPTER 5

Model evaluation

This chapter discusses methods for choosing among alternative models. In
Chapter 4 we looked at the problem of comparing the various statistical models
within the theory of statistical hypothesis testing. With this in mind we looked
at the sequential procedures (forward, backward or stepwise) that allow us to
choose a model by means of a sequence of pairwise comparisons. These criteria
are generally not applicable to computational data mining models, which do not
necessarily have an underlying probability model and therefore do not allow us
to apply the statistical theory of hypothesis testing.

A particular data problem can often be tackled using several classes of models.
For instance, in a problem in predictive classification it is possible to use logistic
regression and tree models as well as neural networks.

Furthermore, model specification, hence model choice, is determined by the
type of the variables. After exploratory analysis the data may be transformed or
some observations may be eliminated; this will also affect the variables. So we
need to compare models based on different sets of variables present at the start.
For example, how do we take a linear model having the original explanatory vari-
ables and compare it with a model having principal components as explanatory
variables?

All this suggests the need for a systematic study of how to compare and
evaluate statistical models for data mining. In this chapter we will review the
most important methods. As these criteria will be frequently used and compared
in Part II of the text, this chapter will just offer a brief systematic summary
without giving examples. We begin by introducing the concept of discrepancy
for a statistical model; it will make us look further at comparison criteria based
on statistical tests. Although this leads to a very rigorous methodology, it allows
only a partial ordering of the models. Scoring functions are a less structured
approach developed in the field of information theory. We explain how they give
each model a score, which puts them into some kind of complete order. Another
group of criteria has been developed in the machine learning field. We introduce
the main computational criteria, such as cross-validation. These criteria have the
advantage of being generally applicable but might be data-dependent and might
require long computation times. We then introduce the very important concept of
combining several models via model averaging, bagging and boosting. Finally,
we introduce a group of criteria that are specifically tailored to business data

Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05886-2



148 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

mining. These criteria compare models in terms of the losses arising from their
application. These criteria have the advantage of being easy to understand, but
they still need formal improvements and mathematical refinements.

5.1 Criteria based on statistical tests

The choice of the statistical model used to describe a database is one of the
main aspects of statistical analysis. A model is either a simplification or an
approximation of reality and therefore it does not entirely reflect reality. As
we have seen in Chapter 4, a statistical model can be specified by a discrete
probability function or by a probability density function f (x); this is what is
considered to be ‘underlying the data’ or, in other words, it is the generating
mechanism of the data. A statistical model is usually specified up to a set of
unknown quantities that have to be estimated from the data at hand.

Often a density function is parametric or, rather, it is defined by a vector of
parameters � = (θ1, . . . , θI ) such that each value θ of � corresponds to a partic-
ular density function, fθ (x). A model that has been correctly parameterised for
a given unknown density function f (x) is a model that gives f (x) for particular
values of the parameters. We can select the best model in a non-parametric con-
text by choosing the distribution function that best approximates the unknown
distribution function. But first of all we consider the notion of a distance between
a model f , which is the ‘true’ generating mechanism of the data, and model g,
which is an approximating model.

5.1.1 Distance between statistical models

We can use a distance function to compare two models, say g and f . As explained
in Section 4.1, there are different types of distance function; here are the most
important ones.

In the categorical case, a distance is usually defined by comparing the estimated
discrete probability distributions, denoted by f and g. In the continuous case, we
often refer to two variables, Xf and Xg , representing fitted observation values
obtained with the two models.

Entropy distance
The entropy distance is used for categorical variables and is related to the concept
of heterogeneity reduction (Section 3.4). It describes the proportional reduction
of the heterogeneity between categorical variables, as measured by an appro-
priate index. Because of its additive property, the entropy is the most popular
heterogeneity measure for this purpose. The entropy distance of a distribution g

from a target distribution f is

Ed =
∑

i

fi log
fi

gi

,
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which is the form of the uncertainty coefficient (Section 3.4), but also the form
taken by the G2 statistic. The G2 statistic can be employed for most probabilistic
data mining models. It can therefore be applied to prediction problems, such as
logistic regression and directed graphical models, but also to descriptive prob-
lems, such as log-linear models and probabilistic cluster analysis. It also finds
application with non-probabilistic models, such as classification trees. The Gini
index can also be used as a measure of heterogeneity.

Chi-squared distance
The chi-squared distance between a distribution g and a target f is

χ2d =
∑

i

(fi − gi)
2

gi

which corresponds to a generalisation of the Pearson’s statistic seen in Section
3.4. This distance is used both for descriptive and predictive problems in the
presence of categorical data, as an alternative to the entropy distance. It does not
require an underlying probability model; we have seen its application within the
CHAID decision trees algorithm.

0–1 distance
The 0–1 distance applies to categorical variables, and it is typically used for
supervised classification problems. It is defined as

0−1d =
n∑

r=1

1(Xf r − Xgr)

where 1(w − z) = 1 if w = z and 0 otherwise. It measures the distance in terms
of a 0–1 function that counts the number of correct matches between the classifi-
cations carried out using the two models. Dividing by the number of observations
give the misclassification rate, probably the most important evaluation tool in pre-
dictive classification models, such as logistic regression, classification trees and
nearest-neighbour models.

Euclidean distance
Applied to quantitative variables, the Euclidean distance between a distribution
g and a target f is

2d(Xf , Xg) =
√√√√ n∑

r=1

(Xf r − Xgr)2.

It represents the distance between two vectors in the Cartesian plane. The
Euclidean distance leads to the R2 index and to the F test statistics. Furthermore,
by squaring it and dividing by the number of observations we obtain the mean
squared error. The Euclidean distance is widely used, especially for continuous
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predictive models, such as linear models, regression trees, and continuous
probabilistic expert systems. But it is also used in descriptive models for the
observations, such as cluster analysis and Kohonen maps. Notice that it does
not necessarily require an underlying probability model. When there is an
underlying probability model, it is usually the normal distribution.

Uniform distance
The uniform distance applies to comparisons between distribution functions. For
two distribution functions F,G with values in [0, 1], the uniform distance is

sup
0≤t≤1

|F(t) − G(t)|.

The uniform distance is used in non-parametric statistics such as the
Kolmogorov–Smirnov statistic (Section 4.10), which is typically employed to
assess whether a non-parametric estimator is valid. But it is also used to verify
whether a specific parametric model, such as the Gaussian model, is a good
approximation to a non-parametric model.

5.1.2 Discrepancy of a statistical model

The distances in Section 5.1.1 can be used to define the notion of discrepancy
for a model. Suppose that f represents an unknown density, and let g = pθ

be a family of density functions (indexed by a vector of parameters, θ ). The
discrepancy of a statistical model g, with respect to a target model f , can be
defined using the Euclidean distance as

�(f, pθ) =
n∑

i=1

(f (xi) − pθ(xi))
2.

For each observation, i = 1, . . . , n, this discrepancy (which is a function of the
parameters θ ) considers the error made by replacing f with g.

If we knew f , the real model, we would be able to determine which of the
approximating statistical models, different choices for g, would be the best, in
the sense of minimising the discrepancy. Therefore, the discrepancy of g (due to
the parametric approximation) can be obtained as the discrepancy between the
unknown probability model and the best parametric statistical model, p

(I)
θ0

:

�(f, p
(I)
θ0

) =
n∑

i=1

(f (xi) − p
(I)
θ0

(xi))
2.

However, since f is unknown we cannot identify the best parametric statistical
model. Therefore we will substitute f with a sample estimate denoted by p

(I)

θ̂
(x),

for which the I parameters are estimated on the basis of the data. The discrepancy
between this sample estimate of f (x) and the best statistical model is called the
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discrepancy of g (due to the estimation process):

�(p
(I)

θ̂
, p

(I)
θ0

) =
n∑

i=1

(p
(I)

θ̂
(xi) − p

(I)
θ0

(xi))
2.

Now we have a discrepancy that is a function of the observed sample. Bear
in mind the complexity of g. To get closer to the unknown model, it is better
to choose a family where the models have a large number of parameters. In
other words, the discrepancy due to parametric approximation is smaller for more
complex models. However, the sample estimates obtained with the more complex
model tend to overfit the data, resulting in a greater discrepancy due to estimation.
The aim in model selection is to find a compromise between these opposite effects
of parametric approximation and estimation. The total discrepancy, known as the
discrepancy between the function f and the sample estimate p

(I)

θ̂
, takes both

these factors into account. It is given by the equation

�(f, p
(I)

θ̂
) =

n∑
i=1

(f (xi) − p
(I)

θ̂
(xi))

2

which represents the algebraic sum of two discrepancies, one from the parametric
approximation and one from the estimation process. Generally, minimisation of
the first discrepancy favours complex models, which are more adaptable to the
data, whereas minimisation of the second discrepancy favours simple models,
which are more stable.

The best statistical model to approximate f will be the model p
(I)

θ̂
that min-

imizes the total discrepancy. The total discrepancy can rarely be calculated in
practice as the density function f (x) is unknown. Therefore instead of minimiz-
ing the total discrepancy, the model selction problem is solved by minimizing
the total expected discrepancy, E�(f, p

(I)

θ̂
), where the expectation is taken with

respect to the sample probability distribution. Such an estimator defines an eval-
uation criterion, for a model with I parameters. Model choice will then be based
on comparing the corresponding estimators, known as minimum discrepancy
estimators.

5.1.3 Kullback–Leibler discrepancy

We now consider how to derive a model evaluation criterion. To define a general
estimator we consider, rather than the Euclidean discrepancy we have already
met, a more general discrepancy known as the Kullback–Leibler discrepancy (or
divergence). The Kullback–Leibler discrepancy can be applied to observations
of any type; it derives from the entropy distance and is given by

�KL(f, p
(I)

θ̂
) =

∑
i

f (xi) log

(
f (xi)

p
(I)

θ̂
(xi)

)
.

This can be easily mapped to the expression for the G2 deviance; then the target
density function corresponds to the saturated model. The best model can be
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interpreted as the one with a minimal loss of information from the true unknown
distribution. Like the entropy distance, the Kullback–Leibler discrepancy is not
symmetric.

We can now show that the statistical tests used for model comparison are based
on estimators of the total Kullback–Leibler discrepancy. Let pθ denote a proba-
bility density function parameterised by the vector � = (θ1, . . . , θI ). The sample
values x1, . . . , xn are a series of independent observations that are identically
distributed, therefore the sample density function is expressed by the equation

L(θ; x1, . . . , xn) =
n∏

i=1

pθ(xi)

Let θ̂n denote the maximum likelihood estimator of the parameters, and let the
likelihood function L be calculated at this point. Taking the logarithm of the
resulting expression and multiplying it by −1/n, we get

�KL(f, p
(I)

θ̂
) = −1

n

n∑
i=1

log[p(I)

θ̂
(xi)],

known as the sample Kullback–Leibler discrepancy function. This expression
can be shown to be the maximum likelihood estimator of the total expected
Kullback–Leibler discrepancy of a model pθ . Notice that the Kullback–Leibler
discrepancy gives a score to each model, corresponding to the mean (negative)
log-likelihood of the observations, which is equal to

2n�KL(f, p
(I)

θ̂
) = −2

n∑
i=1

log[p(I)

θ̂
(xi)].

The Kullback–Leibler discrepancy is fundamental to selection criteria devel-
oped in the field of statistical hypothesis testing. These criteria are based on a
successive comparisons between pairs of alternative models. Let us suppose that
the expected discrepancy for two statistical models is calculated as above, with
the pθ model substituted by one of the two models considered. Let �Z(f, zθ̂ )

be the sample discrepancy function estimated for the model with density zθ

and let �G(f, gθ̂ ) the sample discrepancy estimated for the model with den-
sity gθ . Let us suppose that model g has a lower discrepancy, namely that
�Z(f, zθ̂ ) = �G(f, gθ̂ ) + ε, where ε is a small positive number. Therefore, based
on the comparison of the discrepancy functions we will choose the model with
the density function gθ .

This result may depend on the specific sample used to estimate the discrep-
ancy function. We therefore need to carry out a statistical test to verify whether
a discrepancy difference is significant; that is, whether the results obtained from
a sample can be extended to all possible samples. If we find that the differ-
ence ε is not significant, then the two models would be considered equal and
it would be natural to choose the simplest model. The deviance difference cri-
terion defined by G2 (Section 4.12.2) is equal to twice the difference between



MODEL EVALUATION 153

sample Kullback–Leibler discrepancies. For nested models, the G2 difference
is asymptotically equivalent to the chi-squared comparison (and test). When a
Gaussian distribution is assumed, the Kullback–Leibler discrepancy coincides
with the Euclidean discrepancy, therefore F statistics can also be used in this
context.

To conclude, using a statistical test, it is possible to use the estimated discrep-
ancy to make an accurate choice among the models. The disadvantage of this
procedure is that it requires comparisons between model pairs, so when we have
a large number of alternative models, we need to make heuristic choices regard-
ing the comparison strategy (such as choosing among the forward, backward and
stepwise criteria, whose results may diverge). Furthermore, we must assume a
specific probability model and this may not always be a reasonable assumption.

5.2 Criteria based on scoring functions

In the previous section we have seen how the Kullback–Leibler sample discrep-
ancy can be used to derive statistical tests to compare models. Often, however,
we will not be able to derive a formal test. Examples can be found even among
statistical models for data mining, for example models for data analysis with
missing values or mixed graphical models. Furthermore, it may be important to
have a complete ordering of models, rather than a partial one, based on pairwise
comparisons. For this reason, it is important to develop scoring functions that
assign a score to each model. The Kullback–Leibler discrepancy estimator is
a scoring function that can often be approximated asymptotically for complex
models.

A problem with the Kullback–Leibler score is that it depends on the complex-
ity of a model, perhaps described by the number of parameters, hence its use may
lead to complex models being chosen. Section 6.1 explained how a model selec-
tion strategy should reach a trade-off between model fit and model parsimony.
We now look at this issue from a different perspective, based on a trade-off
between bias and variance. In Section 4.9 we defined the mean squared error
of an estimator. The mean squared error can be used to measure the Euclidean
distance between the chosen model pθ̂ and the underlying model f :

MSE(pθ̂ ) = E[(pθ̂ − f )2].

Note that pθ̂ is estimated on the basis of the data and is therefore subject to
sampling variability. In particular, for pθ̂ we can define an expected value E(pθ̂ ),
roughly corresponding to the arithmetic mean over a large number of repeated
samples, and a variance Var(pθ̂ ), measuring its variability with respect to this
expectation. From the properties of the mean squared error it follows that

MSE(pθ̂ ) = [bias(pθ̂ )]
2 + Var(pθ̂ ) = [E(pθ̂ ) − f ]2 + E[(pθ̂ − E(pθ̂ ))

2].

This indicates that the error associated with a model pθ̂ can be decomposed
into two parts: a systematic error (bias), which does not depend on the observed
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data, and reflects the error due to the parametric approximation; and a sampling
error (variance), which reflects the error due to the estimation process. A model
should therefore be selected to balance the two parts. A very simple model will
have a small variance but a rather large bias (e.g. a constant model); a very
complex model will have a small bias but a large variance. This is known as the
bias–variance trade-off.

We now define score functions that penalise model complexity. The most
important of these functions is the Akaike information criterion (AIC). Akaike
(1974) formulated the idea that (i) the parametric model is estimated using
the method of maximum likelihood and (ii) the parametric family specified
contains the unknown distribution f (x) as a particular case. He therefore
defined a function that assigns a score to each model by taking a function of
the Kullback–Leibler sample discrepancy. In formal terms, the AIC criterion is
defined by the following equation:

AIC = −2 log L(θ̂; x1, . . . , xn) + 2q,

where log L(θ̂; x1, . . . , xn) is the logarithm of the likelihood function calculated
at the maximum likelihood parameter estimate and q is the number of parameters
in the model. Notice that the AIC score essentially penalises the log-likelihood
score with a term that increases linearly with model complexity.

The AIC criterion is based on the implicit assumption that q remains constant
when the size of the sample increases. But this assumption is not always valid,
so AIC does not lead to a consistent estimate for the dimension of the unknown
model. An alternative and consistent scoring function is the Bayesian information
criterion (BIC), formulated by Schwarz (1978) and defined by the following
expression:

BIC = −2 log L(θ̂; x1, . . . , xn) + q log(n).

It differs from the AIC criterion only in the second term, which now also depends
on the sample size n. As n increases, BIC favours simpler models than AIC. As
n grows large, the first term (linear in n) will dominate the second term (log-
arithmic in n). This corresponds to the fact that, for large n, the variance term
in the MSE expression becomes negligible. Despite the superficial similarity
between AIC and BIC, AIC is usually justified by resorting to classical asymp-
totic arguments, whereas BIC is usually justified by appealing to the Bayesian
framework.

To conclude, the scoring function criteria we have examined are easy to cal-
culate and lead to a total ordering of the models. Most statistical packages give
the AIC and BIC scores for all the models considered. A further advantage of
these criteria is that they can be used to compare non-nested models and, more
generally, models that do not belong to the same class (e.g. a probabilistic neu-
ral network and a linear regression model). The disadvantage of these criteria
is the lack of a threshold, as well as the difficulty of interpreting their mea-
surement scale. In other words, it is not easy to determine whether or not the
difference between two models is significant, and how it compares with another
difference.
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5.3 Bayesian criteria

From a practical perspective, the Bayesian criteria are an interesting compromise
between the statistical criteria based on the deviance differences and the criteria
based on scoring functions. They are based on coherent statistical modelling,
and therefore their results can be easily interpreted. They provide a complete
ordering of the models and can be used to compare non-nested models as well
as models belonging to different classes. In the Bayesian derivation each model
is given a score that corresponds to the posterior probability of the model itself.
A model becomes a discrete random variable that takes values on the space of
all candidate models. This probability can be calculated using Bayes’ rule:

P(M|x1, . . . , xn) = P(x1, . . . , xn|M)P(M)

P (x1, . . . , xn)
.

The model that maximises the posterior probability will be chosen. Unlike the
information criteria, the Bayesian criteria use probability and therefore define
a distance that can easily be used to compare models. For further information
about Bayesian theory and selection criteria for Bayesian models, see Bernardo
and Smith (1994) and Cifarelli and Muliere (1989).

Bayesian scoring methods are not problem-free. Many Bayesian methods are
hard to implement because of computational issues. For example, computing the
likelihood of a model, P(x1, . . . , xn|M) can be a challenge, since it requires the
parameters of the model to be integrated out. In other words, given a model M

indexed by a vector θ of parameters, its likelihood is given by

P(x1, . . . , xn|M) =
∫

P(x1, . . . , xn|θ,M)P (θ |M)dθ,

where P(θ |M) is the prior distribution of the parameters given that model M is
under consideration. Although such calculations long prevented the widespread
use of Bayesian methods, Markov chain Monte Carlo (MCMC) techniques
emerged during the 1990s, providing a successful, albeit computationally
intensive, way to approximate integration problems, even in highly complex
settings. For a review of MCMC methods, see Gilks et al. (1996). The most
common software for implementing MCMC is BUGS, which can be found at
www.mrc-bsu.cam.ac.uk/bugs.

On the other hand, Bayesian methods are quite attractive. Since the Bayesian
model scores are probabilities, they can be used to draw model-averaged infer-
ences from the various competing models, rather than making inferences con-
ditional on a single model being chosen. Averaging across several models is a
way to account for model uncertainty. Consider, for example, the problem of
predicting the value of a certain variable Y . The Bayesian prediction, based on
model averaging when there are K possible models, is given by

E(Y |x1, . . . , xn) =
K∑

j=1

E(Y |M,x1, . . . , xn)P (M|x1, . . . , xn).



156 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

Notice how the prediction correctly reflects the uncertainty on the statistical
model. Rather than choosing a single model, and drawing all inferences based
on it, we can consider a plurality of models and average the inferences obtained
from each model. The model average inference is a weighted average, where the
weights are given by the model posterior probabilities. Application of Bayesian
model averaging to complex models usually requires a careful implementation
of computationally intensive techniques such as MCMC. This issue is consid-
ered in detail in Brooks et al. (2003) and, for graphical models, in Giudici and
Green (1999). An important reference on Bayesian inference and computational
approximations for highly structured stochastic systems is Green et al. (2003).

5.4 Computational criteria

The widespread use of computational methods has led to the development of com-
putationally intensive model selection criteria. These criteria are usually based
on using data sets that are different from the one being analysed (external valida-
tion) and are applicable to all the models considered, even when they belong to
different classes (e.g. in comparing logistic regression, decision trees and neural
networks, even when the latter two are non-probabilistic). A possible problem
with these criteria is that they take a long time to design and implement, although
general-purpose software such as R has made this task easier. We now consider
the main computational criteria.

The cross-validation criterion
The idea of the cross-validation method is to divide the sample into two subsam-
ples, a training sample having n − m observations and a validation sample having
m observations. The first sample is used to fit a model and the second is used
to estimate the expected discrepancy or to assess a distance. We have already
seen how to apply this criterion with reference to neural networks and decision
trees. Using this criterion the choice between two or more models is made by
evaluating an appropriate discrepancy function on the validation sample.

We can see that the logic of this criterion is different. The other criteria are all
based on a function of internal discrepancy on a single data set, playing the roles
of the training data set and the validation data set. With these criteria we compare
directly predicted and observed values on an external validation sample. Notice
that the cross-validation idea can be applied to the calculation of any distance
function. For example, in the case of neural networks with quantitative output,
we usually employ a Euclidean discrepancy,

1

m

∑
i

∑
j

(tij − oij )
2,

where tij is the fitted output and oij the observed output, for each observation i

in the validation set and for each output neuron j .
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One problem with the cross-validation criterion is in deciding how to select
m, the number of the observations in the validation data set. For example, if we
select m = n/2 then only n/2 observations are available to fit a model. We could
reduce m but this would mean having few observations for the validation data
set and therefore reducing the accuracy with which the choice between models is
made. In practice, proportions of 75% and 25% are usually used for the training
and validation data sets, respectively.

The cross-validation criterion can be improved in different ways. One limitation
is that the validation data set is in fact also used to construct the model. Therefore
the idea is to generalise what we have seen by dividing the sample in more than
two data sets. The most frequently used method is to divide the data set into
three blocks: training, validation and testing. The test data will not be used in
the modelling phase. Model fit will be carried out on the training data, using the
validation data to choose a model. Finally, the model chosen and estimated on the
first two data sets will be adapted to the test set and the error found will provide
a correct estimate of the prediction error. The disadvantage of this generalisation
is that it reduces the amount of data available for training and validation.

A further improvement could be to use all the data available for training.
The data is divided into k subsets of equal size; the model is fitted k times,
leaving out one of the subsets each time, which could be used to calculate a
prediction error rate. The final error is the arithmetic mean of the errors obtained.
This method is known as k-fold cross-validation. Another common alternative
is the leave-one-out method, in which one observation only is left out in each
of the k samples, and this observation is used to calibrate the predictions. The
disadvantage of these methods is the need to retrain the model several times,
which can be computationally intensive.

The bootstrap criterion
The bootstrap method was introduced by Efron (1979) and is based on the idea
of reproducing the ‘real’ distribution of the population with a resampling of the
observed sample. Application of the method is based on the assumption that the
observed sample is in fact a population, a population for which we can calculate
the underlying model f (x) – it is the sample density. To compare alternative
models, a sample can be drawn (or resampled) from the fictitious population (the
available sample) and then we can use our earlier results on model comparison.
For instance, we can calculate the Kullback–Leibler discrepancy directly, without
resorting to estimators. The problem is that the results depend on the resampling
variability. To get around this, we resample many times, and we assess the
discrepancy by taking the mean of the obtained results. It can be shown that
the expected discrepancy calculated in this way is a consistent estimator of the
expected discrepancy of the real population.

Application of the bootstrap method requires the assumption of a probabil-
ity model, either parametric or non-parametric, and tends to be computationally
intensive.
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Bagging and boosting
Bootstrap methods can be used not only to assess model’s discrepancy, and
therefore its accuracy, but also to improve the accuracy. Bagging and boosting
methods are recent developments that can be used for combining the results of
more than one data mining analysis. In this respect they are similar to Bayesian
model-averaging methods, as they also lead to model-averaged estimators, which
often improve on estimators derived from only one model.

Bagging (bootstrap aggregation) methods can be described as follows. At every
iteration, we draw a sample with replacement from the available training data set.
Typically, the sample size corresponds to the size of the training data itself. This
does not mean that the sample drawn will be the same as the training sample,
because observations are drawn with replacement – not all the observations in
the original sample are drawn. Consider B loops of the procedure; the value of
B depends on the computational resources available and time. A data mining
method can be applied to each bootstrapped sample, leading to a set of estimates
for each model; these can then be combined to obtain a bagged estimate. For
instance, the optimal classification tree can be searched for each sample, and each
observation allocated to the class with the highest probability. The procedure is
repeated, for each sample i = 1, . . . , B, leading to B classifications. The bagged
classification for an observation corresponds to the majority vote, namely, to the
class in which it is most classified by the B fitted trees. Similarly, a regression
tree can be fitted for each of the B samples, producing a fitted value ŷi , in each
of them, for each observation. The bagged estimate would be the mean of these
fitted values,

1

B

B∑
i=1

ŷi .

With reference to the bias–variance trade-off, as a bagged estimate is a sample
mean, it will not alter the bias of a model; however, it may reduce the variance.
This can occur for highly unstable models, such as decision trees, complex neu-
ral networks and nearest-neighbour models. On the other hand, if the applied
model is simple, the variance may not decrease, because the bootstrap variability
dominates.

So far we have assumed that the same model is applied to the bootstrap sam-
ples; this need not be the case. Different models can be combined, provided the
estimates are compatible and expressed on the same scale. While bagging relies
on bootstrap samples, boosting does not. Although now there are many variants,
the early versions of boosting fitted models on several weighted versions of the
data set, where the observations with the poorest fit receive the greatest weight.
For instance, in a classification problem, the well-classified observations will get
lower weights as the iteration proceeds, allowing the model to concentrate on
the estimating the most difficult cases. More details can be found in Han and
Kamber (2001) and Hastie et al. (2001).
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5.5 Criteria based on loss functions

One aspect of data mining is the need to communicate the final results in accor-
dance with the aims of the analysis. With business data we need to evaluate
models not only by comparing them among themselves but also by comparing
the business advantages which can be gained by using one model rather than
another. Since the main problem dealt with by data analysis is to reduce uncer-
taintiesin the risk factors or loss factors, we often talk about developing criteria
that minimise the loss connected with a problem. In other words, the best model
is the one that leads to the least loss. The best way to introduce these rather
specific criteria is to give some examples. Since these criteria are mostly used in
predictive classification problems, we will mainly refer to this context here.

The confusion matrix is used as an indication of the properties of a classifi-
cation (discriminant) rule (see the example in Table 5.1). It contains the number
of elements that have been correctly or incorrectly classified for each class. The
main diagonal shows the number of observations that have been correctly classi-
fied for each class; the off-diagonal elements indicate the number of observations
that have been incorrectly classified. If it is assumed, explicitly or implicitly, that
each incorrect classification has the same cost, the proportion of incorrect clas-
sifications over the total number of classifications is called the error rate, or
misclassification error; this is the quantity we must minimise. The assumption of
equal costs can be relaxed by weighting errors with their relative costs.

We now consider the lift chart, and the ROC curve, two graphs that can be
used to assess model costs. Both are presented with reference to a binary response
variable, the area where evaluation methods have developed most quickly. For a
comprehensive review, see Hand (1997).

Lift chart
The lift chart puts the observations in the validation data set into increasing
or decreasing order on the basis of their score, which is the probability of the
response event (success), as estimated on the basis of the training set. It groups
these scores into deciles, then calculates and graphs the observed probability
of success for each of the decile classes in the validation data set. A model is
valid if the observed success probabilities follow the same order (increasing or

Table 5.1 Example of a confusion matrix.

Observed classes

Predicted classes Class A Class B Class C

Class A 45 2 3
Class B 10 38 2
Class C 4 6 40
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Table 5.2 Theoretical confusion matrix.

Predicted

Observed

Event (1) Non-event (0) Total

Event (1) a b a + b

Non-event (0) c d c + d

TOTAL a + c b + d a+b+c+d

decreasing) as the estimated probabilities. To improve interpretation, a model’s
lift chart is usually compared with a baseline curve, for which the probability
estimates are drawn in the absence of a model, that is, by taking the mean of the
observed success probabilities.

ROC curve
The receiver operating characteristic (ROC) curve is a graph that also measures
predictive accuracy of a model. It is based on the confusion matrix in Table 5.2.
In the table, the term ‘event’ stands for the value Y = 1 (success) of the binary
response. The confusion matrix classifies the observations of a validation data
set into four possible categories:

• observations correctly predicted as events (with absolute frequency equal to
a);

• observations incorrectly predicted as events (with frequency equal to c);
• observations incorrectly predicted as non-events (with frequency equal to b);
• observations correctly predicted as non-events (with frequency equal to d).

Given an observed table, and a cut-off point, the ROC curve is calculated on
the basis of the resulting joint frequencies of predicted and observed events
(successes) and non-events (failures). More precisely, it is based on the following
conditional probabilities:

• sensitivity , a
/
(a + b), the proportion of events predicted as such;

• specificity , d
/
(c + d), the proportion of non-events predicted as such;

• false positives , c
/
(c + d) = 1 – specificity, the proportion of non-events pre-

dicted as events (type II error);
• false negatives , b

/
(a + b) = 1 – sensitivity, the proportion of events pre-

dicted as non-events (type I error).

The ROC curve is obtained by graphing, for any fixed cut-off value, the false pos-
itives on the horizontal axis and the sensitivity on the vertical axis (see Figure 5.1
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Figure 5.1 Example of an ROC curve.

for an example). Each point in the curve corresponds to a particular cut-off. The
ROC curve can also be used to select a cut-off point, trading off sensitivity and
specificity. In terms of model comparison, the ideal curve coincides with the
vertical axis, so the best curve is the leftmost curve.

The ROC curve is the basis for an important summary statistic called the
Gini index of performance. Recall the concentration curve in Figure 3.2. For any
given value of Fi , the cumulative frequency, there is a corresponding value of
Qi , the cumulative intensity. Fi and Qi take values in [0,1] and Qi ≤ Fi . The
concentration curve joins a number of points in the Cartesian plane determined
by taking xi = Fi and yi = Qi, for i = 1, . . . , n. The area between the curve and
the 45◦ line gives a summary measure for the degree of concentration. The ROC
curve can be treated in a similar way. In place of Fi and Qi we need to consider
two cumulative distributions constructed as follows.

The data contains both events (Yi = 1) and non-events (Yi = 0). It can therefore
be divided into two samples, one containing all events (labelled E) and one
containing all non-events (labelled N ). As we have seen, any statistical model
for predictive classification takes each observation and attaches to it a score that
is the fitted probability of success πi . In each of the two samples, E and N , the
observations can be ordered (in increasing order) according to this score. Now,
for any fixed value of i (a percentile corresponding to the cut-off threshold), a
classification model would consider all observations below it as non-events and
all observations above it as events.

Correspondingly, the predicted proportion of events can be estimated for both
E and N . For a reasonable model, in population E this proportion has to be higher
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than in population N . Let FE
i and F N

i be these proportions corresponding to the
cut-off i, and calculate coordinate pairs (FE

i , F N
i ), as i varies. We have that, for

i = 1, . . . , n, both FE
i and FN

i take values in [0,1]; indeed they both represent
cumulative frequencies. Furthermore, FN

i ≤ F E
i . The ROC curve is obtained by

joining points with coordinates yi = FE
i and xi = FN

i . This is because FE
i equals

the sensitivity and FN
i equals 1 – specificity.

Notice that the curve will always lie above the 45◦ line. However, the area
between the curve and the line can also be calculated, and coincides with the
Gini index of performance. The larger the area, the better the model.

5.6 Further reading

In this chapter we have systematically compared the main criteria for model
selection and comparison. These methods can be grouped into: criteria based on
statistical tests, criteria based on scoring functions, Bayesian criteria, computa-
tional criteria, and business criteria. Criteria based on statistical tests start from
the theory of statistical hypothesis testing, so there is a lot of detailed literature
related to this topic; see, for example, Mood et al. (1991). The main limitation of
these methods is that the choice among the different models is made by pairwise
comparisons, thus leading to a partial ordering.

Criteria based on scoring functions offer an interesting alternative, since they
can be applied in many settings and provide a complete ordering of the models. In
addition, they can be easily computed. However, they do not provide threshold
levels for assessing whether the difference in scores between two models is
significant. Therefore they tend to be used in the exploration or preliminary phase
of the analysis. For more details on these criteria and how they compare with the
hypothesis testing criteria, see Zucchini (2000) or Hand et al. (2001). Bayesian
criteria are a possible compromise between the previous two. However, Bayesian
criteria are not widely used, since they are not implemented in the most popular
statistical software. For data mining case-studies that use Bayesian criteria, see
Giudici (2001) and Giudici and Castelo (2001).

Computational criteria have the advantage that they can be applied to statistical
methods that are not necessarily ‘model based’. From this point of view they
are the main principle of ‘universal’ comparison among the different types of
models. On the other hand, since most of them are non-probabilistic, they may
be too dependent on the sample observed. A way to overcome this problem is
to consider model combination methods, such as bagging and boosting. For a
thorough description of these recent methodologies, see Hastie et al. (2001).

Criteria based on loss functions are relatively recent, even though the under-
lying ideas have been used in Bayesian decision theory for quite some time; see
Bernardo and Smith (1994). They are of great interest and have great application
potential, even though presently they are used only in the context of classifica-
tion. For a more detailed examination of these criteria, see Hand (1997), Hand
et al. (2001), or the manuals for the R statistical software.
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CHAPTER 6

Describing website visitors

6.1 Objectives of the analysis

In this chapter we present an analysis of web access data, the main objective of
which is to classify the visitors into homogeneous groups on the basis of their
behaviour. This will lead us to identify typical visiting profiles. In other words,
we are trying to match each visitor to a specific cluster, depending on their surfing
habits on that particular site. This will give us a behavioural segmentation of the
users that we can use in future marketing decisions. We can also monitor the
evolution of the kind of ‘customer’ who comes to the site by looking at how
the distribution of users in the different behavioural segments evolves over time.
Then we can assess the impact of any changes to the site (such as reorganisation
or restyling of web pages, advertisements or promotions) on the number of the
visits of the different types of users. The data set used in this chapter has also been
analysed by Cadez et al. (2000) and, from a Bayesian perspective, by Giudici
and Castelo (2001).

6.2 Description of the data

The data set contains data about the pages of the site www.microsoft.com visited
by 32 711 anonymous visitors. For each visitor we have indicated the pages of
the site that have been visited during the first week of February 1998. Visitors
are assigned an identification number (from 10 001 to 42 711) and no personal
information is given. The total number of visited pages is 296. The pages are
identified by a number that corresponds to a title and a corresponding address.
For example, number 1057 refers to the page ‘MS PowerPoint News’ of the
PowerPoint group of pages. The numeric codes associated with the pages are
integers that go from 1000 up to 1295. To give a better idea of the data set, here
are its first few lines:

C, ''10908'', 10908
V, 1108

Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05886-2
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V, 1017
C, ''10909'', 10909
V, 1113
V, 1009
V, 1034
C, ''10910'', 10910
V, 1026
V, 1017

Each visitor is represented in the data set by a line (beginning with the letter C)
containing their identification number. The code is converted into a number. The
visitor’s line is then followed by one or more lines that show the pages visited.
For the objectives of the analysis it is convenient to work with a derived data
matrix, organised by visitors. This matrix will describe, for each visitor, how
many times each page has been viewed; therefore every page will be represented
by one categorical variable.

Since the total number of distinct pages in the database is 294, it is likely
that some combinations of these pages are never or rarely visited. To perform a
valid cluster analysis of visitors into groups, it is therefore useful to clean and
summarize the original file so as to obtain a less complex data matrix. To do
so, we group the web pages into 13 homogeneous categories, reflecting their
meaning in the Microsoft website. The number of variables in the data set is thus
reduced from 294 to 13. Each variable corresponds to one of the 13 groups:

• Initial. this includes all the general access pages and all the pages dedicated
to research.

• Support. this includes all the pages related to requests for help and support.
• Entertainment. this includes all the pages that refer to entertainment, games

and cultural software.
• Office. this has all the pages that refer to the Office software.
• Windows. this groups together all the pages related to the Windows operating

system.
• Othersoft. this refers to all the pages relating to software other than Office.
• Download. this includes all the pages regarding software downloading or

updating.
• Otherint. this has all the pages dedicated to services through internet, for

information technology professionals, which are different from the download
pages.

• Development. this has all the pages dedicated to professional developers (e.g.
Java).

• Hardware. this includes the pages relating to Microsoft hardware.
• Business. this has pages dedicated to businesses.
• Info. this includes all the pages which give information about new products

and services.
• Area. this has all the pages which refer to local access, depending on the

specific language.
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Table 6.1 Data structure.

Client Code Initial Help Entertainment

10001 1 1 1
10002 1 1 0
10003 2 1 0
10004 0 0 0
10005 0 0 0
10006 2 0 0
10007 0 0 0
10008 1 0 0
10009 0 0 0
10010 1 1 0
10011 2 0 0
10012 0 0 0
10013 0 0 0

Using this grouping, we can derive a visitor data matrix with 32 711 rows and
13 columns. Table 6.1 shows part of it. Every group of pages is represented by
a discrete variable that counts the number of times each person has visited that
specific group of pages. The data set does not include information on the order
in which the pages are visited.

We carry out the analysis in three stages: first, an exploratory phase; then
we determine the behavioural classes of users using descriptive data mining
techniques (cluster analysis and Kohonen maps); and finally, we compare the
performance of the two descriptive models.

6.3 Exploratory analysis

The exploratory analysis of the data reveals a high level of dispersion. Table 6.2
shows the absolute frequency distribution of the number of times each group of
pages is visited. Notice that some groups of pages (such as Initial, Office and
Download) have a high frequency of visits; others (such as Information, Business,
Hardware and Entertainment) have a much lower frequency. We point out that,
on average, a user visits 4 distinct pages. However, the modal number of visits
is only 2, indicating that the variable ‘number of visited pages’ is positively
skewed.

6.4 Model building

The first part of the analysis aims to identify the different behavioural segments
within the sample of users. We use two different descriptive data mining tech-
niques: cluster analysis and the unsupervised networks known as Kohonen maps.
Both techniques allow us to partition the data to identify homogeneous groups or
types possessing internal cohesion that differentiates them from the other groups.
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Table 6.2 Frequency distribution.

Page Frequency

Initial 23492
Help 9287
Entertainment 2967
Office 15574
Windows 7328
Othersft 3046
Download 11320
Otherint 6237
Devolpment 8228
Hardware 2967
Business 2726
Information 2307
Area 3141

We use two techniques so we can compare their efficiency, but also to check that
they produce consistent results.

6.4.1 Cluster analysis

Chapter 4 explained the main techniques of hierarchical cluster analysis as well
as the non-hierarchical K-means method. A variation of the K-means method is
used here. The basic idea is to introduce seeds, or centroids, to which statistical
units may be attracted, forming a cluster. It is important to specify the maximum
number of clusters, say G, in advance. As discussed in Section 4.2, hierarchical
and non-hierarchical methods of cluster analysis do have some disadvantages.
Hierarchical cluster analysis does not need to know the number of clusters in
advance, but it may require too much computing power. For moderately large
quantities of data, as in this case study, the calculations may take a long time.
Non-hierarchical methods are fast, but they require us to choose the number of
clusters in advance.

To avoid these disadvantages and to try to exploit the potential of both
methods we follow a combined approach. First we run a non-hierarchical
clustering procedure on the entire data set, having chosen a large value of
G. We take the first G available observations as seeds. Then we run an
iterative procedure; at each step we form temporary clusters, allocating each
observation to the cluster with the seed nearest to it. Each time an observation is
allocated to a cluster, the seed is substituted with the mean of the cluster – the
centroid – itself. We repeat the iterative process until convergence; that is,
until no substantial changes in the cluster seeds are evident. At the end of the
procedure, we have G clusters, with corresponding centroids.

This is the input to the next step, a hierarchical clustering procedure on a
sample from the available data, the aim of which is to find the optimal number
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of clusters. The procedure is of course an agglomerative one, since the number
of clusters cannot be greater than G.

Having ascertained the optimal number of clusters, we carry out a
non-hierarchical clustering procedure to allocate the observations to the clusters,
whose initial seeds are the centroids obtained in the previous step. The procedure
is similar to the first non-hierarchical stage, and involves repeating the following
two steps until convergence:

1. Scan the data and assign each observation to the seed that is nearest (in terms
of Euclidean distance).

2. Replace each seed with the mean of the observations assigned to its cluster.

Here we choose G = 40. We carry out the hierarchical stage of the procedure
on a sample of 2000 observations from the available data. Our distance function
is the Euclidean distance, and we use Ward’s method to recompute the distances
as the clusters are formed. To obtain valid cluster means for use as seeds in the
third stage, we impose a minimum of 100 observations in each cluster.

By applying Ward’s method, we obtain that the optimal number of clus-
ters is 6. Applying the centroid method gives the same result. Running a final
non-hierarchical procedure on the entire available data set, with six clusters, gave
the results presented in Table 6.3. This shows the number of observations in each
cluster. We have R2 = 0.40 for the final configuration, which can be treated as
a summary evaluation measure of the model.

To better interpret the cluster configurations, Table 6.4 gives the means of each
cluster for the most important variables. Note that clusters 1 and 6 have similar
centroids, expressed by a similar mean number of visits to each page (especially
Office, Entertainment and Windows). On the other hand, cluster 2 appears to have
rather different behaviour, concentrated mainly on three pages (Help, Office and
Windows).

6.4.2 Kohonen networks

Kohonen networks require us to specify the number of rows and the number of
columns in the grid space characterising the map. Large maps are usually the

Table 6.3 Cluster sizes for the final
K-means cluster configuration.

Cluster Frequency

1 10725
2 60
3 19277
4 164
5 2325
6 160
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Table 6.4 Cluster means for the final K-means cluster configuration.

Web page Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Help 0.25 2.41 0.26 0.70 0.44 0.61
Download 1.01 0.91 0 0.75 0.07 0.41
Office 0.70 1.63 0.26 1.14 1.11 0.70
Entertainment 0.10 0.75 0.08 0.18 0.08 0.13
Windows 0.30 1.7 0.06 1.64 1.02 0.26

best choice, as long as each cluster has a significant number of observations. The
learning time increases significantly with the size of the map. The number of
rows and the number of columns are usually established by conducting several
trials until a satisfactory result is obtained. We will use the results of the cluster
analysis to help us. Having identified 6 as the optimal number of clusters, we
will consider a 3 × 2 map. The Kohonen mapping algorithm implemented in R
essentially replaces the third step of the clustering algorithm with a procedure
that repeats the following two steps until convergence:

1. Scan the data and assign each observation to the seed that is nearest (in terms
of Euclidean distance).

2. Replace each seed with a weighted mean of the cluster means that lie in the
grid neighbourhood of the seed’s cluster.

The weights correspond to the frequencies of each cluster. In this way the cluster
configuration is such that any two clusters that are close to each other in the
map grid will have centroids close to each other. The initial choice of the seeds
can be made in different ways; we choose them at random. Alternatively, we
could have used the centroids obtained from the second stage of the K-means
clustering procedure.

Table 6.5 reports, for each of the six chosen map clusters, the total number of
observations in it (frequency). The groups obtained are now more homogeneous
in terms of number of observations included. Table 6.6, which reports the cluster
means, should be compared with Table 6.4 for the K-means procedure. R2 is now

Table 6.5 Cluster sizes for the final
Kohonen map configuration.

Cluster Frequency

1 9572
2 5784
3 8301
4 1863
5 4995
6 2196
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Table 6.6 Cluster means for the final Kohonen map configuration.

Web page Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Help 0.40 0.42 0.40 0.49 0.90 0.52
Download 0.64 0.43 0.39 0.44 0.49 0.48
Office 0.67 0.42 0.38 0.43 0.42 0.61
Entertainment 0.46 0.47 0.54 0.49 0.50 0.51
Windows 0.47 0.45 0.51 0.49 0.56 0.51

0.58, which is 0.18 higher than we obtained for the K-means procedure. From
Table 6.6 we conclude that the findings in Table 6.4 are substantially confirmed.

6.5 Model comparison

We have presented two ways to perform descriptive data mining on web data.
Broadly speaking, a visitor profile is better if the cluster profiles are more distinct
and if their separation reflects a truly distinct behaviour. The Kohonen map does
seem to perform better in this respect, by exploiting the dependence between
adjacent clusters.

A second consideration is that the statistical evaluation of the results should
be based mainly on R2, or measures derived from it, this being a descriptive
analysis. We have already seen that the overall R2 is larger with the Kohonen
networks. It is interesting to examine for each variable (page) the ratio of the
between sum of squares and the total sums of squares that leads to R2. This can
give a measure of the goodness of fit of the cluster representation, specific for
each variable. By examining all such R2 we can get an overall picture of which
aspects of the observations are more used in the clustering process.

Table 6.7 presents the variable-specific R2 values and the overall R2 for the
K-means and Kohonen procedures. For both procedures the group pages that have
a high R2, and are therefore most influential in determining the final results, are
Help and Office. There are also pages that are influential only for the Kohonen
maps: Windows and Download. The choice between the two procedures therefore
depends on which pages are chosen as discriminant for the behaviour. In the

Table 6.7 Comparison of the variable-specific R2

values.

Web page R2 (K-means) R2 (Kohonen)

Help 0.68 0.66
Entertainment 0.01 0.02
Office 0.44 0.70
Windows 0.18 0.56
Download 0.04 0.43
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absence of other considerations, the choice should consider the procedure which
leads to the highest overall R2, here the Kohonen map.

Further considerations may arise when the results are used to make predictions.
For instance, suppose that, once the grouping has been accomplished, we receive
some new observations to be classified into clusters. One reasonable way to
proceed is to assign them to one of the clusters previously determined, according
to a discriminant rule. In that case, clustering methods can be compared in terms
of predictive performance, perhaps by using cross-validation techniques.

6.6 Summary report

1. Context. This case is concerned with customer profiling on the basis of web
behaviour. The context is very broad, as the analysis refers to any type of
problem involved with classifying people, companies or any other statistical
units into homogeneous groups.

2. Objectives. The aim of the analysis is to classify customers into an unknown
number of homogeneous classes, on the basis of their statistical characteris-
tics. The classification is unsupervised: there is no target variable and all the
available information should be used to form homogeneous clusters.

3. Organisation of the data. The data was extracted from a log file that regis-
ters access to a website. The data matrix records for each visitor the number
of times they have viewed a collection of pages. For computational tractabil-
ity, the pages were grouped into 13 web areas, homogeneous in terms of
their content. Therefore, the data matrix considered in the analysis contains
32 711 rows (visitors) and 13 columns (one counting variable for each area).

4. Exploratory data analysis. This phase of the analysis revealed a high level
of dispersion with respect to the pages visited. Each visitor looks, on average,
at 4 pages, and this confirms the validity of grouping the 104 visited pages
into 13 areas.

5. Model specification. The objective of the analysis was to group the observa-
tions into homogeneous classes. Given the size of the data set, we considered
non-hierarchical cluster analysis models based on the K-means algorithm and
Kohonen networks. To compare the two approaches fairly, we considered a
3 × 2 Kohonen map, which corresponds to the same number of clusters (6)
obtained with the K-means algorithm.

6. Model comparison. Models were first compared by splitting the total vari-
ability into within-group variability and between-group variability, leading
to the calculation of R2, both overall and for specific area variables. The
result of the comparison favours Kohonen networks, which also have the
advantage that the groups obtained tend to be more distinct than the groups
from K-means clustering. We then compared the models in terms of their
predictive ability. We did this by using the clustering variable as a ‘tar-
get’ variable, fitting a classification tree and following a cross-validation
approach. The results again favour Kohonen networks.
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7. Model interpretation. The interpretation of the results should be based on
the cluster profiles obtained. For the Kohonen map, which performed best,
we interpreted each cluster profile by looking at the comparison between the
cluster-specific mean of each of the 13 variables and the overall mean. Expert
knowledge is needed to elucidate the business meaning of each profile.



CHAPTER 7

Market basket analysis

7.1 Objectives of the analysis

This case study looks at market consumer behaviour using a marketing method-
ology known as market basket analysis. Market basket analysis has the objective
of indentifying products, or groups of products, that tend to occur together (are
associated) in buying transactions (baskets). The knowledge obtained from a mar-
ket basket analysis can be very valuable; for instance, it can be employed by a
supermarket to reorganise its layout, taking products frequently sold together and
locating them in close proximity. But it can also be used to improve the effi-
ciency of a promotional campaign: products that are associated should not be put
on promotion at the same time. By promoting just one of the associated products,
it should be possible to increase the sales of that product and get accompanying
sales increases for the associated products.

The databases usually considered in a market basket analysis consist of all the
transactions made in a certain sale period (e.g. one year) and in certain sale loca-
tions (e.g. a chain of supermarkets). Consumers can appear more than once in
the database. In fact, consumers will appear in the database whenever they carry
out a transaction at a sales location. The objective of the analysis is to find the
most frequent combinations of products bought by the customers. The association
rules in Section 4.8 represent the most natural methodology here; indeed they
were actually developed for this purpose. Analysing the combinations of prod-
ucts bought by the customers, and the number of times these combinations are
repeated, leads to a rule of the type ‘if condition, then result’ with a corresponding
interestingness measurement. Each rule of this type describes a particular local
pattern. The set of association rules can be easily interpreted and communicated.
Possible disadvantages are locality and lack of probability modelling.

This case study takes a real market basket analysis and compares association
rules with log-linear models (Section 4.13), which represent a powerful method
of descriptive data mining. It also shows how an exploratory analysis, based on
examining the pairwise odds ratios, can help in constructing a comprehensive
log-linear model. Odds ratios can be directly compared with association rules.

Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini
© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-05886-2
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Similar analyses can be found in Giudici and Passerone (2002) and Castelo and
Giudici (2003); Castelo and Giudici take a Bayesian viewpoint.

7.2 Description of the data

The statistical analysis in this chapter was carried out on a data set kindly pro-
vided by AC Nielsen, concerning transactions at a large supermarket in southern
Italy. The data set is part of a larger database for 37 shop locations of a chain
of supermarkets in Italy. In each shop the recorded transactions are all the trans-
actions made by someone holding one of the chain’s loyalty cards. Each card
carries a code that identifies features about the owner, including important per-
sonal characteristics such as sex, date of birth, partner’s date of birth, number
of children, profession and education. The card allows the analyst to follow the
buying behaviour of its owner: how many times they go to the supermarket in
a given period, what they buy, whether they follow the promotions, etc. Our
aim here is to consider only data on products purchased, in order to investi-
gate the associations between these products. Therefore we shall not consider the
influence of demographic variables or the effect of promotions.

The available data set is organised in a collection of 37 transactional databases,
one for each shop location. For each shop, a statistical unit (a row in the database)
corresponds to one loyalty card code and one product bought. For each card code
there may be more than one product and, in the file, the same card code may
appear more than once, each time corresponding to one visit to a particular shop.
The period considered consists of 75 days between 2 January and 21 April 2001.
To suit the aims of the analysis and the complexity of the overall data set, we
will choose one representative shop, in southern Italy, with an area of about 12
000 m2. This shop has a mean number of visits, in the period considered, of
7.85, which is roughly equivalent to the overall mean for the 37 shops. But the
total number of loyalty cards issued for the shop is 7301, the largest out of all
the shops; this is one of the main reasons for choosing it. Finally, the average
expenditure per transaction is about ¤28.27, slightly lower than the overall mean.

The total number of products available in the shop is about 5000, ignoring
the brand, format and specific type (e.g. weight, colour, size). Products are usu-
ally grouped into categories. The total number of available categories in the
supermarket considered is about 493. For clarity we will limit our analysis to 20
categories (items), corresponding to those most sold. They are listed in Table 7.1,
along with their frequency of occurrence, namely, the number of transactions
that contain the item at least once; Figure 7.1 provides a graphical display of
Table 7.1. Notice that all product categories considered – shortened to products
from now on – concern food products. These categories are used to produce a
transaction database and Table 7.2 presents an extract. This extract will be called
the transactions data set.

From Table 7.2 notice that the transaction database presents, for each card
transaction, a list of the products that have been put in the basket. For example,
card owner 0460202004099 has bought tinned meat, tuna and mozzarella. The
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Table 7.1 Frequency of occurrence.

Product Frequency

beer 2082
biscuits 4863
brioches 3954
coffee 3044
coke 2098
crackers 557
frozen fish 636
frozen vegetables 2959
ice cream 222
juices 2126
milk 10999
mozzarella 317
oil 661
pasta 14707
rice 1481
tinned meat 122
tomato sauce 2484
tuna 2034
water 6420
yoghurt 3769
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Figure 7.1 Graphical frequency distribution.

transaction database may be expressed as a data matrix, with each row repre-
senting one transaction by one owner of a card code; the columns are binary
variables that represent whether or not each specific product has been bought
(at least once) in that transaction. We will call this the card owners database;
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Table 7.2 Data structure.

COD CARD Product

0460202004099 tinned meat
0460202004099 tuna
0460202004099 mozzarella
0460202007021 milk
0460202033648 milk
0460202033648 coke
0460202033648 pasta
0460202033648 crackers
0460202033648 milk
0460202035871 water
0460202035871 water
0460202039190 tuna
0460501000020 crackers
0460501000020 milk
0460501000020 pasta
0460501000020 biscuits
0460501000020 pasta
0460501000020 biscuits
0460501000204 juices
0460501000204 milk
0460501000204 biscuits
0460501000303 pasta
0460501000723 oil
0460501000853 biscuits
0460501000853 biscuits
0460501001744 tinned meat
0460501001966 milk
0460501001966 coffee
0460501001966 pasta
0460501001966 pasta
0460501001980 tuna
0460501001980 milk
0460501001980 tomato sauce

and extract is shown in Table 7.3. Note that the total number of card owner
transactions is 46 727.

7.3 Exploratory data analysis

To understand the associations between the 20 products considered, we have con-
sidered 190 two-way contingency tables, one for each pair of products. Table 7.4
shows one of these tables. It can be used to study the association between the
products ice cream and Coke. In each cell of the contingency table we have
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Table 7.3 The card owners database.

Cod Cart Tin Meat Mozzar Tuna Milk Coke Pasta

460202004099 0 1 0 1 0 0
460202004098 0 0 0 1 0 1
460202004097 0 0 0 0 0 0
460202004096 1 0 0 0 0 1
460202004095 0 1 0 0 1 0
460202004094 0 1 0 1 1 1
460202004093 0 1 0 1 1 0
460202004092 0 1 0 1 1 0
460202004091 0 1 0 1 1 0

Table 7.4 Example of a two-way contingency table, and calculation of the odds ratios.

ICECREAM                               COKE

Frequency 
Percent  
Row Pct
Col  Pct

0

1

Total

     0           1     Total

41179     4779    45958
 88.13    10.23     98.35
 89.60    10.40 
 98.57    96.56 

    599       170       769
   1.28      0.36       1.65
 77.89    22.11 

                                                    1.43      3.44 

41778     4949    46727
 89.41    10.59   100.00

Value       95% Confidence Limits

Odds Ratio             2.4455        2.0571        2.9071

the absolute frequency, the relative frequency (as a percentage), and the condi-
tional frequency by row and by column. Below the table we report an association
measure, the odds ratio between the two variables, along with the corresponding
confidence interval. According to Section 3.4, an association is deemed signifi-
cant if the value 1 is outside the confidence interval. Here we can say there is a
strong positive association between the two products. Recall that the total sample
size is quite large (46 727 transactions), therefore even a small odds ratio can
be significant. We have calculated all 190 possible odds ratios between products;
the largest values are shown in Table 7.5. Notice that the largest associations
are detected between tinned meat and tuna, tinned meat and mozzarella, and
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Table 7.5 The largest odds ratios between pairs of products, and the corresponding confi-
dence interval.

Product 1 Product 2 Odds ratio Confidence interval

BRIOCHES CRACKERS 2.28 2.02, 2.57
BRIOCHES ICE CREAM 2.02 1.71, 3.37
BRIOCHES JUICES 2.80 2.60, 3.02
COKE BEER 2.81 2.61, 3.02
COKE ICE CREAM 2.44 2.05, 2.90
CRACKERS ICE CREAM 2.28 1.70, 3.05
CRACKERS JUICES 2.04 1.76, 2.38
FROZEN VEGETABLES FROZEN FISH 3.36 2.95, 3.82
FROZEN FISH MOZZARELLA 2.07 1.47, 2.93
JUICES ICE CREAM 2.53 2.10, 3.05
OIL TOMATO SAUCE 2.07 1.83, 2.34
RICE PASTA 2.11 1.96, 2.27
TINNED MEAT RICE 2.14 1.47, 3.11
TINNED MEAT TUNA 5.06 3.91, 6.56
TINNED MEAT MOZZARELLA 4.88 2.96, 8.03
TOMATO SAUCE TUNA 5.06 3.91, 6.56

frozen fish and frozen vegetables. In all these cases the two paired products are
fast food products. Next comes an association between two drinks: Coke and
beer. In general, all the associations in Table 7.5 appear fairly reasonable from
a subject-matter viewpoint. In calculating the odds ratios, each pair of variables
is considered independently of the remaining 18. It is possible to relate them to
each other by drawing a graph whose the nodes are the products. An edge is
drawn between a pair of nodes if the corresponding odds ratio is significantly
different from 1; in other words, if the confidence interval for the odds ratio does
not contain the value 1.

In Table 7.6 we report for each pair of products whether the association between
them is positive, negative or absent. We can then proceed by grouping together
linked products. Five products appear to be isolated from the others, not (strongly)
positively associated with anything: milk, biscuits, water, coffee and yoghurt. All
other products are related, either directly or indirectly. It is possible to find at least
three groups of connected groups. These three groups indentify typical buying
behaviours. There is one group with five nodes: tuna, tinned meat, mozzarella,
frozen fish and frozen vegetables. These nodes, highly related with each other,
correspond to fast food products, quick and easy to prepare. A second group
contains four nodes: rice, pasta, tomato sauce and oil. This group can be identified
with food bought for ordinary meals (ordinary by Mediterranean standards). A
third group contains six other products: beer, Coke, juice, ice cream, brioches and
crackers. All relate to break items, food and drink typically consumed outside of
regular meals. This group seems less logically homogeneous than the other two.
We shall return to this in the next section. We have not detected any significant
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Table 7.6 Association between products.

Product 1 Product 2 Association

BRIOCHES CRACKERS +
BRIOCHES ICE CREAM +
BRIOCHES JUICES +
COKE BEER +
COKE ICE CREAM +
CRACKERS ICE CREAM +
CRACKERS JUICES +
FROZEN VEGETABLES FROZEN FISH +
FROZEN FISH MOZZARELLA +
JUICES ICE CREAM +
OIL TOMATO SAUCE +
RICE PASTA +
TINNED MEAT RICE +
TINNED MEAT TUNA +
TINNED MEAT MOZZARELLA +
TOMATO SAUCE TUNA +

negative association in the data at hand. This has important implications; for
instance, a promotion on pasta will presumably increase the sales of this product
but is very unlikely to decrease the sales of other products, such as rice and
water. Negative associations are rarely considered in market basket analysis.

7.4 Model building

7.4.1 Log-linear models

Log-linear models are very useful for descriptive data mining; they investigate
the associations between the variables considered. Fitting a log-linear model
to all 20 of our binary variables may require too many parameters to be esti-
mated. Furthermore, the corresponding conditional independence graph may be
difficult to interpret. Therefore, for reasons of parsimony and to satisfy compu-
tational restrictions, we will analyse the results in Table 7.6 using an exploratory
approach.

Table 7.6 suggests the existence of five isolated nodes that can be deemed
independent of the others: milk, biscuits, water, coffee and yoghurt. We will
therefore try to fit a graphical log-linear model to the remaining 15 variables, in
order to see whether the results from the exploratory analysis can be confirmed.
Table 7.7 presents the maximum likelihood estimates of the parameters of the
log-linear model with interactions up to order 2, fitted on the 15-way contingency
table corresponding to the 15 variables considered.

From Table 7.7 it turns out that all interactions found in Table 7.5 remain
significant. The difference with Table 7.5 is that we have now taken into account
conditional dependences between the variables, and as all variables are positively
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Table 7.7 Maximum likelihood estimates of the log-linear parameters.

Parameter Estimate Standard Chi-square P-value
error

TIN MEAT −1.6186 0.2206 53.85 <.0001
MOZZAR −0.01 0.132 0.01 0.9396
TIN MEAT*MOZZAR 0.6607 0.066 100.31 <.0001
TUNA −0.392 0.0635 38.07 <.0001
TIN MEAT*TUNA 0.3994 0.0344 134.72 <.0001
MOZZAR*TUNA 0.1483 0.029 26.17 <.0001
COKE −0.174 0.075 5.38 0.0203
TIN MEAT*COKE 0.2215 0.0501 19.58 <.0001
MOZZAR*COKE 0.0769 0.0326 5.58 0.0182
TUNA*COKE 0.0592 0.0117 25.63 <.0001
CRACKERS −0.2079 0.1228 2.87 0.0904
TIN MEAT*CRACKERS 0.4715 0.0768 37.71 <.0001
MOZZAR*CRACKERS 0.1389 0.0616 5.08 0.0242
TUNA*CRACKERS 0.1504 0.0188 63.8 <.0001
COKE*CRACKERS 0.1068 0.0199 28.68 <.0001
PASTA −0.2935 0.0516 32.35 <.0001
TIN MEAT*PASTA 0.0294 0.0346 0.72 0.3957
MOZZAR*PASTA 0.00751 0.0206 0.13 0.7156
TUNA*PASTA 0.0872 0.00796 120.2 <.0001
COKE*PASTA 0.0267 0.00805 11.01 0.0009
CRACKERS*PASTA 0.0219 0.0144 2.3 0.1291
JUICES −0.3191 0.0807 15.62 <.0001
TIN MEAT*JUICES 0.2942 0.0543 29.32 <.0001
MOZZAR*JUICES 0.1089 0.0347 9.84 0.0017
TUNA*JUICES 0.0879 0.0126 48.95 <.0001
COKE*JUICES 0.1238 0.0119 107.57 <.0001
CRACKERS*JUICES 0.1683 0.02 70.84 <.0001
PASTA*JUICES 0.0304 0.00901 11.41 0.0007
OIL 0.0318 0.1195 0.07 0.7902
TIN MEAT*OIL 0.4508 0.077 34.28 <.0001
MOZZAR*OIL 0.1343 0.0569 5.57 0.0183
TUNA*OIL 0.1219 0.018 45.9 <.0001
COKE*OIL 0.0466 0.0204 5.2 0.0226
CRACKERS*OIL 0.1644 0.0361 20.76 <.0001
PASTA*OIL 0.0792 0.0131 36.54 <.0001
JUICES*OIL 0.063 0.023 7.52 0.0061
TOMATO J −0.1715 0.0712 5.8 0.016
TIN MEAT*TOMATO J 0.2314 0.0469 24.34 <.0001
MOZZAR*TOMATO J 0.1121 0.0284 15.62 <.0001
TUNA*TOMATO J 0.0605 0.0112 29.23 <.0001
COKE*TOMATO J 0.0958 0.0108 78.92 <.0001
CRACKERS*TOMATO J 0.0589 0.0211 7.77 0.0053
PASTA*TOMATO J 0.1887 0.00747 637.43 <.0001
JUICES*TOMATO J 0.0831 0.0122 46.54 <.0001
OIL*TOMATO J 0.178 0.0163 119.22 <.0001
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Table 7.7 (continued )

Parameter Estimate Standard Chi-square P-value
error

BRIOCHES −0.2412 0.062 15.14 0.0001
TIN MEAT*BRIOCHES 0.153 0.0414 13.64 0.0002
MOZZAR*BRIOCHES 0.0955 0.0254 14.17 0.0002
TUNA*BRIOCHES 0.0774 0.00995 60.57 <.0001
COKE*BRIOCHES 0.0965 0.00966 99.71 <.0001
CRACKERS*BRIOCHES 0.186 0.0156 141.6 <.0001
PASTA*BRIOCHES 0.0343 0.00689 24.81 <.0001
JUICES*BRIOCHES 0.2342 0.00962 592.76 <.0001
OIL*BRIOCHES 0.0251 0.0176 2.02 0.1552
TOMATO J*BRIOCHES 0.0608 0.00967 39.54 <.0001
BEER −0.0287 0.0742 0.15 0.6987
TIN MEAT*BEER 0.2098 0.0462 20.62 <.0001
MOZZAR*BEER 0.07 0.0333 4.42 0.0356
TUNA*BEER 0.0864 0.0113 58.89 <.0001
COKE*BEER 0.2415 0.00965 626.64 <.0001
CRACKERS*BEER 0.0721 0.021 11.76 0.0006
PASTA*BEER 0.00755 0.00802 0.89 0.3464
JUICES*BEER 0.1201 0.0119 102.14 <.0001
OIL*BEER 0.0805 0.0192 17.61 <.0001
TOMATO J*BEER 0.0602 0.0111 29.56 <.0001
BRIOCHES*BEER 0.0621 0.00985 39.83 <.0001
FROZ VEG −0.2247 0.0704 10.18 0.0014
TIN MEAT*FROZ VEG 0.1938 0.049 15.64 <.0001
MOZZAR*FROZ VEG 0.1211 0.0276 19.25 <.0001
TUNA*FROZ VEG 0.0634 0.0114 31.14 <.0001
COKE*FROZ VEG 0.0398 0.0116 11.75 0.0006
CRACKERS*FROZ VEG 0.063 0.0214 8.7 0.0032
PASTA*FROZ VEG 0.0381 0.00773 24.3 <.0001
JUICES*FROZ VEG 0.0496 0.0129 14.76 0.0001
OIL*FROZ VEG 0.072 0.0188 14.59 0.0001
TOMATO J*FROZ VEG 0.0847 0.0106 63.29 <.0001
BRIOCHES*FROZ VEG 0.0406 0.00993 16.75 <.0001
BEER*FROZ VEG 0.0224 0.0118 3.61 0.0575
RICE −0.2743 0.084 10.67 0.0011
TIN MEAT*RICE 0.2987 0.0514 33.83 <.0001
MOZZAR*RICE 0.1887 0.0355 28.34 <.0001
TUNA*RICE 0.146 0.0131 124.67 <.0001
COKE*RICE 0.0626 0.0149 17.65 <.0001
CRACKERS*RICE 0.1909 0.0235 65.96 <.0001
PASTA*RICE 0.1481 0.00975 231.01 <.0001
JUICES*RICE 0.1024 0.0155 43.4 <.0001
OIL*RICE 0.1225 0.0237 26.75 <.0001
TOMATO J*RICE 0.109 0.0129 70.9 <.0001

(continued overleaf )
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Table 7.7 (continued )

Parameter Estimate Standard Chi-square P-value
error

BRIOCHES*RICE 0.0228 0.0128 3.15 0.0759
BEER*RICE 0.0362 0.0151 5.74 0.0166
FROZ VEG*RICE 0.0949 0.0136 49.02 <.0001
F FISH −0.0494 0.1337 0.14 0.7119
TIN MEAT*F FISH 0.4792 0.0894 28.74 <.0001
MOZZAR*F FISH 0.2417 0.0527 21.04 <.0001
TUNA*F FISH 0.1034 0.0224 21.4 <.0001
COKE*F FISH 0.0504 0.0258 3.82 0.0507
CRACKERS*F FISH 0.1047 0.0494 4.48 0.0342
PASTA*F FISH 0.0536 0.0156 11.78 0.0006
JUICES*F FISH 0.1032 0.0274 14.22 0.0002
OIL*F FISH 0.1232 0.0419 8.66 0.0033
TOMATO J*F FISH 0.075 0.0221 11.49 0.0007
BRIOCHES*F FISH 0.0545 0.0207 6.92 0.0085
BEER*F FISH 0.0735 0.0243 9.16 0.0025
FROZ VEG*F FISH 0.2954 0.0169 305.75 <.0001
RICE*F FISH 0.1711 0.0262 42.64 <.0001
ICECREAM −0.4074 0.1882 4.68 0.0304
TIN MEAT*ICECREAM 0.6214 0.1579 15.49 <.0001
MOZZAR*ICECREAM 0.1597 0.0828 3.73 0.0536
TUNA*ICECREAM 0.1106 0.0293 14.28 0.0002
COKE*ICECREAM 0.2095 0.0235 79.35 <.0001
CRACKERS*ICECREAM 0.2912 0.0417 48.72 <.0001
PASTA*ICECREAM −0.00983 0.02 0.24 0.6233
JUICES*ICECREAM 0.2335 0.0255 83.69 <.0001
OIL*ICECREAM 0.1632 0.0534 9.33 0.0023
TOMATO J*ICECREAM 0.0961 0.0286 11.31 0.0008
BRIOCHES*ICECREAM 0.1393 0.022 40.05 <.0001
BEER*ICECREAM 0.1133 0.0278 16.57 <.0001
FROZ VEG*ICECREAM 0.2202 0.024 84.07 <.0001
RICE*ICECREAM 0.1967 0.0347 32.13 <.0001
F FISH*ICECREAM 0.1872 0.056 11.18 0.0008

associated, more interactions have been found significant. Table 7.7 reveals no
significant negative interactions.

7.4.2 Association rules

The most common way to analyse market basket data is to use association rules,
a local data mining method explained in Section 4.8. We begin with a simple
setting. Consider the products ice cream and Coke. As order is not relevant, to
study the association between the two products, the data set can be collapsed to
the two-way contingency table in Table 7.4. This shows that the support for the
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rule ‘if ice cream, then Coke’ is

support(ice cream → Coke) = 170

46 727
= 0.0036,

indicating low support for the rule. This means these two products are bought
together only occasionally. The support corresponds to only one of the four joint
frequencies in Table 7.4, corresponding to the occurrence of both buying events.
A support of 0.0036 means that only 0.36% of the transactions considered will
have both ice cream and Coke in the basket. The support of an association rule is
symmetric; the support of the rule ‘if Coke, then ice cream’ would be the same.

The confidence of a rule, even when calculated for an association, where order
does not matter, depends on the body and head of the rule:

confidence(ice cream → Coke) = 170

769
= 0.22,

which corresponds to the second row conditional frequency of Coke = 1, and

confidence(Coke → ice cream) = 170

4949
= 0.034,

which corresponds to the second column conditional frequency of ice cream =
1. The confidence is really a particular conditional frequency. In the first case
it indicates the proportion, among those who buy ice cream, of those who also
buy Coke. In the second case it indicates the proportion, among those who buy
Coke, of those who also buy ice cream. The lift is a normalised measure of
interestingness; it is also symmetric:

lift(ice cream → Coke) = 0.22

0.11
= 2, lift(Coke → ice cream) = 0.034

0.017
= 2.

This is always the case, as can be seen from the formula in Section 4.8. Section
4.8 goes on to derive an asymptotic confidence interval for the lift. Here the
asymptotic confidence interval goes from 1.17 to 3.40, so the association can be
considered significant.

Notice that the odds ratio between the two products was calculated as 2.44, a
rather similar value (and also with a significant confidence interval). The main
difference is that the odds ratio depends explicitly on all four cell frequencies of a
contingency table, whereas the lift is the ratio between the frequency of the levels
(A = 1, B = 1) and the product of the two marginal frequencies, (A = 1) and
(B = 1), so it depends only implicitly on the frequencies of the complementary
events (A = 0, B = 0).

In any case the support of the rule considered is rather limited, – ice cream
and Coke are present in only 0.36% of all transactions – therefore conclusions
based on it may not be of much practical value, even when supported by a high
confidence and/or a high lift value. But this conclusion is relative; it depends
on the support of other rules. To discover this and obtain a more comprehensive
picture of the interesting association rules, we now move to a full application of
association rule modelling. The Apriori algorithm and a threshold support rule
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of 0.05*support(mode), where mode is the rule with maximum support among
all rules of a fixed order, leads to the selection of several relevant rules.

Table 7.8 lists the most frequent transactions of order 2, giving their order,
frequency, and the two products involved in each transaction. Tables 7.9 and 7.10
list the transactions of order 3 and 4.

Table 7.11 presents the order 2 association rules with highest support. It shows,
for example, that pasta → milk has support equal to 49.84. Table 7.12 presents
the order 4 association rules with highest confidence, with the same notation as
in Table 7.11. We can see, for example, that tuna – tomato sauce – crackers →
pasta has a confidence equal to 98.95. This means that, if a transaction contains
pasta, it will also contain tuna, tomato sauce and crackers about 99% of the time.
On the other hand, the converse rule pasta → tuna – tomato sauce – crackers
is not among those with the highest confidence. Indeed, it can be shown to
have a confidence equal to 22.78. The latter can be interpreted saying that, if a
transaction contains pasta, it will also contain tuna, tomato sauce and crackers
only about 23% of the time.

Next we try a methodology based on tree models (Section 4.8). We have chosen
pasta, the most frequent product and the most frequent head of the rule in the
associations. We have constructed a tree model having pasta as target variable
and all the other products as predictors. Among the different paths leading to the
terminal nodes, we consider those paths where all variables in the path have the
value 1. These paths corresponds to rules with high confidence. Using a CHAID
tree (CART gives similar results), we obtain the following rules:

tuna – tomato sauce →pasta
tomato sauce – rice →pasta
rice – biscuits →pasta

and their respective measures of interestingness:

lift 1.41, confidence 95.24%, support 14.84%
lift1.44, confidence 96.80%, support 12.14%
lift1.40, confidence 94.23%, support 18.43%

Notice that all three rules have high confidence. This is to be expected, as a tree
model tries to develop the best predictive rules for the target variable.

7.5 Model comparison

It is quite difficult to assess local models such as association rules, since model
evaluation measures apply to global models. Furthermore, as the idea of searching
for local patterns and rules is very recent, there is little consensus in the data
mining literature on how to measure their performance (Hand et al., 2001). A
natural idea is to measure the utility of patterns in terms of how interesting or
unexpected they are to the analyst. As it is quite difficult to model an analyst’s
opinion, we usually assume a situation of completely uninformed opinion. In this
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Table 7.8 Transaction count of order 2.

Order Frequency Product 1 Product 2

2 3359 pasta milk
2 2686 milk biscuits
2 2677 water pasta
2 2675 water milk
2 2238 pasta coffee
2 2204 milk coffee
2 2154 pasta brioches
2 2146 water biscuits
2 2095 milk brioches
2 2084 tuna pasta
2 2084 pasta frozen veg
2 2003 yoghurt milk
2 1993 milk frozen veg
2 1971 yoghurt pasta
2 1943 tuna milk
2 1825 coffee biscuits
2 1821 brioches biscuits
2 1807 water coffee
2 1743 tomato sauce pasta
2 1735 water brioches
2 1679 water frozen veg
2 1655 yoghurt biscuits
2 1650 tuna biscuits
2 1643 rice pasta
2 1636 frozen veg biscuits
2 1621 water tuna
2 1604 tomato sauce milk
2 1602 yoghurt water
2 1595 pasta beer
2 1558 milk beer
2 1557 pasta coke
2 1512 milk coke
2 1503 rice milk
2 1441 coffee brioches
2 1427 water beer
2 1421 tuna coffee
2 1398 pasta juices
2 1387 milk juices
2 1368 frozen veg coffee
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Table 7.9 Transaction count of order 3.

ORDER Frequency Product 1 Product 2 Product 3

3 2287 pasta milk biscuits
3 2258 water pasta milk
3 1926 pasta milk coffee
3 1888 water milk biscuits
3 1872 water pasta biscuits
3 1810 pasta milk brioches
3 1768 pasta milk frozen veg
3 1736 tuna pasta milk
3 1721 yoghurt pasta milk
3 1633 pasta coffee biscuits
3 1627 milk coffee biscuits
3 1600 water pasta coffee
3 1599 water milk coffee
3 1589 pasta brioches biscuits
3 1573 milk brioches biscuits
3 1523 water pasta brioches
3 1507 tuna pasta biscuits
3 1499 water milk brioches
3 1495 pasta frozen veg biscuits
3 1494 water pasta frozen veg
3 1480 tomato sauce pasta milk
3 1479 water milk frozen veg
3 1476 yoghurt milk biscuits
3 1468 water tuna pasta
3 1468 milk frozen veg biscuits
3 1457 yoghurt pasta biscuits
3 1455 tuna milk biscuits
3 1418 yoghurt water milk
3 1412 water tuna milk
3 1405 yoghurt water pasta

case study we have considered support, confidence and lift as the main measures
for validating a set of association rules. But the needs of the user will govern
which of these three is the best one for selecting a set of rules. The support
can be used to assess the importance of a rule in terms of its frequency in the
database; the confidence can be used to investigate possible dependences between
variables; and the lift can be used to measure the distance from the situation of
independence.

Ultimately, a set of rules has to be assessed on its ability to meet the analysis
objectives. Here the objectives are primarily to reorganise the layout of a sales
outlet and to plan promotions so as to increase revenues. Once the associations
have been identified, it is possible to organise promotions within the outlet so
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Table 7.10 Transaction count of order 4.

Order Frequency Product 1 Product 2 Product 3 Product 4

4 1693 water pasta milk biscuits
4 1488 pasta milk coffee biscuits
4 1455 water pasta milk coffee
4 1412 pasta milk brioches biscuits
4 1363 water pasta milk brioches
4 1358 pasta milk frozen veg biscuits
4 1357 tuna pasta milk biscuits
4 1352 water pasta milk frozen veg
4 1336 yoghurt pasta milk biscuits
4 1312 water tuna pasta milk
4 1286 yoghurt water pasta milk
4 1259 water milk coffee biscuits
4 1255 water pasta coffee biscuits
4 1209 water pasta brioches biscuits
4 1205 water milk brioches biscuits
4 1174 tuna pasta milk coffee
4 1174 pasta milk coffee brioches
4 1172 water pasta frozen veg biscuits
4 1165 water milk frozen veg biscuits
4 1155 pasta milk frozen veg coffee
4 1143 water tuna pasta biscuits
4 1131 yoghurt water milk biscuits
4 1122 water tuna milk biscuits
4 1121 rice pasta milk biscuits
4 1115 yoghurt water pasta biscuits
4 1112 tomato sauce pasta milk biscuits
4 1103 yoghurt pasta milk coffee
4 1100 tuna pasta milk frozen veg
4 1099 water pasta milk beer
4 1098 pasta milk frozen veg brioches
4 1091 water tomato sauce pasta milk
4 1090 tuna pasta milk brioches
4 1060 yoghurt pasta milk brioches
4 1056 water rice pasta milk
4 1051 water pasta milk coke
4 1051 pasta milk coke biscuits
4 1051 pasta milk biscuits beer
4 1045 tuna pasta coffee biscuits
4 1045 pasta coffee brioches biscuits
4 1040 yoghurt pasta milk frozen veg
4 1038 milk coffee brioches biscuits
4 1022 tuna milk coffee biscuits
4 1020 water tuna pasta coffee
4 1015 yoghurt tuna pasta milk
4 1011 pasta frozen veg coffee biscuits
4 1007 water pasta coffee brioches
4 1003 milk frozen veg coffee biscuits
4 1002 water pasta frozen veg coffee
4 1001 water milk frozen veg coffee
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Table 7.11 Transaction count ordered by support (S); EC = expected confidence, C =
confidence, L = lift, F = frequency.

EC C S L F Product 1 Product 2

65.70 73.97 49.84 1.12 3359 pasta milk
67.38 75.85 49.84 1.12 3359 milk pasta
50.02 59.21 39.90 1.18 2689 pasta biscuits
67.38 79.76 39.90 1.18 2689 biscuits pasta
50.02 60.65 39.85 1.21 2686 milk biscuits
65.70 79.67 39.85 1.21 2686 biscuits milk
67.38 77.54 39.72 1.15 2677 water pasta
51.22 58.95 39.72 1.15 2677 pasta water
65.70 77.49 39.69 1.17 2675 water milk
51.22 60.41 39.69 1.17 2675 milk water

Table 7.12 Transaction count sorted by Confidence (C).

EC C S L F Product 1 Product 2

67.38 98.95 4.21 1.46 284 tuna – tomato sauce – crackers pasta
67.38 98.80 3.68 1.46 248 tomato sauce – crackers – coke pasta
67.38 98.67 6.61 1.46 446 yoghurt – rice – juices pasta
67.38 98.51 5.89 1.46 397 tomato sauce – rice – juices pasta
67.38 98.49 3.87 1.46 261 tuna – oil – brioches pasta
67.38 98.43 3.72 1.46 251 tuna – rice – oil pasta
67.38 98.39 3.63 1.46 245 rice – oil – frozen veg pasta
67.38 98.36 3.57 1.45 241 frozen fish – coke – biscuits pasta
67.38 98.35 3.54 1.45 239 tomato sauce – rice – crackers pasta
67.38 98.33 8.75 1.45 590 tomato sauce – rice – frozen veg pasta
67.38 98.33 3.50 1.45 236 rice – juices – crackers pasta
67.38 98.32 8.72 1.45 588 tomato sauce – rice – coffee pasta

that the products that are put on offer at the same time are products which are
not associated. Correspondingly, by putting one product on promotion, we also
increase the sales of the associated products.

At the beginning of the chapter we saw that odds ratios and log-linear models
can also be employed to determine a global association structure between the
buying variables; in this case traditional statistical measures, such as G2, or AIC
and BIC, can be employed to assess the overall quality of a model. Although
they have a different purpose, classification trees can also be seen as a global
model capable of producing an association structure. Although association rules
are much easier to detect and interpret, good global modelling, as expressed by
log-linear and tree models, allows more stable and coherent conclusions. With
enough time and sufficient knowledge to implement a global model, this approach
should be preferred.
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7.6 Summary report

1. Context. This case study concerns the understanding of associations between
buying behaviours. A similar kind of analysis can be applied to problems in
which the main objective is cross-selling to increase the number of products
that are sold in a given commercial unit (a supermarket, a bank, a travel
agency, or, more generally, a company offering more than one product or
service). A related class of problems arise in promotional campaigns: it is
desirable to put on promotion the smallest possible number of products but
to derive any benefits on the largest possible number of products. This is
achieved by an efficient layout of the products, putting together those that
are most associated with each other.

2. Objectives. The aim of the analysis is to track the most important buying
patterns, where a pattern means a group of products bought together. The
most common measures refer either to the probability of buying a certain
basket of products (support) or to the conditional probability of buying a
certain product, having bought others (confidence).

3. Organisation of the data. Data is extracted from a large database containing
all commercial transactions in a supermarket in a given amount of time. The
transactions are made by someone holding one of the chain’s loyalty cards.
Although data is structured in a transactional database, it can be simplified
into a data matrix format, with rows identifying clients and columns associ-
ated with binary variables describing whether or not each product has been
bought. After some simplification the data matrix contains 46 727 rows and
20 columns.

4. Exploratory data analysis. Exploratory data analysis was performed by
looking at all pairwise odds ratios between the 20 products, for a total of 190
association measures. The results can be graphically visualised and already
give important suggestions for the objectives of the analysis.

5. Model specification. The data mining method employed here is a local
model. We compared association rules, originally devised for market basket
analysis problems, with more structured log-linear models, the most impor-
tant symmetric statistical models for the analysis of contingency tables.

6. Model comparison. It is rather difficult to compare association rules, which
are local, with log-linear models, which are global. The most effective mea-
sure of comparison has to be the practical utility of a rule; this can be
measured in terms of cross-selling or by using the efficacy of a promotional
campaign.

7. Model interpretation. Association rules seem to be easier to understand
than the results from a log-linear models, but it depends on how the results
are presented. Results from a log-linear model can be expressed graphically,
using dependences and odds ratios, and these measures are easy to under-
stand. The advantage of log-linear models is that they are based on inferential
statements and can therefore provide confidence intervals for an association
statement or a threshold able to ‘filter’ out relevant rules from the many
possible rules and in a coherent way.



CHAPTER 8

Describing customer
satisfaction

8.1 Objectives of the analysis

This chapter is concerned with data mining methods for customer satisfaction
analysis. Customer satisfaction is a measure of how the products and services
supplied by a company match customer expectations. To enable it to be measured
statistically, customer satisfaction must be translated into a number of measurable
indicators, directly linked to factors that can be understood and influenced. For
more details, see Siskos et al. (1998), Cassel (2000), Cassel and Eklöf (2001),
Cassel et al. (2002) and Särndal and Lundström(2005).

Satisfaction is a somewhat vague concept, but it can be measured by simply
asking a series of questions. A customer may be completely satisfied with the
quality of a service, not satisfied at all, or somewhere in between. We can take ‘not
satisfied at all’ and ‘completely satisfied’ as fixed endpoints of an ordinal variable
and then we have to decide how many points there should be in between. It would
be ideal if satisfaction could be measured on a continuous scale. But for obvious
reasons this is impossible and we have to compromise. The scale should be such
that it allows the customer enough flexibility to accurately express an opinion.
For example, the customer may be asked to indicate which of the following
best describes his or her views: 1, very unsatisfied; 2, moderately unsatisfied;
3, neutral; 4, moderately satisfied; 5, very satisfied. Questions presented in this
way are scored on a five-point scale. Overall a questionnaire will contain some
30–40 questions about the customer’s satisfaction with different aspects of the
service. There should also be some background variables on the customer that
will make it possible to do a more detailed analysis.

To estimate customer satisfaction descriptive statistical methods are typically
used. The recent literature suggests comparing statistical models for customer sat-
isfaction in terms of predictive performance. Guidelines provided by international
quality organizations such as the European Foundation for Quality Management
(EFQM), the European Quality Organisation (EOQ) and national quality organi-
sations suggests using structures of latent variables.
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8.2 Description of the data

The data set analysed in this chapter comes from the ABC 2004 annual customer
satisfaction survey. The survey was carried out by KPA Ltd., an independent
consulting firm partner of the European Musing project (www.musing.eu). ABC,
a software house (whose name has been changed to protect its identity), wished
to measure customer satisfaction on the part of its customers. It collected infor-
mation on:

• overall satisfaction levels;
• equipment (e.g. ‘Improvements and upgrades provide value’);
• sales support (e.g. ‘Sales personnel respond promptly to requests’);
• technical support (e.g. ‘Technical support is available when needed’

and ‘The technical staff is well informed about the latest equipment
updates/enhancements’);

• training (e.g. ‘The trainers are knowledgeable about the equipment’ and ‘The
trainers are effective communicators’);

• supplies and media (e.g. ‘ABC branded performance meets your expecta-
tions’);

• pre-press/workflow and post-press solutions (e.g. ‘Capabilities and features
of tools meet your needs’);

• customer portal (My ABC) (e.g. ‘The portal’s resources are helpful’);
• administrative support;
• terms, conditions, and pricing (e.g. ‘Equipment and service contract terms

are clear’);
• site planning and installation (e.g. Equipment worked properly after installa-

tion);
• overall satisfaction with competitors.

There were 81 questions in total; in most cases the level of satisfaction is mea-
sured on a five-point scale from very low satisfaction (1) to very high satisfaction
(5). The qualitative variables derived are thus qualitative and ordinal. A total of
261 customers eventually took part in the questionnaire.

8.3 Exploratory data analysis

Most of the items in the questionnaire take the form of a statement describing the
customer’s experience with ABC during 2004. The person filling in the question-
naire also gives his or her title or position, the company’s geographical location,
and the length in years of its relationship with ABC.

The first part of the questionnaire deals with ‘Overall satisfaction’. There are
four questions to be assessed on a five-point scale, and one to be answered
‘yes’ or ‘no’ which asks whether ABC is the respondent’s best supplier. Two
of the questions imply a comparison with other companies, one asking whether
the customer would buy a given product from ABC rather than someone else,
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asking whether the customer would recommend ABC to other companies; these
are scored on a five-point scale from very unlikely to very likely.

Then there are blocks of questions on equipment, sales support, technical sup-
port, training, supplies and media, pre-press/workflow and post-press solutions,
customer portal, administrative support, terms, conditions, and pricing, site plan-
ning and installation, and overall satisfaction with other ABC’s competitors. The
customer marks his or her level of agreement with statement on a five-point scale
from 1 (strongly disagree) to 5 (strongly agree), and then assesses the level of
importance of the statement on a three-point scale (1, low; 2, medium; or 3,
high). Any statement that is not relevant or not applicable can be marked N/A.

After a descriptive data analysis phase during which Questions 68–81 (on
overall satisfaction with competitors) are deleted, we have a data set consisting
of 67 variables on 240 customers. We give a short summary of the exploratory
analysis.

Concerning overall satisfaction with ABC, only 91 customers consider ABC
their best supplier. The results of Question 11, which measures overall satisfaction
with the equipment, are shown in Figure 8.1: 54% of the customers report high
satisfaction and 28% medium level of satisfaction. Figure 8.2 shows the overall
satisfaction with sales support (Question 17): only a few customers (33) are very
highly satisfied. On the other hand, as far as technical support is concerned, 99
customers are highly satisfied and 68 very highly satisfied. The overall satisfaction
with ABC’s supplies and media is medium, and with workflow solutions very
high. There is a high overall satisfaction with the administrative support and
a medium level of satisfaction with terms, conditions and pricing. Regarding
overall satisfaction with overall solutions with the customer portal, site planning
and installation, much of the data is missing (the number of non-responses is
very high).

Statistics on customer seniority and country location are reported in Figures 8.3
and 8.4. Germany accounts for 44% of the customers. Only a small percentage
of the customers are located in France and Israel. In terms of customer seniority
(i.e. the length of the relationship between ABC and the customer), we observe
a quite high percentage of old and new customers, but a dip in the number of

Very low
2% Low

7%

Medium
28%

High
54%

Very high
6%

No answer
3%

Figure 8.1 Overall satisfaction with equipment (Question 11).
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companies which have been customers for 4 years (13%). This suggests that
it could be interesting to examine how customer satisfaction changes over the
years. We can extend the descriptive analysis to measure possible associations
among the variables. However, we prefer to report here directly the results based
on discrete graphical models. As our target variable we use overall satisfaction
a binary variable that reports whether a customer is satisfied (Y = 0) or not
satisfied (Y = 1).

8.4 Model building

We analyse our data using discrete graphical models, a class of models that can
be used both descriptively and predictively (see section 4.14) for categorical data.
In graphical models the nodes represent variables, and the edges between nodes
represent conditional dependences between them. Here we consider models that
are used to represent associations between a number of discrete variables. We
start with the so-called log-linear representation of a multi-way contingency table.
This is convenient for our purposes because it allows us to express (conditional)
independence constraints by setting certain coefficients equal to zero.

We consider the problem of finding a good model when little or no prior
knowledge is available on the independence/dependence relationships among the
variables. We discuss two approaches to model selection: one based on signifi-
cance testing and one based on a model quality criterion. In both cases we use
stepwise selection, which is an incremental search procedure. Starting from an
initial model, edges are successively added or removed until some criterion is
achieved (see e.g. Edwards, 2000). At each step the inclusion or exclusion of eligi-
ble edges is decided using significance tests. Eligible edges are tested for removal
using chi-squared tests based on the difference in deviance between successive
models. The edge whose chi-squared test has the largest non-significant p-value is
removed. If all p-values are significant (i.e., all p < α, where α is the significance
level), then no edges are removed and the procedure stops. In our application we
also use stepwise model selection using Akaike’s information criterion, which
assigns to any model M the measure AIC(M) = dev(M) + 2, where p is the
number of parameters in the model. This quality measure consists of two compo-
nents: the lack of fit of the model as measured by the deviance, and the complexity
of the model as measured by the number of parameters. We remove those edges
that provide the largest reduction in AIC. The software used for this procedure
defines the AIC somewhat differently, namely AIC(M) = −2LM + 2p, where
LM is the value of the log-likelihood function evaluated at p̂M , the ML estimate
of p under M . It is easy to see that this formulation is the same as the previous
one, since dev(M) = 2(Lsat − LM) = 2Lsat − 2LM , where Lsat is the value of
the log-likelihood function of the saturated model evaluated at its maximum.

Concerning model specification, we analyse different sets of variables. First
we consider as target variable the overall satisfaction level with ABC, labelled
a. To explain this variable we use the following questions:
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Figure 8.5 The first selected graphical model.

• Overall satisfaction level with ABC’s improvements during 2004 (Question
2, labelled b).

• Is ABC your best supplier? (Question 3, labelled c).
• Would you recommend ABC to other companies? (Question 4, labelled d).
• If you were in the market to buy a product, how likely would it be for you

to purchase an ABC product again? (Question 5, labelled e).

Figure 8.5 shows that Question 5 is not related to the other variables. We observe
a relationship among the other variables and, in particular, among the questions
labelled abc and abd ; finally, c and d are conditionally independent variables.
We have obtained this graphical model in two ways. First we build a model
based on backward selection. We compare the model obtained with that obtained
by minimisation of AIC, based on stepwise selection. The results for the first
procedure whose graph is given in Figure 8.5, show that the model based on
stepwise selection is preferable, as it has the smaller AIC.

Retaining our target variable of overall satisfaction level with ABC, labelled
a, we now take a different set of covariates:

• Overall satisfaction level with the equipment (Question 11, labelled b).
• Overall satisfaction level with sales support (Question 17, labelled c).
• Overall satisfaction with technical support (Question 25, labelled d).
• Overall satisfaction level with ABC training (Question 31, labelled e).
• Overall satisfaction level with ABC’s supplies and media (Question 38,

labelled f ).



DESCRIBING CUSTOMER SATISFACTION 199

Technical support

Sales support

Equipment Supplies and Media

Overall satisfaction

Training

a

d

b

c e

f

Figure 8.6 The second selected graphical model.
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Figure 8.7 The third selected graphical model.

Figure 8.6 shows a number of two-way dependences, between ac, ad, ae, af, bf,
ab, for model 2. Our result for this model show that the model based on stepwise
selection is preferable, as it has the smallest AIC.

Figures 8.7 and 8.8 present two more models based on stepwise selection, with
the same target variable a. In Figure 8.7 the covariates are:

• Overall satisfaction level with workflow solutions (Question 42, labelled b).
• Overall satisfaction with overall solutions for various problems (Question 43,

labelled c).
• Overall satisfaction level with the customer portal (Question 49, labelled d).
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Figure 8.8 The fourth selected graphical model.

• Overall satisfaction level with administrative support (57, e Question 57,
labelled e).

• Overall satisfaction with terms, conditions, and pricing (Question 65, labelled
f ).

• Overall satisfaction level with site planning and installation (Question 67,
labelled g).

In Figure 8.8 they are:

• Overall satisfaction level with the equipment (Question 11, labelled b).
• Overall satisfaction level with sales support (Question 17, labelled c).
• Overall satisfaction with technical support (Question 25, labelled d).
• Overall satisfaction level with ABC training (Question 31, labelled e).
• Overall satisfaction level with ABC’s supplies and media (Question 38,

labelled f ).
• Overall satisfaction level with workflow solutions (Question 42, labelled g).
• Overall satisfaction with overall solutions for various problems (Question 43,

labelled h).

Both figures 8.7 and 8.8 show a highly interdependent association structure.
Finally, we model Overall satisfaction level with ABC (Question 1, labelled

b) as a function of :

• Is ABC your best supplier (Question 3, labelled a)
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Figure 8.9 The fifth selected graphical model.

• Overall satisfaction level with ABC’s improvements during 2004 (Question
2, labelled c).

• Would you recommend ABC to other companies? (Question 4, labelled d).
• If you were in the market to buy a product, how likely would it be for you

to purchase an ABC product again (Question 5, labelled e).

To obtain the model in Figure 8.9, which is less connected than the previous two,
we have used backward selection, which has the smaller AIC.

We finally remark that all obtained graphical models are descriptive; however,
they can be easily be made predictive by choosing one variable as target response,
for example the overall satisfaction.

8.5 Summary

1. Context. Marketing and management sciences are concerned with the coor-
dination of all the organisation’s activities in order to provide goods or
services that best satisfy the specific needs of existing or potential customers.
Customer satisfaction measures offer meaningful and objective feedback
about client preferences and expectations.

2. Objectives. Keeping customers satisfied is the only way to stay competitive
in today’s marketplace. Customers have expectations of service and product
performance that must be met. A balancing act between what customers want
and what a company can provide must be performed in order to maximise
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the firm’s long-term profits. With precise information, as derived from sur-
veys, companies can focus on issues that truly drive customer satisfaction. A
directed focus often leads to cost reductions because companies can empha-
sise improvements in areas of customer concern. Focusing on motivators
of customer satisfaction leads to more loyal customers, who tend to be the
most profitable customers (i.e. repeat business is usually the most profitable).
An inclusive customer satisfaction and loyalty programme can therefore be
considered a source of future profits.

3. Organisation of the data. The data analysed comes from a survey. Each
row in the data matrix represents a customer and each column a survey
question. All the variables are qualitative.

4. Exploratory data analysis. The exploratory data analysis is based on a
set of descriptive measures for qualitative variables. We presented a set of
graphs to clarify this analysis.

5. Model specification. In this chapter we have presented a graphical modelling
approach for analysng customer satisfaction data. In order to understand the
results we suggest investigating the found associations between all discrete
variables. We suggest using graphical log-linear models to study interaction
between variables.

6. Model comparison. The data mining analysis that needs to be employed
here is a descriptive model can be easily transformed into a predictive one.
We have compared basic models with more structured graphical models,
which constitute the most important symmetric statistical models for the
analysis of contingency table data.

7. Model interpretation. Graphical models are easy to understand. Their
results are based on inferential statements, and thus confidence intervals
for an association statement can be easily obtained.



CHAPTER 9

Predicting credit risk of small
businesses

9.1 Objectives of the analysis

According to the Basel II capital accord, financial institutions require transparent
benchmarks of creditworthiness to structure their risk control systems, facili-
tate risk transfer through structured transactions and comply with regulatory
changes. Traditionally, producing accurate credit risk measures has been rela-
tively straightforward for large companies and retail loans, resulting in high levels
of transparency and liquidity in the risk transfer market for these asset classes.
The task has been much harder for small and medium size enterprises (SMEs).

The causes of default can be seen as consisting of a number of components:
a static component, determined by the characteristics of the SME; a dynamic
component that includes trends and the contacts of the SME with the bank over
different years; a seasonal part, tied to the period of investment; and external
factors that include the course of the markets.

The process of credit scoring is very important for banks as they need to
discriminate between good and bad SMEs in terms of creditworthiness. This is
a classic example of asymmetric information, where a bank has to reveal hid-
den data about its customers. Seminal contributions on the subject of default
prediction are Altman (1968) and Beaver (1966), and more recent ones include
Shumway (2001) and Chava and Jarrow (2004). Statistical methods for evaluat-
ing default probability estimates are discussed in Sobehart and Keenan (2001),
Engelmann et al. (2003) and Stein (2005).

9.2 Description of the data

The data considered in this case study is yearly data, from 1996 to 2004, on 1003
firms belonging to 352 different business sectors from one of the major ratings
agencies for SMEs in Germany belonging to the European MUSING project
(www.musing.eu). The data set consists of a binary response variable, solvency,
and a set of explanatory variables given by financial ratios and time variables. In
particular, our data set consists of two tables: one of good SMEs and one of bad
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SMEs. The latter consists of 708 data for 236 companies, the former of 2694 data
for 898 companies. The tables show the ID of the firms, the accounting year, the
business sector, the solvency status (0 = solvency; 1 = insolvency), and finally
the balance sheet information.

Given this understanding of our balance sheet data and how it is constructed,
we can discuss some techniques used to analyse the information there contained.
The main way this can be done is through financial ratio analysis. This typically
uses ratios to gain insight into the company and its operations. Using financial
ratios (such as the debt–equity ratio) can give a better idea of the company’s
financial condition along with its operational efficiency. It is important to note
that some ratios will need information from more than one financial statement,
such as from the balance sheet and the income statement.

The main types of ratios that use information from the balance sheet are
financial strength ratios and activity ratios. Financial strength ratios, such as the
debt–equity ratio, provide information on how well the company can meet its
obligations and how they are leveraged. This can give investors an idea of how
financially stable the company is and how the company finances itself. Activity
ratios focus mainly on current accounts to show how well the company manages
its operating cycle. These ratios can provide insight into the operational efficiency
of the company.

There are a wide range of individual financial ratios that can be calculated to
learn more about a company. We computed a set of 11 financial ratios used by
subject-matter experts:

• Supplier target. This is a temporal measure of financial sustainability
expressed in days that considers all short- and medium-term debts as well
as other payables.

• Outside capital structure. This ratio evaluates the ability of the company to
receive other forms of financing beyond banks’ loans.

• Cash ratio. This indicates the cash a company can generate in relation to
its size.

• Capital tied up. This ratio evaluates the turnover of short-term debts with
respect to sales;

• Equity ratio. This is measure of a company’s financial leverage calculated
by dividing a particular measure of equity by the firm’s total assets.

• Cash flow to effective debt. This ratio indicates the cash a company can
generate in relation to its size and debts.

• Cost–income ratio. This is an efficiency measure similar to the operating
margin that is useful to measure how costs are changing compared to income.

• Trade payable ratio. This reveals how often the firm’s payables turn over
during the year: a high ratio means a relatively short time between purchase
of goods and services and payment for them, while a low ratio may be a sign
that the company has chronic cash shortages.

• Liabilities ratio. This is a measure of a company’s financial leverage
calculated by dividing a gross measure of long-term debts by firm assets; it
indicates what proportion of debt the company is using to finance its assets.
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• Result ratio. This is an indicator of how profitable a company is relative to
its total assets; it gives an idea as to how efficient management is at using
its assets to generate earnings.

• Liquidity ratio. This measures the extent to which a firm can quickly liq-
uidate assets and cover short-term liabilities, and therefore is of interest to
short-term creditors.

Furthermore, we considered some additional annual account positions, which
were standardized in order to avoid computational problems with the previous
ratios:

• Total assets. This is the sum of current and long-term assets owned by the
firm.

• Total equity. This refers to total assets minus total liabilities, and it is also
referred to as equity or net worth or book value.

• Total liabilities. This includes all the current liabilities, long-term debt, and
any other miscellaneous liabilities the company may have.

• Sales. This is represented by one-year total sales.
• Net income. This is equal to the income that a firm has after subtracting

costs and expenses from the total revenue.

Finally an important variable is called ‘creditworthiness’. The index ranges from
100 to 600 points. A value of 100 means that the company is very creditworthy,
whereas 500 means that the company has massive payment problems, and 600
means that the company is insolvent.

9.3 Exploratory data analysis

Based on our data, we have computed for each financial ratio classical tendency
measures and variability measures, which we will now briefly summarise.

The response variable, solvency, shows a different degree of incidence during
the years considered. In particular, the default events in 1996, 1997, 1998, 1999,
2001, 2002, 2003 and 2004 are respectively: 38, 64, 19, 12, 24, 39, 44, 16 and
4. The information is summarised in Figure 9.1.

To compare the variability of the quantitative variables, we computed the coef-
ficient of variation for the good SMEs (solvency = 1) and for the bad SMEs
(solvency = 0). Some financial ratios show high levels of variability. In partic-
ular, as shown in Figure 9.2, for the good SMEs, the cash ratio, cash flow to
effective debt, result ratio and liquidity ratio are the most variable. For the bad
SMEs, on the other hand, the most variable financial ratios are supplier target
days, capital tied up cash flow to effective debt and result ratio.

The average creditworthiness index for the good SMEs is 188.76 and for the
bad SMEs is 597.31. To assess the variability of the creditworthiness index, we
employ in a different context the ROC curve described in Section 5.5. Based on
the ROC curve shown in Figure 9.3, the overall Gini index for the good SMEs
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Figure 9.2 Coefficient of variation for good and bad SMEs.

is 0.1498, and for the bad SMEs is 0.0082. This means that creditworthiness is
more concentrated among good SME’s.

9.4 Model building

Statistical credit scoring models try to predict the probability that a loan appli-
cant or existing borrower will default over a given time horizon, usually of one
year. According to the Basel Committee on Banking Supervision (BCBS) banks
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Figure 9.3 Creditworthiness index distribution.

are required to measure the one- year default probability for the calculation of
the equity exposure of loans (see BCBS, 2005). To construct a scoring model,
historical data on the performance of all loans in the loan portfolio have to be
statistically analysed to determine the borrower characteristics that are useful in
predicting whether a loan will perform well or poorly. Hence, a well-designed
model should result in a higher percentage of high scores for borrowers whose
loans will perform well and a higher percentage of low scores for borrowers
whose loans will perform poorly. In other words the model should be well cal-
ibrated. A well-calibrated model yields – in the ideal case – as many realized
defaults as predicted by the model. Historically, discriminant analysis and logis-
tic regression have been the most widely used methods for constructing scoring
systems (see 1997a, 1997b; Hand et al., 2000, Hand and Henley). In particular,
Altman (1968) was the first to use a statistical model to predict default probabil-
ities of companies calculating the z-score using a standard discriminant model.
This model was for many years one of the most prominent models for the calcula-
tion of a borrower’s credit risk and the first that aimed to objectify the credit risk
evaluation of banks’ borrowers. Besides this basic method, more accurate ones
such as logistic regression, neural networks, smoothing nonparametric methods
and expert systems have been developed and are now widely used for practi-
cal and theoretical purposes in the field of credit risk measurement (Hand and
Hanley, 1997a, 1997b).

Having performed the exploratory analysis, we move on to a multivariate
analysis by specifying a statistical model. We are trying to combine all the signals
from the different explanatory variables to obtain an overall signal that indicates
the reliability of each SME. In order to choose a model, we have to clarify the
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Table 9.1 Maximum likelihood estimates of the parameters.

Variable Estimate z value Pr(>|z|)
liabilities ratio pc 7.099 3.137 <0.0001
result ratio pc −34.52 −5.099 <0.0001
duration time 1.790 4.732 <0.0001
number of employees −0.022 −3.425 <0.0001

nature of the problem. It is clear that we have a predictive classification problem,
as the response variable is binary and our aim is to predict whether an SME will
be reliable or not. We will concentrate on logistic regression and classification
trees, the methods most often used for predictive classification in general, and
credit scoring in particular.

We choose to implement a logistic regression model using a forward selection
procedure with a significance level of 0.05. To check the model, we try a stepwise
procedure and a backward procedure and then verify that the obtained models
are similar.

Table 9.1 describes the models obtained with both procedures. We have used
the score chi-squared statistic in the forward procedure and the Wald chi-squared
statistic in the backward procedure.

To check the overall quality of the final model, we calculate the likelihood ratio
test for the final model against the null model. As the corresponding p-value of
the test is lower than 0.0001, the null hypothesis is rejected, implying that at
least one of the model coefficients in Table 9.1 is significant.

For only three explanatory variables besides duration time we obtain a p-value
lower than 0.05. This means that the three explanatory variables selected using
the stepwise procedure are significantly associated with the response variable
and are useful in explaining whether a SME is reliable (solvency = 0) or not
(solvency = 1).

Turning to classification tree models, we begin with the CHAID algorithm
and the chi-squared impurity measure. To obtain a parsimonious tree, we use
a level of 0.05 in the stopping rule. The total number of splitting variables in
the final tree is 4: result ratio pc, trade payable ratio pc, supplier target days and
capital tied up pc.

We now look at a tree model using the CART algorithm and the Gini impurity.
For pruning, we calculate the misclassification rate on the whole data set using
the penalty parameter α = 1. This can be considered as the default choice, in the
absence of other considerations. The results for CART, Chaid and Gini impurity
are the same. The final tree is reported in Figure 9.4. We observe that:

• For the 168 SMEs with result ratio pc <−0.00106379, the average probabil-
ity of default is 0.35710.
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Figure 9.4 Final classification tree.

• For the 32 SMEs with result ratio pc < −0.00106379, trade payable ratio pc
> 0.0903383 and supplier target days > 0.415427, the estimated probability
of default is 0.75.

• The segment characterised by capital tied up pc < 0.116338 consists of 651
very good SMEs with a probability of default equal to 0.03994.

9.5 Model comparison

To help us choose a final model, we extend our performance analysis to include
criteria based on loss functions. For all our models we begin by splitting the
available data into a training data set, containing 75% of the observations, and a
validation data set, containing the remaining 25%. We do this in a stratified way
to maintain the proportions of good and bad SMEs.

After fitting each model on the training data set, we use it to classify the
observations in the validation data set. This is done by producing a score and then
using a threshold cut-off to classify those above the threshold as solvency = 1
and those below the threshold as solvency = 0. Finally, each model is evaluated
by assessing the misclassification rate. In terms of cut-off we choose p = 0.5
as a ‘majority rule’ cut-off. With this cut-off, it turns out that the classification
tree has a sensitivity of 0.20, a specificity of 0.99 and a proportion of correct
classifications equal to 0.89. This compares to 0.09, 0.99 and 0.87 for the logistic
regression. The two models are thus quite close in terms of performance.

Finally, to compare models with a threshold-independent measure of predictive
performance the models, we computed the area under the concentration (AUC)
curve and its confidence limits, by using h bootstrapped confidence intervals.
Table 9.2 shows that the best model in AUC terms is the logistic regression.
Having said that, the differences are rather slight.
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Table 9.2 Model comparison.

Predictive model AUC
(95% confidence interval,

bootstrap percentile method)

Classical logistic regression 0.8505
(0.81, 0.88)

Classical classification tree 0.8039
(0.75, 0.84)

9.6 Summary report

1. Context. This case study is concerned with credit scoring for SMEs based
on balance sheet data. It may also be applied to situations where the objective
is to score the past behaviour of an individual or company in order to plan a
future action on the same individual or company. The score can be used to
evaluate credit reliability or, similarly, customer loyalty. Furthermore, it can
be used to select clients in order to maximise the return on an investment.

2. Objectives. The aim of the analysis is to construct a scoring rule that
attaches a numerical value to each SME.

3. Organisation of the data. The data is organized in terms of financial ratios.
The target variable is binary.

4. Exploratory data analysis. This phase was conducted using correlation
measures.

5. Model specification. The objective of the analysis suggested a predictive
model, able to find a rule that splits debtors into homogeneous categories and
then attach to each category a score expressed as a probability of reliability.

6. Model comparison. The models were compared using statistical or
scoring-based criteria. The goodness-of-fit comparison showed that logistic
regression performed best, followed by classification trees.

7. Model interpretation. On the basis of model comparison, it seems that
logistic regression does the best job for this problem. But classification trees
models are not so inferior on the data set considered. The choice should also
depend on how the results will be used. If decision makers are looking for
hierarchical ‘what if’ rules, which classify clients into risk class profiles, then
classification trees are very good. On the other hand, if they desire analytic
rules, which attach an impact weight to each explanatory variable (measured
by a regression coefficient or an odds ratio), then logistic regression is better.



CHAPTER 10

Predicting e-learning student
performance

10.1 Objectives of the analysis

In this chapter we consider an e-learning context in place at Opera Multimedia,
a multimedia publisher specialising in the production of e-learning content for
the University of Pavia. Opera Multimedia offers multimedia courses that meet
the educational needs of companies, universities and private users, designed to
overcome the spatial and temporal constraints typical of traditional education.
In particular, the new multimedia course combines the effectiveness of British
Institutes teaching methods and the immediateness of the multimedia content. It
is divided into three levels, consistent with the Common European Framework:
Level 1 corresponds to A1 level and is devoted to beginners; Level 2 corresponds
to A2 level and applies to pre-intermediate students; and Level 3 covers the B1
level and is designed for intermediate students.

Each level has 14–15 teaching units. Two of them – one in the middle and
one at the end – revise topics previously discussed. Units focus on the main
linguistic skills: reading, listening, writing and speaking. Listening activities,
often neglected in online products, are particularly emphasised. The study of
practice in the language are supported by images, animations and interactive
exercises.

The course is available online, on CD-ROM, and on CD-ROM with tracking.
Both the online and the CD-ROM versions have tracking for the monitoring of
the activities performed and the results obtained. The CD-ROM with tracking
is a novelty in the Italian market and represents a technological innovation that
guarantees the highest flexibility while doing the course. In fact, students can
access contents both online and on CD-ROM by connecting to the platform
via web to send their progress of data. The student can supplement the course
lessons in class at British Institutes centres and an online learning environment
with in-depth teaching materials and tutoring service.

Designing an educational product means effectively blending all the elements
involved in an e-learning activity: content, technology, cognitive aspects, and

Applied Data Mining for Business and Industry, Second Edition Paolo Giudici and Silvia Figini
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specific professional skills. The main objective for Opera Multimedia is to supply
a measure of the relative importance of the exercises, to estimate the acquired
knowledge for each student and to personalize the e-learning platform.

10.2 Description of the data

The available data come from an e-learning platform of the University of Pavia
where students can learn English. Each of the 15 levels of the English course
consists of 11 units (10 lessons and the final examination): Assessment, Dialogue,
Glossary, Introduction, Listening 1, Listening 2, Pronunciation, Reading, Use of
English, Video and Vocabulary. The course is divided into different types of
exercises; some with evaluation (pronunciation, listening and assessment), others
without (grammar). For each evaluation a score between 0 and 100 is given; the
pass mark is 50.

For each student it is possible to collect that records a variable called ‘status’
the results achieved in the exercises. The possible values of the status variable
are C (completed), I (uncompleted), F (failed), P (passed). We have eliminated
from the initial table only the anomalous observations and the status I values.
These account for 37 203 out of the 147 432 initial observations.

The data is structured into five tables: the demographic data related to the
students enrolled in the course, the date and the initial and final time for every
session in which a student is involved, the structure of the e-learning website and
a transactional dataset of the lessons, as well as results from the final examination
of each level. We have considered only the data related to the first course level
that contained 463 students.

10.3 Exploratory data analysis

The first objective of the analysis is to supply a measure of the relative importance
for each exercise, and the second is to predict the performance for each student.
In this way we would like to personalize and to improve, following the previous
results, the e-learning platform for a specific e-learning English course. To achieve
these aims, we first consider the unsupervised statistical methods based on kernel
density estimation (see Section 4.10 and, for more details, Figini and Giudici,
2008) for students’ ecaluations.

The crucial point in the application of kernel density estimation is the
choice of a bandwidth. This is a compromise between smoothing sufficiently
to remove insignificant bumps and not smoothing too much to blur out real
peaks. On the basis of our real data, we have compared two different methods
to estimate the optimal smoothing parameter: that of Sheather and Jones
(1991), and cross-validation. Figure 10.1 shows a histogram and the relative
density estimation for exercise X10702 based on cross-validation. In particular,
Figure 10.2 shows the kernel density estimator obtained using the smoothing
parameter derived from the Sheather–Jones method. In our application the latter
produces a fitted output which is the closest to the data.
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Figure 10.1 Density estimation for exercise X10702 evaluations with the cross-validation
method.
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Table 10.1 Nonparametric pairwise
comparison.

Exercise 1 Exercise 2 p-value

X10304 X10307 0.04
X10304 X10402 0.01
X10304 X10406 0.02
X10305 X10406 0.16
X10305 X10504 0.01
X10307 X10402 0.14
X10307 X10406 0.14
X10308 X10504 0.55
X10309 X10403 0.01
X10309 X10602 0.67
X10402 X10403 0.01
X10402 X10602 0.02
X10502 X10503 0.12
X10502 X10702 0.26

We have then supposed that it is possible to measure the relative importance
for each exercise by means of evaluation density pairwise comparisons. We have
chosen a nonparametric way to assess this: for each pair of exercises we have
calculated the difference between the corresponding evaluation scores densities.
Assuming as a null hypothesis that the two density functions for exercise f
and exercise g are identical, it is possible to derive p-values with a bootstrap
procedure that keeps h constant. The results are in Table 1. From Table 1 we
have obtained that significantly different exercises are: X10304 and X10307,
X10304 and X10402, X10304 and X10406, X10305 and X10504, X10309 and
X10403, X10402 and X10403, X10402 and X10602.

Figure 10.3 shows, for exercises X10308 and X10504, a graphical comparison
based on the confidence intervals obtained from the bootstrap procedure. The
confidence interval is very close to the density estimate. This further suggests
similarity between the two exercises considered. Therefore, in order to reduce
the dimensionality of the predictive model described in the next section, either
X10308 or X10504 could be dropped. On the other hand, Figure 10.4 shows for
exercises X10309 and X10403 a statistically significant difference. This means
that both exercises are important and should be kept in the model.

10.4 Model specification

To attain our second objective, of predicting the acquired knowledge for each
student, we compare classical logistic regression models with the non-parametric
additive models (see Hastie et al., 2001). Our target binary variable is the status
describing whether the student passes (status = 0) or fails (status = 1) the final
exam. We consider 10 exercise evaluations as explanatory variables, selected
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Figure 10.3 Graphical comparison between exercises X10308 and X10504.

according to the non-parametric pairwise comparison just described in Section
10.3. Table 10.2 shows the parameter estimates from logistic regression; note that
only three exercises are significant for performance and for the final examination:
X10308 (Pronunciation), X10309 (Listening) and X10702 (Comprehension).

We now compare the results in Table 10.2 with a non-parametric technique
based on generalised additive models. One of the main reasons for using these is
that they do not involve strong assumptions about the relationship that are implicit
in standard parametric regression. The benefits in our application of an additive
approximation are at least twofold. First, since each of the individual additive
terms is estimated using a univariate smoother, the curse of dimensionality is
avoided. Second, estimates of the individual terms explain how the dependent
variable changes non-linearly with the corresponding explanatory variables. In
fact generalised additive models extend the range of application of generaliaed
linear models by allowing non-parametric smoothing predictors. In our applica-
tion, Table 10.3 shows the generalised additive model outcome. For the estimation
process, an iterative approach is used with backfitting algorithm. The significant
exercises are X10308 (Pronunciation), X10309 (Listening), X10601 and X10602
(Comprehension). Comparing Table 10.2 and Table 10.3 note that they have
X10308 and X10309 in common.



216 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

0.
02

5
0.

03
0

0.
02

0

1000

0.
00

0
0.

01
0

0.
00

5
0.

01
5

D
en

si
ty

50

Figure 10.4 Graphical comparison between exercises X10309 and X10403.

Table 10.2 Estimation for the
logistic regression model.

Variable GLM logit p-value

Intercept −2.3121 0.0001
X10308 0.0396 0.0001
X10309 0.0291 0.0001
X10702 0.0344 0.0001

Table 10.3 Estimation for generalised additive
model.

Spline Chi-squared Degrees of freedom

X10308 30.1602 3
X10309 7.8260 3
X10601 8.4466 3
X10602 10.3671 3
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10.5 Model comparison

In order to choose the best predictive model between those that produce
Tables 10.2 and 10.3, we report the confusion matrix. This is used as an
indication of the properties of a classification (discriminant) rule. It contains
the number of elements that have been correctly or incorrectly classified for
each class. Its main diagonal shows the number of observations that have been
correctly classified for each class, while the off-diagonal elements give the
number of observations that have been incorrectly classified. If it is (explicitly or
implicitly) assumed that each incorrect classification has the same cost in term of
the acquired knowledge, one can calculate the total number of misclassifications
as a performance measure. Table 10.4 shows the theoretical confusion matrix for
a two-class classifier, as in our case. Given the context of our study, the entries
in the confusion matrix have the following meaning: a is the number of correct
predictions that a student will fail, b is the number of incorrect predictions
that a student will fail, c is the number of incorrect predictions that a student
will pass, and d is the number of correct predictions that a student will pass.
Table 10.5 and 10.6 show the confusion matrices for the two models.

To obtain the figures in the tables we have used a cross-validation approach.
We construct each model on a training sample and compare the models on a
validation sample. The training sample (70%) and the validation sample (30%)
are randomly selected. Comparing the two confusion matrices, we observe that

Table 10.4 Theoretical confusion matrix.

Observed/Predicted Event Non-event

Event a b

Non-event c d

Table 10.5 Confusion matrix for the
logistic regression model.

P(Y = 0) P(Y = 1)

O(Y = 0) 59 22
O(Y = 1) 11 290

Table 10.6 Confusion matrix for the gen-
eralised additive model.

P(Y = 0) P(Y = 1)

O(Y = 0) 67 14
O(Y = 1) 6 285
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the non-parametric model is better than logistic regression, as it leads to fewer
misclassification errors. Based on the misclassification errors, we think that the
non-parametric model selects with more accuracy specific exercises highly related
to performance in the final examination. This empirical evidence leads to devote
particular attention to specific exercises. This information may help our data
provider to personalise the learning platform and to plan specific tutoring actions.

10.6 Summary report

1. Context. In this case study we analyse a real e-learning data set from the
University of Pavia.

2. Objectives. We wish to provide a measure of the relative importance of
exercises and to estimate the knowledge acquired by each student.

3. Organization of the data. Data is extracted from a large database containing
a set of log files derived from the e-learning platform.

4. Exploratory data analysis. Exploratory data analysis was performed using
a set of descriptive measures based on non-parametric techniques.

5. Model specification. We compare non-parametric additive models and para-
metric predictive models based on generalised linear models.

6. Model comparison. The methodology employed is based on a comparison
between non-parametric statistical methods for kernel density classification
and parametric models such as generalised linear models and generalized
additive models.

7. Model interpretation. In this case study we have presented a novel approach
to the analysis of e-learning platforms through the examination of student
performance. Our proposal can be extended to other application areas such
as credit risk, churn risk and, in general, risk measurement environments.



CHAPTER 11

Predicting customer lifetime
value

11.1 Objectives of the analysis

In this chapter we consider statistical methods for lifetime value (LTV) esti-
mation. Customer LTV measures the profit-generating potential, or value, of
a customer within the customer relationship management process. A customer
LTV model needs to be explained and understood before it can be adopted to
facilitate customer relationship management. LTV is usually taken to consist of
two independent components: tenure and value. Though modelling the value (or
equivalently, profit) component of LTV (which takes into account revenue, fixed
and variable costs) is a challenge in itself, our experience has shown that finance
departments, to a large extent, manage it reasonably well.

For a given customer there are three factors that need to be determined in order
to calculate LTV: the customer’s value v(t) over time t > 0; a model describing
the customer’s churn probability over time; and a discount factor D(t) which
describes how much each euro gained at some future time t is worth now. We
can then define f (t) = – dS(t)/dt as the customer’s instantaneous probability of
churn at time t , where S(t) is the survival function. The quantity most commonly
modelled, however, is the hazard function h(t) = f (t)/S(t). While S(t) or h(t)

need to be estimated, v(t) and D(t) are usually known. We can write the explicit
formula for a customer’s LTV, total value to be gained while the customer remains
active, as

LTV =
∞∫

0

S(t)v(t)D(t) dt;

The essence of a good LTV model is the estimation of S(t) in a reasonable way.
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11.2 Description of the data

The subject of our case study is a well-known pay TV company. Considerations
of confidentiality prevent us from giving accurate statements and information
about this company; we shall instead make general statements and use normal-
ized figures, and the company will simply be referred to as ‘the company’. The
main objective of such a company is to retain its customers in an increasingly
competitive market, so it needs to know its customers’ LTV and to carefully
design appropriate marketing actions. Customers’ contracts are renewed every
year; if the customer does not withdraw, renewal takes place automatically. Oth-
erwise the client churns. There are three types of churn events: people who
withdraw from their contract in due time (i.e. less than 60 days before the due
date); people who withdraw from their contracts outside due time (i.e. more than
60 days before or after the due date); and people who withdraw without giving
notice, as is the case of bad payers. Churn events are classified into two dif-
ferent churn states: an ‘exit’ state for the first two classes of customers; and a
‘suspension’ state for the third.

Similarly to default (see Chapter 9), the causes of churn can be seen as con-
sisting of a number of components: a static component determined by customer
characteristics and the type of contract; a dynamic component that includes trends
and the customers’ contacts with the company call centre; a seasonal element,
tied to contract duration; and external factors, including the performance of com-
petitors and of the market in general. Currently the company uses a classification
tree model that gives, for each customer, a churn probability (score). It is impor-
tant for the company to be able to identify customers who are likely to leave
and join a competitor. In business terms, predictive accuracy means being able to
identify correctly those individuals who really will churn. Evaluation can be done
using a confusion or cross-validation matrix. Static models, such as classification
trees, show excessive influence of the contract deadline. It is therefore desirable
to employ new methods to obtain a predictive tool which incorporates the fact
that churn data are dynamic, that is, ordered in time.

The data available for our analysis includes information that can affect the dis-
tribution of the event time, such as demographic variables, variables related to the
contract, payment, the contacts and geographical area of residence. The response
variable, used as a dependent variable to construct predictive models, includes
two different types of customers: those who during the survey are active and those
who regularly cancel their subscription (EXIT status). We note that the target vari-
able is observed 3 months after the extraction of the data set used for the model
implementation phase, in order to verify correctly the effectiveness and predic-
tive power of the models themselves. The data set contains 606 variables and a
sample of 3500 observations (customers) and is composed of: socio-demographic
information about the customers; information about their contractual situation and
about its changes in time; information about contacting the customers (through
the call centre, promotion campaigns, etc) and, finally, geo-marketing information
(divided into census, municipalities and larger geographical sections information).
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The variables regarding customers contain demographic information (age, gen-
der, marital status, location, number of children, job and degree) and other
information about customer descriptive characteristics: hobbies, PC possession
at home, changes of address. The variables regarding the contract contain infor-
mation about its chronology (signing date and starting date, time left before
expiration date), its value (fees and options) at the beginning and at the end of
the survey period, about equipments needed to use services (if they are rented,
leased or purchased by the customer) and binary variables which indicate if the
customer has already had an active, cancelled or suspended contract. There is
also information about invoicing (invoice amount compared to different period
of time: 2, 4, 8, 12 months). The variables regarding payment conditions include
information about the type of payment of the monthly subscription (postal bul-
letin, account charge, credit card), as well as other information about the changes
of the type of payment. The data set used for the analysis also includes variables
which give information about the type of the services bought, about the purchased
options, and about specific ad-hoc purchases, such as number and total amount
of specific purchases during the last month and the last 2 months.

The variables regarding contacts with the customer contain information about
any type of contact between the customer and the company (mostly through calls
to the call centre). They include many types of calling categories (and relatives
subcategories). They also include information about the number of questions
made by every customer and temporal information, such as the number of calls
made during the last month, the last two months and so on.

Finally, geo-marketing variables are present at large, and a great amount of
work has involved their pre-processing and definition. Regardless of their prove-
nience, all variables have gone through a pre-processing feature selection step
aimed at reducing their very large number (equal to 606).

11.3 Exploratory data analysis

We first consider a non-parametric model, based on the Kaplan–Meier estimator,
as described in Section 4.15. In order to construct a survival analysis model,
we have created two variables: status (which distinguishes between active and
non-active customers) and duration (an indicator of customer seniority). The first
step in survival analysis is to plot the survival and hazard functions.

Figure 11.1 shows the estimated survival function and the related confidence
interval for our data. Observe the variations in slope at different times. When
the curve decreases rapidly we have high churn rates; when the curve decreases
softly we have periods of ‘loyalty’. The final jump is due to a distortion,
caused by few data, in the tail of the lifecycle distribution. Figure 11.2 depicts
the hazard function, which shows how the instantaneous risk rate varies over
time. We observe two peaks, corresponding to times of greatest risk. Note that
the risk rate is otherwise kept almost constant throughout the life cycle. Of
course there is a peak at the end, corresponding to the phenomenon observed in
Figure 11.1.



222 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

Su
rv

iv
al

 f
un

ct
io

n

Time

1.
00

0.
95

0.
90

0.
85

0.
80

0 50 100 150

Figure 11.1 Survival function estimation based on the Kaplan–Meier estimator.
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A very useful piece of information, in business terms, is customer life
expectancy. This can be obtained as a sum over all observed event times,

T∑
j=1

S(tj ) × (tj − tj−1),

where S(tj ) is the estimated survival function at the j th event time, obtained
using the Kaplan–Meier method, and t is a duration indicator.

11.4 Model specification

In order to estimate the churn risk we use the Cox model described in Section
4.15. For the data at hand, the number of variables available after pre-processing
is 24. These variables can be grouped into three main categories, according to
the sign of their association with the churn rate, represented by the hazard ratio:

• variables that show a positive association (e.g. wealth of the geographic
regions, quality of the call centre service, the sales channel);

• variables that show a negative association (e.g. number of technical problems,
cost of service bought, payment method);

• variables that have no association (e.g. equipment rental cost, age of customer,
number of family components).

To better interpret these associations we considered the value of the hazard ratio
for different covariate values. For example, for the variable indicating number of
technical problems we compared the hazard function for those that have called at
least once with those that have not made any calls. As the resulting ratio turns out
to be equal to 0.849, the risk of churning is lower for callers than for non-callers.
The output of the Cox model is a new survival probability. In particular, this takes
into account the multivariate relationships among the covariates, the target vari-
able and the duration time. More precisely, the survival function is computed as

S(t, X) = S0(t) × exp

(
p∑

i=1

βiXi

)
.

Figure 11.3 compares the survival curve obtained without covariates with the
curve adjusted for the presence of covariates. Covariates have a large effect on
survival times: up to 2 years of lifetime (24 months), the Cox survival curve
(plotted with ‘+’ symbols) is greater with respect to the baseline (solid curve).
After 2 years the Cox survival probability declines abruptly and is much lower
for the remaining lifespan. Once a Cox model has been fitted, it is advisable to
produce diagnostic statistics, based on the analysis of residuals, to verify if the
hypotheses underlying the model are correct.
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Figure 11.3 Comparison between survival functions, before and after covariate adjustment.

11.5 Model comparison

In order to create models to estimate the LTV for each customer, we employ the
results from survival models. Survival analysis is useful for quantifying, in precise
monetary terms, how much is gained or lost by replacing different customers with
others characterized by different survival probabilities. For instance, how much
is gained/lost if 0.08 of the clients, say, switch from buying service A to buying
service B. Or, similarly, the relative gains when a certain percentage of clients
changes method of payment (e.g. moving between payment by invoice, credit
card and direct debit).

A simple way to quantify gains and losses is to calculate the area between
two survival curves, as shown in Figure 11.4. Suppose the two survival curves
correspond to two different services bought, which we will call black and grey,
corresponding to the colours of the two curves. In order to determine exactly the
area in Figure 11.4 we need to specify an amount of time ahead, say, 13 months.
In Figure 11.4, the difference between survival probabilities 13 months after the
customers became active is equal to 0.078. This value should be multiplied by the
difference in business margin between the two methods of payment, as given, for
example, by the difference in costs. Such costs can be described by a gain/loss
table as in Table 11.1. A value of A is the relative gain if the client switches
from PO to CC; similarly, B and C correspond respectively to relative gains
from switching from PO to BA, and from CC to BA where PO = postal order,
CC = payment through credit card, BA = payment via a bank account.

If we assume that we start with an acquired client base of 1000 customers in
both categories (product black buyers and product grey buyers), the results say
that, after 13 months we will remain with 934 black and 856 grey. If the finance
department tells us that product black is worth ¤10 and product grey ¤20, then,
after 13 months, we lose ¤660 for black churners and ¤2880 for grey churners.
In other words, the priority of the marketing department should be to construct
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Table 11.1 Evaluation of gain/losses by
comparing survival curves.

PO CC BA

PO A B

CC C

BA

targeted campaigns for grey product clients. From a different perspective, if black
and grey correspond to two different sales channels for the same product, or to
two different geographical areas, it is clear that the black channel (or area) is
much better in terms of customer retention. Often promotional campaigns are
conducted by looking only at increasing the customer base. Our results show
that the number of captured clients should be traded off against their survival or,
better, LTV profile.

11.6 Summary report

1. Context. In this case study we have analysed a real data set to predict
customer lifetime value.

2. Objectives. We wish to estimate a measure of customer lifetime value for
each customer on the basis of the duration time and a set of covariates.

3. Organisation of the data. Data were extracted from a large database coming
from a pay-tv company.
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4. Exploratory data analysis. Exploratory data analysis was performed by
means of univariate and bivariate analyses. Specifically, in this chapter we
applied the exploratory data process for outlier detection and variable selec-
tion.

5. Model specification. We have proposed methods to modelling customer
lifetime value based on survival analysis.

6. Model comparison. The methodology employed was assessed using a
cross-validation approach. We considered a set of predictive measures to
choose the best model.

7. Model interpretation. The proposed models suggest ways to estimate a
profitability score for each customer.



CHAPTER 12

Operational risk management

12.1 Context and objectives of the analysis

Recent legislation and market practices make it important to measure the risks
arising as a result of management decisions. For instance, the Basel II capital
accord, published by Basel Committee on Banking Supervision (BCBS, 2001),
requires financial institutions to measure operational risk, defined as ‘the risk of
loss resulting from inadequate or failed internal processes, people and systems
or from external events’. Another important standard is the recently published
ISO 17799 which establishes the need for risk controls aimed at preserving the
security of information systems. Finally, Publicly Available Specification PAS
56, in setting criteria that need to be met in order to maintain the business
continuity of IT-intensive companies, also calls for the development of statistical
indicators for monitoring the quality of business controls in place. In this chapter
we focus on the Basel accord, while keeping in mind that what is developed here
in a banking context can be extended to the general enterprise risk management
framework (see Bonafede and Giudici, 2007).

The Bank of International Settlements (BIS) is the world’s oldest financial insti-
tution; its main purpose is to encourage and facilitate cooperation among central
banks (BCBS, 2001). In particular, the BIS established a commission, the Basel
Committee on Banking Supervision, to formulate broad supervisory standards,
guidelines and formulate best practice recommendations. The ultimate purpose of
the BCBS is to prescribe capital adequacy standards for all internationally active
banks.

In 1988 the BCBS issued one of the most significant international regulations
impacting on the financial decision making of banks, the Basel accord. This was
later replaced by the New Accord on Capital Adequacy, or Basel II (BCBS,
2001). This new framework, developed to ensure the stability and soundness of
financial systems, was based on three ‘pillars’: minimum capital requirements,
supervisory review and market discipline. What was important about the new
accord was that it identified operational risk as a distinct category of risk. In
fact, it was only with the new accord that the Risk Management Group of the
Basel Committee proposed the current definition of operational risk, stated in the
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opening paragraph of this section. The Risk Management Group also provided
a standardised classification of operational losses into eight business lines and
seven event types, giving 56 possible categories.

The aims of operational risk measurement (Alexander, 2003; King, 2001; Cruz,
2002) are twofold. On one hand, there is a prudential aspect which involves
setting aside an amount of capital to cover unexpected losses. This is typically
done by estimating a loss distribution and deriving functions of interest from
it, such as the value at risk (VaR). On the other hand, there is a managerial
aspect, for which the issue is to rank operational risks in an appropriate way,
say from high priority to low priority, so to individuate appropriate management
actions directed at improving preventive control of such risks. In general, the
measurement of operational risks leads to the measurement of the efficacy of
controls in place at a specific organisation: the higher the operational risks, the
worse such controls.

The complexity of operational risks and the newness of the problem have
driven international institutions, such as the BCBS, to define conditions that
sound statistical methodologies should satisfy to build and measure operational
risk indicators.

12.2 Exploratory data analysis

Operational risk is composed of two elements: the frequency of loss events over
a given period of time (frequency) and the mean monetary impact of the loss over
the given period (severity). The following sources of information are generally
used to determinate the operational value at risk:

• Historical data. In its simplest form this is a table whose rows contain
information about the loss, such as the amount, the date of occurrence, the
organisational unit identifying the loss, the amount recovered by the insurance
and an indication of the business line and event type.

• Expert opinion. This is risk evaluations made by experts (branch heads, area
heads, etc.) about the activity performed by the bank.

• External databases. These are typically consortium databases which aggre-
gate the operational losses of all the banks taking part in the consortium.
Here we shall refer to the Data Base Italiano delle Perdite Operative (Italian
Database of Operational Losses, DIPO) consortium.

It is reasonable to expect some missing values among the events that con-
stitute the universe of possible losses. Certain events have never happened in
many situations or have never been registered either internally or at DIPO level.
Sometimes experts do not manage to make evaluations. Thus some categories
may have all three sources of information, while others have only two, one or
even no sources.
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The various sources of information are supplemented by a process of scaling.
This makes it possible to compare and aggregate different databases, at least
in terms of analysis. For example, we expect the DIPO, being an aggregation
of the losses of several banks, to have loss amounts higher than the internal
loss amounts. On the other hand, experts’ opinions are formulated in specific
areas, so their values may be rather different and, possibly, be comparable with
internal losses.

In the DIPO case, scaling is done by dividing the losses in every category
by a constant which is equal to the ratio between the total DIPO losses and
the total internal losses. The same method can be applied to the frequency, so
that we obtain the severity as a ratio. Obviously, in order for this scaling to be
effective, the bank should have the same features as DIPO; given that DIPO
gathers information from a set of banks in the same country, this requirement
should be satisfied.

Another data organisation activity typically performed at the beginning of
operational risk modelling is mapping. This is often a preliminary to the survey
of expert opinion. By mapping we mean the identification, coding and schema-
tization of all the activities carried out by a bank. This way, the organisation
can be seen as an aggregation of productive processes, which are articulated as
subprocesses, phases and subphases. The structure can be more or less complex
according to the number of hierarchical levels considered. At the most elemen-
tary level, connected risks are identified. We talk about a risk when, in a given
activity, there is a non-zero probability of incurring a loss.

Once mapping has been done, whether in the manner described or in a simpler
manner starting with an exhaustive list of risk events (regardless of the processes),
the expert must describe how the risk is perceived in terms of frequency and
severity. Such opinions must refer to the Basel accord business lines and events
types, so that each perceived loss can be mapped to a risk category.

The analysis of expert opinion is usually the exploratory analysis that is run
in operational risk measurement. For the data set we have analysed, originating
from a medium-sized Italian bank, we have noticed that experts agree about the
distribution of the hazardousness across the losses, but not about their absolute
dimension. This may be because different business areas have various levels of
operational risk, as perceived by the experts. A scale factor could solve this
problem, which will thus distinguish the various evaluations. Some experts may
consider a loss of ¤10 000 as more or less insignificant, while for others it is
very important.

Once expert opinions have been gathered, they are usually analysed with simple
frequency distributions and graphs, one for each category. Aggregating the risks
at the category level, we will obtain a database with 56 frequency × severity
entries, one for every business line and event type. The product of the frequency
and the severity gives the perceived loss for each category, and the sum of all
such losses gives a qualitative (perceived) estimate of the total loss of the bank
for every category.

Missing data is a problem that often occurs with expert opinions. This is some-
times due to the lack of evaluations by a few experts, sometimes due to the lack
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of a complete mapping activity of the process, which prevents the identification
of some risks. In our case only two area experts have been asked. The mapping
activity of the process, and the consequent identification of the risks, is exclu-
sively concerned with the payment and settlements business area. To bypass the
first missing-data problem we used the dimension of a business area (number
of area branches related to the total number) to assess the quality of the data
at our disposal. Therefore, for instance, since the payment and settlements area
represents about the 17% of the total losses, the estimate of the total value on
the basis of expert opinions has been obtained by dividing this value by 0.17.
The idea to weight the evaluations by the number of branches is equivalent to
the hypothesis that, at the branch level, the risk is almost identical, so that the
risk of a broader area depends on its number of branches.

Another way to weight and scale opinions is to use key risk indicators (KRIs),
variables which have a certain association with the losses and act as ‘indicators’ of
the risk. Such variables are identified during the process mapping and monitored
throughout the year. We decided to correct our experts’ opinions using the KRIs
available. The size of the correction depends on the significance of the KRI. For
this purpose every loss, pertaining to the ith risk of the j th category evaluated
by the kth expert, is multiplied by a factor given by

Fi,j,k =
⎧⎨
⎩

1 + 0.3Ri,j , if Ki,j,k > 0.66,

1, if 0.33 < Ki,j,k < 0.66,

1 − 0.3Ri,j , if Ki,j,k > 0.33,

where Ki,j,k is the average KRI associated with the ith risk of the j th category
calculated on branches belonging to the area of the kth expert; and Ri,j is the
ratio between the deviation of the means of the area and total deviation relative
to the ith risk and to the j th category.

The R2 index represents the share of deviance that the classification is able
to explain in terms of areas. This way, the amount of the correction is directly
proportional to the significance of the KRI. If a KRI is not very discriminating
from area to area, R2 is small and so is the correction size. Conversely, if the
KRI is appreciably different from area to area, the F factor will be larger.

12.3 Model building

Statistical models for operational risk can be grouped into two main categories:
‘top-down’ and ‘bottom-up’ methods. In top-down methods, risk estimation is
based on macro data without identifying the individual events or the causes of
losses. Operational risks are measured and covered centrally, so local business
units are not involved in the measurement and allocation process. Top-down
methods include the Basic Indicator Approach (Yasuda, 2003; Pézier, 2002) and
the Standardised Approach (Cornalba and Giudici, 2004; Pézier, 2002), where
risk is computed as a certain percentage of the variation of some variable, such as
gross income, considered as a proxy for company performance. This approach is
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suitable for small banks, which prefer a methodology that is cheap to implement
and easy to implement.

Bottom-up techniques, on the other hand, use individual events to determine
the source and amount of operational risk. Operational losses can be divided into
levels corresponding to business lines and event types, and the risks are measured
at each level and then aggregated. These techniques are particularly appropriate
for large banks and those operating at the international level, since they can
afford the implementation of sophisticated methods which sensitive to the bank’s
risk profile. Advanced Measurement Approaches (AMA) belong to this class
(BCBS, 2001). Under the AMA, the regulatory capital requirement will equal
the risk measure generated by the bank’s internal operational risk measurement
system using the quantitative and qualitative criteria set by the BCBS. This is an
advanced approach as it allows banks to use external and internal loss data as
well as internal expertise (Giudici and Bilotta, 2004).

Statistical methods for operational risk management in the bottom-up context
have recently been developed. One main approach has emerged: the actuarial
approach. This method uses actual loss data to estimate the probability distribu-
tion of the losses. The most popular methods (King, 2001; Cruz, 2002; Frachot
et al ., 2001; Dalla Valle et al ., 2008) are based on extreme value distributions.
Another line of research suggests the use of Bayesian models (Yasuda, 2003,
Cornalba and Giudici, 2004; Fanoni et al ., 2005; Dalla Valle and Giudici, 2008).
The main disadvantage of actuarial methods is their backward-looking perspec-
tive; their estimates are based entirely on past data. Furthermore, it is often the
case, especially for smaller organisations, that for some business units there are
no loss data at all. Regulators thus recommend developing models that can take
into account different data streams, not only internal loss data (see BCBS, 2001).
These streams may be: self assessment opinions, usually forward looking; exter-
nal loss databases, usually gathered through consortia of companies; and data on
key performance indicators.

In the actuarial model, loss events are assumed independent and, for each one,
it is assumed that the total loss in a given period (e.g. one year) is obtained as
the sum of a random number (N) of impacts (Xi). In other words, for the j th
event the loss is

Lj =
Nj∑
i=1

Xij .

Usually the distribution of each j -specific loss is obtained from the specification
of the distribution of the frequency N and the mean loss or severity S. The
convolution of the two distributions leads to the distribution of L (typically via
a Monte Carlo estimation step), from which a function of interest, such as the
99.9 percentile (the value at risk) can be derived.

The scorecard approach is based on the so-called self assessment, which is
based on the experience and the opinions of a number of internal ‘experts’ of
the company, who usually correspond to a particular business unit. An inter-
nal procedure of control self assessment can periodically be done by means of
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questionnaires. Questionnaires can be submitted to risk managers (experts), and
give information such as the quality of internal and external control systems of
the organisation based on their experience over a given period. In a more sophis-
ticated version, experts can also assess the frequency and mean severity of the
losses for such operational risks (usually in a qualitative way). Self assessment
opinions can be summarised and modelled so as to obtain a ranking of the dif-
ferent risks, and a priority list of interventions in terms of improvement of the
related controls.

In order to derive a summary measure of operational risk, perceived losses
contained in the self-assessment questionnaire can be represented graphically
(e.g. in a histogram), leading to an empirical non-parametric distribution. Such a
distribution can be employed to derive a function of interest, such as the VaR.

Scorecard models are useful for prioritising interventions in the control system,
so as to effectively reduce the impact of risks, ex ante and not a posteriori, by
allocating capital for example (corresponding to the VaR).

In Giudici (2008) a methodology aimed at summarising concisely and effec-
tively the results of a self-assessment questionnaire has been proposed. In the
next section we shall show how it can be applied.

12.4 Model comparison

Suppose that we are given 80 events at risk (this is the order of magnitude
employed in a typical operational risk management analysis in the banking sec-
tor). The events can be traced to the four main causes of operational risk: People,
processes, systems and external events. First of all a sample of banking profes-
sionals (from headquarters and the local branches) is obtained. The aims of the
questionnaire project are described in a group presentation. The nature and struc-
ture of each risk question will have been devised in a focus group discussion
with the top manager of the bank. The result of this preliminary analysis is that
each of the professionals is asked his/her opinion on the frequency, severity and
effectiveness of the controls in place for each risk event. The number of possi-
ble frequency classes is equal to four: daily, weekly, monthly, and yearly. The
number of severity classes depends on the size of the bank’s capital, and will
typically be six or seven, ranging from ‘an irrelevant loss’ to ‘a catastrophic
loss’. Finally there are three possible classes for the controls: not effective, to be
adjusted, and effective.

Once the interviews have been gathered together, the aim is to assign a ‘rating’
to each risk event, based on the distribution of the opinions on the frequency,
controls and severity. Giudici (2008) suggests using the median class as a location
measure for each distribution, and the normalised Gini index as an indicator of the
‘consensus’ on such location measure. This results in three rating measures for
each event, denoted by the conventional risk letters: A for low risk, B for medium
risk, C for higher risk and so on. While the median is used to assign a single-letter
measure, the Gini index is used to double or triple the letter, depending on the
value of the index. For example, if the median of the frequency distribution of
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a certain risk type (e.g. theft and robbery) is yearly, corresponding to the lowest
risk category, a letter A is assigned. Then, if all the interviewees agree on that
evaluation (e.g. the Gini index is equal to zero), A becomes AAA; if the Gini
index corresponds to maximum heterogeneity, then A remains A. Intermediate
cases will receive an AA rating. The same approach will serve for the severity
as well as for the controls, leading to a complete scorecard that can be used
for intervention purposes. For visualisation purposes, colours are associated with
letters, using a traffic-light convention: green (grey); corresponds to A; yellow
(light grey) to B; red (dark grey) to C and so on.

Figure 12.1 presents the results from such scorecard model for a collection of
risk events caused by to people (internal fraud) and external events (external fraud
and losses from material activities). It turns out that event 1.2.6 should be given
top priority for intervention, as controls are not effective, and both frequency
and severity are yellow. Other events at risk include 2.2.1 and 2.2.4, which have
a high frequency and medium quality controls. We observe that opinion on the
severity is usually considered second in priority determination as it typically
concerns a mean value which cannot be modified by the action of controls.

While scorecard methods typically use self-assessment data, actuarial models
use internal loss data. The disadvantage of these approaches is that they consider
only one part of the statistical information available to estimate operational risks.
Actuarial methods rely only on past loss data and therefore do not consider
important information on the perspective and the evolution of the company;
on the other hand, scorecard methods are based only on perceived data (are
forward-looking) and therefore do not reflect past experience very well.

A further problem is that, especially for rare events, a third data stream may be
considered: external loss data. This source of data is made up of pooled records
of losses, typically higher than a certain value (e.g. ¤5000), collected by an
appropriate association of banks.

It thus becomes necessary to develop a statistical methodology that is able
to merge three different data streams in an appropriate way, while maintaining
simplicity of interpretation and predictive power. Here we shall propose a flexible
non-parametric approach that can achieve this objective (see Giudici, 2008). Such
an approach can be justified within a non-parametric Bayesian context.

Our approach considers, for each event, data on all losses that have occurred
in the past as well as the expected self assessment losses for the next period. The
latter is counted as one data point, typically higher than actual losses, even when
calculated as a mean loss rather than as a worst case loss. Putting together the
self-assessment data point with the actual loss data points, we obtain an integrated
loss distribution, from which a VaR can be calculated. Alternatively, to take the
loss distributions more correctly into account, a Monte Carlo simulation can be
based on the given losses, leading to a (typically higher) Monte Carlo VaR,
parallel to what is usually done in the actuarial approach.

In Figure 12.2 we compare, for a real database, the VaR obtained using a pure
self-assessment approach, with the actuarial VaRs (both historical and Monte
Carlo based) and the integrated (Bayesian) VaR (both simple and Monte Carlo).
For reasons of predictive accuracy, we construct all methods on a series of data



234 APPLIED DATA MINING FOR BUSINESS AND INDUSTRY

1.
1.

1
T

ra
ns

ac
tio

ns
 n

ot
 r

ep
or

te
d 

(i
nt

en
tio

na
l)

1.
1.

2
T

ra
ns

 ty
pe

 u
na

ut
ho

ri
se

d 
(w

/ m
on

et
ar

y 
lo

ss
)

1.
2.

1
Fr

au
d/

cr
ed

it 
fr

au
d/

w
or

th
le

ss
 d

ep
os

its

1.
2.

2
T

he
ft

/e
xt

or
tio

n/
em

bl
ez

zl
em

en
t/r

ob
be

ry

1.
2.

3
M

al
ic

io
us

 d
es

tr
uc

tio
n 

of
 a

ss
et

s

1.
2.

4
Fo

rg
er

y

1.
2.

5
C

he
ck

 k
iti

ng
 o

r 
sm

ug
gl

in
g

1.
2.

6
A

cc
ou

nt
 ta

ke
-o

ve
r/

im
pe

rs
on

at
io

n/
et

c.

1.
2.

7
T

ax
 n

on
-c

om
pl

ia
nc

e/
ev

as
io

n 
(w

ilf
ul

)

1.
2.

8
B

ri
be

s/
ki

ck
ba

ck
s

1.
2.

9
In

si
de

r 
tr

ad
in

g 
(n

ot
 o

n 
fi

rm
's

 a
cc

ou
nt

)

1.
2.

10
T

he
ft

 o
f 

in
fo

rm
at

io
n 

(w
/ m

on
et

ar
y 

lo
ss

)

2.
1.

2
H

ac
ki

ng
 d

am
ag

e

2.
2.

1
T

he
ft

/R
ob

be
ry

2.
2.

2
Fo

rg
er

y

2.
2.

3
C

he
ck

 k
iti

ng

2.
2.

4
C

lo
na

tio
n 

of
 c

re
di

t c
ar

ds
, p

.o
.s

., 
at

m

5.
1.

1
N

at
ur

al
 d

is
as

te
r 

lo
ss

es

5.
1.

2
L

os
se

s 
fr

om
 e

xt
er

na
l s

ou
rc

es
 (

te
rr

or
is

m
, v

an
da

lis
m

)

SE
V

E
R

IT
Y

FR
E

Q
U

E
N

C
Y

PEOPLE

C
O

N
T

R
O

L
S

In
te

rn
al

 f
ra

ud

EXTERNAL

E
xt

er
na

l f
ra

ud

D
an

ni
 a

d 
at

tiv
ità

 m
at

er
ia

li

F
ig

ur
e

12
.1

E
xa

m
pl

e
of

re
su

lts
fr

om
ou

r
pr

op
os

ed
sc

or
ec

ar
d

m
od

el
.



OPERATIONAL RISK MANAGEMENT 235

3.115 698.128 828.379 963.587
1.179.434 1.180.929

4.608.800

−

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

3.500.000

4.000.000

4.500.000

5.000.000

Historical 
losses

Actuarial 
Montecarlo 

VaR

Historical 
VaR 

Bayes 
Montecarlo 

VaR

Bayes VaR Basic 
Indicator 
Approach 

VaR

Self- 
assessment 

VaR

Figure 12.2 Example of results from our integrated scorecard model.

points updated at the end of 2005; calculate the VaR for 2006 (possibly integrating
it with the self assessment available opinions for 2006) and compare the VaR
with the actual losses for 2006. We also calculate the VaR that would be obtained
under the simple Basic Indicator Approach (BIA) suggested by Basel II. The BIA
amounts to calculating a flat percentage (15%) of a relevant indicator (such as the
gross income), without further elaboration. It turns out that both our proposed
models (Bayes VaR and Bayes Monte Carlo) lead to an allocation of capital
(represented by the VaR) lower than the BIA and higher than the observed losses.
Although these results are achieved by the actuarial models as well (historical
and actuarial Monte Carlo), we believe that a prudential approach, as expressed
by our proposal, is more sound, especially over a longer time horizon.

12.5 Summary conclusions

1. Context. We have shown how to develop efficient statistical methods for
measuring the performance of business controls, through the development of
appropriate operational risk indicators.

2. Objectives. The advantages of measuring operational risk appropriately are
twofold. On the one hand, there is a prudential aspect which involves setting
aside an amount of capital that can cover unexpected losses. On the other
hand, there is a managerial aspect for which the issue is to rank operational
risks in an appropriate way, say from high priority to low priority, so as
to identify appropriate management actions directed at improving preventive
controls on such risks.
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3. Organisation of the data. The data analysed in operational risk usually
comes from three sources: expert opinion, often corrected by means of key
risk indicators; internal loss data; and external loss data. We have shown
how to scale and integrate these databases together.

4. Exploratory data analysis. The exploratory data analysis is based on first
merging the databases available by means of scaling techniques. Simple
frequency distributions and graphs are usually obtained.

5. Model specification. Different statistical models can be developed, compared
and then used, depending on the available databases. The main modelling
strategies are: actuarial, scorecard and Bayesian.

6. Model comparison. Modelling strategies have been compared not only the-
oretically but also with reference to an available database, according to the
data mining paradigm. The main comparison benchmark is predictive per-
formance (known in this context as backtesting).

7. Model interpretation. The measurement of operational risk has been made
compulsory by recent legislative changes. We have shown that, when models
are transparent and interpretable, the measurement of operational risk leads to
the measurement of the efficacy of controls in place at a given organisation:
the higher the operational risks, the worse the controls.
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Prediction, generalisation and 84–85
Predictive misclassification rates 76f,

208–209
Principal component analysis (PCA) 61,

144
Principal component transformation 34
Principal components, interpretation

36–38
Principle of universal approximation 86
Probabilistic expert systems 95,

139–140, 146, 150
Probability 97–99
Probit models 145
Projection pursuit methods 40
Pseudo-F statistic 56, 114

Qualitative data, multivariate exploratory
analysis 27–34

Quality 10, 111, 193, 197
Quantile-quantile plots (QQ-plots) 21
Quantiles 15, 21
Quantitative data, multivariate exploratory

analysis 25–26
Quartiles 15, 20
Query tools 96

Random variables, continuous 99
Range 2, 15, 55, 204–205, 217
Rao’s score statistic 122
Receiver operating characteristic (ROC)

curves 160
Recursive graphical models 135,

139–141
Regression functions 57
Regression trees 72–73, 75

entropy impurity 74
Gini impurity 73–74, 208
misclassification impurity 73–76

Residuals, deviance 125–126
Response variable

QQ-plot 21
univariate indexes 10

Retrieval-by-content models 96

Return on equity (ROE) 23
Return on investment (ROI) 23
Right asymmetric distribution 22f
Root mean square standard deviation

(RMSSTD) 54

Sammon mapping 47
Sample mean 90, 104–106, 158
Sample variance 104–105
Sampling error 154
Saturated models (best-fit models)

122–125, 127, 132, 151, 197
Scatterplots 22

logit shares 67–68, 86, 120, 128–129
Score functions 154
Scorecard approaches 233
Scorecard models 234–237
Scree plots 38
Self-organising maps (Kohonen networks)

87–89
Semiparametric models 42, 100, 109,

112, 145
Semipartial R2 (SPRSQ) 54
Sensitivity, ROC curve 159, 160–162
Sequence rules 41, 92, 95
Severity models 230–231, 233–236
Similarity index of Jaccard 45–46
Similarity index of Russel and Rao 45
Similarity index of Sokal and Michener

46
Similarity measures 44–46
Simple matching coefficient 46
Simpson’s paradox 39
SME default 203, 207–208
Softmax functions 78–79
Spearman correlation coefficient 27
Specificity, ROC curve 160
Standard deviation 16, 20, 24
Statistical data mining 136f
Statistical independence 28–29, 129
Statistical inference 42, 103–109
Statistical methods

evaluation 3
specification 2

Statistical models
discrepancy 150–151
distance between 148–150

Statistical variables 7–9
Stepwise procedure, linear model 116,

133, 208
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Stress functions 47
Student’s t distribution 25, 102, 113
Summary indexes, series 18, 23, 62, 65
Summary measures 13, 29, 234
Supply chain management 7
Support vector machines 145
Survival analysis models 42, 142–144,

223
Symmetric distribution 15f, 19, 22f
Symmetric generalised linear models 126
Symmetric graphical models 135–139
Systematic error (bias) 153

Test data set, customer relationship
management 221

Text databases 11
Three-way matrices 11
Total probability rules 98–99
Trace (matrix overall variability) 37, 51
Tree models 71–76

customer relationship management 221
Tree of hierarchical clustering

(dendrogram) 48–49
Two-way contingency tables 27t, 28,

30–31, 126, 178, 179t, 185
Type I errors 108, 160
Type II errors 160

Uncertainty coefficient 32, 149
Uncertainty measures, and inference

96–109
Undirected graphical models 95
Uniform distance, distribution function

150
Union rule, probability 97–98
Univariate distributions 10
Univariate exploratory analysis 9–10,

13–22
Univariate graphical displays 176
Unsupervised statistical methods 212

Value at risk (VaR), statistical index 101,
230, 233

Variability, measures of 96
Variance 16, 38, 51, 73, 153, 158
Variance–covariance matrix 23, 24t, 26,

36, 38, 51, 102, 113

Wald chi-squared statistic 208
Wald’s test 121
Ward’s method 51–54, 169
Web clickstream analysis 90–92

context 237
data organisation 231, 237
exploratory data analysis

230–232
model building 232–234
model comparison 234–237
model interpretation 238
model specification 238
objectives 237
sequence rules 92, 95
summary report 237–238

Web data 11, 171
Website visitor profiles 165–172

cluster analysis 168–169
context 172
data description 165–167
data organisation 172
discrete variables 167
exploratory data analysis 167
model building 167–168
model comparison 171–172
model interpretation 173
model specification 172
objectives 165
summary report 172–173
visitor data matrix 167

Weighted arithmetic mean 14
Wilks generalised variance 26
Worst-fit models (null models) 122




