

Page 1

Analyzing and Dissecting Android Applications for Security defects

and Vulnerabilities

Rushil Shah – Security Researcher and Consultant at Blueinfy

Abstract & Problem Domain

It seems so long ago when all cell phones were capable of, was making a phone call.

Smartphones have taken over the market in a frenzy. Why shouldn’t they? Today email,

social networking, banking – everything is possible on the go with smartphones.

Smartphones come equipped with features like data, Wi-Fi, voice and GPS functions. The

sudden growth in the number of applications available for smartphones does raise a certain

level of concern for the user’s security. A report by McAfee claims that the year 2011 will be

the year when smartphones become targets for malicious software and hackers. The mobile

security field is still at very nascent stage.

According to a recent market survey 50% of the devices run Google’s Android operating

system, 25% use Apple iOS, with the rest being shared by Blackberry, Symbian and others. In

March 2011, 58 malicious applications were found in the Android Market. Before Google

could remove the applications from the Android Market they were downloaded to around

260,000 devices. These applications, in the Android market, were malicious applications

which contained Trojans hidden in pirated versions of legitimate applications. DroidDream,

a malware, exploited a bug which was present in versions of Android, older than 2.2.2.

Android device manufacturers and carriers work in tandem to distribute Android-based

updates and had not uniformly issued patches to their customers for the DroidDream

exploit, leaving users vulnerable. Google said the exploit allowed the applications to gather

device specific information, as well as personal information. The exploit also allowed the

applications to download additional code that could be run on the device. Many users

perform credit card transactions and access social networking sites. If the applications used

to perform these activities are not secure, hackers can gain access to vital information that

can be misused.

Each application should be tested first and validated before it is sent to devices. More than

malicious applications, it is bugs and loopholes in current applications that may be abused

by hackers. Phishing attacks can be performed on many sites that are accessible with the

device. Common vulnerabilities include local data storage, insecure HTTP connections, etc.

A logical solution is to test the applications once they are developed. Many methods exist,

through which these applications can be tested, one of which is reverse engineering.

Reverse engineering is the process of discovering the working of an application through

analysis of its structure, function and operation. From reverse engineering we can

understand complete operations of an application. For example, it is possible to know which

web services an application calls or where and how the application stores temporary user

data on local storage. These are indicators of the security posture of an application.

Vulnerabilities, if any exist, can be addressed.

About the Author

Rushil is working with Blueinfy in the area of Application and Mobile security consulting and

research. From an academic standpoint, he has a background in computer engineering.

Page 2

Android Working Model – A first cut

Before we understand Android security we must first understand how an application runs

on the device. An application runs in a sandboxed architecture on the Android device. Each

application has its own assigned permissions and working memory. Different applications

can communicate with each other. An application can request for system resources only

through intents. Each android application is complied into an Android Package (APK) file.

This apk file is installed onto the device.

The APK file format is a variant of the JAR file format.

An APK file usually contains the following folders:

� META-INF

� res

along with a set of files:

� AndroidManifest.xml

� classes.dex

� resources.arsc

The two main files for consideration are the Androidmanifest.xml and classes.dex

files.

The Androidmanifest.xml presents essential information about the application to the

Android system; information the system must have before it can run any of the application's

code. Among other things, the manifest does the following:

• It contains the Java package name for the application.

• The activities, services, broadcast receivers, and content providers that the

application is composed of are listed in the manifest, along with their capabilities.

These declarations let the Android system know what the components are and

under what conditions they can be launched.

• It declares which permissions the application must have in order to access protected

parts of the API and interact with other applications.

• It also declares the permissions that others are required to have in order to interact

with the application's components.

• It lists the libraries that the application must be linked against.

The classes.dex file contains the Dalvik bytecode of all the code in the application.

Page 3

Android Threat Model and OWASP Top 10

An Android application can be developed and deployed. The figure below shows how an attacker

looks at the deployed application:

The following steps would be followed with their own logical outcomes.

1. The developer complies the code with an Android package file.

2. The apk file is deployed on the Android device.

3. Applications storing data on local storage of the device – secure/insecure storage?

4. Sqlite database of Android, where data and system settings are saved – secure/insecure

database calls?

5. Device connection to the internet and to the Web server – entry points to the

application?

As you can see, steps 3 to 5 can have security issues. These calls need to be analyzed for

information leaks. An attacker can grab this information and compromise a user session.

More attention needs to be paid to the OWASP top 10 list of issues or vulnerabilities in this

domain.

Page 4

OWASP’s first draft of Top 10 mobile security risks:

Following is the list of OWASP Top 10 and vulnerabilities we need to discover during

assessment and testing.

1. Insecure or unnecessary client-side data storage: Data from applications such as user

credentials(username and password), credit card information may be stored on the

device’s memory. This data, if not properly encrypted, can be accessed by a hacker

and the data stolen. Example: recent Skype vulnerability.

2. Lack of data protection in transit: if the connection between the web and the device

is not secure than the transaction can be tampered with.

3. Personal data leakage: browser cache, search history records, location tracking –

data, if not secured, can be accessed by the attacker.

4. Failure to protect resources with strong authentication: certain applications, like

Google, have single sign-ons, which can be used by the attacker to gain access to the

account.

5. Failure to implement least privilege authorization policy: Some applications may

have been given more permissions than necessary. For example, a file requiring

READ permission is assigned READ WRITE permission.

6. Client-side injection: Client side XSS and SQL injections can be performed on the

device.

7. Client-side DOS: a particular service or application is blocked for access. For example,

if the contacts list has been blocked by a DOS attack, the user will not be able to

access the list to make calls.

8. Malicious third-party code: Malicious third party code installed on the device can

gain access to device resources and data.

9. Client-side buffer overflow: Certain native libraries in Android are vulnerable to

client side buffer overflow attacks because of improper or insufficient input/ouput

validation.

10. Failure to apply server-side controls: Any attacker can pose as the client and attempt

SQL Injection, XSS or other attacks.

Our objective is two-fold: to analyze an application for susceptibility to the above

mentioned issues and to perform this particular task in a methodical way. For example,

static analysis can be done one this apk file to discover vulnerabilities. Let us see how this

can be done with simple ruby script(s). Let us call it ScanDroid.

Page 5

Scanning APK files with ScanDroid and underlying utilities

ScanDroid reverse engineers an Android application, scans through the code and detects

possible vulnerabilities for application testing. It points out some interesting calls. We can

then decide whether these calls are secure or not. Reverse engineering is the process of

discovering the working of an application through analysis of its structure, function and

operation along with applying static code analysis on both object and source code.

This article introduces ScanDroid for Android applications, using Ruby code to show how it

works and demonstrate how to implement it. This code is a prototype to highlight the

capabilities of using ScanDroid. For simplicity, we will consider 3 vulnerabilities for an

Android application.

1) Read/Write to local Storage

2) Access external URL

3) Make Socket Connection

This document explains the following aspects:

• ScanDroid Overview

• Using ScanDroid

• Using ScanDroid library with interactive Ruby (irb)

ScanDroid extracts these files from the APK file. It converts the Dalvik bytecode files into

Java code files and then scans the code for possible vulnerabilities using the rules defined –

all with just one command.

ScanDroid performs the following stages:

• Extract

o Extracts all the files from the APK file

• Xml

o Converts the files to readable xml formats and the classes to .smali format.

• Dex2clas

o Converts the classes.dex file to separate .class files

• Clas2jav

o Converts the class files to readable java code.

• Check

o Checks the code for possible vulnerabilities.

• Manifest

o Checks the androidmanifest.xml for additional information.

Intermediate files at each stage of the process are created for further reference. The

ScanDroid library can be used to manually execute each stage of the process.

Let’s walk through ScanDroid

ScanDroid is built using the Ruby scripting language. To start ScanDroid go to

Prompt and type in the following line:

ScanDroid.rb –apk <application filename>

For test purposes we have an Android application called

in a file called rules.cfg:

ScanDroid.rb –apk scanme.apk -rule c:

Make sure that ScanDroid is launched from its installation folder.

The rules.cfg file contains the list classes and methods used in the

discovering possible vulnerabilities.

for ScanMe are stored in the rules.cfg

We are looking for interesting calls

The output:

A new folder is created with the name of the first 3 characters of your

the installation folder.

This folder has the following sub

• Class: contains .class files

• Dex: contains classes.dex

• Src: contains the converted

ScanDroid

Ruby scripting language. To start ScanDroid go to the

Prompt and type in the following line:

apk <application filename> -rule <rules filename>

ndroid application called scanme. We have the rules set

rule c:\ScanDroid\bin\rules.cfg

Make sure that ScanDroid is launched from its installation folder.

file contains the list classes and methods used in the Java

possible vulnerabilities. The 3 possible vulnerabilities that we have considered

rules.cfg as shown:

We are looking for interesting calls and trying to search through code.

created with the name of the first 3 characters of your Android application

has the following sub-folders:

files

classes.dex file

: contains the converted Java code

the Command

. We have the rules set up

ava code for

The 3 possible vulnerabilities that we have considered

ndroid application in

• Xml: contains readable xml files

• Output.txt : contains the

• Permissions.txt: contains the list of permissions for the application

Output.txt

ScanDroid matches the rules in

filename, line no and the line

detected.

In our example, in line 4 of the output file a new socket is

line of scanner.java file. A socket call is made from the application

tracked using ScanDroid.

Similarly, in the file fread.java

secured, this is a possible vulnerability.

Webview calls the browser of the device.

browser. This URL can be tracked with ScanDroid to check whether the browser call is sent

to only the required site or to other insecure sites

Permissions.txt

The permission.txt file lists the permissions of the application taken from the

Androidmanifest.xml file.

Using ScanDroid Library with Interactive Ruby (Irb)

Each stage of ScanDroid can be executed individually using the ScanDroid Library in Irb.

Start the Irb by typing irb at the Command Prompt.

Load the ScanDroid library using

contains readable xml files

: contains the lines of code where possible vulnerabilities are detected

: contains the list of permissions for the application

ScanDroid matches the rules in rules.cfg file with the Android application code

 of code are added to output.txt wherever

, in line 4 of the output file a new socket is called. This code occurs in the 55

file. A socket call is made from the application. This call

fread.java, data is written to local file storage. If the data is not

is a possible vulnerability. OpenFileOutput writes data to a file on the device.

calls the browser of the device. Webview.loadUrl launches a URL in the

can be tracked with ScanDroid to check whether the browser call is sent

other insecure sites too.

file lists the permissions of the application taken from the

Using ScanDroid Library with Interactive Ruby (Irb)

ScanDroid can be executed individually using the ScanDroid Library in Irb.

the Command Prompt.

Load the ScanDroid library using the load command

where possible vulnerabilities are detected

ndroid application code. The

wherever a match is

called. This code occurs in the 55
th

. This call can be

. If the data is not

writes data to a file on the device.

launches a URL in the

can be tracked with ScanDroid to check whether the browser call is sent

file lists the permissions of the application taken from the

ScanDroid can be executed individually using the ScanDroid Library in Irb.

Next, create an object for the ScanDroid Class.

 . t=ScanDroid.new

The first step will be to extract the files from the

t.extract(‘filename.apk’)

The code for the extraction:

 Zip::ZipFile.open(filename) {|file|
 file.each do |f|

 f_path = File.join(destination, f.name)

 FileUtils.mkdir_p(File.dirname(f_path))

 file.extract(f, f_path)

 end

 }

This code uses a ruby gem Zip to extract all the files from the

Each file is checked and placed according to its zipped structure.

All the extracted files are stored inside the

The next step is to convert the xml files to readable format.

object for the ScanDroid Class. Let this object be t:

extract the files from the apk file.

t.extract(‘filename.apk’)

Zip::ZipFile.open(filename) {|file|

f_path = File.join(destination, f.name)

FileUtils.mkdir_p(File.dirname(f_path))

file.extract(f, f_path)

This code uses a ruby gem Zip to extract all the files from the apk to a proper directory.

Each file is checked and placed according to its zipped structure.

the extracted files are stored inside the dex folder:

convert the xml files to readable format.

proper directory.

For xml, we use an external tool called

This executes the apktool. The first parameter is the location of the

is the destination folder.

Now, we need to convert the dex

We shall use the dex2jar tools

we use an external tool called apktool

The first parameter is the location of the apk file and the sec

dex files to class files.

 to convert the dalvik code to Java .jar files.

file and the second

cmd=Dir.getwd+"/bin/dex2jar/dex2jar.bat"+cur+"/#{filename[0,3]}/dex"+"/

ses.dex"

 system(cmd)

 dest=Dir.getwd+"/#{filename[0,3]}/class"

 jar2zip=Dir.getwd+"/#{filename[0,3]}/dex/classes.dex.dex2jar.jar"

 Zip::ZipFile.open(jar2zip) {|file|

 file.each do |f|

 f_path = File.join(dest, f.name)

 FileUtils.mkdir_p(File.dirname(f_path))

 file.extract(f, f_path)

 end

The jar file generated is then extracted using the Zip gem of

are stored in the class directory.

Once the Class files are generated we need to convert these to

We move to the clas2jav stage

To call the method we execute:

t.clas2jav (‘applicationname.apk’)

Again, here we use a Java decomplier JAD. The method executes the command:

jad -o -r -sjava –d /src /class /**/*.class

/src is the destination folder where all the

/class is where all our class files are saved.

/**/*.class tells JAD to convert all the

Now we have the complete code of the application. ScanDroid can now scan the files and

check for vulnerabilities.

First we scan the AndroidManifest.xml

File.open("#{cur}/#{filename[0,3]}/xml/AndroidManifest.xml","r") d

|infile|

 while(line=infile.gets)

 if line[/android.permission./]

cmd=Dir.getwd+"/bin/dex2jar/dex2jar.bat"+cur+"/#{filename[0,3]}/dex"+"/

dest=Dir.getwd+"/#{filename[0,3]}/class"

jar2zip=Dir.getwd+"/#{filename[0,3]}/dex/classes.dex.dex2jar.jar"

Zip::ZipFile.open(jar2zip) {|file|

f_path = File.join(dest, f.name)

FileUtils.mkdir_p(File.dirname(f_path))

file.extract(f, f_path)

ile generated is then extracted using the Zip gem of Ruby to get the class files which

Once the Class files are generated we need to convert these to Java code.

stage

‘applicationname.apk’)

ava decomplier JAD. The method executes the command:

d /src /class /**/*.class

is the destination folder where all the java files will be saved.

files are saved.

tells JAD to convert all the .class files, including those within sub folders.

Now we have the complete code of the application. ScanDroid can now scan the files and

AndroidManifest.xml for permissions of the application:

File.open("#{cur}/#{filename[0,3]}/xml/AndroidManifest.xml","r") d

while(line=infile.gets)

if line[/android.permission./]

cmd=Dir.getwd+"/bin/dex2jar/dex2jar.bat"+cur+"/#{filename[0,3]}/dex"+"/clas

jar2zip=Dir.getwd+"/#{filename[0,3]}/dex/classes.dex.dex2jar.jar"

uby to get the class files which

ava decomplier JAD. The method executes the command:

sub folders.

Now we have the complete code of the application. ScanDroid can now scan the files and

File.open("#{cur}/#{filename[0,3]}/xml/AndroidManifest.xml","r") do

Each of the permissions is defined with

scans the code for this string and

later.

We need to scan the code that we decompiled for vulnerabilities:

t.check(‘scanme.apk’,’c:/ScanDroid/bin/rules.cfg’)

if File.file?(entry) and entry[/.+

 File.open(entry,"r") do |infile|

 while(line = infile.gets)

 c=c+1

 File.open(rulefile,"r") do |rule|

 while(r=rule.gets)

 exp= r.chomp

 if line[/#{exp}/i]

 Store the line in the file.

The code scans each file in the src

the file rules.cfg. A confirmed match save

Conclusion:

The mobile security field is still, at its infant stage. With

vulnerabilities found on smartphones

more secure. Android is now the fastest spreading mobile operating system

requires more focus on security.

thus help in making more secure applications.

defined with the preceding string ‘android.permission’

for this string and, if a match if found, saves the lines to a file to be

that we decompiled for vulnerabilities:

t.check(‘scanme.apk’,’c:/ScanDroid/bin/rules.cfg’)

if File.file?(entry) and entry[/.+\.java$/]

File.open(entry,"r") do |infile|

while(line = infile.gets)

File.open(rulefile,"r") do |rule|

while(r=rule.gets)

exp= r.chomp

if line[/#{exp}/i]

Store the line in the file.

src directory and matches each line with the rules

confirmed match saves the line to the output.txt file.

at its infant stage. With the recent increase in the number of

vulnerabilities found on smartphones, a lot of attention is needed to make

Android is now the fastest spreading mobile operating system and therefore

us on security. Tools like ScanDroid help in analyzing applications and

thus help in making more secure applications.

‘android.permission’. ScanDroid

to be printed

directory and matches each line with the rules defined in

file.

recent increase in the number of

to make smartphones

and therefore

analyzing applications and

Page 12

Appendix A – ScanDroid Code

ScanDroid.rb

require 'ScanDroid_lib.rb'

def run

 t=ScanDroid.new

 case ARGV[0]

 when "-apk"

 @filename=ARGV[1]

 else

 system('cls')

 puts "Error in correct syntax!\nTry: ScanDroid.rb -apk [Filename.apk] -rule [rule_file]"

 Process.exit

 end

 case ARGV[2]

 when "-rule"

 @rule=ARGV[3]

 else

 system('cls')

 puts "Error in correct syntax!\nTry: ScanDroid.rb -apk [Filename.apk] -rule [rule_file]"

 Process.exit

 end

 if !@filename

 puts "Enter Filename(including extension): "

 @filename=gets.chomp

 end

 if !@rule

 puts "Enter Rules File(including extension): "

 @rule=gets.chomp

 end

 if !File.exists?(@filename)

 puts "\nCannot find #{@filename}! Please make sure the path of the file is correct."

 Process.exit

 end

 if !File.exists?(@rule)

 puts "\nCannot find #{@rule}! Please make sure the path of the file is correct."

 Process.exit

 end

 puts "Working on "+@filename+" ... "

 t.extract(@filename)

 system('cls')

 t.xml(@filename)

 system('cls')

 t.dex2clas(@filename)

 system('cls')

 t.clas2jav(@filename)

 system('cls')

 t.manifest(@filename)

 system('cls')

 t.check(@filename,@rule)

 puts ("\nPermissions Stored at /#{@filename[0,3]}/permissions.txt\n")

end

system('@echo off')

system('prompt.')

run()

system('prompt')

ScanDroid_lib.rb
require 'zip/zip'

require 'find'

class ScanDroid

 def initialize

 system('cls')

 @flag=1

 puts "Checking for files.... "

 if File.directory?("bin")

 puts "'/bin' directory found."

 else

 puts "'/bin' directory could not be found. \nPlease run the program from the correct

folder."

 Process.exit

 end

Page 13

 end

 def extract(filename)

 destination=Dir.getwd+"/#{filename[0,3]}/dex"

 begin

 Zip::ZipFile.open(filename) {|file|

 file.each do |f|

 f_path = File.join(destination, f.name)

 FileUtils.mkdir_p(File.dirname(f_path))

 file.extract(f, f_path)

 end

 }

 rescue

 puts "\nError Unpacking the File! Delete all Previously generated files of this apk."

 Process.exit

 end

 end

 def xml(filename)

 cur=Dir.getwd

 if File.exists?("#{cur}/bin/apktool.bat")

 cmd=Dir.getwd+"/bin/apktool.bat d "+cur+"/"+filename+" "+cur+"/#{filename[0,3]}/xml"

 puts cmd

 system(cmd)

 else

 puts "Cannot Find apktool.bat!"

 Process.exit

 end

 end

 def dex2clas(filename)

 cur=Dir.getwd

 begin

 if File.exists?("#{cur}/bin/dex2jar/dex2jar.bat")

 cmd=Dir.getwd+"/bin/dex2jar/dex2jar.bat "+cur+"/#{filename[0,3]}/dex"+"/classes.dex"

 system(cmd)

 dest=Dir.getwd+"/#{filename[0,3]}/class"

 jar2zip=Dir.getwd+"/#{filename[0,3]}/dex/classes.dex.dex2jar.jar"

 Zip::ZipFile.open(jar2zip) {|file|

 file.each do |f|

 f_path = File.join(dest, f.name)

 FileUtils.mkdir_p(File.dirname(f_path))

 file.extract(f, f_path)

 end

 }

 else

 puts "\nCannot find dex2jar.bat in the bin/dex2jar/dex2jar.bat directory!"

 Process.exit

 end

 rescue

 puts "\nError Converting Dex to Class!"

 Process.exit

 end

 Dir.chdir(cur)

 end

 def clas2jav(filename)

 cur=Dir.getwd

 cmd=cur+"/bin"

 system(cmd)

 Dir.chdir(Dir.getwd+"/bin")

 cmd="jad -o -r -sjava -d"+cur+"/#{filename[0,3]}/src

"+cur+"/#{filename[0,3]}/class"+"/**/*.class"

 if File.exists?("jad.exe")

 system(cmd)

 else

 puts "\nJava Decompiler file jad.exe could not be found!"

 Process.exit

 end

 Dir.chdir(cur)

 end

 def check(filename,rulefile)

 cur=Dir.getwd

 @flag=1

 system('cls')

 puts ("Scanning files please wait...")

 fc=0

 vc=0

 Find.find(cur+"/#{filename[0,3]}/src") do |entry|

 fc=fc+1

 if File.file?(entry) and entry[/.+\.java$/]

Page 14

 c=0

 File.open(entry,"r") do |infile|

 while(line = infile.gets)

 c=c+1

 File.open(rulefile,"r") do |rule|

 while(r=rule.gets)

 exp= r.chomp

 if line[/#{exp}/i]

 open(cur+"/#{filename[0,3]}/output.txt","a") do |f| f.puts

(File.expand_path(entry)+": Line: #{c}: "+line.strip+"\n") end

 vc=vc+1

 end

 end

 end

 end

 end

 end

 end

 puts ("\nTotal Files Scanned: #{fc}\nPossible Vulnerablities: #{vc}\nOutput File

generated at: #{cur}/#{filename[0,3]}/output.txt\n")

 end

 def manifest(filename)

 cur=Dir.getwd

 File.open("#{cur}/#{filename[0,3]}/xml/AndroidManifest.xml","r") do |infile|

 while(line=infile.gets)

 if line[/android.permission./]

 line=line.strip

 line=line[50,150]

 line=line.strip

 line=line.squeeze(" ")

 line=line.chop.chop.strip

 line=line.chop

 puts line

 open(cur+"/#{filename[0,3]}/permissions.txt","a") do |f| f.puts (line+"\n") end

 end

 end

 end

 puts ("\nPermissions Stored at #{cur}/#{filename[0,3]}/permissions.txt\n")

 end

end

Page 15

Appendix A – Tools

Dex2jar can be found at: http://code.google.com/p/dex2jar/

Apktool can be found at: http://code.google.com/p/android-apktool/

Java Decompiler can be found at: http://code.google.com/p/android-apktool/

References:

Mcafee 2011 Threats Predictions: http://www.mcafee.com/us/resources/reports/rp-threat-

predictions-2011.pdf?cid=WBB005

