
Chapter 3

SVM: Support Vector Machines

Hui Xue, Qiang Yang, and Songcan Chen

Contents

3.1 Support Vector Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 SVC with Soft Margin and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Support Vector Regressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Software Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Current and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Kernel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.3 Generalization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.4 Structural SVM Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Support vector machines (SVMs), including support vector classifier (SVC) and sup-
port vector regressor (SVR), are among the most robust and accurate methods in
all well-known data mining algorithms. SVMs, which were originally developed by
Vapnik in the 1990s [1–11], have a sound theoretical foundation rooted in statisti-
cal learning theory, require only as few as a dozen examples for training, and are
often insensitive to the number of dimensions. In the past decade, SVMs have been
developed at a fast pace both in theory and practice.

3.1 Support Vector Classifier

For a two-class linearly separable learning task, the aim of SVC is to find a hyperplane
that can separate two classes of given samples with a maximal margin which has been
proved able to offer the best generalization ability. Generalization ability refers to
the fact that a classifier not only has good classification performance (e.g., accuracy)
on the training data, but also guarantees high predictive accuracy for the future data
from the same distribution as the training data.

37

© 2009 by Taylor & Francis Group, LLC



38 SVM: Support Vector Machines

Optimal Hyperplane 
wTx+b = 0 

x2

x1
r *

r *

ρ

Figure 3.1 Illustration of the optimal hyperplane in SVC for a linearly separable
case.

Intuitively, a margin can be defined as the amount of space, or separation, between
the two classes as defined by a hyperplane. Geometrically, the margin corresponds
to the shortest distance between the closest data points to any point on the hyper-
plane. Figure 3.1 illustrates a geometric construction of the corresponding optimal
hyperplane under the above conditions for a two-dimensional input space.

Let w and b denote the weight vector and bias in the optimal hyperplane, respec-
tively. The corresponding hyperplane can be defined as

wT x + b = 0 (3.1)

The desired directionally geometrical distance from the sample x to the optimal
hyperplane [12,13] is

r = g(x)

‖w‖ (3.2)

where g(x) = wT x + b is the discriminant function [7] as defined by the hyperplane
and also called x’s functional margin given w and b.

Consequently, SVC aims to find the parameters w and b for an optimal hyperplane
in order to maximize the margin of separation [ρ in Equation (3.5)] that is determined
by the shortest geometrical distances r∗ from the two classes, respectively, thus SVC
is also called maximal margin classifier. Now without loss of generality, we fix the
functional margin [7] to be equal to 1; that is, given a training set {xi , yi }n

i=1 ∈
Rm × {±1}, we have

wT xi + b ≥ 1 for yi = +1

wT xi + b ≤ −1 for yi = −1
(3.3)

© 2009 by Taylor & Francis Group, LLC



3.1 Support Vector Classifier 39

The particular data points (xi , yi ) for which the equalities of the first or second parts
in Equation (3.3) are satisfied are called support vectors, which are exactly the closest
data points to the optimal hyperplane [13]. Then, the corresponding geometrical
distance from the support vector x∗ to the optimal hyperplane is

r∗ = g(x∗)

‖w‖ =

⎧
⎪⎪⎨

⎪⎪⎩

1

‖w‖ if y∗ = +1

− 1

‖w‖ if y∗ = −1

(3.4)

From Figure 3.1, clearly the margin of separation ρ is

ρ = 2r∗ = 2

‖w‖ (3.5)

To ensure that the maximum margin hyperplane can be found, SVC attempts to
maximize ρ with respect to w and b:

max
w,b

2

‖w‖
s.t. yi

(
wT xi + b

) ≥ 1, i = 1, . . . , n

(3.6)

Equivalently,

min
w,b

1

2
‖w‖2

s.t. yi (wT xi + b) ≥ 1, i = 1, . . . , n

(3.7)

Here, we often use ‖w‖2 instead of ‖w‖ for the convenience of carrying out the
subsequent optimization steps.

Generally, we solve the constrained optimization problem in Equation (3.7), known
as the primal problem, by using the method of Lagrange multipliers. We construct
the following Lagrange function:

L(w, b, α) = 1

2
wT w −

n∑

i=1

αi
[
yi

(
wT xi + b

) − 1
]

(3.8)

where αi is the Lagrange multiplier with respect to the i th inequality.
Differentiating L(w, b, α) with respect to w and b, and setting the results equal to

zero, we get the following two conditions of optimality:
⎧
⎪⎪⎨

⎪⎪⎩

∂L(w, b, α)

∂w
= 0

∂L(w, b, α)

∂b
= 0

(3.9)

© 2009 by Taylor & Francis Group, LLC



40 SVM: Support Vector Machines

Then we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w =
n∑

i=1

αi yi xi

n∑

i=1

αi yi = 0

(3.10)

Substituting Equation (3.10) into the Lagrange function Equation (3.8), we can get
the corresponding dual problem:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j xT
i x j

s.t.
n∑

i=1

αi yi = 0

αi ≥ 0, i = 1, . . . , n (3.11)

And at the same time, the Karush-Kuhn-Tucker complementary condition is

αi
[
yi

(
wT xi + b

) − 1
] = 0, i = 1, . . . , n (3.12)

Consequently, only the support vectors (xi , yi ) that are the closest data points to the
optimal hyperplane and determine the maximal margin, correspond to the nonzero
αi s. All the other αi s equal zero.

The dual problem in Equation (3.11) is a typical convex quadratic programming
optimization problem. In many cases, it can efficiently converge to the global optimum
by adopting some appropriate optimization techniques, such as the sequential minimal
optimization (SMO) algorithm [7].

After determining the optimal Lagrange multipliers α∗
i , we can compute the optimal

weight vector w∗ by Equation (3.10):

w∗ =
n∑

i=1

α∗
i yi xi (3.13)

Then, taking advantage of a positive support vector xs , the corresponding optimal
bias b∗ can be written as [13]:

b∗ = 1 − w∗T xs for ys = +1 (3.14)

© 2009 by Taylor & Francis Group, LLC



3.2 SVC with Soft Margin and Optimization 41

3.2 SVC with Soft Margin and Optimization

Maximal margin SVC, including the following SVR, represents the original starting
point of the SVM algorithms. However, in many real-world problems, it may be too
rigid to require that all points are linearly separable, especially in many complex
nonlinear classification cases. When the samples cannot be completely linearly sep-
arated, the margins may be negative. In these cases, the feasible region of the primal
problem is empty, and thus the corresponding dual problem is an unbounded objective
function. This makes it impossible to solve the optimization problem [7].

To solve these inseparable problems, we generally adopt two approaches. The first
one is to relax the rigid inequalities in Equation (3.7) and thus lead to so-called
soft margin optimization. Another method is to apply the kernel trick to linearize
those nonlinear problems. In this section, we first introduce soft margin optimization.
Consequently, relative to the soft margin SVC, we usually name SVC derived from
the optimization problem [Equation (3.7)] the hard margin SVC.

Imagine the cases where there are a few points of the opposite classes mixed together
in the data. These points represent the training error that exists even for the maximum
margin hyperplane. The “soft margin” idea aims to extend the SVC algorithm so
that the hyperplane allows a few of such noisy data to exist. In particular, a slack
variable ξi is introduced to account for the amount of a violation of classification by
the classifier:

min
w,b

1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi
(
wT xi + b

) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , n (3.15)

where the parameter C controls the trade-off between complexity of the machine and
the number of inseparable points. It may be viewed as a “regularization” parameter
and selected by the user either experimentally or analytically.

The slack variable ξi has a direct geometric explanation through the distance from
a misclassified data instance to the hyperplane. This distance measures the deviation
of a sample from the ideal condition of pattern separability. Using the same method
of Lagrange multipliers that are introduced in the above section, we can formulate
the dual problem of the soft margin as:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j xT
i x j

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C, i = 1, . . . , n (3.16)

© 2009 by Taylor & Francis Group, LLC



42 SVM: Support Vector Machines

Comparing Equation (3.11) with Equation (3.16), it is noteworthy that the slack
variables ξi s do not appear in the dual problem. The major difference between the
linearly inseparable and separable cases is that the constraint αi ≥ 0 is replaced with
the more stringent constraint 0 ≤ αi ≤ C . Otherwise, the two cases are similar,
including the computations of the optimal values of the weight vector w and bias b,
especially the definition of the support vectors [7,13].

The Karush-Kuhn-Tucker complementary condition in the inseparable case is

αi
[
yi

(
wT xi + b

) − 1 + ξi
] = 0, i = 1, . . . , n (3.17)

and

γiξi = 0, i = 1, . . . , n (3.18)

where γi s are the Lagrange multipliers corresponding to ξi that have been introduced
to enforce the nonnegativity of ξi [13]. At the saddle point at which the derivative of
the Lagrange function for the primal problem with respect to ξi is zero, the evaluation
of the derivative yields

αi + γi = C (3.19)

Combining Equations (3.18) and (3.19), we have

ξi = 0 if αi < C (3.20)

Consequently, we have the optimal weight w∗ as follows:

w∗ =
n∑

i=1

α∗
i yi xi (3.21)

The optimal bias b∗ can be obtained by taking any data point (xi , yi ) in the training
set for which we have 0 < α∗

i < C and the corresponding ξi = 0, and using the data
point in Equation (3.17) [13].

3.3 Kernel Trick

The kernel trick is another commonly used technique to solve linearly inseparable
problems. The issue is to define an appropriate kernel function based on the inner
product between the given data, as a nonlinear transformation of data from the input
space to a feature space with higher (even infinite) dimension in order to make the
problems linearly separable. The underlying justification can be found in Cover’s the-
orem on the separability of patterns; that is, a complex pattern classification problem
cast in a high-dimensional space nonlinearly is more likely to be linearly separable
than in a low-dimensional space [13].

© 2009 by Taylor & Francis Group, LLC



3.3 Kernel Trick 43

Let Φ : X → H denote a nonlinear transformation from the input space X ⊂ Rm

to the feature space H where the problem can be linearly separable. We may define
the corresponding optimal hyperplane as follows:

wΦT Φ(x) + b = 0 (3.22)

Without loss of generality, we set the bias b = 0, and simplify Equation (3.22) as:

wΦT Φ(x) = 0 (3.23)

Similar to the linear separable cases, we seek the optimal weight vector wΦ∗ in
the feature space in virtue of the similar Lagrange multiplier method, and obtain:

wΦ∗ =
n∑

i=1

α∗
i yiΦ(xi ) (3.24)

Thus, the optimal hyperplane computed in the feature space is:

n∑

i=1

α∗
i yiΦT (xi )Φ(x) = 0 (3.25)

The term ΦT (xi )Φ(x) represents the inner product of two vectors, Φ(x) and Φ(xi ).
Hence, here we deduce the inner product kernel function:

Definition 3.3.1 (Inner Product Kernel) [7]. Kernel is a function K(x, x′), for all
x, x′ ∈ X ⊂ Rm , satisfied:

K(x, x′) = ΦT (x)Φ(x′) (3.26)

where Φ is a transformation from the input space X to the feature space H.

The significance of the kernel is that we may use it to construct the optimal hy-
perplane in the feature space without having to consider the concrete form of the
transformation Φ, which usually need not be explicitly formulated in the higher di-
mension (even infinite) feature space. As a result, the application of the kernel can
make the algorithm insensitive to the dimension, so as to train a linear classifier in a
space with higher dimension to solve linearly inseparable problems efficiently. This is
done by using K(xi , x) in Equation (3.25) to substitute ΦT (xi )Φ(x); then the optimal
hyperplane is:

n∑

i=1

α∗
i yi K(xi ,x) = 0 (3.27)

As indicated, the kernel trick is an appealing method for simplifying the computa-
tion, by which we can avoid computing the complex feature space directly not only
in the computation of the inner products but also in the design of the classifier.

© 2009 by Taylor & Francis Group, LLC



44 SVM: Support Vector Machines

However, before implementing the kernel trick, we should consider how to con-
struct a kernel function, that is, a kernel function should satisfy which characteristics.
To answer this question, we first introduce Mercer’s theorem, which characterizes the
property of a function K(x, x′) for when it is considered a true kernel function:

Theorem 3.3.2 Mercer’s Theorem [13] Let K(x, x′) be a continuous symmetric
kernel that is defined in the closed interval a ≤ x ≤ b and likewise for x′. The kernel
K(x, x′) can be expanded in the series

K(x, x′) =
∞∑

i=1

λiϕi (x)ϕi (x′) (3.28)

with positive coefficients, λi > 0 for all i . For this expansion to be valid and for it to
converge, it is necessary and sufficient that the condition

∫ a

b

∫ a

b
K(x, x′)ψ(x)ψ(x′) dx dx′ ≥ 0 (3.29)

holds for all ψ(·) for which

∫ a

b
ψ2(x) dx < ∞ (3.30)

In light of the theorem, we can summarize the most useful characteristic in the
construction of the kernel, which is termed Mercer kernel. That is, for any random
limited subsets belonging to the input space X, the corresponding matrix constructed
by the kernel function K(x, x′)

K = (
K

(
xi , x′

j

))n

i, j=1 (3.31)

is a symmetric and semidefinite matrix, which is called a Gram matrix [7].
Under this requirement, there is still some freedom in how to choose a kernel

function in practice. For example, besides linear kernel functions, we can also define
polynomial or radial basis kernel functions. More studies in recent years have gone into
the research of different kernels for SVC classification and for many other statistical
tests. We will mention these in the following section.

In Section 3.2, we introduced the soft margin SVC to solve linearly inseparable
problems. Compared with the kernel trick, it is obvious that the two approaches actu-
ally solve the problems in different manners. The soft margin slackens the constraints
in the original input space and allows some errors to exist. However, when the prob-
lem is heavily linearly inseparable and the misclassified error is too high, the soft
margin is unworkable. The kernel trick maps the data to a high-dimension feature
space implicitly by the kernel function in order to make the inseparable problems
separable. However, in fact the kernel trick cannot always guarantee the problems to
be absolutely linearly separable due to the complexity of the problems. Therefore,

© 2009 by Taylor & Francis Group, LLC



3.3 Kernel Trick 45

in practice we often integrate them to exert the different advantages of the two tech-
niques and solve the linearly inseparable problems more efficiently. As a result, the
corresponding dual form for the constrained optimization problem in the kernel soft
margin SVC is as follows:

max
α

W (α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j K(xi , x j )

s.t.
n∑

i=1

αi yi = 0

0 ≤ αi ≤ C, i = 1, . . . , n (3.32)

Following the similar Lagrange multipliers method, we can obtain the optimal
classifier:

f (x) =
n∑

i=1

α∗
i yi K(xi , x) + b∗ (3.33)

where b∗ = 1 − ∑n
i=1 α∗

i yi K(xi , xs), for a positive support vector ys = +1.

Example 3.3.3 (Illustrative Example) The XOR problem is a typical extremely
linearly inseparabe problem in classification. Here we use it to illustrate the signifi-
cance of the soft margin SVC combined with kernel trick in the complex classification
problems. A two-dimensional XOR dataset can be randomly generated under four
different Gaussian distributions, where “*” and “•” denote the samples in the two
classes, respectively.

As shown in Figure 3.2a, the hard margin SVC in the linear kernel completely
fails in the XOR problem. A linear boundary cannot discriminate the two classes and
can be seen to divide all the samples into two parts. This clearly cannot achieve the
classification objective for the problem. Consequently, we use the soft margin SVC
combined with a radial basis kernel to solve the problem

K(xi , x) = exp

(

−‖x − xi‖2

σ 2

)

We fix the regularization parameter C = 1 and the kernel parameter or bandwidth
σ = 1. The corresponding discriminant boundary is presented in Figure 3.2b. By
using the kernel trick, the boundary is no longer linear, for it now encloses only one
class. By judging the samples inside or outside the boundary, the classifier can be
seen to classify the samples accurately.

Example 3.3.4 Real Application Example SVC algorithm has been widely ap-
plied in many important scientific fields, such as bioinformatics, physics, chemistry,
iatrology, astronomy, and so on. Here we carefully select five datasets in the iatrology
area from the UCI Machine Learning Repository (http://ida.first.fraunhofer.de/
projects/bench/benchmarks.htm) to illustrate real applications of SVC. The five

© 2009 by Taylor & Francis Group, LLC



46 SVM: Support Vector Machines

12

10

8

6

4

2

0

‒2

‒4

‒6

‒8‒8 ‒6 ‒4 ‒2 0 2

(a)

4 6 8 10 12
k

y

12

10

8

6

4

2

0

‒2

‒4

‒6

‒8‒8 ‒6 ‒4 ‒2 0 2

(b)

4 6 8 10 12
k

y

Figure 3.2 The discriminant boundaries of SVC in the XOR problem. (a) The hard
margin SVC in the linear kernel. (b) The soft margin SVC in the radial basis kernel.

© 2009 by Taylor & Francis Group, LLC



3.4 Theoretical Foundations 47

TABLE 3.1 Results of the SVC Algorithm for the Five Datasets

Dataset Dimension Training Testing C σ SV Accuracy

B.-cancer 9 200 77 1.519e+01 5.000e+01 138.80 0.7396±4.74
Diabetes 8 468 300 1.500e+01 2.000e+01 308.60 0.7647±1.73
Heart 13 170 100 3.162e+00 1.200e+02 86.00 0.8405±3.26
Thyroid 5 140 75 1.000e+01 3.000e+00 45.80 0.9520±2.19
Splice 60 1000 2175 1.000e+03 7.000e+01 762.40 0.8912±0.66

datasets, respectively, are B.-cancer (breast cancer Wisconsin data), diabetes (Pima
Indians diabetes data), heart (heart data), thyroid (thyroid disease data), and splice
(splice-junction gene sequences data).

The two to four columns of Table 3.1 summarize some characteristics about the
datasets, where Dimension denotes the dimension of the samples, and Training and
Testing denote the numbers of the training and testing samples in each dataset. We
perform independently repeated 100 runs and 20 runs, respectively, for the first four
datasets and splice dataset, which have been offered by the database. Then the av-
erage experimental results of the SVC algorithm have been reported in the five to
eight columns of Table 3.1. C and σ are the optimal regularization and kernel param-
eters selected by the cross-validation. SV is the average number of support vectors.
Accuracy denotes the corresponding classification accuracies and variances.

As shown in Table 3.1, the values of SV are typically less than the numbers of
training samples, which validates the good sparsity of the algorithm. Furthermore, the
high accuracies show the good classification performance; meanwhile, the relatively
low variances show the good stability of SVC in the real applications.

3.4 Theoretical Foundations

In the above sections, we have described the SVC algorithm both in the linearly
separable and inseparable cases. The introduction of the kernel trick further improves
the expression performance of the classifier, which can keep the inherent linear prop-
erty in a high-dimensional feature space and avoid the possible curse of dimension.
In this section, we will discuss the theoretical foundation of the SVC. By the Vapnik-
Chervonenkis (VC) theory [4,5], we will first present a general error bound of a linear
classifier which can guide globally how to control the classifier complexity. We will
then deduce a concrete generalization bound of the SVC to explain the significance
of the maximum margin in the SVC to guarantee the good generalization capacity of
the algorithm.

The VC theory generalizes the probably approximately correct (PAC) learning
model in statistical learning and directly leads to the proposal of the SVMs. It provides

© 2009 by Taylor & Francis Group, LLC



48 SVM: Support Vector Machines

an analytical generalization bound that can be used for estimating generalization error
by defining a new measure of complexity, known as the VC dimension [14,15].

Concretely, assume that training and testing data are generated according to a fixed
but unknown probability distribution D, we define the error errD(h) of a classification
function h on the D as

errD(h) = D{(x, y) : h(x) �= y} (3.34)

which measures the expected error [7].
PAC models bound the distribution of the generalization error random variable

errD(hs) and the corresponding PAC bound has the form ε = ε(n, H, δ); that is, a
PAC model considers that in the hypothesis hs , the probability of the error in the
training data S satisfies [7]:

Dn{S : errD(hs) > ε(n, H, δ)} < δ (3.35)

If there are |H | hypotheses having large errors in the set S, then the PAC bound is

ε = ε(n, H, δ) = 1

n
ln

|H |
δ

(3.36)

PAC bound presents that the function class H can directly influence the error
bound. VC theory further generalizes the PAC bound to the unlimited function class
and introduces the concept of the VC dimension d. The VC dimension d measures
the maximum number of training data where the function class can still be used to
learn perfectly, by obtaining zero error rates on the training data, for any assignment
of class labels to these points. Then the generalized PAC bound of a linear classifier
can be described as follows:

Theorem 3.4.1 Vapnik and Chervonenkis [7] Let H denote a hypothesis space
whose VC dimension is d. For random probability distribution D on X × {−1, 1},
with probability 1 − δ, the generalization error of random hypothesis h ∈ H on the
training set S is no more than

errD(h) ≤ ε(n, H, δ) = 2

n

(

log
2

δ
+ d log

2en

d

)

(3.37)

under the condition that d ≤ n, n > 2/ε.

In light of the theorem, the first term of Equation (3.37) is the training error, and
the second term is proportional to the VC dimension d. Thus, the theorem shows that
if we can minimize d , we can minimize the future error, as long as the hypothesis h
controls the empirical risk error in a small degree.

Theorem 3.4.1 provides a general error bound of a linear classifier and gives the
global guidance on how to control the classifier complexity. In the following, we will
generalize the bound for the SVC algorithm and deduce the corresponding general-
ization error bound of SVC.

© 2009 by Taylor & Francis Group, LLC



3.4 Theoretical Foundations 49

We first give a formal definition of the margin:

Definition 3.4.2 (Margin) [7]. Consider using a real value function class F to
classify in the input space X, and the threshold value is 0. We define the margin of
the example (xi , yi ) ∈ X × {−1, 1} to the function or hyperplane f ∈ F as:

γi = yi f (xi ) (3.38)

Note that γi > 0 denotes that the example (xi , yi ) is correctly classified. The marginal
distribution of f corresponding to the training set S is the marginal distribution of the
examples in S. The minimum of the marginal distribution is called the margin mS( f )
of f corresponding to the training set S.

Although the VC dimension d is theoretically meaningful, in practice d is some-
times infinite and thus the generalization bound is inapplicable to many real problems.
Consequently, we introduce a similar measure related to the margin in SVC instead
of the traditional VC dimension:

Definition 3.4.3 (Cover of Function Class) [7]. Let F be a real value function
class in X. For a series of input data

S = {x1, x2, . . . , xn}
The γ -cover of F is the limited function set B, such that for all f ∈ F , existing

g ∈ B, there is max1≤i≤n(| f (xi ) − g(xi )|) < γ . N (F, S, γ ) denotes the minimal size
of the cover. The number of data that Fcovers is

N (F, n, γ ) = max
S∈Xn

N (F, S, γ ) (3.39)

Then we use N (F, n, γ ) to reformulate Theorem 3.4.1 for the case that the hypoth-
esis f is such that mS( f ) = γ on the training set S.

Theorem 3.4.4 VC Theorem with Margin [7] Consider a bounded real value func-
tion space F and fix γ ∈ R+. For any probability distribution D on X × {−1, 1}, with
probability 1 − δ, the generalization error of a hypothesis f ∈ F on the training set
S, which has a margin mS( f ) ≥ γ , satisfies

errD( f ) ≤ ε(n, F, δ, γ ) = 2

n

(

log
2

δ
+ log N (F, 2n, γ /2)

)

(3.40)

under the condition that n > 2/ε.

Theorem 3.4.4 shows how to use mS( f ) to bound the generalization error which
can be obtained by the training data. N (F, 2n, γ /2) may be viewed as another form
of the VC dimension, where a larger γ corresponds to a smaller N (F, 2n, γ /2). As
a result, we may draw a conclusion that large margin can ensure good generalization
performance of the classifier for small size samples.

Although Theorem 3.4.4 is a generalization of Theorem 3.4.1, the value N (F, 2n,

γ /2) cannot be efficiently quantified in the real-world problems. Consequently, we
further deduce a more concrete error bound for the specific SVC algorithm:

© 2009 by Taylor & Francis Group, LLC



50 SVM: Support Vector Machines

Theorem 3.4.5 Generalization Bound of SVC [7] Assume that the input space X is
a hyperball in the inner product space H whose radius is R, X = {x ∈ H : ‖x‖H ≤ R}.
Consider the function class :

 = {
x �→ wT x : ‖w‖H ≤ 1, x ∈ X

}

Fix γ ∈ R+. For a probability distribution D on X × {−1, 1}, with probability 1 − δ,
the generalization error of a hypothesis f ∈  on the training set S, which has the
margin mS( f ) ≥ γ , is no more than

errD( f ) ≤ ε(n, , δ, γ ) = 2

n

(

log
4

δ
+ 64R2

γ 2
log

enγ

4R
log

128n R2

γ 2

)

(3.41)

under the condition that n > 2/ε, 64R2/γ 2 < n.

It is noteworthy that the dimension of the input space does not appear in the bound.
Hence the bound can be used in the infinite dimension space, which denotes that
the bound may overcome the curse of dimension. Furthermore, when the samples
distribute well, the bound may guarantee in a high probability that there is a small
error for random testing samples. In that case, the margin γ can be viewed as a
measure about the quality of the sample distribution, and thus may further measure
the generalization performance of the SVC algorithm [7].

3.5 Support Vector Regressor

Up to this point, we have focused on the SVC method for classification tasks. In
this section, we will consider using SVM to solve nonlinear regression problems,
thus called SVR. Similar to the classification algorithm, we also expect to explore
the main characteristics of the maximum margin method by exploiting nonlinear
functions, which can be obtained using linear learning methods and the kernel trick.
In addition, the corresponding algorithms must be efficient under high dimensions [7].

However, for regression problems, the traditional least-squares estimator may not
be quite feasible in the presence of outliers, resulting in the regressor to perform
poorly when the underlying distribution of the additive noise has a long tail [13].
Thus we need to develop a robust estimator insensitive to small changes in the model;
that is, we seek a so-called ε-insensitive loss function.

Definition 3.5.1 (ε-Insensitive Loss Function) [7]
Let f be a real valued function in X. The ε-insensitive loss function Lε(x, y, f ) is
defined as:

Lε(x, y, f ) = |y − f (x)|ε = max(0, |y − f (x)| − ε) (3.42)

© 2009 by Taylor & Francis Group, LLC



3.5 Support Vector Regressor 51

Note that Lε(x, y, f ) = 0 if the absolute value of the deviation about the estimator
output f (x) from the desired response y is less than ε or equal to zero. It is equal to
the absolute value of the deviation minus ε otherwise.

Now consider a nonlinear regression model

y = g(x) + v (3.43)

where the additive noise term v is statistically independent of the input vector x. The
function g(·) and the statistics of noise v are unknown. All that we have available is
a set of training data

S = {(x1, y1), . . . , (xn, yn)}
and a function class

F = { f (x) = wT x + b, w ∈ Rm, b ∈ R}
The objective is to select appropriate parameters w and b, so as to make f (x)

approximate the unknown target function g(x). The primal problem can be represented
as follows:

min
w,b

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ̂i )

s.t.
(
wT xi + b

) − yi ≤ ε + ξi , i = 1, . . . , n

yi − (
wT xi + b

) ≤ ε + ξ̂i , i = 1, . . . , n

ξi , ξ̂i ≥ 0 i = 1, . . . , n (3.44)

Using the similar method of Lagrange multipliers, the dual problem is:

max
α,α̂

W (α, α̂) =
n∑

i=1

yi (α̂i − αi ) − ε

n∑

i=1

(α̂i + αi ) − 1

2

n∑

i=1

n∑

j=1

(α̂i − αi )(α̂ j − α j )xT
i x j

s.t.
n∑

i=1

(α̂i − αi ) = 0

0 ≤ αi , α̂i ≤ C, i = 1, . . . , n (3.45)

We can further introduce the inner product kernel in the optimization problem
Equation (3.45), and extend the regression algorithm to a feature space so as to make
the nonlinear functions able to be obtained by means of the linear learning machines
in the kernel space.

Compared with SVC, SVR has an additional free parameter ε. The two free pa-
rameters ε and C control the VC dimension of the approximating function

f (x) = wT x =
n∑

i=1

(α̂i − αi )K(xi , x) (3.46)

when we set the bias b = 0. ε and C should be selected by the user and directly
influence the complexity control for regression. How to select ε and C simultaneously
to get a better approximation function is an open research problem.

© 2009 by Taylor & Francis Group, LLC



52 SVM: Support Vector Machines

3.6 Software Implementations

LibSVM [16] and SVMlight [17] are two of the most famous software about the
implementation of SVM algorithms.

LibSVM provides not only compiler languages used in the Windows system, but
also C++ and Java source codes which are easy to improve, revise, and apply in
other operating systems. Specially, LibSVM has relatively fewer tunable parame-
ters involved in SVM algorithms than other software and provides lots of default
parameters to solve real application problems effectively.

SVMlight is another implementation in C language. It adopts an efficient set se-
lection technique based on steepest feasible descent, and two effective computational
policies “Shrinking” and “Caching” of kernel evaluations. SVMlight mainly includes
two C programs: SVM learn, used for learning training samples and training the cor-
responding classifier, and SVM classifiy, used for classifying testing samples. The
software also provides two efficient estimation methods for assessing the general-
ization performance: XiAlpha-estimates, computed at essentially no computational
expense but conservatively biased, and Leave-one-out testing, almost unbiased.

Furthermore, there are lots of complete machine learning toolboxes, including
SVM algorithms, such as Torch (in C++), Spider (in MATLAB), and Weka (in Java),
which are all available at http://www.kernel-machines.org.

3.7 Current and Future Research

In the past decade, SVMs have been developed at a fast pace both in theory and in
practice. Many future works remain. In this section, we enumerate a few of the major
research directions where major progress is being made and many research problems
are still open.

3.7.1 Computational Efficiency

One of the initial drawbacks of the SVMs is its costly computational complexity
in the training phase, which leads to inapplicable algorithms in the large datasets.
However, this problem is being solved with great success. One approach is to break
a large optimization problem into a series of smaller problems, where each problem
only involves a couple of carefully chosen variables so that the optimization can be
done efficiently. The process iterates until all the decomposed optimization problems
are solved successfully.

A more recent approach is to consider the problem of learning SVMs as that of
finding an approximate minimum enclosing ball of a set of instances [18–21]. These
instances, when mapped to an N -dimensional space, represent a core set that can be
used to construct an approximation to the minimum enclosing ball. Solving the SVMs’

© 2009 by Taylor & Francis Group, LLC



3.7 Current and Future Research 53

learning problems on these core sets can produce good approximation solutions in
very fast speed. For example, the core vector machine [18] and the further ball vector
machine [21] can learn SVMs for millions of data in seconds.

3.7.2 Kernel Selection

In the kernel SVMs, the selection of the kernel function is generally required to satisfy
the Mercer’s theorem. Hence, the common kernel functions involve three types, that
is, sigmoid, polynomial, and radial basis functions, which may sometimes limit the
applicability of the kernel trick. Recently, Pekalska et al. provided a novel view to
design a kernel function based on a general proximity relation mapping [22]. The
new kernel function needs neither be satisfied by the Mercer’s conditions nor be
limited to only one feature space, and shows better classification performance than
the common Mercer kernels experimentally. However, the theoretical foundation of
the new generalized kernel needs further research.

Furthermore, another popular approach is multiple kernel learning which consid-
ers more than one kernel; through the combinations one can achieve better results
[23–29]. This is similar to using an ensemble of kernels. By setting the proper objec-
tive functions, better selection of the kernel parameters can be done to allow mixture
kernels.

3.7.3 Generalization Analysis

We are accustomed to using the VC dimension to estimate the generalization er-
ror bound of the kernel machines. However, the bound involves a fixed complexity
penalty which does not depend on the training data, which as a result, cannot be
made universally effective [30]. To solve this problem, Rademacher’s complexity is
introduced as an alternative to evaluate the complexity of a classifier instead of the
classical VC dimension [31–34], which is based on the intuition that we can measure
the capacity (or complexity) of a classifier by its ability to fit random data. It is defined
as follows:

Definition 3.7.1 (Rademacher Complexity) [35]. For the sample S =
{x1, . . . , xn} generated by a distribution D on a set X and a real value function class
F with domain X, the empirical Rademacher complexity of F is the random variable

R̂n(F) = E�

[

sup
f ∈F

∣
∣
∣
∣
∣

2

n

n∑

i=1

σi f (xi )

∥
∥
∥
∥
∥

x1, . . . , xn

]

(3.47)

where � = {σ1, . . . , σn} are independent uniform {±1}-valued (Rademacher) random
variables. The Rademacher complexity of F is

Rn(F) = ES[R̂n(F)] = ES�

[

sup
f ∈F

∣
∣
∣
∣
∣

2

n

n∑

i=1

σi f (xi )

∣
∣
∣
∣
∣

]

(3.48)

© 2009 by Taylor & Francis Group, LLC



54 SVM: Support Vector Machines

The sup part inside the expectation formula measures the best correlation that can
be found between a function of the class and the random labels. Furthermore, in the
kernel machines, we can obtain an upper bound to the Rademacher complexity:

Theorem 3.7.2 Complexity Analysis [35]. If k : X × X → R is a kernel, and
S = {x1, . . . , xn} is a sample of points from X, then the empirical Rademacher
complexity of the classifier FB satisfies

R̂n(FB) ≤ 2B

n

√
√
√
√

n∑

i=1

k(xi , xi ) = 2B

n

√
tr (K) (3.49)

where B is the bound of the weights w in the classifier.

It is noteworthy that the bound of the Rademacher complexity only involves the
trace of the corresponding kernel matrix, which is determined by the concrete training
data. It is more feasible to use than the traditional VC dimension to control the
complexity of a classifier as well as estimate the generalization performance.

3.7.4 Structural SVM Learning

Margin maximization is the initial motivation of the SVM algorithms [36]. Con-
sequently, SVM (SVC) usually places more focus on the separability between the
classes of samples but does not sufficiently use the prior data distribution information
within classes. The well-known “No Free Lunch” theorem [12] indicates that there
does not exist a pattern classification method that is inherently superior to any other,
or even to random guessing without using additional information. It is the type of
problem, prior information, and the amount of training samples that determine the
form of classifier to apply. In fact, corresponding to different real-world problems,
different classes may have different underlying data structures. A classifier should ad-
just the discriminant boundaries to fit the structures which are vital for classification,
especially for the generalization capacity of the classifier. However, the traditional
SVM does not differentiate the structures, and the derived decision hyperplane lies
unbiasedly right in the middle of the support vectors [36,37], which may lead to a
nonoptimal classifier in the real-world problems.

Recently, some algorithms have been developed to give more concern to the struc-
tural information than the traditional SVM. They provide a novel view to design a
classifier, where the classifier can be sensitive to the structure of the data distribu-
tion. These algorithms are mainly divided into two approaches. The first approach is
through manifold learning. It assumes that the data actually live on a submanifold in
the input space, and the most typical algorithm involves Laplacian support vector ma-
chines (LapSVM) [38,39]. We can construct LapSVM first through a Laplacian graph
in each class. Then we introduce a manifold structure of the data within the corre-
sponding Laplacian matrices into the traditional framework of SVM as an additional
term.

© 2009 by Taylor & Francis Group, LLC



3.8 Exercises 55

The second approach is by exploiting clustering algorithms [40] by assuming that
the data contain several clusters that hold the prior distribution information. This
assumption seems more general than the manifold assumption, which has in fact led
to several popular large margin machines. A recent approach is known as structured
large margin machine (SLMM) [37]. SLMM applies clustering techniques to capture
the structural information in the different classes first. It then uses the Mahalanobis
distance as a distance measure from the samples to the decision hyperplanes, instead
of the traditional Euclidean distance, to introduce the involved structure information
into the constraints. Some popular large margin machines, such as support vector
machine minimax probability machine (MPM) [41], and maxi-min margin machine
(M4) [36], can all be viewed as the special cases of SLMM. Experimentally, SLMM
has shown better classification performance. However, since the optimization problem
of SLMM is formulated as sequential second order cone programming (SOCP) rather
than the QP in SVM, SLMM has much higher computational cost in training time as
compared to traditional SVM. Furthermore, it is not easy to be generalized to large-
scale or multiclass problems. Consequently, a novel structural support vector machine
(SSVM) was developed in [42] to exploit the classical framework of SVM rather than
as constraints in SLMM. As a result, the corresponding optimization problem can
still be solved by the QP as in SVM, and keep the solution not only sparsity but also
scalability. Furthermore, SSVM has been shown to be theoretically and empirically
better in generalization than SVM and SLMM.

3.8 Exercises

1. Consider a simple binary classification problem:

c1 : (1, 1)T (−1, 3)T (2, 6)T

c2 : (−1, −2)T (1, −3)T (−5, −7)T

(a) Compute the optimal hyperplane and geometrical margin.
(b) Point out the support vectors.
(c) Using the method of Lagrange multipliers, compute the solution in the dual

space.

2. Consider another binary classification problem:

c1 : (1, 1)T (3, 7)T (5, 9)T

c2 : (−1, −2)T (1, 6)T (2, −1)T

Use a soft margin SVC to construct the optimal hyperplane and compute the
corresponding solution in the dual space.

3. Construct a simple XOR problem similar to Example 3.3.3, and discuss how
the selection of the kernel parameter in the radial basis kernel can influence the
classification performance.

© 2009 by Taylor & Francis Group, LLC



56 SVM: Support Vector Machines

4. Let K1 and K2 be the kernels in X × X, X ⊆ Rn , a ∈ R+, f (·) be a real value
function in X:

φ : X → Rm

where K3 is a kernel in Rm × Rm , and B is an n × n symmetrical semidefinite
matrix. Prove the following functions are kernel functions:

(a) K(x, z) = K1(x, z) + K2(x, z)
(b) K(x, z) = aK1(x, z)
(c) K1(x, z)K2(x, z)
(d) K(x, z) = f (x) f (z)
(e) K(x, z) = K3(φ(x), φ(z))
(f) K(x, z) = xT Bz

5. Discuss the generalization bounds of SVR derived from the VC theorem.

6. We have discussed the use of SVC for binary classification problems. Discuss
how to extend SVC to solve multiclass classification problems.

7. Discuss the robustness properties of SVM algorithms.

8. Discuss the cases that SVC does not sufficiently use the prior data distribution
information within classes, where the resulting discriminant hyperplane lies
right in the middle of the support vectors.

References

[1] V. Vapnik. The Nature of Statistical Learning Theory, Springer Verlag, 1995.

[2] V. Vapnik. Statistical Learning Theory, Wiley, 1998.

[3] B. Schölkopf, C.J.C. Burges, and A.J. Smola. Advances in Kernel Methods—
Support Vector Learning, MIT Press, 1999.

[4] O. Chapelle, P. Haffner, and V. Vapnik. Support vector machines for histogram-
based image classification. IEEE Trans. on Neural Networks, vol. 10(3.5),
1055–1064, 1999.

[5] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, vol. 20,
273–297, 1995.

[6] N. Cristianini, C. Campbell, and J. Shawe-Taylor. A multiplicative updating
algorithm for training support vector machine. In Proceedings of the 6th Euro-
pean Symposium on Artificial Neural Networks (ESANN), 1999.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

© 2009 by Taylor & Francis Group, LLC



References 57

[8] M.S. Kearns, S.A. Solla, and D.A. Cohn. Advances in Neural Information
Processing Systems, MIT Press, 1999.

[9] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smythand, and R. Uthurusamy. Ad-
vances in Knowledge Discovery and Data Mining, MIT Press, 1996.

[10] A.J. Smola, P. Bartlett, B. Schölkopf, and C. Schuurmans. Advances in Large
Margin Classifiers, MIT Press, 1999.

[11] B. Schölkopf. Support Vector Learning, R. Oldenbourg Verlag, 1997.

[12] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, Wiley, 2001.

[13] S. Haykin. Neural Networks: A Comprehensive Foundation, Tsinghua Univer-
sity Press, 2001.

[14] V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik. Model complexity control
for regression using VC generalization bounds. IEEE Transactions on Neural
Networks, vol. 10, 1075–1089, 1999.

[15] V. Cherkassky and F. Mulier. Learning From Data: Concepts, Theory and
Methods, Wiley, 1998.

[16] C.-C. Chang and C.-J. Lin. LibSVM: A library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.

[17] T. Joachims. Making Large-scale SVM learning practical. Advances in Kernel
Methods—Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola
(eds.), MIT Press, 1999.

[18] I. W. Tsang, J.T. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, vol. 6,
363–392, 2005.

[19] I.W. Tsang, J.T. Kwok, and K.T. Lai. Core vector regression for very large
regression problems. ICML, 913–920, 2005.

[20] I.W. Tsang and J.T. Kwok. Large-scale sparsified manifold regularization.
NIPS, Vancouver, Canada, 2006.

[21] I.W. Tsang, A. Kocsor, and J.T. Kwok. Simpler core vector machines with
enclosing balls. ICML, 2007.

[22] E. Pekalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach
to dissimilarity-based classification. Journal of Machine Learning Research,
vol. 2, 175–211, 2001.

[23] J. Bi, T. Zhang, and K. Bennett. Column-generation boosting methods for
mixture of kernels. KDD, 521–526, 2004.

[24] I.M. de Diego, J.M. Moguerza, and A. Munoz. Combining kernel information
for support vector classification. Multiple Classifier Systems, 102–111, 2004.

[25] Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in SVMs.
Neural Information Processing Systems, 2002.

© 2009 by Taylor & Francis Group, LLC



58 SVM: Support Vector Machines

[26] G.R.G. Lanckriet, T.D. Bie, N. Cristianini, M.I. Jordan, and W.S. Noble. A
statistical framework for genomic data fusion. Bioinformatics, vol. 20(3.16),
2626–2635, 2004.

[27] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jordan.
Learning the kernel matrix with semidefinite programming. JMLR, vol. 5, 27–
72, 2004.

[28] C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyper-
kernels. JMLR, vol. 6, 1043–1071, 2005.

[29] Z. Wang, S. Chen, and T. Sun. MultiK-MHKS: A novel multiple kernel learning
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30(3.2), 348–353, 2008.

[30] P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, vol. 3,
463–482, 2002.

[31] P.L. Bartlett. The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory, vol. 44(3.2), 525–536,
1998.

[32] V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions Information Theory, vol. 47(3.5), 1902–1914, 2001.

[33] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding
the generalization error of combined classifiers. Technical Report, Department
of Mathematics and Statistics, University of New Mexico, 2000a.

[34] V. Koltchinskii and D. Panchenko. Rademacher processes and bounding the
risk of function learning. In E. Gine, D. Mason, and J. Wellner (ed.), High
Dimensional Probability II, 443–459, 2000b.

[35] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[36] K. Huang, H. Yang, I. King, and M.R. Lyu. Learning large margin classifiers
locally and globally. ICML, 2004.

[37] D.S. Yeung, D. Wang, W.W.Y. Ng, E.C.C. Tsang, and X. Zhao. Structured large
margin machines: Sensitive to data distributions. Machine Learning, vol. 68,
171–200, 2007.

[38] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-
ric framework for learning from examples. Department of Computer Science,
University of Chicago, Tech. Rep, TR-2004-06, 2004.

[39] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In Pro-
ceedings of International Workshop on Artificial Intelligence and Statistics,
2005.

© 2009 by Taylor & Francis Group, LLC



References 59

[40] P. Rigollet. Generalization error bounds in semi-supervised classification under
the cluster assumption. Journal of Machine Learning Research, vol. 8, 1369–
1392, 2007.

[41] G.R.G. Lanckriet, L.E. Ghaoui, C. Bhattacharyya, and M.I. Jordan. A robust
minimax approach to classification. Journal of Machine Learning Research,
vol. 3, 555–582, 2002.

[42] H. Xue, S. Chen, and Q. Yang. Structural support vector machine. The Fifth
International Symposium on Neural Networks, Part I, LNCS5263, 2008.

© 2009 by Taylor & Francis Group, LLC


	The Top Ten Algorithms in Data Mining
	Table of Contents
	Chapter 3: SVM: Support Vector Machines
	3.1 Support Vector Classifier
	3.2 SVC with Soft Margin and Optimization
	3.3 Kernel Trick
	3.4 Theoretical Foundations
	3.5 Support Vector Regressor
	3.6 Software Implementations
	3.7 Current and Future Research
	3.7.1 Computational Efficiency
	3.7.2 Kernel Selection
	3.7.3 Generalization Analysis
	3.7.4 Structural SVM Learning

	3.8 Exercises
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white final Printer PDFs)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




