
Chapter 1

C4.5

Naren Ramakrishnan

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 C4.5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.3.1 Tree Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3.2 Improved Use of Continuous Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.3.3 Handling Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.3.4 Inducing Rulesets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Discussion on Available Software Implementations . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Two Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Golf Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Soybean Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 Mining from Secondary Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Oblique Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.4 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.5 Classification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.6 Redescriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Introduction

C4.5 [30] is a suite of algorithms for classification problems in machine learning and
data mining. It is targeted at supervised learning: Given an attribute-valued dataset
where instances are described by collections of attributes and belong to one of a set
of mutually exclusive classes, C4.5 learns a mapping from attribute values to classes
that can be applied to classify new, unseen instances. For instance, see Figure 1.1
where rows denote specific days, attributes denote weather conditions on the given
day, and the class denotes whether the conditions are conducive to playing golf.
Thus, each row denotes an instance, described by values for attributes such as Out-
look (a ternary-valued random variable) Temperature (continuous-valued), Humidity
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2 C4.5

Day Outlook Temperature Humidity Windy Play Golf?

1 Sunny 85 85 False No

2 Sunny 80 90 True No

3 Overcast 83 78 False Yes

4 Rainy 70 96 False Yes

5 Rainy 68 80 False Yes

6 Rainy 65 70 True No

7 Overcast 64 65 True Yes

8 Sunny 72 95 False No

9 Sunny 69 70 False Yes

10 Rainy 75 80 False Yes

11 Sunny 75 70 True Yes

12 Overcast 72 90 True Yes

13 Overcast 81 75 False Yes

14 Rainy 71 80 True No

Figure 1.1 Example dataset input to C4.5.

(also continuous-valued), and Windy (binary), and the class is the Boolean PlayGolf?
class variable. All of the data in Figure 1.1 constitutes “training data,” so that the
intent is to learn a mapping using this dataset and apply it on other, new instances
that present values for only the attributes to predict the value for the class random
variable.

C4.5, designed by J. Ross Quinlan, is so named because it is a descendant of the
ID3 approach to inducing decision trees [25], which in turn is the third incarnation in
a series of “iterative dichotomizers.” A decision tree is a series of questions systemat-
ically arranged so that each question queries an attribute (e.g., Outlook) and branches
based on the value of the attribute. At the leaves of the tree are placed predictions of
the class variable (here, PlayGolf?). A decision tree is hence not unlike the series of
troubleshooting questions you might find in your car’s manual to help determine what
could be wrong with the vehicle. In addition to inducing trees, C4.5 can also restate its
trees in comprehensible rule form. Further, the rule postpruning operations supported
by C4.5 typically result in classifiers that cannot quite be restated as a decision tree.

The historical lineage of C4.5 offers an interesting study into how different sub-
communities converged on more or less like-minded solutions to classification. ID3
was developed independently of the original tree induction algorithm developed by
Friedman [13], which later evolved into CART [4] with the participation of Breiman,
Olshen, and Stone. But, from the numerous references to CART in [30], the design
decisions underlying C4.5 appear to have been influenced by (to improve upon) how
CART resolved similar issues, such as procedures for handling special types of at-
tributes. (For this reason, due to the overlap in scope, we will aim to minimize with
the material covered in the CART chapter, Chapter 10, and point out key differences
at appropriate junctures.) In [25] and [36], Quinlan also acknowledged the influence
of the CLS (Concept Learning System [16]) framework in the historical development
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1.2 Algorithm Description 3

of ID3 and C4.5. Today, C4.5 is superseded by the See5/C5.0 system, a commercial
product offered by Rulequest Research, Inc.

The fact that two of the top 10 algorithms are tree-based algorithms attests to
the widespread popularity of such methods in data mining. Original applications of
decision trees were in domains with nominal valued or categorical data but today
they span a multitude of domains with numeric, symbolic, and mixed-type attributes.
Examples include clinical decision making, manufacturing, document analysis, bio-
informatics, spatial data modeling (geographic information systems), and practically
any domain where decision boundaries between classes can be captured in terms of
tree-like decompositions or regions identified by rules.

1.2 Algorithm Description

C4.5 is not one algorithm but rather a suite of algorithms—C4.5, C4.5-no-pruning,
and C4.5-rules—with many features. We present the basic C4.5 algorithm first and
the special features later.

The generic description of how C4.5 works is shown in Algorithm 1.1. All tree
induction methods begin with a root node that represents the entire, given dataset and
recursively split the data into smaller subsets by testing for a given attribute at each
node. The subtrees denote the partitions of the original dataset that satisfy specified
attribute value tests. This process typically continues until the subsets are “pure,” that
is, all instances in the subset fall in the same class, at which time the tree growing is
terminated.

Algorithm 1.1 C4.5(D)
Input: an attribute-valued dataset D

1: Tree = {}
2: if D is “pure” OR other stopping criteria met then
3: terminate
4: end if
5: for all attribute a ∈ D do
6: Compute information-theoretic criteria if we split on a
7: end for
8: abest = Best attribute according to above computed criteria
9: Tree = Create a decision node that tests abest in the root

10: Dv = Induced sub-datasets from D based on abest

11: for all Dv do
12: Treev = C4.5(Dv)
13: Attach Treev to the corresponding branch of Tree
14: end for
15: return Tree
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Figure 1.2 Decision tree induced by C4.5 for the dataset of Figure 1.1.

Figure 1.1 presents the classical “golf” dataset, which is bundled with the C4.5
installation. As stated earlier, the goal is to predict whether the weather conditions
on a particular day are conducive to playing golf. Recall that some of the features are
continuous-valued while others are categorical.

Figure 1.2 illustrates the tree induced by C4.5 using Figure 1.1 as training data
(and the default options). Let us look at the various choices involved in inducing such
trees from the data.

� What types of tests are possible? As Figure 1.2 shows, C4.5 is not restricted
to considering binary tests, and allows tests with two or more outcomes. If the
attribute is Boolean, the test induces two branches. If the attribute is categorical,
the test is multivalued, but different values can be grouped into a smaller set of
options with one class predicted for each option. If the attribute is numerical,
then the tests are again binary-valued, and of the form {≤ θ?, > θ?}, where θ

is a suitably determined threshold for that attribute.
� How are tests chosen? C4.5 uses information-theoretic criteria such as gain

(reduction in entropy of the class distribution due to applying a test) and
gain ratio (a way to correct for the tendency of gain to favor tests with many
outcomes). The default criterion is gain ratio. At each point in the tree-growing,
the test with the best criteria is greedily chosen.

� How are test thresholds chosen? As stated earlier, for Boolean and categorical
attributes, the test values are simply the different possible instantiations of that
attribute. For numerical attributes, the threshold is obtained by sorting on that
attribute and choosing the split between successive values that maximize the
criteria above. Fayyad and Irani [10] showed that not all successive values need
to be considered. For two successive values vi and vi+1 of a continuous-valued
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1.2 Algorithm Description 5

attribute, if all instances involving vi and all instances involving vi+1 belong to
the same class, then splitting between them cannot possibly improve informa-
tion gain (or gain ratio).

� How is tree-growing terminated? A branch from a node is declared to lead
to a leaf if all instances that are covered by that branch are pure. Another way
in which tree-growing is terminated is if the number of instances falls below a
specified threshold.

� How are class labels assigned to the leaves? The majority class of the instances
assigned to the leaf is taken to be the class prediction of that subbranch of the
tree.

The above questions are faced by any classification approach modeled after trees and
similar, or other reasonable, decisions are made by most tree induction algorithms.
The practical utility of C4.5, however, comes from the next set of features that build
upon the basic tree induction algorithm above. But before we present these features,
it is instructive to instantiate Algorithm 1.1 for a simple dataset such as shown in
Figure 1.1.

We will work out in some detail how the tree of Figure 1.2 is induced from
Figure 1.1. Observe how the first attribute chosen for a decision test is the Outlook
attribute. To see why, let us first estimate the entropy of the class random variable
(PlayGolf?). This variable takes two values with probability 9/14 (for “Yes”) and
5/14 (for “No”). The entropy of a class random variable that takes on c values with
probabilities p1, p2, . . . , pc is given by:

c∑

i=1

−pi log2 pi

The entropy of PlayGolf? is thus

−(9/14) log2(9/14) − (5/14) log2(5/14)

or 0.940. This means that on average 0.940 bits must be transmitted to communicate
information about the PlayGolf? random variable. The goal of C4.5 tree induction is
to ask the right questions so that this entropy is reduced. We consider each attribute in
turn to assess the improvement in entropy that it affords. For a given random variable,
say Outlook, the improvement in entropy, represented as Gain(Outlook), is calculated
as:

Entropy(PlayGolf? in D) −
∑

v

|Dv|
|D| Entropy(PlayGolf? in Dv)

where v is the set of possible values (in this case, three values for Outlook), D denotes
the entire dataset, Dv is the subset of the dataset for which attribute Outlook has that
value, and the notation | · | denotes the size of a dataset (in the number of instances).

This calculation will show that Gain(Outlook) is 0.940−0.694 = 0.246. Similarly,
we can calculate that Gain(Windy) is 0.940 − 0.892 = 0.048. Working out the above
calculations for the other attributes systematically will reveal that Outlook is indeed
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6 C4.5

the best attribute to branch on. Observe that this is a greedy choice and does not take
into account the effect of future decisions. As stated earlier, the tree-growing continues
till termination criteria such as purity of subdatasets are met. In the above example,
branching on the value “Overcast” for Outlook results in a pure dataset, that is, all
instances having this value for Outlook have the value “Yes” for the class variable
PlayGolf?; hence, the tree is not grown further in that direction. However, the other two
values for Outlook still induce impure datasets. Therefore the algorithm recurses, but
observe that Outlook cannot be chosen again (why?). For different branches, different
test criteria and splits are chosen, although, in general, duplication of subtrees can
possibly occur for other datasets.

We mentioned earlier that the default splitting criterion is actually the gain ratio, not
the gain. To understand the difference, assume we treated the Day column in Figure 1.1
as if it were a “real” feature. Furthermore, assume that we treat it as a nominal valued
attribute. Of course, each day is unique, so Day is really not a useful attribute to
branch on. Nevertheless, because there are 14 distinct values for Day and each of
them induces a “pure” dataset (a trivial dataset involving only one instance), Day
would be unfairly selected as the best attribute to branch on. Because information
gain favors attributes that contain a large number of values, Quinlan proposed the
gain ratio as a correction to account for this effect. The gain ratio for an attribute a is
defined as:

GainRatio(a) = Gain(a)

Entropy(a)

Observe that entropy(a) does not depend on the class information and simply takes
into account the distribution of possible values for attribute a, whereas gain(a) does
take into account the class information. (Also, recall that all calculations here are
dependent on the dataset used, although we haven’t made this explicit in the notation.)
For instance, GainRatio(Outlook) = 0.246/1.577 = 0.156. Similarly, the gain ratio
for the other attributes can be calculated. We leave it as an exercise to the reader to
see if Outlook will again be chosen to form the root decision test.

At this point in the discussion, it should be mentioned that decision trees cannot
model all decision boundaries between classes in a succinct manner. For instance,
although they can model any Boolean function, the resulting tree might be needlessly
complex. Consider, for instance, modeling an XOR over a large number of Boolean
attributes. In this case every attribute would need to be tested along every path and
the tree would be exponential in size. Another example of a difficult problem for
decision trees are so-called “m-of-n” functions where the class is predicted by any
m of n attributes, without being specific about which attributes should contribute to
the decision. Solutions such as oblique decision trees, presented later, overcome such
drawbacks. Besides this difficulty, a second problem with decision trees induced by
C4.5 is the duplication of subtrees due to the greedy choice of attribute selection.
Beyond an exhaustive search for the best attribute by fully growing the tree, this
problem is not solvable in general.
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1.3 C4.5 Features

1.3.1 Tree Pruning

Tree pruning is necessary to avoid overfitting the data. To drive this point, Quinlan
gives a dramatic example in [30] of a dataset with 10 Boolean attributes, each of which
assumes values 0 or 1 with equal accuracy. The class values were also binary: “yes”
with probability 0.25 and “no” with probability 0.75. From a starting set of 1,000
instances, 500 were used for training and the remaining 500 were used for testing.
Quinlan observes that C4.5 produces a tree involving 119 nodes (!) with an error rate of
more than 35% when a simpler tree would have sufficed to achieve a greater accuracy.
Tree pruning is hence critical to improve accuracy of the classifier on unseen instances.
It is typically carried out after the tree is fully grown, and in a bottom-up manner.

The 1986 MIT AI lab memo authored by Quinlan [26] outlines the various choices
available for tree pruning in the context of past research. The CART algorithm uses
what is known as cost-complexity pruning where a series of trees are grown, each
obtained from the previous by replacing one or more subtrees with a leaf. The last
tree in the series comprises just a single leaf that predicts a specific class. The cost-
complexity is a metric that decides which subtrees should be replaced by a leaf
predicting the best class value. Each of the trees are then evaluated on a separate
test dataset, and based on reliability measures derived from performance on the test
dataset, a “best” tree is selected.

Reduced error pruning is a simplification of this approach. As before, it uses a
separate test dataset but it directly uses the fully induced tree to classify instances in
the test dataset. For every nonleaf subtree in the induced tree, this strategy evaluates
whether it is beneficial to replace the subtree by the best possible leaf. If the pruned tree
would indeed give an equal or smaller number of errors than the unpruned tree and the
replaced subtree does not itself contain another subtree with the same property, then
the subtree is replaced. This process is continued until further replacements actually
increase the error over the test dataset.

Pessimistic pruning is an innovation in C4.5 that does not require a separate test set.
Rather it estimates the error that might occur based on the amount of misclassifications
in the training set. This approach recursively estimates the error rate associated with
a node based on the estimated error rates of its branches. For a leaf with N instances
and E errors (i.e., the number of instances that do not belong to the class predicted
by that leaf), pessimistic pruning first determines the empirical error rate at the leaf
as the ratio (E +0.5)/N . For a subtree with L leaves and �E and �N corresponding
errors and number of instances over these leaves, the error rate for the entire subtree
is estimated to be (�E + 0.5 ∗ L)/�N . Now, assume that the subtree is replaced by
its best leaf and that J is the number of cases from the training set that it misclassifies.
Pessimistic pruning replaces the subtree with this best leaf if (J + 0.5) is within one
standard deviation of (�E + 0.5 ∗ L).

This approach can be extended to prune based on desired confidence intervals (CIs).
We can model the error rates e at the leaves as Bernoulli random variables and for
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Leaf predicting
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X1 X2 X3

T1 T2 T3
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X

Figure 1.3 Different choices in pruning decision trees. The tree on the left can be
retained as it is or replaced by just one of its subtrees or by a single leaf.

a given confidence threshold C I , an upper bound emax can be determined such that
e < emax with probability 1 − C I . (C4.5 uses a default CI of 0.25.) We can go even
further and approximate e by the normal distribution (for large N ), in which case
C4.5 determines an upper bound on the expected error as:

e + z2

2N + z
√

e
N − e2

N + z2

4N 2

1 + z2

N

(1.1)

where z is chosen based on the desired confidence interval for the estimation, assuming
a normal random variable with zero mean and unit variance, that is, N (0, 1)).

What remains to be presented is the exact way in which the pruning is performed.
A single bottom-up pass is performed. Consider Figure 1.3, which depicts the pruning
process midway so that pruning has already been performed on subtrees T1, T2, and
T3. The error rates are estimated for three cases as shown in Figure 1.3 (right). The
first case is to keep the tree as it is. The second case is to retain only the subtree
corresponding to the most frequent outcome of X (in this case, the middle branch).
The third case is to just have a leaf labeled with the most frequent class in the training
dataset. These considerations are continued bottom-up till we reach the root of the tree.

1.3.2 Improved Use of Continuous Attributes

More sophisticated capabilities for handling continuous attributes are covered by
Quinlan in [31]. These are motivated by the advantage shared by continuous-valued
attributes over discrete ones, namely that they can branch on more decision criteria
which might give them an unfair advantage over discrete attributes. One approach, of
course, is to use the gain ratio in place of the gain as before. However, we run into a
conundrum here because the gain ratio will also be influenced by the actual threshold
used by the continuous-valued attribute. In particular, if the threshold apportions the
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instances nearly equally, then the gain ratio is minimal (since the entropy of the vari-
able falls in the denominator). Therefore, Quinlan advocates going back to the regular
information gain for choosing a threshold but continuing the use of the gain ratio for
choosing the attribute in the first place. A second approach is based on Risannen’s
MDL (minimum description length) principle. By viewing trees as theories, Quinlan
proposes trading off the complexity of a tree versus its performance. In particular, the
complexity is calculated as both the cost of encoding the tree plus the exceptions to
the tree (i.e., the training instances that are not supported by the tree). Empirical tests
show that this approach does not unduly favor continuous-valued attributes.

1.3.3 Handling Missing Values

Missing attribute values require special accommodations both in the learning phase
and in subsequent classification of new instances. Quinlan [28] offers a comprehen-
sive overview of the variety of issues that must be considered. As stated therein, there
are three main issues: (i) When comparing attributes to branch on, some of which
have missing values for some instances, how should we choose an appropriate split-
ting attribute? (ii) After a splitting attribute for the decision test is selected, training
instances with missing values cannot be associated with any outcome of the decision
test. This association is necessary in order to continue the tree-growing procedure.
Therefore, the second question is: How should such instances be treated when dividing
the dataset into subdatasets? (iii) Finally, when the tree is used to classify a new in-
stance, how do we proceed down a tree when the tree tests on an attribute whose value
is missing for this new instance? Observe that the first two issues involve learning/
inducing the tree whereas the third issue involves applying the learned tree on new
instances. As can be expected, there are several possibilities for each of these ques-
tions. In [28], Quinlan presents a multitude of choices for each of the above three
issues so that an integrated approach to handle missing values can be obtained by
specific instantiations of solutions to each of the above issues. Quinlan presents a
coding scheme in [28] to design a combinatorial strategy for handling missing values.

For the first issue of evaluating decision tree criteria based on an attribute a, we
can: (I) ignore cases in the training data that have a missing value for a; (C) substitute
the most common value (for binary and categorical attributes) or by the mean of the
known values (for numeric attributes); (R) discount the gain/gain ratio for attribute a
by the proportion of instances that have missing values for a; or (S) “fill in” the missing
value in the training data. This can be done either by treating them as a distinct, new
value, or by methods that attempt to determine the missing value based on the values
of other known attributes [28]. The idea of surrogate splits in CART (see Chapter 10)
can be viewed as one way to implement this last idea.

For the second issue of partitioning the training set while recursing to build the
decision tree, if the tree is branching on a for which one or more training instances
have missing values, we can: (I) ignore the instance; (C) act as if this instance had the
most common value for the missing attribute; (F) assign the instance, fractionally, to
each subdataset, in proportion to the number of instances with known values in each
of the subdataset; (A) assign it to all subdatasets; (U) develop a separate branch of
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10 C4.5

the tree for cases with missing values for a; or (S) determine the most likely value
of a (as before, using methods referenced in [28]) and assign it to the corresponding
subdataset. In [28], Quinlan offers a variation on (F) as well, where the instance is
assigned to only one subdataset but again proportionally to the number of instances
with known values in that subdataset.

Finally, when classifying instances with missing values for attribute a, the options
are: (U) if there is a separate branch for unknown values for a, follow the branch;
(C) branch on the most common value for a; (S) apply the test as before from [28] to
determine the most likely value of a and branch on it; (F) explore all branchs simul-
taneously, combining their results to denote the relative probabilities of the different
outcomes [27]; or (H) terminate and assign the instance to the most likely class.

As the reader might have guessed, some combinations are more natural, and other
combinations do not make sense. For the proportional assignment options, as long
as the weights add up to 1, there is a natural way to generalize the calculations of
information gain and gain ratio.

1.3.4 Inducing Rulesets

A distinctive feature of C4.5 is its ability to prune based on rules derived from the
induced tree. We can model a tree as a disjunctive combination of conjunctive rules,
where each rule corresponds to a path in the tree from the root to a leaf. The antecedents
in the rule are the decision conditions along the path and the consequent is the predicted
class label. For each class in the dataset, C4.5 first forms rulesets from the (unpruned)
tree. Then, for each rule, it performs a hill-climbing search to see if any of the
antecedents can be removed. Since the removal of antecedents is akin to “knocking
out” nodes in an induced decision tree, C4.5’s pessimistic pruning methods are used
here. A subset of the simplified rules is selected for each class. Here the minimum
description length (MDL) principle is used to codify the cost of the theory involved
in encoding the rules and to rank the potential rules. The number of resulting rules
is typically much smaller than the number of leaves (paths) in the original tree. Also
observe that because all antecedents are considered for removal, even nodes near the
top of the tree might be pruned away and the resulting rules may not be compressible
back into one compact tree. One disadvantage of C4.5 rulesets is that they are known
to cause rapid increases in learning time with increases in the size of the dataset.

1.4 Discussion on Available Software Implementations

J. Ross Quinlan’s original implementation of C4.5 is available at his personal site:
http://www.rulequest.com/Personal/. However, this implementation is copyrighted
software and thus may be commercialized only under a license from the author.
Nevertheless, the permission granted to individuals to use the code for their personal
use has helped make C4.5 a standard in the field. Many public domain implementations
of C4.5 are available, for example, Ronny Kohavi’s MLC++ library [17], which is now

© 2009 by Taylor & Francis Group, LLC
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part of SGI’s Mineset data mining suite, and the Weka [35] data mining suite from the
University of Waikato, New Zealand (http://www.cs.waikato.ac.nz/ml/weka/). The
(Java) implementation of C4.5 in Weka is referred to as J48. Commercial implemen-
tations of C4.5 include ODBCMINE from Intelligent Systems Research, LLC, which
interfaces with ODBC databases and Rulequest’s See5/C5.0, which improves upon
C4.5 in many ways and which also comes with support for ODBC connectivity.

1.5 Two Illustrative Examples

1.5.1 Golf Dataset

We describe in detail the function of C4.5 on the golf dataset. When run with the
default options, that is:

>c4.5 -f golf

C4.5 produces the following output:

C4.5 [release 8] decision tree generator Wed Apr 16 09:33:21 2008
----------------------------------------

Options:
File stem <golf>

Read 14 cases (4 attributes) from golf.data

Decision Tree:

outlook = overcast: Play (4.0)
outlook = sunny:
| humidity <= 75 : Play (2.0)
| humidity > 75 : Don't Play (3.0)
outlook = rain:
| windy = true: Don't Play (2.0)
| windy = false: Play (3.0)

Tree saved

Evaluation on training data (14 items):

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

8 0( 0.0%) 8 0( 0.0%) (38.5%) <<
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12 C4.5

Referring back to the output from C4.5, observe the statistics presented toward the
end of the run. They show the size of the tree (in terms of the number of nodes, where
both internal nodes and leaves are counted) before and after pruning. The error over
the training dataset is shown for both the unpruned and pruned trees as is the estimated
error after pruning. In this case, as is observed, no pruning is performed.

The-v option for C4.5 increases the verbosity level and provides detailed, step-by-
step information about the gain calculations. The c4.5rules software uses similar
options but generates rules with possible postpruning, as described earlier. For the golf
dataset, no pruning happens with the default options and hence four rules are output
(corresponding to all but one of the paths of Figure 1.2) along with a default rule.

The induced trees and rules must then be applied on an unseen “test” dataset to
assess its generalization performance. The -u option of C4.5 allows the provision of
test data to evaluate the performance of the induced trees/rules.

1.5.2 Soybean Dataset

Michalski’s Soybean dataset is a classical machine learning test dataset from the UCI
Machine Learning Repository [3]. There are 307 instances with 35 attributes and
many missing values. From the description in the UCI site:

There are 19 classes, only the first 15 of which have been used in prior
work. The folklore seems to be that the last four classes are unjustified
by the data since they have so few examples. There are 35 categorical
attributes, some nominal and some ordered. The value “dna” means does
not apply. The values for attributes are encoded numerically, with the
first value encoded as “0,” the second as “1,” and so forth. An unknown
value is encoded as “?.”

The goal of learning from this dataset is to aid soybean disease diagnosis based on
observed morphological features.

The induced tree is too complex to be illustrated here; hence, we depict the evalu-
ation of the tree size and performance before and after pruning:

Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate

177 15( 2.2%) 105 26( 3.8%) (15.5%) <<

As can be seen here, the unpruned tree does not perfectly classify the training data
and significant pruning has happened after the full tree is induced. Rigorous evalua-
tion procedures such as cross-validation must be applied before arriving at a “final”
classifier.
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1.6 Advanced Topics

With the massive data emphasis of modern data mining, many interesting research
issues in mining tree/rule-based classifiers have come to the forefront. Some are
covered here and some are described in the exercises. Proceedings of conferences
such as KDD, ICDM, ICML, and SDM showcase the latest in many of these areas.

1.6.1 Mining from Secondary Storage

Modern datasets studied in the KDD community do not fit into main memory
and hence implementations of machine learning algorithms have to be completely
rethought in order to be able to process data from secondary storage. In particular,
algorithms are designed to minimize the number of passes necessary for inducing a
classifer. The BOAT algorithm [14] is based on bootstrapping. Beginning from a small
in-memory subset of the original dataset, it uses sampling to create many trees, which
are then overlaid on top of each other to obtain a tree with “coarse” splitting criteria.
This tree is then refined into the final classifier by conducting one complete scan over
the dataset. The Rainforest framework [15] is an integrated approach to instantiate
various choices of decision tree construction and apply them in a scalable manner
to massive datasets. Other algorithms aimed at mining from secondary storage are
SLIQ [21], SPRINT [34], and PUBLIC [33].

1.6.2 Oblique Decision Trees

An oblique decision tree, suitable for continuous-valued data, is so named because
its decision boundaries can be arbitrarily positioned and angled with respect to the
coordinate axes (see also Exercise 2 later). For instance, instead of a decision criterion
such as a1 ≤ 6? on attribute a1, we might utilize a criterion based on two attributes in
a single node, such as 3a1 − 2a2 ≤ 6? A classic reference on decision trees that use
linear combinations of attributes is the OC1 system described in Murthy, Kasif, and
Salzberg [22], which acknowledges CART as an important basis for OC1. The basic
idea is to begin with an axis-parallel split and then “perturb” it in order to arrive at a
better split. This is done by first casting the axis-parallel split as a linear combination of
attribute values and then iteratively adjusting the coefficients of the linear combination
to arrive at a better decision criterion. Needless to say, issues such as error estimation,
pruning, and handling missing values have to be revisited in this context. OC1 is a
careful combination of hill climbing and randomization to tweaking the coefficients.
Other approaches to inducing oblique decision trees are covered in, for instance, [5].

1.6.3 Feature Selection

Thus far, we have not highlighted the importance of feature selection as an important
precursor to supervised learning using trees and/or rules. Some features could be
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irrelevant to predicting the given class and still other features could be redundant
given other features. Feature selection is the idea of narrowing down on a smaller
set of features for use in induction. Some feature selection methods work in concert
with specific learning algorithms whereas methods such as described in Koller and
Sahami [18] are learning algorithm-agnostic.

1.6.4 Ensemble Methods

Ensemble methods have become a mainstay in the machine learning and data mining
literature. Bagging and boosting (see Chapter 7) are popular choices. Bagging is based
on random resampling, with replacement, from the training data, and inducing one tree
from each sample. The predictions of the trees are then combined into one output, for
example, by voting. In boosting [12], as studied in Chapter 7, we generate a series of
classifiers, where the training data for one is dependent on the classifier from the pre-
vious step. In particular, instances incorrectly predicted by the classifier in a given step
are weighted more in the next step. The final prediction is again derived from an aggre-
gate of the predictions of the individual classifiers. The C5.0 system supports a variant
of boosting, where an ensemble of classifiers is constructed and which then vote to
yield the final classification. Opitz and Maclin [23] present a comparison of ensemble
methods for decision trees as well as neural networks. Dietterich [8] presents a com-
parison of these methods with each other and with “randomization,” where the internal
decisions made by the learning algorithm are themselves randomized. The alternating
decision tree algorithm [11] couples tree-growing and boosting in a tighter manner:
In addition to the nodes that test for conditions, an alternating decision tree introduces
“prediction nodes” that add to a score that is computed alongside the path from the
root to a leaf. Experimental results show that it is as robust as boosted decision trees.

1.6.5 Classification Rules

There are two distinct threads of research that aim to identify rules for classification
similar in spirit to C4.5 rules. They can loosely be classified based on their origins: as
predictive versus descriptive classifiers, but recent research has blurred the boundaries.

The predictive line of research includes algorithms such as CN2 [6] and RIPPER [7].
These algorithms can be organized as either bottom-up or top-down approaches and
are typically organized as “sequential discovery” paradigms where a rule is mined,
instances covered by the rule are removed from the training set, a new rule is induced,
and so on. In a bottom-up approach, a rule is induced by concatenating the attribute
and class values of a single instance. The attributes forming the conjunction of the
rule are then systematically removed to see if the predictive accuracy of the rule is
improved. Typically a local, beam search is conducted as opposed to a global search.
After this rule is added to the theory, examples covered by the rule are removed, and a
new rule is induced from the remaining data. Analogously, a top-down approach starts
with a rule that has an empty antecedent predicting a class value and systematically
adds attribute-tests to identify a suitable rule.
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The descriptive line of research originates from association rules, a popular tech-
nique in the KDD community [1, 2] (see Chapter 4). Traditionally, associations are
between two sets, X and Y , of items, denoted by X → Y , and evaluated by measures
such as support (the fraction of instances in the dataset that have both X and Y ) and
confidence (the fraction of instances with X that also have Y ). The goal of associ-
ation rule mining is to find all associations satisfying given support and confidence
thresholds. CBA (Classification based on Association Rules) [20] is an adaptation
of association rules to classification, where the goal is to determine all association
rules that have a certain class label in the consequent. These rules are then used to
build a classifier. Pruning is done similarly to error estimation methods in C4.5. The
key difference between CBA and C4.5 is the exhaustive search for all possible rules
and efficient algorithms adapted from association rule mining to mine rules. This
thread of research is now an active one in the KDD community with new variants and
applications.

1.6.6 Redescriptions

Redescriptions are a generalization of rules to equivalences, introduced in [32]. As
the name indicates, to redescribe something is to describe anew or to express the
same concept in a different vocabulary. Given a vocabulary of descriptors, the goal of
redescription mining is to construct two expressions from the vocabulary that induce
the same subset of objects. The underlying premise is that sets that can indeed be
defined in (at least) two ways are likely to exhibit concerted behavior and are, hence,
interesting. The CARTwheels algorithm for mining redescriptions grows two C4.5-
like trees in opposite directions such that they are matched at the leaves. Essentially,
one tree exposes a partition of objects via its choice of subsets and the other tree
tries to grow to match this partition using a different choice of subsets. If partition
correspondence is established, then paths that join can be read off as redescriptions.
CARTwheels explores the space of possible tree matchings via an alternation process
whereby trees are repeatedly regrown to match the partitions exposed by the other
tree. Redescription mining has since been generalized in many directions [19, 24, 37].

1.7 Exercises

1. Carefully quantify the big-Oh time complexity of decision tree induction with
C4.5. Describe the complexity in terms of the number of attributes and the
number of training instances. First, bound the depth of the tree and then cast
the time required to build the tree in terms of this bound. Assess the cost of
pruning as well.

2. Design a dataset with continuous-valued attributes where the decision boundary
between classes is not isothetic, that is, it is not parallel to any of the coordinate
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axes. Apply C4.5 on this dataset and comment on the quality of the induced
trees. Take factors such as accuracy, size of the tree, and comprehensibility into
account.

3. An alternative way to avoid overfitting is to restrict the growth of the tree rather
than pruning back a fully grown tree down to a reduced size. Explain why such
prepruning may not be a good idea.

4. Prove that the impurity measure used by C45 (i.e., entropy) is concave. Why is
it important that it be concave?

5. Derive Equation (1.1). As stated in the text, use the normal approximation to
the Bernoulli random variable modeling the error rate.

6. Instead of using information gain, study how decision tree induction would be
affected if we directly selected the attribute with the highest prediction accuracy.
Furthermore, what if we induced rules with only one antecedent? Hint: You
are retracing the experiments of Robert Holte as described in R. Holte, Very
Simple Classification Rules Perform Well on Most Commonly Used Datasets,
Machine Learning, vol. 11, pp. 63–91, 1993.

7. In some machine learning applications, attributes are set-valued, for example, an
object can have multiple colors and to classify the object it might be important to
model color as a set-valued attribute rather than as an instance-valued attribute.
Identify decision tests that can be performed on set-valued attributes and explain
which can be readily incorporated into the C4.5 system for growing decision
trees.

8. Instead of classifying an instance into a single class, assume our goal is to obtain
a ranking of classes according to the (posterior) probability of membership of
the instance in various classes. Read F. Provost and P. Domingos, Tree Induction
for Probability Based Ranking, Machine Learning, vol. 52, no. 3, pp. 199–215,
2003, who explain why the trees induced by C4.5 are not suited to providing
reliable probability estimates; they also suggest some ways to fix this problem
using probability smoothing methods. Do these same objections and solution
strategy apply to C4.5 rules as well? Experiment with datasets from the UCI
repository.

9. (Adapted from S. Nijssen and E. Fromont, Mining Optimal Decision Trees
from Itemset Lattices, Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 530–539, 2007.)
The trees induced by C4.5 are driven by heuristic choices but assume that our
goal is to identify an optimal tree. Optimality can be posed in terms of various
considerations; two such considerations are the most accurate tree up to a
certain maximum depth and the smallest tree in which each leaf covers at least
k instances and the expected accuracy is maximized over unseen examples.
Describe an efficient algorithm to induce such optimal trees.

10. First-order logic is a more expressive notation than the attribute-value repre-
sentation considered in this chapter. Given a collection of first-order relations,
describe how the basic algorithmic approach of C4.5 can be generalized to use
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first-order features. Your solution must allow the induction of trees or rules of
the form:

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

that is, X is a grandparent of Z if there exists Y such that Y is the parent of
X and Z is the parent of Y. Several new issues result from the choice of first-
order logic as the representational language. First, unlike the attribute value
situation, first-order features (such as parent(X,Y)) are not readily given
and must be generalized from the specific instances. Second, it is possible to
obtain nonsensical trees or rules if the variables participate in the head of a rule
but not the body, for example:

grandparent(X,Y) :- parent(X,Z).

Describe how you can place checks and balances into the induction process
so that a complete first-order theory can be induced from data. Hint: You are
exploring the field of inductive logic programming [9], specifically, algorithms
such as FOIL [29].
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