
14thedition

Don’t Panic
MOBILE DEVELOPER’S
GUIDE TO THE GALAXY

Enough Software GmbH + Co. KG
Stavendamm 22
28195 Bremen

Germany
www.enough.de

Please send your feedback,
questions or sponsorship requests to:

mdgg@enough.de
Follow us on Twitter: @enoughsoftware

Services and Tools for All Mobile Platforms

published by:

14th Edition February 2014
This Developer Guide is licensed under the

Creative Commons Some Rights Reserved License.

Art Direction and Design by

Andrej Balaz
(Enough Software)

Editors:

Richard Bloor

Marco Tabor
(Enough Software)

 3

Mobile Developer’s Guide
Contents

I Prologue
1 The Galaxy of Mobile: An Introduction
12 Conceptional Design for Mobile
22 Android
37 BlackBerry Java Apps
44 BlackBerry 10
56 Firefox OS
62 iOS
74 Java ME (J2ME)
84 Tizen
88 Windows Phone & Windows RT
100 Going Cross-Platform
116 Mobile Sites & Web Technologies
130 Accessibility
140 Enterprise Apps: Strategy And Development
150 Mobile Analytics
158 Implementing Rich Media
164 Implementing Location-Based Services
172 Near Field Communication (NFC)
180 Implementing Haptic Vibration
188 Implementing Augmented Reality
200 Application Security
211 Testing
227 Monetization
241 Epilogue
242 About the Authors

 4

I

Prologue
When we started Enough Software in 2005, almost no one
amongst our friends and families understood what we were
actually doing. Although mobile phones were everywhere and
SMS widely used, apps were still a niche phenomena – heck,
even the name ‘apps’ was lacking – we called them MIDlets or
“mobile applications” at the time. We kept on architecting,
designing and developing apps for our customers – and it has
been quite a few interesting years since then: old platforms
faded, new platforms were born and a selected few took over
the world by storm. Overall: the mobile ecosystem really kicked
ass.

With the Mobile Developers Guide to the Galaxy, we began
to follow this ecosystem closely. Thanks to our contributing
authors, this guide now covers a whopping eight mobile
platforms, even after dropping some platforms such as Symbian
or webOS along the way. This is the first edition in which we
cover Tizen, by the way.

This edition is the biggest thus far, with over 10,000
copies printed on first press – and without our sponsors,
this guide would not come to be. Thanks to Paypal – do visit
developers.paypal.com to join one of their many great offer-
ings! And thanks to SAP, please find out more regarding their
(great!) mobile platform offerings on developers.sap.com. Of
course we are especially happy to welcome Twilio as a first-time
sponsor for this edition. Check out www.twilio.com to find out
how their tools can help you with everything from app distribu-
tion, improving security through 2 factor authentication, to
implementing VoIP and messaging features into your apps.

Prologue

The future is exciting, we look forward to your sharing your
excitement with us via twitter @enoughsoftware or via email:
mdgg@enough.de.

We are looking forward to hearing from you!

Robert + Marco / Enough Software

Bremen, February 2014

http://www.twitter.com/enoughsoftware
mailto:mdgg%40enough.de?subject=Inquiry%20about%20the%20MDGG

The Galaxy of Mobile: An Introduction 1

B
Y

 R

ob
er

t
Vi

rk
us

 &
 M

ar
co

 T
ab

or The Galaxy of Mobile:
An Introduction
Welcome to the world of mobile development, a world where
former giants stumble and new stars are seemingly born on a
regular basis.

The focus of this book is on developing mobile apps, which
encompasses a number of phases including: planning and
specification, prototyping and design, implementation, internal
testing and deployment, deployment to an app store, discovery
by users, installation, use and feedback. Ultimately, we want
our users to enjoy using our apps and to give us positive
ratings to encourage other users to do likewise.

Keep reading to learn how to develop apps for the major
platforms. Should this be the first time that you have consid-
ered getting involved, we advise against delay. The world is
moving rapidly towards mobile becoming the predominant form
of computing and others will surely overtake you if you wait
too long.

While developing mobile apps shares many common feature
with developing other software, it has specific characteristics.
We will cover some of these next.

Topology: Form Factors and Use Patterns

You have to differentiate between smartphones, tablets and
feature phones. Each form factor poses its own usability chal-
lenges; for instance, a tablet demands different navigation to a
phone. TV systems are gaining traction as another form factor
for mobile developers.

2The Galaxy of Mobile: An Introduction

Use patterns in an Android app, of course, differ from those
on iOS, which also differ from those for Windows Phone apps,
et cetera.

You should, therefore, refrain from providing an identical ex-
perience on all form factors or even all your target smartphone
systems. Otherwise, you risk delivering a mediocre service to
some sections of your target user base.

Star Formation: Creating a Mobile Service

There are several ways to realize a mobile service:

 — App
 — Website
 — SMS, USSD1 and STK2

App
Apps run directly on the device. You can realize them as native,
web-based or hybrid apps.

Native Apps
A native app is programmed in a platform specific language
with platform specific APIs. It is typically purchased, down-
loaded and upgraded through the platform specific central app
store. Native apps usually offer the best performance, the deep-
est integration and the best overall user experience compared
to other options. However, native development is often also
the most complex development option.

1 en.wikipedia.org/wiki/USSD
2 en.wikipedia.org/wiki/SIM_Application_Toolkit

http://en.wikipedia.org/wiki/USSD
http://en.wikipedia.org/wiki/SIM_Application_Toolkit

The Galaxy of Mobile: An Introduction 3

Web Apps
A web app is based on HTML5, JavaScript and CSS and does
not rely on any app store. It is a locally stored mobile site that
tries to emulate the look-and-feel of an app.

A famous example of a web app is the Financial Times app,
which left the app store in order to keep all subscriber revenue
to themselves for the web world; conversely, the web-based
Facebook iOS app was revamped into native app in order to
dramatically improve its performance and usability. There are
several web app frameworks available to build a native wrapper
around such apps so that you can publish them in app stores,
such as Phonegap3.

Hybrid Apps
A hyped controversy circles around whether native or web apps
are the future.

For many mobile app developers, this controversy is no
longer relevant as a hybrid approach to app development
has become quite common: an app can use native code for
enhanced performance and integration of the app with the
platform, while using a webview together with HTML5-based
content for other parts of the app. Parts of the resulting app
behave like a native app, while other parts are powered by web
technologies. The web-based part can use Internet connectivity
to offer up-to-date content. While this could be viewed as a
drawback, the use of web technologies enables developers to
revise content and features without the need to submit updates
to app stores. The key challenge is to combine the unique
capabilities of native and web technologies to create a truly
user-friendly and attractive app.

3 www.phonegap.com

http://www.phonegap.com

4An Introduction To Mobile Development

Website
A website runs for the most part on your server but you can
access various phone features on the device with JavaScript,
for example to store data locally or to request the current
location of the device. In contrast to apps, mobile websites are
inherently cross-platform. However you should not assume that
a mobile browser is always based on WebKit, see Microsoft's
plea to mobile web developers not to make their websites run
on WebKit only4.

SMS, USSD and STK
Simple services can be realized with SMS, USSD or STK.
Everyone knows how SMS (Short Message Service) text mes-
saging works and every phone supports SMS, but you need to
convince your users to remember textual commands for more
complex services. Some operators offer APIs for messaging
services that work for WiFi-only devices, such as the network
APIs of Deutsche Telekom5. USSD (Unstructured Supplementary
Service Data) is a GSM protocol used for pushing simple text
based menus, the capabilities depend on the carrier and the
device. STK (SIM Application Toolkit) enables the implementa-
tion of low-level but interactive apps directly on the SIM card
of a phone.

STK may appear irrelevant when so much focus is on
smartphone apps, however, for example, m-pesa is an STK app
which is transforming life and financial transactions in Kenya
and other countries.6

4 blogs.windows.com/windows_phone/b/wpdev/archive/2012/11/15/adapting-
your-webkit-optimized-site-for-internet-explorer-10.aspx

5 www.developergarden.com/apis
6 memeburn.com/2012/03/how-m-pesa-disrupts-entire-economies/

http://blogs.windows.com/windows_phone/b/wpdev/archive/2012/11/15/adapting-your-webkit-optimized-site-for-internet-explorer-10.aspx
http://blogs.windows.com/windows_phone/b/wpdev/archive/2012/11/15/adapting-your-webkit-optimized-site-for-internet-explorer-10.aspx
http://www.developergarden.com/apis
http://memeburn.com/2012/03/how-m-pesa-disrupts-entire-economies/

The Galaxy of Mobile: An Introduction 5

The Universe of Mobile Operating Systems

The mobile space is much more diverse than other areas in
IT. When you are developing software for personal computers,
you basically have 3 operating systems to chose from. When it
comes to mobile, there are many more. This book provides an
introduction to the mobile operating systems that are currently
the most relevant, but be aware that the mobile space changes
continuously and at a speed that you will seldom observe in
other businesses. We have seen many promising technolo-
gies appear and quickly disappear, regardless of how big the
companies behind them are or the historic market relevance of
those companies.

So read on, learn how the market is today and then be
prepared to keep it under observation (or make sure you have
the latest edition of our guide at hand).

Quasars: Android and iOS
When people talk about mobile apps, they are mainly referring
to Android and iOS. Why? When it comes to market share, these
two platforms combined dominate the smartphone market with
easily 90% in key markets7 (see the table below for global
numbers). The Developer Economics 2014 research8 also shows
that iOS and Android are at the top in terms of developer
mindshare – that is, the percentage of developers using each
platform, irrespective of which platform they consider to be
their 'primary'. Android was at the top, with 71% of developers
currently working on the platform, followed by iOS with 55%.

Of course this also means: if you are going to use Android or
iOS, you will have lots of competition.

7 www.idc.com/getdoc.jsp?containerId=prUS24442013
8 DeveloperEconomics.com

http://www.idc.com/getdoc.jsp?containerId=prUS24442013
http://www.DeveloperEconomics.com

The Galaxy of Mobile: An Introduction 6

Dark Matter: Feature Phone Platforms
While smartphones generally get the most news coverage, many
parts of the world still belong to the feature phone universe.
Globally almost 50% of all phones sold in Q2 2013 were feature
phones9, with an install base much higher than that. Biggest
vendors are Samsung and Nokia. Nokia claims to have quite a
lot of success with their Nokia Store as there are more than
500 developers who have had more than 1 million downloads
of their app10. Research from 2011 showed that the unhyped
platforms actually provided a better chance for developers:
Feature phone apps on Nokia’s OVI store had 2.5 times higher
download numbers compared to apps on Apple App Store11.

While you can develop native apps for feature phones when
you have close relationship with the vendor, you typically
develop apps using Java ME or BREW for these phones.

Magnetars: Windows Phone and Windows RT
Windows Phone has now become the 'third ecosystem'12 in the
smartphone universe, it even sells out iPhone in some regions,
such as Italy or Latin America. Windows 8.1 and Windows
8 market share has now surpassed the share of all Mac OS X
versions combined according to Net Applications13.

Super Novas: Sailfish OS, Firefox OS, BlackBerry 10 and Aliyun
Will these platforms become spectacular success stories or
doomed chapters of the mobile industry? Nobody knows for
sure, but there are mixed messages open for interpretation.

9 gartner.com/newsroom/id/2573415
10 developer.nokia.com/Distribute/Statistics.xhtml
11 www.research2guidance.com/apps-on-nokias-ovi-store-had-2-5-times-higher-

download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
12 kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-

5C-three-to-one-in-Great-Britain
13 netmarketshare.com/operating-system-market-share.aspx

http://www.gartner.com/newsroom/id/2573415
http://www.developer.nokia.com/Distribute/Statistics.xhtml
http://www.research2guidance.com/apps-on-nokias-ovi-store-had-2-5-times-higher-download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://www.research2guidance.com/apps-on-nokias-ovi-store-had-2-5-times-higher-download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://www.kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-5C-three-to-one-in-Great-Britain
http://www.kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-5C-three-to-one-in-Great-Britain
http://netmarketshare.com/operating-system-market-share.aspx

The Galaxy of Mobile: An Introduction 7

The Finish company Jolla14 entered the market in Q4 2013
with its Sailfish OS15. The OS received varying reviews, so it
will be interesting to see if and how Sailfish OS development is
improved throughout 2014.

Firefox OS16 received a lot of love by previewers and devel-
opers alike, which is why we decided to include a dedicated
chapter about the platform in this guide. After the launch in
several locations globally it has so far failed to gain serious
marketshare. Firefox OS will also make it to tablets.

Initial BlackBerry 10 reception varied between skepticism
and enthusiasm – but even though all relevant operators
carry BlackBerry 10 devices, the adoption has been too slow.
As a sale of BlackBerry also seemed to have failed, it will be
interesting to see what happens with this new OS.

Aliyun has been released on a single device in China with an
unknown market share. It drew publicity mostly from the fact
that Google pressured Acer into not releasing an Aliyun device
based on Acer's membership of the Open Handset Alliance and
the fact that Aliyun's app store featured some pirated Google
Android apps17. While Aliyun is claimed to be based on Linux,
the source code has not yet been released.

White Dwarfs: Symbian and bada
Only shadows of their former selves are Symbian and Samsung
bada. While bada was very shortlived, Samsung kept parts of
it alive when creating the Tizen platform. Symbian has been
pushed into maintenance mode – and left the world with a
(photographic) bang in the form of the PureView 808; the im-
portance and market share continue to fall sharply worldwide.

14 jolla.com
15 sailfishos.org
16 mozilla.org/firefox/os
17 news.cnet.com/8301-1035_3-57513651-94/alibaba-google-just-plain-wrong-

about-our-os

http://jolla.com
http://sailfishos.org
http://mozilla.org/firefox/os
http://news.cnet.com/8301-1035_3-57513651-94/alibaba-google-just-plain-wrong-about-our-os
http://news.cnet.com/8301-1035_3-57513651-94/alibaba-google-just-plain-wrong-about-our-os

8

Newborn Stars: Tizen and Ubuntu
We will see some interesting new entries in 2014.

Tizen18 devices have been announced for Q1 2014. Seem-
ingly gently yet continuously pushed forward by Samsung and
Intel, Tizen aims to power not only smartphones but also TVs,
tablets, netbooks and in-vehicle infotainment systems. The
fact that we included a dedicated chapter about Tizen in this
edition of this guide reflects the fact that we are taking the
platform seriously and see a chance that it will live longer than
bada.

Last but not least Canonical presented Ubuntu19 for mobile
devices. The idea is to bring the full power of a PC to the
phone. The crowdsourcing20 effort to fund the Ubuntu Edge
phone did not reach its goal, but Ubuntu plans to enter the
market anyway.

Solar System: Smartphone OS Market Shares
When you look at the global smartphone market shares, the
picture might look simple21:

Platform Market Share Q3
2013

Absolute Year-over-
Year Change

Android (Google) 81.3% +6.3%

iOS (Apple) 13.4% -2.2%

Windows Phone
(Microsoft)

4.1% +2.0%

BlackBerry 1.0% -3.3%

Other 0.2% -2.8%

18 tizen.org
19 ubuntu.com/devices/phone
20 indiegogo.com/projects/ubuntu-edge
21 blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-

81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx

http://www.tizen.org
http://www.ubuntu.com/devices/phone
http://www.indiegogo.com/projects/ubuntu-edge
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx

The Galaxy of Mobile: An Introduction 9

You may agree with the majority of developers that decide
spending time on platforms other than iOS and Android is a
waste of time. Be assured: It is not that simple. While world-
wide smartphone shipments exceeded feature phones22 for the
first time in Q1 2013, feature phones still outsell smartphones
in many regions.

Note also that Sailfish OS or even Firefox OS market share
– while likely small – is not yet known. One of these platforms
might still be the best choice for your business case – it
may be better to be a small planet on the edge of the galaxy
than dicing with the black hole of stellar app numbers at the
galactic core.

You also have to remember that these are global figures –
the regional market share of each platform is another matter
altogether. In a world where localized content is increasing
in importance, it is essential to know the details and char-
acteristics of your target market. For example, China is the
largest smartphone market today responsible for more than
40% of worldwide Android shipments in Q3 201323, but Chinese
handsets typically come without the Google Play store or other
Google services.

To find out about market share in your target region,
check out online resources such as comscore24, StatCounter25,
VisionMobile26 or Gartner27.

22 idc.com/getdoc.jsp?containerId=prUS24085413
23 engadget.com/2013/11/14/android-ios-market-share-gartner-q3-2013/
24 comscoredatamine.com/category/mobile
25 gs.statcounter.com
26 visionmobile.com
27 gartner.com

http://www.idc.com/getdoc.jsp?containerId=prUS24085413
http://www.engadget.com/2013/11/14/android-ios-market-share-gartner-q3-2013/
http://www.comscoredatamine.com/category/mobile
http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com

The Galaxy of Mobile: An Introduction 10

About Time and Space

As developers, we tend to have a passion for our chosen
darlings. However, let us not forget that these technologies are
just that – technologies that are relevant at a given time and
in a given space, but not more. Yes, flamewars are fun but in
retrospect, they are always silly. Hands up those who fought
about Atari versus Amiga back in the good ol' 80s! Probably not
many of you but, surely, you get the point. Initiatives such as
FairPhone28 or IndiePhone29 may prove more important than
the OS or vendor of your choice in the future.

Lost in Space

If you are lost in the vast space of mobile development, do not
worry, stay calm and keep on reading. Go through the options
and take the problem that you want to solve, your target
audience and your know-how into account. Put a lot of effort
into designing the experience of your service, concentrate on
the problem at hand and keep it simple. It is better to do one
thing well rather than doing 'everything' only so-so. Invest in
the design and usability of your solution. Last but not least,
finding the right niche is often better than trying to copy
something that is already successful. This guide will help you
make an informed decision!

28 fairphone.com
29 indiephone.eu

http://www.fairphone.com
http://indiephone.eu/

Conceptional Design for Mobile 12

B
Y

 A

nn
a

Al
fu

t Conceptional Design
for Mobile
Stumbling upon an idea is a wonderful Aha! moment. You
suddenly know what to do and have the confidence that your
idea will solve the problem faced by your potential users.
Going from this early stage to the final app implementation is
challenging. Not only do you aim to build a stable application,
you also want it to be helpful and easy to use.

User Experience can be described as how users perceive
your application during and after they have interacted with it.
Was it well designed, easy and enjoyable to use? Did it help
them achieve a task in an efficient or fun way? Was everything
working smoothly? Before you get into design and coding, it is
worth spending some time in refining your concept. Below are
some guidelines to help you define your idea enough to move
into design and build stages.

Capturing the Idea

Write a concept summary that describes your app in few
sentences (the shorter the better). Try to explain it to several
people, outside your team members, to see how well they can
understand and relate to it.

Get to know your audience. Who are the people that you
are designing for and what would be their motivations for
using your app? If you can, go and talk to them to get some
first-hand information. A useful technique to document your
findings in this area is to create personas – generic profiles of
your user groups.

Define your content. Ask yourself what is the core content

Conceptional Design for Mobile 13

of your application? Depending on your application type, it
may be photos, user generated feeds, original data (books,
metadata, music) etc. Once you recognize the main information
to display or the key interaction it is easier to get the right
focus in the design stage. For example, if you are creating an
e-book reader app you probably want to make sure that the
typography is of good quality, and your screen designs provide
enough space for text without UI elements getting in the way
of the reading experience.

Describe the main functionality. What will users do via your
interface? You can think about it in terms of verbs and try to
list them out: browse, share, buy etc. You will notice that some
activities are related. For instance, if your application has a
strong community aspect there will be a number of features
that you can group (like sharing, commenting, messaging,
following). This can be another UI hint for you. It helps users if
related functionalities are presented in a similar way.

When designing for mobile experience you need to think
about the context in which your app will be used. And how it
will affect both your interface usability and the users. Do you
think you will get users full attention, or will they be jogging
at the same time? Is your app a stand alone product? Does it
relate or depend on other services? What will happen if there
is no internet connection? How will your app’s UI handle this
situation?

It is worthwhile to spend some time on market research.
Play with other apps that might be similar to yours. Find out
how they are doing: what users think about them. This is a
good way of knowing the space you are entering.

After answering so many questions you should have a
clearer understanding about the app you want to build. As
you go further with your idea development keep asking those
questions. It is a good way to keep focused and check if you

Conceptional Design for Mobile 14

are getting closer to what you wanted to achieve. Sometimes
what you wanted to achieve changes with time as well. The
undefined concept is just a hint that once explored can lead
you to unexpected findings and new ideas.

Designing User Experience

To capture and refine your app’s overall UX you have to think
about the user flows, information architecture, interactions,
layout structure and visual design. How will it all work together
in your product’s environment? What are the details of each use
case scenario, what issues users might have while using your
app, and how feedback will be communicated in a helpful way.
And once your product is ready, how will you let people know
about it and convince them that it is worth their time?

User Flows
Some apps have very linear flow to achieve a certain task
(e.g. a camera app). Some might have more iterative journeys.
Describe your “ideal scenario(s)” where user starts at a point A
and after a number of steps, ends up in point B. Think of other
possible journeys that can deviate from the ideal path. Draw
flowcharts or use wireframes to map out various scenarios in
detail.

Wireframes
Wireframes are flat, sketchy versions of your interface. Their
purpose is to capture functionalities and overall interface
concept. A wireframe for a given screen will have different
versions/states depending on a scenario. For a network error
you will have different instances of the same screen.

Before you delve into detailed layouts, get familiar with
UI guidelines for the OS that your app will be developed for.

Conceptional Design for Mobile 15

Each platform is a different environment and you should read
guidelines to use the correct conventions. Unless you have a
strong case to do otherwise, follow the established practices.
Make your research and get familiar with pattern galleries that
are available online. Keeping close to the “native” feel gives
you instant usability benefits. Users are likely to recognize
standard behaviours or visual treatments from using other
applications on their devices. You will find platform-specific
links in the respective chapters of this book.

Wireframes can be done with pen and paper or you can use
one of the many wireframing tools that are out there. Sketching
on paper is probably the best way to start as you do not need
to spend time learning new software. Drawings are easier to
change and scrap. It is also a lot of fun to make them. The
advantage of using dedicated applications is the ability to
collaborate on your designs and transform your mockups into
clickable prototypes.

Prototyping
A prototype is the best way to visualize and evaluate your
app’s interactions. It does not matter whether you have a big
budget or are working on a personal project over the weekends,
having a fairly complete prototype version of your app is the
best way to communicate your concept and discuss it with
others. Prototype is done before you spend time on developing
the final code and pixel perfect designs. An agreed clickable
walkthrough is a useful reference that teams can work towards
without risking going too much off track.

There is no best way of putting a prototype together. You
can use whatever technique works for you. From paper proto-
typing, using one of the specialised tools or other applications
that have the functionality to put clickable journeys together
(like standard presentation tools). If you have coding skills,

Conceptional Design for Mobile 16

building a HTML prototype is also a good way to go. You may
be able to use available frameworks and libraries to design a
prototype that looks and acts similar to the final product.

You do not need to complete the whole prototype before
you start coding. Depending on how you choose to organise
your work you can focus on certain parts of your app as you go
along and even move towards fast iterations in the actual code.
Still, the initial execution ideas are simply faster to validate in
the sketchy mockups.

Some available tools are free and most of the commercial
ones offer trial version or have free account options for limited
number of projects. New applications are becoming available
often. Here is a list of few applications to try and choose from:

Application About Availability

App in seconds
appinseconds.com

Web based, prototyping for iPhone. commercial

Axure
axure.com

Desktop application, wireframing
and prototyping.

commercial

Balsamiq
Mockups
balsamiq.com

Desktop application or plugin
to wikis and bug tracking tools,
wireframing.

commercial

Fluid UI
fluidui.com

Web based, prototyping for iOS,
Android, Windows and web projects.

commercial

Mockingbird
gomockingbird.com

Web based, wireframing and
prototyping.

commercial

OmniGraffle
omnigroup.com/
products/omnigraffle

Desktop application, diagraming
and wireframing.

commercial

Pencil
pencil.evolus.vn

Desktop application or Firefox
extension; open source GUI
prototyping tool.

free

http://appinseconds.com
http://balsamiq.com
http://fluidui.com
http://gomockingbird.com
http://omnigroup.com/products/omnigraffle
http://omnigroup.com/products/omnigraffle
http://pencil.evolus.vn

Conceptional Design for Mobile 17

Application About Availability

POP
popapp.in

iPhone and Android app, making
hand drawn designs photos into
clickable prototypes.

free

Proto io
proto.io

Web based, prototyping. commercial

Proty
protytype.com

Web based, responsive wireframing. free

UX Pin
uxpin.com

Web based, design and wireframing. commercial

Visual design
Unless you are building an app that uses non-visual input,
your app UI will rely on graphics. Taking care of visual design
details will improve your app’s experience and make it stand-
out from amongst the masses.

Spacing and visual hierarchy improves your interface usabil-
ity. Layout defines details of positioning the elements on the
screen and its relation to each other. After users learn your UI
it should stay consistent throughout the flow. For example, if
your main action button changes color from screen to screen,
consider the impact on the users, will they be confused? will
they understand the significance of the change?. If the color
changes are intentional, make sure you are doing them for
good reasons.

Similar to designing layouts and interactions on the
wireframes level, certain styling decisions might be informed
by a specific platform guidelines. Your app can look very
different depending on which platform it was designed for.
Make sure that your designs follow the recommended practices
for font use, standard icons, layout conventions. Again: see the
platform-related chapters of this guide to find more informa-
tion and links to specific online resources.

http://proto.io
http://popapp.in
http://protytype.com
http://uxpin.com

Conceptional Design for Mobile 18Conceptional Design for Mobile

It is best if the company branding is interpreted in the UI in
a non-obstructive way so users can concentrate on interacting
with you app. Use the background, control’s colors, maybe
certain images or layout choices to add the desired look and
feel. Splash screen (if present) is the place where you can
display some additional graphics.

Finally, the launching icon is the first-impression visual ele-
ment that your app will be identified by and judged on. Make
it look good. If you are planning on doing releases on multiple
platforms check the design requirements early so you can come
up with an easily portable artwork.

Designing for multiple screen sizes
With the ever-changing mobile devices market you also have
to consider how your UI will look on different screen sizes
and displays densities. While it can be too early to get into
much details about it before you have your concept refined
thinking about the layout scalability-to-usability ratio during
the wireframing and visual design stage (so once you have
some sort of graphic representation of your layouts) can save
a lot of development and testing time later on. If this topic
is completely new to you it is worth reading more about best
practices in Responsive Web Design (RWD). Web designers have
been solving this problems for a while now. And again, it is
good to check if the platform specific guidelines provides more
information around this topic as well.

User testing
The best way of validating your interface concept is to confront
it with real users as soon as possible. You do not need to wait
until you have a finished and polished product. In fact testing
early can save you a lot of time in the long term as it can
expose the ideas that don’t work quickly. The more time you
invest into developing your designs the harder it gets to let

Conceptional Design for Mobile 19

go and start over. It is more difficult to accept feedback on
something that you considered almost done than on a clickable
prototype that you can update fairly quickly.

Ask few people to do certain tasks using your prototype. If
the app you are designing is a music player you can ask them
to play a song. If you are unsure of certain functionality you
can try to divert the user’s attention by asking them to perform
reversed tasks, like changing the selected track and picking
another one instead. To get the most honest feedback try not
to guide users when they are using your prototype.

You can also run testing sessions on other apps that are
currently out there. It can surprise you how much others notice
about the application that you might have never thought of.
Iterate on your designs and apply learnings from user testing
as often as you can.

Learn more

There is plenty of resources available online. Here are some to
whet your appetite:

Online magazines

 — Konigi: konigi.com
 — Smashing Magazine (UX design section):

uxdesign.smashingmagazine.com
 — UX Magazine: uxmag.com
 — UX Matters: uxmatters.com
 — UX Mastery: uxmastery.com

http://www.konigi.com
http://uxdesign.smashingmagazine.com
http://uxmag.com
http://uxmatters.com
http://uxmastery.com

Conceptional Design for Mobile 20

Books

 — Susan Weinschenk. 100 Things Every Designer Needs to
Know About People. Research findings on why people
react in certain ways when interacting with technology.

 — Steve Krug. Rocket Surgery Made Easy. A guide how to
run usability testing sessions.

 — This is Service Design Thinking.
Characteristics and techniques of service design
thisisservicedesignthinking.com

 — Mobile Developer’s Guide To The 5th Dimension.
The little brother of this guide focusing on UX/ UI
design: wip.org

Other resources

 — Nielsen Norman Group: nngroup.com
 — Interaction Design Foundation: interaction-design.org

http://thisisservicedesignthinking.com
http://wip.org
http://nngroup.com
http://interaction-design.org

Android 22

Android

The Ecosystem

The Android platform is developed by the Open Handset
Alliance led by Google and has been publicly available
since November 2007. Its use by the majority of hardware
manufacturers has made it the fastest growing smartphone
operating system. More than 81% of all smartphones sold in Q4
2013 worldwide were based on Android1. At their Google I/O
event in May 2013, Google announced that over 900 million
Android devices have been activated so far2 which also includes
tablets, media players, set-top boxes, desktop phones and car
entertainment systems. Google's own smart eyeglasses, Google
Glass, runs a minimal version of Android supporting both web
and native apps. Some non-Android devices are also able to run
Android applications with reduced functionality, such as RIM’s
Playbook with its BlackBerry Android runtime, the new Open
Source OS Sailfish3 and the crowdfunded gaming console Ouya.

In January 2014, there were over 1,000,000 apps available
in the Android Market4.

Android is an operating system, a collection of pre-installed
applications and an application framework (Dalvik) supported
by a comprehensive set of tools. The platform continues to
evolve rapidly, with the regular addition of new features every
6 months or so with the newest release being Android 4.4

1 www.gsmarena.com/android_worldwide_marketshare_crosses_80_for_the_
first_time-news-7171.php

2 gigaom.com/2013/05/15/google-io-statshot-900-million-android-devices-
activated/

3 sailfishos.org
4 www.appbrain.com/stats/number-of-android-apps

B
Y

 T

im
 M

es
se

rs
ch

m
id

t

http://www.gsmarena.com/android_worldwide_marketshare_crosses_80_for_the_first_time-news-7171.php
http://www.gsmarena.com/android_worldwide_marketshare_crosses_80_for_the_first_time-news-7171.php
http://gigaom.com/2013/05/15/google-io-statshot-900-million-android-devices-activated/
http://gigaom.com/2013/05/15/google-io-statshot-900-million-android-devices-activated/
http://www.sailfishos.org/
http://www.appbrain.com/stats/number-of-android-apps

Android 23

(codename 'KitKat'). As with its last few predecessors, KitKat
can be considered as a minor update due to its enhancements,
tweaks, and fixes being less visual and more under the hood.
Adding unified ways to access the phone's storage system,
a new printing framework and hardware sensor batching,
Google makes sure that developers can write more efficient
and consistent applications. On top of these additions NFC
Host Card Emulation has been added, a technology that can be
used in context of payments and loyalty programs. Also native
support for infrared blasters means you can create apps for the
remote control of TVs, set-top boxed and many other electronic
devices.

One of the most discussed issues when developing for
Android is the system's fragmentation: The multitude of
different devices by various manufacturers and the fast progress
of the platform itself leads to uncertainty over whether or not
your Android application will run everywhere. In addition, only
a very small number of phone and tablet models (1.4%) support
the latest OS version. However, today, you will reach nearly
100% of the installation base if you decide to target Android
2.2 or above5.

To encourage a solid user experience and consistent appear-
ance of Android apps, Google publishes a design guide6. Going
into the importance of color schemes, design patterns and
common use patterns, the guide provides a great orientation
when building apps for the Android ecosystem.

5 developer.android.com/resources/dashboard/platform-versions.html
6 developer.android.com/design

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/design

Android 24

Prerequisites

The main programming language for Android is based on Java.
But beware, only a subset of the Java libraries and packages are
supported and there are many platform specific APIs that will
not work with Android. You can find answers to your "What and
Why" questions online in Android's Dev Guide7 and your "How"
questions in the reference documentation8. Furthermore, Google
introduced a section in their documentation called "Android
Training"9 that helps new developers learn about various best
practices. This is where you can learn about basics such as
navigation and inter-app communication, as well as more
advanced features such as intelligent Bitmap downloads and
optimizing your app for better battery life.

To get started, you need the Android SDK10, which is avail-
able for Windows, Mac OS X, and Linux. It contains the tools
needed to build, test, debug and analyze apps. The Android

7 developer.android.com/guide
8 developer.android.com/reference
9 developer.android.com/training/index.html
10 developer.android.com/sdk

1.3%
Froyo 2.2

1,4%
KitKat 4.4

0.1%
Honeycomb 3.2

Gingerbread
2.3.3 - 2.3.7

21.2%

Ice Cream Sandwich
4.0.3 - 4.0.4

16.9%

59,1%

Jelly Bean
4.1 - 4.3

35.9%
API 16

15.4%
API 17

7.8%
API 18

http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/training/index.html
http://developer.android.com/sdk

Android 25

Development Tools (ADT)11 are responsible for the integration
with IDEs and making sure that your development flow is as
comfortable as possible.

IDE support
Today, Google offers prepacked IDEs based on IntelliJ called
"Android Studio", and Eclipse (referred to as "Eclipse + ADT
Plugin"), effectively bundling the Android Developer Tools with
the IDE. Using these tools saves some time in the setup of the
SDKs and offer a more Android-tailored experience: Android
Studio comes directly with Gradle-support and enables the
display of resources such as strings and colors next to their
references. As Android Studio is still an early beta version, you
might encounter a bug or two – better stick to Eclipse should
this be a showstopper for you.

IDE plugin support bundled version

Eclipse seperate ADT
package

Eclipse + ADT Plugin

Intellij seperate Android
plugin

Android Studio

More information and the required downloads can be found in
the Android documentation's "Tools"12 section.

Native development
The Android NDK13 enables native components to be written
for your apps by leveraging both JNI for invocations of native
methods and using native subclasses that offer callbacks to it's

11 developer.android.com/tools/sdk/eclipse-adt.html
12 developer.android.com/tools
13 developer.android.com/tools/sdk/ndk

http://developer.android.com/tools/sdk/eclipse-adt.html
http://developer.android.com/tools
http://developer.android.com/tools/sdk/ndk

Android 26

non-native pendants. This is important for game developers and
anyone who needs to rely on efficient processing.

Implementation

App Architecture
Android apps usually include a mix of Activities, Services,
BroadcastReceivers and data providers; these all need to be
declared in the application's manifest.

An Activity is a piece of functionality with an attached user
interface. A Service is used for tasks that run in the background
and, therefore, are not tied directly to a visual representation.
A Message Receiver handles messages broadcast by the system,
your own or other apps. A Data Provider is an interface to the
content of an application that abstracts from the underlying
storage mechanisms (e.g. SQLite).

An application may consist of several of these components,
for instance an Activity for the UI and a Service for long
running tasks. Communication between the components is
achieved by Intents or remote procedure calls handled by
Android Interface Definition Language (AIDL).

Intents bundle data, such as the user’s location or a
URL, with an action. These intents trigger behaviors in the
platform and can be used as a messaging system in your app.
For instance, the Intent of showing a web page will open the
browser. A powerful aspect of this building block philosophy is
that any functionality can be replaced by another application,
as the Android system always uses the preferred application for
a specific Intent. For example, the Intent of sharing a web page
triggered by a news reader app can open an email client or a
text messaging app depending on the apps installed and the
user’s preference: Any app that declares the sharing Intent as
their interface may be used.

The user interface of an app is separated from the code

Android 27

in Android-specific XML layout files. Different layouts can be
created for different screen sizes, country locales and device
features without touching the Java code. To this end, localized
strings and images are organized in separate resource folders.
Of course, you are also able to define and design layouts in
code or make use of both strategies to enable dynamic UI
updates.

The SDK and Plug-Ins
To aid development, you have many tools at your disposal in
the SDK, the most important ones are:

 — android: To create a project or manage virtual devices and
versions of the SDK.

 — adb: To query devices, connect and interact with them
(and virtual devices) by moving files, installing apps and
alike.

 — emulator: To emulate the defined features of a virtual
device. It takes a while to start, so do it once and not for
every build.

 — ddms: To look inside your device or emulator, watch log
messages, and control emulator features such as network
latency and GPS position. It can also be used to view
memory consumption and kill processes. If this tool is
running, you can also connect the Eclipse debugger to a
process running in the emulator. Beyond that, ddms is the
only way (without root-access) to create screenshots in
Android versions below 4.0.

These four tools along with many others, including tools to
analyze method trace logs, inspect layouts and test apps with
random events, can be found in the tools directory of the SDK.

IDE plug-ins are available to help manage all these files.

Android 28

Version 11.x of IntelliJ includes a visual layout-editor, so you
are free to choose between Eclipse and IntelliJ should you want
to perform rapid prototyping by dragging UI-elements in the
editor.

If you are facing issues, such as exceptions being thrown, be
sure to check the ddms log or use the logcat mechanism. It en-
ables you to check whether you neglected to add all necessary
permissions, for example, android.permission.INTERNET
in the uses-permission element14.

If you are using features introduced after Android 2.3 such
as Fragments15 for large screens, be sure to add the Android
Compatibility package from Google. It is available through the
SDK and AVD Manager and helps development for Android 3.0+
without causing problems with deployment to Android 1.616
through to Android 2.3. Be sure to use the v4 packages in your
apps to provide maximum backwards support. There is also a
version for Android 2.1 and above called v7 appcompat library
that introduces a way to implement the ActionBar pattern as
documented online17.

Developing your application against Android 3.1+, will
enable you to make homescreen widgets resizable, and connect
via USB to other devices, such as digital cameras, gamepads
and many others. Android 4.X releases introduced further
interesting features such as expandable notifications, lock-
screen widgets, and a camera with face detection. The native
computing framework, Renderscript (introduced in 3.1), was
heavily changed and no longer provides direct graphic rendering
capabilities but may now be used for heavy processing instead.

To provide some backwards compatibility for devices with
older Android versions, Google began to use the Google Play

14 developer.android.com/reference/android/Manifest.permission.html
15 developer.android.com/guide/topics/fundamentals/fragments.html
16 android-developers.blogspot.com/2011/03/fragments-for-all.html
17 developer.android.com/tools/support-library/features.html

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/fundamentals/fragments.html
http://android-developers.blogspot.com/2011/03/fragments-for-all.html
http://developer.android.com/tools/support-library/features.html

Android 29

Services framework18 which gets updated via the Play Store
and adds libraries such as the latest Google Maps. If you are
interested in authenticating users, you might want to have a
look at the Google+ Sign capabilities that bring the benefit of
real user data to your app. The functionality is managed via
OAuth 2.0 tokens that allow use of the Google Account on the
user's behalf.

Testing

The first step in testing an app is to run it on the emulator or
a device. You can then debug it, if necessary, through the ddms
tool.

All versions of the Android OS are built to run on devices
without modification, however some hardware manufacturers
may have changed pieces of the platform. Therefore, testing on
a mix of devices is essential. To get an idea of which devices
are most popular, refer to AppBrain's list19.

To automate testing, the Android SDK comes with some
capable and useful testing instrumentation20 tools. Tests can
be written using the standard JUnit format, using the Android
mock objects that are contained in the SDK.

The Instrumentation classes can monitor the UI and send
system events such as key presses. Your tests can then check
the status of your app after these events have occurred.
MonkeyRunner21 is a powerful and extensible test automation
tool for testing the entire app. These tests can be run on both
virtual and physical devices.

18 developer.android.com/google/play-services/
19 www.appbrain.com/stats/top-android-phones
20 developer.android.com/guide/topics/testing/testing_android.html
21 developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

http://developer.android.com/google/play-services/
http://www.appbrain.com/stats/top-android-phones
http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

Android 30

In revision 21 of the SDK, Google finally introduced a more
efficient UI automation testing framework22 which allows
functional UI testing on Android Jelly Bean and above. The
tool itself can be executed from your shell with the command
uiautomatorviewer and will present you the captured
interface including some information about the views pre-
sented. Executing the tests is relatively easy: After you have
written your test, it is then built via ANT as a JAR-file. This file
has to be pushed onto your device and then executed via the
command adb shell uiautomator runtest.

In October 2013 a new tool called Espresso23 was released
by Google. It provides a very lean API that helps to quickly
write procedural tests for your UI.

Open source testing frameworks, such as Robotium24, can
complement your other automated tests. Robotium can even be
used to test binary apk files if the app's source is not avail-
able. Roboelectric25 is another great tool which runs the tests
directly in your IDE in your standard/desktop JVM.

Your automated tests can be run on continuous integration
servers such as Jenkins or Hudson. Roboelectric runs in a
standard JVM and does not need an Android run-time environ-
ment. Most other automated testing frameworks, including
Robotium, are based on Android's Instrumentation framework,
and will need to run in the Dalvik JVM. Plugins such as the
Android Emulator Plugin26 enable these tests to be configured
and run in Hudson and Jenkins.

22 android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html
23 googletesting.blogspot.de/2013/10/espresso-for-android-is-here.html
24 code.google.com/p/robotium
25 robolectric.org/
26 wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

http://android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html
http://googletesting.blogspot.de/2013/10/espresso-for-android-is-here.html
http://code.google.com/p/robotium
http://robolectric.org/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

Android 31

Building

Aside from building your app directly in the IDE of your choice,
there are also more comfortable ways to build Android apps.
Gradle27 is now the officially supported build automation
tool for Android. There is also a maven plugin28 which is well
supported by the community. Both tools can use dependencies
from different Maven repositories, fro example the Maven
Central Repository29.

Google ships libraries for Gradle as Android Archive (.aar)
files that can be obtained using the Android SDK Manager. You
are also able to package your own libraries or SDKs utilizing
the android-library plugin for Gradle. A great source for finding
Gradle-friendly Android libraries is "Gradle, please"30.

Signing

Your apps are always signed by the build process, either with a
debug or release signature. You can use a self-signing mecha-
nism, which avoids signing fees (and security).

The same signature must be used for updates to your app
– so make sure to not lose the keystore file or the password.
Remember: you can use the same key for all your apps or create
a new one for every app.

27 tools.android.com/tech-docs/new-build-system
28 code.google.com/p/maven-android-plugin/
29 www.maven.org
30 gradleplease.appspot.com

http://tools.android.com/tech-docs/new-build-system
http://code.google.com/p/maven-android-plugin/
http://www.maven.org/
http://gradleplease.appspot.com/

Android 32

Distribution

After you have created the next killer application and tested
it, you should place it in Android's appstore called "Play". This
is a good place to reach customers and sell them your apps.
Android 1.6 upwards also supports in-app purchase through
Google Wallet. This enables you to sell extra content, feature
sets and alike from within your app by using the Android Play31
infrastructure. It is also used by other app portals as a source
for app metadata. To upload your application to Android Play,
go to play.google.com/apps/publish/.

You are required to register with the service using your
Google Checkout Account and pay a $25 registration fee. Once
your registration is approved, you can upload your app, add
screenshots and descriptions, then publish it.

Make sure that you have defined a versionName,
versionCode, an icon and a label in your
AndroidManifest.xml. Furthermore, the declared features
in the manifest (uses-feature nodes) are used to filter apps for
different devices.

One of the recent additions to the Google Play Store is alpha
and beta testing plus staged rollouts. This allows you to do
some friendly user testing before publishing the app to all us-
ers. Furthermore, you can target specific countries and devices
by setting the right flags in the Developer Console and export
detailed statistics that help in understanding your userbase.
Using the inbuilt localization service, you can easily add new
languages to your app by paying a fee – make sure to check
the Localization Checklist32 for detailed information about the
importance of this topic.

As there are lots of competing applications in Android Play,

31 developer.android.com/guide/google/play/billing/
32 developer.android.com/distribute/googleplay/publish/localizing.html

http://play.google.com/apps/publish/
http://developer.android.com/guide/google/play/billing/
http://developer.android.com/distribute/googleplay/publish/localizing.html

Android 33

you might want to use alternative application stores33. They
provide different payment methods and may target specific con-
sumer groups. One of those markets is the Amazon Appstore,
which comes pre-installed on the Kindle Fire tablet family.

Adaptation

As adaptation of Android increases, vendor specific ecosystem
have also been growing that involves their own SDKs, fully-
customized Android versions and tools around topics such as
alpha and beta testing. This has both upsides, such as a very
tight integration that allows an amazing experience for users,
and downsides, such as increased fragmentation of ecosystem.
Vendor specific marketplaces often prohibit the upload of
generic apps that utilize utilities other than their own.

One example is Amazon's Kindle Fire ecosystem which is ba-
sically a customized fork of Android and represents the Android
tablet with the biggest market share: Instead of using Google's
Play Services for enabling in-app purchases or maps, you have
to use Amazon's own libraries that offer similar functionality.
The reasoning behind it is pretty simple: Kindle devices are not
delivered with the required libraries to run Google's services.
Amazon also offers their own advertisement and gaming
services (comparable to Google Play Games) that help to target
your audience. Offering Emulators for their four different
devices (1st Gen, 2nd Gen, HD 7" and HD 8.9"), Amazon helps
perfect your app by providing a realistic environment. On top of
the testing that Amazon offers their developer community, they
also review any apps that get uploaded to their Appstore.

Here is a little overview that can help you find the right
resources:

33 onepf.org/appstores/

http://www.onepf.org/appstores/

Android 34

Vendor Documentation

Amazon developer.amazon.com/sdk/fire.html

HTC htcdev.com

LG developer.lge.com

Motorola developer.motorolasolutions.com/
community/android

Samsung developer.samsung.com/android

Sony developer.sonymobile.com

Interestingly enough more and more vendors (e.g. Samsung and
HTC) have also started to offer vanilla Android versions of their
devices called "Google Play Edition". These devices use the
same hardware as the regular models but do not come with any
software customization. These devices are directly distributed
through Google's Play Store and offer bleeding edge devices to
users that want to stick to Google's experience.

http://developer.amazon.com/sdk/fire.html
http://www.htcdev.com
http://developer.lge.com/main/Intro.dev
http://developer.motorolasolutions.com/community/android
http://developer.motorolasolutions.com/community/android
http://developer.samsung.com/android
http://developer.sonymobile.com/

Android 35

Monetization

In addition to selling an app in one of the many app stores
available, there are several different ways of monetizing an An-
droid app. One suitable way is by using advertising, which may
either be click- or view-based and can provide a steady income.
Other than that, there are different In-App Billing possibilities
such as Google's own service34 that utilizes the Google Play
Store or PayPal's Mobile SDK35 and Mobile Payments Library36.
Most services differ in transaction-based fees and the possibili-
ties they offer for example subscriptions, parallel payments or
pre-approved payments. If you're looking to bring extra cool
functionality to your app, you should consider implementing
card.io's SDK37 for camera-enabled credit card scanning.

For the vendor specific ecosystems, such as Samsung Apps
or Amazon's Appstore, you should consider using their SDKs to
enjoy the benefits of optimized monetization.

Be sure to check that the payment method of your choice
is in harmony with the terms and conditions of the different
markets you want to publish your app to. Those particularly
for digital downloads, for which different rules exist, are worth
checking out.

34 developer.android.com/google/play/billing/
35 github.com/paypal/PayPal-Android-SDK
36 developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
37 card.io

http://developer.android.com/google/play/billing/
http://github.com/paypal/PayPal-Android-SDK
http://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
http://www.card.io/

BlackBerry Java Apps 37

BlackBerry Java Apps

The Ecosystem

The BlackBerry platform is developed by Canadian company
Research In Motion (today named BlackBerry Ltd.) and was
launched in 1999. BlackBerry devices became extremely popular
because they were equipped with a full keyboard for comfort-
able text input, had a long battery life, included BlackBerry
Messenger (their mobile social network offering) and offered a
robust push service for email and other data.

However, with the exception of a few markets (Nigeria,
Indonesia, South Africa), the overall market share of BlackBerry
phones has declined continuously in recent years. In Q3 2013,
BlackBerry devices accounted for only 2% of global smartphone
shipments1. To gain back lost ground, in 2012 RIM introduced
a completely new operating system: BlackBerry 10 (BB10).
Since 2013, all their new devices are based on BB10; see the
dedicated BB10 chapter to learn more about it.

This chapter concentrates on developing apps for the older
BlackBerry devices released before 2013. Although it will be
phased out in the future, currently the BlackBerry Java API
is the most commonly used method to develop apps for older
BlackBerry devices. As such, this chapter is dedicated to it.

1 bgr.com/2013/10/30/blackberry-market-share-q3-2013/

B
Y

 O

vi
di

u
Il

ie
sc

u
&

 M
ic

ha
el

 K
oc

h

http://bgr.com/2013/10/30/blackberry-market-share-q3-2013/

BlackBerry Java Apps 38

Prerequisites

First, download the Java SDK2. Next, you need Eclipse and
the BlackBerry plugin3. These can be downloaded separately,
or as a convenient bundle which also includes the SDK and
simulators for the latest BlackBerry OS. Instructions on how to
download SDKs for older devices are available on the download
page. Extra device simulators are available for download from
RIM's website4.

To deploy your app package on to a device for testing you
should download and install the BlackBerry Desktop Manager5.
For faster deployment, you might also use a tool called
javaloader that comes with the JDE.

Implementation

The BlackBerry JDE is partly based on Java ME and some of its
popular JSR extensions. This means that BlackBerry apps can
be created using Java ME technologies alone. Another option
is to use BlackBerry’s proprietary extensions and UI framework
that enable you to make full use of the platform. A complete
JavaDoc of both APIs is available online6.

Native UI components can be styled to an extent, but
they inherit their look from the current theme. This can be
prevented in code, by overriding the Field.applyTheme()
method for each component/field.

From OpenGL-ES to homescreen interaction and cryptogra-
phy, the BlackBerry APIs provide you with everything you need

2 oracle.com/technetwork/java
3 us.blackberry.com/developers/javaappdev/javaplugin.jsp
4 us.blackberry.com/sites/developers/resources/simulators.html
5 us.blackberry.com/apps-software/desktop/
6 blackberry.com/developers/docs/7.0.0api/index.html

http://www.oracle.com/technetwork/java
http://developer.blackberry.com/bbos/java/download/eclipse/
http://us.blackberry.com/sites/developers/resources/simulators.html
http://us.blackberry.com/apps-software/desktop/
http://www.blackberry.com/developers/docs/7.0.0api/index.html

BlackBerry Java Apps 39

to create compelling apps. In addition to the official BlackBerry
tools, there are third party extensions that enable you to
enhance your apps, for example J2ME Polish7 or Glaze8 which
enable you to design and animate your UI using CSS.

Services
BlackBerry offers many services that can be useful in develop-
ing your applications including advertising, mapping, payment
and push services9.

The push service10 is useful mainly in mail, messaging or
news applications. Its main benefit is that the device waits
for the server to push updates to it (rather than continuously
polling the server), which reduces network traffic, battery usage
and costs. BlackBerry offers the push mechanism as a limited
free service, with a premium paid extension that enables you to
send more push messages.

Porting
Porting apps between BlackBerry devices is easy because the OS
is made by a single company that has been careful to minimize
fragmentation issues. However, this does not entirely eliminate
challenges:

 — Some classes (for example, FilePicker) and functionality are
only available on specific OS versions.

 — You need to handle different screen resolutions and
orientation modes (landscape and portrait).

 — You need to handle touch and non-touch devices and,
depending on the target device, some device-specific

7 j2mepolish.org
8 glaze-ui.org
9 developer.blackberry.com/services/#platform
10 us.blackberry.com/developers/platform/pushapi.jsp

http://www.j2mepolish.org
http://www.glaze-ui.org
https://developer.blackberry.com/services/#platform
http://us.blackberry.com/developers/platform/pushapi.jsp

BlackBerry Java Apps 40

features as well (such as the Storm's physically clickable
touchscreen).

Porting to other Java platforms such as Java ME and Android
is complicated as it is not possible to port the BlackBerry UI.
In general, cross-platform portability strongly depends on how
frequently your app uses native BlackBerry components and
APIs. For example it is not possible to reuse BlackBerry push
services classes on other platforms.

Testing

BlackBerry provides simulators for various handsets. The
Blackberry testing and debugging capabilities are on par with
those of other modern platforms such as Android and iOS:
the simulators allow developers to simulate a large variety of
events (incoming calls, changes to GPS coordinates, changes to
network conditions, etc) while on-device debugging makes it
easy to test your code on real hardware.

In addition, automated testing is also possible, though
somewhat limited and complicated. You can use the bundled
FledgeController tool11 to inject events programatically from
your computer, or you can use the EventInjector class12 to
inject events from a BlackBerry application running on the
device (or simulator). However, there is very little documenta-
tion available on the topic, so expect some hacking and
head-scratching to be a part of your BlackBerry automated
testing experience.

11 docs.blackberry.com/en/developers/deliverables/15476/Using_the_
BBSmrtphnSmltr_programmatically_607582_11.jsp

12 blackberry.com/developers/docs/4.1api/net/rim/device/api/system/
EventInjector.html

http://docs.blackberry.com/en/developers/deliverables/15476/Using_the_BBSmrtphnSmltr_programmatically_607582_11.jsp
http://docs.blackberry.com/en/developers/deliverables/15476/Using_the_BBSmrtphnSmltr_programmatically_607582_11.jsp
http://www.blackberry.com/developers/docs/4.1api/net/rim/device/api/system/EventInjector.html
http://www.blackberry.com/developers/docs/4.1api/net/rim/device/api/system/EventInjector.html

BlackBerry Java Apps 41

Signing

Many security-critical classes and features of the platform (such
as networking or file APIs) require an application to be signed
such that the publisher can be identified. To achieve this, you
need to obtain a signing key directly from BlackBerry13. The
signing itself is undertaken using the rapc tool, which also
packages the application.

Distribution

BlackBerry’s own distribution channel is called AppWorld14
where you can publish your apps. For paid applications, you
get a 70% revenue share. In addition GetJar15 is a well-known
independent website that also publishes BlackBerry apps.

Learn More

If you want to learn more about BlackBerry Java development,
the following are a few resources that might help you.

Bundled sample apps
The SDKs come with a great selection of sample apps, showcas-
ing everything from simple "Hello, World!" applications to a
complex geo-location and multimedia apps.

13 https://www.blackberry.com/SignedKeys/codesigning.html
14 appworld.blackberry.com
15 getjar.com

https://www.blackberry.com/SignedKeys/codesigning.html
http://appworld.blackberry.com
http://www.getjar.com

BlackBerry Java Apps 42

Online
 — The official BlackBerry documentation microsite16

 — The BlackBerry developer forums17

Books
Printed works dealing with BlackBerry Java development
include:

 — BlackBerry Development Fundamentals18 by John Wargo
 — Beginning BlackBerry 7 Development 2nd Edition by

Anthony Rizk
 — Advanced BlackBerry 6 Development 2nd Edition by

Chris King

16 developer.blackberry.com/java/documentation/
17 supportforums.blackberry.com/t5/Java-Development/bd-p/java_dev
18 bbdevfundamentals.com/

http://developer.blackberry.com/java/documentation/
http://supportforums.blackberry.com/t5/Java-Development/bd-p/java_dev
http://bbdevfundamentals.com/

BlackBerry 10 44

BlackBerry 10

The Ecosystem

The BlackBerry 10 platform (BB10) is a general relaunch
from BlackBerry (company former named RIM). BlackBerry
has taken this approach in order to catch-up with competing
mobile operating systems: iOS, Android and Windows Phone
8. BB10 devices came to market in Q1 2013 – there are no
upgrade plans for older generation devices. Currently four BB10
handsets are available: The new flagship is now the Z30. The
Z10 and two phones with a physical keyboard, the Q5 and Q10.

As outlined in the previous chapter, BlackBerry is under mas-
sive market pressure: In Q1 2013, only 2.9% of all smartphones
sold globally were BlackBerry devices- compared to a market
share of 6.4% a year earlier. They have to make BB10 a success
if they do not want to lose even more ground, so they are
investing a lot in this relaunch. This means new and interesting
opportunities for app developers who are willing to develop for
the new platform. Although the OS is entirely new, in its core it
is based on QNX, a realtime OS for embedded devices. The other
parts of the BlackBerry ecosystem, like the Marketplace called
BlackBerry World or the push-service, have not changed. A big
asset for BlackBerry in enterprises are the Mobile-Management-
Software called BlackBerry Enterprise Server.

The latest BlackBerry SDK version 10.2 is available since
October 2013.

B
Y

 M

ar
cu

s
Ro

ss

BlackBerry 10

Development

With BB10, apps can be developed using a wide variety of
software technologies:

 — C Native SDK
 — C++ Cascades SDK
 — HTML5 (WebWorks SDK)
 — Adobe Air
 — Android Runtime
 — BlackBerry App Generator

To attract developers to their new OS, RIM provides a rich
set of resources including a simulator, many sample projects on
GitHub1 and frequently updated documentation2.

A major point of discontent, for which RIM has received a
lot of backlash, is that the current Java API is no longer sup-
ported. This means that Java developers writing code for older,
non-BB10 BlackBerry devices need to re-orient themselves
to one of the technologies previously mentioned. As not all
developers are willing to do this, there is concern in the com-
munity that too many developers will "jump ship" and re-orient
themselves to competing platforms. Furthermore, since there is
no migration path for current generation apps, developers will
need to rewrite them from scratch for the new platform. This
is necessary because the core of the new OS is based on QNX3,
a realtime embedded OS. On the other hand, the new platform
offers new opportunities, e.g. for web developers and Android
developers who can easily migrate their apps.

1 github.com/blackberry
2 developer.blackberry.com/platforms/bb10
3 www.qnx.com

http://github.com/blackberry
http://developer.blackberry.com/platforms/bb10
http://www.qnx.com

46

C Native SDK
The BlackBerry native SDK supports many open standards that
allow developers to bring their existing apps to the platform.
To get started, there is a Native Dev Site4. Writing your
code with the native SDK enables your app is as close to the
hardware as possible. The BlackBerry 10 native SDK includes
everything you need to develop programs that run under the
BlackBerry 10 OS: a compiler, linker, libraries, and an extensive
Integrated Development Environment (IDE). It is available for
Windows, Mac and Linux.

The core development steps are the following:

 — Request a signing account and keys
 — Set up the native SDK5

 — Install and configure the simulator6

 — Configure your environment for development and deploy-
ment

 — Create your first project
 — Run sample applications

As a new addition, BlackBerry added Scoreloop7 support to
the NDK. Scoreloop is a technology that enables mobile social
gaming. It lets developers integrate social features into their
games, while preserving each game's specific look and feel.
Some of the features currently available include:

 — User profile
 — Leaderboards
 — Challenges
 — Awards and achievements

4 developer.blackberry.com/native/beta
5 developer.blackberry.com/native/download
6 developer.blackberry.com/native/download
7 developer.blackberry.com/native/documentation/bb10/com.qnx.doc.

scoreloop.lib_ref/topic/overview.htmll

http://developer.blackberry.com/native/beta/
http://developer.blackberry.com/native/download/
http://developer.blackberry.com/native/download/
http://developer.blackberry.com/native/documentation/bb10/com.qnx.doc.scoreloop.lib_ref/topic/overview.htm
http://developer.blackberry.com/native/documentation/bb10/com.qnx.doc.scoreloop.lib_ref/topic/overview.htm

BlackBerry 10 47

C++ Cascades SDK
Developing with C++ and Cascades is another option. Cascades
has been designed to allow developers to build a BlackBerry
native application with strong support for easy UI implemena-
tion. The Cascades framework separates application logic from
the UI rendering engine. In an application, the declared UI
controls, their properties and their behavior are defined in an
Markup-Language called QML8. When your application runs, the
UI rendering engine displays your UI controls and applies any
transitions and effects that are specified. The Cascades SDK
provides the following features:

 — Cascades UI and platform APIs
 — Tools to develop your UI in C++, Qt Modeling Language

(QML), or both
 — Ability to take advantage of core UI controls and to create

new controls
 — Communication over mobile and Wi-Fi networks
 — Recording and playback of media files
 — Storage and retrieval of data
 — Certificate managing and cryptographic tools

The Cascades framework is built using the Qt application
framework. This architecture allows Cascades to leverage the Qt
object model, event model, and threading model. The slots and
signals mechanism in Qt allows for powerful and flexible inter-
object communication. The Cascades framework incorporates
features of fundamental Qt classes (such as QtCore, QtNetwork,
QtXml, and QtSql, and others) and builds on them. This lets
developers define things instead of programming them e.g.
they only need to define the duration and type of an anima-
tion, instead of programming it. This approach is similar to iOS

8 en.wikipedia.org/wiki/QML

http://en.wikipedia.org/wiki/QML

BlackBerry 10 48

with Core Animation. QML can even be written by experienced
Javascript developers because of its JSON-like markup.

To help developers with this new approach of UI building,
there is a tool called Cascades Builder. It is built into the QNX
Momentics IDE and lets developers design a UI using a visual
interface. When a change to the code is made, you can see the
effects immediately in the design view. The developer has no
need to program a control, he can simply use a drag and drop
approach.

If you are a designer, the Cascades Exporter9 is for you.
This Adobe Photoshop Plugin slices and rescales your images
and packages them up to a tmz-File (compressed, sliced and
metadata enhanced image assets). These asset files can be
easily used by a developer with the QNX Momentics IDE.

To get further information, there is a Cascades Dev Site10
available.

HTML5 WebWorks
If you are a Web/JavaScript developer, you can use your exist-
ing skills to write apps for BlackBerry. There are two important
tools that you can use:

The first tool is the WebWorks SDK11. Among other features,
it allows you to write regular webpages and then package
them as native BlackBerry apps with ease. The new version 2.0
of webworks fits tightly in Apache Cordova framework a.k.a
Phonegap. BlackBerry published all webworks-apis as plugins
for the cross-plattform Cordova tooling. If you want to mimic
the BlackBerry-UI style in HTML, there is a project on GitHub
to help you. It is called BBUi.js12 and provides extensive CSS to

9 developer.blackberry.com/cascades/documentation/design/cascades_exporter
10 developer.blackberry.com/cascades
11 developer.blackberry.com/html5/download/sdk
12 github.com/blackberry/bbUI.js

http://developer.blackberry.com/native/documentation/cascades/best_practices/cascades_exporter/
http://developer.blackberry.com/native/
http://developer.blackberry.com/html5/download/sdk/
http://github.com/blackberry/bbUI.js

BlackBerry 10 49

make your regular webpage look like a native BlackBerry-UI ap-
plication. You use data-attributes to enhance the HTML for that
approach. As an alternative for bbui.js there is also support for
jQueryMobile with a BB10 Theme. The SenchaTouch framework13
also supports BB10.

The second tool is the Ripple Emulator14. It is a Chrome
Browser extension that acts as a BB10 device simulator for
WebWorks apps. It also emulates hardware-specific features,
such as the accelerometer and the GPS sensor. You can even use
it to package and deploy your app without going through the
command-line.

It is good to know that RIM offers hardware accelerated
WebGL support and you could do debugging and profiling on
the mobile device via WebInspector as a built in feature.

To get more information about developing with WebWorks
there is a HTML5 Dev micro-site15 with more information.

Adobe Air
If you are an existing AIR develeoper you can add BB10 as a
new distribution channel. You will use the BlackBerry 10 SDK
for Adobe AIR to create applications for BlackBerry devices.

You can use the SDK with Adobe ActionScript and Adobe
Flex APIs to create/port BlackBerry Apps. These APIs provide
some unique UI components and predefined skins, as well as
listeners for events that are specific to BlackBerry devices.
Using the Adobe Flash Builder APIs, your application can also
access the features that are unique to mobile devices, such as
the accelerometer and geolocation information. Additionally,

13 www.sencha.com/products/touch
14 developer.blackberry.com/html5/download/ripple
15 developer.blackberry.com/html5

http://www.sencha.com/products/touch
http://developer.blackberry.com/html5/download/ripple
http://developer.blackberry.com/html5/

BlackBerry 10 50

you can harness the features of the BlackBerry 10 Native SDK
by developing AIR Native Extensions (ANE).

To begin developing your Adobe AIR application:

 — Download and install VMware Player for Windows or VMware
Fusion for Mac

 — Download the BlackBerry 10 Simulator
 — Download the BlackBerry 10 SDK for Adobe AIR
 — Begin development with Adobe Flash Builder, Powerflasher

FDT or Command Line Tools

For further information, visit the dedicated website16.

16 developer.blackberry.com/air/

http://developer.blackberry.com/air/

BlackBerry 10 51

Android Runtime
You can use the BlackBerry Runtime for Android apps to run
Android Jelly Bean 4.2.2 platform applications on BlackBerry
10.2. To use the runtime, you must first repackage your Android
applications in the BAR file format, which is the file format
required for an application to run on BlackBerry 10.

As a developer, you will need to use one of the following
tools to repackage your application. These tools also check how
compatible your application is for running on BlackBerry 10, as
some of the APIs from the Android SDK may not be supported,
or may be only partially supported on the BlackBerry platform.

 — Plug-in repackaging tool for Eclipse: The main advantage
of using this tool is the ability to check for compat-
ibility, repackage, debug, and run apps on the BlackBerry
PlayBook, BlackBerry Tablet Simulator, BlackBerry 10 Dev
Alpha Simulator and BlackBerry 10 device, all without
leaving Eclipse. You can also use this plug-in to sign
your application before it is distributed. If you want to
test your application without signing it, you can use the
plug-in to create and install a debug token on the target
device or simulator.

 — Online packager: The main advantage of the BlackBerry
Packager for Android apps is that you can use it to quickly
repackage your Android application using only your
browser. You can test the application for compatibility,
repackage it as a BlackBerry Tablet OS or BlackBerry 10
compatible BAR file, and then sign it so that it can be
distributed through the BlackBerry AppWorld storefront.

 — Command-line repackaging tools: One of the main
advantages of using the BlackBerry SDK for Android apps is
that you can use it to repackage multiple Android applica-
tions from the APK file format to the BAR file format. In

BlackBerry 10 52

addition, you can also use this set of command-line tools
to check the compatibility of your Android applications,
sign applications, create debug tokens, and create a
developer certificate.

If you want to find out more about running Android apps on
BB10, please visit the dedicated website17.

BlackBerry App Generator
If you are not a developer, BlackBerry provides an easy way
of generating a simple app for BB10 with the BlackBerry App
Generator18. This webpage generates an app based on imput-
sources like

 — RSS feeds
 — Tumbler
 — Facebook
 — YouTube
 — flickr

and more. It generates a master-detail styled app that can
be customized with a logo and color selection. For a simple
news-app that approach is totally fine, but do not expect any
"CNN"-like masterpieces.

17 developer.blackberry.com/android
18 blackberryappgenerator.com/blackberry/

http://developer.blackberry.com/android/
http://blackberryappgenerator.com/blackberry/

BlackBerry 10 53

Testing

BlackBerry continues to provide a simulator for BB10 handsets
as a separate download19. This simulator enables you to run
an app on a PC/Mac/Linux in the same way it would be run on
a real BlackBerry device. To assist with testing, the simulator
comes with a little application called controller. This utility
enables you to simulate things like setting the battery level,
GPS-position, NFC or tilting the device and thereby check how
your application reacts in real-world scenarios.

Signing

Many security-critical classes and features of the platform
(such as networking or file APIs) require an application to be
signed so that the publisher can be identified. This final step in
developing an app for BlackBerry is often painful.

If you like to test your unsigned app on a physical device,
you need to request a file called debug token. This token
enables a specific BB10 device to run unsigned apps. For this
setup procedure you need to request a signing file (client-
PBDT-xxxxx.csj) via the BlackBerry Key Order Form20. After
receiving the file by email you can install a debug token with

19 developer.blackberry.com/devzone/develop/simulator/
20 www.blackberry.com/SignedKeys/codesigning.html

http://developer.blackberry.com/devzone/develop/simulator/
https://www.blackberry.com/SignedKeys/codesigning.html

BlackBerry 10 54

the command-line tools. After this setup you can run unsigned
apps on your device. Please be advised that this needs to be
done on each device separately.

If you want to publish your app in BlackBerry's AppWorld,
you need a signing key also ordered through the BlackBerry Key
Order Form21. To help you with this process of setup BlackBerry
provides a step by step webpage22 that guides you through the
process.

Distribution

As with all previous OS versions, BB10 apps are distributed via
BlackBerry AppWorld23. The necessary vendor account can be
created at the Vendor Portal for BlackBerry World24.

For paid applications, developers get a 70% revenue share.
The second option is an enterprise distribution. This let you

roll out an internal app in your organization instead of making
it publicly available to any user. This is suitable for B2B Apps.
If you want to find out more about enterprise distribution,
please visit the dedicated website25.

21 www.blackberry.com/SignedKeys/codesigning.html
22 developer.blackberry.com/CodeSigningHelp/codesignhelp.html
23 appworld.blackberry.com
24 appworld.blackberry.com/isvportal
25 developer.blackberry.com/distribute/enterprise_application_distribution.html

http://www.blackberry.com/SignedKeys/codesigning.html
http://developer.blackberry.com/CodeSigningHelp/codesignhelp.html
http://appworld.blackberry.com
https://appworld.blackberry.com/isvportal/home.do
http://developer.blackberry.com/distribute/enterprise_application_distribution.html

55

Firefox OS 56

Firefox OS

The Ecosystem

Do we need another mobile operating system? Mozilla Founda-
tion thinks so and developed Firefox OS1, a Linux based open
source mobile operating system aimed at lower end smart-
phones. From the beginning, the release cycles for updates has
been pretty ambitious: After releasing version 1.0 in February
2013, version followed 1.1 in October and 1.2 in December the
same year.

The first Firefox OS device made available for the mass mar-
ket was the ZTE Open, which sell for 80USD and is promoted for
emerging markets. With the release of Alacatel's One Touch Fire
device in Germany, Firefox OS officially entered the European
market in October 2013. The phone's introductory price was set
to 90 Euro.

Firefox apps are HTML-based, but instead of packaging
HTML5 web apps with tools such as Phonegap, FirefoxOS uses
HTML/JavaScript/CSS as the native development languages.
This means it is pretty easy for a web developer to start writing
native apps for the system. You need to extend your knowledge
to the JavaScript API provided by Firefox OS, and to how apps
are packaged.

1 mozilla.org/firefox/os

B
Y

 M

ar
cu

s
Ro

ss

http://www.mozilla.org/firefox/os

Firefox OS 57

Firefox OS basically consists of three main components:

 — Gonk: The low-level Linux Kernel and hardware abstraction
layer (HAL). In theory a hardware vendor just needs to port
the Gonk to their hardware to make it Firefox OS compat-
ible.

 — Gecko: The application runtime. Gecko is parses, executes
and render the HTML, JavaScript and CSS. All access to the
hardware needed to deliver app functionality is handled
by this runtime. It includes a networking stack, graphics
stack, layout engine, virtual machine (for JavaScript), and
porting layers.

 — Gaia2: The user interface (UI), written in HTML, CSS
and JavaScript. Gaia provides all UI elements needed for
standard dialogues. It interfaces with the operating system
through Open Web APIs.

Development

There are two ways to create an app for Firefox OS: hosted apps
and packaged apps. In both cases you write code in HTML, CSS
and JavaScript. Hosted apps are basically a website. They are
easily updated but offer limited access to the web API and
need an established internet connection. Packaged apps run
locally and are essentially a zip file containing all the app's
assets.

Unlike normal webapps, Firefox OS apps need a manifest3.
This is metadata for your app which defines the name, descrip-
tion, icons and other information.

This is a how a minimal manifest would look:

2 github.com/mozilla-b2g/gaia github.com/mozilla-b2g/gaia github.com/
mozilla-b2g/gaia

3 developer.mozilla.org/en-US/docs/Web/Apps/Manifest

http://github.com/mozilla-b2g/gaia
http://github.com/mozilla-b2g/gaia
http://developer.mozilla.org/en-US/docs/Web/Apps/Manifest

Firefox OS 58Firefox OS

{
 ”name”:”Hello World”,
 ”description”:”Yet another...”,
 ”launch_path”:”/index.html”,
 ”icons”:{
 ”128”:”icon.png”
 },
 ”developer”:{
 ”name”:”Your name”,
 ”url”: ”http://...”
 },
 ”default_locale”:”en”
}

The Firefox WebAPI4 offers you access to: vibration,
geolocation, battery status, alarm, IndexedDB, proximity
sensor, ambient light sensor and an archive. Using the APIs you
can, for example, access the Battery Status simply by calling
navigator.battery.level in JavaScript.

If you need more features than the WebAPI provide, you can
use Activities. Mozilla uses the Object MozActivity, similar to
Android Intents: The user will be asked which app he wants to
use for a certain task.

Here is an example of how to create a short message:

var sms = new MozActivity({
 name: ”new”,
 data: {
 type: ”websms/sms”,
 number: ”+46777888999”
 }
});

4 wiki.mozilla.org/WebAPI

http://wiki.mozilla.org/WebAPI

Firefox OS 59

While is example shows how to access the picture-gallery
(picker):

var pick = new MozActivity({
 name: ”pick”,
 data: {
 type:
 }

});

Simulator and Testing

Mozilla provides a downloadable
simulator for Firefox OS as a browser plug-
in5. Firefox OS 1.2 introduced the App Manager6.
This new developer tool enables remote debugging of
code and provides more GUI helpers, such as the manifest
editor. However it is strongly recommended that you don't
blindly trust the simulator: for example, it has far more RAM
available compared to the actual Firefox devices.

5 addons.mozilla.org/en-us/firefox/addon/firefox-os-simulator/
6 developer.mozilla.org/en-US/Firefox_OS/Using_the_App_Manager

http://addons.mozilla.org/en-us/firefox/addon/firefox-os-simulator/
http://developer.mozilla.org/en-US/Firefox_OS/Using_the_App_Manager

Firefox OS 60

Distribution

Mozilla has created an global AppStore called Marketplace7.
Your app will be reviewed according to Mozilla's guidelines8.
Once it is published, you will get 70% of the generated revenue.

Learn More

Your first resource to learn more about how to develop your
Firefox OS app is the Mozilla Developer network9. A quick
introduction, including video tutorials on how to get started,
can also be found at marketplace.firefox.com/developers/docs/
quick_start. André Fiedler also offers some useful insights
for beginners in his Sideshare.net presentation Doing mobile
web Apps for Firefox OS – the right way10. Finally, Mozilla's
developer evangelist Chris Heilmann offers a lot of information
on his blog11.

7 marketplace.firefox.com
8 developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_

criteria
9 developer.mozilla.org
10 slideshare.net/andrefiedler1/doing-mobile-web-apps-for-firefox-os-the-right-

way
11 hacks.mozilla.org/author/cheilmann

http://marketplace.firefox.com/developers/docs/quick_start
http://marketplace.firefox.com/developers/docs/quick_start
http://marketplace.firefox.com
http://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria
http://developer.mozilla.org/en-US/docs/Web/Apps/Publishing/Marketplace_review_criteria
http://developer.mozilla.org/
http://www.slideshare.net/andrefiedler1/doing-mobile-web-apps-for-firefox-os-the-right-way
http://www.slideshare.net/andrefiedler1/doing-mobile-web-apps-for-firefox-os-the-right-way
http://hacks.mozilla.org/author/cheilmann/

iOS 62

iOS
The Ecosystem

A Short History of iOS
Apple announced iOS (which was then referred to as iPhone
OS) at MacWorld 2007 together with the first iPhone, which
was released on June 29, 2007. Since then Apple has released
a new generation of the iPhone accompanied by a new major
release of iOS every year, at some point between June and
October. In October 2013, the latest major release (7.0) was
delivered, after it was first presented at the Apple Worldwide
Developer Conference (WWDC) 2013. A first since the debut of
the original iOS, the latest version presents a major overhaul
of the user interface and its aesthetics. While for users the
changes in iOS 7 mainly mean getting used to different a look,
developers face a lot of work getting their apps ready, as apps
created for the design patterns of the earlier operating system
releases will look very much out of place.

Devices Running iOS
Currently, Apple sells several distinct devices (in various
configurations) that run iOS:

 — iPhone
 — iPod touch
 — iPad
 — Apple TV

With the exception of Apple TV, all of those devices include
the App Store and can run third-party applications.

Most devices will run the most current version of iOS for at
least two years from their initial release, so developers should

B
Y

 A

le
xa

nd
er

 R
ep

ty

iOS 63

consider this when planning to develop an application. Using
older hardware generally means fewer resources, such as CPU
cycles and RAM; and in some cases different display sizes and/
or screen resolutions.

A detailed list of iOS devices, their capabilities and sup-
ported iOS versions can be found on Wikipedia1.

Device and App Sales
According to information from Apple, which are usually
milestones announced at special media events, over 700 million
iOS devices should have been sold2. According to the graph in
the article, over 200 million of those devices were sold in 2013
alone. Since sales of iOS devices are still gaining momentum,
even after five years, a large number of those devices can be
assumed to be in active use and still running either iOS 6 or
iOS 7.

The App Store currently contains over 1,000,000 applica-
tions by third-party developers, which have collectively been
downloaded over 60 billion times3, paying out over ten billion
dollars to developers according to Apple4.

Fragmentation
With the introduction of 4.0" devices (the iPhone 5 and the
fifth generation iPod touch) in 2012, Apple for the first time
changed the form factor of its iPhone and iPod touch models,
which can lead to quite a bit of extra effort in developing
for both device sizes, especially if a universal app (which is
optimized for both iPhone/iPod touch and iPad) is required.

1 en.wikipedia.org/wiki/List_of_iOS_devices
2 theverge.com/2013/9/10/4715256/apple-700-million-ios-devices-sold-by-

end-of-september
3 theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-

app-store
4 digitaltrends.com/mobile/app-store-specs-wwdc-2013/

http://en.wikipedia.org/wiki/List_of_iOS_devices
http://www.theverge.com/2013/9/10/4715256/apple-700-million-ios-devices-sold-by-end-of-september
http://www.theverge.com/2013/9/10/4715256/apple-700-million-ios-devices-sold-by-end-of-september
http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store
http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store
http://www.digitaltrends.com/mobile/app-store-specs-wwdc-2013/

iOS 64

While updated CPU architectures haven't added a lot of
effort to app projects, Apple has introduce a 64-bit ARM chip,
the Apple A75, which can mean extra effort in supporting
both 32-bit and 64-bit architectures, depending on use case.
However, for most apps, this should not mean more than a
recompile using a newer version of Apple's developer tools.

On the software side, the recent introduction of iOS 7 comes
with a completely overhauled user interface and associated
aesthetics. Instead of the previously favored rich look with
depth and ornamentation, the new operating system used a
flat look with vastly reduced details in the iconography. With
this change comes a significant amount of work for apps that
are targeted at both the new iOS 7 and older versions of the
system, such as iOS 6.

Since Apple, as of December 2013, is still selling older
models of their hardware that do not use Retina Displays (such
as the iPad 2 or the original iPad mini), developers are advised
to include graphic assets in two separate, optimized versions.

With updates to the operating system available free to users
and supporting devices up to four years old in some cases,
users tend to adopt new versions very quickly compared to
other mobile platforms. According to Apple's App Store Support
Center6, almost 80% of all devices used iOS 7 in January 2014,
just three months after its release. This accelerated adoption
means that developers can focus on new versions very quickly
and leave support for legacy systems behind.

5 en.wikipedia.org/wiki/Apple_A7
6 developer.apple.com/support/appstore/

http://en.wikipedia.org/wiki/Apple_A7
https://developer.apple.com/support/appstore/

iOS 65

Technology Overview

Frameworks and Language(s)
Since iOS builds on the foundation of Mac OS X, it uses a lot of
the same frameworks and technologies, except for the Cocoa
Touch layer (which manages and draws the user interface) and
a number of other, small frameworks that are unique to either
of the systems. This makes it easy for a number of applications
to use a similar code base and just vary on the user interface,
which would have to be completely redesigned for touch
devices anyway.

Apple continues to bring the platforms closer together by
making frameworks available on iOS which were previously only
available on OS X and vice versa. One such example is MapKit,
which Apple included in iPhone OS 3.0 in 2009 and brought to
the Mac in OS X 10.9 (Mavericks) in 2013.

Most Apple supplied frameworks for iOS are written in
Objective-C (or supply Objective-C APIs over a different back-
end), which is a Smalltalk-inspired lightweight runtime on top
of C and retains full C compatibility. Few frameworks supply C
APIs, mostly those used for audio and video programming. The
system also supports development in C++ and Objective-C++
and includes standard frameworks for all of those languages.

Before the release of iOS, Objective-C lead a somewhat
shadowy existence with ratings as low as 0.03% in the TIOBE
index7, thanks to its use almost exclusively for Apple's desktop
platform, Mac OS X. In December 2007, it was only the 57th
most popular programming language and since has made its
way to number three in 2013, just behind Java and C and after
winning "Programming Language of the Year" in 2011 and
2012.

7 tiobe.com/index.php/content/paperinfo/tpci/index.html

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

iOS 66

Over the past years, Apple has made numerous improvements
both to the Objective-C runtime and the LLVM compiler to
add new features to the language, such as automatic memory
management, blocks (a form of closures) and automatically-
synthesized properties, most of which directly benefits
developers as they have to write less code.

On their developer website8, Apple provides a plethora of
resources for iOS developers, including software downloads,
training videos, getting-started guides, documentation, sample
code and forums.

Most of these resources contain very valuable information,
such as the Human Interface Guidelines, which every developer
should read.

Alternative Programming Languages
Coming from other platforms and languages, learning Objective-
C and the iOS SDK APIs might seem very daunting, especially
given the language's unusual syntax when compared with other
popular programming languages. Therefore, it might be worth
considering an alternative to using Apple's tools and languages.

Over the years, a number of products have popped up that
add bridges or wrappers in order to support development
against the iOS SDK APIs for different languages. One of the
most popular of these products is Xamarin.iOS9, previously
known as MonoTouch. The product aims to facilitate porting
existing C# code bases to iOS (and Android, using Xamarin.
Android), while using native iOS APIs, retaining the highest
possible runtime speed. Being a commercial product, Xamarin.
iOS is usually updated very quickly to support the latest
changes made by Apple, which makes it a viable option for

8 developer.apple.com/devcenter/ios/
9 xamarin.com/ios

http://developer.apple.com/devcenter/ios/
http://xamarin.com/ios

iOS

developers interested in porting their .NET business logic to the
platform.

Ruby developers interested in iOS development might take
a look at RubyMotion10, an implementation of the program-
ming language that runs on both OS X and iOS. The product
offers compatibility with existing Objective-C libraries (via the
CocoaPods11 package manager or manually) and compilation of
source code (for runtime speed and obfuscation purposes). Like
Xamarin.iOS, RubyMotion is a commercial product with a steady
upgrade pace.

Xcode and Alternatives
For iOS (and Mac OS X) development, Apple supplies its own
suite of developer tools, completely free of charge, including
the following applications:

 — Xcode: integrated development environment
 — Instruments: performance analyzer running on top of

DTrace
 — Dashcode: development environment for Dashboard

widgets (Mac OS X) and other HTML-related content
 — iOS Simulator: simulates an iOS environment for quick

testing

A commercial alternative IDE to Xcode is JetBrains' Ap-
pCode12, a Java application with various more in-depth features
than Xcode has to offer.

10 rubymotion.com
11 cocoapods.org
12 jetbrains.com/objc

http://www.rubymotion.com/
http://www.cocoapods.org
http://www.jetbrains.com/objc/

iOS 68

Getting Started With iOS Development
The requirements to get started with iOS development are:

 — Intel-based Mac computer running Mac OS X 10.8/10.9
 — Free Apple Developer Connection membership
 — Xcode 4.x/5.x and iOS SDK (available for free from

developer.apple.com)

This setup enables you to write apps and test them in the
iOS Simulator, which is included with Xcode and the iOS SDK.
This is sufficient to get started and get a feel for iOS software
development, but in order to actually deploy apps to iOS
devices and to the App Store, a paid membership in the Apple
Developer Connection is needed (available from $99 US/€79 per
year). A paid membership in the iOS Developer Program also
provides access to pre-release software, such as beta versions
of upcoming versions of iOS and Xcode.

Generally, it is advisable to do as much testing as possible
on as many different devices as possible. See the section
Testing and Debugging below for more details.

For developers eager to dive into iOS app development,
Apple provides many starting points and guides on its
website13. The best document to read for newcomers to the
platform is Start Developing iOS Apps Today14, which gives
a broad overview of steps and skills required to develop iOS
applications and links to various in-depth articles about the
entire process, from basic setup tutorials to user interaction
design guidelines.

13 developer.apple.com/library/ios/navigation/#section=Resource%20
Types&topic=Getting%20Started

14 developer.apple.com/library/ios/referencelibrary/GettingStarted/
RoadMapiOS/chapters/Introduction.html

https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Getting%20Started
https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&topic=Getting%20Started
http://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/chapters/Introduction.html
http://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/chapters/Introduction.html

69

Diving Deeper Into iOS Development
Once you have an understanding of the basic concepts of the
iOS platform, Objective-C and the Cocoa touch framework, it
is time to expand your knowledge by learning about other
Apple-supplied frameworks and how they can help you build
outstanding iOS apps.

A great starting point to expand your knowledge is an all-
encompassing book on everything about iOS development. Most
experienced iOS developers will suggest one of Aaron Hillegass's
books, such as "iOS Programming: The Big Nerd Ranch Guide"15.
Even though books about iOS development tend to be outdated
rather quickly, thanks to an incredibly fast development cycle,
this books explains concepts that will likely be true for a while
and challenges the reader more than other books usually do.

For those who learn better in a classroom environment, Big
Nerd Ranch also offers a number of training classes16 in Europe
and North America.

For even more in-depth literature, it might be worth check-
ing out the current catalogs of publishers such as Pragmatic
Programmers, Apress, Sams and O'Reilly. All of these regularly
publish good quality books targeted at novice, intermediate
and advanced levels and in-depth literature about specific
frameworks.

Testing and Debugging

The iOS developer tools include support for unit testing as well
as automated user interface testing with the UIAutomation
framework. Using Xcode's command line tools, those tools can
even be integrated into continuous integration systems for
automated acceptance testing.

There are numerous external test automation tools and

15 bignerdranch.com/book/ios_programming_the_big_nerd_ranch_guide_rd_
edition_

16 bignerdranch.com/training

http://www.bignerdranch.com/book/ios_programming_the_big_nerd_ranch_guide_rd_edition_
http://www.bignerdranch.com/book/ios_programming_the_big_nerd_ranch_guide_rd_edition_
http://www.bignerdranch.com/training

iOS 70

frameworks as well. Some are proprietary commercial offerings;
however the majority are now open source, including some from
commercial companies who hope to sell services to make your
automated testing easier and more powerful. Many of the exter-
nal test automation tools require the developer to incorporate
a library into a special build of their app. The library allows the
tests to interact with your app. Be careful to keep the special
builds separate from builds intended for release to the app
store, otherwise you may have an unwelcome rejection when
submitting your app to the app store.

Xcode includes both gdb and lldb and will automatically use
the appropriate one based on which compiler is being used
for the application. Although you retain complete control over
the debugger using the prompt, Xcode offers a user interface
for often-used actions, such as setting, editing and deleting
breakpoints and viewing variables and memory contents.

Instruments also contains various features to help develop-
ers hunt down bugs, performance bottlenecks, and memory
management problems.

As the name implies, the iOS Simulator is just that – a simu-
lator and as such it has different runtime characteristics than
actual iOS devices. Thus, a number of issues that will appear on
real-world devices simply won't surface when testing apps in
the simulator. Fortunately, all supported tests can be executed
on devices too, and Apple allows developers to provision up to
100 iOS devices to run their apps for testing and demonstration
purposes.

Recruiting and managing third-party software testing (if not
available locally in-house) are made easy through TestFlight17
and HockeyApp18, both of which offer various helpful features,
such as automatic code signing, crash report collection and
in-app updating for beta testers.

17 testflightapp.com/
18 hockeyapp.net

http://testflightapp.com/
http://hockeyapp.net

iOS 71

Learn More

Online
Over the past few years, Dave Verwer's "iOS Dev Weekly"19 mail-
ing list has evolved to become probably the most important
resource for any serious iOS developer. Dave compiles the most
interesting news items of the week and sends them out each
Friday.

Quite recently, a number of iOS developers, led by Chris
Eidhof, Daniel Eggert and Florian Kugler have banded together
to make objc.io20, an online magazine for iOS developers which
is published monthly for free on their website, or for a small
subscription fee as a Newsstand app on the App Store. The
magazine explores a different topic each month with a handful
of articles covering technologies around that topic.

Over the past year, Mattt Thompson has built up an excellent
repository of articles on relatively unknown or even overlooked
APIs in Objective-C and Cocoa at "NSHipster"21. He continues
to publish interesting articles on a weekly basis and recently
released the first year of articles in the form of a book.

Ole Begemann regularly writes a blog in which he shares his
insight on in-depth iOS development topics that usually cannot
be found anywhere else. You can subscribe to his RSS feed at
oleb.net/blog.

Probably the biggest collection of high-quality iOS develop-
ment tutorials comes to you courtesy of Ray Wenderlich22 and
his team. They cover a wide width of interests and topics, from
beginner-level tutorials to full-blown 3D game development.

Many other developers regularly post valuable information
about current developments on their blogs. One notable

19 iosdevweekly.com
20 www.objc.io
21 nshipster.com
22 raywenderlich.com

http://oleb.net/blog/
http://iosdevweekly.com
http://www.objc.io
http://nshipster.com
http://www.raywenderlich.com

iOS 72

blog is Mike Ash's23, on which he posts a very interesting
series of Q&As about Objective-C and Cocoa development.
A number of other great other blogs can be found through
www.planetcocoa.org.

Events
Owing to the growing popularity of iOS, there are numerous
iOS-centered conferences around the world every year, way too
many to list here. There are two notable conferences though
that deserve a mention:

 — Every year in June, Apple holds their Worldwide Developer
Conference (WWDC)24. The full-week conference in San
Francisco includes many simultaneous tracks about Mac OS
X and iOS development with sessions by Apple engineers
as well as on-hands labs, where attendees can ask Apple
engineers for advice about problems they are facing while
developing their apps.

 — The biggest and most successful European conference
around Mac OS X and iOS development is NSConference25,
held every year around March in England.

Both of these conferences usually sell out in a matter of
days, if not hours – so plan well ahead and subscribe to alerts
about the tickets going on sale if you are planning to go to
either of those conferences.

If you are looking to connect with like-minded developers,
you can probably find a CocoaHeads26 meeting fairly close to
you. Most CocoaHeads chapters are an informal group of Mac
and iOS developers getting together, sharing their experiences
and helping each other out.

23 mikeash.com/pyblog
24 developer.apple.com/wwdc
25 ideveloper.tv/nsconference/
26 cocoaheads.org

http://www.planetcocoa.org
http://www.mikeash.com/pyblog/
https://developer.apple.com/wwdc/
http://ideveloper.tv/nsconference/
http://cocoaheads.org

Java ME (J2ME) 74

Java ME (J2ME)
The Ecosystem

J2ME (officially "Java ME") is the oldest mobile application
platform still widely used. Developed by Sun Microsystems,
which has since been bought by Oracle, J2ME is designed to
run primarily on feature phones. Most feature phones on the
market today support J2ME.

Due to its age and primary market segment, J2ME does not
fare well compared to modern smartphone platforms in terms of
APIs, hardware power and income generation. As a consequence,
J2ME’s popularity has declined significantly in recent years.

So why would you want to develop for J2ME? Mainly for
one reason: market reach. Although global smartphone sales
exceeded feature phone sales for the first time in Q2 20131,
this still means that most of the mobile phones in use are
feature phones. And feature phones usually support Java ME.
So if your business model relies on access to as many potential
customers as possible, then J2ME might still be a great choice
– especially when you are targeting markets like certain African
countries or India.

However, if your business model relies on direct application
sales, or if your application needs to make use of state-of-the-
art features and hardware, smartphone platforms are the better
choice.

1 gartner.com/newsroom/id/2573415

B
Y

 O

vi
di

u
Il

ie
sc

u

http://www.gartner.com/newsroom/id/2573415

Java ME (J2ME) 75

Prerequisites

To develop a Java ME application, you will need:

 — The Java SDK2 and an IDE such as Eclipse Pulsar for Mobile
Developers3, NetBeans4 with its Java ME plug-in or Intel-
liJ5. Beginners often chose NetBeans.

 — An emulator, such as the Wireless Toolkit6, the Micro
Emulator7 or a vendor specific SDK or emulator.

 — Depending on your setup you may need an obfuscator like
ProGuard8. For professional development, consider using a
build tool such as Maven9 or Ant10.

 — You may want to check out J2ME Polish11, the open source
framework for building your application for various devices.

Complete installation and setup instructions are beyond
the scope of this guide, please refer to the respective tools’
documentation.

Also download and read the JavaDocs for the most important
technologies and APIs: you can download most Java-Docs from
www.jcp.org. For manufacturer-specific APIs, documentation
is usually available on the vendor’s website (for example, the
Nokia UI API12).

2 oracle.com/technetwork/java/javame/downloads
3 eclipse.org
4 netbeans.org
5 jetbrains.com
6 oracle.com/technetwork/java/download-135801.html
7 microemu.org
8 proguard.sourceforge.net
9 maven.apache.org
10 ant.apache.org
11 j2mepolish.org
12 www.developer.nokia.com/Community/Wiki/Nokia_UI_API

http://www.jcp.org
http://www.oracle.com/technetwork/java/javame/downloads
http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com
http://www.oracle.com/technetwork/java/download-135801.html
http://www.microemu.org
http://www.proguard.sourceforge.net
http://maven.apache.org
http://ant.apache.org
http://www.j2mepolish.org
http://www.developer.nokia.com/Community/Wiki/Nokia_UI_API

Java ME (J2ME) 76

Implementation

The Java ME platform comprises the Connected Limited Device
Configuration (CLDC)13 and the Mobile Internet Device Profile
(MIDP)14. As both CLDC and MIDP were designed a decade ago,
the default set of capabilities they provide is rudimentary by
today’s standards.

Manufacturers can supplement these rudimentary capa-
bilities by implementing various optional Java Specification
Requests (JSRs), for example user data and file system access
(JSR 75) or GPS support (JSR 179). For a comprehensive list of
JSRs related to Java ME development, visit the Java Community
Process’ List by JCP Technology15.

It is very important to know that the JSRs you want to use
may not be available for all devices; so capabilities available on
one device might not be available on another device.

The Runtime Environment
J2ME applications are called MIDlets. A MIDlet’s lifecycle is
quite simple: it can only be started, paused and destroyed. On
most devices, a MIDlet is automatically paused when mini-
mized; it cannot run in the background. MIDlets also run in
isolation from one another and are very limited in their interac-
tion with the underlying operating system – these capabilities
are provided strictly through optional JSRs (for example, JSR
75) and vendor-specific APIs.

13 java.sun.com/products/cldc/overview.html
14 java.sun.com/products/midp/overview.html
15 jcp.org/en/jsr/tech?listBy=1&listByType=platform

http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/midp/overview.html
http://www.jcp.org/en/jsr/tech?listBy=1&listByType=platform

Java ME (J2ME) 77

Creating UIs
You can create the UI of your app in several ways:

1. Highlevel LCDUI components: you use standard UI
components, such as Form and List

2. Lowlevel LCDUI: you manually control every pixel of your
UI using low-level graphics functions

3. SVG: you draw the UI in scalable vector graphics then use
the APIs of JSR 22616 or JSR 28717.

In addition, some manufacturers provide additional UI
extensions. For example, Nokia's latest feature phone series
(Nokia Asha) employ either the Full Touch18 or the Touch and
Type19 user interface paradigms, depending on device model.
Samsung provide pinch zoom features in their latest Java ME
APIs20.

There are also tools that can help you with the UI develop-
ment:

1. J2ME Polish21: This tool separates the design in CSS and
you can use HTML for the user interface. It is backward
compatible with the highlevel LCDUI framework

2. LWUIT22: A Swing inspired UI framework
3. Mewt23: Uses XML to define the UI

16 www.jcp.org/en/jsr/detail?id=226
17 jcp.org/en/jsr/detail?id=287
18 www.developer.nokia.com/Resources/Library/Full_Touch/
19 www.developer.nokia.com/Community/Wiki/Nokia_UI_API_1.1b
20 developer.samsung.com/java/technical-docs/Multi-Touch-in-Samsung-Devices
21 j2mepolish.org
22 lwuit.java.net/
23 mewt.sourceforge.net

http://www.jcp.org/en/jsr/detail?id=226
http://www.jcp.org/en/jsr/detail?id=287
http://www.developer.nokia.com/Resources/Library/Full_Touch/
http://www.developer.nokia.com/Community/Wiki/Nokia_UI_API_1.1b
http://developer.samsung.com/java/technical-docs/Multi-Touch-in-Samsung-Devices
http://www.j2mepolish.org
http://lwuit.java.net/
http://www.mewt.sourceforge.net

Java ME (J2ME) 78

Screen resolutions for Java ME range from 176x208/220 to
360x640, with the most popular being 240x320. Handling so
many different resolutions can be a challenge, but using the
above tools you can create UI layouts that scale automatically.
Creating custom UIs for each resolution is possible, but not
recommended: it is time consuming, error prone and expensive.

Graphical assets should always be optimized. A great free
tool for this is PNGGauntlet24.

Testing

Because of device fragmentation, testing applications is vital.
Test as early and as often as you can on a mix of devices. Some
emulators are quite good, but there are some things that have
to be tested on devices. Vendors like Nokia25 and Samsung26
provide subsidized or even free remote access to selected
devices.

Automated Testing
There are various unit testing frameworks available for Java ME,
including J2MEUnit27, MoMEUnit28 and CLDC Unit29; Advanced
tools like JInjector30 provide code-coverage and UI testing
support.

24 pnggauntlet.com
25 forum.nokia.com/rda
26 developer.samsung.com
27 j2meunit.sourceforge.net
28 momeunit.sourceforge.net
29 snapshot.pyx4me.com/pyx4me-cldcunit
30 code.google.com/p/jinjector

http://www.pnggauntlet.com
http://www.forum.nokia.com/rda
http://developer.samsung.com
http://www.j2meunit.sourceforge.net
http://www.momeunit.sourceforge.net
http://snapshot.pyx4me.com/pyx4me-cldcunit
http://code.google.com/p/jinjector/

Java ME (J2ME) 79

Porting

At its core, Java ME is a set of standards and specifications,
which vendors sometimes interpret differently. This results in
all kinds of bugs and non-standard behavior. In the follow-
ing sections we outline different strategies for porting your
applications to different Java ME handsets and platforms.

Lowest Common Denominator
You can prevent many porting issues by limiting the functional-
ity of your application to the lowest common denominator.
This usually means CLDC 1.0 and MIDP 1.0, or CLDC 1.1 and
MIDP 2.0 if you only plan to release your application in more
developed countries / regions.

While this approach is good for simple applications, compre-
hensive and feature-rich applications will be limited by it. In
this case, you might want to consider using Java Technology
for the Wireless Industry (JTWI, JSR 185) or the Mobile Service
Architecture (MSA, JSR 248) as your baseline, but be aware that
these have more limited support in the market.

Porting Frameworks
Porting frameworks help you deal with fragmentation by au-
tomatically adapting your application to different devices and
platforms. To achieve this, they provide specialized run-time
client libraries and built-time tools (such as cross compilers)
that work together to make the process almost seamless.

Good porting frameworks enable you to use platform and
device specific code in your projects. In other words: a good
framework does not hide device fragmentation, but makes it
more manageable.

For Java ME one of your options is J2ME Polish from Enough

Java ME (J2ME) 80

Software31 (available under both the GPL Open Source license
and a commercial license). Porting from C++ to Java ME is also
possible with the open source MoSync SDK32.

For more information about cross-platform development and
the available toolsets, please see the “Going Cross-Platform”
chapter.

Signing

The Java standard for mobile devices differentiates between
signed and unsigned applications. Some handset functionality
is available to trusted applications only.

Applications signed by the manufacturer or carrier of a
device enjoy the highest security level and can access every
Java API available on the handset.

Applications signed by JavaVerified33, Verisign34 or Thawte35
are on a lower security level, while unsigned applications are
on the lowest security level.

Which features are affected and what happens if the applica-
tion is not signed is largely dependent on the implementation.
Furthermore, not every phone carries all the necessary root
certificates. The result is something of a mess, so consider
signing your application only when required. In some cases an
app store may offer to undertake the signing for you, as Nokia
Store does.

Another option is to consider using a testing and certifica-
tion service provider and leaving the complexity to them.
Intertek36 is probably the largest such supplier.

31 enough.de
32 mosync.com
33 javaverified.com
34 verisign.com
35 thawte.com
36 intertek.com/wireless-mobile

http://www.enough.de
http://www.mosync.com
http://www.javaverified.com
http://www.verisign.com
http://www.thawte.com
http://www.intertek.com/wireless-mobile

Java ME (J2ME) 81

Distribution

App stores are probably the most efficient way to distribute
your apps. Some of the most effective stores include:

 — Handmark37 and Mobile Rated38 provide carrier and vendor
independent application stores.

 — GetJar39 is one of the oldest distributors for free mobile
applications – not only Java applications.

 — Nokia Store40 targets Nokia users worldwide and provides
a revenue share to the developer at 70% from credit card
billing and 60% from operator billing

 — Carriers are in the game also, such as Orange41 and O242.

An overview of the available app stores (not those sell-
ing J2ME apps alone) can be found in the WIP App Store
Catalogue43. Also see the separate chapter on Appstores in this
guide to learn more.

Learn More

If you want to learn more about Java ME development, below
are a few resources that might help you.

Online
As Java ME is one of the oldest mobile platforms still used, it is
easy to find resources related to it. For example:

37 store.handmark.com
38 mobilerated.com
39 getjar.com
40 publish.ovi.com
41 www.orangepartner.com/distribute
42 mobileapps.o2online.de
43 wipconnector.com/appstores/

http://store.handmark.com
http://www.mobilerated.com
http://www.getjar.com
http://www.publish.ovi.com
http://www.orangepartner.com/distribute
http://mobileapps.o2online.de
http://www.wipconnector.com/appstores/

Java ME (J2ME) 82

 — Tutorials from sites such as J2ME Salsa44.
 — Resource archives from sites such as billday.com/javame
 — Interesting projects via the blog at

opensource.ngphone.com or on the Mobile and Embedded
page of java.net45, for example the Bluetooth project
Marge46.

Books
Over the years, a number of good Java ME books have been
written, for example:

 — Beginning J2ME: From Novice to Professional by
Jonathan Knudsen and Sing Li

 — Pro Java Me Apps: Building Commercial Quality Java ME
Apps by Ovidiu Iliescu

 — Pro J2ME Polish: Open Source Wireless Java Tools Suite
by Robert Virkus, dealing with J2ME Polish development.

 — LWUIT 1.1 for Java ME Developers by Biswajit Sarkar,
dealing with LWUIT development

Unfortunately, due to Java ME's decreasing popularity, very
few Java ME books have been written in recent years.

44 j2mesalsa.com
45 community.java.net/mobileandembedded/
46 marge.java.net/

http://billday.com/javame/
http://opensource.ngphone.com/
http://www.j2mesalsa.com/
https://community.java.net/community/iot
http://marge.java.net/

Tizen 84

Tizen

The Ecosystem

Tizen is an open source, Linux based operating system designed
to run on smartphones, netbooks, In-Vehicle-Infotainment
(IVI) systems and other smart devices. It can be viewed as a
successor to Nokia/Intel's Meego and Samsung's LiMo; earlier
smartphone operating systems based on Linux. Samsung also
merged the remains of their abandoned bada OS into Tizen,
providing a framework for native apps. Tizen, as a brand of the
Linux Foundation, was first announced by the Tizen Association
in December 2011 and version 1.0 (codename 'Larkspur') was
released in April 2012. Since then, the system has been under
continuous development, with Tizen 3.0 due for releases later
in 2014. The main drivers of Tizen are Samsung for the mobile
branch and Intel for the IVI focus. Examples of other contribut-
ing companies are Fujitsu, NTT Docomo, Huawei, Vodafone and
Orange.

The first Tizen smartphones are expected to be released
during 2014; at the time of writing Samsung only has a number
of digital camera models running Tizen.

Development

The main focus of Tizen is to enable a standards-based operat-
ing system for running apps written in HTML5. However, Tizen
enables you to write native apps in C++ as well, giving you the
power to max out the capabilities of the hardware. Both devel-
opment paths are supported by a variety of popular frameworks
and libraries, such as JQuery, to give you a good start with your

B
Y

 M

ar
co

 B
üt

tn
er

 &
 P

at
ric

k
M

or
ta

ra

Tizen 85

first Tizen app. If you have written native bada apps before,
you can migrate them quite easily. Very few code-changes
should be needed to make baba apps run on Tizen, there even
is a migration tool available to make this process easier.

Web app developers can use a comprehensive list of HTML5
features, Tizen device APIs and libraries — such as JQuery and
JQuery Mobile — to create beautiful apps. If you have created
web apps for bada, you can use the most of the original code
on Tizen. As with native apps, very few code changes should be
needed.

The official Tizen SDK contains an Eclipse-based IDE, which
can be used for both web and native app development. Former
bada developers will probably recognize the roots of this SDK:
Samsung's bada SDK. A code editor, UI designer, device emula-
tor ... it is all in there, ready to go. For web-based applications
you can also use Intel XDK, if you prefer.

Testing your apps

Of course, the best tests are those that can be done on a
device. At the time of writing your only option would be trying
to obtain of one of Samsung's rare Tizen test devices, the
RD-PQ and RD-210. However, these devices are very hard to
get. Therefore you will probably have to use the simulator and
emulator included in the Tizen SDK, while waiting for the first
mass market Tizen phones to become available. The simulator
provides a simple approach to testing web-based apps, but is
very limited in its features and cannot be compared to a real-
life testing on a device. The emulator is much nearer to the
device experience and can be used to test native apps as well.
It is a virtual machine based on QEMU and running an image of
a current Tizen mobile installation.

Tizen 86

For those cases where a real device is needed, you can use
Samsung Remote Test Lab1. These labs are situated around the
world and give you the opportunity to remotely connect to
devices from within your Tizen SDK.

Distribution

Tizen apps are distributed in Tizen package files (*.tpk) and
widget files (*.wgt) created by the Tizen SDK. Very similar to
Androids *.apk files, these can be installed by copying them
to a Tizen device and tapping them in the file explorer on that
device. The main hub for distributing apps will be TizenStore2.
In contrast to Apple Appstore, Google Play Store and Microsoft
Windows Phone Market you do not need to pay to become a
registered developer at the Seller Office3. All submissions will
be reviewed according to the Tizen Store guidelines. Usu-
ally, certification takes about 2 to 3 days, depending on the
complexity of your app. Once the app is published, you will get
80% of the generated revenue.

Learn More

As a developer, your first stop should be developer.tizen.
org. This site hosts all the documentation, tools and support
services for Tizen development. There you can also find a
forum with a very active and friendly community of Tizen app
developers.

1 developer.samsung.com/remotetestlab
2 www.tizenstore.com
3 seller.tizenstore.com

http://developer.tizen.org
http://developer.tizen.org
http://developer.samsung.com/remotetestlab
http://www.tizenstore.com
http://seller.tizenstore.com

Windows Phone & Windows RT 88

Windows Phone &
Windows RT
Windows Phone and Windows RT are on a road to convergence.
While they have not converged yet, it is just a matter of time
– as they already share a significant number of details such as
design paradigm, APIs and tooling. While developing for both
platforms is not as straightforward as coding for the different
form factors in Android or iOS, it is already much easier to
share code and UI constructs. So, starting in this edition we
are handling Windows Phone and Windows 8/RT in one chapter.

The Ecosystem

In the last edition of the guide we had a couple of complaints
about Windows Phone:

 — the lack of serious market traction.
 — that Microsoft had not implemented their enthusiast

program, which promised developers and power users the
ability to install new versions of the OS ahead of carrier
approval.

With much delight we have seen results in both cases:
Microsoft has now started an early access program1. Windows
Phone has also significantly improved its market share, now
passing 10% in the big five European countries (UK, Germany,

1 neowin.net/news/developers-finally-get-early-access-to-windows-phone-
updates

B
Y

 R

ob
er

t
Vi

rk
us

http://www.neowin.net/news/developers-finally-get-early-access-to-windows-phone-updates
http://www.neowin.net/news/developers-finally-get-early-access-to-windows-phone-updates

Windows Phone & Windows RT 89

France, Italy and Spain) according to Kantar World Panel2.
In Italy and Latin America Windows Phone even outsells the
iPhone significantly3. The only caveat is that growth is coming
mainly from lower end phones, such as the Nokia Lumia 520.

So it would seem our criticisms were noted – that is how it
should be! So, let us point out the some shortcomings in this
release: Firstly, APIs need to grow considerably and should
start to overtake other platforms, instead of slowly replicating
features and APIs; secondly Windows Phone must improve its
support for background apps; thirdly Windows Phone must offer
better customisation options to manufacturers, so that for
example Chinese companies can adapt their offering to local
tastes better.

Active Windows Phone vendors are Nokia, Samsung, HTC,
ZTE and Huawei. HTC is rumored to drop support for Windows
Phone. The Nokia Lumia device range owns around 80% of this
market4. Microsoft is realizing its 'services and devices' vision
by not only bringing out their Surface Pro and Surface tablets
but especially by buying Nokia5.

The Windows Phone Store now contains more than 200,000
apps6; and the average Windows Phone user now installs 51
apps7.

On Windows 8 and Windows RT side, Microsoft released the
second iteration of its Surface tablets in Q4 2013. RT tablets,
such as the original Surface RT, were not that successful,
however the Surface 2 seems to be considerably more success-

2 kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-
5C-three-to-one-in-Great-Britain

3 microsoft.com/en-us/news/press/2013/aug13/08-21wplatampr.aspx
4 blog.gsmarena.com/over-80-of-windows-phone-devices-made-by-nokia
5 microsoft.com/nokia
6 neowin.net/news/microsoft-windows-phone-store-now-has-over-200000-apps
7 phonearena.com/news/Are-the-apps-in-the-Windows-Phone-Marketplace-of-

a-higher-quality-than-the-ones-in-Google-Play-Store_id32045

kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-5C-three-to-one-in-Great-Britain
kantarworldpanel.com/global/News/news-articles/Apple-iPhone-5S-outsells-5C-three-to-one-in-Great-Britain
http://microsoft.com/en-us/news/press/2013/aug13/08-21wplatampr.aspx
http://blog.gsmarena.com/over-80-of-windows-phone-devices-made-by-nokia/
http://microsoft.com/nokia
http://www.neowin.net/news/microsoft-windows-phone-store-now-has-over-200000-apps
http://www.phonearena.com/news/Are-the-apps-in-the-Windows-Phone-Marketplace-of-a-higher-quality-than-the-ones-in-Google-Play-Store_id32045
http://www.phonearena.com/news/Are-the-apps-in-the-Windows-Phone-Marketplace-of-a-higher-quality-than-the-ones-in-Google-Play-Store_id32045

Windows Phone & Windows RT 90

ful. Most vendors have declined to release further Windows RT
hardware with the notable exception of Nokia, releasing the
Nokia Lumia 2520 tablet before it was acquired by Microsoft.
Windows 8.1 received more positive feedback from users,
Windows 8.1 and Windows 8 market share has now surpassed
the share of all Mac OS X versions combined according to Net
Applications8.

One of the major criticisms of Windows 8 is its dual
personality split between the desktop and the metro 'Windows
Store Apps' world.

Languages and Tooling

Windows Phone development is undertaken in C/C++, C# or
VB.NET, using Microsoft Visual Studio IDE or Expression Blend9.
Applications are created using Silverlight, principally for
event-driven applications, and DirectX, principally for games
driven by a “game loop”, although both technologies can be
used in a single application. Additionally you can create HTML
5 based apps using PhoneGap10, however web development is
not covered in this chapter. Last but not least you can create
simple Windows Phone apps without coding using the Windows
Phone App Studio11.

Windows RT development can be done using the same
languages and tools, with the additionally option to use Ja-
vaScript and HTML5 for the development of native WinRT apps.
Microsoft also released the Project Siena12 app, that provides a
simple environment for creating business apps.

8 netmarketshare.com/operating-system-market-share.aspx netmarketshare.
com/operating-system-market-share.aspx

9 dev.windowsphone.com
10 phonegap.com
11 apps.windowsstore.com
12 microsoft.com/en-us/projectsiena

http://netmarketshare.com/operating-system-market-share.aspx
http://netmarketshare.com/operating-system-market-share.aspx
http://dev.windowsphone.com
http://phonegap.com
http://apps.windowsstore.com
http://www.microsoft.com/projectsiena/default.aspx

91

It is important to consider which platform you should
leverage when building your application.

C/C++ C#/VB.NET JavaScript

WinRT yes yes yes

Windows Phone yes yes no (only within
webview)

Silverlight/
XAML

yes yes no

HTML no (but
webview
available)

no (but
webview
available)

yes

DirectX yes yes (with
SharpDX)

no

Codesharing Legacy native
Windows Apps,
professional
Xbox, other
platforms, ...

Legacy .NET
Windows Apps,
indie Xbox,
Windows Phone
apps, ...

Websites,
HTML5 apps,
...

If you want to use DirectX with C#, you can use SharpDX.
org, anxframework.codeplex.com or game libraries based on
that, such as monogame.codeplex.com.

While the most common scenario is to use Silverlight for
apps and DirectX for games, you can also create Silverlight
games and DirectX apps, depending on your needs. It is also
possible to host Direct3D inside your Silverlight application.
This could be used to display a 3D model inside an event-driven
Silverlight application, or to easily create stylish Silverlight-
based menus around a full DirectX game.

http://sharpdx.org
http://sharpdx.org
http://anxframework.codeplex.com
http://monogame.codeplex.com

Windows Phone & Windows RT 92

Metro Design Paradigm
Windows Phone's most obvious specific characteristic is the
unique, simple-to-use interface that focuses on typography
and content. This UI paradigm called Metro or Modern UI13
has been extended to the Xbox and Windows 8 as well. This UI
paradigm contains the following principles:

 — Content not Chrome removes unnecessary ornaments and
lets the content itself be the main focus. You should also
refrain from using every available pixel, as whitespace
gives balance and emphasis to content.

 — Alive in motion adds depths to the otherwise flattened
out design with rich animations

 — Typography is beautiful moves fonts to first class citizens
within Metro. The Helvetica inspired Segoe font of Windows
Phone matches the modernist approach.

 — Authentically digital design does not try to mimic real
world object but instead focuses on the interactions that
are available to digital solutions.

While Microsoft abandoned the 'Metro' name for its design
paradigm due to legal worries, alternative names such as
'Modern UI' never really caught on.

You should embrace the Metro UI design principles in
your application, especially when porting over existing apps.
Designers will find many inspirations and information at dev.
windowsphone.com/design as well as design.windows.com.

Important for the overall experience are the 'live tiles', small
widgets that reside on the start screen. You can update them
programmatically or even remotely using push notifications.

13 wikipedia.org/wiki/Metro_(design_language)

http://dev.windowsphone.com/design
http://dev.windowsphone.com/design
http://design.windows.com
http://wikipedia.org/wiki/Metro_%28design_language%29

Windows Phone & Windows RT 93

Codesharing between Windows RT and Windows Phone
As both Windows Phone 8 and Windows 8 share the same
kernel, there are many APIs present on both operating systems.
Note that some APIs are present but not (fully) implemented
on Windows Phone. Refer to the API documentation for details.
There are some Nuget compatibility packages available for
popular APIs such as the HttpClient14. The BCL package15 even
allows you to use the async and await pattern on the old
Windows Phone 7 platform.

You can create libraries that are shared between several
platforms using a Portable Class Library project. Such projects
can be created in Visual Studio Professional or higher, the free
Expression editions do not support that.

You can also share code directly between projects in Visual
Studio by linking sources between projects.

Integrating into the Platform

Both Windows Phone and Windows RT support a deep integra-
tion into the platform beyond the list of apps.

Both systems support 'live tiles' that show additional arbi-
trary information that can also be updated via push messages.
Then you can use lockscreen apps that control the image of the
lock screen on both Windows Phone and Windows RT.

On Windows Phone you can for example create camera
extension apps that are called lenses16, extend the music hub17
or integrate into the search experience18.

14 nuget.org/packages/Microsoft.Net.Http
15 blogs.msdn.com/b/bclteam/archive/2012/10/22/using-async-await-without-

net-framework-4-5
16 msdn.microsoft.com/library/windowsphone/develop/jj206990
17 msdn.microsoft.com/library/windowsphone/develop/ff769558
18 msdn.microsoft.com/library/windowsphone/develop/hh202957

http://www.nuget.org/packages/Microsoft.Net.Http
http://blogs.msdn.com/b/bclteam/archive/2012/10/22/using-async-await-without-net-framework-4-5
http://blogs.msdn.com/b/bclteam/archive/2012/10/22/using-async-await-without-net-framework-4-5
http://msdn.microsoft.com/library/windowsphone/develop/jj206990
http://msdn.microsoft.com/library/windowsphone/develop/ff769558
http://msdn.microsoft.com/library/windowsphone/develop/hh202957

Windows Phone & Windows RT 94

For a complete overview visit the integration documenta-
tion19.

On Windows RT there are contracts20 that serve the same
purpose, you can handle specific file extensions, take part in
sharing content and more.

MVVM
For app developers coming from other platforms the data
binding concepts of XAML will be new. For each page there
should be a view model that includes the data for that page.
The view itself only describes the UI, the actually displayed
data is populated with the data from the view model. Model
classes contain the actual data. This concept of a Model, a View
and a ViewModel (MVVM) ease the development of complex
apps considerably.

Game Engines
Thanks to the native app capabilities there are some game
engines available for Windows Phone 8 and Windows RT, for
example:

 — Cocos2d-x21

 — Havok22

 — Marmalade23

 — OGRE24

 — Unity 3D25

19 msdn.microsoft.com/library/windowsphone/develop/hh202969
20 msdn.microsoft.com/library/windows/apps/hh464906
21 cocos2d-x.org/wiki/Windows_Phone_8_Environment_Setup
22 havok.com/products/havok-windows-ecosystem
23 developer.madewithmarmalade.com/develop/supported-platforms
24 ogre3d.org/2012/10/30/ogre-now-supports-windows-phone-8
25 unity3d.com/pages/windows

http://msdn.microsoft.com/library/windowsphone/develop/hh202969
http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx
http://cocos2d-x.org/wiki/Windows_Phone_8_Environment_Setup
http://havok.com/products/havok-windows-ecosystem
https://developer.madewithmarmalade.com/develop/supported-platforms
http://www.ogre3d.org/2012/10/30/ogre-now-supports-windows-phone-8
http://unity3d.com/pages/windows

95

Services
Push notifications26 are available that can also update the
live tiles of your app. You can also consider using the freely
available SkyDrive cloud space and integrate with other
Windows Live services27 in your app. There are many third party
offerings28 available as well.

Multitasking and Application Lifecycle
Windows Phone has a limited form of multitasking that
suspends applications in the background and allows for fast
application switching. The only processes that can be run in
the background, after an application has been left, are audio
playback, location tracking and file transfer. Applications can
also schedule to run arbitrary code in the background at an
interval (code which is known as Background Agents). Back-
ground Agents are allowed limited use of resources and may be
stopped or skipped if the OS determines that the phone needs
to conserve resources.

Applications suspended in the background may be closed
automatically if the OS determines resources are needed
elsewhere.

To create the appearance of an application that was never
closed, Windows Phone has a well-documented application
lifecycle called Tombstoning29. To make Tombstoning possible,
the Windows Phone framework provides the hooks needed
to perform actions during different stages of the application
lifecycle (such as caching and restoring data and UI states).
With Windows Phone 8 there is also a new "fast app resume"
feature available to developers.

Windows Store apps have a similar life cycle30.

26 msdn.microsoft.com/library/windowsphone/develop/ff402558
27 msdn.microsoft.com/live
28 dev.windowsphone.com/en-us/featured/partners
29 msdn.microsoft.com/library/windowsphone/develop/ff817008
30 msdn.microsoft.com/library/windows/apps/hh464925

http://msdn.microsoft.com/library/windowsphone/develop/ff402558
http://msdn.microsoft.com/live
http://dev.windowsphone.com/en-us/featured/partners
http://msdn.microsoft.com/library/windowsphone/develop/ff817008
http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx

Windows Phone & Windows RT 96

Testing and Analytics

Unit tests are integrated into Visual Studio, just create an
additional Unit Test project in your solution and reference the
projects you would like to test.

For behavior-driven development, the Windows Phone Test
Framework by Expensify31 is available.

For developers wishing to collect runtime data and analytics,
there are several options. Localytics32 and Flurry33 provide
analytics tools and services that are compatible with Windows
Phone and Windows RT. Developers can also use the Silverlight
Analytics Framework34 to connect to a variety of third-party
tracking services such as Google Analytics. There are robust
performance monitoring tools available in Visual Studio.

Distribution

Distribute your apps through the Microsoft Windows Store.
While application content is reviewed and restricted in a
way similar to the Apple App Store, Microsoft provides fairly
comprehensive guidelines for submission, available at Dev
Center35. Although developer tools are provided free of charge,
a paid Store account is necessary to deploy software to devices
through the Windows Store. Currently, a developer account
costs 19 USD for individuals and 99 USD for companies per year.
The fee is waived for students in the DreamSpark36 program.
The Store also provides for time-limited beta distribution and

31 github.com/Expensify/WindowsPhoneTestFramework
32 localytics.com/docs/sdks-integration-guides/#winphone7
33 flurry.com/flurry-analytics.html
34 msaf.codeplex.com
35 dev.windowsphone.com
36 www.dreamspark.com

http://github.com/Expensify/WindowsPhoneTestFramework/
http://www.localytics.com/docs/sdks-integration-guides/#winphone7
http://www.flurry.com/flurry-analytics.html
http://msaf.codeplex.com/
http://dev.windowsphone.com
http://www.dreamspark.com

Windows Phone & Windows RT 97

offers a company hub for enterprises37. You can use the Win-
dows Phone Store Test Kit or the Windows Certification Kit that
are both integrated with Visual Studio to test your application
locally before you submit them.

The standard revenue share of 70% is increased to 80%
when your app makes more than 25,000 USD. The Windows
Store supports over 200 countries and regions and more than
100 languages, so you can have a global reach.

Apps are managed by customer, not by device. So a user can
use your app across a variety of platforms, such as a desktop PC
and a tablet.

For paid applications, the Windows Phone framework
provides the ability to determine if your application is in "trial
mode" or not and limit usage accordingly. Microsoft specifically
recommends against limiting trials by time (such as a thirty-
minute trial) and instead suggests limiting features instead38.

For ad-based monetization, there are several options.
Microsoft has their own Microsoft Advertising Ad Control39
(currently available in 18 countries), Smaato40, inneractive41,
AdDuplex42 and Google43 all offer alternative advertising solu-
tions. For more general information about monetization, please
the dedicated chapter in this guide.

37 msdn.microsoft.com/library/windowsphone/develop/jj206943
38 msdn.microsoft.com/library/windowsphone/develop/ff967558
39 advertising.microsoft.com/mobile-apps
40 smaato.com
41 inner-active.com
42 adduplex.com
43 developers.google.com/mobile-ads-sdk/

http://msdn.microsoft.com/library/windowsphone/develop/jj206943
http://msdn.microsoft.com/library/windowsphone/develop/ff967558
http://advertising.microsoft.com/mobile-apps
http://www.smaato.com/
http://inner-active.com/
http://www.adduplex.com/
http://developers.google.com/mobile-ads-sdk/

Windows Phone & Windows RT 98

Learn More

Visit dev.windowsphone.com and dev.windows.com for news,
developer tools and forums.

The development team posts on their blog at
blogs.windows.com/windows_phone/b/wpdev and
blogs.windows.com/windows/b/appbuilder or their Twitter ac-
count @wpdev. For a large collection of developer and designer
resources, visit windowsphonegeek.com and reddit.com/r/wpdev.

There are currently several built-in OS controls that are not
included in the Windows Phone SDK, such as context menu,
date picker, and others. Those controls are available as part
of the Phone Toolkit for Windows Phone, available at phone.
codeplex.com. Other popular Windows Phone projects include
coding4fun.codeplex.com, cimbalino.org and mvvmlight.
codeplex.com. For inspecting the visual tree, bindings and
properties of XAML-based user interfaces at runtime, xamlspy.
com is available.

Find many video tutorials about all things Windows and
Windows Phone at channel9.msdn.com.

Find sample code on code.msdn.microsoft.com/windowsapps,
code.msdn.microsoft.com/wpapps, in various
codeplex.com projects and in the end to end samples available
at msdn.microsoft.com/library/windows/apps/br211375. The
roadmap for app developers provides an good overview about
planning, designing and developing Windows RT apps at
msdn.microsoft.com/library/windows/apps/xaml/br229583.

If you are migrating from iOS or Android you can find
help at dev.windowsphone.com/en-us/featured/porting and
msdn.microsoft.com/library/windows/apps/dn436165.

http://dev.windowsphone.com
http://dev.windows.com
http://blogs.windows.com/windows_phone/b/wpdev
http://blogs.windows.com/windows/b/appbuilder/
http://www.twitter.com/wpdev
http://windowsphonegeek.com
http://www.reddit.com/r/wpdev
http://phone.codeplex.com
http://phone.codeplex.com
http://coding4fun.codeplex.com
http://cimbalino.org
http://mvvmlight.codeplex.com
http://mvvmlight.codeplex.com
http://xamlspy.com
http://xamlspy.com
http://channel9.msdn.com
http://code.msdn.microsoft.com/windowsapps
http://code.msdn.microsoft.com/wpapps/
http://codeplex.com
http://msdn.microsoft.com/library/windows/apps/br211375
http://msdn.microsoft.com/library/windows/apps/xaml/br229583
https://dev.windowsphone.com/en-us/featured/porting
http://msdn.microsoft.com/library/windows/apps/dn436165

Going Cross-Platform 100

Going Cross-Platform
So many platforms, so little time: This accurately sums up the
situation that we have in the mobile space. There are more
than enough platforms to choose from: Android, BlackBerry 10,
Firefox OS, iOS, Tizen, Windows 8, and Windows Phone are or
will likely be among the most important smartphone and tablet
platforms while Brew MP and Java ME dominate on feature
phones (arranged not by importance but rather alphabetically).

Most application sponsors, to quote Queen’s famous lyrics,
will tell the developer: “I want it all, I want it all, I want it all
...and I want it now!” So the choice may be between throwing
money at multiple parallel development teams, or adopting a
cross-platform strategy.

Key Differences Between Mobile
Platforms
If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier
to overcome than others:

Programming Language
By now you will have noticed that most mobile platforms
release their own SDKs, which enable you to develop apps in
the platforms’ supported programming languages.

However, these languages tend to belong to one of a few
families of root languages and the following table provides an
overview of these and the platforms they are supported on:

B
Y

 R

ob
er

t
Vi

rk
us

Going Cross-Platform 101

Language 1st class citizen¹ 2nd class citizen²

ActionScript BlackBerry 10,
BlackBerry PlayBook
OS (QNX)

none

C, C++ BlackBerry 10,
Brew MP, Sailfish
OS, Windows RT,
Windows Phone 8

Android (partially,
using the NDK), iOS
(partially)

C# Windows 8, Windows
Phone

none

Java Android, BlackBerry,
Java ME devices

none

JavaScript BlackBerry PlayBook
OS, Firefox OS, Tizen,
Windows 8

BlackBerry
(WebWorks), Nokia
(WRT)

Objective-C iOS none

Cross platform frameworks can overcome the programming
language barriers in different ways:

 — Web Technologies
 — Interpretation
 — Cross Compilation

Most frameworks also provide a set of cross platform APIs that
enable you to access certain platform or device features, such
as a device’s geolocation capabilities, in a common way. For

1 Supported natively by the platform, for example either the primary or only
language for creating applications

2 Supported natively by the platform, for example either the primary or only
language for creating applications

Going Cross-Platform 102

features such as SMS messaging you can also use network APIs
that are device-independent1.

OS Versions
Platforms evolve and sooner or later they will be version
specific features that you want to leverage. This adds another
layer of complexity to your app and also a challenge for
cross-platform tools: sometimes they lag behind when a new OS
version is released.

UI and UX
A difficult hurdle for the cross platform approach is created
by the different User Interface (UI) and User eXperience (UX)
patterns that prevail on individual platforms.

It is relatively easy to create a nice looking UI that works
the same on several platforms. Such an approach, however,
might miss important UI subtleties that are available on a
single platform only and could improve the user experience
drastically. It would also ignore the differences when it comes
to the platforms' design philosophies: While many platforms
strive for a realistic design in which apps look like their real
world counterparts, Windows Phone's Metro interface strives
for an "authentically digital" experience, in which the content
is emphasized not the chrome around it. Another key chal-
lenge with a uniform cross-platform UI is that it can behave
differently to the native UI users are familiar with, resulting in
your application failing to “work” for users. A simple example is
not to support a hardware key such as the back key on a given
platform correctly. Another challenge is the uncanny valley
that results from mimicking native UI elements that look but
do not work the same. Instead of mimicking native controls you

1 www.developergarden.com/apis/

http://www.developergarden.com/apis/

Going Cross-Platform 103

should either use non-native looking ones or just use the 'real
deal'.

When you target end consumers directly (B2C), you often
need to take platform specific user experience much more
into account than in cases when you target business users
(B2B). In any case you should be aware that customizing and
tailoring the UI and UX to each platform can be a large part of
your application development effort and is arguably the most
challenging aspect of a cross platform strategy.

Desktop Integration Support
Integration of your application into devices’ desktops varies a
lot between the platforms; on iOS you can only add a badge
with a number to your app’s icon, on Windows Phone you can
create live tiles that add structured information to the desktop,
while on Android you can add a full-blown desktop widget that
may display arbitrary data and use any visuals.

Using desktop integration might improve the interaction
with your users drastically.

Multitasking Support
Multitasking enables background services and several apps
to run at the same time. Multitasking is another feature that
is realized differently among operating systems. On Android,
BlackBerry and Sailfish OS there are background services and
you can run several apps at the same time; on Android it is not
possible for the user to exit apps as this is handled automati-
cally by the OS when resources run low. On iOS and Windows
Phone we have a limited selection of background tasks that
may continue to run after the app’s exit. So if background
services can improve your app’s offering, you should evaluate
cross platform strategies carefully to ensure it enables full
access to the phone’s capabilities in this regard.

Going Cross-Platform 104

Battery Consumption And Performance
Closely related to multitasking is the battery usage of your
application.

While CPU power is roughly doubled every two years
(Moore’s law says that the number of transistors is doubled
every 18 months), by contrast battery capacity is doubling only
every seven years. This is why smartphones like to spend so
much time on their charger. The closer you are to the platform
in a crossplatform abstraction layer, the better you can control
the battery consumption and performance of your app. As a
rule of thumb, the longer your application needs to run in one
go, the less abstraction you can afford.

Also some platforms have a great variety of performance,
most notably Android – Android devices range from painfully
slow to über-fast.

Push Services
Push services are a great way to give the appearance that your
application is alive even when it is not running. In a chat ap-
plication you can, for example, send incoming chat messages to
the user using a push mechanism. The way push services work
and the protocols they use, again, can be realized differently
on each platform. The available data size, for example, ranges
between 256 bytes on iOS and 8kb on BlackBerry. Service
providers such as Urban Airship2 support the delivery across a
variety of platforms.

In App Purchase
In app purchase mechanisms enable you to sell services or
goods from within your app. Needless to say that this works
differently across platforms. See the monetization chapter for
details.

2 urbanairship.com/

http://urbanairship.com/

Going Cross-Platform 105

In App Advertisement
There are different options for displaying advertisements
within mobile apps, some are vendor independent third-party
solutions. Platform specific advertisement services, however,
offer better revenues and a better user experience. Again, these
vendor services work differently between the platforms. The
monetization chapter in this guide provides more information
on this topic as well.

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Component libraries can help you to speed up native devel-
opment, popular examples are listed in the following table.

Component Library Target Platforms

cocoacontrols.com iOS

chupamobile.com Android, iOS

verious.com Android, iOS, HTML5, Windows
Phone

windowsphonegeek.com/Marketplace Windows Phone

http://cocoacontrols.com
http://chupamobile.com
http://verious.com
http://www.windowsphonegeek.com/Marketplace

106

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

 — Concept and assets: Mostly you will do this automatically:
share the ideas and concepts of the application, the UI
flow, the input and output and the design and design
assets of the app (but be aware of the need to support
platform specific UI constructs).

 — Data structures and algorithms: Go one step further by
sharing data structures and algorithms among platforms.

 — Code sharing of the business model: Using cross platform
compilers you can also share the business model between
the platforms. Alternatively you can use an interpreter or a
virtual machine and one common language across a variety
of platforms.

 — Complete abstraction: Some cross platform tools enable
you to completely abstract the business model, view and
control of your application for different platforms.

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Flash, Java ME
and Lua. This approach makes development very easy. You are
dependent, however, on the platform provider for new features
and the challenge here is when those features are available on
one platform only. Often player concepts tend to use a “least
common denominator” approach to the offered features, to
maintain commonality among implementations for various
platforms. Generator concepts like Applause3 carry the player
concept a step further, they are often domain specific and
enable you to generate apps out of given data. They often lack
flexibility compared to programmable solutions.

3 applause.github.com

http://applause.github.com

Going Cross-Platform 107

Cross Language Compilation
Cross language compilation enables coding in one language
that is then transformed into a different, platform specific
language. In terms of performance this is often the best cross
platform solution, however there might be performance dif-
ferences when compared to native apps. This can be the case,
for example, when certain programming constructs cannot be
translated from the source to the target language optimally.

There are three common approaches to cross language
compilation: direct source to source translation, indirectly
by translating the source code into an intermediate abstract
language and direct compilation into a platform’s binary
format. The indirect approach typically produces less readable
code. This is a potential issue when you would like to continue
the development on the target platform and use the translated
source code as a starting point.

(Hybrid) Web Apps
Some of the available web application frameworks are listed
in the following table. With these frameworks you can create
web apps that behave almost like real apps, including offline
capabilities. However, be aware that the technologies have
limitations when it comes to platform integration, performance,
and other aspects. Read the web chapter to learn more about
mobile web development.

108

Web App Solution License Target Platforms

Chrome Apps
developer.chrome.com/apps

BSD Android, Mac,
Windows

jQuery Mobile
www.jquerymobile.com

MIT and GPL Android, BlackBerry,
Firefox, iOS, Windows
Phone

Sencha Touch
www.sencha.com/products/
touch

GPL Android, BlackBerry,
iOS, Windows Phone

The M Project
the-m-project.org

MIT and GPL Android, BlackBerry,
Firefox, iOS, Windows

Typically you have no access to hardware features and native UI
elements, so in our opinion they do not count as “real” cross
platform solutions: these solutions are therefore not listed in
the table at the end of this chapter.

Hybrid web development means to embed a webview within
a native app. This approach allows you to access native
functionality from within the web parts of your apps and you
can also use native code for performance or user experience
critical aspects of your app. Hybrid apps allow you to reuse the
web development parts across your chosen platforms – a well
known example for a hybrid web framework is PhoneGap.

ANSI C
While HTML and web programming starts from a very high
abstraction you can choose the opposite route using ANSI
C. You can run ANSI C code on all important platforms like
Android, BlackBerry 10, iOS and Windows 8/Windows Phone.
The main problem with this approach is that you cannot access
platform specific APIs or even UI controls from within ANSI C.
Using C is mostly relevant for complex algorithms such as audio
encoders. The corresponding libraries can then be used in each
app project for a platform.

http://developer.chrome.com/apps
http://www.jquerymobile.com
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://the-m-project.org

Going Cross-Platform 109

Cross-Platform App Frameworks

There are many cross-platform solutions available, so it is hard
to provide a complete overview. You may call this fragmenta-
tion, we call it competition. A word of warning: we do not
know about all solutions here, if you happen to have a solution
on your own that is publicly available, please let us know about
it at mdgg@enough.de. A framework needs to support at least
two mobile platforms to be listed.

Here are some questions that you should ask when evaluat-
ing cross platform tools. Not all of them might be relevant to
you, so weight the options appropriately. First have a detailed
look at your application idea, the content, your target audience
and target platforms. You should also take the competition on
the various platforms, your marketing budget and the know-how
of your development team into account.

Research 2 Guidance also released a report on various
cross-platform tools4.

 — How does your cross platform tool chain work? What
programming language and what API can I use?

 — Can I access platform specific functionality? If so, how?
 — Can I use native UI components? If so, how?
 — Can I use a platform specific build as the basis for my own

ongoing development? What does the translated/generated
source code look like?

 — Is there desktop integration available?
 — Can I control multitasking? Are there background services?
 — How does the solution work with push services?
 — How can I use in app purchasing and in-app advertise-

ment?
 — How does the framework keep up with new OS releases?

4 research2guidance.com/cross-platform-tool-benchmarking-2013

mailto:mdgg%40enough.de?subject=Inquiry%20about%20the%20MDGG
http://www.research2guidance.com/cross-platform-tool-benchmarking-2013/

Going Cross-Platform 110

Solution License Input Output

Akula
verivo.com

Commercial (Visual) Android,
BlackBerry,
iOS, Windows
Phone

Application
Craft
applicationcraft.com

Commercial HTML, CSS,
JavaScript

Android,
BlackBerry 10,
iOS, Windows
Phone, mobile
sites

Codename One
codenameone.com

Commercial Java Android,
BlackBerry,
iOS, J2ME,
Windows Phone

Corona
coronalabs.com
(Corona Labs)

Commercial JavaScript Android, iOS,
Kindle, Nook,
Windows
Phone,
Windows RT

J2ME Polish
j2mepolish.org
(Enough Software)

Open Source +
Commercial

Java ME,
HTML, CSS

Android,
BlackBerry,
J2ME, PC

Flash Builder
adobe.com/devnet/
devices.html
(Adobe)

Commercial Flash Android,
BlackBerry
Tablet OS, iOS,
PC

Feedhenry
feedhenry.com

Commercial HTML, CSS,
JavaScript

Android,
iOS, HTML5,
Windows Phone

Kony One
kony.com/products/
develop/studio

Commercial HTML, CSS,
JavaScript, RSS

Android, Black-
Berry, iOS,
J2ME, Windows
Phone, PC, Web

http://verivo.com
http://www.applicationcraft.com
http://www.codenameone.com
http://www.coronalabs.com
http://www.j2mepolish.org
http://adobe.com/devnet/devices.html
http://adobe.com/devnet/devices.html
http://feedhenry.com
http://www.kony.com/products/develop/studio
http://www.kony.com/products/develop/studio

Going Cross-Platform 111

Solution License Input Output

LiveCode
runrev.com
(RunRev)

Commercial English-like Android, iOS,
PC and Web

M2Active
service2media.com
(Service2Media)

Commercial Drag and Drop
+ Lua

Android,
BlackBerry,
iOS, Windows
Phone

MobiForms
mobiforms.com
(MobiForms)

Commercial Drag and Drop
+ MobiScript

Android, iOS,
PC, Windows
Mobile

MoSync
mosync.com

Open Source +
Commercial

C/C++, HTML5/
JS

Android,
BlackBerry,
iOS, J2ME,
Windows Phone

NeoMAD
neomades.com

Commercial Java Android,
BlackBerry,
iOS, J2ME,
Windows Phone

Orubase
orubase.com

Commercial ASP .NET MCV Android, iOS,
Windows
Phone,
Windows RT

PhoneGap/
Cordova
phonegap.com
(Adobe/Apache)

Open Source HTML, CSS ,
JavaScript

Android,
BlackBerry 10,
iOS, Windows
Phone

Qt
qt.digia.com
(Digia)

Open Source +
Commercial

C++ Android,
BlackBerry 10,
iOS, Sailfish
OS, Windows
RT

http://www.runrev.com/products/livecode
http://www.service2media.com
http://www.mobiforms.com
http://www.mosync.com
http://neomades.com
http://www.orubase.com
http://www.phonegap.com
http://qt.digia.com

Going Cross-Platform 112

Solution License Input Output

Rhodes
motorolasolutions.
com/US-EN/
RhoMobile+Suite/
Rhodes (Motorola)

Open Source +
Commercial

Ruby, HTML,
CSS, JavaScript

Android,
BlackBerry,
iOS, Windows
Phone

Titanium
appcelerator.com
(Appcelerator)

Open Source JavaScript Android, iOS,
Tizen, Mobile
Web

trigger.io
trigger.io
(Triggger Corp)

Commercial HTML5,
JavaScript

Android, iOS,
Windows Phone

webinos
webinos.org

Open Source JavaScript Android,
BlackBerry,
iOS, PC, TV

webMethods
Mobile Designer
(formerly Me-
tismo Bedrock)
metismo.com
(Software AG)

Commercial Java ME Android,
BlackBerry,
brew, Consoles,
iOS, PC, Win-
dows Phone,
Windows
Mobile

Xamarin
xamarin.com

Commercial C# iOS, Android,
Windows
Phone, PC

XDK
xdk.intel.com
(Intel)

Free to use HTML, CSS,
JavaScript

Android, iOS,
Windows
Phone,
Windows RT

XML VM
xmlvm.org

Open Source +
Commercial

Java, .NET,
Ruby

C++, Java, Ja-
vaScript, .NET,
Objective-C,
Python

http://www.motorolasolutions.com/US-EN/RhoMobile+Suite/Rhodes
http://www.motorolasolutions.com/US-EN/RhoMobile+Suite/Rhodes
http://www.motorolasolutions.com/US-EN/RhoMobile+Suite/Rhodes
http://www.motorolasolutions.com/US-EN/RhoMobile+Suite/Rhodes
http://www.appcelerator.com
https://trigger.io
http://www.webinos.org
http://www.metismo.com
http://xamarin.com
http://xdk.intel.com
http://xmlvm.org

Going Cross-Platform 113

Cross-Platform Game Engines

Games are very much content centric and often do not need to
integrate deeply into the platform. So cross-platform develop-
ment is often more attractive for games than for apps.

Solution License Input Output

Cocos 2D
cocos2d-x.org

Open Source C++, HTML5,
JavaScript

Android,
BlackBerry, iOS,
Windows 8,
Windows Phone

Corona
coronalabs.com
(Corona Labs)

Commercial Lua Android, iOS,
Kindle, nook,
Windows Phone,
Windows RT

EDGELIB
edgelib.com
(elements
interactive)

Commercial C++ Android, iOS, PC

Esenthel
esenthel.com
(elements
interactive)

Commercial C++ Android, iOS, PC

GameSalad
gamesalad.com

Commercial Drag and drop Android, iOS,
Tizen, Windows
Phone, PC, web

Gideros Mobile
giderosmobile.com

Commercial Lua Android, iOS

id Tech 5
idsoftware.com (id)

Commercial C++ Consoles, iOS, PC

Irrlicht
irrlicht.sourceforge.
net

Open Source C++ Android & iOS
with OpenGL-ES
version, PC

http://www.cocos2d-x.org
http://www.coronalabs.com
http://www.edgelib.com
http://esenthel.com
http://gamesalad.com
http://giderosmobile.com
http://www.idsoftware.com
http://irrlicht.sourceforge.net
http://irrlicht.sourceforge.net

Going Cross-Platform 114

Solution License Input Output

IwGame
drmop.com/index.
php/iwgame-engine

Open Source C++ Android, Black-
Berry Playbook
OS, iOS, PC

Marmalade
madewithmarmalade.
com (Ideaworks3D)

Commercial C++, HTML5,
JavaScript

Android,
BlackBerry 10,
iOS, LG Smart TV,
Windows Phone,
Windows RT

Moai
getmoai.com
(Zipline Games)

Commercial Lua Android, iOS, PC,
Web

MonoGame
monogame.
codeplex.com

Open Source C#, XNA Android, iOS, PC,
Windows Phone,
Windows RT

Ogre 3D
ogre3d.org

Open Source C++ Windows Phone,
Window RT, PC

orx
orx-project.org

Open Source C, C++,
Objective-C

Android, iOS, PC

ShiVa 3D
stonetrip.comShiVa
3D
stonetrip.com

Commercial C++ Android, Black-
Berry 10, iOS, PC,
Consoles

SIO2
sio2interactive.com
(sio2interactive)

Commercial C, Lua Android, iOS, PC

Unigine
unigine.com
(Unigine corp.)

Commercial C++, Unigine-
Script

Android, iOS, PC,
PS3

Unity3D
unity3d.com
(Unity Technologies)

Commercial C#, JavaS-
cript, Boo

Android, Black-
Berry 10, iOS,
Windows Phone,
Windows RT, PC,
consoles, web

http://www.drmop.com/index.php/iwgame-engine
http://www.drmop.com/index.php/iwgame-engine
http://www.madewithmarmalade.com
http://www.madewithmarmalade.com
http://getmoai.com
http://monogame.codeplex.com
http://monogame.codeplex.com
http://www.ogre3d.org
http://orx-project.org
http://www.stonetrip.com
http://www.stonetrip.com
http://sio2interactive.com
http://www.unigine.com

Mobile Sites & Web Technologies 116

Mobile Sites &
Web Technologies
The continuous development of web technology coupled with
an increase in Internet-capable devices promises a great future
for those catering to the ever-increasing mobile web audience.
Global mobile Internet traffic is growing rapidly and has already
surpassed 20%1. The share of time spent browsing the Internet
by device (mobile, tablet, desktop and Smart TV) varies greatly
across the globe. While users in the USA spend 16% of their
time browsing the Internet on a mobile device, the Chinese
spend 34% and Indians 79%. Most regions where mobile
Internet traffic has already surpassed desktop Internet traffic
are developing and emerging markets. While smartphone use is
growing around the globe, there is still a huge opportunity to
cater to a feature phone audience in developing and emerging
markets. Take India as an example. Only 15% of Indians own a
smartphone. Nevertheless this equates to a whopping 180 mil-
lion users. At the same time 68% own a feature phone of which
9.5% are Internet-enabled feature phones2. Accordingly, a basic
mobile site could help you reach another 116 million users.

The most obvious use of web technologies is to build mobile
sites and this is also the key focus of this chapter. Neverthe-
less, it is worth pointing out that web technologies are also
heavily used within web and hybrid mobile apps, cross-platform
solutions and most recently native app development (Firefox
OS). For more information on cross-platform development and
the new Firefox OS, check out the respective chapters in this
guide.

1 gs.statcounter.com
2 discovermobilelife.com

B
Y

 D

an
ie

l K
ra

nz

http://gs.statcounter.com/
http://discovermobilelife.com/

Mobile Sites & Web Technologies 117

One big advantage of web technologies is that they offer
the easiest route into mobile development. Web technologies,
such as HTML, CSS and JavaScript have been well developed
for many years; however they remain, and will continue to be,
the main drivers of mobile site development. Additionally, they
are arguably easier to learn than some of the rather complex
languages needed for native app development. Mobile websites
and web apps make content accessible on almost any platform
with less effort in comparison to native development for a
number of platforms. This means mobile websites automati-
cally have a wider reach. Accordingly mobile web development
not only saves development time and cost, but furthermore
provides a time and cost-effective alternative when it comes to
maintenance. And being independent of app stores allows you
to offer any content you want quickly, and without having to
align it to the app store's approval policy.

Nevertheless there are shortcomings. Web technologies
struggle to match the level of deep platform integration and
direct access to hardware features native app development can
provide. Furthermore performance of web technologies is highly
dependent on connectivity, large sites such as Facebook and
LinkedIn experience memory issues and there is a lack of exist-
ing developer tools in comparison to developer tools available
for native app development.

Monetization of mobile sites can prove tricky as well, since
users expect to access mobile sites free of charge. The most
common monetization tool for mobile sites is ad integration.
Payment solutions for mobile sites are still in their early stages
and tend to be rather challenging to implement. Existing app
store monetization tools by contrast offer easy set-up and a
high level of security for the end-user.

If monetization is one of the key requirements, a hybrid or
web app strategy could prove to be a good compromise. In that

Mobile Sites & Web Technologies 118

case the key challenge is to combine the unique capabilities
of native and web technologies to create a truly user-friendly
product. In the cross-platform chapter of this book you will
find a list of available frameworks to create hybrid apps.

As a guiding principle users should not be left frustrated and
disappointed by being directed to a site which takes forever to
load, triggers high data charges or does not work at all. Instead
the worst-case scenario should be that a user is taken to a site
that is basic but still provides all relevant content. Key criteria
to consider prior to any development are your target audience's
device capabilities, browsing habits and bandwidth/data plans.

From a UX perspective, Google offers 10 best practices to
drive conversion for SMBs3:

 — Be thumb friendly – design your site so even large hands
can easily interact with it

 — Design for visibility – ensure your content can be read at
arm's length

 — Simplify navigation – clear navigation, hierarchy and
vertical scrolling aid access to information

 — Make it accessible – ideally, your mobile site should work
across all mobile devices and all handset orientations

 — Make it easy to convert – focus on information that will
aid conversion

 — Make it local – including functionality that helps people
find and get to you

3 www.dudamobile.com/webinar/Google_DudaMobile_Webinar.pdf

http://www.dudamobile.com/webinar/Google_DudaMobile_Webinar.pdf

Mobile Sites & Web Technologies 119

 — Use mobile site redirects – give users a choice to go
back to the desktop site, but make it easy to return to the
mobile site

 — Keep it quick – help mobile users, design your site to load
faster and make the copy easy to scan

 — Make it seamless – bring as much of the functionality of
your desktop site to mobile

 — Learn, listen and iterate – good mobile sites are
user-centric, meaning they're built with input from your
audience.

Google has already rolled out changes to its mobile search
results and has announced that it will penalize sites that are
not in line with its recommendations. Have a look at Google's
developer site4 for more up-to-date information on how to
optimize your mobile site.

HTML5

The fifth version of the HTML standard promises to reproduce
features previously available only with the help of proprietary
technology. HTML5 is one of the key drivers that makes coders
and decision-makers consider developing mobile sites and web
apps instead of native applications. A look-and-feel close to
that of apps combined with a single code base for a number
of popular devices, the ability to access device hardware such
as the camera and microphone, local data storage for offline
availability and optimization based on screen size make HTML5
an appealing alternative to native app development.

However HTML5 relies on universal browser support which is
currently lacking.

Ex-Facebook CTO Brent Taylor describes the situation as fol-

4 developers.google.com/webmasters/smartphone-sites

http://developers.google.com/webmasters/smartphone-sites/

Mobile Sites & Web Technologies 120

lows: ‘There is rampant technology fragmentation across mobile
browsers, so developers do not know which part of HTML5
they can use. HTML5 is promoted as a single standard, but it
comes in different versions for every mobile device. Issues such
as hardware acceleration and digital rights management are
implemented inconsistently. That makes it hard for developers
to write software that works on many different phone platforms
and to reach a wide audience.’

Most recently LinkedIn traded its mobile-web based apps in
for a new set of native applications. Kiran Prasad, LinkedIn's
senior director for mobile engineering decided to build both a
HTML5 site and rich native apps. His reasoning is that HTML5 is
ready and important for the business, but not supported by the
ecosystem as it should be. 'There are tools, but they are at the
beginning. People are just figuring out the basics.'5

For more info on browser compatibility, check out the
HTML5Test online6. The site provides both an overview and in-
depth analysis of which HTML5 features are supported by which
browser. Facebook has also launched ringmark7 which tests web
browsers for 3 rings, or levels, of support for HTML5 features
which helps developers to quickly check the level of support of
various mobile (and desktop) web browsers.

To wrap it up: Almost everyone in the mobile business
agrees that HTML5 will succeed in the long run. ABI research
estimates that mobile devices with HTML-compatible browsers
will total 1.4 billion worldwide by the end of 2013.8. Operating
systems will gradually increase support for HTML5 features and
browsers to increase overall adoption and speed. Open-source

5 venturebeat.com/2013/04/17/linkedin-mobile-web-breakup
6 html5test.com/results/mobile.html
7 rng.io
8 www.abiresearch.com/press/14-billion-html5-capable-mobile-devices-in-

2013-bu

http://venturebeat.com/2013/04/17/linkedin-mobile-web-breakup/
http://html5test.com/results/mobile.html
http://rng.io/
http://www.abiresearch.com/press/14-billion-html5-capable-mobile-devices-in-2013-bu
http://www.abiresearch.com/press/14-billion-html5-capable-mobile-devices-in-2013-bu

Mobile Sites & Web Technologies 121

platforms such as the Firefox OS, Sailfish, Tizen and Ubuntu
should also help to speed up adoption. Furthermore, the World-
wide Web Consortium (W3C) has finally declared HTML5 feature
complete and envisions that HTML5 will become an official web
standard in 20149. The Developer Economics 2014 research10
already ranks HTML5 as the third most popular mobile app
platform (after Android and iOS of course) with 52% mindshare.

Fragmentation Needs Adaptation

The biggest challenge of mobile site development is fragmenta-
tion. In theory all internet-enabled devices can access any
mobile site via a browser. The reality however is that develop-
ers need to adapt and optimize mobile site content to cater
to the ever increasing number of browsers and devices with
varying levels of software and hardware capabilities.

Broadly speaking there are two approaches to optimizing
content for mobile devices: Client-Side and Server-Side Adapta-
tion.

 — Client-Side Adaptation makes use of a combination of CSS
and JavaScript running on the device to deliver a mobile-
friendly experience.

 — Server-Side Adaptation makes use of the server to execute
logic before content is passed on to the client.

The following section provides an overview of client-side and
server-side techniques used to make mobile sites accessible for
the majority of current and future Internet-enabled devices.

9 www.w3.org
10 DeveloperEconomics.com

http://www.w3.org/
http://www.DeveloperEconomics.com

Mobile Sites & Web Technologies 122

Client Side Adaptation

Responsive Web Design
Responsive Web Design has been a buzzword amongst market-
ers and web developers alike. In its simplest form responsive
design consists of a flexible grid, flexible images and CSS media
queries to cater to a number of screen resolutions or types of
devices.

On its own this results in a device-sensitive experience for
a limited range of devices and lacks sophisticated content
adaptation. The same content is served to all devices. It is not
advisable as a technique to deliver complex desktop and mobile
sites.

Pro

 — Pure client side adaptation ensures no impact on the
existing infrastructure

 — Automatic adjustment of content and layout possible

Con

 — The same content available on the website will also be
available on the mobile version (whether visible or not).

 — The page weight of the site can have a significant impact
in terms of performance on mobile devices

 — It is a general approach instead of actual mobile-friendly
device optimization (e.g. Top 5)

Progressive Enhancement
Progressive Enhancement has the capability to cater to the full
spectrum of mobile devices. A single HTML page is sent to ev-
ery device. JavaScript code is then used to progressively build

Mobile Sites & Web Technologies 123

up functionality to an optimal level for the particular device. As
a mobile only solution the main drawback is performance. The
progressive build-up takes time to execute and varies according
to the device and network. As a desktop and mobile solution
its main drawback is that a single HTML document is sent to all
devices. A well-known framework that makes use of progressive
enhancement is jQuery Mobile11.

Pro

 — Pure client side adaptation ensures no impact on the
existing infrastructure

 — Progressive adjustment of content, function and layout
possible

Con

 — A loss of control, since detection is handled by the browser
 — Browser detection is still far from perfect
 — Detection done on the client-side impacts overall perfor-

mance of the site
 — The same HTML page is served to all devices

Server-Side Adaptation

Device Databases
Device databases detect each device accessing the website
and return a list of device capabilities to the server. This
information is then used to serve a mobile site that caters to
the device’s capabilities. Server-side adaptation is one of the
oldest and most reliable solutions. Popular device databases

11 jquerymobile.com

http://jquerymobile.com/

Mobile Sites & Web Technologies 124

include WURFL12 and DeviceAtlas13. The main drawback of
device databases is that the majority is only available as part
of a commercial license.

Pro

 — Most commonly used solution (Google, Facebook, Amazon
and alike)

 — Maximum control
 — Device optimization possible (for example to iPhone,

Samsung Galaxy and alike)

Con

 — Device Description Repositories are hardware focused
 — Besides the data, a detection mechanism is needed (a

simple ‘User-Agent’ matching does not work)

Hybrid Adaptation
Truly the best of both worlds, the combination of client and
server-side adaptation ensures high performance thanks to
server-side adaptation and means that the capabilities sourced
can be used to enrich the mobile experience on subsequent
visits.

Hybrid adaptation solutions are available commercially
from companies such as Sevenval14 and Netbiscuits15, and as
community-backed cloud solutions, for example FITML16.

12 wurfl.sourceforge.net
13 deviceatlas.com
14 sevenval.com
15 netbiscuits.com
16 fitml.com

http://wurfl.sourceforge.net/
http://deviceatlas.com/
http://sevenval.com
http://www.netbiscuits.com
http://www.fitml.com

125 Mobile Sites & Web Technologies

Better Data Input
With small, often on-screen, keyboards entering text can be
cumbersome and time-consuming, particularly if the user has
to enter numbers, email addresses or similar text. Thankfully
developers can easily specify the expected type of input and
smartphones will then display the most appropriate on-screen
keyboard. mobileinputtypes.com provides various clear and
concise examples.

Better Performance
Mobile users expect sites to load within 2-5 seconds. This is
a currently a challenging task, especially for complex mobile
sites. The following sections provides tips to reduce transfer
size, content and HTTP requests to minimize load time and
improve performance.

Reduce Transfer Size
Make use of image resizing and adjust the image quality
according to network quality.

Reduce Content
Both site and asset loading becomes more and more important.
Minifying assets such as JavaScript and CSS files can help
to reduce overall asset load times. Multiple files of the same
type are compressed into one and all whitespace is removed.
Code becomes shorter, but still behaves in the same way. All

http://mobileinputtypes.com/

this can result in a lower number of requests and ultimately a
faster loading time.

At the same time it is important that the user understands
what is going on. Accordingly, if content is loading its impor-
tant that the user is aware of this and is not presented with a
blank box or page. A smooth experience is paramount to any
mobile experience and this includes the journey from site to
content loading in the site and any animation surrounding it.

Reduce HTTP Requests
Inline images, scripts and styles, and add JavaScript pipe
and Application Caching. Key benefits are that scripts are
delivered in a single request per page, HTTP round-trips are
minimized and core scripts are stored in the application cache.
The implementation will not affect reload and scripts are still
cacheable publicly (CDN).

For more detailed tips around mobile web performance
check out Roland Guelle's presentation for DWX17.

Testing Web Technologies

How web technologies work in various mobile phones can
be tested in several ways. The simplest way is to test the
web site or web app in a variety of web browsers on mobile
devices. These would include a mix of the most popular mobile
web browsers, based for example on public data18. The set of
devices can be refined by analyzing data from existing web
logs and similar sources. Also, testing on various form-factors
helps to expose layout and formatting issues.

17 www.slideshare.net/sevenval/mobile-web-performance-dwx13
18 gs.statcounter.com/#mobile_browser-ww-monthly-201207-201306

http://www.slideshare.net/sevenval/mobile-web-performance-dwx13
http://gs.statcounter.com/#mobile_browser-ww-monthly-201207-201306

In terms of automated testing, WebDriver19 is the predominant
framework. There are two complementary approaches:

1. Automated testing using embedded WebView controls in
Android and iOS

2. User-agent spoofing using Google Chrome or Mozilla
Firefox configured to emulate various mobile web browsers

Both approaches have pros and cons:

 — Embedded WebViews run on the target platform OS. They
are likely to find many behavioral bugs. However the
configuration is more involved and some platform OSs are
not supported.

 — Spoofing can fool web servers to treat the browser as if
it came from any of a wide range of devices, including
mobile browsers not available with the embedded WebView
such as the Nokia Asha 201 phone. However the behavior
and rendering is not realistic so many bugs will remain
undetected, while other 'false positive' bugs will be found
that do not occur on devices.

Learn More

Online

 — W3Schools and CSS Tricks (good resource to understand
basic HTML, CSS and JavaScript):
w3schools.com, css-tricks.com

 — HTML5 Rocks (great resource about HTML5 including
tutorials, slideshows, articles and more): html5rocks.com

 — Breaking the Mobile Web (Max Firtman, the author of

19 seleniumhq.org/projects/webdriver/

http://www.w3schools.com
http://css-tricks.com/
http://www.html5rocks.com/en/
http://seleniumhq.org/projects/webdriver/

several books about mobile web programming, provides
up-to-date news in his dedicated mobile blog):
mobilexweb.com

 — Mobi Thinking (DotMobi's resource for marketers with
insights, analysis and opinions from mobile marketing
experts): mobithinking.com

 — Testing (Mobile) Web Apps:
docs.webplatform.org/wiki/tutorials/Testing_web_apps

 — Investigate what features work across all areas of the
web: caniuse.com and beta.theexpressiveweb.com

 — WHATWG (The HTML community's homepage):
whatwg.org

 — Word Wide Web Consortium (The organization that
defines web standards): w3.org

Books

 — Mobile First by Luke Wroblewski
 — Adaptive Web Design: Crafting Rich Experiences with

Progessive Enhancement by Aaron Gustafson and Jeffrey
Zeldman

 — Responsive Web Design by Ethan Marcotte
 — Programming the Mobile Web by Max Firtman
 — jQuery Mobile: Up and Running by Max Firtman

http://www.mobilexweb.com/
http://mobithinking.com/
http://docs.webplatform.org/wiki/tutorials/Testing_web_apps
http://caniuse.com
http://beta.theexpressiveweb.com
http://www.whatwg.org/
http://www.w3.org/

Accessibility 130

Accessibility
Nearly 20% of the world's population have some form of
disability. Accessibility has to do with creating a stellar user
experience for all of your users and enabling your app to be
used by as many people as possible.

Reasons you will want to make your apps accessible include
but are not limited to:

 — Implementing accessibility can often improve overall us-
ability. For instance, including speech in your app can help
blind people and also enable in-car use for drivers.

 — Your app may be able to tap into government funded
market sectors such as education where legislation, such
as section 508 of the Rehabilitation Act in the US, may
mandate an accessible solution.

 — Mobile platforms from Apple, Google and Microsoft leverage
their accessibility APIs for UI automation testing; so mak-
ing your app accessible can make automated testing easier.

Many of your potential users may have a disability which
makes it more difficult for them to use mobile technology.
These disabilities include, but are not limited to, various levels
of sight or hearing impairment, cognitive disabilities, dexterity
issues, technophobia and the like. Many of these users rely
on third-party utility software to assist them in using their
device. This software is sometimes called Assistive Technology,
and includes such utilities as screen reading and magnification
apps. iOS includes VoiceOver1 which is the front-runner in terms
of providing an accessible interface on mobile phones. Android
has a plug-in approach for Accessibility Software, the most

1 apple.com/accessibility/iphone/vision.html

B
Y

 G

ar
y

Re
ad

fe
rn

-G
ra

y
&

 J
ul

ia
n

H
ar

ty

http://www.apple.com/accessibility/iphone/vision.html

Accessibility 131

common plug-in is TalkBack. Several mobile platforms include
screen magnification and other settings to make the user
interface more accessible.

For these users, their overall experience is affected by how
well an app works with the assistive technology.

The Accessibility APIs look for text in specific attributes
of standard UI elements. Screenreaders such as VoiceOver and
TalkBack transform the text into spoken audio which the user
listens to. The screenreader software may also determine the
type of control and related attributes to help provide the user
with more contextual information, particularly if no text is
available.

Gestures may be affected when screenreaders are enabled.
Several screenreaders, including VoiceOver and Android's
Explore-By-Touch, enable the user to explore the screen to
find what an element is by touching it, before they decide to
interact with it. The changes may adversely affect how users

App
Assistive

Technologies
 +

 +

User Settings

 = UI

UI: the sum of various factors

Accessibility 132

can interact with your app. By testing your app with these
screenreaders you can catch these problems early, before they
affect end users. Also, you may be able to redesign the app
and pick suitable gestures that work well with and without
screenreaders being enabled.

To make your software accessible for users with disabilities,
you should follow some general guidelines. If you stick to
them, you will also give your app the best chance of interoper-
ating with assistive technology that the user may be running in
conjunction with your software:

 — Find out what accessibility features and APIs your
platform has and follow best practice in leveraging those
APIs if they exist.

 — Use standard rather than custom UI elements where
possible. This will ensure that if your platform has an ac-
cessibility infrastructure or acquires one in the future, your
app is likely to be rendered accessibly to your users

 — Follow the standard UI guidelines on your platform.
This enhances consistency and may mean a more accessible
design by default

 — Label all images with a short description of what the
image is, such as “Play” for a play button.

 — Avoid using colour as the only means of differentiating
an action. For example a colour-blind user will not be able
to identify errors if they are asked to correct the fields
which are highlighted in red.

 — Ensure good colour contrast throughout your app.
 — Use the Accessibility API for your platform, if there is

one. This will enable you to make custom UI elements more
accessible and will mean less work on your part across your
whole app.

 — Support programmatic navigation of your UI. This will
not only enable your apps to be used with an external

Accessibility 133

keyboard but will enhance the accessibility of your app
on platforms such as Android where navigation may be
performed by a trackball or virtual d-pad.

 — Test your app on the target device with assistive technol-
ogy such as VoiceOver on the iPhone.

You can find a more comprehensive list of guidelines online2.
The BBC has also published a detailed set of guidelines3 for
developing accessible mobile apps.

Apple and more recently Google and Microsoft, have
increased the importance of their respective Accessibility sup-
port by using the Accessibility interface to underpin their GUI
test automation frameworks. This provides another incentive
for developers to consider designing their apps to be more
accessible, which is 'a good thing'.

Looking at the different mobile platforms more closely, it
becomes obvious that they differ largely regarding their acces-
sibility features and APIs.

Custom Controls and Elements

If you are using custom UI elements in your app, then, those
platforms that have an Accessibility API enable you to make
your custom controlls accessible. You do this by exposing the
control to assistive technology running on the device so that
it can interrogate the properties of the control and render it
accessibly.

2 slideshare.net/berryaccess/designing-accessible-usable-application-user-
interfaces-for-mobile-phones

3 bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

http://www.slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones
http://www.slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

Accessibility 134

You can get more information about this process on Android
from the Google IO 2012 presentations4

If you are a member of the Apple developer program, then
take a look at their accessibility video presentations from
WWDC 2012 and 2013 available in the iOS Developer Center5.

Accessible Android Apps

The latest major version of Android, Version 4, brings a raft
of accessibility improvements. These include the accessibility
focus, Braille support and more. The developer documentation
has also been enhanced. Subsequent minor versions, including
4.4, continue to improve the support for accessibility.

These include new capabilities such as accessible live
regions and closed captioning support. Android Services6

To maximise the reach of your app, including to people
using previous versions of Android:

 — Use standard UI controls where practical
 — Consider using the Support Library7 which also includes

ways to improve the accessibility of custom views.
 — Make sure users can navigate your app via a trackball or

D-pad, which will give your app the best chance of being
rendered accessibly by the likes of TalkBack and other
assistive technology applications.

For specifics on how to use the Android accessibility API
along with details of best practice in Android accessibility,

4 youtube.com/watch?v=q3HliaMjL38 and
youtube.com/watch?v=ld7kZRpMGb8

5 developer.apple.com/wwdc/videos
6 developer.android.com/about/versions/android-4.3.html#A11y
7 developer.android.com/tools/support-library/index.html

http://www.youtube.com/watch?v=q3HliaMjL38
http://www.youtube.com/watch?v=ld7kZRpMGb8
http://developer.apple.com/wwdc/videos/
http://developer.android.com/about/versions/android-4.4.html#a11y
http://developer.android.com/tools/support-library/index.html

Accessibility 135

please see Google’s document entitled Making Applications
Accessible8.

You will also find more examples in the training area of the
developer documentation in a section entitled Implementing
Accessibility9. Testing the Accessibility is also covered online10.

For more information about Android accessibility including
how to use the text to speech API, see the Eyes-Free project11.

Accessible BlackBerry Apps

If you are targetting BB OS 7.1 you will find extensive informa-
tion about the use of their accessibility API and many hints on
accessible UI design on their website for developers12.

In May 2012 Blackberry Released the BlackBerry Screen
Reader13 for various BlackBerry Curve phones. This is available
as a free download which you may wish to use in the testing of
the accessibility of your apps.

Blackberry 10 provides various accessibility settings to
enable users to tailor their device. These include Magnify Mode,
with gestures control magnification and navigation around the
screen, and the ability to vary font sizes. Try using your app
with magnification and by varying the font size from small to
large to see how well your apps appear and how easily they can
be used.

Blackberry 10.2 now ships with a screen reader. Documenta-
tion on creating accessible Blackberry 10 apps can be found at

8 developer.android.com/guide/topics/ui/accessibility/apps.html
9 developer.android.com/training/accessibility/index.html
10 developer.android.com/tools/testing/testing_accessibility.html
11 code.google.com/p/eyes-free
12 developer.blackberry.com/java/documentation/intro_

accessibility_1984611_11.html
13 blackberry.com/screenreader

http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/training/accessibility/index.html
http://developer.android.com/tools/testing/testing_accessibility.html
http://code.google.com/p/eyes-free
https://developer.blackberry.com/java/documentation/intro_accessibility_1984611_11.html
https://developer.blackberry.com/java/documentation/intro_accessibility_1984611_11.html
http://www.blackberry.com/screenreader

Accessibility 136

Accessibility features and best practices – BlackBerry
Native14

Accessible iOS Apps

iOS has good support for accessibility. For example, iOS devices
include:

 — VoiceOver, a screen reader. It speaks the objects and text
on screen, enabling your app to be used by people who
may not be able to see the screen clearly

 — Zoom: This magnifies the entire contents of the screen
 — White on Black: This inverts the colors on the display,

which helps many people who need the contrast of black
and white but find a white background emits too much
light

 — Captioning and subtitles for people with hearing loss
 — Audible, visible and vibrating alerts to enable people to

choose what works best for them
 — Voice Control and Siri: This enables users to make phone

calls and operate various other features of their phone by
using voice commands.

iOS 7 brings with it several new user-configurable accessibil-
ity settings as well as introducing Dynamic Type and Guided
Access APIs.

If you are working on iOS, make sure to follow Apple's
accessibility guidelines15. These guidelines detail the API and

14 developer.blackberry.com/native/documentation/cascades/best_practices/
accessibility/accessibility_features_best_practices.html

15 developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/
iPhoneAccessibility

http://developer.blackberry.com/native/documentation/cascades/best_practices/accessibility/accessibility_features_best_practices.html
http://developer.blackberry.com/native/documentation/cascades/best_practices/accessibility/accessibility_features_best_practices.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility

Accessibility 137

provide an excellent source of hints and tips for maximising the
user experience with your apps.

Accessible Windows Phone & Windows 8
Apps
There are 2 development paths for writing accessible apps on
the Windows Phone/Windows 8 platform. They are XAML and
HTML 5/JavaScript.

If your app is written in C# C++ or Visual Basic, you will find
comprehensive information on making your app accessible in
the document Accessibility in Metro style apps using C++, C#,
or Visual Basic16.

If you have chosen to use HTML 5 and JavaScript, then you
will need Accessibility in Metro style apps using JavaScript17.

Once you have tested the accessibility of your app18, Micro-
soft uniquely allows you to declare your app as accessible19 in
the Windows store, allowing it to be discovered by those who
who are filtering for accessibility in their searches.

Windows Phone 8 includes various ease-of-access settings
including: high contrast, screen magnification, and text size.
They apply to varying degrees to apps we develop, therefore
it's worth testing our app to make sure they are as usable as
practical with these various settings. Windows Phone 8.1 also
offers a separate screen reader. It provides a limited set of
in-built features and does not support other apps.

16 msdn.microsoft.com/en-us/library/windows/apps/xaml/hh452680.aspx
17 msdn.microsoft.com/en-us/library/windows/apps/hh452702.aspx
18 msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx
19 msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh452680.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx

Accessibility 138

Accessible Mobile Web Apps

Much has been written on the subject of web accessibility,
however, at the time of writing, there is no standard which
embodies best practice for accessible mobile web development.

If your app is intended to mimic a native app look and feel,
then you should follow the above guidelines in this chapter.

If you are a web content developer, then you should take
a look at the Web Content Accessibility Guidelines (WCAG)
Overview20.

As support of HTML 5 is increasingly adopted on the various
mobile platforms, consider reading Mobile Web Application
Best Practices21 as this is likely to form the foundation of any
mobile web application accessibility standard that emerges in
the future.

You will also find Relationship between Mobile Web Best
Practices (MWBP) and Web Content Accessibility Guidelines
(WCAG)22 a helpful resource.

20 w3.org/WAI/intro/wcag
21 w3.org/TR/mwabp
22 w3.org/TR/mwbp-wcag/

http://w3.org/WAI/intro/wcag
http://w3.org/TR/mwabp
http://www.w3.org/TR/mwbp-wcag/

Enterprise Apps: Strategy And Development 140140

Enterprise Apps:
Strategy And Development
Corporate decision makers now view mobile enterprise apps
as a strategic factor, a necessity, rather than an item on an
accountant’s spreadsheet. Internal enterprise apps are able to
reduce the latency of information transfer within a company.
They increase the agility of the worker by making competitive
data available at any time and anywhere. Apps can also allow
companies to engage with its customers, suppliers, and end
consumers etc. Examples of enterprise apps include field & sales
staff software, emergency response, inventory management,
supply chain management but also B2C marketing.

It may seem an obvious thing to say, but the major risk at
the moment, is not having an enterprise mobile strategy. Busi-
ness is now looking at Mobile for All rather than limiting it to
senior management, as it may have been in the past. To enable
this the traditional IT approach of buying devices and distribut-
ing them throughout the management structure is no longer
the only enabling strategy being used; Bring Your Own Device
(BYOD) is taking hold, enabling staff to use their personal
devices to connect to the IT infrastructure, download secure
content and use enterprise apps. With the advent of BYOD, a
company exposes itself to risks which traditionally have never
been part of the corporate IT strategy. Early adoption of a well
thought out and implemented enterprise mobile strategy is key
to ensuring data is secured at all times.

B
Y

 Ia

n
Th

ai
n

&
 D

av
oc

 B
ra

dl
ey

Enterprise Apps: Strategy And Development 141

Key points for Mobile Apps in Shaping the new Business
Enterprise

 — Cost reduction compared to existing systems
 — Streamlining business processes
 — Competitive advantage with up-to-date data immediately

at hand
 — Increase employee satisfaction and effectiveness
 — Rapid response compared to existing processes

Enterprise Strategy

Many companies nowadays have a Chief Mobile Officer (CMoO)
or have extended their CIO position. It is their job to co-
ordinate mobile trends and directions and to bridge the gap
between business and IT. Depending on the size and main
focus of the company, his/her job is also to either build up an
internal mobile software development team or coordinate the
cooperation with an external development agency. To make sure
that the mobile software delivers what the employees / users
want, that this is technically achievable and that everything
fits the overall company strategy, the leader might consider
setting up a Mobile Innovation Council (MIC) or Center of
Excellence (COE). This group should contain key members
such as: skilled representatives from the mobile development
team, stakeholders for mobile within the company, and most
importantly end users from various departments with expertise
in the relevant business processes.

Topics that the CMoO/CIO needs to focus on together with
the MIC/COE include:

Enterprise Apps: Strategy And Development 142

 — Strategy – vision and direction for the general mobile
strategy and for the apps.

 — Governance policies – Bring Your Own Device (BYOD) vs.
Chose Your Own Device (CYOD) which is essentially the dif-
ference between a Mobile Application Management (MAM)
policy (BYOD) and a Mobile Device Management & Security
(MDM) policy (CYOD)

 — App specifications
 — App roadmap
 — Budget planning
 — Acceptance – signing off the apps into production.
 — App deployment – early feedback on demos and prototypes,

testing, mass deployment
 — Incentives – how to promote the adoption of mobile.

In commercial adoption terms Enterprise app development
is still in its infancy, and as such one of the main hurdles a
company writing third party enterprise apps, or a development
manager keen to adopt an internal enterprise strategy will
face is the requirement for a business need. The most common
question is likely to be “This all sounds great, but why do we
need it?”, so you must be prepared to give compelling reasons
for a company to adopt a mobile strategy.

Key points when building the business case for Mobile
Enterprise Apps

 — Create a Visionary Plan for more mobile Apps and know
how they will aid and shape your enterprise

 — Create an ADS (Application Definition Statement) for
each App, specifying purpose and intended audience.

 — Create a Budget for devices.

Enterprise Apps: Strategy And Development 143

 — Create a plan for an Application & Device Management
Strategy & Security Infrastructure.

 — Create a plan for an App Dev Team using a future proof
Development Platform – such as a MEAP/MADP

Mobilizing Existing Systems

If you are already providing a system to customers which has
not yet been mobilized, you will have various decisions to
make. It is critical to fully understand the impact of adding a
mobile offering to your system before you start implementation
of the solution. Common reasons to mobilize your product can
include using phone features, such as camera and GPS, or just
the ability to capture information on the move, without being
connected to the internet. You must ensure you go mobile
for the right reasons, as the ongoing support, maintenance
and development of a mobile offering will become a separate
product roadmap to your original system and will carry an
on-going cost.

Key points when deciding how to mobilize an existing
system

 — Clearly define the reasons for going mobile and ensure
that those reasons are strong enough to take the step into
mobile

 — Understand the difference between mobile and desktop.
Do not just copy your existing system, so for instance,
instead of a form to capture information, you could capture
audio and upload that into your system, allowing a user to
quickly makes notes without the need to type into a small
device

Enterprise Apps: Strategy And Development 144

 — Do not try and implement all the features of your existing
system; implement the important features in a way which
suits mobile

 — Ensure you understand which devices your clients use and
which features of your system are most required to be
mobilized

 — Have a clearly defined mobile testing strategy which covers
cross platform testing and multiple device types and
operating systems

Device And Application Management In
The Enterprise
When developing an enterprise app, you should always keep in
mind that the hardware containing sensitive company data can
get lost or stolen. There are now two approaches for securing
devices, content and apps. Mobile Device Management (MDM)
and Mobile Application Management (MAM).

MDM gives an enterprise ultimate control over a device, so
when a device is lost, stolen or an employee leaves, taking the
device, the enterprise can wipe the device and essentially stop
the device from working. This approach is usually taken when
an enterprise owns the device so all the data and apps on the
device are owned by the company; any personal data stored on
the device is stored at the employee‘s risk.

MAM enables an enterprise to adopt BYOD as it allows an
enterprise to secure apps and content downloaded to a device
without taking ultimate control away from the owner of the de-
vice. When an employee leaves a business, taking their device
with them, the business can disable the enterprise apps and
wipe any content downloaded to the device without affecting
personal data, such as photos and consumer bought apps. Most
MDM and MAM solutions are cross platform, supporting Apple,

145

Android, Windows and BlackBerry devices, and this should
always be taken into consideration when deciding upon an MDM
or MAM provider.

Various security features are available through both these
management solutions, including

 — Device monitoring
 — License control
 — Distribution via an internal Over-The-Air (OTA) solution
 — Software inventory
 — Asset control
 — Remote control
 — Connection management
 — Application support & distribution

Security measurements include

 — Password protection
 — On-device data encryption
 — OTA data encryption
 — Remotely lock devices
 — Remotely wipe data
 — Re-provision devices
 — Back-up data on devices

Examples of MDM and MAM providers are:

 — Airwatch1

 — App472

 — Apperian3

1 air-watch.com
2 app47.com
3 apperian.com

http://www.air-watch.com/
http://www.app47.com/
http://www.apperian.com/

146

 — Good4

 — Microsoft5

 — MobileIron6

 — Mocana7

Mobile Enterprise Application Platforms
(MEAP/MADP)
Usually, one key element of enterprise applications is data
synchronization. The mobile devices have to be refreshed with
relevant or up to date data from the company's servers and the
updated or collected data has to be sent back. The scope of
data access is determined by the job responsibilities of the user
as well as by confidentiality policy. In any case synchronization
has to be secure, as corporate data is one of your most prized
assets. Furthermore, a company-wide accepted app will be
multi-platform.
To compensate the shortcomings of the native SDKs as well
as the common multi-platform solutions in these regards, you

4 good.com
5 microsoft.com/en-us/windows/windowsintune/explore.aspx
6 mobileiron.com
7 mocana.com

http://www.good.com/
http://www.microsoft.com/en-us/windows/windowsintune/explore.aspx
http://www.mobileiron.com/
http://www.mocana.com/

Enterprise Apps: Strategy And Development 147

might want to consider evaluating Mobile Enterprise Applica-
tion Platform or Mobile Application Development Platform
(MEAP/MADP) solutions. MEAPs/MADPs are mobile develop-
ment environments that provide the middleware and tools for
developing, testing, deploying and managing enterprise apps
running on multiple mobile platforms with various existing
back-end datasources. Their aim is to simplify development and
reduce development costs, where skills must be maintained for
multiple platforms, tools and complexities, such as authentica-
tion and data synchronization.
Available solutions include:

 — Amp Chroma by Antenna8

 — IBM MobileFirst Platform9

 — Kony KonyOne10

 — SAP Mobile Platform11

 — Spring Mobile Solutions12

Security In Enterprise Apps

One of the main functions of any IT department is to ensure
that all aspects of the company infrastructure is secured
against attack so that there are no data leaks and no data is
compromised or stolen. As mobile devices are an extension
of a company’s IT infrastructure, all Enterprise apps must
be designed to ensure that they cannot be used to illegally
gain access to a company’s internal network. As an Enterprise
app writer you will usually be asked to conform to standards
which a company has laid out in their security policies, so be

8 www.antennasoftware.com
9 www.ibm.com/mobilefirst/us/en/why-ibm-for-mobile/platform.html
10 www.kony.com/products
11 www.sap.com/mobileplatform
12 www.springmobilesolutions.com

http://www.antennasoftware.com
http://www.ibm.com/mobilefirst/us/en/why-ibm-for-mobile/platform.html
http://www.kony.com/products
http://www.sap.com/mobileplatform
http://www.springmobilesolutions.com

Enterprise Apps: Strategy And Development 148

prepared to answer questions about securing your app, such as
data encryption, network communication and dealing with jail
broken or rooted devices.

Many MDM and MAM providers actually enhance app security,
using techniques such as app wrapping or providing an SDK
which app writers can use. These features, and regular updates
of these platforms, allow an enterprise to lock down their
apps remotely and also keep up with the changing security
landscape without needing to invest as much time and effort
into security.

Key points for securing Enterprise Apps

 — If using an MDM or MAM provider ensure they have the
security required security features to meet your enterprise
standards.

 — When storing any data on the device ensure it is encrypted
 — When communicating with web services, always use https
 — In addition to using https, when communicating with web

services ensure you perform end point checking in both the
app and the web service to confirm that the server/device
you are connecting with is valid

 — Always check that any settings your app is packaged with
have a checksum to ensure that the values cannot be
changed once shipped to the device

 — Do not allow the app to run on jail broken or rooted
devices.

 — Have a method for disabling the app if the app detects
that it has been compromised.

 — Ensure that all use of encryption complies to export
regulations and any laws relevant to the region/s the app
is being used in.

Mobile Analytics 150

Mobile Analytics
Our apps are used remotely by people we may never meet.
Mobile Analytics can help us to discover how your app is being
used so we can improve future releases of the app. Over half of
the top mobile apps already include mobile analytics1.

We are spoilt for choice, at least 20 companies offer a
smorgasbord of mobile analytics solutions with multiple
flavours ranging from campaign tracking to improving software
quality. BlackBerry even promote mobile analytics for both the
older Java-based platform2 and in version 10.2 of their newer
platform3. Many include extra features such as crash reporting,
customer and revenue tracking. Nearly half offer opensource
implementations of their libraries, possibly to allay fears of how
their libraries behave?4

Read on for tips and guidance to help you understand how
mobile analytics can help you discover how your app is being
used. You will learn how to pick an appropriate solution and to
implement it into your app.

1 blog.velti.com/mobclix-index-the-when-where-what-of-apps and static.
usenix.org/event/sec11/tech/slides/enck.pdf

2 github.com/blackberry/WebWorks-Community-APIs/tree/master/Smartphone/
Analytics

3 devblog.blackberry.com/2013/08/discover-whats-coming-in-the-blackberry-
10-2-sdk/

4 readwrite.com/2013/12/05/why-mobile-developers-need-open-source-
analytics-embedded-in-their-applications

B
Y

 J

ul
ia

n
H

ar
ty

http://blog.velti.com/mobclix-index-the-when-where-what-of-apps
http://static.usenix.org/event/sec11/tech/slides/enck.pdf
http://static.usenix.org/event/sec11/tech/slides/enck.pdf
http://github.com/blackberry/WebWorks-Community-APIs/tree/master/Smartphone/Analytics
http://github.com/blackberry/WebWorks-Community-APIs/tree/master/Smartphone/Analytics
http://devblog.blackberry.com/2013/08/discover-whats-coming-in-the-blackberry-10-2-sdk/
http://devblog.blackberry.com/2013/08/discover-whats-coming-in-the-blackberry-10-2-sdk/
http://readwrite.com/2013/12/05/why-mobile-developers-need-open-source-analytics-embedded-in-their-applications
http://readwrite.com/2013/12/05/why-mobile-developers-need-open-source-analytics-embedded-in-their-applications

Mobile Analytics 151

Getting Started

Many providers of mobile analytics solutions offer a 'Getting
Started' section where you learn how to take your first steps
with their products. Examples include Flurry5 and KISSmetrics6.
You often need to register before you can usefully use the
products, as many need configuring with a unique 'key' for your
app.

Consider several of the potential solutions before commit-
ting to any of them. Read the documentation and example
code to see how easily you can implement them into your app.
And check the legal agreements, including privacy. Then pick
at least one of them so you can experiment with implementing
mobile analytics into your app. By integrating their code, you
are likely to learn much more about what you would like to
achieve by using mobile analytics in your app, and how mobile
analytics works in practice.

For multi-platform apps you may want consistency across
each platform; otherwise you may be trying to compare dissimi-
lar, or even disparate, data sets; particularly if different mobile
analytics solutions are used for the various platforms. Consider
picking a common solution that supports every platform you
want to launch your app on.

Two providers are well worth studying. Segment.io7 abstracts
a wide range of other mobile analytics offerings; and they pro-
vide their code as opensource at github.com/segmentio. They
demonstrate ways to implement tracking in ways that reduce
the effort needed to adapt to different analytics providers.
Count.ly8 provide opensource implementations of their server

5 support.flurry.com
6 support.kissmetrics.com/getting-started/overview
7 segment.io
8 count.ly

http://github.com/segmentio
http://support.flurry.com
http://support.kissmetrics.com/getting-started/overview
http://segment.io/
http://count.ly/

Mobile Analytics 152

as well as of their client libraries and they encourage you to
create a complete test environment to evaluate their product.

Be aware, some mobile analytics solution providers may
use data reported by your app and they may provide and sell
it to others. They may control the life of that data, which
means they could make it inaccessible to you; conversely they
may preserve and use it long after you have retired your app.
Also if there is personally identifiable information in the data,
there may be additional legal and privacy implications. So it is
worth considering how third-parties will use and share the data
reported via their software and APIs.

Deciding What To Measure

What would you like to measure, to understand how the app is
being used? Some suggestions for you are:

 — Key usage events: Usage; for instance of the new search
option, or when they launch social networking from your
app.

 — Business-centric events: Any interaction of the user
that generates revenue for you: How often do your users
purchase the premium version of your app or other items
offered within your software? When do they cancel orders
or discard their shopping cart before checking out?

 — Usability metrics: Where do your users get stuck in the
usage flow? Do they quickly reach their goal when using
your software?

Once you defined your main areas of interest, you will need
to design the analytics measures, for instance, what data
elements need to be reported.

Mobile Analytics 153

Defining How To Measure

Create meaningful names for your interaction events so you
can easily and correctly remember what they measure. For each
event you want to record, decide what elements it needs to
include. Consider how the data will be used once it has been
gathered, for instance sketch out typical reports and graphs
and map how the various data elements will be processed to
generate each report and graph.

Also remember to address globalization issues such as the
timestamp of each element. Does the app detect the time of an
event according to the device's location, the device's settings
or does it use a global time like UTC time9?

Some of the Mobile Analytics solutions will automatically
record and report data elements to the server. It is worth
checking what these elements are, how and when they are
reported, and how they are formatted. Then you can decide
whether you want to use and rely on these automatically-
reported elements.

Custom event tags augment predefined events, and many
mobile analytics solutions provide ways for your app to gener-
ate them. You may need to format the custom event messages.
If so, pay attention to encoding of the elements and separa-
tors; for instance they may need to be URL encoded10 when
they are sent as REST messages11 .

You may want to consider how often the app should report
events to reduce the risk of flooding the available capacity of
the analytics system, which might affect the reliability and
accuracy of the delivered analytics data. One method to reduce
the volumes of data processed by the analytics solutions is

9 en.wikipedia.org/wiki/Coordinated_Universal_Time
10 en.wikipedia.org/wiki/Percent-encoding
11 msdn.microsoft.com/en-us/library/live/hh243648

http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Percent-encoding
http://msdn.microsoft.com/en-us/library/live/hh243648

Mobile Analytics 154

called sampling. Adam Cassar published an interesting blog
post on this topic at periscopix.co.uk/blog/should-you-be-
worried-about-sampling/.

Adjusting Your Code

You may need to declare additional capabilities required in
order for the mobile analytics to function correctly when
integrated with your app.

For Android these are known as permissions. The analytics
probably need Internet permissions so the events can be
reported online, and location-centric permissions if the solution
records the location of the phone. If your app already uses the
permissions, you do not need to specify their use again.

For iOS, UIRequiredDeviceCapabilities tells iTunes
and the App Store what device-related features the app needs.
It is implemented as a dictionary where the elements are speci-
fied using keys. Keys include wifi, location-services and gps.

For Windows Phone, capabilities are used to decide what the
app uses. Localytics has a quickstart guide online12 that in-
cludes an example of setting the ID_CAP_IDENTITY_DEVICE
capability.

Handling the results

There is a lag from when an app sends an analytics event to
when the information is processed and made available to you.
The lag, or latency, varies from near 'real-time' to many hours.
You, and your business sponsors, need to decide how long you
can afford to lag real-time events.

Some analytics solutions provide an API to allow you to
access the data. This may give you more greater scope to create

12 localytics.com/docs/windows-phone-7-integration/

http://www.periscopix.co.uk/blog/should-you-be-worried-about-sampling
http://www.periscopix.co.uk/blog/should-you-be-worried-about-sampling
http://www.localytics.com/docs/windows-phone-7-integration/

Mobile Analytics 155

custom reports. Several allow you to host the servers which
provides you greater control of the data and how it is used.

To evaluate the quality of the results some organizations
invest the extra effort of incorporating several analytics solu-
tions into their app and cross-reference the results. However,
two conflicting results do not make reconciliation easy, so it
may be necessary to use three sets of results to diagnose the
differences by triangulation13.

If you have decided to work with KISSmetrics, check out
their article on ways to test your metrics at support.kissmetrics.
com/getting-started/testing-km.

Privacy

Remember to explain to the end-users that the app is designed
to record and share information about how the app is being
used, ideally in your terms and conditions. You may need or
want to enable users to decide if they want their use of the
app to be tracked. If so, make it easy for the user to control
the settings; and consider providing the user a way to access
the recorded data, delete it, or contact the analytics solution
provider.

Providers of third-party libraries seem to have a range
of attitudes to privacy. Some claim the privacy of users is
paramount and stresses the importance of not tracking users.
Google Analytics clearly prohibit tracking personally identifi-
able information in their terms of service14. Others provide
examples, including snippets of source code, that demonstrates
how to record clearly personally identifiable data.
For instance, KISSmetrics provides the following code snippet15:

13 en.wikipedia.org/wiki/Triangulation_(social_science)
14 google.com/analytics/terms/us.html
15 support.kissmetrics.com/apis/objective-c

http://support.kissmetrics.com/getting-started/testing-km
http://support.kissmetrics.com/getting-started/testing-km
http://en.wikipedia.org/wiki/Triangulation_(social_science)
http://www.google.com/analytics/terms/us.html
http://support.kissmetrics.com/apis/objective-c

Mobile Analytics 156

[[KISSMetricsAPI sharedAPI] identify:
@”name@email.com”];.

Mixpanel provides an example of how to update a user's
People Analytics record16, as well.

There are several places to learn more about privacy and
ethics of working with data related to users, e.g.:

 — Jeff Northrop's blog post on Mobile Analytics17

 — Kord Davis' book Ethics of Big Data
 — The retail industry has released a code of conduct with

useful general guidelines for mobile apps18

Learn More

We hope this chapter has whetted your appetite to learn more
about Mobile Analytics. Here are some places to start your
ongoing research:

 — The Mobile Developer's Guide to the Parallel Universe,
a sister book to this one, covers Mobile Analytics from a
marketing perspective19.

 — TheNextWeb.com20 is another useful springboard into the
topic from a developer's perspective.

 — Kontagent21 provides a wide range of whitepapers, on-
demand webinars and other materials on mobile analytics,
probably worth reading regardless of which implementation
you choose.

16 mixpanel.com/docs/people-analytics/android
17 jnorthrop.me/2012/07/2/privacy-considerations-mixpanel-people-analytics/
18 futureofprivacy.org/issues/smart-stores
19 www.wipconnector.com
20 thenextweb.com/dd/2013/08/11/9-tools-to-help-you-measure-mobile-

analytics
21 kontagent.com/resources

http://mixpanel.com/docs/people-analytics/android
http://jnorthrop.me/2012/07/2/privacy-considerations-mixpanel-people-analytics/
http://www.futureofprivacy.org/issues/smart-stores/
http://www.wipconnector.com
http://thenextweb.com/dd/2013/08/11/9-tools-to-help-you-measure-mobile-analytics/
http://thenextweb.com/dd/2013/08/11/9-tools-to-help-you-measure-mobile-analytics/
http://www.kontagent.com/resources/

Implementing Rich Media 158Implementing Rich Media

Implementing Rich Media
“As many standards as handsets” is a truism when it comes
to the list of supported media formats on mobile phones.
In contrast to PCs, where most audio and video formats are
supported or a codec can easily be installed to support one,
mobiles are a different story. To allow optimization for screen
size and bandwidth, specific mobile formats and protocols
have been developed over the past few years. Small variations
in resolution, bit rate, container, protocol or codec can easily
cause playback to fail, so always test on real devices.

That said, most of today's smartphones support MP4 h.264
640x480 AAC-LC, however multiple variations are possible
among handsets, even within one vendor or firmware version.
New formats are still added every year, such as WebM/vp81,
an open video standard running on Android 4+, however it
lacks support from most software developers claiming it is just
another variation of h.264. The trend is that screen resolutions
become larger and larger, pushing Full HD TV resolutions onto
mobile screens at the expense of consuming more battery and
memory.

1 en.wikipedia.org/wiki/VP8

B
Y

 M

ic
he

l S
hu

qa
ir

http://en.wikipedia.org/wiki/VP8

Implementing Rich Media 159

Below are the recommended full screen formats for highest
compatibility:

Container mp4, 3gp, avi (BlackBerry only),
wmv (Windows Phone + BB10
only)

Protocol HTTP (progressive or download)
or RTSP (streaming)

Video H.264, H.263

Audio AAC-LC, MP3, AAC+

Classic Resolutions 176x144 (Older phones),
320x240, 480x320 (J2ME)

Common Resolutions 480x800, 640x480 (Blackberry),
960x640 (iPhone), 1024x768
(iPad 1+2), 2048x1536 (iPad
3+4)

HD Resolutions 1280x720 (BB10, Samsung,
Windows Phone 8), 1136x640
(iPhone 5)

Full HD / aka 1080p 1080x1920 (HTC One, Samsung
Galaxy S4)

Quad HD / 2K aka 1440p 1440x2560 (Samsung Galaxy S5,
Vivo xPlay)

For a detailed list of devices supporting HD resolutions visit
Wikipedia2

2 en.wikipedia.org/wiki/List_of_mobile_phones_with_HD_display

http://en.wikipedia.org/wiki/List_of_mobile_phones_with_HD_display

Implementing Rich Media 160

Streaming vs. Local Storage

There are two options to bring media content to mobile
devices: Playing it locally or streaming it in real time from a
server.

To stream content through relatively unstable mobile
networks, a specific protocol called RTSP was developed that
solves latency and buffering issues. Typical frame rates are 15
fps for MP4 and 25 fps for 3gp, with data rate up to 48 kbps for
GPRS (audio only), 200 kbps for Edge, 300 kbps for 3G/UMTS/
WCMDA and 500 kbps for HSDPA, Wi-Fi and 4G. HD-video starts
at 2Mbps and is not recommended for streaming yet.

When targeting Windows Mobile/Phone, Windows Media
Services3 is preferred to support HTTP streaming. Android 3.0
upwards also supports HTTP streaming. Note that atomic hint-
ing is required (see Progressive Download) and mp4 files are
very strict in encoding (use H.264 15 fps AAC-LC 48khz stereo).
Only HTC Android devices and Android 4.0 devices are less
strict in streaming formats and will play much more encoding
variations than other brands.

When streaming is not available on the phone, blocked by
the carrier or you want to enable the user to display the media
without establishing a connection each time, you can of course
simply link and download the file. This is as easy as linking to
a download on the regular web, but mobile phones might be
stricter in checking for correct mime types. Use audio/3gp or
video/3gp for 3gp files and video/mp4 for mp4 files.

Some handsets simply use the file extensions for data
type detection, so when using a script — such as download.
php — a well-known trick is to add a parameter such as
download.php?dummy=.3gp to ensure correct processing of
the media. Some phones cannot play 3gp audio without video,

3 technet.microsoft.com/en-us/windowsserver/dd448620.aspx

http://technet.microsoft.com/en-us/windowsserver/dd448620.aspx

Implementing Rich Media 161

but a workaround is to include an empty video track in the file
or a still image of the album cover.

Depending on the extension and protocol, different players
might handle the request. On some phones, like Android, mul-
tiple media players can be available and a popup is displayed
to allow the user to select one. To improve the user experience,
use embedded player objects with limited functionality.

Finally you can simply include media files in your mobile
app as a resource. On Android devices pay attention to support
media located on the SD-Cards (Android 3.1 and up) which re-
quires the android.permission.READ_EXTERNAL_STORAGE
permission.

Progressive Download

To avoid configuring a streaming server, a good alternative is
to offer progressive downloads, for which your media files can
be served from any web server. To do this, you have to hint
your files. Hinting is the process of marking several locations in
the media, so a mobile player can start playing the file as soon
as it has downloaded a small part of it (typically the first 15
seconds). With current handset capabiliyies and data networks
this has become the prefered way to handle media files. Note:
an mp3 file does not need hints, and cannot be hinted.

Implementing Rich Media 162

Possibly the most reliable open source hinting software
available is Mp4box4, however more and more media tools have
built-in hinting options.

Media Converters

To convert a wide variety of existing media to mobile phone
compatible formats FFMPEG is a must have (open source)
media format converter. It can adjust the frame rate, bit rate
and channels at the same time. Make sure you build or get
the binary with H263, H264, AAC and AMR encoder support
included. There are good converters available based on FFMPEG,
such as “Super” from eRightSoft5. For MAC users, QuickTime pro
(paid version) is a good alternative to encode and hint 3gp and
mp4 files. If you are looking for a complete server solution with
a Java / opensource background, check out Alembik6.

4 gpac.wp.institut-telecom.fr/mp4box/
5 www.erightsoft.com/super
6 www.alembik.sourceforge.net

http://gpac.wp.institut-telecom.fr/mp4box/
http://www.erightsoft.com/super
http://www.alembik.sourceforge.net

Implementing Location-Based Services 164

Implementing
Location-Based Services
Location based services continue to be one of the hot areas for
mobile applications.

Knowing a user's location means you can deliver them more
relevant information; helping them to find a nearby veggie
restaurant, review the local weather forecast, find friends at
a convention, or find the most scenic local bike routes from
information crowdsourced from other bikers. Getting location
data is only half the story, providing the user with a meaningful
representation is a key factor. This usually implies delivering a
graphical representation overlaid with routes, points-of-interest
and other relevant information. But don't overlook simplicity,
a comprehensive list of resources sorted by proximity may be
more appropriate than a scrollable, slow map view (particularly
when the user may be roaming at five Euro per megabyte).

How To Obtain Positioning Data

Location-based applications can acquire location information
from several sources; one of the phone’s available network con-
nections, GPS satellites, short range systems based on visible
tags or local short range radio, or old-school by inputing data
through the screen or keyboard.

 — Network positioning: Each GSM or UMTS base station
carries a unique ID, containing its country code, network
id, five-digit Location Area and two-digit Routing Area.
The coordinates of a base station can then be obtained by
looking up the operator's declaration in a database. The

B
Y

 A

le
x

Jo
ns

so
n

Implementing Location-Based Services 165

resulting location is not particularly accurate, depending
on the cell size (base station coverage): in urban areas
densely packed cells should provide greater accuracy
than the sparse cells in rural areas. Techniques, such as
measuring the difference in the time-of-arrival of signals
from several nearby base stations (known as multilatera-
tion) can help improve accuracy, however mobile operator's
may charge for these premium network services. For phones
with WiFi capabilities, details about wireless LAN access
points can be used as an alternative or supplement to
mobile network positioning. This technique is used by
several companies, including Google.

 — GPS positioning: An on-board GPS module (or an external
one) typically gives you a 50% accuracy ranging from 5 to
50 meters, depending on the quality of the hardware and
how many satellites the GPS module can see when making
a fix. Accuracy is also affected by the terrain, canopy and
wall materials; any of these may obscure the satellite
signals: in cities, urban canyons created by clusters of tall
buildings can distort the signal, giving false or inaccurate
readings. Combining GPS with network positioning is
increasingly common: Assisted GPS, or A-GPS, uses an
intermediary, called an Assistance Server, in order to mini-
mize the delay to the first GPS fix. The server uses orbital
data, accurate network timing and network-side analysis
of GPS information. However, A-GPS does not mean a more
accurate position, but rather a faster result when the GPS
is initially enabled, or when GPS satellite coverage is poor.
This shortens the time needed for a location lock. Note:
most A-GPS solutions require an active cellphone network
connection.

 — Short range positioning: Systems based on sensors; near
field communication (NFC), Bluetooth (including Bluetooth

Implementing Location-Based Services 166

Low Energy) and other radio-based tag systems — use
active or passive sensors in proximity to points of interest,
such as exhibits in a museum or stores in a shopping mall.
Low-tech solutions include bar codes and other visual tags
(such as QR codes) that can be photographed and analyzed
on a server or locally on the phone; such tags may contain
an id from which a position can be looked up. The user can
specify their position by selecting a location on a map,
inputting an area code or a physical address. This option
is used typically for applications on feature phones, which
may lack other means of determining a location.

Lately, implementations of Bluetooth 4.0, including Apple's
iBeacon, combine radio IDs with a received signal strength
indicator (RSSI) as a means of triangulation. However, the
accuracy of these techniques is yet to be determined, although
placing Bluetooth tags on equipment, valuable assets, pets and
alike for the purpose of crude positioning and creating realtime
inventory will prove increasingly popular in 2014 with many
new gadgets and services to follow.

Mapping Services

In general, a map service takes a position and a collection of
metadata as input parameters and returns a bitmap or vector
map, layered with contextual metadata. Vector data has several
advantages over bitmaps: vector representations consumes less
bandwidth and enables arbitrary zooming of any map view.
However it requires more processing on the client side. Bitmaps
are often provided in discrete zoom levels, each with a fixed
magnification, named after its coordinates and zoom level.

Implementing Location-Based Services 167

Free maps, both served as bitmaps and vectors, include Open
Street Map1 or CloudMade2. Commercial maps include Garmin3
and Microsoft's Bing resources4 to name just two.

Some solutions, such as Google Maps5, are free when your
application is made available at no cost, but require you to
obtain a map key. Other map services, such as Google’s static
maps, are limited to serving a number of tiles to a map key or
IP address. Several of the sources share similar map formats
and are thus interchangeable.

Implementing Location Support

Location API for Java ME offers detail such as the latitude and
longitude position, the accuracy, response time, and altitude
derived from the on-board GPS as well as speed based on
performing consecutive readings.

With iOS there is integrated support for location but with
restrictions on how the location data can be generated by
the supporting functions, and what map sources can be used.
Currently, there is also an on-going debate on how location
data is recorded and stored on the iOS devices and how Apple
are planning to use this data for their own purposes. Android
developers also have access to high-level libraries and these
devices are more liberal with the choice of map sources,
although they default to Google's map APIs. On Windows Phone
7 and Windows 8 devices, note that the all new Maps API in
Windows Phone 8 is not the same as Bing Maps available in

1 wiki.openstreetmap.org/wiki/Software
2 www.cloudmade.com
3 garmin.com
4 www.microsoft.com/maps/developers
5 code.google.com/apis/maps

http://wiki.openstreetmap.org/wiki/Software
http://www.cloudmade.com
http://www.garmin.com
http://www.microsoft.com/maps/developers
http://www.code.google.com/apis/maps

Windows Phone 7. The Bing Maps control is still supported in
Windows Phone 8, but is deprecated.

Ever since iOS 3.x and Android 2.0, Web app develop-
ers have been able to access geoinformation via the
navigator.geoposition interface, for example calling
navigator.geolocation.getCurrentPosition(my_handle) gives
you the opportunity to fetch the my_handle.coords.latitude
and my_geo_handle.coords.latitude, after getting
permission from the user and if satellites are available. As
an example, here's how an actual snippet example could look
using JavaScript syntax:

function init_geolocation() {
// e.g. called from a ready() or onLoad function
 navigator.geolocation.getCurrentPosition(

get_geolocation,process_errors);
}

function process_errors(error) {
 switch(error.code) {
 case error.PERMISSION_DENIED:

 alert(”user not sharing geolocation”);
 break;
 case error.POSITION_UNAVAILABLE:
 alert(”could not calculate current
position”);
 break;
 case error.TIMEOUT:
 alert(”retrieving position timeout”);
 break;
 default:
 alert(”misc. geolocation error”);
 break;
 }
}

function get_geolocation(position){
 alert(’Latitude: ’ + position.coords.latitude + ’

Longitude: ’ + position.coords.longitude);
}

Implementing Location-Based Services 169

Instead of failing, an error can be combined with fallbacks
to network lookups, entering zip codes or alike. Apart from the
bare coordinates, geographical data often is presented with
other information, available in a number of formats. One of the
widely accepted standards is called geoRSS, and could look like
this for a single point-of-interest:

<entry>
<title>Byviken's fortress</title>
<description>Swedish 1900-century army
installation, w. deep mote
</description>
<georss:point>18.425 59.401</georss:point>
</entry>

There are other formats for geodata, but the basic idea is
similar; by harmonizing data streams and webservices, robust
mashups can be created to run seamlessly in various user
contexts. Other important formats for geoinformation include
the Geography Markup Language (GML), an XML encoding
specifically for the transport and storage of geographic informa-
tion, and KML which is an elaborate geoformat used in Google
Earth and related web services.

Tools For LBS Apps

Several companies provide developer-friendly tools and APIs as
a value added service. Using these dramatically speeds up the
development and deployment of location-aware services. Each
tool normally focuses on one or a range of mobile platforms.
Advertisement companies such as Admob offer developers
stand-alone location aware advertisement programs, to better
target their offerings. There are no map interfaces offers, just
the coordinates sent and hopefully advertisements returned.

Below are more links to maps and location based service
resources:

 — Android offline maps project:
code.google.com/p/big-planet-tracks/

 — BlackBerry: us.blackberry.com/developers/ (search for
“map api”)

 — Garmin Mobile XT SDK: developer.garmin.com
 — Google Map resources: developers.google.com/maps
 — iBeacon: support.apple.com/kb/HT6048
 — Nutiteq: www.nutiteq.com
 — Nokia Maps: developer.here.net
 — TeleAtlas: developerlink.teleatlas.com
 — Windows Phone 8 Maps and Navigation:

msdn.microsoft.com/en-us/library/windowsphone/
develop/jj207045

170

http://code.google.com/p/big-planet-tracks/
http://us.blackberry.com/developers/
http://developer.garmin.com
http://developers.google.com/maps/
http://support.apple.com/kb/HT6048
http://www.nutiteq.com
http://developer.here.net/
http://developerlink.teleatlas.com
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207045
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207045

Near Field Communication (NFC) 172

Near Field Communication
(NFC)
While the first Near Field Communications (NFC)-enabled phone
appeared in 2007 (the Nokia 6131 NFC) it has only been in the
last few years the technology has gained popularity. The first
significant moves came in 2010 with both Nokia and Samsung
adding NFC to their smartphones so that today — with the
exception of Apple — most Android, BlackBerry and Windows
Phone devices carry an NFC chip.

The killer technology was supposed to be NFC's ability to
securely replace a physical wallet. This was a convenience
that people were ready to pay for, a study from Allied Market
Research1 predicts that the global mobile wallet market reaches
$5,250 billion in 2020, growing at a compound annual growth
rate of 127.5 percent from 2013 to 2020.

However, NFC has probably had its greatest impact to date
by providing tap-and-share and tap-and-connect features.

Brief overview of NFC under the hood
NFC is an evolution of Radio Frequency Identification (RFID)
technology, which has been in use since the early 90s2. NFC
extends the capabilities of RFID and at the same time main-
tains backward compatibility with the older technology. For
years RFID has been used mainly for tracking objects and for
simple tap-to-pay payment applications.

NFC is an interface and protocol built on top of RFID that
is targeted at mobile devices. The technology operates on un-
licensed Industry Scientific Medical (ISM) radio bands at 13.56

1 alliedmarketresearch.com/mobile-wallet-market
2 nearfieldcommunication.org/history-nfc.html

B
Y

 R

ic
ha

rd
 B

lo
or

http://www.alliedmarketresearch.com/mobile-wallet-market
http://www.nearfieldcommunication.org/history-nfc.html

Near Field Communication (NFC) 173

MHz with a limit on the range of operation of 3 cm or less. It
also provides mobile devices with a means of secure communi-
cation without any network configuration, an advantage over
Bluetooth that requires pairing for communication to work.

NFC functions by electromagnetic induction: when the
electromagnetic waves in a coil changes, a voltage is induced.
From a hardware perspective, a series of high and low voltages
represent bits. This is how packets are sent between devices.
In 2006, the NFC Forum, which oversees the NFC ecosystem, de-
fined the NFC Specifications. The Forum established a standard
for the NFC Data Exchange Format (NDEF), a light-weight binary
message format that encapsulates data. For instance, to encode
a URI there is a 5 byte header followed by the URL, with a
short URL consuming as little as 12 bytes. More information
can be found online3.

Advantages of NFC over Bluetooth4:
When compared to Bluetooth NFC offers the following advan-
tages:

1. Security: Here NFC’s short range of operation is an
advantage, making communications hard to intercept. In
addition, some smartphone implementations require the
screen to be active and a PIN to be entered before access
to NFC hardware is allowed.

2. Low power consumption: Due to the short range of opera-
tion, only a weak electromagnetic field has to be generated
to read or write NFC tags.

3. Quick pairing: NFC devices are able to connect within a
tenth of a second.

3 www.developer.nokia.com/Community/Wiki/Understanding_NFC_Data_
Exchange_Format_(NDEF)_messages and www.nfc-forum.org/specs/

4 nearfieldcommunication.org/bluetooth.html

http://www.developer.nokia.com/Community/Wiki/Understanding_NFC_Data_Exchange_Format_(NDEF)_messages
http://www.developer.nokia.com/Community/Wiki/Understanding_NFC_Data_Exchange_Format_(NDEF)_messages
http://www.nfc-forum.org/specs/
http://www.nearfieldcommunication.org/bluetooth.html

Near Field Communication (NFC) 174

NFC modes of operation5

There are three modes of operation available in NFC: Reader/
Writer mode, Peer-to-Peer mode and Card Emulation. This
section describes these modes and their uses.

Reader/Writer mode
In this mode, the smartphone can read or write data from

or to an NFC tag, with the phone's NFC chip generating an
electromagnetic fields to interact with the NFC tags. NFC tags
may be read only, so it is only possible to write to an NDEF
message on a write enabled NFC tag.

Simple read applications may involve tags that hold general
or app specific data. An example is smart posters where an
NFC tag embedded in an advertising poster provides a link to a
supplier's, product's or service's website. In this case the tag's
data has a specific format and the phone knows, for example,
to open a URL in the web browser. App specific uses are only
limited by your imagination (and the amount of data an NFC
tag can store). Read/write apps can be used to send messages
or write tags for reading by apps.

5 nfc.cc/technology/nfc

http://www.nfc.cc/technology/nfc/

Near Field Communication (NFC) 175

Peer-to-Peer mode
This is a major extension to RFID technology. In P2P

mode, two smartphones are able to exchange small amounts
of information, such as vCards, URLs or initiate a Bluetooth
connection for large data transfers. Android Beam typically
functions in P2P mode where a “user-invisible” pairing takes
place with NFC, and data transfer takes place over the faster
Bluetooth connection.

Using this mode apps can exchange data between two
NFC-enabled smartphones. Many smartphones include apps for
tasks such as Bluetooth pairing and the exchange of data, such
as business cards. In your apps you could, for example, use this
mode to exchange information on moves in a game.

Card Emulation Mode
In this mode, the smartphone acts as a passive NFC tag,

which can be read by a retailers EFTPOS terminal. The key to
this mode is the secure element, in which sensitive information
is stored (more on secure elements shortly). Google Wallet and
Microsoft Wallet are examples of applications that allow an
NFC-equipped smartphone to be used for tap-to-pay application
and rely on card emulation.

While more specialized, and usually requiring a relationship
with the payment or service provider, this mode can be used
for ticketing, payments, switching operations (such as opening
a door), and replace physical cards (such as health insurance
cards, credit cards, driving license, among others).

Near Field Communication (NFC) 176

The Secure Element
At the heart of any card-emulated device lies the secure
element (SE)6, which contains the secure data (credit card
information among others7). There are three locations where
the SE can be stored:

1. On the SIM/UICC (via Single Wire Protocol, a specification
that allows a connection between the SIM card and the
NFC chip).

2. Inside the phone’s NFC Chip.
3. On an SD Card.

As a side note, Google Wallet8 stores credentials of a Google
prepaid credit card only on the secure element of the phone’s
NFC chip. Only the Google credit card numbers are passed
to merchants while actual credit card numbers are stored on
secure Google servers. Microsoft Wallet on the other hand
stores sensitive element on the secure element of the SIM card.
According to Microsoft, such a method allows people to swap
their wallets from one phone to another.

Around the world, a growing number of credit institutes and
Mobile Network Operators (MNOs) are cooperating to deploy
payment methods that use NFC. MasterCard PayPass and VISA
PayWave are examples of such deployed solutions. NFC SIM
cards are currently being issued by MNOs such as A1 (Austria),
Orange France and China Mobile.

6 mp-nfc.org/nfc_near_field_communication_architecture.html
7 smartcardalliance.org
8 google.com/wallet/faq.html

http://mp-nfc.org/nfc_near_field_communication_architecture.html
http://www.smartcardalliance.org/
http://www.google.com/wallet/faq.html

177Near Field Communication (NFC)

Current difficulties
NFC is an exciting technology that will bring about more
economic transactions. However, before we see a widespread
deployment of payment methods using NFC, a full understand-
ing and cooperation among all banks, hardware manufacturers,
MNOs and operating system developers is necessary.

Also, some major phone manufacturers, have not yet
adopted NFC technology. Current Apple devices, for instance,
do not support NFC. The company has decided to rely on the
Passbook application which has a completely different mode of
operation compared to NFC-centric applications.

Furthermore, the secure element has limited storage space.
It is not clear how this space should be shared among all the
players.

Lastly, because of the lack of accepted standards, some
banks have deployed their own solutions and want to convince
merchants to accept their new mode of payment.

Near Field Communication (NFC) 178

NFC APIs

Android: From API Level 9 (Gingerbread 2.3), Android provides
a set of high-level APIs that makes the use of NFC seamlessly
easy. More information can be found on the Android developer
page9.

BlackBerry: The latest SDK provides high level APIs for
NFC interaction. Example code for implementing an NFC tag
reader and writer10 and further information on how to use card
emulation mode on BlackBerry11 can be found on BlackBerry's
websites.

Windows Phone 8: The Windows Phone 8.0 SDK includes
the Proximity packages which provides a set of classes that
provides the necessary APIs to enable P2P data sharing
between Windows Phone 8 applications. It is also possible to
transfer small packets of data from an Android device to a WP8
device and vice-versa. However, the implementation is still in
its infancy and it is not possible to transfer large amount of
data.

More implementation details can be found online12

9 developer.android.com/reference/android/nfc/package-summary.html
10 docs.blackberry.com/en/developers/deliverables/34480/Near_Field_

Communication_1631111_11.jsp
11 supportforums.blackberry.com/t5/Java-Development/NFC-Card-Emulation-

Primer/ta-p/1596893
12 msdn.microsoft.com/en-us/library/windowsphone/develop/jj207060

http://developer.android.com/reference/android/nfc/package-summary.html
http://docs.blackberry.com/en/developers/deliverables/34480/Near_Field_Communication_1631111_11.jsp
http://docs.blackberry.com/en/developers/deliverables/34480/Near_Field_Communication_1631111_11.jsp
http://supportforums.blackberry.com/t5/Java-Development/NFC-Card-Emulation-Primer/ta-p/1596893
http://supportforums.blackberry.com/t5/Java-Development/NFC-Card-Emulation-Primer/ta-p/1596893
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207060

Implementing Haptic Vibration 180

Implementing
Haptic Vibration

Haptic Vibration Design Considerations

Why should you use Haptic vibration effects to your app? Your
app will run just as well without the tactile feedback, right?
Yes, possibly, but you will lose the one sensory element that
makes your virtual environment more realistic and compelling.
Margaret Atwood once wrote, “Touch comes before sight, before
speech. It is the first language and the last, and it always tells
the truth.” It is this sense of touch feedback, more than sight
or hearing that teaches us what to expect from interactions in
the real world.

It is our experiences in the real world that define a user's
expectiations in the virtual world found in your apps.

Take a button press as an example. A real button press is
a very tactile experience. It has a beginning and an end. You
feel a satisfying confirmation of your action. In comparision,
a virtual button press feels hollow without a Haptic effect to
simulate that same confirmation of action. More than this,
without a Haptic tactile confirmation you force the user to rely
on visual/audio cues that are more stressful to process than
simply using our sense of touch.

Haptic feedback is even more important in mobile video
games. We know this from our experience with console games.
Remember when the Sony PS3 launched without "DualShock"
rumble pad motors? Gamers voiced their dissatisfaction and
shortly after Sony brought the DualShock rumble feedback
to the PS3. The same Haptic feedback satisfaction applies to

B
Y

 B

ob
 H

eu
be

l

Implementing Haptic Vibration 181

mobile games. Using Haptic effects in your games will help to
give your mobile users what they already expect from console
platforms. And if you design well, your games will feel more
realistic and compelling to your users.

When designing a Haptic experience, keep in mind the
ultimate experience of the user. Spend some time planning
before starting your Haptic implementation. Once the project is
defined and taking shape in your mind, consider the following
guidelines:

 — Simple sensations are often the most effective. It is
sometimes surprising to realize that something like a very
simple Pop or Click sensation can enhance menu interac-
tions and increase user confidence within the application.

 — Sensations synchronized with audio and visual events,
like a simple button click event, make the whole greater
than the sum of its parts. Seeing, hearing, AND feeling an
object or activity promotes sensory harmony in a way just
seeing and hearing alone cannot.

 — It is bad to annoy the user. Poorly chosen or designed
touch sensations can be annoying and counterproductive.
While a high-pitched buzz may be very effective as part
of an alert, continuous reoccurring buzzing will eventually
cause a user to leave an application annoyed.

 — It is bad to confuse and overwhelm the user. Just as too
many beautiful sounds played simultaneously become a
cacophony, too many compelling touch sensations played
together or too close to each other in time and space can
become confusing and overwhelming.

 — Familiarity eases the user experience. Haptic effects can
relay important information to a user, which might not be
available or practical to provide through graphics or sound.
Standardization and consistency are important. Limiting

182

the Haptic effect language to a manageable, reused set of
sensations makes the user's learning process easier because
there are fewer Haptic effects to recognize.

Nearly all mobile platforms allow for some form of haptic
vibration feedback control. This section will be your resource
for understanding the classes and methods between these
platforms.

Android

Android is unique for vibration control. It provides native
support and has more vibration control than iOS. Furthermore,
there are ways to extend this Android vibration control for
developers so they can create more console-like X-Box or
PlayStation feedback experiences. But whether you use the
basic or extended methods below, please note that a user may
have enabled haptic effects for better accessibility. For instance
the KickBack Accessibility Service provides haptic feedback and
is available as part of the eyes-free1 open source project. So,
consider how haptic effects generated by your application may
interact with, or disturb, such services.

For basic vibration control in Android, you must first
grant permission android.permission.VIBRATE
to allow your application to vibrate. Next you use the
Vibrator Class2 with getSystemService function and the
Context.Vibrator_Service to call the vibration service.

Within the above method you can vary the duration of the
vibration event in milliseconds and set vibration patterns by
setting up as many of start and sleep events as you like. The
basic Android vibrate control method only lets you control the
duration of vibration events.

1 code.google.com/p/eyes-free
2 developer.android.com/index.html#q=Vibrator

http://code.google.com/p/eyes-free
http://developer.android.com/index.html#q=Vibrator

Implementing Haptic Vibration 183

Extended Android Vibration Control
Because the Android platform is open source, there is at least
one company that offers free methods to extend Android’s
vibration control. Immersion Corporation’s Haptic SDK3 allows
full vibration motor control of duration, amplitude and pulsing
frequency with a library of 124 pre-defined Haptic vibration
feedback effects. With this type of control, application develop-
ers have the capability of designing vibration effects rivaling
console gaming vibration experiences while also conserving
battery power.

For Android developers using Unity3D, Marmalade or YoYo
Games' GameMaker Studio, Immersion offers this same extended
method through plugin support, also found on their main SDK
webpage. Developers interested in this extended vibration
control can download the company's Quick Start Guide4 that
explains how to set-up your Eclipse environment and use the
Launcher method to call Haptic effects from the pre-defined
library. On Google Play you can also download a few free
showcase apps to feel the pre-designed Haptic effects before
using them in code. One app is called "Haptic Muse" and the
other "Haptic Effect Preview" app.

One other bonus of the pre-designed effect library is a
hardware abstraction layer compensating for differences in
motor types between mobile devices, so the feeling you create
remains consistent.

BlackBerry 10

BlackBerry gives you the same basic on/off vibration
control that Android does, but without an extended
method. For BlackBerry you use the VibrationController

3 www.immersion.com/haptic/sdk
4 www.immersion.com/haptic/guide

http://www.immersion.com/haptic/sdk
http://www.immersion.com/haptic/guide

184

Class5 with startVibrate(int duration) and
stopVibrate(int duration)

In addition, Blackberry now has an intensity (1-100)
parameter for developers to play with.

Firefox OS

Mozilla's Firefox Mobile uses a web view API that allows
for single or patterned vibration arrays in the form of a
window.navigator.vibrate function call6 with millisecond
duration parameters. Patterned vibration arrays use alternating
on and off vibration durations. For example, the patterned array
window.navigator.vibrate() would playback vibration for
1 second, pause for 200 milliseconds and then play vibration
for an additional 2 seconds. Zero value duration or empty array
vibration events cancel any currently running vibration.

iOS

The iOS platform gives developers little vibration control
directly from their mobile devices. The iOS vibration method
below applies to iPhones only. iPads and iPods currently do not
support on-device vibration playback.

Use the SysSoundViewController Class7 with the
AudioServicesPlaySystemSound function and the
kSystemSoundID_Vibrate constant to trigger vibra-
tion on your iPhone device. Calling this constant will turn
your motor on for a set duration of 400 milliseconds.
Additionally, there is an iOS AudioToolbox framework us-
ing AudioServicesPlaySystemSound method8 to call a

5 developer.blackberry.com/search/?search=VibrationController
6 developer.mozilla.org/en-US/docs/WebAPI/Vibration
7 developer.apple.com/search/index.php?q=SysSoundViewController
8 developer.apple.com/search/index.php?q=AudioServicesPlaySystemSound

http://developer.blackberry.com/search/?search=VibrationController
https://developer.mozilla.org/en-US/docs/WebAPI/Vibration
http://developer.apple.com/search/index.php?q=SysSoundViewController
http://developer.apple.com/search/index.php?q=AudioServicesPlaySystemSound

185

kSystemSoundID_Vibrate constant that will also trigger a
400 millisecond vibration.

Supplemental iOS vibration capability may come from mobile
controller peripheral makers like Logitech (PowerShell) and BDA
(Moga Ace Power) now that Apple has officially added a "Made
for iPhone/iPad/iPod" (MFi) peripheral architecture to the iOS
platform.

PhoneGap

PhoneGap is a web view API owned by Adobe Systems (see the
cross-platform chapter to learn more). The PhoneGap vibrate
method uses the navigator.notification.vibrate func-
tion call9 with millisecond duration parameters. Since PhoneGap
works across a number of operating systems, you will need to
be sure to set vibrate permissions according to each platform.

Additionally, on iOS the PhoneGap duration parameter is
ignored and will vibrate using the iOS constant.

Tizen

Tizen, the fairly new OS supported by Samsung and Intel, has
two primary development environments10; one for native app
development and one for web app development using the WC3
Vibration API.

 — Native app developers use the Vibrator Class11 start
and stop methods for vibration control. The developer can
specify intensity and pulsing, by setting values in a pat-
tern array that is passed as an argument to start(). Each
element in the pattern array has two fields. The duration

9 docs.phonegap.com/en/2.1.0/cordoba_notification_notification.md.html
10 developer.tizen.org/documentation/dev-guide
11 developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/

guide/system/vibrator_mgmt.htm

http://docs.phonegap.com/en/2.1.0/cordova_notification_notification.md.html
http://developer.tizen.org/documentation/dev-guide
http://developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/guide/system/vibrator_mgmt.htm
http://developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/guide/system/vibrator_mgmt.htm

Implementing Haptic Vibration 186

field says how long the vibration will play in milliseconds;
the intensity field sets how strong the vibration will be.
Intensity values are 1-100 (min to max), -1 for "System
Default," 0 for "Silent." If you wish to render more than
one haptic effect, you add additional elements beyond
the first in the pattern array. The stop() method is only
needed if you wish to terminate an effect prematurely
(e.g., because a phone call comes in).

 — Web app developers use the navigator.vibrate()
function call.12 The method has two variations:
one that takes a single duration argument in mil-
liseconds singleVibration(int duration), and
one that takes an array of duration times. The
second function allows control of pulsing effects
patternVibration(int duration on,
int duration off), but there is no support for the
intensity control found in the native environment.

Web/ HTML5

Like Tizen, HTML5 vibration control for web app development
relies on using the WC3 Vibration API. The same function calls
apply.

Windows 8

Windows offers a basic method for vibration control, but no
extended method at this time. Use the VibrateController
Class13with Start & Stop Methods to vibrate your device mo-
tor from 0-5 seconds. For finer duration control you will need to
set a TimeSpan method in order to use millisecond values.

The Windows 8 Class listed above is the same as the previous
Windows 7 Class.

12 developer.tizen.org/help/topic/org.tizen.web.appprogramming/html/
tutorials/w3c_tutorial/device_tutorial/managing_vibration.htm

13 social.msdn.microsoft.com/search/en-us?query=VibrateController

http://developer.tizen.org/help/topic/org.tizen.web.appprogramming/html/tutorials/w3c_tutorial/device_tutorial/managing_vibration.htm
http://developer.tizen.org/help/topic/org.tizen.web.appprogramming/html/tutorials/w3c_tutorial/device_tutorial/managing_vibration.htm
http://social.msdn.microsoft.com/search/en-us?query=VibrateController

Implementing Augmented Reality 188

Implementing
Augmented Reality
Augmented Reality (AR) is something you may have read
and heard a lot about over the last few years. It seems to
be everywhere: AR games, AR catalogues, AR posters, AR
tattoos, AR in cars, AR apps, AR advertising and many more.
According to ‘Research and Markets’ the AR market is growing
exponentially: by 2020 the number of consumers using AR apps
will climb to one billion. During last year's TED Conference Tomi
Ahonen declared AR to be the 8th mass medium. He stated
that, with the spread of smart glasses, the demand for AR apps
will increase remarkably. This opinion is supported by studies
from various companies, such as the Semico report 'Augmented
Reality: Envision a More Intelligent World'1 that predict
revenues related to this technology will approach $600 billion
by 2016. Additionally, ‘Research and Markets’ predicts an annual
growth rate of 95.35%, with revenues of 5,155 million USD by
2016 generated by AR apps2.

But what exactly is AR? It is a technology that enhances the
real world by adding virtual elements. Visual augmented reality
is the most common form, usually involving three-dimensional
objects or a two-dimensional overlay containing text or images
added to the user's real-life view.

1 www.semico.com/content/augmented-reality-envision-more-intelligent-world
2 www.researchandmarkets.com/reports/1963197

B
Y

 M

os
ta

fa
 A

kb
ar

i

http://www.semico.com/content/augmented-reality-envision-more-intelligent-world
http://www.researchandmarkets.com/reports/1963197/

Implementing Augmented Reality 189

AR Scenarios in Mobile Context

Mobile Augmented Reality is used in situations where addition-
al information can increase the efficiency, effectiveness and joy
of use while on the move. Mobile AR is especially suitable for
applications where people are confronted with a lot of data and
the need to process it in a short period of time. By integrating
information into a live-stream visible through the display of
the mobile device, the user's attention no longer needs to
switch between the mobile device and the environment. Mobile
Augmented Reality solutions have a range of applications, such
as in enterprises, marketing, education or entertainment, here
are some examples:

 — Augmented Reality Browsers: AR-browsers, such as
Layar3 and Wikitude4, superimpose location-based data
over a live view of the real-world. The user's location is
determined by GPS and information about nearby points
of interest (POIs) is displayed on the screen of the
smartphone. Wikitude additionally offers a connection
to Wikipedia for more information. Blippar5 is another
example that uses AR to bring adverts to life.

 — IKEA Catalogue App: Using the IKEA AR App the user
scans specially marked content from the Ikea catalogue
with their mobile phone to display additional product
information, such as customization options and further
product images. The app relies on image recognition
software from Metaio6 rather than using the more common
QR codes. The app also enables the user to place virtual
furniture in their home or office.

3 layar.com/products/app/
4 wikitude.com/app/
5 blippar.com
6 metaio.com

http://www.layar.com/products/app/
http://www.wikitude.com/app/
http://blippar.com/
http://metaio.com

Implementing Augmented Reality 190

 — AR Jump n’ Run: AR Jump n’ Run is a location based app
for Android smartphones developed with DroidAR7. The
game can be played both indoors and outdoors using GPS,
step recognition, or both. The player experiences the game
by walking through a virtually-enriched world with the de-
vice acting as the viewport. They try to collect or avoid 3D
items that are helpful or damaging. The game also features
an in-game map editor that enables players to create and
edit maps, for example, by placing new 3D items.

 — Ingress: “The world around you is not what it seems. Our
future is at stake and you must choose a side.” This is the
introduction of the AR game Ingress8 developed by Niantic
Labs, an internal startup from Google. The game is based
on portals placed all over the world. Users join a team and
then the mission is to destroy portals of the opponents'
team and of course to protect their own.

 — Audi eKurzinfo: Also built by Metaio, Audi is offering a
manual for their A3 car in the form of an augmented reality
app for iOS9. It covers more than 300 different elements of
the car – all of which are easy to identify with the phone's
camera. If for example, a warning symbol comes on inside
the vehicle, the user can scan it with the app to find out
how to deal with the problem.

7 code.google.com/p/droidar/
8 www.ingress.com
9 youtube.com/watch?v=TDTWOlbWBXI

http://code.google.com/p/droidar/
http://www.ingress.com/
http://www.youtube.com/watch?v=TDTWOlbWBXI

Implementing Augmented Reality 191

AR Developing 101

This section provides a general introduction to the key concepts
needed to create AR applications. Once you understand these
concepts you should be able to choose the right framework for
your project.

The Real And The Virtual World
AR involves placing artificial objects into the real world by
using a virtual layer. This virtual layer, or virtual world, and its
coordinate system is tied to the real world by reference points.
This reference can be a GPS position, a visual marker, or an
image. You can for example place a virtual object at a specific
GPS location, then the object is bound to these coordinates.
With visual markers or images you tie the augmentation to an
real world object. For example, a game printed on a cornflakes
box could be played anywhere in the world as long as you have
the cornflakes box as a visual reference point.

The reference points are determined by tracking. Common
tracking technologies include GPS, optical sensors, compass,
accelerometer, gyroscope and step detection. Other concepts
are marker-based, markerless and hybrid tracking. Markers are a
simple, inexpensive and accurate solution to identify objects.
By processing the image of the marker and the actual size of
it an image processing system calculates the distance between
the device and the marker. Markerless tracking on the other
hand uses natural features instead of markers. These features
can be two-dimensional patterns (e.g. advertisement posters)
or even three-dimensional surroundings (e.g. buildings). The
recorded images are compared with a database to detect a
match. This requires complex algorithms and high processing
power. Hybrid tracking technology combines the different
sources of position data, such as GPS, 3D feature detection,

Implementing Augmented Reality 192

marker detection and step detection. This enables higher
degrees of positioning and motion detection accuracy.

Mapping Between The Two Worlds
For location-based AR apps a mutual mapping between the con-
stantly changing position in the real world and the position in
the virtual world is needed. Rendering engines, such as OpenGL,
reduce the complexity of this process and increase speed and
real-time accuracy. The engine also takes care of matching the
camera's virtual and real-world position and guarantees fluent
camera transitions when these positions change. To make your
life easier as a developer you can use extended engines like
gameplay10 or Unity11

The core element, the camera data, can also be passed to
other components. This means that, for example, a collision
component can easily calculate the distance between virtual
objects and the image captured by the camera.

Creating Virtual Elements
Virtual items are represented as 3D or 2D objects that might
exhibit various behavior: Some objects might be collectible,
others follow the user, or they may remain static and allow no
interaction at all. With software such as Metaio Creator, Layar
Creator or Wikitude Studio it is now possible to create own
AR content very easily. With a web application you can place
augmentations on a target image. When you have chosen and
placed all augmentations you can export your project as an AR
app. With this app the augmentations will appear when the
target image is recognized by the app.

The tools from metaio, Wikitude and Layar only provide for
augmentation of images. If you want to create other Augment-

10 www.gameplay3d.org
11 unity3d.com

http://www.gameplay3d.org
http://unity3d.com

Implementing Augmented Reality 193

ed Reality scenarios you need a technique called Simultaneous
Localization And Mapping (SLAM). This is a very powerful
Computer Vision technique based on features that are uniquely
identifiable areas in an image. The 3D features are connected
to the real-world through which the device moves. Together
these features build a 3D cloud. This 3D cloud can be used for
real-world object detection or shape detection, as well as the
augmentation of the object. Another part of Computer Vision is
image recognition. The recognized image position can be used
as the reference position for the virtual world (compare to the
example with the cornflakes box). SLAM and Computer Vision
technique require immense computational powers to run in real
time. The limitations and the capabilities of the hardware have
to be taken into account.

Combining Application Layers
An important element of visual AR is to place something over
parts of the image received from the camera. Depending on
your app requirements you will want to place 2D or 3D graphics
and use the respective APIs. A 2D overlay is usually sufficient
for simple POI browsers.

We strongly recommend using a rendering framework such as
OpenGL, rather than re-inventing the wheel. Such frameworks
use the user's position, device orientation, other sensor
information or the image analysis data and translate it to
display your content accordingly. If the rendering component is
decoupled from the rest of the app's code it can be exchanged
in future, for instance to switch to more advanced rendering
solutions.

Maybe you want to add things like a small radar UI to visual-
ize the position of the virtual objects or some simple buttons
to interact with the virtual world. Then make sure to stick to
platform-specific patterns and designs. Furthermore, implement
these elements on a separate layer to remain flexible.

Implementing Augmented Reality 194194

Composing A Virtual World With Multiple Layers
The best practice for composing the virtual world is to use a
tree structure and place virtual objects in different layers: One
layer for fixed “background” objects which do not need to be
updated and which do not interact with the user and other
layers for movable objects or UI elements.

You should only update and render objects close to the
user and make use of the quad tree structure. A quad tree is a
data-structure that enables your app to efficiently obtain all
objects in a bounding box. Depending on the device hardware a
different radius of the view can be used to ensure the best app
performance.

We also recommend using an update mechanism that
triggers the updates and calls an update method, for example,
every 20 ms. The nodes in the object tree individually decide to
which children these update calls should be forwarded. A quad
tree for example will only update the objects close to the user
to keep the update procedure efficient. A basic list structure
would update all its children and is more suitable for elements
that do not have a virtual position (like logical game stats) or
which have to be updated together. The exact object composi-
tion concept depends on the application scenario and cannot
be defined in an universal way.

Implementing Augmented Reality 195

Augmented Reality SDKs

ARLab
ARLab provides separate SDKs for the different tracking
methods. They offer one for 2D location and sensor based
content like POIs, similar to the first versions of Layar and
Wikitude, as well as SDKs for image matching, image tracking,
object tracking, creating virtual buttons and a 3D engine SDK.
It should be noted that the SDK licences have to be purchased
separately for iOS and Android and each SDK has its own cost,
ranging from 99€ to 299€.
www.arlab.com

ARPA SDK
The ARPA SDK provides tracking of images, markers, GPS and
offers a module for face tracking as well. It provides a Unity
Extension so that interactive AR scenarios are possible. There
is no concrete information available about the costs and all
applications using the SDK have to be licensed separately.
Another important restriction to mention is that it only runs on
Android devices with Android 4.0 or higher. So far we have seen
good performances on AR Apps built by the company itself for
Desktop and the iPad.
www.arpa-solutions.net/ARPA_SDK

D’Fusion
The D’Fusion SDK by Total Immersion offers 2D feature extrac-
tion to augment images and is very similar to other SDKs such
as those from metaio, Qualcomm and Layar. Within some SDK
bundles you get face tracking and movement detection librar-
ies. One advantage over most other SDKs is the free license.
www.t-immersion.com

http://www.arlab.com/
http://www.arpa-solutions.net/ARPA_SDK
http://www.t-immersion.com

Implementing Augmented Reality 196

DroidAR
DroidAR SDK is built for the development of interactive
location-based and marker based AR Android applications. It
enables 3D position tracking via SLAM and 3D object detec-
tion and reconstruction. For tracking it uses a combination of
location based tracking, marker tracking and a step detection
algorithm to cope with large scale indoor scenarios. DroidAR v1
is freely extensible and one of the few completely open source
AR SDKs. DroidAR is backed by a developer community of about
6,000 people and has been used in various apps such as the
CHIO app 2013.
https://github.com/bitstars/droidar

Layar
In the beginning Layar was a pure location-based AR platform
with layers that faded in, with very limited interaction pos-
sibilities for the user. Now, Layar has changed its focus from
2D feature extraction to augment images. The new Vision SDK
and the Layar creator are designed for extending print media
content. The Layar Player SDK for iOS makes it possible to build
Layar Apps that do not need the Layar browser. The Vision SDK
can be licensed for €2500/year, the Geo SDK for €7500/year.
The SDKs come with a watermark, which can be removed for an
extra fee of €7500/year.
layar.com

metaio
metaio GmbH was the first mover in the Augmented Reality
market. The metaio SDKs main focus is on the augmentation
of 2D images, for example, in magazine or catalogues. The pro
version of the SDK also supports the recognition of 3D objects
such as a product package, a statue or the facade of a building.
The Metaio SDK comes standard with a powerful 3D rendering

https://github.com/bitstars/droidar/
http://www.layar.com

Implementing Augmented Reality 197

engine. It is possible to use the SDK for free by always display-
ing a metaio watermark to the user. The watermark free basic
version costs €2,950 and the pro version without watermarks
€4,950. The SDK has been downloaded over 50,000 times and is
used in over 1,000 apps.
www.metaio.com

PointCloud SDK
The PointCloud SDK specializes in small scale SLAM tracking
for tabletop games and other small space scenarios. The Unity
plug-in is available as a beta. The SDK is still in an early state
but seems promising. The SDK can be used for free, then the
PointCloud logo has to be permanently displayed in the app. If
you want to remove the watermark you can contact 13th Lab
for more details. The iOS version can be downloaded from the
PointCloud website and on request the Android alpha can also
be accessed.
developer.pointcloud.io/sdk

Vuforia
The Vuforia SDK from Qualcomm can be used for free and has a
Unity extension, hence, it is a good choice for image detec-
tion and augmentation scenarios. It only supports 2D image
detection and recognizes locally stored special images. Multiple
2D markers can be composed to one marker but arbitrary 3D
objects cannot yet be detected. Moreover, it cannot be used
to create location based apps which use movement data or
geo-references. There are 80,000 registered developers and the
Vuforia SDK has been downloaded over 100,000 times. A lot of
big commercial projects are build with the Vuforia SDK.
www.vuforia.com

http://www.metaio.com
http://developer.pointcloud.io/sdk/
http://www.vuforia.com

198

Wikitude SDK
Wikitude is a location-based Point of Interest (POI) Browser. A
classic use case is where Wikitude offers an adequate solution
is POI search (for example answering the question “Where
is the nearest post office?”). Wikitude is designed for static
content and does not enable interactive scenarios. If you use
newer versions to build your own Wikitude browser app, you
can also use HTML5, Titanium or Phonegap. Even BlackBerry
10 is supported. Wikitude is available in 32 languages and
has over 13 million users worldwide. Besides the AR Browser,
Wikitude offers with Wikitude Studio a tool to augment images.
This works quite similar to the Metaio Creator and the Layar
Creator.
www.wikitude.com/developer

http://www.wikitude.com/developer

Application Security 200

Application Security
Readers of this guide know how widespread smart mobile de-
vices have become and how useful mobile apps can be. Mobile
devices are also much more personal than personal computers
ever have been. People wake up with their phones, stay close
to them all day, and sleep next to them at night. Over time
they become our trusted ‘partners’.

Many of these apps take advantage of this closeness and
trust. For instance, your phone might be treated as part of the
authentication for accessing your bank account. Or your tablet
could get direct access to the online movies you have bought.
The device might even store a wallet of real money for making
payments with Near Field Communications (NFC), or virtual
money like Bitcoins.

Mobile apps are attracting the attention of hackers and
thieves whose interests extend well beyond getting a 99 cent
app for free. Kaspersky Lab reports that in June 2013, they
counted 100,000 malicious code samples in Android apps which
consisted of 629 malware families1. The historical network and
endpoint based defenses (like anti-virus tools) are not enough.
Embedding security into the mobile application is critical.

The architecture of mobile apps continues to evolve. Some
apps are native-only, and require distinctly different code
bases for each different mobile operating system. Some are
web-views, little more than a web site url wrapped in an icon.
Others are hybrids, a combination of native app functional-
ity with web views. Most mobile apps need to connect with
backend services using web technologies to fetch or update
information. Like web apps, classic application security needs
to be used with mobile apps. Input needs to be validated for

1 securelist.com/en/analysis/204792299/IT_Threat_Evolution_Q2_2013#16

B
Y

 D

ea
n

Ch
ur

ch
ill

http://www.securelist.com/en/analysis/204792299/IT_Threat_Evolution_Q2_2013#16

Application Security 201

size, type, and values allowed. Error handling needs to provide
useful error messages that do not leak sensitive information.
Penetration testing of applications is needed to assure that
identification, authentication and authorization controls cannot
be bypassed. Storage on the devices needs to be inspected and
tested to assure that sensitive data and encryption keys are
not stored in plain text. Log files must not capture passwords
or other sensitive information. SSL configurations need to be
tested.

Users want to use your applications safely; they do not
want unwelcome surprises. Their mobile phone may expose
them to increased vulnerabilities, for instance potentially their
location could be tracked using an inbuilt GPS. The camera and
microphone could be used to capture information they prefer
to keep private, and so on. Applications can also be written
to access sensitive information such as their contacts. And
malicous applications can covertly make phone calls and send
SMS messages to expensive numbers.

The application developer may be concerned about his/ her
reputation, loss of revenue, and loss of intellectual property.
Corporations want to protect business data which users may
access from their mobile device, possibly using your applica-
tion. Can their data be kept separate and secure from whatever
else the user has installed?

Threats to Your Applications

On some platforms (iOS and Android in particular), disabling
the built-in signature checks is a fairly common practice. You
need to consider whether or not it would matter to you if
someone could modify your code and run it on a jail-broken
or rooted device. An obvious concern would be the removal
of a license check, which could lead to your app being stolen
and used for free. A less obvious, but more serious, threat is

Application Security 202

the insertion of malicious code (malware)that could steal your
users’ data, or inject illicit content and destroy your brand’s
reputation.

Reverse-engineering your app can give a hacker access to a
lot of sensitive data, such as the cryptographic keys for DRM-
protected movies, the secret protocol for talking to your online
game server, or the way to access credits stored on the phone
for your mobile payment system. It only takes one hacker and
one jail-broken phone to exploit any of these threats.

If your application handles real money or valuable content
you need to take every feasible step to protect it from Man-At-
The-End (MATE) attacks. And if you are implementing a DRM
standard you will have to follow robustness rules that make
self-protection mandatory.

Protecting Your Application

Hiding the Map of Your Code
Some mobile platforms are programmed using managed code
(Java or .NET), comprised of byte code executed by a virtual
machine rather than directly on the CPU. The binary formats
for these platforms include metadata that lays out the class
hierarchy and gives the name and type of every class, variable,
method and parameter. Metadata helps the virtual machine
to implement some of the language features (e.g. reflection).
However, metadata is also very helpful to a hacker trying to
reverse engineer the code. Decompiler programs, freely avail-
able, regenerate the source code from the byte code, and make
reverse engineering easy.

The Android platform has the option of using the Java
Native Interface (JNI) to access functions written in C and
compiled as native code. Native code is much more difficult to

Application Security 203

reverse engineer than Java and is recommended for any part of
the application where security is of prime importance.

“gcc” is the compiler normally used to build native code
for Android, its twin-sister “clang” is used for iOS. The default
setting for these compilers is to prepare every function to be
exported from a shared object, and add it to the dynamic sym-
bol table in the binary. The dynamic symbol table is different
to the symbol table used for debugging and is much harder to
strip after compilation. Dumping the dynamic symbols can give
a hacker a very helpful index of every function in the native
code. Using the –f visibility compiler switch2 correctly is
an easy way to make it harder to understand the code.

Compiled Objective-C code contains machine code and a lot
of metadata which can provide an attacker with information
about names and the call structure of the application. Currently,
there are tools and scripts to read this metadata and guide
hackers, but there are no tools to hide it. The most common
way to build a GUI for iOS is by using Objective-C, but the most
secure approach is to minimize its use and switch to plain C or
C++ for everything beyond the GUI.

Hiding Control-Flow
Even if all the names are hidden, a good hacker can still figure
out how the software works. Commercial managed-code protec-
tion tools are able to deliberately obfuscate the path through
the code by re-coding operations and breaking up blocks of
instructions, which makes de-compilation much more difficult.
With a good protection tool in place, an attempt to de-compile
a protected binary will end in either a crashed de-compiler or
invalid source code.

De-compiling native code is more difficult but can still be
done. Even without a tool, it does not take much practice to be

2 gcc.gnu.org/wiki/Visibility

http://gcc.gnu.org/wiki/Visibility

Application Security 204

able to follow the control-flow in the assembler code generated
by a compiler. Applications with a strong security requirement
will need an obfuscation tool for the native code as well as the
managed code.

Protecting Network Communications
Network communications are also vulnerable, particularly when
apps can be installed in emulators or simulators, where network
analyzers are freely available and able to monitor and intercept
network traffic. Consider protecting sensitive network communi-
cations, for instance by using SSL for HTTP traffic between your
app and servers. SSL protects data in transit, but only from
the app to the web server where the SSL session ends. Even
then MATE attacks, especially over WiFi networks, may disclose
sensitive data. One way to step up transport security is to use
asymmetric encryption between the server and the mobile app
(using public/private key pairs) to provide end-to-end security.
For sensitive corporate data and applications, install Virtual
Private Network (VPN) servers, and install VPN clients on the
mobile devices. VPNs generally provide strong authentication,
and secure transport above and beyond SSL.

Protect Against Tampering
You can protect the code base further by actively detecting
attempts to tamper with the application and respond to
those attacks. Cryptography code should always use standard,
relatively secure cipher algorithms (e.g. AES, RSA, ECC), but
what happens if an attacker can find the encryption keys in
your binary or in memory at runtime? That might result in the
attacker unlocking the door to something valuable. Even if you
use public key cryptography and only half of the key-pair is
exposed, you still need to consider what would happen if an
attacker swapped that key for one where he already knew the

Application Security 205

other half. You need a technique to detect when your code has
been tampered. Tools are available that encrypt/decrypt code
on the fly, run checksums against the code to detect tamper-
ing, and react when the code has changed.

Communications can be monitored and hacked between the
mobile app and backend services. Even when using SSL, an
intercepting web proxy (like Paros) can be setup on a WiFi con-
nection that will inspect SSL traffic. Attackers can then tamper
with the data in transit, for profit or fun. So if really sensitive
data is being sent via HTTPS, consider encrypting/decrypting
application data between the mobile application and the server,
so that network sniffers will only ever see encrypted data.

Protecting Cryptographic Algorithms
An active anti-tampering tool can help detect or prevent some
attacks on crypto keys, but it will not allow the keys to remain
hidden permanently. White-box cryptography aims to implement
the standard cipher algorithms in a way that allows the keys
to remain hidden. Some versions of white-box cryptography
use complex mathematical approaches to obtain the same
numerical results in a way that is difficult to reverse engineer.
Others embed keys into look-up tables and state machines that
are difficult to reverse engineer. White-box cryptography will
definitely be needed if you are going to write DRM code or need
highly-secure data storage.

Best Practices

Do Not Store Secrets or Private Info
Minimize the amount of sensitive information stored on the
device. Do not store credentials or encryption keys, unless
secure storage is used protected by a complex password.

Application Security 206

Instead, store authentication tokens that have limited lifetime
and functionality.

Log files are useful for diagnosing system errors and tracking
the use of applications. But be careful not to violate the
privacy of users by storing location information, or logging
personally identifiable information of the users. Some countries
have laws restricting the tracking information that can be col-
lected – so be sure to check the laws in the countries in which
your app will be used.

Do not print stack traces or system diagnostics that hackers
can leverage to penetrate further.

Do Not Trust The Device
When you design an application, assume that the device will
be owned by an attacker trying to abuse the app. Perform the
same secure software development life cycle when building
mobile apps as you would for backend services. Do not trust
even the databases you create for your mobile apps – a hacker
may change the schema. Do not trust the operating system
to provide protection – many OS protections can be bypassed
trivially by jailbreaking the device. Do not trust that native
keystores will keep data secret – some keystores can be broken
by bruteforce guessing unless the user protects the device with
a long complex password.

Minimize Permissions
Android has the concept of permissions, iOS has entitlements,
which allow the application access to sensors such as the
GPS and to sensitive content. On Android these permissions
need to be specified as part of creating the application in the

Application Security 207

AndroidManifest.xml file. They are presented to the user when
they choose to install the application on their device.

Each permission increases the potential for your application
to do nefarious things and may scare off some users from even
downloading your application. So aim to minimize the number
of permissions or features your application needs.

Tools

Protection
Basic Java code renaming can be done using Proguard3, an
open-source tool and Arxan’s GuardIT4.

Two vendors for managed-code (Java and .NET) protection
tools are Arxan Technologies5 and PreEmptive Solutions6.

The main vendors for native code protection tools and
white-box cryptography libraries are Arxan and Irdeto7.

Techniques for protecting Android code against tampering
are documented at androidcracking.blogspot.com. Arxan’s
EnsureIT allows you to insert extra code at build time that will
detect debuggers, use checksums to spot changes to the code
in memory and allow code to be decrypted or repaired on-the-
fly.

Sniffing
A standard free web proxy tool is Paros8. A standard network
sniffing tool available on common platform is Wireshark9.

3 www.proguard.sourceforge.net
4 arxan.com
5 arxan.com
6 preemptive.com
7 www.irdeto.com
8 sourceforge.net/projects/paros
9 sourceforge.net/projects/wireshark

http://androidcracking.blogspot.com/
http://www.proguard.sourceforge.net
http://www.arxan.com
http://www.arxan.com
http://www.preemptive.com
http://irdeto.com
http://sourceforge.net/projects/paros/
http://sourceforge.net/projects/wireshark/

Application Security 208

De-Compiling
See the Hex Rays de-compiler10.

Learn More

Here are some useful resources and references which may help
you:

 — Apple provides a general guide to software security11. It
also includes several links to more detailed topics for their
platform.

 — Commercial training courses are available for iOS and
Android. Lancelot Institute12 provides secure coding
courses covering iOS and Android.

 — O'Reilly published a book on Android security
Jeff Six (2011): Application Security For The Android
Platform. Processes, Permissions and Other Safeguards13
and another for iOS,
Jonathan Zdziarski (2012): Hacking and Securing iOS
Applications14 .

 — Charlie Miller et al. (2012) published iOS Hackers
Handbook15, which demonstrates how easy it is to steal
code and data from iOS devices.

 — Academic researchers demonstrate how much information
can be gleaned from public Android apps at USENIX 201116.

 — A free SSL tester is provided by Qualsys Labs17.

10 www.hex-rays.com
11 developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
12 www.lancelotinstitute.com
13 shop.oreilly.com/product/0636920022596.do
14 shop.oreilly.com/product/0636920023234.do
15 www.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
16 static.usenix.org/event/sec11/tech/slides/enck.pdf
17 www.ssllabs.com/ssltest

http://www.hex-rays.com/products/decompiler/index.shtml
http://developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
http://www.lancelotinstitute.com
http://shop.oreilly.com/product/0636920022596.do
http://shop.oreilly.com/product/0636920023234.do
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://static.usenix.org/event/sec11/tech/slides/enck.pdf
http://www.ssllabs.com/ssltest/

Application Security 209

 — Extensive free application security guidance and testing
tools are provided by OWASP18, including the OWASP Mobile
Security Project19.

 — An open-source mobile application performance monitoring
tool for Android is provided by AT&T's Application Resource
Optimization tool20.

The Bottom Line

Mobile apps are becoming ever more trusted, but they are
exposed to many who would like to take advantage of that
trust. The appropriate level of application security is something
that needs to be considered for every app. In the end, your app
will be in-the-wild on its own and will need to defend itself
against hackers and other malicious threats, wherever it goes.

Invest the time to learn about the security features and
capabilities of the mobile platforms you want to target. Use
techniques such as threat modelling to identify potential
threats relevant to your application. Perform code reviews
and strip out non-essential logging and debugging methods.
Consider how a hacker would analyze your code, then use
similar techniques, in a safe and secure environment, against
your application to discover vulnerabilities and mitigate these
vulnerabilities before releasing your application.

18 www.owasp.org
19 www.owasp.org/index.php/OWASP_Mobile_Security_Project
20 developer.att.com

http://www.owasp.org
http://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://developer.att.com

Testing 211

Testing
After all your hard work creating your application how about
testing it before unleashing it on the world? Testing might be
seen as an impediment but failures in your app can be all too
public. And recovering your credibility is hard when your app
has a poor score in the app store. Testing mobile applications
effectively can be complex and challenging where you need to
combine automated and interactive testing across a range of
devices. Thankfully, several of the major mobile development
platforms include test automation in the core tools, including
Android and iOS. And cross-platform test automation tools are
available for popular platforms; some are free-of-charge and
open-source, others are commercial.

Continuous delivery needs continuous testing. Viable apps
need to be updated on an ongoing basis in production. Updates
may include fixes for new platform versions or device models,
new functionality and other improvements. Therefore testing is
not a one-off task; high quality apps befit ongoing, optimized
testing, including testing in production. Production testing
includes testing engagement and validation as well as early
detection of potential problems before they mushroom.

This chapter covers the general topics; testing for specific
platforms is covered in the relevant chapter.

Testability: The Biggest Single Win

If you want to find ways to test your application effectively and
efficiently then start designing and implementing ways to test
it; this applies especially for automated testing. For example,
using techniques such as Dependency Injection in your code
enables you to replace real servers (slow and flaky) with mock

B
Y

 J

ul
ia

n
H

ar
ty

Testing 212

servers (controllable and fast). Use unique, clear identifiers for
key UI elements. If you keep identifiers unchanged your tests
require less maintenance.

Separate your code into testable modules. Several years
ago, when mobile devices and software tools were very limited,
developers chose to ‘optimize’ their mobile code into mono-
lithic blobs of code, however the current devices and mobile
platforms mean this form of ‘optimization’ is unnecessary and
possibly counter-productive.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the
problems are when the application does not work as hoped.

Test-Driven Development

There are several ways to design and implement software. Test-
Driven Development (TDD) is an approach where developers
write automated tests in parallel with writing the main code for
the app. The automated tests will include unit-tests, these are
covered in the next topic.

TDD is both a mindset and a practice. It requires a certain
amount of discipline to write the tests even when the going
gets tough. And by practising TDD diligently developers are
likely to write better-quality, simpler, cleaner code which is
also easier to maintain in future (as they are protected and
supported by a set of automated tests which can be run when
maintaining and revising the source code of the app).

The pure approach is when the tests are written first, and
run, before new application code is written. The new tests
are expected to fail, that is they should report failures in the
behavior of the app. The failures express the mismatch between
what the app needs to do and what it currently does. Now the

Testing 213

developer has a simple, automated way to test their modifica-
tions to the source code for app. Once just enough software
has been written to get all the tests to pass you now have
confidence the app meets the requirements specified by these
tests.

While you may have met the business requirements you may
decide your work is not 'done' yet. For instance there may be
duplication, unnecessary complexity, and other known flaws in
the implementation. You now have an opportunity to revise and
improve the source code through a process known as 'refactor-
ing'. Refactoring is where developers improve the implementa-
tion where the automated tests continue to pass when run
against the improved code.

Although TDD is a struggle when using the current Mobile
Test Automation tools several people have provided examples
of using TDD successfully, for instance Graham Lee's book
Test-Driven iOS Development1. You can also consider using TDD
for the generic aspects of the app.

Unit Testing

Unit testing involves writing automated tests that test small
chunks of code, typically only a few lines of source code. Gener-
ally they should be written by the same developer who writes
the source code for the app as they reflect how those individual
chunks are expected to behave.

Unit tests have a long pedigree in software development,
where JUnit2 has spawned similar frameworks for virtually all of
the programming languages used to develop mobile apps.

Unit tests are only one aspect of automated testing, they
are not sufficient to prove the app works. They help develop-

1 informit.com/store/product.aspx?isbn=0321774183
2 en.wikipedia.org/wiki/JUnit

http://www.informit.com/store/product.aspx?isbn=0321774183
http://en.wikipedia.org/wiki/JUnit

Testing 214

ers to understand what individual pieces of the software is
expected to do. Additional testing, including other forms of
automated tests can help to increase your confidence in the
app.

Effective Testing Practices

You need to test effectively in order to find problems before
they are found by your users. Larger teams may include special-
ist 'testers'. Effective testing includes knowing the devices,
platforms, and how similar apps behave. You need efficient
ways to configure devices, for instance to test multilingual
apps. You also need to test under realistic conditions, as
your users are likely to use your app. Testdroid have a good
checklist3 on getting the right testing expertise into your team.

Here are various topics to get you started.

Interactive Testing
Variety and movement can help expose bugs which remain
dormant when testing on a small set of devices in a fixed
location such as your workplace. Learn from your users – how
do they use your app, or similar apps? Then devise tests that
mimic the ways they use apps and devices.

The guidelines at appqualityalliance.org/resources are worth
considering when devising your test cases. For instance they
include testing the app to see what happens when an incoming
phone call is received; and when the user switches the phone
to 'flight mode'.

The next few sections will describe three different ap-
proaches to interactive testing.

3 testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-
team

http://appqualityalliance.org/resources
http://testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team
http://testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team

215Testing

 — Physical devices: why testing with real phones is impor-
tant.

 — Remote control: a way you can test using phones that are
not physically in your hands, where they may be thousands
of miles away and even on another continent.

 — Crowd sourced testing: where other testers perform
testing on your behalf.

Physical and Virtual Devices
Physical devices are real, you can hold them in your hands.
Virtual devices run as software, inside another computer. Both
are useful hosts for testing mobile apps.

Virtual devices are generally free and immediately available
to install and use. Some platforms, including Android, allows
you to create custom devices, for instance with a new screen
resolution, which you can use for testing your apps even before
suitable hardware is available. They can provide rough-and-
ready testing of your applications. Key differences include:
performance, security, and how we interact with them compared
to physical devices. These differences may affect the validity of
some test results.

The set of test devices to use needs to be reviewed on an
ongoing basis as the app and the ecosystem evolve. Also you
may identify new devices, that your app currently does not
support, during your reviews. The following figure illustrates
these concepts.

Testing 216

Ultimately your software needs to run on real, physical,
phones, as used by your intended users. The performance
characteristics of various phone models vary tremendously from
each other, and from virtual devices on your computer. So: buy,
beg, borrow phones to test on. A good start is to pick a mix of
popular, new, and models that include specific characteristics
or features such as: touch screen, physical keyboard, screen
resolution, networking chipset, et cetera. Try your software on
at least one low-end or old device as you want users with these
devices to be happy too.

Here are some examples of areas to test on physical devices:

 — Navigating the UI: for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you are out and about. It is a mobile

Installed
Device

 Database

Upcoming user group
The biggest grower compared

to the previous period
New user group
The most interesting

device or platform

Existing user group
The optimal mix to support

Externals
The biggest group that outside the

target and not using the app.

Target
Device

Database

Possible
Device

Database

Testing 217

device – most users will be on the move. Rotate the screen
and make sure the app is equally attractive and functional.

 — Location: if you use location information within your
app: move – both quickly and slowly. Go to locations with
patchy network and GPS coverage to see how your app
behaves.

 — Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

 — Internet connectivity: establishing an internet connec-
tion can take an incredible amount of time. Connection
delay and bandwidth depend on the network, its current
strength and the number of simultaneous connections. Test
the effects of intermittent connectivity and how the app
responds.

Remote Devices
If you do not have physical devices at hand or if you need to
test your application on other networks, especially abroad and
for other locales, then one of the ‘remote device services’ might
help you. They can help extend the breadth and depth of your
testing at little or no cost.

Several manufacturers provide this service free-of-charge for
a subset of their phone models to registered software develop-
ers. Both Nokia4 for their platforms; and Samsung5 (for Android
and Tizen) provide restricted but free daily access.

You can also use commercial services of companies such as
SauceLabs, testdroid, PerfectoMobile or DeviceAnywhere for
similar testing across a range of devices and platforms. Some
manufacturers brand and promote these services however you
often have to pay for them after a short trial period. Some of

4 developer.nokia.com/Devices/Remote_device_access/
5 developer.samsung.com/remotetestlab/rtlDeviceList.action

https://saucelabs.com/
http://testdroid.com/
http://www.perfectomobile.com
http://www.deviceanywhere.com
http://developer.nokia.com/Devices/Remote_device_access/
http://developer.samsung.com/remotetestlab/rtlDeviceList.action

Testing 218

the commercial services provide APIs to enable you to create
automated tests.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations.

Beware of privacy and confidentiality when using shared
devices.

Crowd-Sourced Testing
There are billions of users with mobile phones across the
world. Some of them are professional software testers, and of
these, some work for professional out-sourced testing service
companies such as utest.com, testhub.com and mob4hire.com.
They can test your application quickly and relatively inexpen-
sively, compared to maintaining a larger dedicated software
testing team.

These services can augment your other testing, we do not
recommend using them as your only formal testing. To get good
results you will need to devote some of your time and effort to
defining the tests you want them to run, and to working with
the company to review the results, et cetera.

Beware Of Specifics
Platforms, networks, devices, and even firmware, are all
specific. Any could cause problems for your applications. Test
these manually first, provided you have the time and budget to
get fast and early feedback.

Test Automation

Automated tests can help you maintain and improve your
velocity, your speed of delivering features, by providing early
feedback of problems. To do so, they need to be well-designed
and implemented. Otherwise you risk doubling your workload

http://www.utest.com
http://www.testhub.com
http://www.mob4hire.com

Testing 219

to maintain a mess of broken and unreliable automated tests
as well as a broken and an unreliable app. Good automated
tests mimic good software development practices, for instance
using Design Patterns6, modularity, performing code reviews, et
cetera.

It is important to assess the longevity and vitality of the
test automation tools you plan to use, otherwise you may be
saddled with unsupported test automation code. Test automa-
tion tools provided as part of the development SDK are worth
considering. They are generally free, inherently available for the
particular platform, and are supported by massive companies.

BDD Test Automation
BDD stands for Behavior-Driven Development7 where the
behavior is described in formatted text files that can be run
as automated tests. The format of the tests are intended to
be readable and understandable by anyone involved with the
software project. They can be written in virtually any human
language, for instance Japanese8, and they use a consistent,
simple structure with statements such as Given, When, Then to
structure the test scripts.

There are various BDD frameworks available to test mobile
apps. These include:

 — Calabash for Android and iOS: http://github.com/calabash
 — Frank for iOS: www.testingwithfrank.com
 — RoboGerk for Android:

http://github.com/leandog/RoboGherk
 — Zucchini for iOS: www.zucchiniframework.org

6 en.wikipedia.org/wiki/Design_Patterns
7 en.wikipedia.org/wiki/Behavior-driven_development
8 github.com/cucumber/cucumber/tree/master/examples/i18n/ja

http://github.com/calabash
http://testingwithfrank.com/
http://github.com/leandog/RoboGherk
http://www.zucchiniframework.org/
http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Behavior-driven_development
http://github.com/cucumber/cucumber/tree/master/examples/i18n/ja

Testing 220

and various implementations that integrate with Selenium-
WebDriver for testing web apps, including web apps on iOS and
Android.

Often, custom 'step-definitions' (small scripts that interact
with the app being tested) need to be written by someone with
coding skills.

GUI Test Automation
GUI test automation is where automated tests interact with
the app via the Graphical User Interface (GUI). It is one of the
elixirs of the testing industry, many have tried but few have
succeeded in creating useful and viable GUI test automation
for mobile applications. One of the main reasons why GUI
test automation is so challenging is that the User Interface
is subject to significant changes which may break the way
automated tests interact with the app.

For the tests to be effective in the longer term, and as
the app changes, developers need to design, implement and
support the labels and other hooks used by the automated GUI
tests. Both Apple, with UI Automation9, and more recently
Android10 use the Accessibility label assigned to UI elements as
the de-facto interface for UI automation.

Some commercial companies have opensourced their tools
GorillaLogic's MonkeyTalk11 and Xamarin's Calabash12. These
tools aim to provide cross-platform support particularly for

9 developer.apple.com/library/ios/documentation/DeveloperTools/
Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/
UsingtheAutomationInstrument.html

10 developer.android.com/tools/testing/testing_ui.html
11 gorillalogic.com/testing-tools/monkeytalk
12 github.com/calabash

http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.android.com/tools/testing/testing_ui.html
http://www.gorillalogic.com/testing-tools/monkeytalk
https://github.com/calabash

Testing 221

Android and iOS. Other successful opensource frameworks
include Robotium13 and Frank14.

Headless Client
The user-interface (UI) of a modern mobile application can
constitute over 50% of the entire codebase. If your testing is
limited to using the GUI designed for users you may needlessly
complicate your testing and debugging efforts. One approach is
to create a very basic UI, a thin wrapper, around the rest of the
core code (typically this includes the networking and business
layers). This ‘headless’ client may help you to quickly isolate
and identify bugs e.g. related to the device, carrier, and other
environmental issues.

Another benefit of creating a headless client is that it may
be simpler to automate some of the testing e.g. to exercise all
the key business functions and/or to automate the capture and
reporting of test results.

You can also consider creating skeletal programs that ‘probe’
for essential features and capabilities across a range of phone
models e.g. for a J2ME application to test the File Handling
where the user may be prompted (many times) for permission
to allow file IO operations. Given the fragmentation and quirks
of mature platforms such probes can quickly repay the invest-
ment you make to create and run them.

Testing Through The Five Phases
of an App's Lifecycle
The complete lifecycle of a mobile app fits into 5 phases:
implementation, verification, launch, engagement and valida-
tion. Testing applies to each phase. Some of the decisions made

13 code.google.com/p/robotium/
14 testingwithfrank.com/

http://code.google.com/p/robotium/
http://testingwithfrank.com/

Testing 222

for earlier stages can affect your testing in later stages. For
instance, if you decide you want automated system tests in
the first phase they will be easier to implement in subsequent
phases.

Phase 1: Implementation
This includes design, code, unit tests, and build tasks. Tradi-
tionally testers are not involved in these tasks; however good
testing here can materially improve the quality and success of
the app by helping us to make sure the implementation is done
well.

In terms of testing, you should decide the following ques-
tions:

 — Do you use test-driven development (TDD)?
 — Do you write unit tests even if we are not using TDD?
 — Will you have automated system tests? If so, how will you

facilitate these automated system tests? For instance by
adding suitable labels to key objects in the UI.

 — How will you validate your apps? For instance, through the
use of Mobile Analytics? Crash reporting? Feedback from
users?

Question the design. You want to make sure it fulfills the
intended purposes; you also want to avoid making serious
mistakes. Phillip Armour's paper on five orders of ignorance15 is
a great resource to help structure your approach.

Also consider how to improve the testability of your app at
this stage so you can make your app easier to test effectively
and efficiently. Practices, including unit tests and Test-Driven-
Development (TDD) apply to the implementation phase.
Remember to test your build process and build scripts to ensure

15 www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

http://www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

Testing 223

they are effective, reliable and efficient, otherwise you are
likely to suffer the effects of poor builds throughout the life of
the app.

Phase 2: Verification
This includes reviewing unit tests, internal installation, and
system tests.

Review your unit tests and assess their potency: Are they re-
ally useful and trustworthy? Note: they should also be reviewed
as part of the implementation phase, however this is a good
time to address material shortcomings before the development
is considered 'complete' for the current code base.

For apps that need installing you need ways to deploy them
to specific devices for pre-release testing. Some platforms
(including Android, iOS and Windows Phone) need phones to
be configured so development apps can be installed. You also
need to decide which phones to test the app on. For instance,
it is wise to test the app on each suitable version of the mobile
platform. For iOS this may only include the latest releases. For
Android you also need to consider low end devices that are
still being sold with version 2.x of Android and will never be
updated to 4.x

You will also want to test different form-factors of devices;
for instance where the ratio of the screen dimensions differ.
The iPhone 5's new screen dimensions exposed lots of UI bugs.
Android developers are well aware of the many issues different
screen sizes can trigger.

System tests are often performed interactively, by testers.
Consider evaluating test automation tools and frameworks for
some of your system tests. We will go into more detail later in
this section.

Testing 224

You also want to consider how to make sure the app meets:

 — Usability, user experience and aesthetics requirements
 — Performance, particularly as perceived by end users
 — Internationalization and localization testing

Phase 3: Launch
This includes pre-publication and publication.

For those of you who have yet to work with major app stores
be prepared for a challenging experience where most aspects
are outside your control, including the timescales for approval
of your app. Also, on some app stores, you are unable to revert
a new release. So if your current release has major flaws you
have to create a new release that fixes the flaws, then wait
until it has been approved by the app store, before your users
can receive a working version of your app.

Given these constraints it is worth extending your testing
to include pre-publication checks of the app such as whether it
is suitable for the set of targeted devices. The providers of the
main platforms now publish guidelines to help you test your
app will meet their submission criteria. These guidelines may
help you even if you target other app stores.

Android developer.android.com/distribute/googleplay/publish/
preparing.html#core-app-quality

Apple developer.apple.com/appstore/resources/approval/
guidelines.html (Apple account needed for access)

BlackBerry developer.blackberry.com/devzone/appworld/tips_for_app_
approval.html

Windows Phone msdn.microsoft.com/en-us/library/windowsphone/develop/
hh394032(v=vs.105).aspx

http://developer.android.com/distribute/googleplay/publish/preparing.html#core-app-quality
http://developer.android.com/distribute/googleplay/publish/preparing.html#core-app-quality
http://developer.apple.com/appstore/resources/approval/guidelines.html
http://developer.apple.com/appstore/resources/approval/guidelines.html
http://developer.blackberry.com/devzone/appworld/tips_for_app_approval.html
http://developer.blackberry.com/devzone/appworld/tips_for_app_approval.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh394032(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh394032(v=vs.105).aspx

Testing 225

Phase 4: Engagement
This includes search, trust, download and installation. Once
your app is publicly available users need to find, trust,
download and install it. You can test each aspect of this phase
in production. Try searching for your app on the relevant app
store, and in mainstream search engines. How many different
ways can it be found by your target users? What about users
outside the target groups – do you want them to find it? How
will users trust your app sufficiently to download and try it?
Does your app really need so many permissions? How large is
the download, and how practical is it to download over the
mobile network? Will it fit on the user's phone, particularly if
there is little free storage available on their device? And does
the app install correctly – there may be signing issues which
cause the app to be rejected by some phones.

With a continuous flow of new releases to production, a
proactive approach is needed to monitor the engagement
aspects.

Phase 5: Validation
This includes payment, use and feedback. As you may already
know, a mobile app with poor feedback is unlikely to succeed.
Furthermore many apps have a very short active life on a user's
phone. If the app does not please and engage them within
a few minutes it is likely to be discarded or ignored. And for
those of you who are seeking payment, it is worth testing the
various forms of payment, especially for in-app payments.

Consider finding ways to test the following as soon as
practical:

 — Problem detection and reporting: These may include your
own code, third-party utilities, and online services.

 — Mobile Analytics: Does the data being collected make
sense? What anomalies are there in the reported data?
What is the latency in getting the results, et cetera?

Monetization 227

Monetization
Finally you have finished your app or mobile website and
polished it as a result of beta testing feedback. Assuming you
are not developing as a hobby, for branding exposure, et cetera,
now it is time to make some money. But how do you do that,
what are your options?

In general, you have the following monetization options:

1. Pay per download: Sell your app per download
2. In-app payment: Add payment options into your app
3. Mobile advertising: Earn money from advertising
4. Sponsorships: Receive money for each user signing up to

your sponsor
5. Revenue sharing: Earn revenue from operator services

originating in your app
6. Indirect sales: Affiliates, data reporting and physical

goods among others
7. Component marketplace: Sell components or a white-label

version of your app to other developers

When you come to planning your own development,
determining the monetization business model should be one
of the key elements of your early design as it might affect the
functional and technical behavior of the app.

B
Y

 M

ic
he

l S
hu

qa
ir

 &
 C

ar
lo

 L
on

gi
no

Monetization 228

Pay Per Download

Using pay per download (PPD) your app is sold once to each
user as they download and install it on their phone. Payment
can be handled by an app store, mobile operator, or you can
setup a mechanism yourself.

When your app is distributed in an app store, the store will
handle the payment mechanism for you. In return the store
takes a revenue share (typically 30%) on all sales. In most
cases stores offer a matrix of fixed price points by country and
currency ($0.99, EUR 0.79, $3 etc) to choose from when pricing
your app.

Payment for downloaded apps is generally handled in one of
two ways: operator billing or credit-card payments.

Operator billing enables your customers to pay for your app
by just confirming that the sale will be charged to their mobile
phone bill or by sending a Premium SMS. In some cases, opera-
tor billing is handled by an app store (such as Google Play,
which supports operator billing for a number of carriers around
the world). In other cases, it can be implemented directly by
the developer.
Each operator will take a revenue share of the sale price
(typically 30% to 65%, but some operators can take up to
95%), and, if you use one, an aggregator will take its share
too. Security (how you prevent the copying of your app) and
manageability are common issues with the PPD model, but
in some scenarios it might be the only monetization option.
Operator billing can be quite difficult to handle on your own,
particularly if you want to sell in several countries, as you
need to sign contracts with each operator in each country.
For unknown reasons some operators, like Vodafone, seem to
remove operator billing as an option for Android Play in some
key markets, like UK and Germany. Possibly because better
alternatives like local mobile bank payments become available.

229

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements, with Nokia Store having
good coverage with operator billing available in 60 countries
for both their legacy Nokia Store and Microsoft's Windows
Phone Marketplace. Google and Blackberry have similar options.
The principal reason they are doing this is that typically, when
users have a choice of credit card and operator billing methods
users show a significant preference for operator billing (Nokia
says its research has shown up to a 10x increase in revenues
over credit card payments). Nokia, at least, also insulates
developers from the variation in operator share, offering
developers a fixed 70% of billing revenue.

Credit-card billing is used by Apple, Google (in some cases),
Amazon and other stores. Apple has required iPhone users to
provide credit-card data at registration for many years, and
Google now requires this as well for Android users. Having this
information entered before purchase is, according to analysts, a
key differentiator for higher monthly per app revenue.

The last payment option is to create your own website and
implement a payment mechanism through that, such as PayPal
mobile, Dutch initiative èM! Payment1, dial-in to premium
landlines2 or others.

Using PPD can typically be implemented with no special
design or coding requirements for your app and for starters
we would recommend using the app store billing options as
it involves minimal setup costs and minor administrative
overhead.

For each form of payment it is important to determine
price elasticity of demand PED3. Increasing the price does not
necessarily mean higher total revenue (and vice versa), your
price needs to match expectations of your user base.

1 empayment.com
2 daopay.com
3 en.wikipedia.org/wiki/Price_elasticity_of_demand

http://www.empayment.com
http://www.daopay.com
http://en.wikipedia.org/wiki/Price_elasticity_of_demand

Monetization 230

In-App Payment

In-app payment is a way to charge for specific actions or assets
within your application. A very basic use might be to enable
the one-off purchase of your application after a trial period —
which may garner more sales than PPD if you feel the features
of your application justify a higher price point. Alternatively,
you can offer the basic features of your application for free, but
charge for premium content (videos, virtual credits, premium
information, additional features, removing ads and alike). Most
app stores offer an in-app purchase option or you can imple-
ment your own payment mechanism. If you want to look at
anything more than a one-off “full license” payment you have
to think carefully about how, when and what your users will be
willing to pay for and design your app accordingly.

In-app purchases have become the leading monetization
model in many markets, particularly among "freemium" games
that use free distribution to get users hooked before turning
them into buyers. In 2013 92% of global iOS app revenues and
98% of Android app revenues come from in-app purchasing,
according to Distimo4.

This type of payment is particularly popular in games (for
features such as buying extra power, extra levels, virtual credits
and alike) and can help achieve a larger install base as you can
offer the basic application for free. Note, however, that some
app stores (such as Apple's) do not allow third-party payment
options to be implemented inside your app. This is done to
prevent you from using the app store for free distribution while
avoiding payment of the store’s revenue share.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment

4 www.distimo.com/publications, download “2013 Year in review” from
December 2013

http://www.distimo.com/publications

Monetization 231

method. If your application is implemented across various
platforms, you may need to implement a different mechanism
for each platform (in addition to each app store, potentially).

As with PPD we would recommend that you start with
the in-app purchasing mechanism offered by an app store,
particularly as some of these can leverage operator billing
services (such as Google Play) or utilize pre-existing credit-card
information (such as Apple or Amazon) , or with in-app pay-
ment offered directly by operators. From a user’s perspective,
this is the easiest and most convenient way to pay (one or two
clicks, no need to enter credit card numbers, user names or
other credentials), so developers can expect the highest user
acceptance and conversion rates.

Mobile Advertising

As is common on websites, you could decide to earn money
by displaying advertisements. There are a number of players
who offer tools to display mobile ads and it is the easiest way
to make money on mobile browser applications. Admob.com,
Buzzcity.com and inmobi.com are a few of the parties that
offer mobile advertising. However because of the wide range of
devices, countries and capabilities there are currently over 50
large mobile ad networks. Each network offers slightly different
approaches and finding the one that monetizes your app’s audi-
ence best may not be straightforward. There is no golden rule;
you may have to experiment with a few to find the one that
works best. However, for a quick start you might consider using
a mobile ad aggregator, such as Madgic5, smaato6 or innerac-
tive7 as they tend to bring you better earnings by combining

5 madgic.com
6 smaato.net
7 inner-active.com

http://www.admob.com
http://Buzzcity.com
http://inmobi.com
http://www.madgic.com
http://www.smaato.net
http://www.inner-active.com

Monetization 232

and optimizing ads from 40+ mobile ad networks. Most ad
networks take a 30% to 50% share of advertising revenue and
aggregators another 15% to 20% on top of that.

If your app is doing really well and has a large volume in
a specific country you might consider selling ads directly to
advertising agencies or brands (Premium advertising) or hire a
media agency to do that for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mecha-
nisms are also worth exploring. In some cases you may have to
use the vendor’s offering to be able to include your application
in their store.

In-application advertising will require you to design and
code your application carefully. Not only the display location of
ads within your app needs to be considered with care, also the
variations and opt-out mechanism. If adverts become too intru-
sive, users may abandon your app, while making the advertising
too subtle will mean you gain little or no revenue. Relatively
new compared to traditional banner advertising is interstitial
advertising: This term is generally used to describe an ad that
takes up the entire screen and typically has a "skip screen" but-
ton at the bottom. It may require some experimentation to find
the right level and positions in which to place adverts.

Sponsorships

The German startup Apponsor8 offers a new way of earning
money without the need to display advertising or charge a
download fee: The user gets your app for free and is prompted
to sign-up for a newsletter of your sponsor. The sponsor will
in return pay the developer an amount for each newsletter
registration.

8 apponsor.com

http://apponsor.com

Monetization 233

Indirect Sales

Another option is to use your application to drive sales
elsewhere.

Here you usually offer your app or website for free and then
use mechanisms such as:

1. Affiliate programs: Promote third party or your own paid
apps within a free app. See also MobPartner9. This can be
considered a variation on mobile advertising

2. Data reporting: Track behavior and sell data to interested
parties. Note that for privacy reasons you should not reveal
any personal information, ensure all data is provided in
anonymous, consolidated reports

3. Virtual vs. real world: Use your app as a marketing tool to
sell goods in the real world. Typical examples are car apps,
magazine apps and large brands such as McDonald’s and
Starbucks. Also coupon applications as Groupon often use
this business model

There is nothing to stop you from combining this option
with any of the other revenue generation options if you wish,
but take care that you do not give the impression of overly-
intrusive promotions.

Component Marketplace

A Component Marketplace (CMP) provides another opportunity
for developers to monetize their products to other developers
and earn money by selling software components or white-
labelled apps. A software component is a building block piece

9 mobpartner.com

http://www.mobpartner.com

Monetization 234

of software, which provides a defined functionality, that is to
be used by higher level software.

The typical question that comes up at this point is on how
CMPs contrast to open source. As a user, open source is often
free-of-charge. Source code must be provided and users have
the right to modify the source code and distribute the derived
work.

Some component providers require a license fee. They
may provide full source code which enables the developer to
debug into lower level code. Some CMPs support all models:
Paid components with or without source code as well as free
components with or without source code.

If you are a developer searching for a component, CMPs offer
two major advantages: First, you do not have to open source
your code just because you use software components. All open
source comes with a license. Some licenses like the Apache are
commercially friendly; others, such as AGPL and OSL, require
you to open source your code that integrates with theirs. You
might not want this. Secondly, CMPs provide an easy way to
find and download components. You can spend days browsing
open source repositories to find the right thing to use.

Component marketplaces have existed for decades now. The
most prominent marketplace is for components for Visual Basic
and .NET in the Windows community. Marketplaces such as
componentOne and suppliers like Infragistics are well known
in their domain. The idea of component marketplaces within
the mobile arena is quite new. Deutsche Telekom's Developer
Garden10, ChupaMobile11 and Verious12 are relevant players in
this domain.

10 www.developergarden.com/component-marketplace/
11 www.chupamobile.com
12 www.verious.com

http://www.developergarden.com/component-marketplace/
http://www.chupamobile.com
http://www.verious.com

Monetization 235

Choosing your Monetization Model

So with all these options what should your strategy be? It
depends on your goals, let us look at a few:

 — Do you want a large user base? Consider distributing your
application for free with in-app purchases, or with mobile
advertising (you could even offer a premium ad-free
version)

 — Are you convinced users will be willing to buy your app
immediately? Then sell it as PPD for $0.99, but beware
while you might cash several thousand dollars per day it
could easily be no more than a few hundred dollars per
week if your assessment of your app is misplaced or the
competition fierce

 — Are you offering premium features at a premium price?
Consider a time or feature limited trial application then use
in-app purchasing to enable the purchase of a full version
either permanently or for a period of time

 — Are you developing a game? Consider offering the app for
free with in-app advertising or a basic version then use in-
app purchasing to allow user to unlock new features, more
levels, different vehicles or any extendable game asset

 — Is your mobile app an extension to your existing PC web
shop or physical store? Offer the app for free and earn
revenue from your products and services in the real world

Appstore Strategies

The flip side of revenue generation is marketing and promotion.
The need might be obvious if you sell your application through
your own website, but it is equally important when using a

Monetization 236

vendor's app store. Appstores are the curse and the blessing
of mobile developers. On the bright side they give develop-
ers extended reach and potential sales exposure that would
otherwise be very difficult to achieve. On the dark side the
more popular ones now contain hundreds of thousands of apps,
decreasing the potential to stand out from the crowd and be
successful, leading many to compare the chances of appstore
success to the odds of winning the lottery.

So, here are a few tips and tricks to help your raise your
odds.

Basic Strategies To Get High
The most important thing to understand about appstores is
that they are distribution channels and not marketing ma-
chines. This means that while appstores are a great way to get
your app onto users’ devices, they are not going to market your
app for you (unless you purchase premium positioning either
through banners or list placings). You cannot rely on the app
stores to pump up your downloads, unless you happen to get
into a top-ten list. But do not play the lottery with your apps,
have a strategy and plan to market your app.

We have asked many developers about the tactics that
brought them the most attention and higher rankings in
appstores.

Many answers came back and one common theme emerged:
there is no silver bullet – you have to fire on all fronts!
However it will help if you try to keep the following in mind:

 — You need a kick ass app: it should be entertaining, easy to
use and not buggy. Make sure you put it in the hands of
users before you put it in a store.

 — Polish your icons and images in the appstore, work on
your app description, and carefully choose your keywords

Monetization 237

and category. If unsure of or unsatisfied with the results,
experiment.

 — Getting reviewed by bloggers and magazines is one of the
best ways to get attention. In return some will be asking
for money, some for exclusivity, and some for early access.

 — Get (positive) reviews as quickly as possible. Call your
friends and ask your users regularly for a review.

 — If you are going to do any advertising, use a burst of
advertising over a couple of days. This is much more
effective than spending the same amount of money over 2
weeks, as it will help create a big spike, rather than a slow,
gradual push.

 — Do not rely on the traffic generated by people browsing the
appstore, make sure you drive traffic to your app through
your website, SEO and social media.

Multi-Store vs Single Store
With 120+ appstores available to developers, there are clearly
many application distribution options. But the 20 minutes
needed on average to submit an app to an appstore means you
could be spending a lot of time posting apps in obscure stores
that achieve few downloads. This is why a majority of develop-
ers stick to only 1 or 2 stores, missing out on a potentially
huge opportunity but getting a lot more time for the important
things, like coding! So should you go multi-store or not?

Multi-store Single store

The main platform appstores can have
serious limitations, such as payment
mechanisms, penetration in certain
countries, content guidelines.

90%+ of smartphone users only use
a single appstore, which tends to be
the platform appstore shipping with
the phone

Smaller stores give you more visibility
options (featured app)

Your own website can bring you more
traffic than appstores

Monetization 238

Multi-store Single store

Smaller stores are more social media
friendly than large ones.

Many smaller appstores scrape data
from large stores, so your app may
already be there.

Operators’ stores have notoriously
strict content guidelines and can be
difficult to get in, particularly for
some types of apps.

For non-niche content, operator or
platform stores may offer enough
exposure to not justify the extra
effort of a multi-store strategy.

Smaller stores may offer a wider
range of payment or business model
options, or be available in many
countries.

Some operators’ stores have easier
billing processes – such as direct
billing to a user’s mobile account –
leading to higher conversion rates.

Some developers report that 50% of
their Android revenues come from
outside of Android Market

iOS developers only need 1 appstore

The platform app stores should give you general coverage
for users, but over time, it is in your interest to adapt your
appstore strategy to match your targeted user base, and
utilize the appstores that best reach it. This could mean using
particular operator stores, stores popular in a specific country,
or simply sticking with the platform stores. There are some
third-party appstores with large audiences, such as the Amazon
appstore for Android, which offers developers a number of ways
to monetize their apps, such as PPD and in-app payments in
several countries. Additionally, in some countries, there are
locally popular appstores, such as AndroidPit13 in Germany, or
one of the many China-specific Android stores.

13 androidpit.de

http://www.androidpit.de/

Monetization 239

What Can You Earn?

One of the most common developer questions is about how
much money they can make with a mobile app. It is clear that
some apps have made their developer’s millionaires, while oth-
ers will not be giving up their day job anytime soon. According
to a 2012 research by Forbes.com14, most app developers are
not generating enough revenue to break even with develop-
ment costs and single platform developers confirmed it was
not enough to support a standalone business. According to
VisionMobile's Developer Economics 2013 research among
over 6,000 mobile developers 67% of them are below the “app
poverty line” of $500 per app per month15.

Ultimately, what you can earn is about fulfilling a need and
effective marketing. Experience suggests that apps which save
the user money or time are most attractive (hotel discounts,
coupons, free music and alike) followed by games (just look at
the success of Angry Birds) and business tools (office document
viewers, sync tools, backup tools and alike) but often the
(revenue) success of a single app cannot be predicted. Success
usually comes with a degree of experimentation and a lot of
perseverance.

Learn More

If you want to dig deeper into the topic of app marketing,
check out the "Mobile Developer's Guide To The Parallel
Universe" published by WIP16.

14 www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make
15 www.visionmobile.com/products/research
16 wip.org

http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/
http://www.visionmobile.com/products/research/
http://www.wip.org

Epilogue 241

Epilogue
Thanks for reading this 14th edition of our Mobile Developer’s
Guide. We hope you have enjoyed reading it and that we
helped you to clarify your options. Perhaps you are now ready
to get involved in developing a mobile app or have discovered
new options in the app business. We hope so. Please also get
involved in the community and share your experiences and
ideas with us and with others.

If you like to contribute to this guide or sponsor upcoming
editions, please send your feedback to mdgg@enough.de.

If you are using Twitter, you are invited to follow us on
twitter.com/enoughsoftware and spread the word about the
project using the Twitter hashtag #mdgg.

You can of course also get this guide as an ebook: check
amazon.com and kobobooks.com.

If you prefer the hardcopy version, you can order it at:
www.enough.de/mdgg.

At the time of writing we are also working on
making the content of this book available as a
website at www.mobiledevelopersguide.com,
where you will hopefully very soon find new
ways to get involved and
submit your feedback.

mailto:mdgg%40enough.de?subject=Inquiry%20about%20the%20MDGG
http://twitter.com/enoughsoftware
http://amazon.com
http://kobobooks.com
http://www.enough.de/mdgg
http://www.mobiledevelopersguide.com

About the Authors 242About the Authors

About the Authors

Mostafa Akbari / bitstars
Mo worked in software engineering and human interaction research the past few

years. He is involved in green mobility projects. Now Mo has started a spinoff

with Simon Heinen out of the RWTH Aachen University for augmented reality

research and development. He focuses on AR interactions with personal location-

based data and on computer vision. His passion for mix reality games is based on

his passion for board games and geocaching.

@mosworld www.bitstars.com

Anna Alfut
Anna started her professional life as Creative Designer. After discovering her

passion for interface design she co-authored an app for iOS and Android platforms

and consulted on multiple projects both on the agency and client side. Currently

she works in-house as UI and UX designer for consumer facing products on mobile

and desktop. Apart from thinking through and drawing screens she also does

illustration and enjoys living in London.

www.alfutka.net

Andrej Balaz / Enough Software
As a graduate of the University of the Arts Bremen, Andrej focuses on UI, UX

and visual design for mobile applications and other interactive technologies. He

is also in charge of the layout and design of this guide. When not involved with

something mobile, he loves to experiment with digital art and illustration.

@Designamyte www.enough.de www.balaz.de

http://www.twitter.com/mosworld
http://www.bitstars.com
http://www.alfutka.net
http://www.twitter.com/designamyte
http://www.enough.de
http://balaz.de

About the Authors 243

Richard Bloor / Sherpa Consulting Ltd
Richard has been writing about mobile applications development since 2000.

He has contributed to popular websites, such as AllAboutSymbian.com, but now

focuses on assisting companies in creating resources for developers. Richard

brings a strong technical background to his work, having managed development

and testing on a number of major IT projects, including the Land Information

NZ integrated land ownership and survey system. When not writing about mobile

development, Richard can be found regenerating the native bush on his property

north of Wellington, New Zealand.

Davoc Bradley / Rivo Software
Davoc has been working as a software engineer since 1999 specializing in

architecture and design of high usage web and mobile systems. Recently he

was behind the architecture, design and development of a gold award winning

Mobile Application Management system and is currently Rivo Software's Technical

Architect. Davoc is also a keen musician, avid cricket fan and loves travelling.

@davocbradley www.rivosoftware.co.uk

Marco Büttner / SciDev
Marco is 25 years old and has been a mobile developer since 2011. He is studying

computer science at the Humboldt University of Berlin and founded the mobile

development project SciDev, which focuses on developing web apps for bada,

Tizen and other emerging mobile platforms. He is well connected among the bada

and Tizen community and always glad to share his know-how.

@scionbln www.scidev.eu

Dean Churchill / AT&T
Dean works on secure design, development and testing of applications at AT&T.

Over the past several years he has focused on driving security requirements in

mobile applications, for consumer applications as well as internal AT&T mobile

applications. He has been busy supporting AT&T's emerging Mobile Health and

Digital Life product lines. He lives in the Seattle area and enjoys downhill skiing

and fly fishing.

http://www.twitter.com/davocbradley
http://www.rivosoftware.co.uk
http://www.twitter.com/scionbln
http://www.scidev.eu

About the Authors 244

Julian Harty / Commercetest
Julian was hired by Google in 2006 as their first Test Engineer outside the USA

responsible for testing Google’s mobile applications. He helped others, inside and

outside Google, to learn how to do likewise; and he ended up writing the first

book on the topic. He subsequently worked for eBay where his mission was to

revamp testing globally. Currently he is working independently, writing mobile

apps & suitable test automation tools, and helping others to improve their mobile

apps. He is also writing a new book on testing and test automation for mobile

apps.

@julianharty

Bob Heubel / Immersion Corp.
Bob Heubel is a haptic technology evangelist with Immersion Corporation

specializing in helping developers implement what is known as force-feedback,

tactile-feedback or rumble-feedback effects. He holds a number of patents in the

field of Haptics and has spent more than fourteen years working with developers,

carriers and hardware OEMs to design and program tactile sensations into game

and interaction experiences. You may have felt some of Bob’s work in Rockstar

Games’ Grand Theft Auto: Vice City & Max Payne for Android. Bob graduated from

UC Berkeley in 1989 with a BA in English Literature.

@bobheubel www.immersion.com

Ovidiu Iliescu / Enough Software
After developing desktop and web-based applications for several years, Ovidiu

decided mobile software was more to his liking. He is involved in Java ME and

Blackberry development for Enough Software since 2009. He gets excited by

anything related to efficient coding, algorithms and computer graphics.

@ovvyblabla www.enough.de www.ovidiuiliescu.com

http://www.twitter.com/julianharty
http://www.twitter.com/bobheubel
http://www.immersion.com
http://www.twitter.com/ovvyblabla
http://www.enough.de
http://www.ovidiuiliescu.com

About the Authors 245

Alex Jonsson / EvoThings
Alex likes anything mobile, both apps and web technologies as well as cleverly

connecting physical stuff to digital stuff. He holds a PhD in Media Technology

from the Royal Institute of Technology in Stockholm and freely shares his ideas

and thought with both the industry and academia. Dr Jonsson also has an

eclectic urge to investigate how apps and services can drive new business, by

bringing novel values and ways to make things more connected, thereby binding

the universe together in new, clever ways. Alex is founder and CTO of EvoThings

because things simply are better connected.

@dr_alexj www.evothings.com

Matos Kapetanakis / VisionMobile
As marketing manager of VisionMobile his activities include managing the

VisionMobile website and blog, as well as coming up with the concepts and

marcoms for the illustrations and infographics published by the company. Matos

is also the project manager of the Developer Economics research series, as well as

other developer research projects.

www.visionmobile.com

Michael Koch / Enough Software
Michael has developed software since 1988 and joined the development team

at Enough Software in 2005. He holds the position of CTO. He has led numerous

mobile app development projects (mainly for Java ME, Android, Windows Mobile

and BlackBerry) and he is also an expert in server technology. Michael is an open

source enthusiast involved in many free projects, such as GNU classpath.

@linux_pinguin www.enough.de

Daniel Kranz / Joule
Daniel is a multi-channel strategist with consultancy, agency and tech back-

ground. Previously a technical project manager at one of the leading advertising

agencies and a mobile solution consultant for a mobile and multi-channel web

specialist, he now works in global strategic planning advising brands on how to

integrate mobile as part of their overall strategy.

www.jouleww.com

http://www.twitter.com/dr_alexj
http://www.evothings.com
http://www.visionmobile.com
http://www.twitter.com/linux_pinguin
http://www.enough.de
http://www.jouleww.com

About the Authors 246

Carlo Longino / WIP
Carlo has more than a decade of experience in the mobile industry, beginning

just after the turn of the century when he worked for Nokia at its headquarters

in Finland. Before joining the Wireless Industry Partnership (WIP) as director

of developer marketing services in 2010, Carlo worked as a freelance consultant

and writer while he completed an MBA. Prior to that, he was senior analyst for

Floor64, a Silicon Valley-based analyst firm, where he covered the mobile and

fixed telecom industries. He also helped launch and spent five years running

TheFeature.com, a thought-leadership site owned by Nokia. Carlo has also been

published in The Wall Street Journal, Business 2.0 and Dow Jones Newswires and

has spoken at a number of industry events, including Mobile World Congress,

SXSW, MobileBeat and CTIA, among others.

@caaarlo www.wip.org

Tim Messerschmidt / PayPal
Tim has been developing Android applications since 2008. After studying business

informatics, he joined the Berlin-based Neofonie Mobile as Mobile Software

Developer in 2011 and has consulted for Samsung Germany as Developer Advocate

for Android and bada since 2010. In 2012 he moved to PayPal as a Developer

Evangelist. He is passionate about Mobile Payments, UI, UX and Android develop-

ment in general. Furthermore he loves to speak at conferences, writing articles

and all kind of social media.

@seraandroid & @PayPalDev www.timmesserschmidt.de

Patrick Mortara
Patrick studied computer sciences in Frankfurt. He has been developing desktop-

based software since the mid-nineties, both as a freelancer and for his day job.

He started mobile development in 2010 when Samsung released its first bada

smartphone, the Samsung Wave I.

@pmortara www.mortara.org

http://www.twitter.com/seraandroid
http://twitter.com/PayPalDev
http://www.timmesserschmidt.de
http://www.twitter.com/pmortara
http://www.mortara.org

About the Authors 247

Gary Readfern-Gray / RNIB
Gary is an Accessibility specialist working for the Royal National Institute of the

Blind. Located in the Innovation Unit, he has a passion for the mobile space and

particularly for enabling accessible app development across a range of platforms

by engaging with developer communities.

www.rnib.org.uk

Alexander Repty
Alexander has been developing software for Mac OS X since 2004. When the

iPhone SDK was released in 2008, he was among the first registered developers

for the program. As an employee of Enough Software, he worked on a number

of apps, one of which was featured in an Apple TV commercial. He has written

a series of articles on iPhone development. As of April 2011, he started his own

business as an independent software developer and contractor.

@arepty www.alexrepty.com

Marcus Ross
Marcus is a freelance developer and trainer. After 10 years of being an employee

in several companies, he is now doing SQL‐BI Projects and everything mobile

cross platform. He is a regular author in the German magazine "mobileWebDe-

veloper". In his spare time, he is often seen at conferences, speaking on mobile

subjects and JavaScript. He also writes articles, books & tweets on mobile

development.

@zahlenhelfer www.zahlenhelfer-consulting.de

Michel Shuqair / AppValley
Starting with black and white WAP applications, iMode and SMS games in the

1990's, Michel moved to lead the mobile social network m.wauwee.com. Serving

almost 1,000,000 members, Michel was supported by a team of Symbian, iPhone,

BlackBerry and Android specialists at headquarters in Amsterdam. m.wauwee.com

was acquired by MobiLuck.

www.appvalley.nl

http://www.rnib.org.uk
http://www.twitter.com/arepty
http://www.alexrepty.com
http://www.twitter.com/zahlenhelfer
http://www.zahlenhelfer-consulting.de
http://www.appvalley.nl

About the Authors 248

Marco Tabor / Enough Software
Marco is responsible for PR, sales and much more at Enough Software. He

coordinates this project, taking, as well, the responsibility of finding sponsors

and merging the input provided by the mobile community.

@enoughmarco www.enough.de

Ian Thain / SAP
Ian is a Mobile Evangelist at SAP, though he started 13 years ago with Sybase

Inc. He regularly addresses audiences all over the world providing mobile knowl-

edge and experience for the Enterprise. He also writes articles, blogs & tweets on

Enterprise Mobility and is passionate about the Developer & Mobile Experience in

the Corporate/Business world.

@ithain scn.sap.com/blogs/ithain/ www.sap.com

Marc van 't Veer / Polteq
Marc is a test consultant at Polteq with over 7 years working as a coordinator

and system tester. He has a lot of experience in testing in a technically oriented

context, such as telecom, SOA, test automation, development of stubs and drivers

and testing API’s. In his current job he coordinates all the mobile app testing for

a big Dutch supermarket.

www.polteq.com

Robert Virkus / Enough Software
Robert has been working in the mobile space since 1998. He experienced Java

fragmentation first hand when developing and porting a mobile client on the

Siemens SL42i, the first mass market phone with an embedded Java VM. After this

experience he launched the Open Source J2ME Polish project in 2004. J2ME Polish

helps developers overcome device fragmentation. He is the founder and CEO of

Enough Software, the company behind J2ME Polish, many mobile apps, and this

book.

@robert_virkus www.enough.de www.j2mepolish.org

http://www.twitter.com/enoughmarco
http://www.enough.de
http://www.twitter.com/ithain
http://scn.sap.com/blogs/ithain/
http://www.sap.com
http://www.polteq.com
http://www.twitter.com/robert_virkus
http://www.enough.de
http://www.j2mepolish.org

14thedition

an initiative by

sponsored by

A NON-COMMERCIAL, COMMUNITY-DRIVEN

OVERVIEW ON MOBILE TECHNOLOGIES FOR

DEVELOPERS AND DECISION-MAKERS.

Daniel Hudson, www.webtechman.com

A spectacular piece of work! You will be astonished by how incredibly fast

you can establish your presence in the mobile market with the simple steps

explained in this guide.

Monika Lischke, Community Manager, Intel AppUp developer program

Extremely helpful content, also for non-developers.

And the design is nothing but fantastic!

www.enough.de www.wip.org

	Prologue
	The Galaxy of Mobile:
An Introduction
	Conceptional Design
for Mobile
	Android
	BlackBerry Java Apps
	BlackBerry 10
	Firefox OS
	iOS
	Java ME (J2ME)
	Tizen
	Windows Phone &
Windows RT
	Going Cross-Platform
	Mobile Sites &
Web Technologies
	Accessibility
	Enterprise Apps:
Strategy And Development
	Mobile Analytics
	Implementing Rich Media
	Implementing
Location-Based Services
	Near Field Communication (NFC)
	Implementing
Haptic Vibration
	Implementing Augmented Reality
	Application Security
	Testing
	Monetization
	Epilogue
	About the Authors

