
Don’t Panic
MOBILE DEVELOPER’S
GUIDE TO THE GALAXY

6co
m

ple
tely updated

STILL FOR F
RE

E

Enough Software GmbH + Co. KG
Stavendamm 22
28195 Bremen

Germany
www.enough.de

We create Apps.

published by:

16th Edition February 2016
This Developer Guide is licensed under the

Creative Commons Some Rights Reserved License.

Please send your feedback,
questions or sponsorship requests to:

mobiledevguide@enough.de
Follow us on Twitter: @MobileDevGuide

Art Direction and Design by

Cornelius Kwietniak
Mladenka Vrdoljak

Editors:

Marco Tabor
Mladenka Vrdoljak

www.mobiledevelopersguide.com

http://www.mobiledevelopersguide.com

1 Prologue

4 The Galaxy of Mobile: An Introduction

18 From Idea To Concept

28 User Experience & User Interface Design

42 Android

60 iOS

74 Windows

84 Going Cross-Platform

96 Mobile Sites & Web Technologies

112 Enterprise Apps

124 Mobile Gaming

Mobile Developer’s Guide
Contents

 by Robert Virkus & Marco Tabor

 by Sebastian Meyer

 by Anna Alfut

 by Andre Schmidt & Vikram Kriplaney

 by Alex Repty

 by Robert Virkus

 by Robert Virkus

 by Daniel Kranz

 by Ian Thain & Davoc Bradley

 by Oscar Clark

150 Mobile Development & the Internet of Things

160 Apps for Wearables

168 Application Security

180 Accessibility

200 Testing

224 Mobile Analytics

236 Collecting & Understanding User Feedback

246 Monetisation

262 Epilogue

263 About the Book

 by Alex Jonsson

 by Robert Virkus

 by Dean Churchill

 by Sally Cain

 by Julian Harty & Marc van’t Veer

 by Julian Harty

 by Julian Harty

 by Michel Shuqair

1Prologue

Prologue
Another year, another big round of changes: Mozilla stopped
Firefox OS and Jolla went through financial crisis that almost
put an end to the project. BlackBerry released its first Android
device (but promised to continue its support of BlackBerry 10).
Google is now a part of their own family company “Alphabet”.
Apple released Swift as Open Source and Microsoft released
its “operating system as a service” Windows 10. So the mobile
universe keeps evolving - and starts merging with wearable
sector.

Due to these changes we decided to say goodbye to the
dedicated Firefox OS, Java ME, BlackBerry 10 and Tizen
chapters in this book and to focus even more on strategic
and conceptual topics. One of the main progresses of the
mobile industry in the younger past is that the user got more
and more into the focus. Developers and app providers have
understood that user feedback is a key factor of success. So
we have extended the user-related content of this book even
further with this edition: The concept and the design chapters
are outlining how to involve users early and a completely new
chapter about user feedback explains how to deal with your
end-customers once you have gone public.

1 2Prologue

We would like to thank our dedicated authors - you all rock!

Another big thanks goes to our printing sponsor Microsoft -
please visit their developer offerings at dev.windows.com and
azure.com.

And now go ahead: Dive into the mobile universe and let us
help you to find your very own place in it!

Robert + Marco / Enough Software
Bremen, February 2016

PS: Please follow us on Twitter @MobileDevGuide and visit
mobiledevelopersguide.com to obtain the electronic edition of
this booklet, which is available in several languages.

https://azure.microsoft.com
https://twitter.com/mobiledevguide
http://mobiledevelopersguide.com

MOBILE DEVELOPER’S
GUIDE TO THE GALAXY
MOBILE DEVELOPER’S
GUIDE TO THE GALAXY

1 PLAYER GAME

2 PLAYER GAME

4The Galaxy of Mobile: An Introduction

The Galaxy of Mobile: An
Introduction
Welcome to the world of mobile development, a world where
former giants stumble and new stars are seemingly born on a
regular basis.

The focus of this book is on developing mobile apps, which
encompasses a number of phases including: planning and
specification, prototyping and design, implementation, internal
testing and deployment, deployment to an app store, discovery
by users, installation, use and feedback. Ultimately, we want
our users to enjoy using our apps and to give us positive
ratings to encourage other users to do likewise.

Keep reading to learn how to develop apps for the major
platforms. Should this be the first time that you have con-
sidered getting involved, don't delay; mobile has become the
predominant form of computing in many areas already. Time
spent on mobile app usage even surpassed the good old TV1-
at least in the US.

While developing mobile apps shares many common feature
with developing other software, it has specific characteristics.
We will cover some of these next.

1 dminc.com/blog/mobile-app-usage-surpasses-tv

B
Y

 R

ob
er

t
Vi

rk
us

 &
 M

ar
co

 T
ab

or

http://dminc.com/blog/mobile-app-usage-surpasses-tv/

5The Galaxy of Mobile: An Introduction

Topology: Form Factors and Use Patterns

Traditionally we app developers only targeted phones. Then
tablets followed, and today our apps can span across a
complete range of device types: smartwatch, smart glass,
phone, tablet, PC, TV and automotive. Other form factors might
follow. Each form factor poses its own usability challenges; for
instance, a tablet demands different navigation to a phone,
input on TV systems can be cumbersome, and so on.

Use patterns in an Android app, of course, differ from those
on iOS, which also differ from those for Windows apps, et
cetera. You should, therefore, refrain from providing an identi-
cal experience on all form factors or even all you target are
smartphones. Otherwise, you risk delivering a mediocre service
to various sections of your target user base.

Star Formation: Creating a Mobile Service
There are several ways to realise a mobile service:

 — App
 — Website
 — SMS, USSD2 and STK3

App
Apps run directly on the device. You can realise them as native,
web-based or hybrid apps.

2 en.wikipedia.org/wiki/USSD

3 en.wikipedia.org/wiki/SIM_Application_Toolkit

http://en.wikipedia.org/wiki/USSD
http://en.wikipedia.org/wiki/SIM_Application_Toolkit

5 6The Galaxy of Mobile: An Introduction

Native Apps
A native app is programmed in a platform specific language
with platform specific APIs. It is typically purchased, down-
loaded and upgraded through the platform specific central
app store. Native apps usually offer the best performance,
the deepest integration and the best overall user experience
compared to other options. However, native development is
often also the most complex development option.

Web Apps
A web app is based on HTML5, JavaScript and CSS and does
not rely on any app store. It is a locally stored mobile site that
tries to emulate the look-and-feel of an app.

A famous example of a web app is the Financial Times4,
which left the app store in order to keep all subscriber revenue
to themselves for the web world; conversely, the web-based
Facebook iOS app was revamped into native app in order to
dramatically improve its performance and usability. There are
several web app frameworks available to build a native wrapper
around such apps so that you can publish them in app stores,
such as Phonegap5.

Hybrid Apps
For many mobile app developers a hybrid approach to app
development has become quite common: an app can use native
code for enhanced performance and integration of the app with
the platform, while using a webview together with HTML5-
based content for other parts of the app. Parts of the resulting
app behave like a native app, while other parts are powered
by web technologies. The web-based part can use Internet

4 apps.ft.com/home/web-app

5 www.phonegap.com

http://apps.ft.com/home/web-app/
http://www.phonegap.com

7

connectivity to offer up-to-date content. While this could be
viewed as a drawback, the use of web technologies enables
developers to revise content and features without the need to
submit updates to app stores. The key challenge is to combine
the unique capabilities of native and web technologies to
create a truly user-friendly and attractive app.

Website
A website runs on your server but you can access various
phone features on the device with JavaScript, for example
to store data locally or to request the current location of the
device. In contrast to apps, mobile websites are inherently
cross-platform. Historically mobile websites often catered for
WebKit based browsers such as the Mobile Safari. Nowadays,
WebKit and Chromium are the dominant mobile rendering
engines with Internet Explorer's Trident engine and others fol-
low behind in the mobile space. For the sake of an open web,
aim to use HTML5 standards as much as possible and refrain
from rendering engine-specific code.

SMS, USSD and STK
Simple services can be realised with SMS, USSD or STK. Every-
one knows how SMS (Short Message Service) text messaging
works and every phone supports SMS, but you need to convince
your users to remember textual commands for more complex
services.

USSD (Unstructured Supplementary Service Data) is a
GSM protocol used for pushing simple text based menus, the
capabilities depend on the carrier and the device. In Sri Lanka,
visitors can receive a free SIM card which is registered using
USSD menus.

STK (SIM Application Toolkit) enables the implementation
of low-level, interactive apps directly on the SIM card of a

7 8The Galaxy of Mobile: An Introduction

phone. STK may appear irrelevant when so much focus is on
smartphone apps; however, for example, M-Pesa is an STK app
which is transforming life and financial transactions in Kenya
and other countries.6

The Universe of Mobile Operating
Systems
The mobile space is much more diverse than other areas in
IT. When you are developing software for personal computers,
you basically have 3 operating systems to chose from. When it
comes to mobile, there are many more. This book provides an
introduction to the mobile operating systems that are currently
the most relevant. Be aware, the mobile space changes
continuously and at a speed that you will seldom observe in
other businesses. We have seen many promising technolo-
gies appear and quickly disappear, regardless of how big the
companies behind them are, or the historic market relevance of
those companies.

So read on; learn how the market is today and then be
prepared to track the changes (or make sure you have the
latest edition of our guide available).

Quasars: Android and iOS
When people talk about mobile apps, they mainly refer to
Android and iOS. Why? When it comes to market share, these
two platforms combined dominate the smartphone market with
easily 90% in key markets7 (see the table below for global
numbers). The Developer Economics Q3 2015 research8 also

6 mpesa.in

7 www.theverge.com/2015/8/20/9181269/gartner-q2-2015-smartphone-sales

8 DeveloperEconomics.com

http://mpesa.in
http://www.theverge.com/2015/8/20/9181269/gartner-q2-2015-smartphone-sales
http://www.DeveloperEconomics.com

9The Galaxy of Mobile: An Introduction

shows that iOS and Android are at the top in terms of develop-
er mindshare - that is, the percentage of developers using each
platform, irrespective of which platform they consider to be
their 'primary'. Android was at the top, with 71% of developers
currently working on the platform, followed by iOS with 51%.

Of course this also means: if you are going to use Android
or iOS, you will have lots of competition.

Magnetar: Windows
While Windows Phone has had some successes, its world wide
market share remained low - too low for many app developers.
So Microsoft changed the rules with Windows 10 - now you can
develop the very same app for both PC and Mobile (and for IoT,
HoloLens and Xbox, too). So far that strategy seems to pay off
as several major players have joined the Windows ecosystem
lately.

To learn more about the platform and how to get started,
check the respective chapter in this book.

9 10The Galaxy of Mobile: An Introduction

Newborn Star: Ubuntu
Ubuntu for Phones powered devices have been entering the
market in 2015. With its innovative concept and open source
nature it has raised some interests in developer communities,
but this seems to have little influence on sales volume so far.
One of perceived main problems is the performance problems
even on the higher end hardware like the Meizu MX4.

Your main point of entry is ubuntu.com/phone/developers.
You develop your apps either as web apps or natively using
Qt/C++. An interesting concept is scopes which allows users
to view information without needing to launch your app
explicitly. Frameworks are announced that should allow you to
participate at and integrate into core activities like messaging.

Newborn Star: Tizen
Tizen9 has enjoyed quite a success in the smartwatch market
(compare our chapter about wearables), however previously
promised mobile phones have been delayed by Samsung. In
January 2015 the first Tizen powered smartphone, the Z1 has
finally been launched in India. Seemingly gently yet continu-
ously pushed forward by Samsung and Intel, Tizen aims to
power not only smartwatches and smartphones but also TVs,
tablets, netbooks and in-vehicle infotainment systems.

Typical Tizen apps are web based, but you can also
create native C-based apps. Start your Tizen journey on
developer.tizen.org and developer.samsung.com/gear.

9 tizen.org

http://www.ubuntu.com/phone/developers
https://developer.tizen.org
http://developer.samsung.com/gear
http://www.tizen.org

11

Dark Star: BlackBerry 10
End of 2015 BlackBerry introduced its first Android handset,
the BlackBerry Priv. At the same time BlackBerry promised to
keep on supporting BlackBerry 1010. But the question remains
if BlackBerry can keep up supporting two platforms at the
same time.

You can develop BlackBerry 10 apps with Qt/C++, web
technologies or - thanks to its Android compatible runtime
- even as Android apps. Start your BlackBerry journey on
developer.blackberry.com.

Super Nova: Sailfish OS
Will it explode? Jolla11 - the company behind the Sailfish OS12
- entered a debt restructuring13 and laid off14 about half of its
employees. While future prospects may look dim, it is not over
yet: Another financing round saved the OS for now but they
had to give up the plans to enter mass production with their
own tablet15.

Start developing for Sailfish OS by visiting
sailfishos.org/develop. One easy path to Sailfish is to use your
existing Android app, but you can also create native Apps
using Qt/C++ or even Python.

10 devblog.blackberry.com/2015/10/an-update-for-blackberry-10-developers

11 jolla.com

12 sailfishos.org

13 reviewjolla.blogspot.de/2015/11/news-jolla-financial-trouble-debt.html

14 reviewjolla.blogspot.de/2015/11/news-jolla-financial-difficulties.html

15 blog.jolla.com/new-years-greetings-jolla

http://developer.blackberry.com
http://sailfishos.org
https://sailfishos.org/develop/
http://devblog.blackberry.com/2015/10/an-update-for-blackberry-10-developers
http://jolla.com
http://sailfishos.org
http://reviewjolla.blogspot.de/2015/11/news-jolla-financial-trouble-debt.html
http://reviewjolla.blogspot.de/2015/11/news-jolla-financial-difficulties.html
https://blog.jolla.com/new-years-greetings-jolla/

11 12The Galaxy of Mobile: An Introduction

Dark Matter: Feature Phone Platforms
While smartphones generally get the most news coverage, in
some parts of the world feature phones are still pretty relevant.
Even on a global level 22% of all phones sold have still been
feature phones in Q1 201516, with an install base much higher
than that. However, Android is increasingly taken over the low-
cost handset market so the future of this platform looks dim.

The big players in the feature phone market also had to
realise this: Nokia shut down their feature phone app store in
2015.

While you can develop native apps for feature phones when
you have close relationship with the vendor, you typically
develop apps using Java ME or BREW for these phones.

White Dwarfs: Firefox OS, Symbian, bada and other dead
systems
Some operating systems have been fading away (like Samsung
bada), some have stopped with a bang (like WebOS) and some
have been super-seeded by new developments. The latest one
in that series is Firefox OS17. While we even had a dedicated
chapter on that platform in our last Mobile Developer's Guide,
Mozilla announced in December 2015 that development of
Firefox OS on mobile phones will be discontinued18.

Why did some succeed where others failed? In the end
it boils down to marketing, developer mindshare, company
politics and a big portion of pure luck. It has now become
increasingly difficult to compete with the massive ecosystem
weights of Android and iOS, we will see if that trend continues
on the wearable front, too.

16 counterpointresearch.com/marketmonitor2015q1

17 mozilla.org/firefox/os

18 techcrunch.com/2015/12/08/mozilla-will-stop-developing-and-selling-
firefox-os-smartphones

http://www.counterpointresearch.com/marketmonitor2015q1
http://mozilla.org/firefox/os
http://techcrunch.com/2015/12/08/mozilla-will-stop-developing-and-selling-firefox-os-smartphones/
http://techcrunch.com/2015/12/08/mozilla-will-stop-developing-and-selling-firefox-os-smartphones/

13The Galaxy of Mobile: An Introduction

Solar System: Smartphone OS Market Shares
When you look at the global smartphone market shares, the
picture might look simple:

Platform
Market Share Q3

2015 2014 2013 2012

Android 84.7% 84.4% 81.2% 74.9%

iOS (Apple) 13.1% 11.7% 12.8% 14.4%

Windows
Phone

1.7% 2.9% 3.6% 2.0%

BlackBerry 0.3% 0.5% 1.7% 4.1%

Other 0.3% 0.6% 0.6% 4.5%

(Source: www.statista.com/statistics/266136/global-market-share-held-by-

smartphone-operating-systems/)

You may agree with the majority of developers that decide
spending time on platforms other than Android and iOS is a
waste of time. Be assured: It is not that simple. While world-
wide smartphone shipments exceeded feature phones today19,
feature phones still outsell smartphones in some regions - and
even grow in popularity, for example in Japan20.

Also, be aware these are global figures: the regional market
share of each platform varies significantly. In a world where
localized content is increasing in importance, it is vital to
know the details and characteristics of your target market. For
example, China is the largest smartphone market today, but

19 idc.com/getdoc.jsp?containerId=prUS24085413

20 reuters.com/article/japan-tech-mobilephone-idUSL4N0VM1HT20150216

http://www.idc.com/getdoc.jsp?containerId=prUS24085413
http://www.reuters.com/article/japan-tech-mobilephone-idUSL4N0VM1HT20150216

14The Galaxy of Mobile: An Introduction

Chinese Android handsets are typically based on the Android
Open Source Platform (AOSP) and come without the Google
Play Store or the Google Mobile Services. At the same time,
Apple is especially strong in the U.S.: In October 2015, 43.3
percent of U.S. smartphone subscribers were using an iOS
device21.

To find out about market share in your target region,
check out online resources such as comscore22, StatCounter23,
VisionMobile24, Gartner25, Statista26 or Kantar Mobile World
Panel27.

21 Nevertheless, Android is leading in the US as well holding 52.9 percent
of the market, see statista.com/statistics/266572/market-share-held-by-
smartphone-platforms-in-the-united-states

22 www.comscore.com/Insights/Data-Mine

23 gs.statcounter.com

24 visionmobile.com

25 gartner.com

26 statista.com/markets/418

27 kantarworldpanel.com/global/smartphone-os-market-share

http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
http://www.comscore.com/Insights/Data-Mine
http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com
http://www.statista.com/markets/418
http://www.kantarworldpanel.com/global/smartphone-os-market-share

About Time and Space

As developers, we tend to have a passion for our chosen
darlings. However, let us not forget that these technologies are
just that - technologies that are relevant at a given time and
in a given space, but not more. Yes, flamewars are fun but in
retrospect, they are always silly. Hands up those who fought
about Atari versus Amiga back in the good ol' 80s! Probably
not many of you but, surely, you get the point. Initiatives
such as FairPhone28, ShiftPhone29 or the GuardianProject30 may
prove more important than the OS or vendor of your choice in
the future.

28 fairphone.com

29 shiftphones.com

30 guardianproject.info

http://www.fairphone.com
http://www.shiftphones.com
https://guardianproject.info

16The Galaxy of Mobile: An Introduction

Lost in Space

If you are lost in the vast space of mobile development, do not
worry, stay calm and keep on reading. Go through the options
and take the problem that you want to solve, your target
audience and your know-how into account. Put a lot of effort
into designing the experience of your service, concentrate on
the problem at hand and keep it simple. It is better to do one
thing well rather than doing 'everything' only so-so. Invest in
the design and usability of your solution. Last but not least,
finding the right niche is often better than trying to copy
something that is already successful. This guide will help you
make an informed decision!

18From Idea To Concept

From Idea To Concept
Developing popular and innovative digital solutions is a major
gain in our industry. There are millions of apps in app stores,
many clustered into a cloud of similar apps offering nothing
special. However, some apps are outstanding. You may have
asked yourself: What makes these apps successful, and how can
I achieve similar success with my products? This chapter gives
you tools and a framework to systematically generate innova-
tive product ideas. But please: Always consider the possibility
that an app might not make sense for your project and that
it might be the best idea to invest your money elsewhere.
Otherwise you might end up sharing the experience of Birdly
who summarise their learnings in an article entitled "Why you
shouldn’t bother creating a mobile app."1.

The Key Elements of Success:
Desirability, Viability & Feasibility
Let us start with a discussion about what makes a product
innovative and successful. A major characteristic of innovative
products is their combination of three major aspects: human
desirability, financial viability, and technical feasibility.

Human desirability presents a challenge to answering
the questions: What do people desire, and what creates joy
and value for them? A good product can simplify tasks or
make people’s lives more comfortable. On the other hand, an
attractive user experience fosters the joy of use, since tasks
can be easily fulfilled, the structure of the application is very

1 medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-
328af62fe0e5#.9r624514i

B
Y

 S

eb
as

ti
an

 M
ey

er

https://medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-328af62fe0e5#.9r624514i
https://medium.com/inside-birdly/why-you-shouldn-t-bother-creating-a-mobile-app-328af62fe0e5#.9r624514i

19From Idea To Concept

clear and easy to understand, and regular updates on the
content or featured site continuously drum up interests in the
product. Mobile apps can enable users to do things they could
not easily do before, for instance price comparisons in store,
buying and selling while on the move, monitoring their health
and fitness. Consider ways to develop apps that take advantage
of what mobile devices offer and enable them to do.

The aspect of financial viability is crucial for development of
most products, including mobile apps. Financial viability helps
cover the costs of your time and energy in developing and
maintaining your mobile app. For those hoping to make the
app pay for itself, the challenge is to define a business model
that enables you to create revenue from an idea and maintain
acceptable costs for your customers. Particularly, in the digital
world, various new business models have emerged during the
last decade. For example, Targeted Ads and Freemium business
models both apply to mobile apps, with In App Purchases
being particularly popular for mobile games, albeit with a
potential backlash2. Tools like the Osterwalder Business Model
Canvas3 can help build your business case in a structured way.
See the monetisation chapter of this guide to learn more about
your options how to earn money with mobile software.

The third aspect is technical feasibility. Most software
engineers and developers are involved in evaluating this
dimension. Often, it is a challenge to build and combine the
right technology to make a product alive. Real-life examples
show that innovative products do not always need cutting-
edge technology to be successful and that a smart combination
of existing technologies can yield innovative products.

It is important to consider all three aspects (desirability,

2 developereconomics.com/freemium-apps-killing-game-developers/

3 alexosterwalder.com

http://www.developereconomics.com/freemium-apps-killing-game-developers/
http://alexosterwalder.com

19 20From Idea To Concept

viability, and feasibility) to develop a fairly detailed concept
before spending unnecessary efforts in implementing a solu-
tion. Get early feedback from others, including potential users
to help refine your idea and concept.

Define the User's Needs

Theoretically, it is possible that a product directly meets the
desires of your target group. However, in practice, such effects
are rare. In most cases, the product does not please many of
the intended customers. Although the features offered by the
product may be very innovative, cool, and actually very useful,
users may see the product as unsuitable for their context or
may need various additional features to make real use of the
product. In order to enhance user satisfaction, software com-
panies then tend to make adjustments and try to implement all
wishes and features of the target group in an unorganised way.
Thus, the product loses its simplicity, is not very usable, and
loses more and more users, since the expectations of the users
cannot be met with the existing implementation.

Starting developments without really understanding user
needs is highly risky because changes in an implemented app
are expensive. Moreover, resources are wasted and unnecessary
features built in.

In order to avoid such failures, it is important to focus
on the user and develop the app using their feedback. The
so-called user requirements analysis describes the crucial
processes of revealing user needs and determining user
expectations. Analysing the problem space and understanding
user requirements are integral parts of the design of innovative
digital solutions.

The first step is to know who your users are and to define
target group(s) for your app. Understand what goals the users

21From Idea To Concept

want to achieve, what tasks they need to fulfil, and why your
app is relevant to their needs.

In order to reveal real pain points and to derive real
requirements, it is necessary to understand how users perform
relevant tasks right now including any current workarounds. The
best way to obtain necessary insights into real user needs is to
speak directly to representatives of the user groups and observe
them in their daily lives or work. Secondary market research,
such as reports or demographic information, may augment your
direct research, but please do not rely on it as the primary
source of information!

Furthermore, during requirements analysis, it is important to
consider the differences between wishes and needs. Accord-
ing to Merriam Webster, a wish is "a desire for something to
happen or be done.”4 Additionally, it is “an act of thinking
about something that you want and hoping that you will get
it or that it will happen in some magical way.” This desire is
normally conscious. Wishes focus on concrete material objects
(i.e. smartphones) or on abilities (i.e. creativity). This is why
users can express their wishes for a special product, like special
features or colours. Wishes can be changed (i.e. by advertising
or when better products become known). If a new product
reflects only users’ wishes, it does not necessarily support users
in fulfilling their tasks. For example, some customers want to
obtain a product only because it has a nice design.

In contrast, needs reside behind wishes. They do not focus
on objects or abilities but on emotional factors, like apprecia-
tion as a human, trust, or competence. According to Merriam
Webster, a need is “something that a person must have” and
“something that is needed in order to live or succeed or be

4 merriam-webster.com/dictionary/wish

http://www.merriam-webster.com/dictionary/wish

21 22From Idea To Concept

happy.”5 A need is a desire based on lack. If a person experi-
ences a lack of something, this creates a desire deeply in the
subconscious. This desire motivates actions, which should
eliminate the lack. Different lacks induce varying degrees of
actions. According to the famous Maslow’s need pyramid6, a
physiological need for sleeping or hunger is, for example, much
stronger than a need for social communication. In contrast to
wishes, needs are unspecific and often unconscious.

To start your requirements analysis, make sure to present
needs and to define your product based on real needs instead
of arbitrary wishes.

5 merriam-webster.com/dictionary/need

6 see en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs

http://www.merriam-webster.com/dictionary/need
http://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs

23From Idea To Concept

Ideating

The first result of an analysis is not a solution but a clear
and well-founded problem statement. This problem statement
should be a foundation to explore the solution space in the
ideation phase of the project.

During the ideation phase, it is important to start thinking
very divergently and come up with a huge amount of solution
ideas. If you create a large amount of ideas, it is more likely
that you think "outside the box" and that really innovative
ideas to address the stated problem come up.

To encourage creative thinking, many creativity techniques
exist. Several techniques are well known such as brainstorming.
However, many other techniques have been developed and
can be used in specific situation, such as the 6-3-5 method7,
visual confrontation, or the Disney method8. What all of these
techniques have in common is that they support divergent and
convergent thinking and encourage out-of-the-box thinking.

One piece of general advice is to hold creativity sessions in
a group with 5-8 participants. A group usually comes up with
better results than those of an individual person. Classical
brainstorming is the most popular method, but it does not
produce the best results regarding the quantity of ideas. To
achieve better outcomes, we recommend the application of
brainwriting techniques, which allow each participant to
collect ideas alone before discussing them in a group. This
encourages every team member to actively participate in
brainstorming and it reduces the risk that ideas are evaluated
too early and that less dominant persons are not heard.

7 a group structured brainwriting technique, see en.wikipedia.org/wiki/6-3-
5_Brainwriting

8 developed by Robert Dilts in 1994, see en.wikipedia.org/wiki/Disney_method

http://en.wikipedia.org/wiki/6-3-5_Brainwriting
http://en.wikipedia.org/wiki/6-3-5_Brainwriting
http://en.wikipedia.org/wiki/Disney_method

23 24From Idea To Concept

No matter which technique is used, it is important to
consider the following rules for the team during the ideation
phase of the project.

 — Defer judgment
 — Encourage wild ideas
 — Stay focused
 — Go for quantity
 — Be visual
 — Build on the ideas of others

Once various ideas are collected, they should be discussed,
refined, or combined in the team, and the most promising
ideas should be selected.

Proving Ideas

After the selection of an idea, it is crucial to find out if the
idea provides real value for the target group and if it actually
meets users' needs. Feedback from your target users is crucial
to evaluating the value of your idea. At first, you can simply
talk about your idea and the general concept of your app.
However, it can be challenging to describe your thoughts in a
way in which your audience really understands them the same
way as you. Natural language is often interpreted differently
and creates different mental models for each person. Thus,
understandings can be diverse, and communication about ideas
can be challenging.

In order to overcome the challenges of communication, you
should express your ideas in visual and tangible ways. You can
prototype your ideas. The term prototype might sound like
something that takes a lot of effort to build. In fact, tradi-
tional understanding of a prototype views it as a pre-version

of a final product. A more modern view of prototypes is more
versatile and also includes drafts (for instance, a sketch on
paper). In the early phases of developing an innovative app,
a prototype should be a tool that is used to discuss the app’s
ideas and concepts. A prototype can be, for instance, a sketch,
storyboard, or physical visualisation of a concept. It should be
easy and fast to build and represent the essential parts of your
idea.

The most important principle for the work with prototypes
is “start small, fail early, and learn fast.” This means you can
create a fast prototype with very low costs to get feedback on
the idea, and learn from the feedback in very short iteration
cycles. In these iterations, you can test and enhance the
prototype very quickly with low costs. In this way, it becomes
possible to validate new ideas with low risks and without costs
for the implementation of the project.

When it comes to software engineering, there are three ar-
tifacts related to the term prototype: wireframe, mock-up, and
proof-of-concept implementation. Wireframes and mock-ups are
usually used in early phases to validate a concept, information
architecture, and basic interaction. Proof-of-concept imple-
mentations are used to validate technical feasibility. During
the proof-of-concept implementation, it is crucial to focus on
the risks in the project and elaborate technical possibilities
and boundaries. See the following chapter to learn more about
how to create app prototypes.

26

Learn More

Here is where you can learn more about the outlined methodol-
ogy and techniques:

 — businessmodelgeneration.com, the website of the famous
book about how to generate your individual business
model. They also offer an online tool, a free preview of the
book9, and a lot more.

 — mycoted.com/Brainwriting, a good introduction into
Brainwriting methods. Part of a comprehensive Wiki about
creative techniques maintained by the UK-based company
mycoted.

 — uxbooth.com/articles/complete-beginners-guide-to-
design-research, the "Complete Beginner’s Guide to Design
Research" by Andrew Maier. The title is a little exagger-
ated, but it is a good introduction with useful further
links.

 — theleanstartup.com the website of the Lean Startup book
by Eric Reis. The Lean Startup helps readers discover ways
to create more desirable products with less waste.

9 businessmodelgeneration.com/book

26From Idea To Concept

http://www.businessmodelgeneration.com/
http://www.mycoted.com/Brainwriting
http://www.uxbooth.com/articles/complete-beginners-guide-to-design-research/
http://www.uxbooth.com/articles/complete-beginners-guide-to-design-research/
http://theleanstartup.com
http://businessmodelgeneration.com/book

27 From Idea To Concept

28User Experience & User Interface Design

User Experience & User
Interface Design
At this point you probably have a concept for your app. In the
previous chapter you learned how to generate and validate
multiple ideas. This section is about the methods that are
useful for transforming your concepts into usable products
through iterative design. It focuses on describing a range of
techniques to shape your vision. You can use them to outline
early ideas at a high level, as well as define detailed guidelines
for the final implementation.

User Experience (UX) is how your proposition is generally
perceived by the end users. Was the journey easy and clean?
Did they have enough information at each step? etc. It is a
broader term that can be applied to designing services and
software products. User Interface (UI) design is a term that
is specific to software products. Whether it is a website or a
stand-alone app, the UI is where your users will experience
what you offer to them through interactions, visual design,
flow, messaging etc.

Designing an application from scratch requires a different
approach than improving on an existing product. In both cases
you will frequently switch between the big-picture and detailed
design mindsets to make sure that you continue to improve
quality while staying on track to complete your vision.

You should use the methods described in this chapter as
a toolbox rather than a recipe and apply them in any order
that works best for a specific project that you are working on.
If you are on a very early stage and just need some way of
outlining your concept, you can use sketching or drawing a
user journey map. When you get to another design iteration

B
Y

 A

nn
a

Al
fu

t

29User Experience & User Interface Design

and need to refine UI the same methods can be used just with
different attention to detail.

The design steps - conceptual thinking, defining interface
and verifying your concepts with users - create a cycle that you
can repeat as many times as you need (or have the time for).

User Experience (UX)

To give your app’s users the experience they will appreciate you
need to be very clear about the goals of your project. What is it
that will be different about your app? What kind of people you
are hoping to attract? etc. Methods described here are useful
for capturing in a visual and logical way the larger context of
your project.

Personas
Personas are fictional profiles that represent your application’s
audience.

The persona’s profile structure usually contains information
like name, age and a profession. A description of their specific
interests and how a particular proposition fit in their lifestyle.
How does it help them to achieve certain tasks? In other
words, what would motivate these users to give your app a try?

Typically a project has more than one personas. Ideally the
profiles should come from previous research, but even if they
are based only on your guesses, writing them down is one
of the most important steps you can take. For each persona
you can select a profile picture to get some visual reference.
It helps in building empathy towards the users this persona
represents.

29 30User Experience & User Interface Design

Why do you need them? Well, it is not uncommon for the
makers of a product to approach problem solving based on
their own experiences, preferences and previous knowledge
about a certain domain. Acknowledging different user needs
early sets you off to a good start to avoid this trap. Whichever
step you take from here think of how your users will perceive
the design if they saw it for the first time.

User stories
Once you get a better idea of the type of users you are design-
ing for, you can start defining more granular scenarios - user
stories. Thinking in user stories is thinking in flows - the
journeys from point A to B within the application. An example
of a story would be a purchase flow, uploading or sharing a
photo, making a note etc.

By listing the ‘must have’ stories early on you will get an
idea of how much work there is ahead before the application
is ready to be released. This will allow you to capture the
full experience before diving into the interface details. A list
of stories is the brief for your app, it captures the main user
needs, together with knowing your users’s persona profile you
can start now get on with the detailed design.

After you have the main journeys outlined, you can break
each of them into smaller steps - tasks. Each task is a separate
micro flow within a larger journey. For the sample flow of
uploading a photo, think whether users will need to access
a gallery on their phone? Do they need to select a picture?
Can they add more than one at one? All of those activities
contribute to the overarching story.

31User Experience & User Interface Design

When you think about a solution to a particular problem
keep coming back to your personas profiles. Some users will
need more guidance than others and you might consider put-
ting extra messaging in the UI for them. Even if it is unlikely
that everyone will notice every bit of information design
that you put in place, as long as it is available for those that
need it, and balanced, so it does not get in the way of more
independent users, it will work for the wider group.

Flow diagram
A Flow Diagram demonstrates steps in the flow and the major
decisions points users will run into while navigating inside
your app. It is more logically defined and allows you to think
through the possible journey’s routes in a visual way.

You can build up a flow chart for the whole application or
‘zoom in’ and focus on a particular journey. On a higher level a
flow diagram outlines the app structure. For example, you can
identify how many different screens you will need to design.
When you focus on a specific journey it is a great technique to
capture all cases that you need to design for (like, have you
thought about what to show to users if there is no internet
connection available?). As your project mature you can iterate
on your diagrams and update them to reflect the accurate
state of your design.

You can read more about the chart’s building blocks on
Wikipedia1.

1 en.wikipedia.org/wiki/Flowchart

http://en.wikipedia.org/wiki/Flowchart

31 32User Experience & User Interface Design

Experience map
As the name suggests, an experience map is an overall impres-
sion of the entire experience you are creating for your users.
This kind of overview usually takes form of an infographic/
poster that others involved in your project can understand
and relate their contribution to. To illustrate the steps in user
experience you can use the screen shots from your app or, if it
is early days, or you want to keep the map more implementa-
tion independent, go with illustration or simply text.

Depending on the idea your app can contain the entire
user experience or can be only one of the touch points on the
map alongside the customer service centre, a supplier, delivery
service, website, social media channels or anything else that
fits into a setup of your specific idea.

If your application is only one part of a wider experience,
drawing the map is an excellent exercise to understand and
demonstrate the bigger context in which the application will
sit in. When you move to the UI definition and interaction
design, having those the touch points crossovers identified is
really useful. Understanding those dependencies will inform
how you create an experience of sending users away from
your app or welcoming them back again. The map details can
vary for different personas and can also change depending on
whether it shows an initial - first time experience or a return
journey.

33User Experience & User Interface Design

User Interface (UI)

When you understand how individual journeys fit together in
the bigger picture you can move into more defined UI design.
Techniques described in this part are useful to define design
in enough detail that it will resemble the end product. Even a
sketchy version of the UI will be instantly recognised by users
as a representation of the interface, which will allow you to ask
for feedback early.

This dynamic of going from big picture thinking to details
and back again is in itself a great illustration of the iterative
nature of software design. With each cycle you get more
confident that the overall concept makes sense (or if it does
not, you can adjust the course as and when needed) and you
can move into applying next layer of detail until all parts are
in place.

Sketches, wireframes and mockups
To convey various UI ideas you can simply sketch on paper, or
you can use one of the many available digital tools to draw a
wireframe. Wireframes are low fidelity layouts of your applica-
tion screens. They show where each element will be placed
and how important it will be in relation to other objects on
the page. Those basic compositions visualise how complex the
layouts and interactions of your app’s screens will be.

Frequently updated wireframes are an excellent reference
point for discussing details and next steps with everyone on
the team. And if you work on your own, they help to organise
your own workflow. If you need to identify UI pattern libraries
at a later stage, those will be guided by repeatable elements
from your sketches.

So how detailed should your wireframes be? Sketches are
ideal at the early stage for quick ideas generation. The more

33 34User Experience & User Interface Design

specialised wireframing applications come with libraries
of ready-made widgets to quickly arrange on a screen. The
advantage of using digital tools is that you have an editable
version of your screens that can be then transformed into
clickable prototypes. Although you can also use sketches to do
that, once you get to more detailed problems a digital version
is easier to update and maintain.

Mockups is a term commonly used for a wireframe with more
visual design detail applied. Some mockups can look identical
to the final implementation. The more refined visualisation of
the final product can be useful for demos, sometimes a quick
sketch is enough for a highly collaborative teams to agree on
next steps. It is up to you to decide how much of the finished
look you need on each step to make progress.

Messaging
As soon as you start using meaningful labels and titles, rather
than the placeholder text, you start defining the way you
communicate with your users. Depending on your application,
the language will have a different role in guiding your users
through the flows. But even if the use of words in your UI is
minimal, do not leave it in a placeholder state too long.

The wording is something that you should put through user
testing. A single misleading word might confuse your users or
lead them to assumptions that might work against what you
are trying to achieve.

Prototypes
An interactive prototype is the best way to visualise and
evaluate your app’s interactions. It is usable enough to com-
municate the design, so you do not need to provide as much
documentation as you would need to annotate static images.
Your prototype can have visual design applied and look exactly

35User Experience & User Interface Design

as it will after the implementation, or you can stay on the
wireframe level and focus on functionality and content.

It does not matter whether you have a big budget or are
working on a personal project over the weekend, having a fairly
complete prototype of your app is the best way to communi-
cate your concept and discuss it with others. The non-linear
narration of your apps should be self explanatory at this stage.
Many prototyping tools allow you to experience your concept
on an actual device. Take the advantage of it.

Prototypes are usually developed before you spend time
on implementing code and pixel perfect design. An agreed
clickable walkthrough is a useful reference that teams can work
towards without risking going too much off track. It is also
great to user test prototypes and get external feedback on.

In terms of putting a prototype together there is no single
best solution. You can use whatever technique works for you.
From paper prototyping to using one of the specialised tools or
other applications that have the functionality to put clickable
journeys together. If you have coding skills, building a HTML
prototype is another good way to go. You can also rapidly
prototype on the existing app, it all depends on what approach
works for a specific project setup. In that sense everything can
be seen as a prototype until it is released.

Prototyping & wire framing tools
Some available tools are free and most of the commercial
ones offer trial version of have free account option for limited
number of projects. Here is a list of few applications that you
can try:

 — Axure: axure.com
 — Balsamiq mockups: balsamiq.com
 — Framer: framerjs.com

http://www.axure.com/
https://balsamiq.com/
http://framerjs.com/

35 36User Experience & User Interface Design

 — Mockingbird: gomockingbird.com
 — OmniGraffle: www.omnigroup.com/omnigraffle
 — Origami from Facebook: facebook.github.io/origami
 — Penci: pencil.evolus.vn
 — POP: popapp.in
 — Principle: principleformac.com
 — Proto.io: proto.io
 — Sketch: sketchapp.com

Interactions & animations
When you start working with a prototyping tool you can visu-
alise the way users will interact with your app in a very direct
way. By putting the prototype on a device you can actually
experience how your app will feel. This experience is extremely
valid not only in user testing, quite often you will be able to
identify the missing elements for yourself.

The way your UI moves and respond to users actions will
contribute to how usable your software is. Think about your
layout and widget choices in the context of the platform on
which your app will run. Each platform has their own styling
conventions and specific methods for handling interactions.
Following the recommended practices will make your app
instantly easier to interact with for users that are already
familiar with their device’s patterns. For more information and
links to specific online resources see the platform - related
chapters of this guide.

With an ever-changing mobile devices market you should
also consider how your UI will look on different screen sizes.
While it may be too early to get into too much detail before
you have your concept refined, thinking about the layout
scalability-to-usability ratio during the wireframing and
visual design stage (so once you have some sort of graphic
representation of your layouts) can save a lot of development

https://gomockingbird.com/
https://www.omnigroup.com/omnigraffle
https://facebook.github.io/origami/
http://pencil.evolus.vn/
https://popapp.in/
http://principleformac.com/
https://proto.io/
https://www.sketchapp.com/

37User Experience & User Interface Design

and testing time later. If this topic is completely new to you
it is worth reading more about best practices in Responsive
Web Design (RWD). Web designers have been solving the layout
scaling problem for a while. Also check if the platform specific
guidelines provide more information around this subject.

Visual design
Unless you are building an app that uses a non-visual input/
output, your app’s UI will rely on graphics. Taking care of visual
design details will help improve your app’s experience and make
it stand out among the masses.

You would have already applied a number of graphic design
principles during wireframing stage. These include layout
design elements like spacing and visual hierarchy. Polished
visual design will not only improve your UI’s aesthetic appeal,
a well-executed branding enhance your app’s functionality and
reduces the learning curve for users by providing visual cues.

Style consistency through the flow helps users make sense
of your UI and learn interactions faster. For example, if your
main action button changes colour from screen to screen,
consider the impact on the users. Will they be confused? Will
they understand the reason behind the change? If the style
alterations are intentional make sure you are doing them for
usability reasons.

Similar to designing layouts and interactions on the
prototyping level, certain styling decisions might be informed
by specific platform guidelines. Your app can look very different
depending on which platform it was defined for. Make sure
that your design follows the recommended practices for font
use, standard icons and layout conventions. Again, see the
platform-related chapters of this guide to find more informa-
tion and links to specific resources.

37 38User Experience & User Interface Design

Company branding in the UI can be applied in a non-
obstructive way so that users can concentrate on interacting
with your app. Use the background, controls colour and maybe
certain images or layout choices to achieve the brand's look
and feel. A splash screen (if present) is a place where you can
display some additional graphics.

Finally, the launch icon is the first impression visual element
that your app will be identified by and judged on. Make it look
good. If you are planning releasing on multiple platforms,
check the design requirements early so you can come up with
portable artwork.

Visual Design is a rich area and if you would like to
understand more about specific techniques you can find more
information and examples online - see below for some recom-
mended websites.

User testing

The best way to validate your interface concept is to show it to
users as soon as your work is representative enough to prompt
feedback. You do not have to wait until you have a finished
and polished product. Testing early can save you a lot of time
in the long term. It will expose concepts that do not work
early in the process. The more time you invest into developing
your designs, the harder it gets to let go of them and start
over. It is more difficult to accept feedback on something that
you considered almost done that on a clickable prototype that
you can update quickly.

Typical user testing session is about an hour long. During
that time users that are unfamiliar with the product are asked
to perform certain tasks, usually around core functionality.
When searching for people to interview it is good to refer

39User Experience & User Interface Design

to the original personas descriptions and look for users that
match those profiles.

To make the best use of the testing time, prepare in
advance. Note down introductions, think of how you will
explain the session dynamic to users and how you will use
their feedback. You should also prepare the tasks that will
correspond to what you want to test. List them out and have
the notes handy to make sure that you do not forget to ask.

It is good to mention to users that the prototype is not
complete and there might be some unfinished parts. If they
assume that the person that is running the session is the
author of the design they might feel cautious of giving critical
feedback. Reassure them that they are free to express their
honest opinions. After all, the only reason you arranged the
testing session was to get an independent feedback. Once the
expectations are set it is important that you follow the rules
and not lead users to any conclusions. Do not help them out
by revealing how things work (unless they cannot figure it
out and you cannot proceed with the session) and word your
questions in a non-interruptive way. During the session either
record user feedback or make sure to take enough notes.

User Experience & User Interface Design 39

40User Experience & User Interface Design

When you get feedback, you can reiterate your design
and improve the parts that were not quite complete or if the
feedback was good move on to the development phase.

Even if you are unable to test with a large number of
people, testing with only several users will raise the major
issues that are the most likely to cause usability problems. A
single non-biased opinion is better than no opinion at all. If
you are still exploring new areas and your own prototype is
not quite ready, you can run testing sessions on other apps
that have been already released. It can surprise you how much
others notice about the application that you might never have
thought of.

Learn more

There is plenty of resources available online. Here are some to
whet your appetite:

 — UX Archive: uxarchive.com
 — User Onboarding: useronboard.com
 — Smashing Magazine (UX design section):

uxdesign.smashingmagazine.com
 — UX Magazine: uxmag.com
 — UX Matters: uxmatters.com
 — Nielsen Norman Group: nngroup.com
 — Interaction Design Foundation: interaction-design.org

http://uxarchive.com/
http://www.useronboard.com/
http://uxdesign.smashingmagazine.com/
http://uxmag.com/
http://www.uxmatters.com/
http://www.nngroup.com/
http://www.interaction-design.org/

42

Android

The Ecosystem

The Android platform is developed by the Open Handset
Alliance led by Google and has been publicly available
since November 2007. Its use by the majority of hardware
manufacturers has made it the fastest growing smartphone
operating system ever which today dominates the market: More
than 82% of all smartphones sold in Q2 2015 worldwide were
based on Android1, 71% of all mobile developers are targeting
Android2. In September 2015, Google announced that over
1.4 billion Android devices have been activated so far3 which
also includes wearables, tablets, media players, set-top boxes,
desktop phones and car entertainment systems. Google's own
smart eyeglasses, Google Glass, runs a minimal version of
Android supporting both web and native apps. The number
of Android apps on Google Play has surpassed 1.8 million in
December 20154.

Android is an operating system, a collection of pre-installed
applications and an application framework supported by a com-
prehensive set of tools. The platform continues to evolve rap-
idly, with the regular addition of new features every 6 months
or so. The latest release is Android 6.0 'Marshmallow' which

1 idc.com/prodserv/smartphone-os-market-share.jsp

2 sometimes among others, see the Developer Economics Report available via
developereconomics.com

3 androidcentral.com/google-says-there-are-now-14-billion-active-android-
devices-worldwide

4 appbrain.com/stats/number-of-android-apps

B
Y

 V

ik
ra

m
 K

ri
pl

an
ey

 &
 A

nd
ré

 S
ch

m
id

t

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.developereconomics.com
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.appbrain.com/stats/number-of-android-apps

43Android

introduced new features such as a new permission and power
management system and improves upon the major features
of its predecessor L 'Lollipop'. The most major improvement
of Lollipop was the introduction of a new UI toolkit called
Material Design5 which aims to unify all targeted platforms like
phones, wearables and TVs with one design approach.

Other major Android L enhancements include the new
Android Runtime (ART) that provides features like a smarter
garbage collection that ultimately improves performance by a
factor of up to 4x. Project Volta introduced tools to improve
the battery life by optimising the behaviour of an app. Further
features include privacy features, cross-device user accounts
and extensions to the notification system.

One of the most discussed issues when developing for
Android is the system's fragmentation: The multitude of dif-
ferent devices by various manufacturers and the fast progress
of the platform itself leads to uncertainty over whether or not
your Android application will run everywhere. In addition, the
adaption of the latest OS version is slower compared to other
mobile platforms. However, today, you will reach over 90% of
the installation base if you decide to target Android 4.0 or
above6.

5 developer.android.com/design/material/index.html

6 developer.android.com/about/dashboards

https://developer.android.com/design/material/index.html
http://developer.android.com/about/dashboards

44Android

(Source: developer.android.com/about/dashboards, data from January 2016)

Android Marshmallow
Android 6.0 "Marshmallow" is the most recent version of
Android OS, announced at the Google I/O conference in May
2015 under the codename "Android 'M'". It has been officially
released in October 2015.

One of the more significant changes in Marshmallow is the
new permissions architecture. Users no longer have to grant all
the permissions that an app requires during installation. The
app can (and should) now request permissions as and when
they are required. Developers are encouraged to follow the
current best practice of asking for permission just when it is
needed, giving the user as much context as possible.

Marshmallow also introduces new APIs for contextual
assistants (like "Google Now On Tap"), a new power manage-
ment system that reduces background activity when a device
is not being physically handled, native support for fingerprint
recognition and USB Type-C connectors, and the ability to
move data to removable storage (e.g. a microSD card).

0.2%
Froyo 2.2

KitKat 4.4

Lollipop 5.0

Gingerbread 2.3

Ice Cream Sandwich 4.0

3.0%

3.3%

Jelly Bean
4.1 - 4.3

API 17

API 18

0.7%
Marshmellow 6.0

32,6%

36,1%

24,7%

http://developer.android.com/about/dashboards, data from January 2016

45

Material Design
During the Google I/O conference in June 2014, Google
unveiled their new design language based on paper and ink,
named Material Design. Originally codenamed Quantum Paper,
Material Design extends the "card" concepts first seen on
Google Now. Says designer Matías Duarte: "unlike real paper,
our digital material can expand and reform intelligently.
Material has physical surfaces and edges. Seams and shadows
provide meaning about what you can touch."

Perhaps for the first time, Material Design brings a strong,
consistent visual identity to the Android ecosystem, parallel
but distinct from iOS's flat design and Windows' Metro design.
The visual language itself is well specified and documented.7.
To encourage a solid user experience and consistent appearance
of Android apps, Google provides a design guide8. Going into
the importance of colour schemes, design patterns and the new
Material design, the guide provides a great orientation when
building apps for the Android ecosystem.

There is also a canonical implementation of Material Design
for web application user interfaces called Polymer Paper
Elements9.

Android Wear
Android Wear10 was announced by Google in March 2014, in
partnership with Motorola, Samsung, LG, HTC and Asus. It is
basically the Android OS ported to smartwatches and other
wearable devices, which can pair with phones running Android
version 4.3 or newer (there is some limited support for pairing

7 www.google.com/design/spec/material-design

8 developer.android.com/design

9 elements.polymer-project.org

10 developer.android.com/training/building-wearables.html

http://developer.android.com/design
https://elements.polymer-project.org
http://developer.android.com/training/building-wearables.html

45 46

with an iPhone). Wear devices integrate Google Now and the
Google Play Store.

A key feature is the Google Fit ecosystem of apps that sup-
port run and ride tracking, heart activity, step-counting, etc.
Users can use their watch to control their phone – music, for
example. Notifications via the vibration engine are another key
element. Those can be used for notifications from Google Now
like flight reminders, traffic warnings, meeting reminders, etc.

Android TV
Announced at the Google I/O conference in June 2014,
Android TV11 was based on Android 5.0 "Lollipop" and is a
successor to Google's previous smart TV initiative, Google TV.
Android TV is designed to be built into TVs as well as stand-
alone digital media players. Google developed the first Android
TV device with Asus – the Nexus Player12, released in November
2014. Several TV manufacturers, including Sony, Sharp and
Philips, have integrated Android TV into their screens today.
Users can download apps and games from the integrated Play
Store, including media apps like YouTube, Hulu and Netflix.

Android TV apps use the same structure as those for
phones and tablets. Developers can thus leverage their
existing apps and knowledge to target the TV platform. See
developer.android.com/tv to learn how.

Getting Started

The main programming language for Android is based on Java.
But beware, only a subset of the Java libraries and packages
are supported and there are many platform specific APIs that

11 android.com/tv

12 www.google.com/nexus/player/

http://developer.android.com/tv
http://www.android.com/tv

47

will not work with Android. You can find answers to your
"What and Why" questions online in Android's Dev Guide13
and your "How" questions in the reference documentation14.
Furthermore, Google introduced a section in their documenta-
tion called "Android Training"15 that helps new developers
learn about various best practices. This is where you can learn
about basics such as navigation and inter-app communication,
as well as more advanced features such as intelligent Bitmap
downloads and optimising your app for better battery life.

To get started, you need the Android SDK16, which is avail-
able for Windows, Mac OS X, and Linux. It contains the tools
needed to build, test, debug and analyse apps. The Android
Development Tools (ADT)17 are responsible for the integration
with IDEs and making sure that your development flow is as
comfortable as possible.

13 developer.android.com/guide

14 developer.android.com/reference

15 developer.android.com/training/index.html

16 developer.android.com/sdk

17 developer.android.com/tools/sdk/eclipse-adt.html

http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/training/index.html
http://developer.android.com/sdk
http://developer.android.com/tools/sdk/eclipse-adt.html

47 48

IDE support
Today, Google offers prepacked IDEs based on IntelliJ called
"Android Studio" and Eclipse (referred to as "Eclipse + ADT
Plugin"), effectively bundling the Android Developer Tools with
the IDE. Android Studio18 is now the official IDE for Android
and comes directly with Gradle Support and many features
directly tailored to Android development.

IDE plugin support bundled version

Eclipse seperate ADT package Eclipse + ADT Plugin

IntelliJ seperate Android plugin Android Studio

More information and the required downloads can be found
in the Android documentation's "Tools"19 section.

Native development
The Android NDK20 enables native components to be written
for your apps by leveraging both JNI for invocations of native
methods and using native subclasses that offer callbacks to its
non-native pendants. This is important for game developers
and anyone who needs to rely on efficient processing.

18 developer.android.com/sdk/index.html

19 developer.android.com/tools

20 developer.android.com/tools/sdk/ndk

http://developer.android.com/sdk/index.html
http://developer.android.com/tools
http://developer.android.com/tools/sdk/ndk

49

Implementation

App Architecture
Android apps usually include a mix of Activities, Services,
BroadcastReceivers and ContentProviders; these all need to
be declared in the application's manifest. The manifest also
includes the metadata of an application, like the title, version
and its required permissions.

An Activity is a piece of functionality with an attached user
interface. A Service is used for tasks that run in the background
and, therefore, are not tied directly to a visual representa-
tion. A BroadcastReceiver handles messages broadcast by
the system, your own or other apps. A ContentProvider is an
interface to the content of an application that abstracts from
the underlying storage mechanisms, e.g. SQLite.

An application may consist of several of these components,
for instance an Activity for the UI and a Service for long
running tasks. Communication between the components is
achieved by Intents or remote procedure calls handled by
Android Interface Definition Language (AIDL).

Intents bundle data, such as the user’s location or a
URL, with an action. These intents trigger behaviours in the
platform and can be used as a messaging system in your app.
For instance, the Intent of showing a web page will open the
browser. A powerful aspect of this building block philosophy is
that any functionality can be replaced by another application,
as the Android system always uses the preferred application
for a specific Intent. For example, the Intent of sharing a web
page triggered by a news reader app can open an email client
or a text messaging app depending on the apps installed and
the user’s preference: Any app that declares the sharing Intent
as their interface may be used.

49 50

The user interface of an app is separated from the code
in Android-specific XML layout files. Different layouts can be
created for different screen sizes, country locales and device
features without touching the Java code. To this end, localised
strings and images are organised in separate resource folders.
Of course, you are also able to define and design layouts in
code or make use of both strategies to enable dynamic UI
updates.

The SDK and Plug-Ins
To aid development, you have many tools at your disposal in
the SDK, the most important ones are:

 — android: To create a project or manage virtual devices and
versions of the SDK.

 — adb: To query devices, connect and interact with them
(and virtual devices) by moving files, installing apps and
alike.

 — emulator: To emulate the defined features of a virtual
device. It takes a while to start, so do it once and not for
every build.

 — ddms: To look inside your device or emulator, watch log
messages, and control emulator features such as network
latency and GPS position. It can also be used to view
memory consumption and kill processes. If this tool is
running, you can also connect the Eclipse debugger to a
process running in the emulator. Beyond that, ddms is the
only way (without root-access) to create screenshots in
Android versions below 4.0.

51

These four tools along with many others, including tools to
analyse method trace logs, inspect layouts and test apps with
random events, can be found in the tools directory of the SDK.
If you are facing issues, such as exceptions being thrown, be
sure to check the ddms log or use the logcat mechanism.

If you are using features such as Fragments21 for large
screens, be sure to add the Android Compatibility package
from Google. It is available through the SDK and AVD Manager
and enables development for older Android Versions using
modern features. Be sure to use the v4 packages in your apps
to provide maximum backwards support. There is also a version
for Android 2.1 and above called v7 appcompat library that
introduces a way to implement the ActionBar pattern and more
as documented online22.

Developing your application against Android 3.1+, will
enable you to make homescreen widgets resizable, and connect
via USB to other devices, such as digital cameras, gamepads
and many others. Android 4.X releases introduced further in-
teresting features such as expandable notifications, lockscreen
widgets, and a camera with face detection. The Material Design
UI Toolkit was introduced with Android 5.0 and introduces
new widgets and more to use in phones, wearables and other
platforms. The native computing framework, Renderscript (in-
troduced in 3.1), was heavily changed and no longer provides
direct graphic rendering capabilities but may now be used for
heavy processing instead.

To provide some backwards compatibility for devices with
older Android versions, Google began to use the Google Play
Services framework23 which gets updated via the Play Store

21 developer.android.com/guide/topics/fundamentals/fragments.html

22 developer.android.com/tools/support-library/features.html

23 developer.android.com/google/play-services/

http://developer.android.com/guide/topics/fundamentals/fragments.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/google/play-services/

51 52

and adds libraries such as the latest Google Maps. If you are
interested in authenticating users, you might want to have a
look at the Google+ Sign capabilities that bring the benefit of
real user data to your app. The functionality is managed via
OAuth 2.0 tokens that allow use of the Google Account on the
user's behalf.

Testing

The first step in testing an app is to run it on the emulator
or a device. You can then debug it, if necessary, through the
ddms tool.

All versions of the Android OS are built to run on devices
without modification, however some hardware manufacturers
may have changed pieces of the platform. Therefore, testing on
a mix of devices is essential. To get an idea of which devices
are most popular, refer to AppBrain's list24.

To automate testing, the Android SDK comes with some
capable and useful testing instrumentation25 tools. Tests can
be written using the standard JUnit format, using the Android
mock objects that are contained in the SDK.

The Instrumentation classes can monitor the UI and send
system events such as key presses. Your tests can then check
the status of your app after these events have occurred.
MonkeyRunner26 is a powerful and extensible test automation
tool for testing the entire app. These tests can be run on both
virtual and physical devices.

In revision 21 of the SDK, Google finally introduced a more

24 www.appbrain.com/stats/top-android-phones

25 developer.android.com/guide/topics/testing/testing_android.html

26 developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

http://www.appbrain.com/stats/top-android-phones
http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

53

efficient UI automation testing framework27 which allows
functional UI testing on Android Jelly Bean and above. The
tool itself can be executed from your shell with the command
uiautomatorviewer and will present you the captured
interface including some information about the views pre-
sented. Executing the tests is relatively easy: After you have
written your test, it is then built via ANT as a JAR-file. This file
has to be pushed onto your device and then executed via the
command adb shell uiautomator runtest.

Espresso28 provides a very lean API that helps to quickly
write procedural tests for your UI.

Open source testing frameworks, such as Robotium29, can
complement your other automated tests. Robotium can even be
used to test binary apk files if the app's source is not avail-
able. Roboelectric30 is another great tool which runs the tests
directly in your IDE in your standard/desktop JVM.

Your automated tests can be run on continuous integration
servers such as Jenkins or Hudson. Roboelectric runs in a
standard JVM and does not need an Android run-time environ-
ment. Most other automated testing frameworks, including
Robotium, are based on Android's Instrumentation framework,
and will need to run in the respective JVM. Plugins such as the
Android Emulator Plugin31 enable these tests to be configured
and run in Hudson and Jenkins.

27 android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html

28 googletesting.blogspot.de/2013/10/espresso-for-android-is-here.html

29 code.google.com/p/robotium

30 robolectric.org/

31 wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

http://android-developers.blogspot.de/2012/11/android-sdk-tools-revision-21.html
http://googletesting.blogspot.de/2013/10/espresso-for-android-is-here.html
http://code.google.com/p/robotium
http://robolectric.org/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

53 54

Building

Aside from building your app directly in the IDE of your
choice, there are also more flexible ways to build Android
apps. Gradle32 is now the officially supported build automation
tool for Android. There is also a maven plugin33 which is well
supported by the community. Both tools can use dependencies
from different Maven repositories, for example the Maven
Central Repository34.

Google ships libraries for Gradle as Android Archive (.aar)
files that can be obtained using the Android SDK Manager. You
are also able to package your own libraries or SDKs utilizing
the android-library plugin for Gradle. A great source for finding
Gradle-friendly Android libraries is "Gradle, please"35.

Signing

Your apps are always signed by the build process, either
with a debug or release signature. You can use a self-signing
mechanism, which avoids signing fees (and security).

The same signature must be used for updates to your app
- so make sure to not lose the keystore file or the password.
Remember: you can use the same key for all your apps or
create a new one for every app.

32 tools.android.com/tech-docs/new-build-system

33 code.google.com/p/maven-android-plugin/

34 www.maven.org

35 gradleplease.appspot.com

http://tools.android.com/tech-docs/new-build-system
http://code.google.com/p/maven-android-plugin/
http://www.maven.org/
http://gradleplease.appspot.com/

55

Distribution

After you have created the next killer application and tested
it, you should upload it to Android's appstore called "Play" at
play.google.com/apps/publish/.

You are required to register with the service using your
Google Checkout Account and pay a $25 registration fee. Once
your registration is approved, you can upload your app, add
screenshots and descriptions, then publish it.

Make sure that you have defined a versionName,
versionCode, an icon and a label in your
AndroidManifest.xml. Furthermore, the declared features
in the manifest (uses-feature nodes) are used to filter apps for
different devices.

One of the recent additions to the Google Play Store is alpha
and beta testing plus staged rollouts. This allows you to do
some friendly user testing before publishing the app to all us-
ers. Furthermore, you can target specific countries and devices
by setting the right flags in the Developer Console and export
detailed statistics that help in understanding your userbase.
Using the inbuilt localisation service, you can easily add new
languages to your app by paying a fee - make sure to check
the Localisation Checklist36 for detailed information about the
importance of this topic.

As there are lots of competing applications in Android Play,
you might want to use alternative application stores37. They
provide different payment methods and may target specific
consumer groups. One of those markets is the Amazon Appstore
which comes pre-installed on the Kindle Fire tablet family.

36 developer.android.com/distribute/googleplay/publish/localizing.html

37 onepf.org/appstores/

http://play.google.com/apps/publish/
http://developer.android.com/distribute/googleplay/publish/localizing.html
http://www.onepf.org/appstores/

55 56

Adaptation

As adaptation of Android increases, vendor specific ecosystem
have also been growing that involves their own SDKs, fully-
customized Android versions and tools around topics such as
alpha and beta testing. This has both upsides, such as a very
tight integration that allows an amazing experience for users,
and downsides, such as increased fragmentation of ecosystem.
Vendor specific marketplaces often prohibit the upload of
generic apps that utilize utilities other than their own.

One example is Amazon's Kindle Fire ecosystem which is ba-
sically a customized fork of Android and represents the Android
tablet with the biggest market share: Instead of using Google's
Play Services for enabling in-app purchases or maps, you have
to use Amazon's own libraries that offer similar functionality.
The reasoning behind it is pretty simple: Kindle devices are not
delivered with the required libraries to run Google's services.
Amazon also offers their own advertisement and gaming
services (comparable to Google Play Games) that help to target
your audience. Offering Emulators for their four different
devices (1st Gen, 2nd Gen, HD 7" and HD 8.9"), Amazon helps
perfect your app by providing a realistic environment. On top
of the testing that Amazon offers their developer community,
they also review any apps that get uploaded to their Appstore.

Here is a little overview that can help you find the right
resources:

Vendor Documentation

Amazon developer.amazon.com/sdk/fire.html

HTC htcdev.com

LG developer.lge.com

Motorola developer.motorolasolutions.com/community/android

Samsung developer.samsung.com/android

Sony developer.sonymobile.com

Interestingly enough more and more vendors (e.g. Samsung
and HTC) have also started to offer vanilla Android versions
of their devices called "Google Play Edition". These devices
use the same hardware as the regular models but do not come
with any software customization. These devices are directly
distributed through Google's Play Store and offer bleeding edge
devices to users that want to stick to Google's experience.

Additional to the versions of the major manufacturers, the
Android Open Source Project (AOSP)38 offers an open source
version of the Android stack to create custom ROMs and port
devices to the Android Platform. Independent manufactures
like Fairphone39 use AOSP to create their version of the Android
platform. The downside of this approach are missing Google
services like the Google Play Store as normally available on
mainstream Android devices.

38 source.android.com

39 fairphone.com

http://developer.amazon.com/sdk/fire.html
http://www.htcdev.com
http://developer.lge.com/main/Intro.dev
http://developer.motorolasolutions.com/community/android
http://developer.samsung.com/android
http://developer.sonymobile.com/
http://source.android.com
http://www.fairphone.com/

Monetisation

In addition to selling an app in one of the many app stores
available, there are several different ways of monetising an An-
droid app. One suitable way is by using advertising, which may
either be click- or view-based and can provide a steady income.
Other than that, there are different In-App Billing possibilities
such as Google's own service40 that utilises the Google Play
Store or PayPal's Mobile SDK41 and Mobile Payments Library42.
Most services differ in transaction-based fees and the possibili-
ties they offer for example subscriptions, parallel payments or
pre-approved payments. If you are looking to bring extra cool
functionality to your app, you should consider implementing
card.io's SDK43 for camera-enabled credit card scanning.

For the vendor specific ecosystems, such as Samsung Apps
or Amazon's Appstore, you should consider using their SDKs to
enjoy the benefits of optimised monetisation.

Be sure to check that the payment method of your choice
is in harmony with the terms and conditions of the different
markets you want to publish your app to. Those particularly
for digital downloads, for which different rules exist, are worth
checking out.

40 developer.android.com/google/play/billing/

41 github.com/paypal/PayPal-Android-SDK

42 developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/

43 card.io

http://developer.android.com/google/play/billing/
http://github.com/paypal/PayPal-Android-SDK
http://developer.paypal.com/webapps/developer/docs/classic/mobile/gs_MPL/
http://www.card.io/

59 User Experience & User Interface Design

60iOS

iOS
On January 9th 2007 Steve Jobs unveiled a new product
category for the then computer and music device company. As
late as the day before the demo Jobs could not get through
his presentation without the iPhone (only one of about 100
prototypes that existed) "randomly dropping calls, losing its
Internet connection, freezing or simply shutting down"1. But
when the time came for the keynote Jobs delivered it without
a hitch and the rest is history.

With the launch of the original iPhone, Apple unveiled a
new operating system to run the device. Its original name was
iPhone OS since the iPhone was the only device at the time to
run the OS. In November 2010 with the launch of the fourth
generation of the OS, Apple renamed it iOS to coincide with
the launch of the original iPad. This version was named iOS4
and there has been a new version each year culminating in the
current release, iOS 9, that launched in September 2015.

Where iOS7 was touted as a major UI refresh the focus of
the features in iOS8 were the new frameworks and services
as well as the newest device, Apple Watch. It also introduced
tighter integration with iOS devices and Macs running Yosemite
allow users to start tasks like creating emails on one device
and finish them on another via a concept called Handoff. iOS 9
then enhanced multi-tasking and introduced deep linking.

1 www.nytimes.com/2013/10/06/magazine/and-then-steve-said-let-there-be-
an-iphone.html

B
Y

 A

le
x

Re
pt

y

http://www.nytimes.com/2013/10/06/magazine/and-then-steve-said-let-there-be-an-iphone.html
http://www.nytimes.com/2013/10/06/magazine/and-then-steve-said-let-there-be-an-iphone.html

The Ecosystem Today

Developing for iOS is more popular than ever. In Q3 2015, the
number of iOS apps surpassed 1.5 million2. Total app revenues
on iOS in 2015 alone summed up to $20 billion, which means
that iOS developers have earned a cumulative $40 billion from
Apple's AppStore3.

iOS Install Base
In addition to selling over one billion iOS devices, a plus in
Apple's favour is the high adoption rate of each iOS version
soon after release. This allows developers to focus on the
latest version as a development target and not worry about
supporting a lot of devices on older versions, which has been
a challenge for Android developers. Twelve weeks after the
launch of iOS 9 Mixpanel already reported an adoption rate of
nearly 80% of all iOS devices4 with 16% still on iOS 8, leaving
only 4% of devices running an older iOS version. Contrast this
with Android’s OS version 5.0/5.1 Lollipop, which after a year
has not managed to capture even a third of Android devices5.
The latest release, 6.0 Marshmallow has only being used on
0.5% of Android devices two months after its general release.

2 statista.com/statistics/276623/number-of-apps-available-in-leading-app-
storesapps

3 www.apple.com/pr/library/2016/01/06Record-Breaking-Holiday-Season-for-
the-App-Store.html

4 mixpanel.com/trends/#report/ios_9

5 developer.android.com/about/dashboards

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.apple.com/pr/library/2016/01/06Record-Breaking-Holiday-Season-for-the-App-Store.html
http://www.apple.com/pr/library/2016/01/06Record-Breaking-Holiday-Season-for-the-App-Store.html
https://mixpanel.com/trends/#report/ios_9
http://developer.android.com/about/dashboards

62iOS

Devices Running iOS
Instead of listing every device Apple has created that runs iOS,
here are the current devices that support iOS 9 as these would
be what a new developer today should target:

 — iPhone - 4S, 5, 5C, 5S, 6, 6 Plus, 6S, 6S Plus
 — iPod Touch - 5th & 6th generation
 — iPad - 2nd, 3rd & 4th generation, Air, Air 2, iPad Pro
 — iPad Mini - 1st generation, Mini 2, Mini 3, Mini 4
 — Apple TV (tvOS, a subset of iOS)
 — Apple Watch (watchOS, a subset of iOS)

A detailed list of iOS devices, their capabilities and sup-
ported iOS versions can be found on Wikipedia6.

6 en.wikipedia.org/wiki/List_of_iOS_devices

http://en.wikipedia.org/wiki/List_of_iOS_devices

63iOS

The Architecture

Like most operating systems the iOS Architecture is defined by
layers of technologies to allow your application to run on a
device without communicating
directly at the hardware level
(see Figure 1). These technolo-
gies can be thought of layers or
interfaces that are packaged as
frameworks that the developer
imports into their iOS projects
to leverage. The primary
framework developers interact
with, is called Cocoa Touch.

Cocoa Touch
While OSX and iOS are different operating systems, they share
a lot in common in terms of frameworks, developer tools, and
design patterns.

Apple leveraged and extended the main framework for
developing OSX apps, Cocoa, and added support for unique
features in iOS such as Touch gestures and called it Cocoa
Touch. Included in Cocoa Touch are frameworks to build GUI
interfaces, access device sensors like the accelerometer and
perform networking and data management tasks.

Core Se
rvice

Core OS

Media

Cocoa Touch

figure 1

63 64iOS iOS

Getting Started with iOS Development

Mobile applications are commonly designated as being a
"native" "mobile web" or "hybrid" app. Generally a native iOS
App is built using Apple's platform, whereas a Hybrid app uses
a 3rd party platform like Xamarin, Appcelerator and Phone Gap.
These platforms try to make developing for multiple mobile
platforms possible using one set of tools and language. Mobile
Web apps typically use HTML5 standards to create what looks
like a native app via a web browser on the device.

Along with the SDK to develop for iOS, Apple also provides
an Integrated Development Environment (IDE) called Xcode to
create both iOS and OSX applications. As Xcode has evolved,
Apple has strived to provide all the needed tools to write, test,
monitor performance and deploy apps to the App Store all from
inside Xcode.

Xcode
Apple released Xcode in 2003 for writing applications in OS
X. Version 3 of Xcode supported the first iPhone SDK in 2008
and the most recent version is Xcode 7, released with iOS 9 in
September 2015. Xcode is an integrated development environ-
ment used during the whole application development life-cycle.
Interface Builder is a visual design tool used to design and
wire together views of the application without writing code
and is integrated with Xcode. Also provided is an iOS Simulator
to allow developers to test their apps on all current devices
without having to always install apps on physical devices.

65iOS

Interface Builder
A lot of discussion in iOS developer circles is whether it is
better to use Interface Builder to visually design the UI and
application flow or to undertake it all manually with code. In
the past this may have been a personal preference but with
new devices and screen sizes like the Apple Watch and iPhone
6, the case can be made that Interface Builder is becoming
more essential. One of the primary differences between iOS and
Android development was not having to develop for several
device types and screen sizes. However this line is becoming
more blurry with iOS 9 supporting six different screen sizes.
Instead of supporting all of them separately in your applica-
tions, Interface Builder uses concepts such as Auto-Layout and
Adaptive Layout to aid the developer in supporting all screen
sizes more easily. With each new version of Xcode, Interface
Builder has seen improvement and advancement so it is
apparent that Apple prefers developers to take advantage of it.
Something a new iOS developer should consider.

Objective C
Objective C has it roots in the NeXTSTEP operating system
developed in the 1980s from where OSX and iOS are derived. It
is an object-oriented programming language that adds messag-
ing to the C Programming language7. In fact C and C++ can be
written alongside Objective C and some of the iOS frameworks
only provide a C level API to access. However, it has been
criticised for having a quirky syntax with a plethora of aster-
isks, '@' signs, and square brackets which leads to a higher
learning curve for developers coming from modern languages
such as Java or C# while providing improved legibility through
named parameters and verbose class and method names. Incre-

7 en.wikipedia.org/wiki/Objective-C

65 66iOS

mental improvements have been added over the years includ-
ing dot notation of object properties, blocks, collection literals
and memory management via Automatic Reference Counting
(ARC). But the remaining need to use pointers, header files
and remain tightly coupled to the limitations and risks of the
C language has left Apple to conclude a new modern language
is needed.

Swift
In July 2010 Chris Lattner, Senior Director and Architect in
the Developer Tools Department at Apple began implementing
the basic language structure of a new programming language
whose existence only a few people knew of. It became a major
focus for the Apple Developer Tools group in July 2013 and
almost a year later at Apple's World Wide Developer Conference
(WWDC) Apple announced a new programming language for
iOS and OSX called Swift. Lattner stated Swift is influenced
by other languages such as C#, Ruby, Haskell, Python and
countless others8

Apple felt the reason to create Swift was the need for
modern language syntax that is more concise and easier to
learn for new iOS developers, including modern features like in-
ferred data types, data structure declarations, tuples, closures,
optional semicolons and no pointers. It has been suggested
Apple's support for Swift is to ensure iOS developers stay
interested in Apple's tools and don't look at other platforms
with modern language support for iOS development.

8 nondot.org/sabre

http://nondot.org/sabre/

67iOS

In early December 2015, Apple open-sourced Swift9 along
with a bunch of related tools, frameworks and examples. Apple
is actively engaging the community in the future development
of the language by soliciting feedback, proposals for new
language features and pull requests. Less than a week after
it was first open-sourced, Swift is already the #1 open source
programming language on GitHub10, overtaking other popular
languages like Ruby or PHP.

Performance Tools and Testing
In addition to providing the tools to develop iOS applications,
Xcode also comes with tools for performance monitoring and
testing.

Instruments allows developers to collect data about the
performance and behaviour of their iOS apps over time. Some
of the common templates offered allow developers to track
memory leaks, or detect application "hot spots" using the
profiler instrument. The Automation instrument is used to au-
tomate user interface tests in your iOS app through test scripts
written by the developer. These scripts run outside of the app
and simulate user interaction by calling the UI Automation
API. It can be run on a device or simulator.

XC Test Framework is the test framework integrated
with Xcode to provide extensive testing in an organised and
efficient way. By default, new projects created in Xcode using
one of the application templates will add a Test target to the
project. This allows the developer to write their own unit test
classes, execute them and analyse the results using the Test
Navigator, all from inside Xcode.

9 github.com/apple/swift

10 github.com/showcases/programming-languages

https://github.com/apple/swift
https://github.com/showcases/programming-languages

67 68iOS

Setting Up the Dev Environment
After registering for a free developer account at developer.
apple.com access is granted to download Xcode, sample code,
videos, and documentation. Requirements to run all Xcode
tools is a Mac computer running OS X 10.10 (Yosemite) along
with the iOS SDK. This setup will allow for the creation and
testing of iOS apps to run in the iOS Simulator. To submit apps
to the App Store you must upgrade the developer account at a
cost of $99 a year which also gives access to betas of future
versions of Xcode and iOS as they are released.

Distribution

The primary method for deploying apps to consumers is
through the App Store. Each app submitted is reviewed by
the Apple review team to ensure it meets the requirements
and standards set by Apple. This is a major difference from
the Google Play store for Android apps where Google does not
review apps but ensures they are code signed.

Apple is very strict on how 3rd party applications run on iOS
and uses the Sandbox technique to ensure application security
and tries to prevent nefarious or buggy code that could
compromise the OS, other applications or the device. Think of
a sandbox as a virtual barrier around the application that sets
the rules of what resources the app can access. For example an
application does not have access to another app's file directory
or system resources not accessed by the SDK frameworks.
Apple has given more control to the user to grant access to
their data (i.e. contacts, calendars, photos) or GPS location.
Developers must prepare for cases where the user has denied
these type of requests.

http://developer.apple.com
http://developer.apple.com

69iOS

Learning Resources

With the popularity of Apple's developer eco-system comes a
multitude of learning resources in different formats to help a
new developer start coding for iOS, and a lot of them are free.
By taking advantage of these resources and others like them
the learning curve of mastering iOS development will lessen
considerably.

Websites and Blogs

 — Developer.Apple.com contains complete reference and
programming guides for developers to learn how to
develop iOS apps and class reference of all classes in their
public frameworks. The library website is organised by
Resource Types, Topics, and Frameworks plus the ability to
search. One important document to read before designing
the first app to be submitted to the app store is the
iOS Human Interface Guidelines11. It offers developers
recommendations on Apple approved ways to design apps
to ensure a positive user experience. Violation of these
recommendations will most likely lead to apps being
rejected by the App Store during review for submission.

 — Swift.org, the Swift community's official home
 — RayWenderlich.com has become an essential site for free

iOS tutorials written by his community of developers with
the goal being "to take the coolest and most challenging
topics and make them easy for everyone to learn - so we
can all make amazing apps." The site has expanded into
offering programming books and Video tutorials (with a

11 developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
MobileHIG

http://developer.apple.com
http://swift.org
http://raywenderlich.com
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/

69 70iOS

paid membership). Subscribe to their weekly Podcast for
the latest news relevant to developers and interviews with
leaders in the iOS developer community.

 — iOS.devtools.me is a website created by Adam Swinden
that he updates daily with the best iOS developer tools
and back-end services to help in developing apps. Content
is organised by categories (i.e Design, Graphics, Debug-
ging), most popular, and recently added. Also provided is a
weekly newsletter on the latest additions to the site.

 — iOSDevWeekly.com is a weekly round up of the best iOS
development links every week. Dave Verwer operates the
site and they offer a weekly email newsletter published
every Friday.

 — Galloway.me.uk, a blog by London based iOS Developer/
Author Matt Galloway. His "Effective Objective-C 2.0"12
is highly recommended when ready to start learning
advanced features and tips on the language.

 — Merowing.info is a blog from developer/trainer/speaker
Krzysztof Zablocki who offers tutorials and insights into
iOS development from his experience as a consultant. He
also is active in the Open Source Community creating tool
and libraries for iOS developers.

 — AshFurrow.com is another popular iOS blogger/developer
who proudly states the purpose of this blog is for "Explor-
ing the Pain Points of iOS." He has authored multiple iOS
Development books, is an active speaker and involved in
the Open Source Community.

 — This Week in Swift is a weekly newsletter involving the
most interesting Swift-related news, developments, tutori-
als and general tidbits related to iOS development.

12 available via www.amazon.com/Effective-Objective-C-2-0-Specific-
Development/dp/0321917014

http://ios.devtools.me
http://iosdevweekly.com
http://www.galloway.me.uk
http://www.merowing.info
http://ashfurrow.com
http://swiftnews.curated.co
http://www.amazon.com/Effective-Objective-C-2-0-Specific-Development/dp/0321917014
http://www.amazon.com/Effective-Objective-C-2-0-Specific-Development/dp/0321917014

71iOS

Online Video Training
As a member of Apple's Developer program you get free access
to all of Apple's World Wide Developer Conference videos,
source code, and presentation files are available to download
and stream via the website or WWDC iOS app from the past
several years. Apple usually makes the videos available the day
after the presentation whereas previously it would take weeks
to be available after each year's conference.

Lynda.com currently offers over 30 video courses with
paid membership subscription for beginning iOS Development
including courses for iOS8. Source code for the projects are
available to download depending on the membership level
chosen. They also have a free app in the App Store to watch
videos on iOS devices.

One popular free resource for video training is offered by
iTunes University of a full semester course taught at Stanford
University on beginning iOS development. The lectures dive
deep into the Objective-C language and iOS Frameworks.
Viewers can even download the coding assignments. Videos are
viewed through iTunes or the iTunesU app for iOS devices

Finally YouTube has quite a few free videos for Learning
iOS development including a channel created by Mohammad
Azam13 that lists several screencast tutorials for iOS.

Final Thoughts

It is an exciting time to be part of the iOS Development
community and hopefully this chapter will prove helpful in
finding a starting point. To say things change quickly is an
understatement with all the new devices, frameworks and
services that have been launched in the past few years. But do

13 www.youtube.com/user/azamsharp

http://www.lynda.com
http://www.youtube.com/user/azamsharp

71 72iOS

not get intimidated by the speed at which technology moves
inside Apple's eco-system. Most of the basics in developing a
standard App apply now as they did in the first few versions
of iOS. Luckily there are countless resources available to get
started and grow your iOS development skills and most of them
are free.

Things to consider when getting started on your first iOS
"Hello World" App and beyond.

 — Should I start with Objective-C or Swift language?
 — Does it make more sense to use Interface Builder for

designing the UI layout or to do it in code?
 — While using back-end services like CloudKit make develop-

ment easier am I locking myself too much into Apple's
architecture which would make developing an Android
version accessing same back end not possible?

 — What are the drawbacks of developing iOS apps outside of
Xcode (using cross-platform tools)? Is the user community
big enough to find answers to issues? How well do their
products keep up with the latest releases to iOS?

 — What is the environment like today for being a full-time
iOS Indie Developer?

Answers to these questions are beyond the scope of the
chapter but the resources above can help you navigate around
the pitfalls in iOS development quicker on the way to being an
experienced iOS Developer. Good luck and welcome to the club.

74Windows

Windows
Thanks to the well received product and to Microsoft's aggres-
sive marketing, Windows 10 has gained well over 110 million
PC users by November 2015. With its "Universal Windows
Platform" (UWP) you can target the widest range of devices:

 — Mobile device family: Windows phones, phablets
 — Desktop device family: Tablets, laptops, PCs
 — Team device family: Surface hub
 — IoT device family: Compact devices such as wearables or

household appliances
 — Living room: Xbox One
 — Augmented reality device: HoloLens

Your main entry points as an app developer or app provider
are dev.windows.com and design.windows.com.

The Ecosystem

While Windows still dominates the PC market, Windows 10
Mobile (formerly Windows Phone) market share remains small.
According to Kantar World Panel1, the market share fluctuates
between around 10% in some European markets and Russia and
0.4% in Japan in the 3 months period ending in October 2015.
The Surface brand got its recognition and apparently more
Windows tablets than Apple iPads were sold in October 2015
according to 1010data2.

1 kantarworldpanel.com/global/smartphone-os-market-share

2 winbeta.org/news/microsoft-beats-apple-online-tablet-sales

B
Y

 R

ob
er

t
Vi

rk
us

http://dev.windows.com
http://design.windows.com
http://www.kantarworldpanel.com/global/smartphone-os-market-share/
http://www.winbeta.org/news/microsoft-beats-apple-online-tablet-sales

75Windows

Thanks to the strong Windows 10 performance, Microsoft
hopes to decrease the app gap which again makes its Windows
10 mobile offering more attractive. So far that strategy
seems to work out with various major app players joining the
Windows platform lately. According to the Developer Economics
Report Q3 2015, 44% of mobile developers are planning to
adopt Windows 103.

Languages and Tooling

As a Windows developer you can choose one of the following
language and UI toolkit options:

 — C# or Visual Basic with XAML
 — JavaScript with HTML/CSS
 — C++ with XAML
 — C++ with DirectX

The main IDE is Microsoft Visual Studio IDE4, which
nowadays also supports Android and Crossplatform/Cordova
development.

Thanks to Portable Class Libraries(PCL) and Windows
Runtime Components you can use the best fitting language and
UI framework for each module of your app.

If you want to use DirectX with C#, you can use Win2D5 or
game libraries such as MonoGame6. Between the XAML UI stack
and DirectX you can now also access the intermediate layer

3 developereconomics.com

4 visualstudio.com

5 github.com/Microsoft/Win2D

6 monogame.net

http://www.developereconomics.com
http://visualstudio.com
https://github.com/Microsoft/Win2D
http://www.monogame.net

75 76Windows

with the UI Composition API7, which can be easily accessed
from the .NET languages, too.

While the most common scenario is to use XAML for apps
and DirectX for games, you can also create XAML games and
DirectX apps, depending on your needs. It is also possible to
host Direct3D inside your XAML application. This could be used
to display a 3D model inside an event-driven XAML application,
or to easily create stylish Silverlight-based menus around a full
DirectX game.

Historically Windows Phone apps were typically created with
Silverlight, an app model that is very similar to the UWP XAML
approach. While the UWP based apps are the future, you can
still create Silverlight apps for Windows 10 Mobile devices.

Last but not least, there are several options to create apps
without deep development skills:

 — PowerApps8 are aimed at businesses to connect various
data sources and create apps for Android, iOS and Windows
without coding skills. Backed by Azure services in the
background.

 — Windows Phone App Studio9 allows you to create
Windows apps with the help of templates.

 — Project Siena10 provides a WYIWYG environment for
creating business themed Windows apps.

7 msdn.microsoft.com/library/windows/apps/mt592880

8 powerapps.microsoft.com

9 appstudio.windows.com

10 microsoft.com/projectsiena

https://msdn.microsoft.com/en-us/library/windows/apps/mt592880.aspx
https://powerapps.microsoft.com
http://appstudio.windows.com
http://www.microsoft.com/projectsiena/default.aspx

77Windows

Microsoft Design Language
Microsoft pioneered the modern "flat" design paradigm that
also influenced Android and iOS heavily. Its most obvious
specific characteristic is the unique, simple-to-use interface
that focuses on typography and content. This UI paradigm
called Metro or Modern UI or Microsoft Design Language11 has
been extended to the Xbox and Windows 8 and evolved into
the Microsoft Design Language 2 or MDL2 for short. This UI
paradigm contains the following principles:

 — Content not Chrome removes unnecessary ornaments and
lets the content itself be the primary focus. You should
also refrain from using every available pixel, as whitespace
gives balance and emphasis to content.

 — Alive in motion adds depths to the otherwise flattened
out design with rich animations.

 — Typography is beautiful moves fonts to first class
citizens within Metro. The Helvetica inspired Segoe font of
Windows matches the modernist approach.

 — Authentically digital design does not try to mimic real
world object but instead focuses on the interactions that
are available to digital solutions.

Designers will find many inspirations and information at
design.windows.com.

Important for the overall experience are the 'live tiles', small
widgets that reside on the start screen. You can update them
programmatically or even remotely using push notifications.

11 wikipedia.org/wiki/Metro_(design_language)

http://design.windows.com
http://wikipedia.org/wiki/Metro_%28design_language%29

77 78Windows

Since UWP apps can run across a great variety of devices,
you should design your UI responsive, so that it adapts well to
different form factors and resolutions. Your base grid for best
scaling should be 4x4 effective pixels.

Integrating into the Platform

UWP provides a large set of APIs that are available on each
supported device family. If you want to use device family spe-
cific functionality, you can integrate its extension SDK and use
adaptive code to call family specific functions. You typically
use Windows.Foundation.Metadata.ApiInformation for
testing if a specific family-specific API is present:

bool isHardwareButtonsApiPresent =
 ApiInformation.IsTypePresent(“Windows.Phone.UI.Input.
 HardwareButtons”);

if (isHardwareButtonsApiPresent)
{
 Windows.Phone.UI.Input.HardwareButtons.CameraPressed
 += HardwareButtons_CameraPressed;
}

MVVM
For app developers coming from other platforms the data bind-
ing concepts of XAML will be new. For each page there should
be a view model that includes the data for that page. The view
itself only describes the UI, the display is populated with the
data from the view model. Model classes contain the actual
data. This concept of a Model, a View and a ViewModel (MVVM)
ease the development of complex apps considerably.

79Windows

Services
Using the Microsoft Graph API12 you can access a variety of
Microsoft services at one endpoint.

Push notifications13 are available that can also update the
live tiles of your app. You can also consider using the freely
available OneDrive cloud space14 in your app.

Continuum & Cortana
Continuum allows the user to switch seamlessly between a
mouse & keyboard and a touch-mode on desktop family devices.
On mobile devices, Continuum even allows you to switch to
a remote screen along with mouse and keyboard support, so
that you can work "like a boss"15 on your phone. The most
important requirements for a great Continuum support is to
design your app responsively and to test it with both mouse
and touch input. For more details refer to blogs.windows.com/
buildingapps/2015/12/07/optimising-apps-for-continuum-for-
phone.

You can extent the "personal assistant" Cortana16 by defin-
ing your own voice commands. You can show the results from
the interaction either within your app or within Cortana itself.

12 graph.microsoft.io

13 msdn.microsoft.com/library/windows/apps/mt187203

14 dev.onedrive.com

15 microsoft.com/windows/continuum

16 msdn.microsoft.com/library/windows/apps/dn974233

https://blogs.windows.com/buildingapps/2015/12/07/optimizing-apps-for-continuum-for-phone
https://blogs.windows.com/buildingapps/2015/12/07/optimizing-apps-for-continuum-for-phone
https://blogs.windows.com/buildingapps/2015/12/07/optimizing-apps-for-continuum-for-phone
https://graph.microsoft.io
https://msdn.microsoft.com/en-us/library/windows/apps/mt187203.aspx
https://dev.onedrive.com
http://www.microsoft.com/en-us/windows/continuum
https://msdn.microsoft.com/en-us/library/windows/apps/dn974233.aspx

79 80Windows

Testing and Analytics

Test automation is integrated in Visual Studio. Use "unit test"
projects for your modules and "coded UI tests" projects for
your UI.

The Windows Store delivers various analytics statistics such
as downloads, acquisitions, health, and more17.

For developers wishing to collect runtime data and analytics,
there are several options. Flurry18 and Google Analytics19
provide analytics tools and services that are compatible with
Windows. Developers can also use the Microsoft Application
Insights service20. There are robust performance monitoring
tools available in Visual Studio for monitoring the performance
during development.

Distribution and Monetisation

Distribute your apps through the Windows Store that supports
more than 200 countries and regions.

While application content is reviewed and restricted in a
way similar to the Apple App Store, Microsoft provides fairly
comprehensive guidelines for submission, available at Dev
Center21. Although developer tools are provided free of charge,
a paid Store account is necessary to deploy software to devices
through the Windows Store. Currently, a developer account
costs a once-in-a-lifetime fee of 19 USD for individuals and
99 USD for companies. The store account also allows you to

17 msdn.microsoft.com/library/windows/apps/mt148522

18 flurry.com/flurry-analytics.html

19 googleanalyticssdk.codeplex.com

20 azure.microsoft.com/services/application-insights

21 msdn.microsoft.com/library/windows/apps/dn764944

https://msdn.microsoft.com/en-us/library/windows/apps/mt148522.aspx
http://www.flurry.com/flurry-analytics.html
http://googleanalyticssdk.codeplex.com
https://azure.microsoft.com/en-us/services/application-insights
https://msdn.microsoft.com/library/windows/apps/dn764944.aspx

81Windows

submit apps to the Azure and the Microsoft Office stores. The
fee is waived for students in the DreamSpark22 program. You
can use the Windows Certification Kit that are both integrated
with Visual Studio to test your application locally before you
submit them.

Apps are managed by customer, not by device. So a user can
install your app across a variety of devices or platform families,
such as a desktop PC and a phone. If you create a Universal
Windows Platform app you can choose if it only needs to be
bought on one device family or if it needs to be bought again
on each used device family.

Learn about monetisation and promo-
tion options at dev.windows.com/monetize and
dev.windows.com/store-promotion.

Learn More

Visit dev.windows.com for news, developer tools and forums.
The development team posts on their blog23 and their

Twitter account @wpdev. For a large collection of independent
developer and designer resources, visit reddit.com/r/wpdev and
windowscentral.com/developers.

You can extend your components, behaviours and other
tools with various commercial and open source toolkits. Popular
examples include Telerik24, Coding4Fun25, Cimbalino26, MVVM

22 www.dreamspark.com

23 blogs.windows.com/buildingapps

24 telerik.com

25 github.com/Coding4FunProjects

26 cimbalino.org

https://dev.windows.com/monetize
https://dev.windows.com/store-promotion
http://dev.windows.com
http://twitter.com/wpdev
http://www.reddit.com/r/wpdev
http://www.windowscentral.com/developers
http://www.dreamspark.com
http://blogs.windows.com/buildingapps/
http://telerik.com
https://github.com/Coding4FunProjects
http://cimbalino.org

81 82Windows

Light27 and MvvmCross28. For inspecting the visual tree, bind-
ings and properties of XAML-based user interfaces at runtime,
xaml spy29 is available.

Microsoft also provides a series of online videos for begin-
ners and experts for all kind of topics in their Virtual Acad-
emy30 and on the Channel19 website31 - including recordings
from all Microsoft developer conferences.

Find sample code on dev.windows.com/samples and in vari-
ous Codeplex32 projects. The How-to guides for app developers33
provide a good overview about planning, designing and
developing Windows apps.

If you are porting an existing app from iOS or Android you
can find help at msdn.microsoft.com/library/windows/apps/
mt238321.

27 mvvmlight.codeplex.com

28 github.com/MvvmCross/MvvmCross

29 xamlspy.com

30 microsoftvirtualacademy.com

31 channel9.msdn.com

32 codeplex.com

33 msdn.microsoft.com/library/windows/apps/xaml/mt244352

https://dev.windows.com/en-us/samples
https://msdn.microsoft.com/en-us/library/windows/apps/mt238321.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/mt238321.aspx
http://mvvmlight.codeplex.com
http://github.com/MvvmCross/MvvmCross
http://xamlspy.com
http://www.microsoftvirtualacademy.com
http://channel9.msdn.com
http://codeplex.com
https://msdn.microsoft.com/library/windows/apps/xaml/mt244352.aspx

GUIDE
HP
 30

FIGHT RUN
MAGIC
DRINK
ITEM

84Going Cross-Platform

Going Cross-Platform
So many platforms, so little time: so why not go cross-
platform? There are more than enough platforms to choose
from: Android, iOS, Sailfish OS, Tizen, Ubuntu and Windows are
waiting for your apps.

Most application sponsors, to quote Queen’s famous lyrics,
will tell the developer: “I want it all, I want it all, I want it all
...and I want it now!” So the choice may be between throwing
money at multiple parallel development teams, or adopting a
cross-platform strategy.

Key Differences Between Mobile
Platforms
If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier
to overcome than others:

Programming Language
By now you will have noticed that most mobile platforms
release their own SDKs, which enable you to develop apps in
the platforms’ supported programming languages.

However, these languages tend to belong to one of a few
families of root languages and the following table provides an
overview of these and the platforms they are supported on:

B
Y

 R

ob
er

t
Vi

rk
us

85Going Cross-Platform

Language Supported Natively 1 Supported Optionally 2

C, C++ Sailfish OS, Ubuntu,
Windows

Android (partially, using the
NDK), iOS (partially)

C# & Visual Basic Windows none

Java Android none

JavaScript Tizen, Ubuntu,
Windows

none

Objective-C iOS none

Swift iOS none

Cross platform frameworks can overcome the programming
language barriers in different ways:

 — Web Technologies: This approach exploits the fact that
most platforms provide direct support for web technologies
through embedded ‘webviews’ in native applications. Along
with HTML and CSS, this approach supports JavaScript as
well.

 — Interpretation/Virtual Machine: Here the framework
delivers an engine for each platform that interprets a
common or framework specific language. For example, a
popular option for games development is Lua scripting.

1 for example either the primary or only language for creating applications

2 for example can be used as an alternative to the native language but generally
won’t provide the same level of access to platform features

85 86Going Cross-Platform

 — Cross Compilation: The holy grail of cross platform frame-
works is cross compilation, but it is also the most complex
technical solution. It enables you to write an app in one
language and have it transcoded into each platform's
native language, offering native runtime speed.

Most frameworks also provide a set of cross platform APIs
that enable you to access certain platform or device features,
such as a device’s geolocation capabilities, in a common way.
For features such as SMS messaging you can also use network
APIs that are device-independent.

OS Versions
Platforms evolve and sooner or later they will be version
specific features that you want to leverage. This adds another
layer of complexity to your app and also a challenge for
cross-platform tools: sometimes they lag behind when a new
OS version is released.

UI and UX
A difficult hurdle for the cross platform approach is created
by the different User Interface (UI) and User Experience (UX)
patterns that prevail on individual platforms.

Nowadays most platforms use a variation of the flat design
as pioneered by Windows Phone in 2007. However there are
many differences and subtleties between the platforms, so
porting over the exact same look and feel would result in an
awkward looking app on other platforms.

Another key challenge with a uniform cross-platform UI
is that it can behave differently to the native UI users are
familiar with, resulting in your application failing to “work”
for users. A simple example is not to support a hardware key
such as the back key on a given platform correctly. Another
challenge is the "uncanny valley" that results from mimicking

87Going Cross-Platform

native UI elements that look but do not work the same. Instead
of mimicking native controls you should either use non-native
looking ones or just use the 'real deal' and go native.

When you target end consumers directly (B2C), you often
need to take platform specific user experience much more
into account than in cases when you target business users
(B2B). In any case you should be aware that customising and
tailoring the UI and UX to each platform can be a large part of
your application development effort and is arguably the most
challenging aspect of a cross platform strategy.

Desktop Integration Support
Integration of your application into devices’ desktops / home
screens varies a lot between the platforms; on iOS you can only
add a badge with a number to your app’s icon, on Windows
you can create live tiles that add structured information to the
desktop, while on Android you can add a full-blown desktop
widget that may display arbitrary data and use any visuals.

Using desktop integration might improve the interaction
with your users drastically.

Multitasking Support
Multitasking enables background services and several apps
to run at the same time. Multitasking is another feature that
is realised differently among operating systems. On Android,
Ubuntu and Sailfish OS there are background services and you
can run several apps at the same time; on Android it is not
possible for the user to exit apps as this is handled automati-
cally by the OS when resources run low. On iOS and Windows
we have a limited selection of background tasks that may
continue to run after the app’s exit. So if background services
can improve your app’s offering, you should evaluate cross

87

87 88Going Cross-Platform

platform strategies carefully to ensure it enables full access to
the phone’s capabilities in this regard.

Battery Consumption And Performance
Closely related to multitasking is the battery usage of your
application.

While CPU power is roughly doubled every two years
(Moore’s law says that the number of transistors is doubled
every 18 months), by contrast battery capacity is doubling
only every seven years. This is why smartphones like to spend
so much time on their charger. The closer you are to the
platform in a crossplatform abstraction layer, the better you
can control the battery consumption and performance of your
app. As a rule of thumb, the longer your application needs to
run in one go, the less abstraction you can afford.

Also some platforms have a great variety of performance,
most notably Android - Android devices range from painfully
slow to über-fast.

Push Services
Push services are a great way to give the appearance that your
application is alive even when it is not running. In a chat
application you can, for example, send incoming chat messages
to the user using a push mechanism. The way push services
work and the protocols they use, again, are realised differently
and use different data sizes on each platform.

88Going Cross-Platform

89Going Cross-Platform

In App Purchase
Today's most important monetisation option is in-app
purchases. Needless to say that this works differently across
platforms. See the monetisation and the platform-specific
chapters for details.

In App Advertisement
There are different options for displaying advertisements
within mobile apps, some are vendor independent third-party
solutions. Platform specific advertisement services, however,
can offer better revenues. Again, these vendor services work
differently between the platforms. The monetisation chapter in
this guide provides more information on this topic as well.

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

89 Going Cross-Platform

89 90Going Cross-Platform

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Component libraries can help you to speed up native
development, there are many commercial and open source
components available for all platforms.

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

 — Concept and assets: Mostly you will do this automatically:
share the ideas and concepts of the application, the UI
flow, the input and output and the design and design
assets of the app (but be aware of the need to support
platform specific UI constructs).

 — Data structures and algorithms: Go one step further by
sharing data structures and algorithms among platforms.

 — Code sharing of the business model: Using cross
platform compilers you can also share the business model
between the platforms. Alternatively you can use an
interpreter or a virtual machine and one common language
across a variety of platforms.

 — Complete abstraction: Some cross platform tools enable
you to completely abstract the business model, view and
control of your application for different platforms.

91Going Cross-Platform

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Xamarin1 and
Lua2. This approach makes development very easy. You are
dependent, however, on the platform provider for new features
and the challenge here is when those features are available
on one platform only. Sometimes player concepts use a “least
common denominator” approach to the offered features, to
maintain commonality among implementations for various
platforms.

Cross Language Compilation
Cross language compilation enables coding in one language
that is then transformed into a different, platform specific
language. In terms of performance this is often the best cross
platform solution, however there might be performance dif-
ferences when compared to native apps. This can be the case,
for example, when certain programming constructs cannot be
translated from the source to the target language optimally.

There are three common approaches to cross language
compilation: direct source to source translation, indirectly
by translating the source code into an intermediate abstract
language and direct compilation into a platform’s binary
format. The indirect approach typically produces less readable
code. This is a potential issue when you would like to continue
the development on the target platform and use the translated
source code as a starting point.

1 xamarin.com

2 lua.org

92Going Cross-Platform

(Hybrid) Web Apps
Hybrid web development means to embed a webview within
a native app. The standard for hybrid apps is the open source
tool Apache Cordova3 (formerly known as PhoneGap). This
approach allows you to access native functionality from within
the web parts of your apps and you can also use native code
for performance or user experience critical aspects of your app.
Hybrid apps allow you to reuse the web development parts
across your chosen platforms. Read the web chapter to learn
more about mobile web development.

ANSI C
While HTML and web programming starts from a very high ab-
straction you can choose the opposite route using ANSI C. You
can run ANSI C code on all important platforms like Android,
iOS and Windows. The main problem with this approach is that
you cannot access platform specific APIs or even UI controls
from within ANSI C. Using C is mostly relevant for complex
algorithms such as audio encoders. The corresponding libraries
can then be used in each app project for a platform.

3 cordova.apache.org

93Going Cross-Platform

Finding the Right Cross-Platform
Framework
There are so many cross-platform solutions available, that we
decided not to list them in this book anymore. If you are still
interested, please check previous editions of this guide. We
hope to resurrect our list in a digital form in the future. For a
benchmark of the available frameworks refer to the research-
2guidance4 report.

Here are some questions that you should ask when
evaluating cross platform tools. Not all of them might be
relevant to you, so weight the options appropriately. First have
a detailed look at your application idea, the content, your
target audience and target platforms. You should also take the
competition on the various platforms, your marketing budget
and the know-how of your development team into account.

 — How does your cross platform tool chain work? What
programming language and what API can I use?

 — Can I access platform specific functionality? If so, how?
 — Can I use native UI components? If so, how?
 — Can I use a platform specific build as the basis for my own

ongoing development? What does the translated/gener-
ated source code look like?

4 available at research2guidance.com/cross-platform-tool-benchmarking-2014

http://research2guidance.com/cross-platform-tool-benchmarking-2014/

93 94Going Cross-Platform

 — Is there desktop integration available?
 — Can I control multitasking? Are there background services?
 — How does the solution work with push services?
 — How can I use in app purchasing and in-app advertise-

ment?
 — How does the framework keep up with new OS releases?
 — What's the performance of the solution?

96Mobile Sites & Web Technologies

Mobile Sites & Web
Technologies
The continuous development of web technology coupled with
an increase in Internet-capable devices promises a great
future for those catering to the ever-increasing mobile web
audience. Global mobile Internet traffic is growing rapidly and
has already surpassed 52% in 20151. The share of time spent
browsing the Internet by device (mobile, tablet, desktop and
Smart TV) varies greatly across the globe. Most regions where
mobile Internet traffic has already surpassed desktop Internet
traffic are developing and emerging markets. Developed mar-
kets such as the US with a high smartphone penetration follow
suit. Worth pointing out that whilst feature phone markets
see considerable time spent within mobile search and mobile
site browsing, smartphone penetration heavy markets see the
highest engagement within apps. Since May 2015, mobile apps
account for more than half of all digital time spent in the US2.

The most obvious use of web technologies is to build
mobile sites and this is also the key focus of this chapter.
Nevertheless, it is worth pointing out that web technologies
are also heavily used within web and hybrid mobile apps,
cross-platform solutions and even native app development.
One big advantage of web technologies is that they offer the
easiest route into mobile development. Web technologies,
such as HTML, CSS and JavaScript have been well developed
for many years. Additionally, they are arguably easier to
learn than some of the rather complex languages needed for

1 statista.com/topics/779/mobile-internet

2 comscore.com

B
Y

 D

an
ie

l K
ra

nz

http://www.statista.com/topics/779/mobile-internet/
https://www.comscore.com/Insights/Blog/Major-Mobile-Milestones-in-May-Apps-Now-Drive-Half-of-All-Time-Spent-on-Digital

97Mobile Sites & Web Technologies

native app development. Mobile websites and web apps make
content accessible on almost any platform with less effort in
comparison to native development for a number of platforms.
This means mobile websites automatically have a wider reach.
Accordingly, mobile web development does not only save
development time and cost, but furthermore provides a time
and cost-effective alternative when it comes to maintenance.
And being independent of app stores allows you to offer any
content you want quickly, and without having to align it to the
app store's approval policy.

Nevertheless there are shortcomings. Web technologies
struggle to match the level of deep platform integration and
direct access to hardware features native app development
can provide. Furthermore performance of web technologies is
highly dependent on connectivity, large sites such as Facebook
and LinkedIn experience memory issues and there is a lack
of existing developer tools in comparison to developer tools
available for native app development.

Monetisation of mobile sites can prove tricky as well, since
users expect to access mobile sites free of charge. The most
common monetisation tool for mobile sites is ad integration.
Payment solutions for mobile sites are still in their early stages
and tend to be rather challenging to implement. Existing app

98Mobile Sites & Web Technologies

store monetisation tools by contrast offer easy set-up and a
high level of security for the end-user.

If monetisation is one of the key requirements, a hybrid
or web app strategy could prove to be a good compromise. In
that case the key challenge is to combine the unique capabili-
ties of native and web technologies to create a truly user-
friendly product. In the cross-platform chapter of this book
you will learn more on how to create this type of so-called
"hybrid apps".

As a guiding principle users should not be left frustrated
and disappointed by being directed to a site which takes
forever to load, triggers high data charges, or does not work
at all. Instead the worst-case scenario should be that a user
is taken to a site that is basic but still provides all relevant
content. Key criteria to consider prior to any development are
your target audience's device capabilities, browsing habits and
bandwidth/data plans.

From a UX perspective, Google offers 10 best practices to
drive conversion for SMBs3:

 — Be thumb friendly - design your site so even large hands
can easily interact with it

 — Design for visibility - ensure your content can be read at
arm's length

 — Simplify navigation - clear navigation, hierarchy and
vertical scrolling aid access to information

 — Make it accessible - ideally, your mobile site should work
across all mobile devices and all handset orientations

 — Make it easy to convert - focus on information that will
aid conversion

3 www.dudamobile.com/webinar/Google_DudaMobile_Webinar.pdf

http://www.dudamobile.com/webinar/Google_DudaMobile_Webinar.pdf

99Mobile Sites & Web Technologies

 — Make it local - including functionality that helps people
find and get to you

 — Use mobile site redirects - give users a choice to go
back to the desktop site, but make it easy to return to the
mobile site

 — Keep it quick - help mobile users, design your site to load
faster and make the copy easy to scan

 — Make it seamless - bring as much of the functionality of
your desktop site to mobile

 — Learn, listen and iterate - good mobile sites are
user-centric, meaning they are built with input from your
audience.

Google has also rolled out changes to its mobile search
results and has announced that it will penalise sites that are
not in line with its recommendations. Have a look at Google's
developer site4 for more up-to-date information on how to
optimise your mobile site.

HTML5

HTML5 is one of the key drivers that makes coders and
decision-makers consider developing mobile sites and web
apps instead of native applications. A look-and-feel close to
that of apps combined with a single code base for a number
of popular devices, the ability to access device hardware such
as the camera and microphone, local data storage for offline
availability and optimisation based on screen size make HTML5
an appealing alternative to native app development.

However HTML5 relies on universal browser support which is
currently lacking.

4 developers.google.com/webmasters/smartphone-sites

http://developers.google.com/webmasters/smartphone-sites/

99 100Mobile Sites & Web Technologies

Ex-Facebook CTO Brent Taylor once described the situation
as follows: ‘There is rampant technology fragmentation across
mobile browsers, so developers do not know which part of
HTML5 they can use. HTML5 is promoted as a single standard,
but it comes in different versions for every mobile device. Is-
sues such as hardware acceleration and digital rights manage-
ment are implemented inconsistently. That makes it hard for
developers to write software that works on many different
phone platforms and to reach a wide audience.’ Unfortunately
this is still true, although the situation is continuously
improving.

For more info on browser compatibility, check out the
HTML5Test online5. The site provides both an overview and
in-depth analysis of which HTML5 features are supported by
which browser. Facebook has also developed ringmark6 which
tests web browsers for 3 rings, or levels, of support for HTML5
features which helps developers to quickly check the level of
support of various mobile (and desktop) web browsers.

To wrap it up: Almost everyone in the mobile business
agrees that HTML5 will succeed in the long run and especially
the last couple of years saw rapid adoption of HTML5. ABI
research estimates that mobile devices with HTML5-compatible
browsers will total 2.1 billion worldwide by the end of 2016.7.
Operating systems will gradually increase support for HTML5
features and browsers to increase overall adoption and speed.
Open-source platforms such as Sailfish, Tizen and Ubuntu
should also help to speed up adoption.

5 html5test.com/results/mobile.html

6 rng.io

7 www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-devices-
by-201

http://html5test.com/results/mobile.html
http://rng.io/
https://www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-devices-by-201
https://www.abiresearch.com/press/21-billion-html5-browsers-on-mobile-devices-by-201

101Mobile Sites & Web Technologies

Fragmentation Needs Adaptation

The biggest challenge of mobile site development is fragmen-
tation. In theory all internet-enabled devices can access any
mobile site via a browser. The reality however is that develop-
ers need to adapt and optimise mobile site content to cater
to the ever increasing number of browsers and devices with
varying levels of software and hardware capabilities.

Broadly speaking there are two approaches to optimis-
ing content for mobile devices: Client-Side and Server-Side
Adaptation.

 — Client-Side Adaptation makes use of a combination of CSS
and JavaScript running on the device to deliver a mobile-
friendly experience.

 — Server-Side Adaptation makes use of the server to execute
logic before content is passed on to the client.

The following section provides an overview of client-side
and server-side techniques used to make mobile sites acces-
sible for the majority of current and future Internet-enabled
devices.

101 102Mobile Sites & Web Technologies

Client Side Adaptation

Responsive Web Design
In its simplest form responsive design consists of a flexible
grid, flexible images and CSS media queries to cater to a
number of screen resolutions or types of devices.

On its own this results in a device-sensitive experience for
a limited range of devices and lacks sophisticated content
adaptation. The same content is served to all devices.

Pro

 — Pure client side adaptation ensures no impact on the
existing infrastructure

 — Automatic adjustment of content and layout possible

Con

 — The same content available on the website will also be
available on the mobile version (whether visible or not).

 — The page weight of the site can have a significant impact
in terms of performance on mobile devices

 — It is a general approach instead of actual mobile-friendly
device optimisation (e.g. Top 5)

Coupled with server side components and therefore
generally referred to as RESS (Responsive Design + Server Side
Components), responsive design can also be used to deliver
more complex desktop and mobile sites.

103Mobile Sites & Web Technologies

Progressive Enhancement
Progressive Enhancement has the capability to cater to the full
spectrum of mobile devices. A single HTML page is sent to ev-
ery device. JavaScript code is then used to progressively build
up functionality to an optimal level for the particular device.
As a mobile only solution the main drawback is performance.
The progressive build-up takes time to execute and varies
according to the device and network. As a desktop and mobile
solution its main drawback is that a single HTML document is
sent to all devices. A well-known framework that makes use of
progressive enhancement is jQuery Mobile8.

Pro

 — Pure client side adaptation ensures no impact on the
existing infrastructure

 — Progressive adjustment of content, function and layout
possible

Con

 — A loss of control, since detection is handled by the
browser

 — Browser detection is still far from perfect
 — Detection done on the client-side impacts overall

performance of the site
 — The same HTML page is served to all devices

8 jquerymobile.com

http://jquerymobile.com/

103 104Mobile Sites & Web Technologies

Server-Side Adaptation

Device Databases
Device databases detect each device accessing the website
and return a list of device capabilities to the server. This
information is then used to serve a mobile site that caters to
the device’s capabilities. Server-side adaptation is one of the
oldest and most reliable solutions. Popular device databases
include WURFL9 and DeviceAtlas10. The main drawback of
device databases is that the majority is only available as part
of a commercial licence.

Pro

 — Most commonly used solution (Google, Facebook, Amazon
and alike)

 — Maximum control
 — Device optimisation possible (for example to iPhone,

Samsung Galaxy and alike)

Con

 — Device Description Repositories are hardware focused
 — Besides the data, a detection mechanism is needed (a

simple ‘User-Agent’ matching does not work)

Responsive Web Design + Server Side Components (RESS)
Truly the best of both worlds, the combination of client and
server-side adaptation ensures high performance thanks to
server-side adaptation and means that the capabilities sourced

9 wurfl.sourceforge.net

10 deviceatlas.com

http://wurfl.sourceforge.net/
http://deviceatlas.com/

105Mobile Sites & Web Technologies

can be used to enrich the mobile experience on subsequent
visits. This approach is best known as RESS - responsive web
design with server-side components. Naturally, this approach is
costly and therefore more common within larger organisations.

RESS/ Hybrid Adaptation solutions are available commer-
cially from companies such as Sevenval11 and Netbiscuits12, and
as community-backed cloud solutions, for example FITML13.

Better Data Input
With small, often on-screen, keyboards entering text can be
cumbersome and time-consuming, particularly if the user has
to enter numbers, email addresses or similar text. Thankfully
developers can easily specify the expected type of input and
smartphones will then display the most appropriate on-screen
keyboard. mobileinputtypes.com provides various clear and
concise examples.

Better Performance
Mobile users expect sites to load within 2-5 seconds. This is
currently a challenging task, especially for complex mobile
sites. Please note that the location and network used can
already have a drastic effect on site performance. While there
are factors that you simply cannot influence, the following
sections provide tips to reduce transfer size, content and HTTP
requests to minimise load time and improve performance.

Reduce Transfer Size
Activate GZIP when you serve a site. Make use of image resizing
and adjust the image quality according to network quality.

11 sevenval.com

12 netbiscuits.com

13 fitml.com

http://mobileinputtypes.com/
http://sevenval.com
http://www.netbiscuits.com
http://www.fitml.com

105 106Mobile Sites & Web Technologies

Reduce Content
Both site and asset loading becomes more and more important.
Minifying assets such as JavaScript and CSS files can help to
reduce overall asset load times. Multiple files of the same type
are compressed into one and all whitespace is removed. Code
becomes shorter, but still behaves in the same way. All this
can result in a lower number of requests and ultimately a faster
loading time.

At the same time it is important that the user understands
what is going on. Accordingly, if content is loading, it is
important that the user is aware of this and is not presented
with a blank box or page. A smooth experience is paramount to
any mobile experience and this includes the journey from site
to content loading in the site and any animation surrounding
it.

Reduce HTTP Requests
Inline images, scripts and styles, and add make use of
Application Caching. Whenever possible, reduce the number
of requests, file size and content. Key benefits are that scripts
are delivered in a single request per page, HTTP round-trips are
minimised and core scripts are stored in the application cache.
The implementation will not affect reload and scripts are still
cacheable publicly (CDN).

For more detailed tips around mobile web performance
check out Roland Guelle's presentation on slideshare14.

14 www.slideshare.net/sevenval/mobile-web-performance-dwx13

http://www.slideshare.net/sevenval/mobile-web-performance-dwx13

107Mobile Sites & Web Technologies

Hybrid and Cross Platform Apps

Armed with HTML5, CSS and JavaScript skills and keen to give
app development a go? Hybrid app development could be the
route for you. Adobe's Phone Gap15 is just one example of cross
platform frameworks and tools available to build, distribute
and update across a number of sites and apps conveniently
controlled via one single system. Please also read the "Cross-
Platform" chapter in this guide to learn more about your
options in that area.

Pro

 — Use your existing skills
 — Single code base for multiple platforms (iOS, Android,

Windows,...)
 — Cost and time savings when developing for multiple

platforms
 — Distribute both via app stores and mobile browsers for

additional reach

Con

 — Expect performance issues when emulating complex native
functionality

 — Mimicking native user interfaces will add additional time
and effort to your project

 — Risk of being rejected by app stores (mainly Apple) if your
app does not feel native enough

 — Some device and operating system features might not be
supported

15 phonegap.com

http://phonegap.com

107 108Mobile Sites & Web Technologies

Testing Web Technologies

How web technologies work in various mobile phones can be
tested in several ways. The simplest way is to test the web site
or web app in a variety of web browsers on mobile devices.
These would include a mix of the most popular mobile web
browsers, based for example on public data available online16.
The set of devices can be refined by analysing data from
existing web logs and similar sources. Also, testing on various
form-factors helps to expose layout and formatting issues.

In terms of automated testing, WebDriver17 is the predomi-
nant framework. There are two complementary approaches:

1. Automated testing using embedded WebView controls in
Android and iOS

2. User-agent spoofing using Google Chrome or Mozilla
Firefox configured to emulate various mobile web browsers

Both approaches have pros and cons:

 — Embedded WebViews run on the target platform OS. They
are likely to find many behavioural bugs. However the
configuration is more involved and some platform OSs are
not supported.

 — Spoofing can fool web servers to treat the browser as if
it came from any of a wide range of devices, including
mobile browsers not available with the embedded WebView
such as the Nokia Asha 201 phone. However the behaviour
and rendering is not realistic. So many bugs will remain
undetected, while other 'false positive' bugs will be found
that do not occur on devices.

16 gs.statcounter.com

17 seleniumhq.org/projects/webdriver

http://gs.statcounter.com
http://seleniumhq.org/projects/webdriver/

109Mobile Sites & Web Technologies

Learn More

Online

 — W3Schools and CSS Tricks (good resource to under-
stand basic HTML, CSS and JavaScript): w3schools.com,
css-tricks.com

 — HTML5 Rocks (great resource about HTML5 including tuto-
rials, slideshows, articles and more): html5rocks.com/en

 — Breaking the Mobile Web (Max Firtman, the author
of several books about mobile web programming,
provides up-to-date news in his dedicated mobile blog):
mobilexweb.com

 — Mobi Thinking (DotMobi's resource for marketers with
insights, analysis and opinions from mobile marketing
experts): mobithinking.com

 — Testing (Mobile) Web Apps:
docs.webplatform.org/wiki/tutorials/Testing_web_apps

 — Investigate what features work across all areas of the
web: caniuse.com and beta.theexpressiveweb.com

 — WHATWG (The HTML community's homepage): whatwg.org
 — Word Wide Web Consortium (The organisation that

defines web standards): w3.org

http://www.w3schools.com
http://css-tricks.com/
http://www.html5rocks.com/en/
http://www.mobilexweb.com/
http://mobithinking.com/
http://docs.webplatform.org/wiki/tutorials/Testing_web_apps
http://caniuse.com
http://beta.theexpressiveweb.com
http://www.whatwg.org/
http://www.w3.org/

110Mobile Sites & Web Technologies

Books

 — Mobile First by Luke Wroblewski
 — Adaptive Web Design: Crafting Rich Experiences with

Progessive Enhancement by Aaron Gustafson and Jeffrey
Zeldman

 — Responsive Web Design by Ethan Marcotte
 — Programming the Mobile Web by Max Firtman
 — jQuery Mobile: Up and Running by Max Firtman

112Enterprise Apps

Enterprise Apps
Corporate decision makers now view mobile enterprise apps
as a strategic factor, a necessity, rather than an item on an
accountant’s spreadsheet. Internal enterprise apps are able to
reduce the latency of information transfer within a company.
They increase the agility of the worker by making competitive
data & big data available at any time and anywhere. Apps can
also allow companies to engage with its customers, suppliers,
and end consumers etc. Examples of enterprise apps include
field & sales staff software, emergency response, inventory
management, supply chain management but also B2C market-
ing.

It may seem an obvious thing to say, but the major risk
at the moment, is not having an enterprise mobile strategy.
Business is now looking at Mobile for All rather than limiting
it to senior management, as it may have been in the past.
To enable this the traditional IT approach of buying devices
and distributing them throughout the management structure
is no longer the only enabling strategy being used; we have
moved from Bring Your Own Device (BYOD) to BYOx including
apps, content, development tools/frameworks and now even
wearables, enabling staff to use their personal devices to con-
nect to the IT infrastructure, download secure content and use
enterprise apps. With the advent of BYOx, a company exposes
itself to risks which traditionally have never been part of the
corporate IT strategy. Early adoption of a well thought out
and implemented enterprise mobile strategy is key to ensuring
data is secured at all times.

B
Y

 Ia

n
Th

ai
n

&
 D

av
oc

 B
ra

dl
ey

113Enterprise Apps

And from a developer's point of view, the enterprise sector
has a lot to offer as well: Compared to traditional B2C app
developers those who create enterprise apps are twice as
likely to be earning over $5k per app per month and nearly 3
times as likely to earn over $25k according to the Developer
Economics report of Q3 20141.

Key points for Mobile Apps in Shaping the new Business
Enterprise

 — Cost reduction compared to existing systems
 — Streamlining business processes
 — Competitive advantage with up-to-date data immediately

at hand
 — Increase employee satisfaction and effectiveness
 — Rapid response compared to existing processes
 — Analysing and utilising Big Data

Enterprise Strategy

Many companies nowadays have a Chief Mobile Officer (CMoO)
or have extended their CIO position. It is their job to co-
ordinate mobile trends and directions and to bridge the gap
between business and IT. Depending on the size and main
focus of the company, his/her job is also to either build up an
internal mobile software development team or coordinate the
cooperation with an external development agency. To make
sure that the mobile software delivers what the employees
/ users want, that this is technically achievable and that
everything fits the overall company strategy, the leader might

1 www.developereconomics.com/report/next-gold-rush-enterprise-apps

113 114

consider setting up a Mobile Innovation Council (MIC) or Cen-
ter of Excellence (COE). This group should contain key members
such as: skilled representatives from the mobile development
team, stakeholders for mobile within the company, and most
importantly end users from various departments with expertise
in the relevant business processes.

Topics that the CMoO/CIO needs to focus on together with
the MIC/COE include:

 — Strategy - vision and direction for the general mobile
strategy and for the apps.

 — Governance policies - Bring Your Own Device (BYOD) vs.
Chose Your Own Device (CYOD) which is essentially the
difference between a Mobile Application Management
(MAM) policy (BYOD) and a Mobile Device Management &
Security (MDM) policy (CYOD).

 — App specifications
 — App roadmap
 — Budget planning
 — Acceptance - signing off the apps into production.
 — App deployment - early feedback on demos and proto-

types, testing, mass deployment.
 — Incentives - how to increase the adoption and usage of

the apps created.

In commercial adoption terms enterprise app development
is mostly mainstream now. The question a company writing
third party enterprise apps, or a development manager keen
to adopt an internal mobile enterprise strategy used to be
“This all sounds great, but why do we need it?”. This has now
become "Mobile will give us a competitive advantage and
empower our workforce" which is a compelling reason for a
company to adopt a mobile strategy.

115Enterprise Apps

Key points when building the business case for Mobile
Enterprise Apps

 — Create a visionary plan for more mobile apps, on various
devices and know how they will aid, shape and empower
your enterprise.

 — Create an ADS (Application Definition Statement) for each
app, specifying purpose and intended audience.

 — Create a budget for devices & device upgrades.
 — Create a plan for an application & device management

strategy & security infrastructure.
 — Create a plan for an app dev team using a future proof

development architecture - such as a MADP, Frameworks
etc.

Mobilising Existing Systems

If you are already providing a system to customers which has
not yet been mobilised, you will have various decisions to
make. It is critical to fully understand the impact of adding a
mobile offering to your system before you start implementing
the solution. Common reasons to mobilise your product can
include using phone features, such as camera and GPS, or just
the ability to capture information on the move, without being
connected to the internet. You must ensure you go mobile
for the right reasons, as the ongoing support, maintenance
and development of a mobile offering will become a separate
product roadmap to your original system and will carry an
on-going cost.

115 116Enterprise Apps

Key points when deciding how to mobilise an existing
system

 — Clearly define the reasons for going mobile and ensure
that those reasons are strong enough to take the step into
mobile.

 — Understand the difference between mobile and desktop. Do
not just copy your existing system, so for instance, instead
of a form to capture information, you could capture audio
and upload that into your system, allowing a user to
quickly makes notes without the need to type into a small
device.

 — Do not try and implement all the features of your existing
system; implement the important features in a way which
suits mobile.

 — Ensure you understand which devices your clients use and
which features of your system are most required to be
mobilised.

 — Have a clearly defined mobile testing strategy which covers
cross platform testing and multiple device types and
operating systems.

117Enterprise Apps

Device And Application Management In
The Enterprise
When developing an enterprise app, you should always keep in
mind that the hardware containing sensitive company data can
get lost or stolen. There are now two approaches for securing
devices, content and apps. Mobile Device Management (MDM)
and Mobile Application Management (MAM). These are now
coming together as Enterprise Mobility Management (EMM).

MDM gives an enterprise ultimate control over a device, so
when a device is lost, stolen or an employee leaves, taking the
device, the enterprise can wipe the device and essentially stop
the device from working. This approach is usually taken when
an enterprise owns the device so all the data and apps on the
device are owned by the company; any personal data stored on
the device is stored at the employee‘s risk.

MAM enables an enterprise to adopt BYOD as it allows an
enterprise to secure apps and content downloaded to a device
without taking ultimate control away from the owner of the
device. When an employee leaves a business, taking their
device with them, the business can disable the enterprise
apps and wipe any content downloaded to the device without
affecting personal data, such as photos and consumer bought
apps. Most MDM and MAM solutions are cross platform, sup-
porting multiple devices, and this should always be taken into
consideration when deciding upon an MDM or MAM provider.

117 118Enterprise Apps

Various security features are available through both these
management solutions, including:

 — Device monitoring
 — License control
 — Distribution via an internal Over-The-Air (OTA) solution
 — Software inventory
 — Asset control
 — Remote control
 — Connection management
 — Application support & distribution

Security measurements include

 — Password protection
 — On-device data encryption
 — OTA data encryption
 — Remotely lock devices
 — Remotely wipe data
 — Re-provision devices
 — Back-up data on devices

Examples of EMM providers are:

 — Airwatch: air-watch.com
 — App47: app47.com
 — Apperian: apperian.com
 — Good: good.com
 — Microsoft: microsoft.com/en-us/windows/windowsintune
 — MobileIron: mobileiron.com
 — Mocana: mocana.com
 — SAP Afaria: go.sap.com/product/technology-platform/

afaria-mobile-device-management

http://www.air-watch.com/
http://www.app47.com/
http://www.apperian.com/
http://www.good.com/
http://www.microsoft.com/en-us/windows/windowsintune
http://www.mobileiron.com/
http://www.mocana.com/
http://go.sap.com/product/technology-platform/afaria-mobile-device-management.html
http://go.sap.com/product/technology-platform/afaria-mobile-device-management.html

119Enterprise Apps

Mobile Application Development
Platforms (MADP)
Usually, one key element of enterprise applications is data
synchronisation. The mobile devices have to be refreshed with
relevant or up to date data from the company's servers and
the updated or collected data has to be sent back. The scope
of data access is determined by the job responsibilities of the
user as well as by confidentiality policy. In any case synchroni-
zation has to be secure, as corporate data is one of your most
prized assets. Furthermore, a company-wide accepted app will
be multi-platform.

To compensate the shortcomings of the native SDKs as
well as the common multi-platform solutions in these regards,
you might want to consider evaluating Mobile Application
Development Platform (MADP) solutions. MADPs are mobile
development environments that provide the middleware
and tools for developing, testing, deploying and managing
enterprise apps running on multiple mobile platforms with
various existing back-end datasources. Their aim is to simplify
development and reduce development costs, where skills must
be maintained for multiple platforms, tools and complexities,
such as authentication and data synchronisation.

Available solutions include:

 — IBM MobileFirst Platform: www.ibm.com/mobilefirst
 — Kony KonyOne: www.kony.com/products
 — Pega Amp: www.pega.com
 — SAP Mobile Platform: www.sap.com/smp
 — Spring Mobile Solutions: www.springmobilesolutions.com

http://www.ibm.com/mobilefirst
http://www.kony.com/products
http://www.pega.com
http://www.sap.com/smp
http://www.springmobilesolutions.com

120Enterprise Apps

Security In Enterprise Apps

One of the main functions of any IT department is to ensure
that all aspects of the company infrastructure is secured
against attack so that there are no data leaks and no data is
compromised or stolen. As mobile devices are an extension
of a company’s IT infrastructure, all enterprise apps must
be designed to ensure that they cannot be used to illegally
gain access to a company’s internal network. As an enterprise
app writer you will usually be asked to conform to standards
which a company has laid out in their security policies, so be
prepared to answer questions about securing your app, such as
data encryption, network communication and dealing with jail
broken or rooted devices.

Many EMM providers actually enhance app security, using
techniques such as app wrapping or providing an SDK which
app writers can use. These features, and regular updates
of these platforms, allow an enterprise to lock down their
apps remotely and also keep up with the changing security
landscape without needing to invest as much time and effort
into security.

Key points for securing Enterprise Apps

 — If using an EMM provider ensure they have the security re-
quired security features to meet your enterprise standards.

 — When storing any data on the device ensure it is en-
crypted.

 — When communicating with web services, always use https.
 — In addition to using https, when communicating with web

services ensure you perform end point checking in both
the app and the web service to confirm that the server/
device you are connecting with is valid.

 — Always check that any settings your app is packaged with
have a checksum to ensure that the values cannot be
changed once shipped to the device.

 — Do not allow the app to run on jail broken or rooted
devices.

 — Have a method for disabling the app if the app detects
that it has been compromised.

 — Ensure that all use of encryption complies to export
regulations and any laws relevant to the region/s the app
is being used in.

122Mobile Sites & Web Technologies

123Mobile Sites & Web Technologies

124Mobile Gaming

Mobile Gaming

The Mobile Gaming Economy

Before we start talking about mobile game development we
should try to understand what is driving the mobile games
market. The rise of mobile gaming since the early days of Java
(technically J2ME) games continues to be astounding. Games
market research firm, NewZoo recently raised their estimations
for the global mobile games market to reach over $40bn by
20171. According to VentureBeat2 games make up only 40
percent of all app store downloads but they represent about 75
percent of spending and the majority of that income is focused
on the top 10 grossing games, almost exclusively Free-To-Play.
Some of these games have dominated these charts for the
last two years. Games like Clash of Clans, Candy Crush and The
Simpsons Tapped Out have generated billions and have at least
put mobile gaming on the same level as the console market.

It is important to know that for iOS and Android the vast
majority of mobile games revenue comes from Free-To-Play
games. It is also worth noting that iOS receives about 7% of
its revenue from premium games, nearly twice that of Android3.

Making games work on multiple platforms has become
easier to do. Around 54% of all mobile games are designed
using 3rd party engines and 45% of those use Unity. There are

1 www.applift.com/blog/mobile-games-market-update.html

2 venturebeat.com/2014/11/04/candy-crush-leads-in-u-s-and-u-k-but-clash-
of-clans-reigns-in-mobile-crazy-south-korea

3 venturebeat.com/2014/04/25/apple-vs-google-a-world-view-on-the-mobile-
gaming-war

B
Y

 O

sc
ar

 C
la

rk

http://www.applift.com/blog/mobile-games-market-update.html
http://venturebeat.com/2014/11/04/candy-crush-leads-in-u-s-and-u-k-but-clash-of-clans-reigns-in-mobile-crazy-south-korea/
http://venturebeat.com/2014/11/04/candy-crush-leads-in-u-s-and-u-k-but-clash-of-clans-reigns-in-mobile-crazy-south-korea/
http://venturebeat.com/2014/04/25/apple-vs-google-a-world-view-on-the-mobile-gaming-war/
http://venturebeat.com/2014/04/25/apple-vs-google-a-world-view-on-the-mobile-gaming-war/

125Mobile Gaming

many other engines from Cocos, Corona, GameMaker, Unreal,
etc. Each engine offers different advantages and perspectives
to enable developers of different skill types to quickly realise
their ideas and prepare them for release. See the cross-platform
chapter of this guide for more information on the available
frameworks.

Many developers are under the illusion that they will be
the next indie-developer to strike it rich. An activity which
happens with games like Flappy Birds gaining crazy numbers of
users, but these are closer to ‘lottery ticket wins’ rather than
ideal models to follow. Instead it is important for develop-
ers to realise that the mobile games market has become a
sophisticated space with many different facets and challenges.
Before you start creating your game you need to pay attention
to understanding the nature of the market and audience. An
essential part of this is that it has become an enormously com-
petitive market, with vast numbers of small teams producing
huge volumes of content and spending millions on develop-
ment and advertising to retain their positions.

Making The Right Game

Creating delightful experiences for our target audience requires
just as much creativity as ever, perhaps more. Players expect
us to create joy and to show them new content ideas. Players
need something of the familiar in order to be able to compare
and help them understand and relate to new content. Scott
Rogers in his book “Level Up” described this as the “Triangle
of Weirdness”4. He claimed that games consist of a world,
activities and characters. We can change any of these for new

4 mrbossdesign.blogspot.co.uk/2008/09/triangle-of-weirdness.html

http://mrbossdesign.blogspot.co.uk/2008/09/triangle-of-weirdness.html

125 126Mobile Gaming

ideas, but we cannot change all three without risking losing
the audience.

For me the kind of fun we are looking for in games is some-
thing which happens when the player is able to suspend their
disbelief and engage in an experience which has no real-world
value. We become totally absorbed in the mechanics and narra-
tive of the experience. Curiously, challenge and frustration are
as much the motivations to play as they are potential causes
to leave the experience. If we can keep the balance between
these states we attain a joyful state that all game designers
know about, ‘Csikszentmihalyi’s Flow’5.

We have to appreciate that what makes fun in the mobile
space, is different from other platforms and may even seem
contradictory. We need games which are simple and acces-
sible, but with enough depth and a sense of purpose and
progression to retain player attention. If we look at what has
been successful and what has not, we see that a mobile game
has to give us meaningful success in less than a minute, but
keep us playing for hundreds of days. The game has to stop us
burning through all the content in a single session, but get us
to play dozens of times per day. We need a game which will be
familiar, but that will also standout enough to get featured by
app stores. Our game has to be enjoyable (and often free), but
still create new reasons for players to want, no, need to spend
money with us. The list of apparent contradictions goes on.

We know that there are games developed from emergent
mechanics, building blocks which combine to create surprising
or strategic outcomes, like Chess or Clash of Clans. Then there
are those games built using a series of progressive decision
points each resolved with their own steps chained together to

5 scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-
pleasure-and-creativity

http://scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-pleasure-and-creativity/
http://scienceandvalues.wordpress.com/2010/02/26/csikszentmihalyis-flow-pleasure-and-creativity/

127Mobile Gaming

make a story such as FTL or Monkey Island. We can even build
games which incorporate player creativity such as Createria or
Minecraft, or simple abstract puzzles like Threes or SuperHexa-
gon. Whichever path we take, balance is at the heart of our
thinking as a designer. We have to decide how much the game
will be affected by skill and how much by luck, the extent to
which the game follows a fixed narrative or is player led and
of course the complexity of the internal systems, whether that
is about character development or a resource economy. With
Free-To-Play we also have to consider the impact of money
spent on the game experience.

What we often forget is to consider what matters to the
player. One of the most important questions we should ask is
why they should choose to make your game their distraction of
choice. Let us face it, most mobile play starts out as distrac-
tion, even if in the end we spend more time on our phones
than our consoles. So why would they play your game? Just
saying it is a good game is not enough. We have to be able to
answer that question honestly. To help us make good decisions
we can learn a lot from classical design and product marketing.

Engaging the Mobile Player
When we develop mobile games we are creating an experience
to entertain players on a specific kind of device. Tablets and
phones fulfill different needs and require an attention to detail
on the specific and different mode of use they fulfill. The phone
is generally about ‘the next minute’, it is something we get
out when we expect something to happen or need something
to occupy ourselves. How do players use their tablet devices?
For me I think it is about a longer period of rest or relaxation.
What does that mean for the game we want to make?

The realisation of our game is the combination of a
distinctive vision, compelling gameplay narrative and how the

127 128Mobile Gaming

experience is designed to affect the emotions of the players.
This has to be appropriate to the nature of how the game is
consumed and in mobile we have to understand the restric-
tions inherent to these devices. The limited screen size, touch
screen controls, accelerometers, battery life, the ability to be
interrupted, the ease players have to get out and put away the
device, the limited speaker quality, the high quality headphone
output, etc all affect the way players interact with the device.
Mobile phones are (mostly) connected to the internet and are
the most pervasive of devices as we always carry them.

To show you what I mean, think about the way we imple-
ment controls. Touch screens allow a huge range of movement
on a 2D plane, but after a short while our skin will get hot and
lose capacitance which means the controls will become less re-
liable. If we simply try to duplicate a twin stick control system
(like too many games have) we will soon find problems with
the playing experience. Arguably, this is one of the reasons
why first person shooters (FPS) have not been quite as popular
on mobile. Instead we should design game mechanics with
controls specifically to make the touch process feel good or
which recognise the limits of the methods available to us and
make that part of the experience. MiniGore is a great example
for me where the difficulty of the game is actively enhanced by
the twinstick mechanics becoming harder to control over time.
On the other hand, Hayday from Supercell demonstrated how
touch could be utterly delightful. The touch motion used to
collect your crops is so pleasant that it elevates this game far
above other farming games on any platform and was suited for
a tablet experience.

The need for immediate satisfaction of the mobile gamer
does not replace longer term engagement. However, it does
reinforce the need for simplicity in the gameplay needed for
phone based games. Simplicity itself will fail to continue to
sustain the level of interest in playing. To keep people playing

129Mobile Gaming

we need to create a context which gives us a reason to repeat
that game mechanic. Something which gives us a sense of
purpose and progression. Something which calls for our atten-
tion after our playing session has ended and encourages us to
return to play. That initial mechanic had better be enjoyable
even after thousands of plays.

Games like CSR and Candy Crush introduced this method
of game design to the mobile market. Finding ways to chain
together a series of grinding mechanics to sustain playability
over thousands of sessions whilst always giving a sense that
the goals are achievable is magical. It builds long term engage-
ment and keeps players involved with your game ever longer,
provided the experience is sufficiently meaningful. Keeping
players playing longer has a direct impact in their willingness
to spend money in the game. In a 2014 survey by Unity6, the
reported spend by paying players who spend less than an hour
in a game averages at $0.66, but for those who spend over 10
hours this rises to $15.15.

Designing the Player's Journey
The realisation that long term engagement matters has a
profound impact on the way we look at game design. The
idea of a game as a mechanic or story is transformed to the
realisation that it is not only our hero character who is going
on a journey, but our player as well. This journey consists of
several stages:

6 www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-
44-year-olds

http://www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-44-year-olds
http://www.gamesindustry.biz/articles/2014-10-14-mobile-spending-driven-by-35-44-year-olds

129 130Mobile Gaming

1. Discovery
Players have a particular set of needs and aspirations when they
first encounter your game. We have to ensure that the journey
to discovery sets up the conditions that will encourage them to
download and play the game the first time. There is usually very
little opportunity to set the right expectations, but doing so is
essential. If the game charges upfront, let the player know why
they should still buy it, what they will miss out on if they do not.
If the game is free we still have to create expectations, but we
also have to show the player why the advertising is worth the
hassle or if there are in-app purchases, why those players will
feel good about buying them. This is a delicate art. We need to
be clear and transparent and still communicate why this game is
worth their time and investment.

2. Engagement & Onboarding
Once they have taken the choice to install your game we have to
make it as easy as possible to engage. Make the icon and name
of the game instantly recognisable and ideally a tease, a reason
to kick off the app. At this stage we do not want them to make
choices about what characters to play or what levels they want
– they do not know yet. Do not make them sign up to Facebook
or set-up an account before playing – show them what the game
is all about. Then knock their socks off. I often talk about “The
Bond Opening”, comparing this first ever play of the game to the
opening 5 minutes of every Bond movie. It blows us away and
at the same time set up everything we need to know about the
story, super-secret agents and the world the story takes place in.
But it does more than that, it ensures we never want to leave the
seat. It is this dual role of showing not telling that sets up the
expectations for the rest of the movie which applies to games so
well. As this is a game, we don’t want to Show or Tell, we need
to ‘Do!’. Players need to learn about games by doing and feeling
good about their achievements quickly.

131Mobile Gaming

3. Scaffolding
If we succeed and manage to educate the players and set up
the right expectations of future value we have to keep them
playing. They need reasons to return. For a game to become
something we play regularly and for a long time we need to
understand what success feels like. We need to know that there
will be challenge and progression as well as a sense of purpose.
This means that we need to see ourselves fail and still want to
continue to play. We need a sense of unfinished business that
compels us to overcome the difficulty in playing again. We
have to understand the reasons to continue and have a series
of achievable goals, all without over-complicating the game.
One technique which can help with this is the cliffhanger
concept. There are two things which are happening here. First
we are accepting that we have to give our audience a natural
break from the playing experience and that is important. I am
not suggesting we have to prevent players from continuing, but
giving them the option to stop is useful for building engage-
ment as long as you give them a reason to return. That reason
to return could be to wait for more fuel, for plants to grow, for
a vehicle to repair or even for another player to visit your city.
The key is to create a sense that if your player does not return
they are missing out. Do not punish them. If we can encourage
players to want to return regularly and to create appointments
to play then we know that they are truly “engaged”.

131 132Mobile Gaming

4. Endgame
Once players are truly engaged, other factors become important
if we want to sustain their interest. We do need to move the
game forward with their changed needs. This might be in the
form of content or other kinds of playing extension. It might
also be through Social Play. This means creating commonality,
bonds and identification by establishing shared rules. When we
are designing games we have to think about how the rules we
use to create engagement and entertain also provide the means
for people to identify themselves with our game and provide
the means for them to express that. Social factors are incredibly
important and can have a marked impact, not just in terms of
engagement by also in terms or revenue. If buying an in-app
purchase will not just help me get more out of the game, but will
also make me look good to other players then I am much more
likely to do that.

It is interesting that social communities help create a depth
of engagement that some have referred to as ‘Whales’ but I
prefer to call “True Fans”. These are players who spend significant
amounts in your game and who can often be the principle source
of your income. In many games these players will not be hugely
social, indeed they spend much of the game trying to maximize
the effectiveness of play rather than engaging with others. How-
ever, the presence of other players creates the conditions which
enable those players to emerge. Without the Free Players we tend
not to get this True Fan level of engagement. It is important not
to confuse these players with people who are addicted. Addic-
tion is where individuals have a compulsion which overwhelms
their otherwise rational behaviour. In practice the majority of
True Fans are rational people who have made your game their
principle hobby. Addictive Behaviour is always detrimental to the
individual and we should do everything we can to help anyone
with these kinds of issues.

133Mobile Gaming

5. Churning
 The final lifestage we have to acknowledge is “Churning”. It is
inevitable that in the end players will stop playing our game.
We want to delay that as long as possible, but to fail to plan
for that is going to cause us more problems. To understand
what keeps people playing over an extended time period I
get people to think about “The Columbo Twist”. This is based
on the classic detective show featuring actor Peter Falk as
the eponymous bumbling lieutenant. What made this one of
the best television shows of all time is that it did something
odd for a murder mystery. You saw who did it. Where is the
mystery for a show about murder if you know who did it? Well
it turns out that the joy of watching this show was in waiting
for Columbo to say those famous four words… “Just One More
Thing!” that always happened in the last few minutes of the
show. He would have talked to the murderer for the 4th or 5th
time talking about the most random seeming evidence. Then
he would hit you with that phrase and you knew this was when
he would tell you everything about the murder. Not just who
did it but why and how Columbo had worked it out. That was
the predictable payoff you were waiting for. You knew it was
coming and were waiting for it. What in your game keeps your
players coming back even when they know everything that is
going to happen?

133 134Mobile Gaming

Analytics and Game Flow

Designing your game from the perspective of the player's
lifestages is really important, but in order to leverage the
benefits of that strategy we need to know about how the
player responds to that experience and that means we need
to capture player activity in our game. For example, we might
wish to capture that a player was shot in a FPS game. We
might give that a name, say ‘PlayerShot’ and then store a
range of variables with that event. This could include the date
and time that the hit was resolved, an anonymised ‘PlayerID’,
the ‘X,Y,Z’ coordinates of their avatar, the damage taken, and
the anonymised ‘PlayerID’ of who fired the shot as well as the
sessionID for that game.

Importantly we do not have to capture everything. There
are some kinds of data which are static, reference information.
For example, the specific position in a specific map. As long as
the version of the map used at that time is known then X,Y,Z
coordinates alone can be used to create a heatmap later. We
can also infer a lot of data from other events as long as there
is some connecting information. For example, we do not need
to capture the level that the player is using for that game in
every event or even a list of all the players in that session.
We can capture that information with a specific ‘Start Session’
events and use the associated Session ID to allow us to iden-
tify everything that happened in that specific game session.

135Mobile Gaming

But even if we would want to capture everything, we will
never be able to do so: The data we collect will always be in-
complete, for example if the battery dies or the player switches
to a phone call – we will probably not get the last upload. This
is less of a problem with a server-based game but it is never
100% and the compromise is that the game cannot be played
offline; impacting our chance for them to create habits of play.

Notice we want our players to remain anonymous. We do
not want or need to spy on our players but we do need to
understand how the game plays across all players.

What Events Should We Capture?
When considering which events to track, think of them in
terms of the timeline in which the player might encounter
them. There will of course be a ‘First Time Player’ experience,
but it can also be useful to map out more commonly experi-
ence 'Engaged player' session flow. We are not necessarily
mapping every button press directly. Instead you should look
for moments where there are meaningful choices. There is an
approach used by the food industry called HACCP7.

7 www.develop-online.net/opinions/navigating-the-hazards-of-game-
data/0187815 In essence the point is that we are looking for the ‘Hazards’
such as whether they churn (i.e. leave the game) but also trigger points for
more positive action such as paying for an IAP or watching a video Ad.

135 136Mobile Gaming

Some typical events worth tracking might include the
following:

 — GameMenuLaunch: AnonPlayerID; TimeIconLaunched
 — SessionLaunch: TimeSessionLaunched; AnonPlayerID(s);

SessionID; LevelIDSelected; OptionSelected
 — SessionStart: TimeSessionStarted; AnonPlayerID; Ses-

sionID;
 — ObjectiveSet TimeObjectiveSet; AnonPlayerID; SessionID;

ObjectiveID;
 — ObjectiveMet: TimeObjectiveMet; AnonPlayerID; Sessio-

nID; ObjectiveID; Score; Reward; XYZLocation
 — TargetHit: TimeTargetHit; AttackerID(AnonPlayerID?);

SessionID; TargetID(AnonPlayerID?); Damage, XYZLocation
 — PlayerDeath: TimePlayerDeath; AnonPlayerID; SessionID;

XYZLocation
 — LevelComplete: AnonPlayerID; SessionID; ObjectiveID;

Score; Reward; XYZLocation

From creating events in this way we can infer a huge
amount of information. For example, if we want to know the
percentage of players who complete a level we can count
the number of ‘GameMenuLaunch’ events with the number of
‘LevelComplete’. But we can also get smarter with our analysis.
We can look at how many people completed a specific Objec-
tiveID in a specific ‘LevelIDSelected’ and compare that to the
number of ‘LevelComplete’ in the subsequent level to find out if
skipping objectives in earlier levels have a particular impact on
performance later.

Data capture like this can be very powerful, however the
way you capture information will be inherently biased towards
your understanding of the way the game is ‘meant’ to be
played. This means that we have to constantly review our
metrics. The biggest issue is that we cannot capture what play-
ers ‘will do’ or ‘might have done’. That might seem obvious but
we will be using insights from analytics to inform our design
decisions. If it is true that only 2% of players spend money in
a Free2Play game then that means we do not know what would
have triggered the other 98% to spend. There might not be
anything that would have convinced them but the point I am
making is that the data we capture cannot ever be complete
and that means we have to consider statistical significance and
be very wary of assuming causation rather than correlation.
Looking at the life cycle of a player helps us mitigate this be-
cause we can breakdown each decision stage and look for ways
to increase the likelihood of converting players at each stage.
It is all about asking the right questions at the right time.

Free vs. Paid

The arguments between free and paid games have become al-
most tribal amongst game developers asking whether business
models have tarnished the nature of game design, even asking
questions about the morality of these money focused designs.

Looking in economics terms, it is clear what happens when
supply goes up, prices fall. With an effectively infinite supply,
the price falls to zero. This is exactly what has happened and
why Free2Play is so dominant. But wait, what about the 7%
of revenue for iOS on premium games? Like any market, when
dealing with competition, we have a choice. We can either seek
volume (create a commodity) or differentiate (create a niche).
Successful premium games are the ones which have been able

138Mobile Gaming

to attract an audience by offering something they perceive to
be of greater value than the rest of the games available. Games
like Monument Valley or The Room have shown that this is
still possible, and they are noticed because of their premium
pricing. This has not been at the scale of the revenues of the
top performing Free2Play games, despite considerable profiling
by app stores.

The movement towards free has not proved an easy path for
many developers and attempts to 'clone' the business models
of games like Clash of Clans or Candy Crush have rarely seen
even a comparable level of success. This is despite the formula
appearing on the surface to be so simple, take a simple game
mechanic and provide a new social context in order to make it
endlessly repeatable. Then add a form of friction which slows
the player down from attaining their goals but which is timed
to make success always 'just out of reach'. Allow people to pay
to remove this friction using consumable goods, but make each
goal the trigger to a new goal, also just out of reach.

Of course it is not that easy and this kind of formula is
something which can quickly become 'not much fun' and gener-
ate a lot of player churn. Even if the developer adds a barrel
full of data analytics to find out where players are churning or
to work out the best ways to squeeze more cash, in the end
the game inevitably dies. Worse than that, the more games feel
the same because of the rigid application of a business model
over and above the enjoyment of a game, the more players will
reject such games. If I feel that the game is merely an exercise
in getting me to open my wallet, just how engaged will I be as
a player?

What makes these games work, is understanding people
and building a service which allows them to feel competent,
in control and to escape their everyday lives. Revenue comes
when we can extend the players delight and engagement over
the longer term and give players a reason to want to spend

139Mobile Gaming

money. We need to build 'lifetime value' not just short term
income. We have to find a way to engage the player with the
content we are creating to delight them.

Done well, a Free2Play game unlocks the value of the free
player not just in terms of their viral potential, but in terms
of creating a brand and the conditions which encourages the
player to pay. However, Free2Play games do not have a great
reputation, especially amongst parents concerned about in-app
purchase and certain game designers. There have been a
number of high profile scandals, notably with children
‘accidentally’ running up $1000s in-app. I believe that this
argument has tarnished the image of the games industry as
a whole and got the attention of regulators including the EU
who have issued guidelines on the sale of in-app purchases
to children. However, to date the regulation seems to have
been sympathetic and sensible. Quite rightly, they have asked
designers and games retailers to communicate what is for sale
and how that is accessed, particularly by an underage audience.
It asked the platform holders to make important but minor
changes to the way the platforms work (which was largely
happening anyway). In short to clarify the expectations which
are already enforced by existing legislation.

Free2Play games designers often talk about Operant Condi-
tioning, and in particular an experiment known as ‘The Skinner
Box’. These boxes, named after the psychologist who created
them, allowed animals to obtain food by pressing a button. The
experiment found that varying the rate at which the button
released the food affected the behaviour of the animals. The
premise being that in games designers find ways to give players
rewards and this is an equivalent method of conditioning. It is
true that some experiments have shown Skinner Box condition-
ing can work on humans, at least in the short term. In games
we do not control all the stimuli or use food (or other low-level

139 140Mobile Gaming

needs) as motivation. As designers there are much more
powerful methods to retain a player than giving out short term
rewards. We can tell stories. We can delight with visual and
audible stimulus. We can create games which become shared
social experiences. All of these have a much greater effect to
stimulate users than any operant conditioning exercise. In
the short term we could (but should not) manipulate players,
especially vulnerable individuals such as children. Doing so will
not last over time and will in the long term reduce our life-time
value. It is much more commercially effective to make better
games.

Addiction is something we have always used as a shorthand
to say that a game was good and compelling. Now it has
become a source of concern. Any game will reward players
with a dopamine release when they succeed. This creates a
physiological response not dissimilar to drug taking or physical
exercise. We know in the case of gambling that this kind of
body chemistry can create addiction, which as said before is
a compulsion that overwhelms otherwise rational behaviour.
Games are not gambling, this activity has a very different
stimulus to games. With gambling the rush is based on the
uncertainty and the stake which we put on the line. That
uncertainty remains each and every time we gamble. With
games we learn the mechanics, reducing the level stimulus
over time. Whilst games addiction is a recognised problem,
it is something that comes under the term of behavioural
addiction where an activity becomes compulsive. This is still
under research and not currently included in the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5).

141Mobile Gaming

In-App Purchase
The easiest way to understand Free2Play is to realise that these
games have simply taken the retail side inside the game. That
means that the people who know the game and its players best
(i.e. the developers) can identify items that players will love
that compliment and enhance the experience for all players;
and sell them directly to the audience that loves that game.
However, many of the current games have focused on the
relatively simplistic implementation of some kind of energy or
similar 'blocking' system where you are restricted from playing
the game until either time has passed or you spend money.

This can be highly unsatisfying, depending on the game but
fortunately it is not the only way to build in game monetisa-
tion and arguably has lead to unhelpful discussions about the
ethics of Free2Play design. However a South-Korean study8
revealed an important truth in games purchase behaviour:
Players do not spend money because they are happy or (sadly)
because they like the developers. They spend because they
expect future value.

As a result we need to know what players need at their
different life stages and satisfy that. Just like any purchase
decision, in-app games offerings have to overcome the poten-
tial objections ('Customer Behaviour as Risk'). The following
examples show how some games attempt to do this.

 — Unfinished Business: Games like Kim Kardashian Hol-
lywood do an amazing job with the narrative progression
and the format of what are essentially ‘Cookie Clicker’ tasks
to create an entertaining sense of unfinished business. The
gameplay may appear to be limited but player engagement

8 staffweb.hkbu.edu.hk/vwschow/lectures/ism3620/c26.pdf

http://staffweb.hkbu.edu.hk/vwschow/lectures/ism3620/c26.pdf

141 142Mobile Gaming

is in fact very real – always leaving the player wanting
more.

 — Continued Relevance: Games like the VEGA Conflict show
items the players have already unlocked and what they will
be able to unlock later in the game. There is a comparison
of stats and costs to demonstrate the continued relevance
of what we have already unlocked as well as why we
should continue playing to unlock more.

 — Social Capital: Too many games ignore the impact of
social visibility on not only purchase behaviour but
satisfaction levels and virality. Especially where players
have the ability to personalize their experience. This was a
key to revenue for Playstation®Home (now shutdown) with
examples like the ‘Gold Suit’ offering its wearers social
kudos for owning them.

Many games will have a high proportion of spending
happening in the first few hours of player starting a game,
however this is wasted if those players do not spend more than
once. If that happens for most of our paying players, then we
should consider our monetisation design a failure. As designers
we always have to consider why one player making a purchase
makes the experience better for everyone and why they would
do that again. And again. And again...

143Mobile Gaming

Developers looking to provide a greater level of utility
(or expected value) from the goods they sell in the game are
starting to take a more game design approach to the kinds of
goods we offer players. I like to break these down into four
categories:

1. Sustenance: Goods we require to continue playing
2. Shortcuts: Goods which speed up the actions we are

 performing
3. Socialisation: Goods which are primarily about social

 capital
4. Strategy: Goods which open new playing options

These goods can come in various forms:

 — Consumable – a one-time use item
 — Capacity – something which enhances growth/play
 — Permanent – a permanent upgrade or unlock item
 — Generators – an increase in the supply of a consumable

Looking at the player's journey of your game, you should
then be able to identify a point in the game mechanic or the
context loops of play (perhaps even the metagame) where you
can combine these types and forms. For example in a driving
game fuel is a Consumable/Sustinence good; but you can also
consider selling an increase in the size of the fuel tank (a
Capacity/Sustinence good) or to offer a petrol pump which
delivers X Fuel per day (a Generator). Then when a player
upgrades to an aspirational car part of the strategy of play can
be influenced by whether this uses more or less fuel that the
other cars you own.

143 144Mobile Gaming

Critical to your success for in-app purchase comes not just
from making what you sell desirable but also making sure
that it can scale. We want our players to buy again and again
and again and that only happens when we deliver predicable
consistent and still suprising value. If our game has only one
measure of success then how can we create scalable value.
Take a first person shooter, if I am going to spend money at all
then why would I buy anything other than the biggest most
powerful gun I can afford? and when I do that any previous
purchase of a gun is redundant. But! if guns have contrasting
benefits like armour piercing, area affect, silencer, etc then we
create reasons for buying a wider armoury of weapons.

For more detail on this check out my blog post on the Unity
website9

Advertising
Advertising in games is a highly successful way to complement
the revenues from in-app purchases. Indeed for some games
they can provide the principle revenue model. Traditional
ads like banners or interstitials work by providing an overlay
of some kind which interrupts the full playing experience.
However some of the biggest new games in the last year have
been using opt-in incentivised video ads. In this model the
player chooses to watch the game in order to get a small
benefit in the game.

There are a couple of factors which affect players’ willing-
ness to actively choose ads. The ad content itself must be
relevant, i.e. showing a game player an ad for another game,
and they should also be short – somewhere between 15-30
seconds. However, there usually has to be something in it for

9 blogs.unity3d.com/2015/06/23/design-driven-in-app-purchases-creating-
sustainable-monetisation

http://blogs.unity3d.com/2015/06/23/design-driven-in-app-purchases-creating-sustainable-monetization/
http://blogs.unity3d.com/2015/06/23/design-driven-in-app-purchases-creating-sustainable-monetization/

145Mobile Gaming

the player. That might be a number of things from coins or
resources in the game, to extra lives. Yet these rewards also
have to be relevant to the player and repeatable – there must
always be a reason for the player to watch another ad. If I un-
lock a major item or a new level by watching one video, that is
a great value but unlikely to create the scale of views needed
to drive enough revenue to make that worthwhile. Equally, if
watching videos unlocks enough power-ups to imbalance the
game then you have broken the reason to play.

Angry Birds Go uses video ads to allow players to obtain
a free boost, but only at the start of the race. This does not
overpower the experience but it does require a player to switch
their attention from the game strategy to the video playback.
The motivation is clear: If I want a boost in my next race then
I will get it by exchanging my time watching this advertise-
ment.

Sonic Dash offered an option with the game to continue
their existing run after ‘dying’ either using a ‘revive’ token or
by watching a video ad. Interestingly the timing of the ad
(around 15-20 seconds) also allowed the player to take a short
break from the intensity before restarting play, which can help
performance as well as motivation.

Yet another approach can be seen in Crossy Road where
they offered players a small amount of extra coins for watching
the video. These coins were used in exchange for a random
character (all of which add delight but without changing the
gameplay). Interestingly the random nature of the benefit
meant this did not cannibalise the purchase of those charac-
ters - in fact it made the decision to purchase easier! Hipster
Whale did something else that was interesting. They capped
how often you could see an ad to a predictable time frame,
making it even more desirable.

145 146Mobile Gaming

What is important is that the payoff for watching the video
is intrinsically part of the game itself. There is no separate
incentive to download the advertised game, but if they choose
to then it is because they liked the look of the game. That is
what at the end of the day provides the revenue and at the
same time reinforces their engagement with your game.

Getting Discovered

If you have followed these guidelines then you will have
already put your game design into the best form that suits
your audience and that itself will (hopefully) give you a
fighting chance. However, that alone is not enough. We have
to use every possible communication route we can and that
usually requires investment. It is still possible to succeed
without spending money on advertising, but you have to be
the winner of a global lottery ticket. This applies on mobile
games as on any other kind of mobile app as well. Some hints
how to market your software can be found in the monetisation
chapter. Additionally here are strategies which you might want
to think about especially for games.

Getting noticed by the press can help, particularly if you
participate in games awards such as Pocket Gamer’s Big Indie
Pitch10 or the Indie Awards at Casual Connect11. If you can get
the attention of YouTubers that may also help.

Spending money on advertising can help, but it is impor-
tant to realise that you are competing with a lot of people
and some big players who are seeking large audiences. It is
important to remember what you are trying to achieve when
creating an advert. There are two motivations, building aware-

10 www.pocketgamer.biz/events

11 indieprize.org

http://www.pocketgamer.biz/events/
http://indieprize.org

147Mobile Gaming

ness and direct action (i.e. downloading the game). In games
we are able to put adverts in other games and apps on the
same device we want the players to experience the game. There
is nothing getting in the way between the advert and the app
store. One click and you can buy/download the game. That is
an amazing thing, no other media has that kind of frictionless
experience.

Another peculiarity to be aware of is that the larger the
reach (range of players) you are looking for, the more expensive
each of the installs. This is because buying space on an
advertising network is based on a bidding process and the
results will be calculated on the basis of Cost Per Install, Cost
Per Mille (i.e. per thousand) or a blend of the two known as
eCPM (effective CPM) as well as Ad networks like Chartboost.
com or AppFlood.com which offer cross promotion.

Video based advertising is growing and allows the player to
instantly understand the nature of the game being shown. This
is often combined, such as with Unity Ads12, Vungle.com and
AdColony.com with incentives inside the game – such as free
currency. This kind of incentive is different from external incen-
tives such as offered by providers like Tapjoy and importantly is
not allowed on Apple’s network.

Regular events and outreach to the community allow us
to sustain and to grow our audience. Building on genuine
social experiences, such as the recording of gameplay videos
and sharing of community data (highscores etc) players can
help reach out to their friends and other potential players via
Facebook, Twitter, Everyplay and YouTube.

2015 marked a point where the role of social engagement
with games hit critical levels and YouTube personalities like
Pewdiepie and Yogscast are having significant impact on the

12 unityads.unity3d.com

http://www.chartboost.com
http://www.chartboost.com
http://appflood.com
http://www.vungle.com
http://www.adcolony.com
http://unityads.unity3d.com

147 148Mobile Gaming

take up of games, including mobile. Teams like Hipster Whale
and Seriously have made engagement with these important
celebrity influencers to help propel their games to the top of
the app store. However, like any medium this is becoming
increasingly commercial but it remains important to consider
the audience and why a YouTuber engaging with your game will
be entertaining for potential players.

On the eSports side it has been interesting to see that as
well as the huge audiences on online channels such as Twitch
that even television channels like ESPN have started to take
mass audiences watching games as seriously as other more
physical sports. The level of talent and professionalism in
the eSports market is now significant and game developers
are starting to consider how this will impact game design.
However it is still the case that there are very few mobile
games which can legitimately claim to have gained a strong
enough following.

In the end despite all the differences in the details, mobile
is like any other platform. We have to acquire, retain and
monetise our audience. That only happens if we entertain play-
ers in the way that works for their devices. Devices which are
perhaps the most social and most pervasive devices in human
history. Mobile gaming is thriving despite the hurdles and the
lessons learned will affect every aspect of game development.

149 Mobile Gaming

150Mobile Development & the Internet of Things

Mobile Development & the
Internet of Things
A decade ago there were two giants; the mobile industry and
the Internet of Things (IoT)1 lived separate lives without
speaking that much to one another. Each of them enjoying
trillion dollar turnovers, yet with little shared knowledge and
necessary insights on how to ultimately provide end-to-end
services for customers, as that would have required both giants'
concurrent attention. If the major players industrial internet
had early on followed the route paved by the consumer market,
and relied more on mobile terminals like mobile phones and
tablets to deliver services to end-customers, this chapter would
have brandished an abundance of tools, platforms and service
available today. However, this has not been the case and only
in the very last few years has there been any greater interest in
IoT involving modern smartphones, resulting in a lesser albeit
interesting solutions worth disseminating in these pages.

One of the drivers we see, is that several traditionally closed
hardware systems are opening up their service APIs, and move
codebases to GitHub2 and other open code repositories in order
to simplify developer access to industrial systems and services.
It looks very promising having big industrial corporations like
Ford, GE, Bosch, Cisco and Siemens migrating towards more
open standards, and exposing their bespoke product and ser-
vice APIs to developers accustomed to IP-based technologies.
For us in the mobile industry, we see an increasing interest
for hooking up phones to connected things is becoming more

1 also known as M2M (machine-to-machine), embedded or industrial internet

2 github.com/

B
Y

 A

le
x

Jo
ns

so
n

https://github.com/

151Mobile Development & the Internet of Things

commonplace, and many hardware devices are found to rely
on supporting mobile apps to obtain their full functionality
range. Moving out of the self-contained model allows them to
release products earlier, and ability to add a feature over time
by upgrading firmware, in tandem with the functionality and
number of mobile apps. The concept of releasing in this green
banana fashion has proven very useful also from a competitive
point-of-view and has spread from digital into the physical
world, thanks to dynamic software architecture, over-the-air
updating not to mention getting users into the habit to use
things that hardly work when first purchased.

New Roles for Mobile

Early uses for mobile devices were as windows on what your
smart devices were doing. These days mobile devices and
mobile apps can control IoT devices remotely, and can even
act as the sensor itself; where e.g. a user’s GPS position
is essential for many types of localisation of content, and
contextual services. In other cases the smartphone is a
gateway or proxy to sensors, like in the case of a wearable
sports tracker with bluetooth connectivity. Remote control-
ling, visualisation, storage, off-line functionality and well
as means of authentication are other probable roles. See
postscapes.com/internet-of-things-examples for more examples
from sectors like health, city infrastructure, environmental
monitoring or the classic industry.

http://postscapes.com/internet-of-things-examples/

151 152Mobile Development & the Internet of Things

Tools of the Trade

From a developer’s point of view, the occurrence and popularity
of the growing range of third-party tools and development kits
shows that there is a considerate interest in IoT apps. At the
time of this writing, the worldwide mobile industry has grown
13% the last year alone and still is pretty much a two-horse
race between Android and iOS. The industrial side will most
probably mimic this relation even though there will be more
Apple devices represented in the US and European markets.
Many IoT developers continue to use Apple's and Google's
toolkits for development, while several newcomers have been
made available for developing mobile apps by other means, and
using other languages. Here are some examples of typical tools
for development within IoT:

 — IBM Mobile First, Enterprise and industrial tools,
formally known as Worklight, more focus on iOS:
ibm.com/mobilefirst

 — Ionic, front-end development tools, addressing multi-
platform UI: ionicframework.com

 — Xamarin, develoment in C#, support many native features:
xamarin.com

 — Evothings, rapid development suite for native/hybrid apps
using JavaScript: evothings.com/download

 — Waygum, an application platform for mobile IoT, with
mobile front-ends: waygum.com

http://www.ibm.com/mobilefirst/
http://ionicframework.com/
https://xamarin.com
https://evothings.com/download
http://waygum.com

153Mobile Development & the Internet of Things

The Devilish Details

Every market segment of IoT; from wearables to real estate
automation, from medical applications to surveillance and
fleet management has their own special needs and challenges;
offline usage, large datasets, need for strong encryption, real-
time interaction without delay or high demands on bandwidth
and/or accessibility on a global scale. No single tool or library
covers them all. The context in combination with the wrong
feature set may limit your implementation options. Contextual-
ly adaptive functionality, often in tandem with open standards
is the way to prevail in the early phases of this market, until it
has hit the level of maturity that many other segments in the
mobile ecosystem have reached.

"What makes an IoT app?", someone might ask at the dinner
party. "Isn't it just any ol' database client on a smartphone,
so what’s the big deal?" Well, cloud access is an important
component, but not the only important one. The devil lies, as
usual, in the details. Let us say you are auditing your power
consumption in your house, and there is a gadget connected
to your fuse box. It speaks continuously to a data collecting
service via a RESTful interface over HTTP, and you can as an
effect access a web page riddled with graphs via your tablet.
But now your customer wants to read historical data when
offline, or read a NFC tag, or perhaps send a friendly SMS
reminder when the sauna is the right temperature. Or why not
scan for some iBeacons over the phone's Bluetooth Low Energy
radio? Suddenly your project has snowballed beyond the safety
of the web container, not to mention your mobile web project's
budget. Then a native solution using Apple's and Google's
tools, or for many cases a hybrid application is the way to go.

153 154Mobile Development & the Internet of Things

Going hybrid for rapid prototyping
As a software engineer, there is good reason to look at hybrid
tools for development and prototyping, especially when you
are on a budget or need to make an app with several versions
(function sets, languages, various UIs et cetera). Web and
scripting technologies are intrinsically easier to grok for the
novice developer3. They also enable faster development also
for the journeyman developer to create a decent UX, and then
select from a variety of industry-strength third party libraries
to implement the intrinsically native parts of your app.

One of the more popular base technologies for hybrids is the
Apache Cordova project, sibling to its commercial incarnation
Phonegap4. Several commercial hybrid SDKs use Cordova as one
cornerstone, noteworthy Mobilefirst (IBM), Salesforce One (by
Salesforce), Evothings Studio by Evothings, Appgyver and the
Intel XDK. By its open plug-in architecture, web and native
components (purposely built for each target OS) can be mixed
and matched freely, with the end goal to create either an xCode
project for iOS or an Android app for publishing on appstores.
There are also tools and libraries available outside of the
Cordova family, while few are focused solely on IoT applica-
tion development, they may well have functionality useful to
industrial service development.

3 Check the cross-platform and the web chapter for more information about
the general potentials and limitations of the hybrid approach

4 phonegap.com

155Mobile Development & the Internet of Things

Communications and Protocols

One of the standing issues in development for the Internet
of Things (IoT) is the occurrence of exotic communication
protocols for a mobile programmer, with names like XMPP5,
MQTT6 and CoAP7. Smartphone apps need ways to communicate
using some of these protocols to interact with devices running
as IoT. Thankfully some implementations are available such
as the Eclipse Paho project which includes an Android client8.
MQTT can run both over raw TCP/TLS sockets and Websockets,
which allows also this format to run inside a web browser.

To be able to interact over low-level TCP and UDP based
networking, transport security et cetera, technologies like
Chromium sockets (i.e. Berkeley sockets nicely wrapped for
javascripters) available as plug-in technology for Apache
Cordova needed to be introduced.

Establishing mobile plug-in support also for TLS (Transport
Layer Security) is also a step forward towards end-to-end
strong security from sensor to mobile device safeguards IoT
services from many of the uncertainties that face web services
and APIs exposed to the public Internet. Coming from the
old embedded world can be scary for an organisation who has
been enjoying bespoke networking not sharing cables with
anyone, and then in the flash of an instance after connecting a
HTTP gateway to the old M2M system, get all the possibilities,
horrors and problems that the internet residents have seen

5 xmpp.org/

6 mqtt.org/

7 tools.ietf.org/html/rfc7252

8 eclipse.org/paho/clients/android/

http://xmpp.org/
http://mqtt.org/
http://tools.ietf.org/html/rfc7252
http://www.eclipse.org/paho/clients/android/

155 156

for more than 20 years. Securing the messages, securing the
channel is the way to obtain a peace of mind.

So in the wake of learning users more than a this database
client, “ löschen und ersetzen durch: “IoT apps proved over
time to be more than simple web-based database clients, and
will be doing much more than visualising server-side generated
data views. A second wave of apps is coming our way in where
IoT mobile services o phones converse directly over short-range
radio, using low-level IP-based protocols for sensor data and
telemetry messaging with a minimum of overhead. The prevail-
ing standard here is Bluetooth Smart, which lately has acquired
an increased sense of security as well as meshing capabilities.
Two of the most interesting application thereof are both
chipsets allowing the bluetooth radio to be in announcement
(broadcasting) mode and connect services concurrently, which
takes Bluetooth as a concept beyond the somewhat limiting
one-phone-one-device concept. The other being the open
Eddystone bluetooth beacon format, assisting in having users
consume contextually relevant
mobile services on location without
access to any centralised hub
or third party servers. It allows
end-users to discover and evaluate
services limited to
a geographical area, a service
type or system role.

156

157

Lean More

 — Introductory article comparing IoT protocols:
electronicdesign.com/embedded/understanding-protocols-
behind-internet-things

 — A Cisco view on IoT Application Protocols: blogs.cisco.
com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols

 — Scaling the Internet of Things Video by Yodit Stanton
recorded at ODI Summit 2015:
youtube.com/watch?v=MP2HLCNPgJ0

 — Eclipse IoT protocols: iot.eclipse.org/protocols.html
 — Realtime data with MQTT, video covering MQTT and IoT

topics: youtube.com/watch?v=gj8mcn9oWgE
 — IoT Demonstration using WebSockets: developer.mbed.

org/cookbook/Internet-of-Things-Demonstration
 — Vision Mobile report on the IIoT landscape:

visionmobile.com/product/commerce-of-things-2015

http://electronicdesign.com/embedded/understanding-protocols-behind-internet-things
http://electronicdesign.com/embedded/understanding-protocols-behind-internet-things
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
http://blogs.cisco.com/ioe/beyond-mqtt-a-cisco-view-on-iot-protocols
https://www.youtube.com/watch?v=MP2HLCNPgJ0
http://iot.eclipse.org/protocols.html
https://www.youtube.com/watch?v=gj8mcn9oWgE
http://developer.mbed.org/cookbook/Internet-of-Things-Demonstration
http://developer.mbed.org/cookbook/Internet-of-Things-Demonstration
http://www.visionmobile.com/product/commerce-of-things-2015/

157 158Mobile Development & the Internet of Things

To end this chapter in a progressive manner, here are some
good starting points, representing some of the stakeholder
of the industry, software, hardware, aggregators and service
providers.

 — Estimotes Blog: estimote.com, Manufacturer of iBeacons
and mobile SDK

 — Evothings Studio examples and templates:
evothings.com/developer

 — IBMs IOT Foundation: internetofthings.ibmcloud.com, IoT
cloudware & apps

 — IFTTT: ifttt.com, If-This-Then-That - a cloud company
connecting events over the internet

 — Intel IoT, and the Intel XDK: software.intel.com/en-us/iot,
Devtools for microcontrollers and mobile apps

 — Parse IoT: parse.com/products, Back-end company with
lots of client code & libraries, running on top of Amazon

 — Phant by Sparkfun: data.sparkfun.com/, Maker of IoT
hardware and accessories, here linking to their nifty IoT
server-side backend, perfect for app makers who want to
own their own data.

http://estimote.com/
https://evothings.com/developer
https://internetofthings.ibmcloud.com/
http://ifttt.com/
http://software.intel.com/en-us/iot
http://parse.com/products
http://data.sparkfun.com/

160Apps for Wearables

Apps for Wearables
After pioneering work of Metawatch, Pebble and many more
companies, Google released Android Wear in spring 2014 and
various manufacturers released compatible smartwatches. Sam-
sung released a variety of Tizen powered watches and Microsoft
brought its Microsoft Band fitness tracker to the market. Apple
also unleashed its range of Apple Watches at the end of 2014.

The Ecosystems

Arguably the biggest platforms are Pebble, Android Wear, the
Apple Watch and Samsung Tizen. There are also Android stand-
alone watches and a whole range of popular activity trackers
from companies such as Nike, Jawbone, Fitbit, Misfit, Razer
and Microsoft. Many wearables have a lousy track-record when
it comes to battery life, which is why a couple of companies
such as Martian, Withings or Cogito fuse traditional time-
pieces with smart enhancements. Instead of having runtimes
that are measured in days, these watches endure six months or
more on a single battery.

An interesting development is that the big smartwatch
platforms increase the ecosystem lock in. Android smart-
watches require a Google certified Android device that comes
with Google Mobile Services, so Android Open Source Platform
(AOSP) devices won’t do. Samsung Tizen enabled watches work
best with Samsung phones and Apple Watch, perhaps unsur-
prisingly, requires an iOS device to work correctly.

Interaction wise you have to differentiate between
standalone apps that run on your watch and companion apps
that run on your phone but display content on your watch.
Many smartwatches turn out to be fairly dumb when removing

B
Y

 R

ob
er

t
Vi

rk
us

161Apps for Wearables

the connected phone, but with some you can even add a SIM
card and make calls using the watch directly.

While there are sobering statistics about declining usage
of wearables after they have been purchased, wearables as
category have firmly established themselves. So now that you
support phones and tablets and possibly PCs, please go ahead
and add another form factor to your development plans – and
while you are at it, do not forget TVs and cars!

Smartwatches

Designing UX for Smartwatches
Whatever platform you might choose: Pay attention to the
user experience of your smartwatch apps. As you have very
little space you need to bring your point across very clearly
and without superfluous information. Do not bug your users
with too many notifications or by requiring precise input. Some
devices support touch interactions, but others use traditional
watch buttons only. Touches and other gestures may be hard to
do correctly on a tiny watch face especially when the user is on
the move.

Consider which notifications would be useful to the user,
and whether it is practical to allow the user to pick their
preferred notification, for instance vibration when in a meet-
ing, and so on.

 — Pebble provides an excellent UX guide as part of their
design best practices1. The guide includes navigation,
design and interaction patterns.

 — An in-depth article is available from Nielsen Norman

1 developer.getpebble.com/guides/best-practices/design

http://developer.getpebble.com/guides/best-practices/design

161 162Apps for Wearables

Group2 which combines a review of the Samsung Galaxy
Gear smartwatch with design guidelines for smartphone
apps.

 — Jonathan Kohl wrote a comprehensive article on designing
products for smartwatches and wearables3

Android Wear
Android Wear targets – as the name suggests – more than
smartwatches, but as of writing this chapter the only Android
Wear compatible devices out there are smartwatches. Vendors
such as LG, Motorola, Asus, Sony and even Samsung released
Android Wear powered watches.

Your starting point for development is
developer.android.com/wear. You will always need an Android
app that contains the wearable app. You can choose different
integration levels for supporting smartwatches:

 — No integration: your notifications will still be shown on a
connected smartwatch. Bear in mind that this sometimes
lead to a notification overload for the user, so be sparse
with notifications.

 — Android Wear enhanced notifications: you can optimise
notifications for display and interaction on the smart-
watch. You can add pages, big views and smartwatch
specific actions to your notifications.

 — Voice action: you can register voice actions that are
triggered on the watch to allow a hand free interaction
with your app.

2 nngroup.com/articles/smartwatch

3 kohl.ca/2014/lessons-learned-when-designing-products-for-smartwatches-
wearables

https://developer.android.com/wear
http://www.nngroup.com/articles/smartwatch
http://www.kohl.ca/2014/lessons-learned-when-designing-products-for-smartwatches-wearables/
http://www.kohl.ca/2014/lessons-learned-when-designing-products-for-smartwatches-wearables/

163Apps for Wearables

 — Wearable app: you can create apps that run on the smart-
watch directly and thus have access to sensors etc. This is
for example useful for an activity tracker app that allows
to track routes without needing to carry your phone with
you at the same time (this requires a GPS enabled watch,
of course). You can use most Android APIs in your wearable
app, only few libraries are not supported: the packages
android.webkit, android.print, android.appwidget, android.
app.backup and android.hardware.usb cannot be used.

You can use the Android Wear emulators for testing pur-
poses, but a real device allows you to fine tune the experience
better. For general Android development please refer to the
Android chapter. Keep up with the latest Android Wear develop-
ments by joining the Android Wear Developers community4.

Apple Watch
The first range of Apple Watches was released in Q1 2015.
Apple Watches come in different sizes and a variety of colour
schemes to cater for different tastes (and pocket depths).

Start development by visiting developer.apple.com/watchos.
While you cannot create pure standalone apps with the initial
version of the WatchKit, you can use these options:

 — Actionable notifications: create notifications that are
displayed on the Apple Watch and allow the user to
interact with them.

 — Glances: A read-only rich information.
 — WatchKit Apps: apps can contain WatchKit extensions

that run in the background of your iPhone and remotely

4 plus.google.com/communities/113381227473021565406

https://developer.apple.com/watchos/
http://plus.google.com/communities/113381227473021565406

163 164Apps for Wearables

update and interact with the UI that is displayed on the
AppleWatch.

 — ClockKit: Add additional information to the clock face
with so called Complications.

Samsung Tizen
Samsung's initial range of smartwatches operated on
proprietary Android forks. In 2014 Samsung started to offer
dedicated Tizen-based “Gear” watches and even rewrote the
firmware of their existing watches to use Tizen. Currently the
standalone-capable, curved Samsung Gear S is surely one of the
most iconic smartwatches out there.

Your starting points for Tizen smartwatch development are
developer.samsung.com/gear and developer.tizen.org. You can
start supporting Tizen smartwatches by sending rich notifica-
tions5 that are actionable. The easiest way to develop Tizen
standalone smartwatch apps is to embed a Tizen HTML5 app
within your Android app. For communicating between your
phone based app and your Tizen app you have to use the SAP
SP (Samsung Accessory Protocol Service Profile, a name only a
mother can love) – basically a byte-array based protocol that
requires your own serialization.

To keep up with the latest Samsung Gear news follow the
Samsung development Twitter channel @samsung_dev.

5 developer.samsung.com/galaxy#rich-notification

http://developer.samsung.com/gear
http://developer.tizen.org
http://twitter.com/samsung_dev
http://developer.samsung.com/galaxy#rich-notification

165Apps for Wearables

Pebble
Pebble is with Metawatch one of the pioneers of the modern
smartwatch movement. Pebble nowadays has variety of watches
with round and coloured displays.

Your starting point for pebble development is
developer.getpebble.com. Standalone apps are written in C. You
can either use the browser based cloudpebble IDE6 on any OS
or the Pebble SDK on Mac and Linux systems. You can also use
Javascript for developing companion apps that are executed
on the phone but can display status updates and more on the
phone. An early unofficial version of an emulator is available
at GitHub7. With background apps, access to sensors and
AppMessage/AppSync communication options you can create
great Pebble apps.

Follow Pebble on Twitter via @PebbleDev.

Activity Trackers

There are many activity trackers with associated developer
opportunities. Often the only option is to get access to cloud
data so that you can create your own statistics, but some
devices also support standalone apps. These are the most popu-
lar trackers along with the corresponding developer site:

 — Fitbit, dev.fitbit.com
 — Garmin, developer.garmin.com/connect-iq
 — Jawbone, jawbone.com/up/developer
 — Misfit, build.misfit.com
 — Microsoft Band, developer.microsoftband.com
 — Nike, dev.nike.com

6 cloudpebble.net

7 github.com/PebbleDev/qemu_pebble

http://developer.getpebble.com
http://twitter.com/PebbleDev
http://dev.fitbit.com
http://developer.garmin.com/connect-iq
http://jawbone.com/up/developer
http://build.misfit.com
http://developer.microsoftband.com
http://dev.nike.com
http://cloudpebble.net
https://github.com/PebbleDev/qemu_pebble

165 166Apps for Wearables

 — Polar, developer.polar.com
 — Razer Nabu, developer.razerzone.com/nabu

Smart Glasses

Smart glasses augment the reality with context dependent
information - either about what you are looking at or about
your current task or both.

Currently smart glasses are mainly used in work scenarios,
as their pricing and limited runtime are less attractive for end
consumers. One of the best known smart glasses - Google Glass
- was shut down and is now being remodelled for business
usage. Microsoft's HoloLens was named as one of the top
"inventions of the year" by the Time Magazine in 2015.

Here are some smart glasses that are currently in produc-
tion:

 — Epson Moverio8
 — Google Glass9
 — Microsoft HoloLens10

 — Sony Smart Eyeglass11

 — Vuzix M10012

 — Westunitis InfoLinker13

8 epson.com/cgi-bin/Store/jsp/Landing/moverio_developer-program.do

9 developers.google.com/glass/distribute/glass-at-work

10 microsoft.com/microsoft-hololens/developers

11 developer.sony.com/develop/wearables/smarteyeglass-sdk

12 vuzix.com/developer

13 westunitis.co.jp/web/global/wearable/infolinker

http://developer.polar.com
http://developer.razerzone.com/nabu
http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio_developer-program.do
https://developers.google.com/glass/distribute/glass-at-work
http://www.microsoft.com/microsoft-hololens/en-us/developers
https://developer.sony.com/develop/wearables/smarteyeglass-sdk
https://www.vuzix.com/developer
http://www.westunitis.co.jp/web/global/wearable/infolinker

167 Apps for Wearables

168Application Security

Application Security
Readers of this guide know how widespread smart mobile
devices have become and how useful mobile apps can be.
Mobile devices are also much more personal than personal
computers ever have been. People wake up with their phones,
stay close to them all day, and sleep next to them at night.
Over time they become our trusted ‘partners’.

Many of these apps take advantage of this closeness and
trust. For instance, your phone might be treated as part of the
authentication for accessing your bank account. Or your tablet
could get direct access to the online movies you have bought.
The device might even store a wallet of real money for making
payments with Near Field Communications (NFC), or virtual
money like Bitcoins.

Mobile apps are attracting the attention of hackers and
thieves whose interests extend well beyond getting a 99 cent
app for free. In Q3 2015 Kaspersky Lab detected 323,374
new malicious mobile programs1. The historical network and
endpoint based defences (like anti-virus tools) are not enough.
Embedding security into the mobile application is critical.

The architecture of mobile apps continues to evolve. Some
apps are native-only, and require distinctly different code
bases for each different mobile operating system. Some are
web-views, little more than a web site url wrapped in an icon.
Others are hybrids, a combination of native app functional-
ity with web views. Most mobile apps need to connect with
backend services using web technologies to fetch or update
information. Like web apps, classic application security needs

1 securelist.com/analysis/quarterly-malware-reports/72493/it-threat-
evolution-in-q3-2015/

B
Y

 D

ea
n

Ch
ur

ch
ill

169Application Security

to be used with mobile apps. Input needs to be validated for
size, type, and values allowed. Error handling needs to provide
useful error messages that do not leak sensitive information.
Penetration testing of applications is needed to assure that
identification, authentication and authorisation controls can-
not be bypassed. Storage on the devices needs to be inspected
and tested to assure that sensitive data and encryption
keys are not stored in plain text. Log files must not capture
passwords or other sensitive information. SSL configurations
need to be tested.

Users want to use your applications safely; they do not
want unwelcome surprises. Their mobile phone may expose
them to increased vulnerabilities, for instance potentially their
location could be tracked using an inbuilt GPS. The camera and
microphone could be used to capture information they prefer
to keep private, and so on. Applications can also be written
to access sensitive information such as their contacts. And
malicious applications can covertly make phone calls and send
SMS messages to expensive numbers.

The application developer may be concerned about his/ her
reputation, loss of revenue, and loss of intellectual property.
Corporations want to protect business data which users may
access from their mobile device, possibly using your applica-
tion. Can their data be kept separate and secure from whatever
else the user has installed?

Threats to Your Applications

On some platforms (iOS and Android in particular), disabling
the built-in signature checks is a fairly common practice. You
need to consider whether or not it would matter to you if
someone could modify your code and run it on a jail-broken or
rooted device. An obvious concern would be the removal of a

169 170Application Security

license check, which could lead to your app being stolen and
used for free. A less obvious, but more serious, threat is the
insertion of malicious code (malware) that could steal your
users’ data, or inject illicit content and destroy your brand’s
reputation.

Reverse-engineering your app can give a hacker access to a
lot of sensitive data, such as the cryptographic keys for DRM-
protected movies, the secret protocol for talking to your online
game server, or the way to access credits stored on the phone
for your mobile payment system. It only takes one hacker and
one jail-broken phone to exploit any of these threats.

If your application handles real money or valuable content
you need to take every feasible step to protect it from Man-At-
The-End (MATE) attacks. And if you are implementing a DRM
standard you will have to follow robustness rules that make
self-protection mandatory.

Protecting Your Application

Hiding the Map of Your Code
Some mobile platforms are programmed using managed code
(Java or .NET), comprised of byte code executed by a virtual
machine rather than directly on the CPU. The binary formats
for these platforms include metadata that lays out the class
hierarchy and gives the name and type of every class, variable,
method and parameter. Metadata helps the virtual machine
to implement some of the language features (e.g. reflection).
However, metadata is also very helpful to a hacker trying to
reverse engineer the code. Decompiler programs, freely avail-
able, regenerate the source code from the byte code, and make
reverse engineering easy.

171Application Security

The Android platform has the option of using the Java
Native Interface (JNI) to access functions written in C and
compiled as native code. Native code is much more difficult to
reverse engineer than Java and is recommended for any part of
the application where security is of prime importance.

“gcc” is the compiler normally used to build native code for
Android, its twin-sister “clang” is used for iOS. The default set-
ting for these compilers is to prepare every function to be ex-
ported from a shared object, and add it to the dynamic symbol
table in the binary. The dynamic symbol table is different from
the symbol table used for debugging and is much harder to
strip after compilation. Dumping the dynamic symbols can give
a hacker a very helpful index of every function in the native
code. Using the –f visibility compiler switch2 correctly is
an easy way to make it harder to understand the code.

Compiled Objective-C code contains machine code and a
lot of metadata which can provide an attacker with informa-
tion about names and the call structure of the application.
Currently, there are tools and scripts to read this metadata
and guide hackers, but there are no tools to hide it. The most
common way to build a GUI for iOS is by using Objective-C, but
the most secure approach is to minimise its use and switch to
plain C or C++ for everything beyond the GUI.

Hiding Control-Flow
Even if all the names are hidden, a good hacker can still figure
out how the software works. Commercial managed-code protec-
tion tools are able to deliberately obfuscate the path through
the code by re-coding operations and breaking up blocks of
instructions, which makes de-compilation much more difficult.
With a good protection tool in place, an attempt to de-compile

2 gcc.gnu.org/wiki/Visibility

http://gcc.gnu.org/wiki/Visibility

171 172Application Security

a protected binary will end in either a crashed de-compiler or
invalid source code.

De-compiling native code is more difficult but can still be
done. Even without a tool, it does not take much practice to be
able to follow the control-flow in the assembler code generated
by a compiler. Applications with a strong security requirement
will need an obfuscation tool for the native code as well as the
managed code.

Protecting Network Communications
Network communications are vulnerable to snooping and
injection attacks. Apps can be installed and inspected in
emulators or simulators. Network analysers are freely available
and able to monitor, intercept, change and redirect network
traffic. Some governments monitor electronic communications
for censured topics. Protect all communications using HTTPS
instead of HTTP. Downloads of javascript libraries from public
sources, like map libraries, should use HTTPS, as hackers, using
MATE attacks, can inject malicious code into the download if
HTTP is used. Downloads of static content, like pictures, from
public sources, should use HTTPS, as hackers could replace
images with malicious content. One way to step up transport
security is to use asymmetric encryption between the server
and the mobile app (using public/private key pairs) to provide
end-to-end security. Mobile apps should validate that the
hostname or common name of the HTTPS server they connect
to is the correct, expected one. For sensitive corporate data
and applications, install Virtual Private Network (VPN) servers,
and install VPN clients on the mobile devices. VPNs generally
provide strong authentication, and secure transport above and
beyond HTTPS.

173Application Security

Protect Against Tampering
You can protect the code base further by actively detecting
attempts to tamper with the application and respond to
those attacks. Cryptography code should always use standard,
relatively secure cipher algorithms (e.g. AES, ECC), but what
happens if an attacker can find the encryption keys in your
binary or in memory at runtime? That might result in the
attacker unlocking the door to something valuable. Even if you
use public key cryptography and only half of the key-pair is
exposed, you still need to consider what would happen if an
attacker swapped that key for one where he already knew the
other half. You need a technique to detect when your code has
been tampered. Tools are available that encrypt/decrypt code
on the fly, run checksums against the code to detect tamper-
ing, and react when the code has changed.

Communications can be monitored and hacked between the
mobile app and backend services. Even when using HTTPS, an
intercepting web proxy (like Paros) can be setup on a WiFi con-
nection that will inspect encrypted traffic. Attackers can then
tamper with the data in transit, for profit or fun. So if really
sensitive data is being sent via HTTPS, consider encrypting/
decrypting application data between the mobile application
and the server, so that network sniffers will only ever see
encrypted data.

173 174Application Security

Protecting Cryptographic Algorithms
An active anti-tampering tool can help detect or prevent some
attacks on crypto keys, but it will not allow the keys to remain
hidden permanently. White-box cryptography aims to imple-
ment the standard cipher algorithms in a way that allows the
keys to remain hidden. Some versions of white-box cryptogra-
phy use complex mathematical approaches to obtain the same
numerical results in a way that is difficult to reverse engineer.
Others embed keys into look-up tables and state machines
that are difficult to reverse engineer. White-box cryptography
will definitely be needed if you are going to write DRM code or
need highly-secure data storage.

Best Practices

Do Not Store Secrets or Private Info
Minimise the amount of sensitive information stored on the
device. Do not store credentials or encryption keys, unless
secure storage is used protected by a complex password.
Instead, store authentication tokens that have limited lifetime
and functionality.

Log files are useful for diagnosing system errors and
tracking the use of applications. But be careful not to violate
the privacy of users by storing location information, or logging
personally identifiable information of the users. Some countries
have laws restricting the tracking information that can be
collected -- so be sure to check the laws in the countries in
which your app will be used.

Do not print stack traces or system diagnostics that hackers
can leverage to penetrate further.

Do Not Trust The Device
When you design an application, assume that the device will
be owned by an attacker trying to abuse the app. Perform the
same secure software development life cycle when building
mobile apps as you would for backend services. Do not trust
even the databases you create for your mobile apps -- a hacker
may change the schema. Do not trust the operating system
to provide protection -- many OS protections can be bypassed
trivially by jailbreaking the device. Do not trust that native
keystores will keep data secret -- some keystores can be broken
by bruteforce guessing unless the user protects the device with
a long complex password.

Minimise Permissions
Android has the concept of permissions, iOS has entitlements,
which allow the application access to sensors such as the
GPS and to sensitive content. On Android these permissions
need to be specified as part of creating the application in the
AndroidManifest.xml file. They are presented to the user when
they choose to install the application on their device.

Each permission increases the potential for your application
to do nefarious things and may scare off some users from even
downloading your application. So aim to minimise the number
of permissions or features your application needs.

Tools

Protection
Basic Java code renaming can be done using Proguard3, an
open-source tool and Arxan’s GuardIT4.

3 www.proguard.sourceforge.net

4 arxan.com

http://www.proguard.sourceforge.net
http://www.arxan.com

176Application Security

Two vendors for managed-code (Java and .NET) protection
tools are Arxan Technologies5 and PreEmptive Solutions6.

The main vendors for native code protection tools and
white-box cryptography libraries are Arxan and Irdeto7.

Main vendors for secure mobile source code scanning are
Checkmarx8 and HP9.

Techniques for protecting Android code against tampering
are documented at androidcracking.blogspot.com/. Arxan’s
EnsureIT allows you to insert extra code at build time that
will detect debuggers, use checksums to spot changes to the
code in memory and allow code to be decrypted or repaired
on-the-fly.

Sniffing
A standard free web proxy tool is Paros10. A standard network
sniffing tool available on common platform is Wireshark11.

De-Compiling
See the Hex Rays de-compiler12.

5 arxan.com

6 preemptive.com

7 www.irdeto.com

8 checkmarx.com

9 www8.hp.com/us/en/software-solutions/mobile-app-security/index.html

10 sourceforge.net/projects/paros

11 sourceforge.net/projects/wireshark

12 www.hex-rays.com

http://androidcracking.blogspot.com/
http://www.arxan.com
http://www.preemptive.com
http://irdeto.com
http://checkmarx.com
http://www8.hp.com/us/en/software-solutions/mobile-app-security/index.html
http://sourceforge.net/projects/paros/
http://sourceforge.net/projects/wireshark/
http://www.hex-rays.com/products/decompiler/index.shtml

177

Learn More

Here are some useful resources and references which may help
you:

 — Apple provides a general guide to software security13. It
also includes several links to more detailed topics for their
platform.

 — Commercial training courses are available for iOS and
Android. Lancelot Institute14 provides secure coding
courses covering iOS and Android.

 — A free SSL tester is provided by Qualsys Labs15.
 — Extensive free application security guidance and testing

tools are provided by OWASP16, including the OWASP
Mobile Security Project17.

 — A free mobile application performance monitoring tool
for IOS and Android is the AT&T Application Resource
Optimisation tool18.

13 developer.apple.com/library/mac/navigation/#section=Topics&topic=Security

14 www.lancelotinstitute.com

15 www.ssllabs.com/ssltest

16 www.owasp.org

17 www.owasp.org/index.php/OWASP_Mobile_Security_Project

18 developer.att.com/application-resource-optimiser

http://developer.apple.com/library/mac/navigation/#section=Topics&topic=Security
http://www.lancelotinstitute.com
http://www.ssllabs.com/ssltest/
http://www.owasp.org
http://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://developer.att.com/application-resource-optimizer

177 178Application Security

The Bottom Line

Mobile apps are becoming ever more trusted, but they are ex-
posed to many who would like to take advantage of that trust.
The appropriate level of application security is something that
needs to be considered for every app. In the end, your app
will be in-the-wild on its own and will need to defend itself
against hackers and other malicious threats, wherever it goes.

Invest the time to learn about the security features and
capabilities of the mobile platforms you want to target. Use
techniques such as threat modelling to identify potential
threats relevant to your application. Perform code reviews
and strip out non-essential logging and debugging methods.
Run a secure code analysis tool against your mobile code to
find vulnerabilities. Consider how a hacker would analyse
your code, then use similar techniques, in a safe and secure
environment, against your application to discover vulnerabili-
ties and mitigate these vulnerabilities before releasing your
application.

179 Application Security

180Accessibility

Accessibility

Why Accessibility is Important

In December 2015 the World Health Organization (WHO) stated
on their website that over 15% of the world's population have
some form of disability1 and rates of disability are increasing
due to population ageing and increases in chronic health
conditions, among other causes. This means that around 1
billion potential users could have difficulties using your app if
your app is not accessible.

There has been a huge increase in smartphone and tablet
use in the general population, this is no different for those
with disabilities. The WebAIM Screen Reader Survey2 shows
that there has been an astounding increase in smartphone use
by blind people who use screen readers. Older people might not
have used a computer at work; however they are finding that
they can get to grips with touch screen devices more quickly
than a traditional keyboard and mouse. As our population ages,
the levels of disability increase and this means more and more
people will have difficulty accessing services in the traditional
way. Providing an alternative accessible digital solution, will
ensure disabled people can continue to be independent.

For example, if they are unable to get out of the house to
do their shopping or banking, then providing accessible online
services means they can access these services independently. It
is important to recognise how important independent access to
services is for people with disabilities.

1 www.who.int/mediacentre/factsheets/fs352/en

2 webaim.org/projects/screenreadersurvey6/

B
Y

 S

al
ly

 C
ai

n

http://www.who.int/mediacentre/factsheets/fs352/en/
http://webaim.org/projects/screenreadersurvey6/

181Accessibility

There are lots of other reasons to make your apps accessible:

 — Implementing accessibility can often improve overall
usability: For example, if you ensure that every button
and form element has appropriate label, that is helpful to
everyone, not just those with disabilities as the user will
know how to interact with it. Embedding accessibility into
your apps ensures an excellent user experience for all.

 — It just makes good business sense: For example, people
with disabilities have spending power and if they find an
accessible app that works for them they will not only use
it, they will also tell others. You may discover a significant
new market when you develop apps that suit these users.

 — Access to goods and services for all is the law in many
countries: For example in the UK the Equality Act 2010
requires there to be access to goods and services for
everyone and this does include services which are provided
via an electronic means such as websites and apps. Public
bodies also have an anticipatory duty to ensure their
services are accessible, so they cannot consider accessibil-
ity as an afterthought.

 — Where accessible solutions are mandated by legislation,
your app may be the only option for that business to
realistically use: For example, your app may be able to tap
into government funded market sectors such as education
where legislation, such as Section 508 of the Rehabilita-
tion Act in the US, may mandate an accessible solution.

 — The organisation that the app is being developed for may
have a corporate social responsibility (CSR) statement or
program: For example, web and app accessibility provides
social inclusion for the people with disabilities which is a
primary aspect of corporate social responsibility.

 — Mobile platforms from Apple, Google and Microsoft leverage

181

their accessibility APIs for UI automation testing: Making
your app accessible can make automated testing easier.

What Accessibility Features?

As many of your potential users may have a disability this
can make it more difficult for them to use a mobile phone
and related apps. Disabilities could include various levels of
sight or hearing impairment, cognitive disabilities or learning
difficulties, physical disabilities, dexterity issues, and so on.

Many of these users rely on third-party software to assist
them in using their devices. This software is sometimes called
Assistive Technology, and includes different utilities depending
on the type of disability. Traditionally these types of software
or utilities have had to be 'added on' to a mainstream device,
often at high cost, in order to make them accessible or easier
to use for someone with a disability. Some smartphones and
tablets now provide robust enough Assistive Technology built
into the operating system that some users with disabilities
can use the devices without needing to pay for extra Assistive
Technology. What is offered depends on the platform and the
version of the OS. However - to work - these features may need
the app to be designed and implemented to support them.

 — Partially sighted users - Someone who is partially sighted
benefits from being able to change the font size, font style
and use of bold and colour contrast too. iOS, Android,
BlackBerry and Windows offer various options to change
these in the Settings. As well as the universal 'pinch to
zoom' feature, iOS, Android, Blackberry and Windows offer
a magnification or zoom feature, which enlarges a section
of the screen and keeps this magnification level when

moving throughout the phone. This has unique gestures
associated with it.

 — Blind users - Someone who is blind has to have information
on the screen and navigation around the screen announced
to them in synthetic speech. This is often called a 'screen
reader'. iOS was the first OS to offer a screen reader
built-in and it is called 'VoiceOver'. Android offers 'Talkback'
(fully featured since Android 4.1 Jelly Bean) which is fast
catching up in popularity with the blind community as it is
constantly improving. Windows delivered the Narrator screen
reader in Windows Phone 8.1, but it is currently not at
the point where it can be used to fully access the phone if
you are a blind user. BlackBerry offers a screen reader with
limited functionality in only few devices.

 — Users with hearing loss - Someone with a hearing impair-
ment will often make use of a smartphone that is hearing
aid compatible and offers features as iOS does such as 'LED
Flash for Alerts' or 'Phone Noise Cancellation'. There are
also options in settings for iOS and Android to switch on
subtitles and captioning. Making use of vibrate for alerts
is also helpful. A number of phones also provide support
for hearing aids and teletype (TTY) devices. A TTY device
allows people who have hearing loss or who are speech
impaired to type messages to anyone else who has a TTY,
using a telephone line.

 — Users with physical disabilities - If a user has a motor
impairment, they may well be using a third party hardware
product to access the phone, such as a switch as some
devices do support this. Alternatively they could be making
use of voice recognition to access the device.

 — Users with a learning disability - If a user has a cogni-
tive impairment or learning difficulty, then depending on
what the disability is, they may make use of the features

184Accessibility

in the settings that a partially sighted user does. Especially
something like colour options. Other users may make more use
of voice recognition.

For people with disabilities, their overall experience is affected
by how well an app works with the assistive technology. As these
features are built into the OS and can be switched on in the
settings, it is important that as a developer you consider that they
may be used with your app and ensure you test for this.

As screen readers and screen magnification in the OS makes use
of their own gestures, gestures in the app may be affected when
screen readers or magnification are enabled. For example a screen
reader user can navigate a screen using left and right swipes or
by exploring the screen by moving their finger across the screen
of the device in a consistent movement. As they undertake a
swipe, or encounter something underneath their finger, the item is
announced. So an item is selected by tapping once and opened by
tapping twice. When using screen magnification, depending on the
OS, they may need to use a three finger gesture. Including testing
early on with accessibility features ensures that these gestures are
supported by the app and that any redesign can happen before it
impacts on users.

One of the best ways to learn more about these features is to
switch them on and try them for yourself in different apps.

App Design Guidelines

The accessibility APIs look for text in specific attributes of
standard UI elements. Screen readers used by blind people, such as
VoiceOver and TalkBack, transform the text into synthetic speech
which the user listens to. The screen reader software may also
determine the type of control and related attributes to help provide
the user with more contextual information, particularly if no text is

185Accessibility

available. It is important that the user understands what the label
of the control is, what the control is and how to interact with it. In
some instances there may also be a tooltip to give extra informa-
tion.

Just as web developers make use of standards and guidelines
such as WCAG 2.0 to make accessible websites, it is important that
as app developers, you do the same. At present there is no de facto
industry standard for app accessibility, although there are standards
out there that can help.

The international standard, ISO 9241-171 ('The Ergonomics of
Human-system Interaction: Guidance on Software Accessibility')3 is
a helpful standard as it is platform agnostic. This covers elements
of accessibility and usability for a wide range of software.

The Royal National Institute of Blind People (RNIB4) have
created a pan-disability app standard and testing process based
on their experience in this area of accessibility. Their standard for
native apps also reflects on principles from ISO 9241-171. They
provide consultancy and training for organisations and agencies in
this area and have an accreditation badge that can be awarded to
apps that, following an audit process are accessible.

The BBC have developed a set of BBC Mobile Accessibility
Guidelines5 that they use internally for their mobile content. Their
guidance covers mobile websites, hybrid and native apps. They
state that "they are intended as a standard for BBC employees and
suppliers to follow however they can also be referenced by anyone
involved in mobile development".

Here are some of the principles that are helpful to be aware
of when developing an app. If you stick to them, you will also

3 www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=39080

4 www.rnib-business.org.uk

5 www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.rnib-business.org.uk/
http://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile_access.shtml

185 186Accessibility

give your app the best chance of interoperating with assistive
technology that the user may be running in conjunction with your
software:

APIs and UI Guidance

 — Find out what accessibility features and APIs your platform has
and follow best practice in leveraging those APIs if they exist.

 — Use standard rather than custom UI elements where possible.
This will ensure that if your platform has an accessibility
infrastructure or acquires one in the future, your app is likely
to be rendered accessibly to your users

 — Use the Accessibility API for your platform, if there is one. This
will enable you to make custom UI elements more accessible
and will mean less work on your part across your whole app.

 — Follow the standard UI guidelines on your platform. This
enhances consistency and may mean a more accessible design
by default

 — The user should be able to apply their preference settings that
the OS provides, such as accessibility settings.

Navigation

 — Navigation should be logical and consistent. For example if a
back button is provided on each screen it should be located in
the same place on every screen and consistently labeled.

 — Support programmatic navigation of your UI. This will not only
enable your apps to be used with an external keyboard but
will enhance the accessibility of your app on platforms such as
Android where navigation may be performed by a trackball or
virtual d-pad.

187Accessibility

User elements

 — All user elements should be discoverable and operable via
assistive technology, unless it is clear they are not required.

 — Where a user element has a status associated with it, that
status should also be available to be read by assistive
technology. For example if a toggle button is ‘on’ this should
be announced by the screen reader. If the status changes,
that should also be announced.

 — Ensure touch screen targets are a reasonable size to ensure
everyone can easily select them.

Labeling

 — All elements, including form elements, buttons, icons and
so on, should be labeled visually and programmatically
with a short and descriptive name. The label should also be
adjacent to the element it relates to.

 — Each screen should have a unique descriptive name that
relates to its content and aids navigation.

Colours and Fonts

 — Ensure there is a good contrast between background and
foreground colours. In particular consider buttons which
include text. Does the contrast between the text and the
background colour meet the ratio requirements in WCAG 2.0
or ISO 9241-171?

 — Avoid using colour as the only means of differentiating an
action. A colour-blind user will not be able to identify errors
if they are asked to correct the fields which are highlighted
in red for example.

187 188Accessibility

 — Consider the size of your smallest font. Is it reasonable that
most people could read it without difficulty?

Notifications

 — Error messages, notifications and alerts should be identifiable
and clear. They should be announced by the screen reader and
clearly visible, ensuring they do not disappear from the screen
after a short time period.

 — Ensure that error messages, notifications and alerts are not
provided by colour/haptic/audible output alone. For example,
someone with hearing loss will not recognise audible notifica-
tions.

Testing

 — Do not forget to test your app on the target device with the
assistive technology built-in to the OS with more than just the
latest OS version. When testing on an Android device please
remember that unless the user has a pure Android device, like
a Google Nexus, they are unlikely to get access to all of the
latest OS upgrades. This is because for OS upgrades you are at
the mercy of your phone manufacturer, so the Android OS ver-
sions in the wild can be quite diverse. Because some handset
manufacturers skin the OS, this can sometimes interfere with
the way the accessibility features should work. Therefore it is
always recommended that testing for Android Accessibility is
undertaken on a Google Nexus device. That way you can be
sure there is nothing interfering with the way the accessibil-
ity features should work and you are working to a common
denominator.

 — Ensure your user testing includes people with disabilities too!

189Accessibility

Apple, Google and Microsoft, have increased the importance
of their respective Accessibility support by using the Ac-
cessibility interface to underpin their GUI test automation
frameworks. This provides another incentive for developers to
consider designing their apps to be more accessible.

Looking at the different mobile platforms more closely, it
becomes obvious that they differ largely regarding their APIs,
but they are starting to implement a lot of the same acces-
sibility features.

Custom Controls and Elements

If you are using custom UI elements in your app, then, those
platforms that have an Accessibility API enable you to make
your custom controls accessible. You do this by exposing the
control to assistive technology running on the device so that
it can interrogate the properties of the control and render it
accessibly.

You can get more information about this process on Android
from the Google I/O 2015 presentation6 and the Google I/O
2013 presentation7

The Apple developer program has helpful resources too. Take
a look at their accessibility video presentations from WWDC
2014 and 2015 available in the iOS Developer Center8.

6 youtube.com/watch?v=euEsfNR5Zw4

7 youtube.com/watch?v=ld7kZRpMGb8

8 developer.apple.com/wwdc/videos

http://www.youtube.com/watch?v=euEsfNR5Zw4
http://www.youtube.com/watch?v=ld7kZRpMGb8
http://developer.apple.com/wwdc/videos/

189 190Accessibility

Android App Accessibility

The latest major version of Android, Version 6 (Marshmallow),
has continued to improve the accessibility support with a new
Voice Assistant accessibility API which builds on the work
of the Talkback screen reader. Accessibility was really first a
realistic proposition with Android 4.1 (Jellybean) and it is
much improved since then.

Accessibility features in Android include (but are not
limited to) things such as:

 — Voice Assistant (Talkback) - speech output for blind
users

 — Font Size - for partially sighted users and some users
with learning difficulties

 — Magnification gestures - zoom style magnification for
partially sighted users

 — Negative colours - for partially sighted users and some
users with learning disabilities who prefer an inverted
colour palette

 — Colour adjustment - for users who have particular colour
preferences

 — Sound detector and flash notification - for those with a
hearing impairment

 — Subtitles - providing captions or subtitles for those with
hearing loss

 — Earphone adjustment and mono audio - for those with
hearing loss using headphones

 — Universal switch - for those with physical disabilities who
prefer to access apps using a hardware device

 — Assistant menu - to enable those with dexterity issues to
change the touchpad or cursor speed and size

 — Tap and hold delay - for users with motor control issues

191

There are some helpful resources in the Support Library9
which also includes ways to improve the accessibility of
custom views.

For specifics on how to use the Android accessibility API
along with details of best practice in Android accessibility,
please see Google’s document entitled Making Applications
Accessible10.

You will also find more examples in the training area of the
developer documentation in a section entitled Implement-
ing Accessibility11. Testing the Accessibility is also covered
online12.

BlackBerry App Accessibility

Currently the Blackberry OS has some features for accessibility
which are helpful for people with various disabilities. The
features that they offer are more limited, however they do
offer support for TTY for people with hearing loss. As there is
only a screen reader available for limited Blackberry devices
and it is not as developed as VoiceOver for iOS and TalkBack for
Android, Blackberry devices are being considered by very few
blind people at present. Blackberry have also started to move
into the Android space now with 'PRIV'. Please refer to the
Android section for information about accessibility features.

The Blackberry Screen Reader13 is only available for a very
limited number of Blackberry Curve devices. It comes pre-
installed on the Blackberry 10 devices and can be downloaded

9 developer.android.com/tools/support-library/index.html

10 developer.android.com/guide/topics/ui/accessibility/apps.html

11 developer.android.com/training/accessibility/index.html

12 developer.android.com/tools/testing/testing_accessibility.html

13 mobileapps.blackberry.com/devicesoftware/entry.do?code=bsr

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/training/accessibility/index.html
http://developer.android.com/tools/testing/testing_accessibility.html
http://mobileapps.blackberry.com/devicesoftware/entry.do?code=bsr

191 192Accessibility

for other supported devices. You can find out which are
currently supported on the Blackberry Accessibility Website14

Blackberry 10 provides various accessibility settings to
enable users to tailor their device. These include but are not
limited to:

 — Screen Reader - This turns text into synthetic speech for
users with little or no useful vision. However it is only
available on the BlackBerry Z30.

 — Magnify Mode - this enables the user to increase and
decrease the magnification on the screen of text and
elements.

 — Closed Captions - Closed captions, or subtitles are helpful
in video content for those with hearing loss.

 — Display Settings - these options give the user the chance
to change the text and colours on the screen. This is
helpful for people with learning disabilities and a partially
sighted users.

 — TTY Settings - This is for users with hearing loss who want
to use a teletypewriter with their device.

 — Hearing aid support - this is available on some phones.

Documentation on creating accessible Blackberry 10 apps
can be found in a dedicated article on BlackBerry’s website.

14 us.blackberry.com/legal/accessibility.html

http://us.blackberry.com/legal/accessibility.html

193Accessibility

If you are designing for Blackberry 10 there are also
developer resources that include some design guidelines15.

iOS App Accessibility

Apple were the first company to embed accessibility features
directly into the OS. Because of this the support for accessibil-
ity in iOS is a little better than in Android, although Android is
fast catching up.

Some of the accessibility features in iOS include, but are not
limited to:

 — VoiceOver - a screen reader. It speaks the objects and text
on screen, enabling your app to be used by people who are
blind.

 — Zoom - This magnifies the entire contents of the screen.
 — Invert Colours - This inverts the colours on the display,

which helps many people who need the contrast of black
and white but find a white background emits too much
light.

 — Larger Text and Bold text - this can help a broad range
of people from those who use glasses, through to partially
sighted people and those with learning difficulties.

 — Increase Contrast - this improves the contrast between
the background and the foreground.

 — Captioning and subtitles - for people with hearing loss
 — Video description - for people with sight loss.
 — Audible, visible and vibrating alerts - to enable people

to choose what works best for them for notifications.
 — Voice Control and Siri - This enables users to make phone

calls and operate various other features of their phone

15 developer.blackberry.com/devzone/design/bb10/accessibility.html

http://developer.blackberry.com/devzone/design/bb10/accessibility.html

193 194Accessibility

by using voice commands. This can be helpful for a broad
range of people including those with motor control issues,
learning difficulties and vision loss.

 — Hearing aid compatibility - for people with hearing loss.
 — Switch control - for those with physical disabilities who

wish to access the app using a third party hardware device.
 — Guided Access - This is helpful in education, or just where

someone wants to limit what is accessible on the screen to
a user.

If you are working on iOS, make sure to follow Apple's
accessibility guidelines16.These guidelines detail the API and
provide an excellent source of hints and tips for maximising the
user experience with your apps.

Apple also provide some helpful guidance on testing the
accessibility on your app with Voiceover17

Windows App Accessibility

It is fair to say that Microsoft have been playing catch up
with iOS and Android as far as accessibility features go. There
has been good support for magnification, text enlargement
and changing of colours for some time and in Windows Phone
8.1 things moved on again. There is a screen reader called
Narrator in Windows Phone 8.1. It reads out text in synthetic
speech and like other phone screen readers, it makes use of its
own specific gestures. It is designed for users with little or no
vision but it still needs enhancing to be as comprehensive as

16 developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
iPhoneAccessibility/Introduction/Introduction.html

17 developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/
TestAccessibilityonYourDevicewithVoiceOver.html

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Introduction/Introduction.html
http://developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html
http://developer.apple.com/library/ios/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityonYourDevicewithVoiceOver/TestAccessibilityonYourDevicewithVoiceOver.html

195AccessibilityAccessibility

the iOS and Android offerings. It can only be used with some
core functionality and navigation functionality and is not as
fully featured as other phone screen readers. However, this is
certainly one to watch for the future!

Some of the accessibility features on Windows Phone 8.1
include but are not limited to:

 — Narrator - this screen reader is in beta, has limited
functionality and is only available on 8.1.

 — Text Size - the size of text can be enlarged to aid those
with learning difficulties or users who are partially sighted.

 — High Contrast Theme - this theme changes text to black
and white and provides a solid background behind words
that would otherwise be on top of pictures.This is helpful
for partially sighted users and some users with learning
disabilities.

 — Screen Magnifier - this feature is for partially sighted
people who wish to magnify the text on the screen and
change the zoom level. It has its own gestures.

 — Speech for phone accessibility - the user can make calls,
search the web, open apps or listen to text messages with
Speech. This is helpful for a broad range of people in dif-
ferent situations, including those with motor impairments,
learning disabilities and those with a visual impairment.

 — Customize browser captions - It is possible to change the
font size, colour and background transparency of captions
in Internet Explorer and also apps that make use of the
browser. This is helpful for people with hearing loss that
may also have some vision loss.

 — TTY support - this device allows people who have hearing
loss or who are speech impaired to type messages to
anyone else who has a TTY, using a telephone line.

195 196Accessibility

 — Cortana - is the 'personal assistant' that is only available
on Windows Phone 8.1. This is a main feature for all users,
but will be helpful for those with disabilities too as it is
speech activated.

Find out more about Accessibility on Windows Phone18
including Narrator and other features.

The Accessibility for Windows Runtime Apps documenta-
tion19 provides support whether your are developing in C#/VB/
C++ and XAML or JavaScript and HTML.

Microsoft has Guidelines for Designing Accessible Apps20
which is a really useful document. It relates to the relevant
API information and if you really have to use custom controls
in XAML or HTML, it gives help on how to do this in an acces-
sible way. It also picks up some of the other areas of external
guidance that are useful. For example, if you are developing in
HTML then it will be important to think about using Accessible
Rich Internet Applications 1.0 (WAI-ARIA)21 which is helpful
for making more dynamic content accessible to screen readers.

Once you have tested the accessibility of your app22, Micro-
soft uniquely allows you to declare your app as accessible23 in
the Windows store, allowing it to be discovered by those who
are filtering for accessibility in their searches.

18 www.windowsphone.com/en-gb/how-to/wp8/settings-and-personalization/
accessibility-on-my-phone

19 msdn.microsoft.com/en-us/library/windows/apps/xaml/dn263101.aspx

20 msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx

21 www.w3.org/TR/wai-aria/markup

22 msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx

23 msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn263101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://www.w3.org/TR/wai-aria/
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/jj161016.aspx

197Accessibility

Mobile Web App Accessibility

As mentioned earlier in the chapter, much has been written
about web accessibility, but less has been written on acces-
sibility relating to apps. This is also true of mobile website
accessibility or web app accessibility. It is an area which has
growing interest and the World Wide Web Consortium (W3C)
have created a 'Web and Mobile Interest Group' to discuss the
area and to identify what work needs to take place. The number
of groups that relate to this area of work in the W3C are grow-
ing and they can provide helpful documentation and support.

W3C have published a state of play and roadmap document
which lists Standards for Web Applications on Mobile24

It is suggested by the W3C that anything that uses HTML
and is web based should still follow the Web Content Accessi-
bility Guidelines (WCAG) 2.0 while also referring to Mobile Web
Best Practices (MWBP). So if you are a web content developer
then these guidelines are a good place to start. You will also
find Relationship between Mobile Web Best Practices (MWBP)
and Web Content Accessibility Guidelines (WCAG)25 a helpful
resource.

If your app is intended to mimic a native app look and feel,
then you should follow the guidelines mentioned above in this
chapter.

24 www.w3.org/Mobile/mobile-web-app-state

25 w3.org/TR/mwbp-wcag/

http://www.w3.org/Mobile/mobile-web-app-state/
http://www.w3.org/TR/mwbp-wcag/

197 198Accessibility

As support of HTML 5 is increasingly adopted on the various
mobile platforms, consider reading Mobile Web Application
Best Practices26 as this is likely to form the foundation of any
mobile web application accessibility standard that emerges in
the future. One of the other key areas of guidance is Accessible
Rich Internet Applications 1.0 (WAI-ARIA)27, as it has been
designed to ensure that more dynamic HTML functionality is
accessible to screen readers.

An interesting area of work happening at the W3C is in
the Independent User Interface (IndieUI) Working Group28.
The group states "Independent User Interface (IndieUI) is a
way for user actions to be communicated to web applications
and will make it easier for web applications to work in a wide
range of contexts — different devices, different assistive
technologies (AT), different user needs". This work is going to
be very important for accessibility and device independence. It
is worth looking at the documentation that they currently have
available.

26 w3.org/TR/mwabp

27 www.w3.org/TR/wai-aria

28 www.w3.org/TR/indie-ui-context

http://w3.org/TR/mwabp
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/indie-ui-context/

199 Accessibility

200Testing

Testing
There are many parallel worlds for mobile apps on mobile
devices. Meanwhile mobile devices evolve incredibly rapidly
compared to most worldly goods. Testing mobile apps needs to
keep pace even as the pace of change continues to accelerate.

The fate of mobile apps hangs in the balance where users,
like crowds in amphitheatres back in Roman times, often make
the ultimate decision of whether an app lives to fight another
day, or dies. And similarly, unremarkable apps are likely to
languish as a statistic in the App Store, negating much of the
hard work involved in conceiving, nurturing and launching it.
Furthermore, the stigma of a poor rating has a long half-life
which is hard to recover from.

Testing might be seen as an impediment but failures in your
app can be all too public. And recovering your credibility is
hard when your app has a poor score in the app store. So you
could wait for users to decide the fate, testing your mobile
apps can adjust the balance in your favour. You have the
opportunity to help equip you and your testing team so they
can help test your app more effectively.

Beware of Specifics

Platforms, networks, devices, and even firmware, are all
specific. Any could cause problems for your applications.
There are several ways to identify the effects of specifics, for
instance, a tester may notice differences in the performance of
the app and the behaviour of the UI during interactive testing
with different devices. QuizUp used automated tests which
helped them find five significant issues in their Android app
triggered by differences in the devices, and one bug specific to
Android 4.0.4. The automated tests ran across 30 devices in 30

B
Y

 J

ul
ia

n
H

ar
ty

 &
 M

ar
c

va
n’

t
Ve

er

201

minutes which made multi-device testing practical and useful,
rather than spending 60 hours trying to do manual testing of
the app on 30 devices1. You need to know about these specifics
to be able to decide whether to address undesirable differences
by modifying the app before it is launched.

Conversely, Mobile Analytics can help identify differences in
various aspects including performance and power consumption
when the app is being used by many users on the vast variety
of their devices. Some compelling examples of differences in
behaviour and on ways issues were addressed in a paper pub-
lished by computer scientists from the University of Wisconsin2.
A book is also available from HP Enterprises on the confluence
between mobile analytics and testing for mobile apps, details
are available at themobileanalyticsplaybook.com. (co-written by
Julian Harty, one of the authors of this chapter.)

This chapter covers the general topics; testing for specific
platforms is covered in the relevant chapter.

Testing Needs Time - You Need a Strategy
The strategy defines how much test time is spent to the
different parts of the mobile app and during the different
development phases. There are tradeoffs on how best to spend
whatever time you have. For instance, testing features in
more detail versus testing on a wider variety of devices versus
testing various quality aspects including performance, usability

1 blog.testmunk.com/quizup-mastering-android-device-fragmentation-
automated-testing/

2 “Capturing Mobile Experience in the Wild: A Tale of Two Apps”, available as a
download at static.googleusercontent.com/media/research.google.com/en//
pubs/archive/41590.pdf

http://themobileanalyticsplaybook.com
http://blog.testmunk.com/quizup-mastering-android-device-fragmentation-automated-testing/
http://blog.testmunk.com/quizup-mastering-android-device-fragmentation-automated-testing/
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf

201 202Testing

and security. The conditions a mobile app need to operate
are vast and to factor in these conditions into the testing is
challenging. There may be more productive ways to obtain
some information, for instance by using feedback from end-
users and from mobile analytics. However the risks of deferring
data gathering (versus testing internally) need to be actively
considered. An effective test strategy aims to balance both
approaches. With the risk analysis, the quality perspectives and
the available time the test plan can be created.

Calculation Example
Let us assume your app has ten epics (also called user stories
in this context) and every epic needs to be tested using
between one and three perspectives (functionality, usability,
user scenarios) at a rate of one test per hour. If you test each
epic with one perspective and one test case it takes ten hours
to test the app. On the other hand, if you test every epic
using all three perspectives with two test cases testing takes
60 hours. Typically, testing finds defects and other work worth
reporting, which takes more time. You then choose to spend
time addressing some of the findings, for instance, to fix a
defect or otherwise improve the app. Let us assume that every
executed test case results in 5 to 10 findings. The time needed
to process the defects lies between 5 and 50 hours work. So
in the most positive scenario it takes 15 hours to test the app
(only functionally) and in the more complex scenario, it can
take up to 110 hours to test the app using three perspectives.

203Testing

You may also need to factor in much more time to test the
app on a variety of compatible devices, particularly for web
apps and for Android native apps.

Continuous Testing
Continuous delivery needs continuous testing. Viable apps need
to be updated on an ongoing basis in production. Updates may
include fixes for new platform versions or device models, new
functionality and other improvements. Therefore, testing is
not a one-off task; high quality apps befit ongoing, optimised
testing, including testing in production. Production testing
includes testing engagement and validation as well as early
detection of potential problems before they mushroom.

Manage your Testing Time
Testing as you have discovered can take many hours, far more
than you may want to do, particularly if you are close to a
deadline such as a release date. There are various ways you can
manage time spent in testing, in parallel testing can be made
more interesting, rewarding, and more productive.

Low High

10 60

Hours work

Findings

Hours work50 600

5 50

5 to 10 �ndings / hour

10 × 3 × 2

5 min. / �nding

203 204Testing

 — Reduce setup time: Find ways to deploy apps quickly and
efficiently. Implement mechanisms to provide the appropri-
ate test data and configuration on both the mobile device
and the relevant servers. Aim to have devices and systems
'ready to test'.

 — Reduce time needed for reporting & bug analysis: Data,
screenshots, and even video, can help make bugs easier
and faster to investigate. Data can include logs, system
configurations, network traffic, and runtime information.
Commercial tools, such as HP Sprinter3 can record actions
and screenshots to reduce the time and effort needed to
report and reproduce problems.

 — Risk Analysis: You can use the risk analysis to decide
how and when to allocate testing effort. Risks are hard to
determine accurately by the tester or developer alone; a
joint effort from all the stakeholders of the mobile app can
help to improve the risk analysis. Sometimes, the mobile
app tester is the facilitator in getting the product risk
analysis in place.

 — Scaling Testing: Increasing the throughput of testing by
scaling it, for instance using test automation, cloud-based
test systems, and more humans involved in the testing
can help increase the volume, and potentially the quality,
of the testing. Using static analysis tools to review code
and other artefacts can also help the team to find and fix
problems before the app is released.

3 hp.com/go/sprinter

205Testing

Involve End-Users in your Testing

Development teams need a mirror to develop a useful mobile
app. Early user feedback can provide that mirror. You do not
need many end-users to have good feedback4. Bigger value is
gained with early involvement, multiple users, regular sessions,
and multiple smaller tests. Testers can guide and facilitate the
end-user testing, for instance, by preparing the tests, processing
log files and analysing results. They can also retest fixes to the
app.

Whenever others are involved in testing an app, they need
ways to access and use the app. Web apps can be hosted online,
perhaps protected using: passwords, hard-to-guess URLs, and
other techniques. Installable apps need at least one way to be
installed, for instance using a corporate app store or specialist
deployment services. Possible sources of end-users can be
Crowdsourcing5.

When the app is closer to being production-ready, users can
test the more mature version of the mobile app in Alpha & Beta
tests phases. A development team or organisation can offer
an online community to give end-users early access to new
releases, give loyalty points, ratings. This community should be
a friendly ecosystem to receive feedback before the mobile app
is released into the app store.

Effective Testing Practices

Testing, like other competencies, can be improved by applying
various techniques and practices. Some of these need to be
applied when developing your mobile app, such as testability,

4 nngroup.com/articles/why-you-only-need-to-test-with-5-users

5 service providers include www.applause.com, PassBrains.com, and TestBirds.de

http://nngroup.com/articles/why-you-only-need-to-test-with-5-users
http://Crowdtesting
http://www.passbrains.com
http://www.testbirds.de

205 206Testing

others apply when creating your tests, and others still when you
perform your testing. Testdroid offers a good checklist6 on getting
the right testing expertise into your team.

Mnemonics Summarizing Testing Heuristics
Heuristics are fallible guidelines, or rules-of-thumb, that tend
to be useful. Several have been created specifically to help test
mobile apps and some use mnemonics to help you consider
particular aspects of software. Each letter is the initial letter of a
word representing a key word.

 — I SLICED UP FUN7: Input (Test the application changing
its orientation (horizontal/vertical) and trying out all the
inputs including keyboard, gestures etc.), Store (Use appstore
guidelines as a source for testing ideas), Location (Test on
the move and check for localisation issues), Interaction/In-
terruption (See how your app interacts with other programs,
particularly built-in, native apps), Communication (Observe
your app's behaviour when receiving calls, e-mails, etc.),
Ergonomics (Search for problem areas in interaction, e.g.
small fonts), Data (Test handling of special characters, differ-
ent languages, external media feeds, large files of different
formats, notifications), Usability (Look for any user actions
that are awkward, confusing, or slow), Platform (Test on
different OS versions), Function (Verify that all features are
implemented and that they work the way they are supposed
to), User Scenarios (Create testing scenarios for concrete
types of users), Network (Test under different and changing
network conditions)

6 testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team

7 kohl.ca/articles/ISLICEDUPFUN.pdf

http://testdroid.com/testdroid/6336/get-the-superb-expertise-in-your-testingqa-team
http://www.kohl.ca/articles/ISLICEDUPFUN.pdf

207Testing

 — COP FLUNG GUN8 summarizes similar aspects under Com-
munication, Orientation, Platform, Function, Location, User
Scenarios, Network, Gestures, Guidelines, Updates, Notifica-
tions.

Implementing Testability
Start designing and implementing ways to test your app during
its development already; this applies especially for automated
testing. For example, using techniques such as Dependency Injec-
tion in your code enables you to replace real servers (slow and
flaky) with mock servers (controllable and fast). Use unique, clear
identifiers for key UI elements. If you keep identifiers unchanged
your automated tests require less maintenance.

Separate your code into testable modules. Several years ago,
when mobile devices and software tools were very limited, devel-
opers chose to ‘optimise’ their mobile code into monolithic blobs
of code, however the current devices and mobile platforms mean
this form of ‘optimisation’ is unnecessary and possibly counter-
productive. These two topics are both covered in a useful article
on the Google Testing Blog, Android UI Automated Testing9.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the
problems are when the application does not work as hoped.

Tours for Exploratory Testing
A tour is a type of exploratory testing, a way to more structure
the exploratory test sessions. Tours help you focus your testing,
Cem Kaner describes a tour as "... a directed search through the

8 moolya.com/blogs/2014/05/34/COP-FLUNG-GUN-MODEL

9 googletesting.blogspot.co.uk/2015/03/android-ui-automated-testing.html

http://www.moolya.com/blogs/2014/05/34/COP-FLUNG-GUN-MODEL
http://googletesting.blogspot.co.uk/2015/03/android-ui-automated-testing.html

207 208Testing

program. Find all the capabilities. Find all the claims about the
product. Find all the variables. Find all the intended benefits. Find
all the ways to get from A to B. Find all the X. Or maybe not ALL,
but find a bunch..."10. With the combination of different tours in
different perspectives (see the I SLICED UP FUN heuristics) coverage
and test depth can be chosen.

Examples of Tours11 include:

 — Configuration tour: Attempt to find all the ways you can
change settings in the product in a way that the application
retains those settings.

 — Feature tour: Move through the application and get familiar
with all the controls and features you come across.

 — Structure tour: Find everything you can about what comprises
the physical product (code, interfaces, hardware, files, etc.).

 — Variability tour: Look for things you can change in the
application - and then you try to change them.

Personas
Personas can be used to reflect various users of software. They may
be designed to reflect, or model, a specific individual or a set of
key criteria for a group of users. Regardless of how they are created
each persona is singular, not a group of people. Personas can be
used to have a clear picture of various end-users to include so
that representative tests are executed for those end-user. Various
research material are available at personas.dk.

10 kaner.com/?p=96; also see developsense.com/blog/2009/04/of-testing-tours-and-
dashboards/

11 from michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

http://personas.dk/
http://kaner.com/?p=96
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards/
http://www.developsense.com/blog/2009/04/of-testing-tours-and-dashboards/
http://michaeldkelly.com/blog/2005/9/20/touring-heuristic.html

209Testing

Testing on Various Devices

Some bugs are universal and can be discovered on any mobile
device. Others, and there are plenty of them, are exposed on
a subset of devices, and some belong to specific devices. An
example of device specific problems with Android on Samsung
is verybadalloc.com/android/2015/12/19/special-place-for-
samsung-in-android-hell/. All this means we need devices to
test on and to test on various devices.

Physical and Virtual Devices
Physical devices are real, you can hold them in your hands.
Virtual devices run as software, inside another computer. Both
are useful hosts for testing mobile apps.

Virtual devices are generally free and immediately avail-
able to install and use. Some platforms, including Android,
allows you to create custom devices, for instance with a new
screen resolution, which you can use for testing your apps
even before suitable hardware is available. They can provide
rough-and-ready testing of your applications. Key differences
include: performance, security, and how we interact with them
compared to physical devices. These differences may affect the
validity of some test results. Beside the android platform virtual
devices you can use GenyMotion.com, a faster and more capable
Android emulator, for instance, to control sensor values.

The set of test devices to use needs to be reviewed on an
ongoing basis as the app and the ecosystem evolve. Also, you
may identify new devices, that your app currently does not
support, during your reviews. The following figure illustrates
these concepts.

Ultimately your software needs to run on real, physical,
phones, as used by your intended users. The performance
characteristics of various phone models vary tremendously from

http://verybadalloc.com/android/2015/12/19/special-place-for-samsung-in-android-hell/
http://verybadalloc.com/android/2015/12/19/special-place-for-samsung-in-android-hell/
https://www.genymotion.com/

209 210Testing

each other, and from virtual devices on your computer. So: buy,
beg, borrow phones to test on. A good start is to pick a mix of
popular, new, and models that include specific characteristics
or features such as: touch screen, physical keyboard, screen
resolution, networking chipset, et cetera. Try your software
on at least one low-end or old device as you want users with
these devices to be happy too.

Here are some examples of areas to test on physical devices:

 — Navigating the UI: for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you are out and about. It is a mobile
device – most users will be on the move. Rotate the screen
and make sure the app is equally attractive and functional.

 — Location: if you use location information within your
app: move – both quickly and slowly. Go to locations with
patchy network and GPS coverage to see how your app
behaves.

 — Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

Installed
Device

 Database

Upcoming user group
The biggest grower compared

to the previous period
New user group
The most interesting

device or platform

Existing user group
The optimal mix to support

Externals
The biggest group that outside the

target and not using the app.

Target
Device

Database

Possible
Device

Database

211Testing

 — Internet connectivity: establishing an internet connec-
tion can take an incredible amount of time. Connection
delay and bandwidth depend on the network, its current
strength and the number of simultaneous connections.
Test the effects of intermittent connectivity and how the
app responds.

As mentioned before, crowdtesting can also help to cover
a wide range of real devices, but you should never trust on
external peoples' observations alone.

211 212Testing

Remote Devices
If you do not have physical devices at hand or if you need
to test your application on other networks, especially abroad
and for other locales, then one of the ‘remote device services’
might help you. They can help extend the breadth and depth of
your testing at little or no cost.

Several manufacturers provide this service free-of-charge for
a subset of their phone models to registered software develop-
ers. Samsung12 (for Android and Tizen) provide restricted but
free daily access.

You can also use commercial services of companies such
as SauceLabs.com, testdroid.com, PerfectoMobile.com or
DeviceAnywhere.com for similar testing across a range of
devices and platforms. Some manufacturers brand and promote
these services however you often have to pay for them after
a short trial period. Some of the commercial services provide
APIs to enable you to create automated tests.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations.

Beware of privacy and confidentiality when using shared
devices.

Test Automation

Automated tests can help you maintain and improve your
velocity, your speed of delivering features, by providing early
feedback of problems. To do so, they need to be well-designed
and implemented. Good automated tests mimic good software
development practices, for instance using Design Patterns13,
modularity, performing code reviews, et cetera. To automate

12 developer.samsung.com/remotetestlab/rtlDeviceList.action

13 en.wikipedia.org/wiki/Design_Patterns

http://saucelabs.com/
http://testdroid.com/
http://www.perfectomobile.com
http://www.deviceanywhere.com
http://developer.samsung.com/remotetestlab/rtlDeviceList.action
http://en.wikipedia.org/wiki/Design_Patterns

213

scripting and coding skills are needed. The level of skills is
dependent on the chosen tool. Test automation tools provided
as part of the development SDK are worth considering. They are
generally free, inherently available for the particular platform,
and are supported by massive companies. Test automation can
be performed at different levels, see the automation pyramid
figure below. It is a strategic choice what should be automated
in the unit tests, what on the service or API level and what
scenarios on the UI level of the application. The pyramid
represents trust that is buildup from the unit test to the higher
levels. Multiple test levels are needed to prove that the app
works.

GUI Level Test Automation
The first level of automation are the tests that interact with
the app via the Graphical User Interface (GUI). It is one of the
elixirs of the testing industry, many have tried but few have
succeeded. One of the main reasons why GUI test automa-
tion is so challenging is that the User Interface is subject to
significant changes which may break the way automated tests
interact with the app.

For the tests to be effective in the longer term, and as
the app changes, developers need to design, implement and

UI

SERVICE

UNIT

213 214Testing

support the labels and other hooks used by the automated GUI
tests. Both Apple, with UI Automation14, and more recently
Android15 use the Accessibility label assigned to UI elements
as the de-facto interface for UI automation.

Some commercial companies have open sourced their tools,
e.g. SauceLabs' appium16 and Xamarin's Calabash17. These
tools aim to provide cross-platform support, particularly for
Android and iOS. Other successful open source frameworks
include Robotium18 which now offers a commercial product - a
test recorder. Several other tools have effectively disappeared,
perhaps the industry is now maturing where the only the
stronger offerings survive?

Service Level Test Automation
There is a lot of business logic implemented inside an API.
Changes in this logic or in the backend system can be
monitored with automated API tests. The focus of the test can
be functional-regression but also reliability, performance and
security. For functional regression testing a tool like Postman
is useful19.

Several tools can help with API testing. They include Fiddler

14 developer.apple.com/library/tvos/documentation/DeveloperTools/
Conceptual/InstrumentsUserGuide/UIAutomation.html

15 developer.android.com/tools/testing/testing_ui.html

16 github.com/appium/appium

17 github.com/calabash

18 github.com/robotiumtech/robotium

19 blog.getpostman.com/2014/03/07/writing-automated-tests-for-apis-using-
postman/

https://developer.apple.com/library/tvos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UIAutomation.html
https://developer.apple.com/library/tvos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UIAutomation.html
http://developer.android.com/tools/testing/testing_ui.html
https://github.com/appium/appium
https://github.com/calabash
https://github.com/robotiumtech/robotium
http://blog.getpostman.com/2014/03/07/writing-automated-tests-for-apis-using-postman/
http://blog.getpostman.com/2014/03/07/writing-automated-tests-for-apis-using-postman/

215Testing

by Telerik20and Charles21. Both enable you to view and modify
network traffic between your mobile device and the network.

Unit Level Test Automation
Unit testing involves writing automated tests that test small
chunks of code, typically only a few lines of source code.
Generally, they should be written by the same developer who
writes the source code for the app as they reflect how those
individual chunks are expected to behave. Unit tests have a
long pedigree in software development, where JUnit22 has
spawned similar frameworks for virtually all of the programming
languages used to develop mobile apps.

BDD Test Automation
BDD is a Behavior-Driven Development approach with the Test
Driven Development family23. The behaviour is described in
formatted text files that can be run as automated tests. The
format of the tests are intended to be readable and under-
standable by anyone involved with the software project. They
can be written in virtually any human language, for instance
Japanese24, and they use a consistent, simple structure with
statements such as Given, When, Then to structure the test
scripts.

The primary BDD framework to test mobile apps is Calabash
for Android and iOS25. Various others have not been developed

20 telerik.com/fiddler

21 Proxycharlesproxy.com/documentation/getting-started/

22 en.wikipedia.org/wiki/JUnit

23 en.wikipedia.org/wiki/Behavior-driven_development

24 github.com/cucumber/cucumber/tree/master/examples/i18n/ja

25 github.com/calabash

http://www.telerik.com/fiddler
https://www.charlesproxy.com/documentation/getting-started/
http://en.wikipedia.org/wiki/JUnit
http://en.wikipedia.org/wiki/Behavior-driven_development
http://github.com/cucumber/cucumber/tree/master/examples/i18n/ja
http://github.com/calabash

215 216

or maintained in the last year and can be considered defunct
for all but the most persistent developers. General purpose
BDD frameworks may still be relevant when they are integrated
with frameworks, such as appium, that use the WebDriver wire
protocol (a W3 standard)26.

Automation can also help the manual testing, for instance,
to replace manual, error-prone steps when testing, or to reduce
the time and effort needed, for instance, to automate a col-
lection of screenshots. Developers can help testers to be more
efficient by providing automated tools, e.g. app deployment
via ADB27.

Testing Through The Five Phases of an
App's Lifecycle
Software is developed in phases, which are called steps in
the life cycle. A mobile app tester can be part of the develop-
ment team, but can also be responsible to facilitate the user
experience tests in production. Depending on which phase(s)
you are involved in the life cycle, there are different tasks to
be performed. For example, when joining a development team,
the task can be the analysis of the error in the log files on
a device. When joining a beta test phase, a task can be the
analysis of usability tests results like recording movies. The
complete lifecycle of a mobile app fits into 5 phases: imple-
mentation, verification, launch, engagement and validation.

Improvement Cycles
Testing applies to each phase. Some of the decisions made
for earlier stages can affect your testing in later stages. For
instance, if you decide you want automated system tests in

26 w3.org/TR/webdriver/

27 thefriendlytester.co.uk/2015/11/deploying-to-multiple-android-devices.html

http://www.w3.org/TR/webdriver/
http://www.thefriendlytester.co.uk/2015/11/deploying-to-multiple-android-devices.html

217Testing

the first phase they will be easier to implement in subsequent
phases. The five phases might suggest that they follow one
after the other and form a logical flow of water down the river.
This is not the case. Every step in the different phases provides
the possibility to learn and improve. When testing the team
learns both how good the mobile app product is and also about
areas for improvement in how the app is produced. Mobile
app development is a challenging complex, dynamic activity
that does not go perfectly the first time, therefore, teams
should incorporate an improvement cycle so they can learn and
actively improve what they do.

Phase 1: Implementation
This includes design, code, unit tests, and build tasks. Tradi-
tionally testers are not involved in these tasks; however good
testing here can materially improve the quality and success of
the app by helping us to make sure the implementation is done
well.

In terms of testing, you should decide the following ques-
tions:

 — Do you use test-driven development (TDD)?
 — Help review designs on what are the main, alternative and

negative user flows
 — Which test data do you use to validate the user flows?
 — Will you have automated system tests? If so, how will you

facilitate these automated system tests? For instance by
adding suitable labels to key objects in the UI.

 — How will you validate your apps? For instance, through the
use of Mobile Analytics? Crash reporting? Feedback from
users?

Question the design. You want to make sure it fulfills the

217 218

intended purposes; you also want to avoid making serious
mistakes. Phillip Armour's paper on five orders of ignorance28 is
a great resource to help structure your approach.

Phase 2: Verification
Review your unit, internal installation, and system tests and
assess their potency: Are they really useful and trustworthy?
Note: they should also be reviewed as part of the implementa-
tion phase, however, this is a good time to address material
shortcomings before the development is considered 'complete'
for the current code base.

For apps that need installing, you need ways to deploy
them to specific devices for pre-release testing. Some platforms
(including Android, iOS and Windows) need phones to be
configured so development apps can be installed. Based on
your test strategy you can decide on which phones, platforms,
versions, resolutions are in scope of testing and support.

System tests are often performed interactively, by testers.
You also want to consider how to make sure the app meets:

 — Usability, user experience and aesthetics requirements
 — Performance, particularly as perceived by end users29

 — Internationalisation and localisation testing

28 www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf

29 A relevant performance testing tool is ARO (Application Resource Optimizer)
by AT&T: developer.att.com/application-resource-optimiser, an open source
project at github.com/attdevsupport/ARO

http://www-plan.cs.colorado.edu/diwan/3308-07/p17-armour.pdf
http://developer.att.com/application-resource-optimizer
https://github.com/attdevsupport/ARO

219

Phase 3: Launch
For those of you who have yet to work with major app stores be
prepared for a challenging experience where most aspects are
outside your control, including the timescales for approval of
your app. Also, on some app stores, you are unable to revert a
new release. So if your current release has major flaws you have
to create a new release that fixes the flaws, then wait until it has
been approved by the app store, before your users can receive a
working version of your app.

Given these constraints, it is worth extending your testing
to include pre-publication checks and beta tests of the app
such as whether it is suitable for the set of targeted devices
and end-users. The providers of the main platforms now publish
guidelines to help you test your app will meet their submission
criteria. These guidelines may help you even if you target other
app stores. The guideline can be used as a checklist during the
implementation phase.

Apple developer.apple.com/appstore/resources/approval/guidelines.html

Android developer.android.com/distribute/googleplay/publish/preparing.
html#core-app-quality

Windows Phone msdn.microsoft.com/en-us/library/windowsphone/develop/hh394032

BlackBerry developer.blackberry.com/devzone/appworld/tips_for_app_approval.
html

Phase 4: Engagement
This includes search, trust, download and installation. Once your
app is publicly available users need to find, trust, download and
install it. You can test each aspect of this phase in before and in
production. Try searching for your app on the relevant app store,
and in mainstream search engines. On how many different ways
can it be found by your target users? What about users outside

https://developer.apple.com/appstore/resources/approval/guidelines.html
http://developer.android.com/distribute/googleplay/publish/preparing.html#core-app-quality
http://developer.android.com/distribute/googleplay/publish/preparing.html#core-app-quality
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh394032
http://developer.blackberry.com/devzone/appworld/tips_for_app_approval.html
http://developer.blackberry.com/devzone/appworld/tips_for_app_approval.html

219 220

the target groups - do you want them to find it? How will
users trust your app sufficiently to download and try it? Does
your app really need so many permissions? How large is the
download, and how practical is it to download over the mobile
network? Will it fit on the user's phone, particularly if there is
little free storage available on their device? And does the app
install correctly? - there may be signing issues which cause the
app to be rejected by some phones.

Phase 5: Validation
This includes payment, usage and user feedback. As you may
already know, a mobile app with poor feedback is unlikely to
succeed. Furthermore, many apps have a very short active life
on a user's phone. If the app does not please and engage them
within a few minutes it is likely to be discarded or ignored.
And for those of you who are seeking payment, it is worth
testing the various forms of payment, especially for in-app
payments.

Consider finding ways to test the following as soon as
practical:

 — Problem detection and reporting. These may include your
own code, third-party utilities, and online services.

 — Mobile Analytics. Does the data being collected make
sense? What anomalies are there in the reported data?
What is the latency in getting the results, et cetera?

221Testing

Learn More

Testing mobile apps is becoming mainstream with various good
sources of information. Useful online sources include:

 — blog.testmunk.com Testmunk's blog has a wide range of
relevant articles on testing mobile apps.

 — enjoytesting.files.wordpress.com/2013/10/mobile_test
ing_ready_reckoner.pdf contains short, clear testing ideas
with examples, mainly for Android devices.

 — developers.google.com/google-test-automation-confer
ence/2015/presentations In 2015, the Google Test Auto-
mation Conference (GTAC) includes at least 5 presentations
related to testing mobile apps, worth watching.

 — handsonmobileapptesting.com/ which links to the book:
Hands-on Mobile App Testing, by Daniel Knott. A well-
written book on various aspects of testing mobile apps. A
sample chapter is available from the web site.

 — testdroid.com/blog, a fertile blog on various topics includ-
ing testing mobile apps. They also have a series on testing
mobile games30.

 — appqualitybook.com, the website about Jason Arbon's
interesting book based on the experiences of testing and
analysing vast numbers of mobile apps.

 — appqualityalliance.org/resources, the official App Quality
Alliance AQuA website including their useful app testing
guidelines.

30 testdroid.com/testdroid/7790/best-practices-in-mobile-game-testing

http://blog.testmunk.com/
https://enjoytesting.files.wordpress.com/2013/10/mobile_testing_ready_reckoner.pdf
https://enjoytesting.files.wordpress.com/2013/10/mobile_testing_ready_reckoner.pdf
https://developers.google.com/google-test-automation-conference/2015/presentations
https://developers.google.com/google-test-automation-conference/2015/presentations
http://handsonmobileapptesting.com/
http://testdroid.com/blog
http://www.appqualitybook.com/
http://appqualityalliance.org/resources
http://testdroid.com/testdroid/7790/best-practices-in-mobile-game-testing

222 Testing

223 Testing

224Mobile Analytics

Mobile Analytics
Would you like to know more about how your app is being used
and how well it is performing? If so, mobile analytics may be
your friend and help you understand the ways your app is be-
ing used in-the-wild, by real users. Mobile analytics dovetails
with other sources of information, including app store ratings,
crash analytics, crowd testing, and usability studies.

Data from mobile analytics can help many aspects of our
work, including the business, social, operational, and techno-
logical aspects. The data captured can be used to target your
work and reduce inefficiencies. You would be in good company,
the vast majority of the top 500 iOS and top 500 Android apps
include at least one mobile analytics library based on data
from SourceDNA1.

There is an incredible richness in the mobile galaxy where
your software can be used on many alien devices that exhibit
significant differences in performances and behaviours.
Researchers discovered battery drain varied by 3x when their
app was used on devices with similar hardware specifications
and, amongst other things, they discovered an app used
custom code to reduce the screen's brightness when running on
Kindle Fire's to improve battery life by 40% and significantly
increased the session durations as a result.

We can also learn ways to improve the ways we develop and
test the software. In all the excitement we need to remember
to protect user's privacy and respect their preferences and
expectations. The effects of mobile analytics can upset users
by consuming valuable resources, or abusing sensitive informa-
tion about the user and their use of the app.

1 sourcedna.com/stats/

B
Y

 J

ul
ia

n
H

ar
ty

https://sourcedna.com/stats/

225Mobile Analytics

Analytics for Each Layer of a Mobile App

Conceptually an app consists of several layers that build on
each other. The topmost layer is the UI which communicates
with the user. Virtually all apps include a graphic UI (GUI)
which is displayed on the screen of the device. There may
be other UIs, for instance, to capture movement, audio, and
video. The next layer contains the logic, what the app does.
Often there is also some sort of communications layer. And at
the lowest level, there is the physical device with the operat-
ing system, or platform, installed, which supports and provides
the runtime for the app.

There are various types of analytics available, they can
overlap to a certain extent.

The most popular form of GUI analytics is based on
heatmaps, they are particularly well suited to capturing
data on how the GUI is being used. Heatmaps are enabled
by incorporating software into an app to track all the user-
interactions with the app's GUI. There are tens of commercial
options available, Appsee provide a particularly polished service

Perception - App-store,
in app and social feedback

Platform - Instrumentation

APP - In-app mobile analytics

GUI- GUI analytics (heatmaps)

225 226Mobile Analytics

and offer many free resources including e-books2 on heatmaps
and related topics.

In isolation, heatmap data can be used to track individual
user "journeys" through the GUI. In aggregate, various analyt-
ics related to User Experience (UX) can be inferred from the
data, including problematic areas of the GUI.

There does not appear to be many equivalent services to
capture other forms of input, so you may need to write your
own code if you want/need to gather data about other UIs.

In-app mobile analytics suits the application logic, it may
also record some details of the layer above - the UI - and the
layer below - the device.

Analytics Tools

At least 20 companies offer a smorgasbord of mobile analytics
solutions with multiple flavours ranging from campaign track-
ing to improving software quality. Many include extra features
such as crash reporting, customer and revenue tracking. Nearly
half offer open source implementations of their libraries,
possibly to allay fears of how their libraries behave?3

Many providers of mobile analytics solutions offer a 'Getting
Started' section where you learn how to take your first steps
with their products. Examples include Flurry4 and KISSmetrics5.
You often need to register to use the products as many need
configuring with a unique 'key' for your app.

Consider several of the potential solutions before commit-

2 appsee.com/ebooks

3 readwrite.com/2013/12/05/why-mobile-developers-need-open-source-
analytics-embedded-in-their-applications

4 support.flurry.com

5 support.kissmetrics.com/getting-started/overview

https://www.appsee.com/ebooks
http://readwrite.com/2013/12/05/why-mobile-developers-need-open-source-analytics-embedded-in-their-applications
http://readwrite.com/2013/12/05/why-mobile-developers-need-open-source-analytics-embedded-in-their-applications
http://support.flurry.com
http://support.kissmetrics.com/getting-started/overview

227Mobile Analytics

ting to any of them. Read documentation and example code
to see how easily you can implement them into your app, and
check the legal agreements, including privacy. Then pick at
least one of them so you can experiment with implementing
mobile analytics into your app. By integrating their code, you
are likely to learn much more about what you would like to
achieve by using mobile analytics in your app, and how mobile
analytics works in practice. Discover what other apps use and
why. For instance, VentureBeat found 95% of Android develop-
ers use Google Analytics, yet "Despite Google’s massive market
share, fewer than a third of mobile developers consider it their
primary app analytics solution"6. Also, Twitter Answers has
grown from nothing to become the market leader in 20157, an
example of how quickly the market is morphing.

For multi-platform apps, you may want consistency across
each platform. Otherwise, you may be trying to compare dis-
similar, or even disparate, data sets - particularly if different
mobile analytics solutions are used for the various platforms.
Consider picking a common solution that supports every
platform you want to launch your app on.

Two providers are well worth studying. Segment.io8
abstracts a wide range of mobile analytics offerings. Their
opensource code9 reduces the effort needed to adapt to
different analytics providers. Count.ly10 provide open source
implementations of their server as well as of their client

6 venturebeat.com/2014/12/02/230-developers-and-1-8m-apps-reveal-the-
best-mobile-app-analytics-solutions/

7 sourcedna.com/stats/

8 segment.io

9 github.com/segmentio

10 count.ly

http://venturebeat.com/2014/12/02/230-developers-and-1-8m-apps-reveal-the-best-mobile-app-analytics-solutions/
http://venturebeat.com/2014/12/02/230-developers-and-1-8m-apps-reveal-the-best-mobile-app-analytics-solutions/
https://sourcedna.com/stats/
http://segment.io/
http://github.com/segmentio
http://count.ly/

227 228Mobile Analytics

libraries and they encourage you to create a complete test
environment to evaluate their product.

Deciding What To Measure

What would you like to measure to understand how the app is
being used? Some suggestions are:

 — Key usage events: For instance, new search option or
when users launch social networking from your app.

 — Business-centric events: Any interaction by the user
that generates revenue for you. How often do your users
purchase the premium version of the app or other items
offered within your software? When do they cancel orders
or discard their shopping cart before checking out?

 — Application-centric events: Performance, usability,
reliability, and other data about the behaviour of the app.

Once you have defined your main areas of interest, you will
need to design the analytics measures, for instance, what data
elements need to be reported.

Defining How To Measure

Create meaningful names for your interaction events so you
can easily and correctly remember what they measure. For each
event you want to record, decide what elements it needs to
include. Consider how the data will be used once it has been
gathered, for instance, sketch out typical reports and graphs
and map how the various data elements will be processed to
generate each report and graph.

Also, remember to address globalisation issues such as the
timestamp of each element. Does the app detect the time of an

229Mobile Analytics

event according to the device's location, the device's settings
or does it use a global time like UTC time?

Many mobile analytics solutions will automatically record
and report data elements to the server. It is worth checking
what these elements are, how and when they are reported, and
how they are formatted. Then you can decide whether you want
to use and rely on these automatically-reported elements.

Custom event tags augment predefined events, and many
mobile analytics solutions provide ways for your app to gener-
ate them. You may need to format the custom event messages.
If so, pay attention to an encoding of the elements and separa-
tors. For instance, they may need to be URL encoded11 when
they are sent as REST messages.

You may want to consider how often the app should report
events to reduce the risk of flooding the available capacity of
the analytics system, which might affect the reliability and
accuracy of the delivered analytics data. Localytics has some
good integration tips online12. One method to reduce the
volume of data processed by the analytics solutions is called
sampling. Adam Cassar published an interesting blog post on
this topic13.

11 en.wikipedia.org/wiki/Percent-encoding

12 support.localytics.com/Integration_Overview

13 periscopix.co.uk/blog/should-you-be-worried-about-sampling

http://en.wikipedia.org/wiki/Percent-encoding
https://support.localytics.com/Integration_Overview
http://www.periscopix.co.uk/blog/should-you-be-worried-about-sampling

229 230Mobile Analytics

Configuring your App

You may need to declare additional capabilities required in
order for the mobile analytics to function correctly when
integrated with your app.

For Android, these are known as permissions. The analytics
probably need Internet permissions so the events can be re-
ported online, and location-centric permissions if the solution
records the location of the phone. If your app already uses the
permissions, you do not need to specify their use again.

For iOS, UIRequiredDeviceCapabilities tells iTunes
and the App Store what device-related features the app needs.
It is implemented as a dictionary where the elements are speci-
fied using keys. Keys include wifi, location services and GPS.

Windows Phone 8.1 and 10 use the App Specific Hardware
ID (ASHWID)14.

Handling the results

There is a lag from when an app sends an analytics event to
when the information is processed and made available to you.
The lag, or latency, varies from near 'real-time' to many hours.
You, and your business sponsors, need to decide how long you
can afford to lag real-time events.

Some analytics solutions provide an API to allow you to
access the data. This may give you greater scope to create
custom reports. Several allow you to host the servers which
provide you greater control of the data and how it is used.

To evaluate the quality of the results, some organisations

14 msdn.microsoft.com/en-us/library/windows/apps/jj553431.aspx and msdn.
microsoft.com/EN-US/library/windows/apps/windows.system.profile.
hardwareidentification.getpackagespecifictoken.aspx

http://msdn.microsoft.com/en-us/library/windows/apps/jj553431.aspx
https://msdn.microsoft.com/EN-US/library/windows/apps/windows.system.profile.hardwareidentification.getpackagespecifictoken.aspx
https://msdn.microsoft.com/EN-US/library/windows/apps/windows.system.profile.hardwareidentification.getpackagespecifictoken.aspx
https://msdn.microsoft.com/EN-US/library/windows/apps/windows.system.profile.hardwareidentification.getpackagespecifictoken.aspx

231Mobile Analytics

invest the extra effort of incorporating several analytics solu-
tions into their app and cross-reference the results. However,
two conflicting results do not make reconciliation easy, so it
may be necessary to use three sets of results to diagnose the
differences by triangulation15.

KISSmetrics provides practical advice on how to test
whether the implementation works16.

What can go wrong?

The road to hell is paved with good intentions, there are many
things that can go wrong when implementing analytics in
mobile apps. Some of the most common include:

 — Uncalibrated results: Blindly trusting the data can lead
to a maelstrom of problems. The result can be inaccurate
and misleading which causes knock-on problems when you
use these results to manage the business and your work.
Good practice is to test the analytics implementation at
the outset, starting with no users, then one, before testing
with more users. Look at latency, accuracy, and reliability
of the recorded data.

 — Betraying trust: Users implicitly trust apps to behave
nicely on their mobile devices. However apps or the
SDKs may accidentally or deliberately break that trust,
for instance by tracking users, recording and then using
sensitive data etc. Try not to hide behind click-through
agreements which we knew few people read and even fewer
understand. Instead, make sure your app and any analytics

15 en.wikipedia.org/wiki/Triangulation_(social_science)

16 support.kissmetrics.com/getting-started/testing-km

http://en.wikipedia.org/wiki/Triangulation_(social_science)
http://support.kissmetrics.com/getting-started/testing-km

231 232Mobile Analytics

libraries you use behave nicely and "Do as you would be
done by and don't snoop."

 — Handing over the jewels: Make sure that you do have
sufficient rights and access to the data that is collected
by the analytics software. This is especially relevant when
using third-party libraries and services.

Be aware, some mobile analytics solution providers may use
data reported by your app and they may provide and sell it to
others. They may control the life of that data, which means
they could make it inaccessible to you. Conversely they may
preserve and use it long after you have retired your app. If
there is personally identifiable information in the data, there
may be additional legal and privacy implications.

SafeDK are a recent startup who focus on the behaviour
of SDKs, including mobile analytics. SDKs added to apps can
adversely affect the performance, security and reliability of the
app in addition to other problems and concerns. SafeDK's blog17
discuss the concerns and provide advice on how to select SDKs
by understanding the behaviours they exhibit.

Remember to explain to the end-users that the app is
designed to record and share information about how the app is
being used, ideally in your terms and conditions. You may need
or want to enable users to decide if they want their use of the
app to be tracked. If so, make it easy for the user to control
the settings; and consider providing the user a way to access
the recorded data, delete it, or contact the analytics solution
provider.

Providers of third-party libraries seem to have a range
of attitudes to privacy. Some claim the privacy of users is
paramount and stresses the importance of not tracking users.

17 blog.safedk.com/

http://blog.safedk.com/

233Mobile Analytics

Google Analytics clearly prohibit tracking personally identifi-
able information in their terms of service18. Others provide
examples, including snippets of source code, that demonstrates
how to record clearly personally identifiable data. For
instance, KISSmetrics provides the following code snippet19:
[identify:@"name@email.com"]. Mixpanel provides an
example of how to track specific users20.

There are several places to learn more about privacy and
ethics of working with data related to users, e.g.:

 — Jeff Northrop's blog post on mobile analytics: jnorthrop.
me/privacy-considerations-with-mixpanel-people-analytics

 — Kord Davis' book "Ethics of Big Data" (O'Reilly, 2012)
available at shop.oreilly.com/product/0636920021872.do

18 google.com/analytics/terms/us.html

19 support.kissmetrics.com/apis/objective-c

20 mixpanel.com/activity-feed/

http://jnorthrop.me/privacy-considerations-with-mixpanel-people-analytics
http://jnorthrop.me/privacy-considerations-with-mixpanel-people-analytics
http://shop.oreilly.com/product/0636920021872.do
http://www.google.com/analytics/terms/us.html
http://support.kissmetrics.com/apis/objective-c
https://mixpanel.com/activity-feed/

233 234Mobile Analytics

Learn More

We hope this chapter has whetted your appetite to learn more
about mobile analytics. Here are some places to start your
ongoing research:

 — Various articles by Michael Wu or Lithium Technologies.
A good place to start is the article "Are Your Big Data
Analytics Actionable?"21

 — Capturing Mobile Experience in the Wild: A Tale of Two
Apps22, a study from the University of Wisconsin highlight-
ing the importance of application-centric analytics based
data collected on 1M+ users over 3 years.

 — The Beginner's Guide To App Analytics23, available as a
free download.

 — The Mobile Developer's Guide to the Parallel Universe24,
a sister book to this one, covers mobile analytics from a
marketing perspective.

21 community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-
Analytics-Actionable/ba-p/129029

22 static.googleusercontent.com/media/research.google.com/en//pubs/
archive/41590.pdf

23 info.localytics.com/download-beginners-guide-to-app-analytics

24 wip.org/resources/#mobile-developers-guide-parallel-universe

http://community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-Analytics-Actionable/ba-p/129029
http://community.lithium.com/t5/Science-of-Social-blog/Are-Your-Big-Data-Analytics-Actionable/ba-p/129029
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41590.pdf
http://info.localytics.com/download-beginners-guide-to-app-analytics
http://wip.org/resources/#mobile-developers-guide-parallel-universe

236Collecting & Understanding User Feedback

Collecting & Understanding
User Feedback
With mobile apps, many users willingly provide feedback as
app stores can confirm, with some apps receiving 1,000's of
distinct feedback per day. App stores have shifted the balance
of power subtly to end users who now have a well-known and
visible public forums where they can air their gripes and con-
cerns as well as any praise. Their feedback can help us identify
potential problems quickly, where they can be "nipped in the
bud" i.e. addressed quickly before the problem conflagrates.
Furthermore, feedback may include lots of potentially relevant
suggestions and recommendations that can be used to improve
the mobile app.

Feedback can complement mobile analytics. Mobile analytics
provides software-oriented feedback, see the dedicated chapter
in this guide to learn more about your options in that area.
This chapter focuses on feedback created by humans.

App Store Ratings and Feedback

App stores provide a public forum for users to rate apps and
provide written comments. As many of us know, apps with low
ratings are much less likely to be downloaded by users. Fur-
thermore, app stores seem to use the app rating as a factor for
deciding the priority of including an app in search results and
even promoting some of the more popular apps. An excellent
read on this topic is the "App Quality Book" by Jason Arbon1.

1 appqualitybook.com

B
Y

 J

ul
ia

n
H

ar
ty

http://appqualitybook.com

237Collecting & Understanding User Feedback

Ways to Collect Feedback
Various commercial services offer to reduce the effort of
collecting and analysing app store data. Examples include
appannie.com and appfigures.com. Useful descriptions of roll-
your-own analysis are covered in a pair of related blog posts2.
There are various complications and limitations to collecting
feedback from specific app stores such as limits on the number
of results available. In many cases you can devise ways to col-
lect the reviews, alternatively a hybrid option is to use services
such as AppFigures3.

Dealing with Inconsistencies
In some instances, the user rating and the remarks may contra-
dict each other. People may not understand the scoring system,
where app stores consider 5 stars the highest rating. Users may
assume 1 star is the highest rating instead. Alternatively, the
ratings may seem to be almost random.

Initially, we might consider the priority of the star ratings
on a linear scale, where 1-star is the lowest and 'worst' rating.
However, work by Spotify and others discovered that users gave
2-star ratings for the most serious and important problems.
They published their findings in a paper called What Do Mobile
App Users Complain About4?

2 blog.scottlogic.com/2014/03/20/app-store-analysis.html and
shinobicontrols.com/news/a-statistical-comparison-of-the-ios-and-android-
stores

3 docs.appfigures.com/api/reference/v2/reviews

4 doi.ieeecomputersociety.org/10.1109/MS.2014.50

https://www.appannie.com/
https://appfigures.com/
http://blog.scottlogic.com/2014/03/20/app-store-analysis.html
http://www.shinobicontrols.com/news/a-statistical-comparison-of-the-ios-and-android-stores
http://www.shinobicontrols.com/news/a-statistical-comparison-of-the-ios-and-android-stores
http://docs.appfigures.com/api/reference/v2/reviews
http://doi.ieeecomputersociety.org/10.1109/MS.2014.50

237 238Collecting & Understanding User Feedback

Rogue Feedback
Rogue feedback is feedback deliberately submitted to affect the
overall rating of an app. The feedback may be aimed at inflating
or deflating the rating. Some people try to inflate the ratings for
various reasons, for instance, to try and get their app promoted
by others. Others may target the apps of competitors to drag
down the ratings and adversely affect their attractiveness,
reduce the number of downloads, etc.

Like SPAM email, some rogue feedback may be easy to detect
and either report or filter out from our analysis, for instance
if there are lots of identical reviews with the same text, etc.
Others may be very poorly written. Some app stores are working
hard to reduce rogue feedback. Analogously Amazon has
removed lots of fake feedback and is suing various people who
wrote the feedback5.

Social Media

Social media includes services such as Facebook and Twitter, and
more recently social video sites such as YouTube, where people
share their thoughts, impressions and feelings online with vari-
ous social groups such as friends, colleagues and acquaintances.
They may share things publicly, where anyone can view the
shared materials. Some feedback relates to mobile apps. A good
example is Facebook's own iOS app which drained the battery
of mobile apps. One of the Facebook engineering managers, Ari
Grant, explains the causes and the fixes in an online article6.
Interestingly, some of the subsequent comments indicate the
problem may have returned several releases later.

5 www.wired.co.uk/news/archive/2015-10/19/amazon-fake-reviews-legal-
action-fiverr

6 facebook.com/arig/posts/10105815276466163

http://www.wired.co.uk/news/archive/2015-10/19/amazon-fake-reviews-legal-action-fiverr
http://www.wired.co.uk/news/archive/2015-10/19/amazon-fake-reviews-legal-action-fiverr
https://www.facebook.com/arig/posts/10105815276466163

239Collecting & Understanding User Feedback

Interpreting and Inferring

As we know from personal experience, the words people write
are not necessarily what they mean or exactly what they want
to express. They may not spell everything correctly and the
grammar may be poor. Also, there are nuances in interpret-
ing writing. For instance, in texting using a period to end a
sentence may be considered insincere7.

Feedback can be in various languages. App stores may use
automatic translation to help us read and interpret, none-the-
less our understanding will be incomplete and imperfect. Find-
ing native language speakers can help us work more effectively
with the users who provide feedback in languages foreign to
us. Emotional and sentiment analytics extend feedback in
several dimensions, we cover them shortly.

Data Mining
We may need to deal with lots of text on an ongoing basis, for
instance, some popular apps receive many 1,000's of pieces
of feedback each day, which is expensive to process without
software. Data mining can help process vast amounts of data,
and help us to identify trends, and discover fresh insights from
the feedback we receive. Data mining is a rich research topic,
and there is even a dedicated academic research project called
UCLappA8.

There is also a friendly free introduction to data mining
written for programmers online9.

7 lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-
in-1747411231

8 www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

9 guidetodatamining.com

http://lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-in-1747411231
http://lifehacker.com/ending-text-messages-with-periods-can-make-them-seem-in-1747411231
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html
http://guidetodatamining.com/

239 240Collecting & Understanding User Feedback

Online services such as AppAnalytics from Fido Labs10 try to
automatically process app store feedback, albeit only for iOS
apps at the time of writing.

Emotional Analytics
Emotions can be highly relevant for some apps, and the
emotions of users can affect their perceptions of an app and
any feedback they provide. Apps are available that claim to
measure a user's emotions using visual11 and auditory12 sources
of data. They are early indicators of what might be not only
possible but useful, in the near future.

Sentiment Analytics
Sentiment analytics processes what users communicate to
determine their feelings, their sentiments, they wish to com-
municate to others. These others may be us, our organisation,
their friends or anyone who discovers what the users have
communicated.

Designing for Feedback about the Mobile
App
Savvy app developers design their apps and their systems to
encourage public feedback when people are more likely to
provide positive feedback and direct feedback if the feedback
is likely to be negative or critical. Users may be in a good
mood after successfully completing an action, for instance,
a level in a game, or a purchase on an e-commerce site. A
discreet request for feedback on completion may be well

10 apps.fidolabs.com

11 affectiva.com/solutions/mobile

12 beyondverbal.com

http://apps.fidolabs.com/
http://www.affectiva.com/solutions/mobile/
http://www.beyondverbal.com/

241Collecting & Understanding User Feedback

received by some users, and others can simply continue with
whatever else they want to do. Some designers may include
prepared feedback statements in the hope of encouraging users
to use them.

Asking for feedback in your mobile app is a simple way
to get started. However, when designing feedback try not to
obstruct or frustrate users, for instance, do not block them
midway through a process, a game level, etc. - at least do not
if you have any hope of getting positive feedback.

When implementing a feedback mechanism into your app,
you may want to route negative feedback away from the app
store, where it would be public and adversely affect the app's
rating on the store. A dialogue offering the following options
would be one way of achieving this:

“Do you like this app?”

NOYES

review later

does NOT open the app store
dialogue, instead opens the email

client, or in-app feedback, so
that feedback goes to you
directly and is not public.

„You don’t like this app?
Please let us know why!”

 leads the user
to provide feedback
 on the app store

„Please add
a review now!!”

241 242Collecting & Understanding User Feedback 242

Some project teams may decide to incorporate commercial
feedback services, such as HelpShift13, to help them proac-
tively manage feedback by users of their app.

Responding to Feedback

For many organisations being able to respond accurately and
rapidly enables them to improve not only the user's percep-
tions but also the perceptions of many more people either
directly or indirectly (for instance through the user telling
others about the good things we have done). None-the-less,
according to appbot14 on Google Play 97% of reviews go
unanswered. Perhaps you can out compete many of your
competitors by answering all your reviews?

13 helpshift.com

14 blog.appbot.co/97-of-google-play-app-reviews-go-unanswered

https://www.helpshift.com/
http://blog.appbot.co/97-of-google-play-app-reviews-go-unanswered

243Collecting & Understanding User Feedback

Most app stores offer the opportunity to respond to reviews
for their apps. By responding (especially for bad reviews),
app providers can help their users and increase engagement.
If you help users solve an issue they encountered, they can
(and hopefully will) revert their poor rating and give your
app more stars than in their initial review. Caution: Do not
respond with general templates, otherwise you may give users
the impression that you are not treating their review with
sufficient respect (e.g. “Thanks for your feedback, we will look
into this.”). Instead, let the user know they are special and
their feedback is valuable by incorporate details they provided
(including their name if it is available).

A book called The Art of the App Store15 devotes a chapter
to Feedback. Key points include

 — Categorizing feedback, for instance, identifying construc-
tive criticism. Vague comments can be filtered out at this
stage too.

 — Converting feedback into actionable tasks, including
suggested fixes and assigning priorities.

 — Updating the app with various fixes and improvements.
 — And finally, wording the release notes so users can easily

read the good news about the improvements and install
the updates promptly.

15 ISBN 978-0-470-95278-8

246Monetisation

Monetisation
Finally you have finished your app or mobile website and polished
it as a result of beta testing feedback. Assuming you are not
developing as a hobby, for branding exposure, et cetera, now it is
time to make some money. But how do you do that, what are your
options?

In general, you have the following monetisation options:

 — Pay per download: Sell your app per download
 — In-app payment: Add payment options into your app
 — Mobile advertising: Earn money from advertising
 — Sponsorships: Receive money for each user signing up to

your sponsor
 — Revenue sharing: Earn revenue from operator services

originating in your app
 — Indirect sales: Affiliates, data reporting and physical goods

among others
 — Component marketplace: Sell components or a white-label

version of your app to other developers
 — App platform subscriptions: Create small apps and lease

them to businesses

When you come to planning your own development, determin-
ing the monetisation business model should be one of the key
elements of your early design as it might affect the functional
and technical behaviour of the app. Five strategies to monetise
your mobile app1 is an excellent article on how to design the
financial aspects so they do not annoy users or lose the revenues
you hoped to receive.

1 medium.com/@signored/dont-fall-below-the-app-poverty-line-9b800a214e4a

B
Y

 M

ic
he

l S
hu

qa
ir

https://medium.com/@signored/dont-fall-below-the-app-poverty-line-9b800a214e4a

247Monetisation

Pay Per Download

Using pay per download (PPD) your app is sold once to each
user as they download and install it on their phone. Payment
can be handled by an app store, mobile operator, or you can
set up a mechanism yourself. Once the most popular and
profitable monetisation method, today it is only used by a
minority of developers. Gartner predicts that by 2017 nearly
95% of downloads will be for free apps, up from approximately
90% today2.

When your app is distributed in an app store, the store will
handle the payment mechanism for you. In return the store
takes a revenue share (typically 30%) on all sales. In most
cases stores offer a matrix of fixed price points by country
and currency ($0.99, EUR 0.79, $3 etc) to choose from when
pricing your app.

Payment for downloaded apps is generally handled in one of
two ways: operator billing or credit-card payments.

Operator billing enables your customers to pay for your app
by just confirming that the sale will be charged to their mobile
phone bill or by sending a Premium SMS. In some cases, opera-
tor billing is handled by an app store (such as Google Play,
which supports operator billing for a number of carriers around
the world). In other cases, it can be implemented directly by
the developer.

Each operator will take a revenue share of the sale price
(typically 30% to 65%, but some operators can take up to
95%), and, if you use one, an aggregator will take its share
too. Security (how you prevent the copying of your app) and
manageability are common issues with the PPD model, but

2 www.businessweek.com/articles/2013-09-19/the-profitable-future-of-free-
mobile-apps

http://www.businessweek.com/articles/2013-09-19/the-profitable-future-of-free-mobile-apps
http://www.businessweek.com/articles/2013-09-19/the-profitable-future-of-free-mobile-apps

247 248Monetisation

in some scenarios it might be the only monetisation option.
Operator billing can be quite difficult to handle on your own,
particularly if you want to sell in several countries, as you
need to sign contracts with each operator in each country.
For unknown reasons some operators, like Vodafone, seem to
remove operator billing as an option for Android Play in some
key markets, like UK and Germany. Possibly because better
alternatives, like local mobile bank payments become avail-
able.

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements. The principal reason
they are doing this is that typically, when users have a choice
of credit card and operator billing methods users show a sig-
nificant preference for operator billing (Nokia says its research
has shown up to a 10x increase in revenues over credit card
payments).

Credit-card billing is used by Apple, Google (in some cases),
Amazon and other stores. Apple has required iPhone users to
provide credit-card data at registration for many years, and
Google now requires this as well for Android users. Having this
information entered before purchase is, according to analysts,
a key differentiator for higher monthly per app revenue.

The last payment option is to create your own website and
implement a payment mechanism through that, such as PayPal
mobile, dial-in to premium landlines3 or others.

Using PPD can typically be implemented with no special
design or coding requirements for your app and for starters
we would recommend using the app store billing options as
it involves minimal setup costs and minor administrative
overhead.

For each form of payment it is important to determine

3 daopay.com

http://www.daopay.com

249Monetisation

price elasticity of demand PED4. Increasing the price does not
necessarily mean higher total revenue (and vice versa), your
price needs to match expectations of your user base.

In-App Payment

In-app payment (IAP) is a way to charge for specific actions
or assets within your application. A very basic use might be
to enable the one-off purchase of your application after a trial
period — which may garner more sales than PPD if you feel
the features of your application justify a higher price point.
Alternatively, you can offer the basic features of your applica-
tion for free, but charge for premium content (videos, virtual
credits, premium information, additional features, removing ads
and alike). Most app stores offer an in-app purchase option or
you can implement your own payment mechanism. If you want
to look at anything more than a one-off “full licence” payment
you have to think carefully about how, when and what your
users will be willing to pay for and design your app accordingly.

Recurring in-app payments, also known as subscriptions, are
offered by most platforms as well. These type of payments fit
well when your app offers content that is regularly updated,
such as online newspapers or digital magazines.

In-app purchases have become the leading monetisation
model in many markets, particularly among "freemium" games
that use free distribution to get users hooked before turning
them into buyers.

IAP is particularly popular in games (for features such as
buying extra power, extra levels, virtual credits and alike) and
can help achieve a larger install base as you can offer the basic
application for free.

4 en.wikipedia.org/wiki/Price_elasticity_of_demand

http://en.wikipedia.org/wiki/Price_elasticity_of_demand

249 250Monetisation

Distimo reported in 2014 that In-app purchases accounted
for 79% of iOS revenue5.

If you target specific countries, be aware of different
behaviour, e.g. in China the initial purchase is 99% of all
revenue generated, while IAP is very low, while in the US it is
the other way around.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment
method. If your application is implemented across various
platforms, you may need to implement a different mechanism
for each platform (in addition to each app store, potentially).

As with PPD we would recommend that you start with
the in-app purchasing mechanism offered by an app store,
particularly as some of these can leverage operator billing
services (such as Google Play) or utilize pre-existing credit-
card information (such as Apple or Amazon), or with in-app
payment offered directly by operators. From a user’s perspec-
tive, this is the easiest and most convenient way to pay (one
or two clicks, no need to enter credit card numbers, user names
or other credentials), so developers can expect the highest user
acceptance and conversion rates.

Mobile Advertising

As is common on websites, you could decide to earn money by
displaying advertisements. According to VisionMobile's survey
among 13,000 developers6, almost half of mobile app develop-
ers are still reliant on this revenue model- although it seems
proven that it’s proving profitable for only a small minority:

5 “2014 How the Most Successful Apps Monetize Globally” available at
www.distimo.com/publications

6 vmob.me/DE3Q15

http://www.distimo.com/publications
http://vmob.me/DE3Q15

251Monetisation

83% of the study's participants who rely on ads, make less than
$10,000 a month.

There are a number of players who offer tools to display
mobile ads and it is the easiest way to make money on mobile
browser applications. Admob.com, Buzzcity.com and inmobi.com
(targeting games) are a few of the parties that offer mobile
advertising. However because of the wide range of devices,
countries and capabilities there are currently over 70 large
mobile ad networks. Each network offers slightly different
approaches and finding the one that monetises your app’s
audience best may not be straightforward. There is no golden
rule; you may have to experiment with a few to find the one
that works best. However, for a quick start you might consider
using a mobile ad aggregator, such as Madgic7, smaato8 or
inneractive9 as they tend to bring you better earnings by com-
bining and optimising ads from 50+ mobile ad networks. Most
aggregators can also operate as an Ad Exchange, providing Real
Time Bidding (RTB), like a live auction where the price of each
ad is determined at run-time.

Most ad networks take a 30% to 50% share of advertising
revenue and aggregators another 15% to 20% on top of that,
but even with those numbers aggregators are still more profit-
able than trying to integrate all separate ad networks yourself.

If your app is doing really well and has a large volume in
a specific country you might consider selling ads directly to
advertising agencies or brands (Premium advertising) or hire a
media agency to do that for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mecha-

7 madgic.com

8 smaato.net

9 inner-active.com

http://www.admob.com
http://Buzzcity.com
http://inmobi.com
http://www.madgic.com
http://www.smaato.net
http://www.inner-active.com

251 252Monetisation

nisms are also worth exploring. In some cases you may have to
use the vendor’s offering to be able to include your application
in their store.

In-application advertising will require you to design and
code your application carefully. Not only the display location
of ads within your app needs to be considered with care, also
the variations and opt-out mechanism. If adverts become
too intrusive, users may abandon your app, while making the
advertising too subtle will mean you gain little or no revenue.
Relatively new compared to traditional banner advertising is
interstitial advertising: This term is generally used to describe
an ad that takes up the entire screen and typically has a
"skip screen" button at the bottom. Other new ad formats
include playable ads or rewarded ads, especially for games. It
may require some experimentation to find the right level and
positions in which to place adverts.

Sponsorships

The German startup Apponsor10 offers a new way of earning
money without the need to display advertising or charge a
download fee: The user gets your app for free and is prompted
to sign-up for a newsletter of your sponsor. The sponsor will
in return pay the developer an amount for each newsletter
registration. Not to be confused with App Sponsors, companies
who pay the development costs of your App in return for a
stake, see also Apps Funder11.

10 apponsor.com

11 appsfunder.com

http://apponsor.com
http://appsfunder.com

253Monetisation

Indirect Sales

Another option is to use your application to drive sales
elsewhere.

Here you usually offer your app or website for free and then
use mechanisms such as:

1. Affiliate app programs: Promote third party or your own
paid apps within a free app. MobPartner.com is a service
provider that offers this type of monetisation.

2. Data reporting: Track behaviour and sell data to interested
parties. Note that for privacy reasons you should not reveal
any personal information, ensure all data is provided in
anonymous, consolidated reports

3. Virtual vs. real world: Use your app as a marketing tool
to sell goods in the real world. Typical examples are car
apps, magazine apps and large brands such as McDonald’s
and Starbucks. Also coupon applications as Groupon often
use this business model. Only 10% of the participants
in the DevEconomics Report Q3 2015 are relying on this
business model, although mobile commerce developers are
more than three times as likely to make over 100K USD per
month than those monetising with ads12.

There is nothing to stop you from combining this option
with any of the other revenue generation options if you wish,
but take care that you do not give the impression of overly-
intrusive promotions.

12 vmob.me/DE3Q15

http://www.mobpartner.com
http://vmob.me/DE3Q15

253 254Monetisation

Component Marketplace

A Component Marketplace (CMP) provides another opportunity
for developers to monetise their products to other developers
and earn money by selling software components or white-
labelled apps. A software component is a building block piece
of software, which provides a defined functionality, that is to
be used by higher level software.

The typical question that comes up at this point is on how
CMPs contrast to open source. As a user, open source is often
free-of-charge. Source code must be provided and users have
the right to modify the source code and distribute the derived
work.

Some component providers require a licence fee. They
may provide full source code which enables the developer to
debug into lower level code. Some CMPs support all models:
Paid components with or without source code as well as free
components with or without source code.

If you are a developer searching for a component, CMPs
offer two major advantages: First, you do not have to open
source your code just because you use software components.
All open source comes with a licence. Some licences like the
Apache are commercially friendly; others, such as AGPL and
OSL, require you to open source your code that integrates with
theirs. You might not want this. Secondly, CMPs provide an
easy way to find and download components. You can spend
days browsing open source repositories to find the right thing
to use.

Component marketplaces have existed for decades now. The
most prominent marketplace is for components for Visual Basic
and .NET in the Windows community. Marketplaces such as
componentOne and suppliers like Infragistics are well known in
their domain. The idea of component marketplaces within the

255Monetisation

mobile arena is quite new. ChupaMobile13 is a relevant player in this
domain.

App Platform Subscriptions

The 2nd wave after the mobile consumer app adaption came from
the small and medium enterprises. According to Gartner14 the
development capacity required to meet the demand of enterprise
apps will become critical in 2017.

Smaller businesses, including your bakery around the corner, are
interested to have their own app, but do not have the budget to
justify the development. For this target market the App Platforms
are an excellent choice. The developer designs an app with some
default options, adds the content and sells a subscription to the
company. All content is hosted online, only the app framework is
downloaded from the app stores. So the company has to renew his
subscription each month or year to keep his app alive. Mastering
the App Platform development tools and selling a couple of new
subscriptions a month ensures a recurring revenue for the devel-
oper.

Choosing your Monetisation Model

So with all these options what should your strategy be? It depends
on your goals, let us look at a few:

 — Are you convinced users will be willing to buy your app
immediately? Then sell it as PPD for $0.99, but beware while
you might cash several thousand dollars per day it could
easily be no more than a few hundred dollars per week if your

13 www.chupamobile.com

14 www.gartner.com/newsroom/id/3076817

http://www.chupamobile.com
http://www.gartner.com/newsroom/id/3076817

255 256Monetisation

assessment of your app is misplaced or the competition fierce.
The Application Developer's Alliance recommends the PPD
monetisation method mainly for high-production apps, apps
with barriers to entry and high-volume apps15. This includes
games and apps for entertainment, productivity, navigation
and news.

 — Do you target a large user base? Consider distributing your
application for free with in-app purchases, or with mobile
advertising (you could even offer a premium ad-free version).

 — Are you offering premium features at a premium price?
Consider a time or feature limited trial application then use
in-app purchasing to enable the purchase of a full version
either permanently or for a period of time.

 — Are you developing a game? Consider offering the app for free
with in-app advertising or a basic version then use in-app
purchasing to allow user to unlock new features, more levels,
different vehicles or any extendable game asset.

 — Is your mobile app an extension to your existing PC web shop
or physical store? Offer the app for free and earn revenue from
your products and services in the real world.

 — Does your app contain content that is updated frequently, like
digital magazines? Offer recurring in-app payments and make
sure that visitors return.

 — Do you offer physical goods, like a webshop app? Offer your
app for free and make money on the margins of your cus-
tomer's purchases.

15 www.appdevelopersalliance.org/app-monetisation

http://www.appdevelopersalliance.org/app-monetization/

257Monetisation

App Store Strategies

The flip side of revenue generation is marketing and promotion.
The need might be obvious if you sell your application through
your own website, but it is equally important when using a
vendor's app store. App stores are the curse and the blessing
of mobile developers. On the bright side they give develop-
ers extended reach and potential sales exposure that would
otherwise be very difficult to achieve. On the dark side the
more popular ones now contain hundreds of thousands of apps,
decreasing the potential to stand out from the crowd and be
successful, leading many to compare the chances of app store
success to the odds of winning the lottery.

So, here are a few tips and tricks to help you raise your
odds.

Strategies To Get High Rankings
The most important thing to understand about app stores is
that they are distribution channels and not marketing ma-
chines. This means that while app stores are a great way to get
your app onto users’ devices, they are not going to market your
app for you (unless you purchase premium positioning either
through banners or list placings). You cannot rely on the app
stores to pump up your downloads, unless you happen to get
into a top-ten list. But do not play the lottery with your apps,
have a strategy and plan to market your app.

We have asked many developers about the tactics that
brought them the most attention and higher rankings in app
stores.

Many answers came back and one common theme emerged:
there is no silver bullet – you have to fire on all fronts!
However it will help if you try to keep the following in mind:

257 258Monetisation

 — You need a kick ass app: it should be entertaining, easy to
use and not buggy. Make sure you put it in the hands of
users before you put it in a store.

 — Polish your icons and images in the app store, work on
your app description, and carefully choose your keywords
and category. If unsure of, or unsatisfied with the results,
experiment.

 — Getting reviewed by bloggers and magazines is one of the
best ways to get attention. In return some will be asking
for money, some for exclusivity, and some for early access.

 — Get (positive) reviews as quickly as possible. Call your
friends and ask your users regularly for a review.

 — If you are going to do any advertising, use a burst of
advertising over a couple of days. This is much more
effective than spending the same amount of money over
2 weeks, as it will help create a big spike, rather than a
slow, gradual push.

 — Do not rely on the traffic generated by people browsing
the app store, make sure you drive traffic to your app
through your website, SEO and social media.

Multi-Store vs Single Store
With 120+ app stores available to developers, there are clearly
many application distribution options. But the 20 minutes
needed on average to submit an app to an app store means
you could be spending a lot of time posting apps in obscure
stores that achieve few downloads. This is why a majority
of developers stick to only 1 or 2 stores, missing out on a
potentially huge opportunity but getting a lot more time for
the important things, like coding! So should you go multi-store
or not?

259Monetisation

Multi-store Single store

The main platform app stores can
have serious limitations, such as
payment mechanisms, penetration
in certain countries, content
guidelines.

90%+ of smartphone users only use
a single app store, which tends to
be the platform app store shipping
with the phone.

Smaller stores give you more
visibility options (featured app).

Your own website can bring you
more traffic than app stores
(especially if you have a well-known
brand).

Smaller stores are more social
media friendly than large ones.

Many smaller app stores scrape data
from large stores, so your app may
already be there.

Operators’ stores have notoriously
strict content guidelines and can
be difficult to get in, particularly
for some types of apps.

For non-niche content, operator or
platform stores may offer enough
exposure to not justify the extra
effort of a multi-store strategy.

Smaller stores may offer a wider
range of payment or business
model options, or be available in
many countries.

Some operators’ stores have easier
billing processes – such as direct
billing to a user’s mobile account --
leading to higher conversion rates.

Some developers report that 50%
of their Android revenues come
from outside of Android Market.

iOS developers only need 1 app
store.

The platform app stores should give you general coverage for
users, but over time, it is in your interest to adapt your app store
strategy to match your targeted user base, and utilize the app
stores that best reach it. This could mean using particular opera-
tor stores, stores popular in a specific country, or simply sticking
with the platform stores. There are some third-party app stores
with large audiences, such as the Amazon app store for Android,
which offers developers a number of ways to monetise their apps,

259 260Monetisation

such as PPD and in-app payments in several countries. Additionally,
in some countries, there are locally popular app stores, such as
AndroidPit in Germany, or one of the many China-specific Android
stores.

What Can You Earn?

One of the most common developer questions is about how much
money they can make with a mobile app. It is clear that some apps
have made their developer’s millionaires, while others will not be
giving up their day job anytime soon. Most app developers are not
generating enough revenue to break even with development costs
and single platform developers confirmed it was not enough to
support a standalone business.

According to VisionMobile, over 50% of them are below the “app
poverty line” of $500 per app per month16.

Mobile games seem to offer the most options to make money
according to Pulse17. And even if Android phones and tablets are
outnumbering iOS devices, revenues generated in Apple's App Store
are 80% higher than on Google Play18.

Ultimately, what you can earn is about fulfilling a need and
effective marketing. Experience suggests that apps which save the
user money or time are most attractive (hotel discounts, coupons,
free music and alike) followed by games (just look at the success
of Angry Birds) and business tools (office document viewers, sync
tools, backup tools and alike) but often the (revenue) success of
a single app cannot be predicted. Success usually comes with a
degree of experimentation and a lot of perseverance.

16 www.vmob.me/DE3Q15

17 www.linkedin.com/pulse/mobile-gaming-monetisation-making-more-money

18 techcrunch.com/2015/10/15/ios-app-store-revenue-now-80-percent-higher-than-
google-play-thanks-to-china/

http://www.vmob.me/DE3Q15
https://www.linkedin.com/pulse/mobile-gaming-monetization-making-more-money-your-app-jehan-damji

Game
over

262Epilogue

Epilogue
Thanks for reading this 16th edition of our Mobile Developer’s
Guide. We hope you have enjoyed reading it and that we
helped you to clarify your options. Perhaps you are now ready
to get involved in developing a mobile app or have discovered
new options in the app business. We hope so. Please also get
involved in the community and share your experiences and
ideas with us and with others.

If you like to contribute to this guide, sponsor upcoming
editions or if you are interested in getting previous editions of
the book, please write to . If you are using Twitter, follow the
project on twitter.com/mobiledevguide.

You can of course also get this guide as an ebook- just
check amazon.com, kobobooks.com or apple.com/iBooks.
Alternatively you can download the pdf version on our website:
www.enough.de/mdgg where you also find more information
about Enough Software, the German app agency who is
coordinating this project since it started in 2009.

The 17th edition can be expected for early 2017!

http://twitter.com/mobiledevguide
http://amazon.com
http://www.kobobooks.com/
http://www.apple.com/ibooks
http://www.enough.de/mdgg

About the Book
This project was initiated by Enough Software in 2009 with the aim to spread

knowledge about mobile technologies and to encourage people to enter our

community or deepen their existing knowledge. We have given away more than

80,000 hardcopies at events worldwide. Universities and schools in Germany,

Netherlands, UK, Spain and South Africa use the book as teaching material. The

electronic versions (ebook and pdf) have been downloaded hundreds of thousands

of times and the content has been translated into several languages. The book

is a non-profit project: the writers, editors, translators and designers contribute

their work free of charge. The printing and distribution costs are covered by

sponsors.

The Publisher

Enough Software
Enough Software is an app agency from Bremen, North-Western Germany with

over 10 years of experience. Our team of 25 experts design and develop applica-

tions for any kind of business and for any platform. Besides we are always glad to

share our experience - be it with this book, as consultants, or trainers. We value

open, transparent communication both within project teams and when working

with our clients. Companies like BBC, Nokia, Vodafone, Samsung and CEWE use

our tools for their projects or work with us as their application development

partner.

www.enough.de

@enoughsoftware

http://www.enough.de

264About the Book

The Printing Sponsor

Microsoft
Microsoft is a technology company whose mission is to empower every person

and every organization on the planet to achieve more. Founded in 1975, our

strategy is to build best-in-class platforms and productivity services for a

mobile-first, cloud-first world. We develop, license, and support a wide range of

software products, services, and devices that deliver new opportunities, greater

convenience, and enhanced value to people’s lives. We offer an array of services,

including cloud-based services, to consumers and businesses. We design,

manufacture, and sell devices that integrate with our cloud-based services, and

we deliver relevant online advertising to a global audience.

www.microsoft.com

The Authors & Contributors

Anna Alfut
Anna started her professional life as Creative Designer. After discovering her pas-

sion for interface design she co-authored an app for iOS and Android platforms

and consulted on multiple projects both on the agency and client side. Currently

she works as UX designer for mobile. Apart from thinking through and drawing

UIs she also does illustration and enjoys living in London.

www.alfutka.net

Davoc Bradley / MiraLife
Davoc has been working as a software engineer since 1999 specializing in

architecture and design of high usage web and mobile systems. Currently he is

CTO at MiraLife who specialize in providing web based and mobile software which

aims to improve the lives of people suffering from dementia and other terminal

illnesses. Davoc is also a keen musician, avid cricket fan and loves travelling.

@davocbradley

http://www.alfutka.net
http://www.twitter.com/davocbradley

265About the Book

Sally Cain / RNIB
Sally has worked at RNIB in the area of digital accessibility for more than 16

years. She believes passionately in equal access to digital technology for people

with disabilities. Sally is her organisation's representative on W3C standards

groups and is also sits on a number of groups at the British Standards Institute

(BSI) that relate to standards for ICT, this includes the group responsible

for BS8878 the Code of Practice for Web Accessibility. Sally is currently the

Accessibility Technology Manager at RNIB with responsibility for the accessibility

of all internal and customer facing systems, ensuring that RNIB is delivering on

accessibility not only for customers, but for staff too. She also led the writing of

RNIB's own internal app standard for accessibility.

www.rnib.org.uk

@sallycain

Dean Churchill / AT&T
Dean works on secure design, development and testing of applications at AT&T.

Over the past several years he has focused on driving security requirements in

mobile applications, for consumer applications as well as internal AT&T mobile

applications. He has been busy supporting AT&T's emerging Mobile Health and

Digital Life product lines. He lives in the Seattle area and enjoys downhill skiing

and fly fishing.

Julian Harty / Commercetest
Julian was hired by Google in 2006 as their first Test Engineer in Europe,

responsible for testing Google’s mobile applications. He helped others, inside and

outside Google, to learn how to do likewise; and he ended up writing the first

book on the topic. He subsequently worked for eBay where his mission was to

revamp testing globally. Currently he is working independently, writing mobile

apps & suitable test automation tools, and helping others to improve their

mobile apps. He is also writing a new book on testing and test automation for

mobile apps.

@julianharty

http://www.rnib.org.uk
http://twitter.com/sallycain
http://www.twitter.com/julianharty

265 266About the Book

Oscar Clark / Unity Technologies
Oscar Clark is an author, consultant and evangelist for Everyplay from Unity

Technologies. He has been a pioneer in online, mobile and console social games

services since 1998. He provided 'vision' for one of the first Online games com-

munities (Wireplay - British Telecom); was global lead for games at Hutchison

Whampoa (3UK) which included (perhaps) the first mobile in-App purchase; and

was Home Architect for PlayStation®Home.

He is a regular columnist on PocketGamer.Biz and Develop-Online, an outspoken

speaker at countless games conferences, a mentor for accelerator GameFounders

and has guest lectured for several universities. His first book, "Games As A

Service - How Free To Play Design Can Make Better Games" is available online.

www.gamesasaservice.net

@athanateus

Ovidiu Iliescu / Enough Software
After developing desktop and web-based applications for several years, Ovidiu

decided mobile software was more to his liking. He is involved in Java ME and

Blackberry development for Enough Software since 2009. He gets excited by

anything related to efficient coding, algorithms and computer graphics.

@ovvyblabla

www.ovidiuiliescu.com & www.enough.de

Alex Jonsson / Evothings
Alex likes anything mobile, both apps and web technologies, and especially

cleverly connecting physical stuff to mobile. He holds a PhD in CS/Media

Technology from the Royal Institute of Technology in Stockholm and freely

shares his ideas and thought with both the industry and academia. Dr Jonsson

also has an eclectic urge to investigate how apps and services act as drivers for

new business, by bringing novel values and ways to make things more connected,

thereby binding the universe together in new, clever ways. Alex is founder and

VP Community of Evothings simply because things are better when connected.

www.evothings.com

@dr_alexj

http://www.gamesasaservice.net
http://www.twitter.com/athanateus
http://www.twitter.com/ovvyblabla
http://www.ovidiuiliescu.com
http://www.enough.de
http://www.evothings.com
http://www.twitter.com/dr_alexj

267About the Book

Michael Koch / Enough Software
Michael has developed software since 1988 and joined the development team

at Enough Software in 2005. He holds the position of CTO. He has led numerous

mobile app development projects (mainly for Java ME, Android, Windows Mobile

and BlackBerry) and he is also an expert in server technology. Michael is an open

source enthusiast involved in many free projects, such as GNU classpath.

www.enough.de

@linux_pinguin

Daniel Kranz / Joule
Daniel is a multi-channel strategist with consultancy, agency and tech back-

ground. Previously a technical project manager at one of the leading advertising

agencies and a mobile solution consultant for a mobile and multi-channel web

specialist, he now works in global strategic planning advising brands on how to

integrate mobile as part of their overall strategy.

www.jouleww.com

Vikram Kriplaney / local.ch / iPhonso.com
Vikram has been a mobile developer since when WAP was still cool and Symbian

and J2ME were still fashionable. He founded mobile at local.ch in 2007, where

he went on to singlehandedly develop massively successful mobile web, iOS

and Android apps. He's now Mobile Architect and lead engineer for local.ch and

search.ch (Swisscom Directories).

He's very Spanish, very Indian and increasingly Swiss – having grown up between

Gran Canaria and Mumbai, he calls Zurich home.

Nowadays, you'll find him raving madly about Swift, while nurturing crazy app

ideas at iPhonso.

local.ch iPhonso.com

@krips

http://www.enough.de
http://www.twitter.com/linux_pinguin
http://www.jouleww.com
http://www.local.ch
http://iphonso.com
https://twitter.com/krips

267

Cornelius Kwietniak / Enough Software
Cornelius specializes in graphic, UI, UX and visual design for mobile applications

and other interactive technologies. He is also in charge of the layout and design

of this guide. When not involved with something mobile, he loves to experiment

with digital art and illustration.

www.enough.de

Carlo Longino / WIP
Carlo has more than a decade of experience in the mobile industry, beginning

just after the turn of the century when he worked for Nokia at its headquarters

in Finland. Before joining the Wireless Industry Partnership (WIP) as director of

developer marketing services in 2010, Carlo worked as a freelance consultant and

writer while he completed an MBA.

Prior to that, he was senior analyst for Floor64, a Silicon Valley-based analyst

firm, where he covered the mobile and fixed telecom industries. He also helped

launch and spent five years running TheFeature.com, a thought-leadership

site owned by Nokia. Carlo has also been published in The Wall Street Journal,

Business 2.0 and Dow Jones Newswires and has spoken at a number of industry

events, including Mobile World Congress, SXSW, MobileBeat and CTIA, among

others.

www.wip.org

@caaarlo

http://www.wip.org
http://www.twitter.com/caaarlo

269About the Book

Tim Messerschmidt / PayPal
Tim has been developing Android applications since 2008. After studying

business informatics, he joined the Berlin-based Neofonie Mobile as Mobile

Software Developer in 2011 and has consulted for Samsung Germany as Developer

Advocate for Android and bada since 2010. In 2012 he moved to PayPal as

a Developer Evangelist. He is passionate about Mobile Payments, UI, UX and

Android development in general. Furthermore he loves to speak at conferences,

writing articles and all kind of social media.

www.timmesserschmidt.com

@seraandroid & @PayPalDev

Sebastian Meyer / D-LABS
Sebastian has more than a decade of experience with web and mobile technolo-

gies. He joined D-LABS as Software and Innovation Consultant after his studies

in software engineering at Hasso Plattner Institute in Potsdam. Specializing in

user-centered methodologies and innovation in an enterprise context, he consults

with national and international startups, SMEs, and corporations.

www.d-labs.com

Alex Repty
Alex is a freelance software engineer specialising in OS X, iOS, watchOS and tvOS

software. He has been developing software for Apple platforms ever since he

got his first Mac in 2004. Since then, he has helped create a wide variety of ap-

plications, some of which were even featured in Apple's "There's an app for that"

campaign or won an Apple Design Award. His passion for clean code, software

engineering trends and user experience design make him get up on stage on

various iOS-related conferences.

@arepty

http://www.timmesserschmidt.com
http://www.twitter.com/seraandroid
http://twitter.com/PayPalDev
http://www.d-labs.com
http://www.twitter.com/arepty

269 270About the Book

André Schmidt / Enough Software
André has been in the software business since 2001. After starting his program-

mer's career in one of the leading companies of the defense industry, he joined

Enough Software in 2007 as a mobile developer. In this position he created

a wide range of mobile applications, mostly for Android. He is also a frequent

speaker at developer conferences and bar camps.

www.enough.de

Michel Shuqair / AppValley
Starting with black and white WAP applications, iMode and SMS games in the

1990's, Michel moved to lead the mobile social network Wauwee. Serving almost

1,000,000 members, Michel was supported by a team of Symbian, iPhone,

BlackBerry and Android specialists at headquarters in Amsterdam. Wauwee was

acquired by MobiLuck, which is now part of Paris based Madgic.com, a mobile

monetisation platform.

www.appvalley.nl

Marco Tabor / Enough Software
Marco is responsible for PR, sales and much more at Enough Software where he

has worked for almost 7 years. He coordinates this book project and has the

responsibility of finding sponsors and merging the input provided by the mobile

community.

www.mobiledevelopersguide.com & www.enough.de

@enoughmarco

http://www.enough.de
http://www.appvalley.nl
http://www.mobiledevelopersguide.com
http://www.enough.de
http://www.twitter.com/enoughmarco

271About the Book

Ian Thain / SAP
Ian is a Mobile Evangelist at SAP, though he started 13 years ago with Sybase

Inc. He regularly addresses audiences all over the world providing mobile

knowledge and experience for the Enterprise. He also writes articles, blogs &

tweets on Enterprise Mobility and is passionate about the Developer & Mobile

Experience in the Corporate/Business world.

scn.sap.com/blogs/ithain/ & www.sap.com

@ithain

Marc van 't Veer / Polteq
Marc is a mobile app test consultant and trainer at Polteq and has worked in

different test roles for over 9 years. He is experienced in testing in a technically

oriented context, such as telecom, SOA, test automation and testing API’s.

Currently Marc supports companies in improving the mobile app testing based on

the TI4 Mobile approach.

marcvantveer.niobe.nl & www.polteq.com

@marc_vantveer

Robert Virkus / Enough Software
Robert has been working in the mobile space since 1998. He experienced Java

fragmentation first hand when developing and porting a mobile client on the

Siemens SL42i, the first mass market phone with an embedded Java VM. After

this experience he launched the Open Source J2ME Polish project in 2004. J2ME

Polish helps developers overcome device fragmentation. He is the founder and

CEO of Enough Software, the company behind J2ME Polish, many mobile apps,

and this book.

www.j2mepolish.org & www.enough.de

@robert_virkus

http://scn.sap.com/blogs/ithain/
http://www.sap.com
http://www.twitter.com/ithain
http://marcvantveer.niobe.nl/
http://www.polteq.com
http://www.twitter.com/marc_vantveer
http://www.j2mepolish.org
http://www.enough.de
http://www.twitter.com/robert_virkus

272About the Book

Mladenka Vrdoljak / Enough Software
Mladenka is completing an apprenticeship as a digital media designer at Enough

Software. That means she is engaged with UI, graphic design for mobile applica-

tions, as well as coding. She is also responsible for the design of this guide.

www.enough.de

@_mladenka

Chris Ward / Sitepoint
Chris is a globe-trotting developer and writer currently working on several

projects that all aim to explore the potential of 'open culture'. Currently the

editor of www.sitepoint.com/mobile he is always looking for new writers.

chrischinchilla.com

@ChrisChinch

http://www.twitter.com/ithain
http://www.sitepoint.com/mobile
http://chrischinchilla.com
http://twitter.com/ChrisChinch

273About the Book

Please also follow us on
Twitter @MobileDevGuide.

Thank you!

	Prologue
	The Galaxy of Mobile: An Introduction
	From Idea To Concept
	User Experience & User Interface Design
	Android
	iOS
	Windows
	Going Cross-Platform
	Mobile Sites & Web Technologies
	Enterprise Apps
	Mobile Gaming
	Mobile Development & the Internet of Things
	Apps for Wearables
	Application Security
	Accessibility
	Testing
	Mobile Analytics
	Collecting & Understanding User Feedback
	Monetisation
	Epilogue
	About the Book

