2/16/2016 C++ for Dummies Cheat Sheet - For Dummies

C++ for Dummies
From C++ For Dummies, 7th Edition by Stephen R. Davis

Understanding and running C++ programming, which is the standard for
object-oriented languages, is easier when you know the expressions,
declarations, and operators to perform calculations.

Expressions and Declarations in C++ Programming

To perform a calculation in the C++ program you need an expression. An
expression is a statement that has both a value and a type. In the C++
program, a declaration is statement that defines a variable or it's a "holding
tank" for some sort of value like a number or character.

Expressions

Expressions take one of the following forms:

objName // for a simple object
operator expression // for unary operators
exprl operator expr2 // for binary operators
exprl ? expr2 : expr3 // for the ternary operator
funcName ([argument list]); // for function calls

Literal expressions

A literal is a form of constant expression. The various types of literals are
defined in the following table.

Example Type
1 int
1L long int
1LL long long int
1.0 double
1.0F float
"' char
"a string" char* (automatically terminated

with a null character)
L"a string" wchar_t*

u8"this is a UTF-8 string with a UTF-8 char8_t*

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 1/9

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies

character: \u2018"

u"this is a UTF-16 string with a UTF-16 char16_t*
character: \u2018"

U"this is a UTF-32 string with a UTF-32 char32_t*
character: \U00002018"

true, false bool
0b101 binary (C++ 2014 standard)
Declarations

Declarations use both intrinsic and user-defined types. The intrinsic types are

[<signed | unsigned >]char

[<signed | unsigned >]wchar t

[<signed | unsigned>] [<short | long | long long>] int
float

[long] double

bool

Declarations have one of the following forms:

[<extern|static>] [const] type var[=expression]; // variable
[<extern|static>] [const] type array[size] [={1list}]; // array
[const] type object[(argument list)]; // object
[const] type object [= {argument list}]; // alternative
[

const] type * [const] ptr[=pointer expression];// pointer
type& refName = object; // reference

type fnName ([argument list]); // function
The keyword auto can be used if C++ can determine the type of variable
itself:

auto var = 1L; // the type of var is long int

The keyword decltype extracts the type of an expression. This type can
then be used wherever a type name is used. For example, the following
example uses decltype to declare a second variable with same type as an

existing variable:
decltype (varl) var2; // the type of var2 is the same as varl
A function definition has the following format:

// simple function

[<inline|constexpr>] type fnName (argument list) {...}

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies
// member function defined outside of class
[inline] type Class::func (argument list) [const] {...}
// constructor/destructors may also be defined outside of class
Class::Class([argument 1list]) {...}
Class::~Class () {...}
// constructors/destructor may be deleted or defaulted
// in lieu of definition
Class::Class ([argument list]) = <delete|default>;
Class::~Class () = <deletel|default>;

An overloaded operator looks like a function definition. Most overloaded
operators may be written either as member or simple functions. When written
as a member function, *this is the assumed first argument to the operator:

MyClassé& operator+ (const MyClass& ml, const MyClass& m2);// simple
MyClass& MyClass::operator+ (const MyClass& m2); // member;

Users may also define their own types using the class or structkeywords:

<struct | class> ClassName [: [virtual] [public] BaseClass]
{
<public|protected>:
// constructor
ClassName ([arg 1list]) <[: member(val),...] {...} [|;>
ClassName () [= <delete|default>;]
// destructor
[virtual] ~ClassName () <{...} | [=<delete]|default>;>
// public data members
type dataMemberName [= initialValue];
// public member functions
type memberFunctionName ([arg list]) [{...}]
// const member function
type memberFunctionName ([arg list]) const [{...}]
// virtual member functions
virtual type memberFunctionName ([arg list]) [{...}];
// pure virtual member functions
virtual type memberFunctionName ([arg list]) = 0;
// function that must override a base class function
type memberFunctionName ([arg list]) override;

// a function that cannot be overriden in a subclass

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 3/9

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies
type memberFunctionName ([arg list]) final;
bi
In addition, a constructor with a single argument may be flagged
asexplicit meaning that it will not be used in an implicit conversion from
one type to another. Flagging a constructor as default means "use the

default C++ constructor definition". Flagging a constructor
as delete removes the default C++ constructor definition.

C++ supports two types of enumerated types. The following old enumeration
type does not create a new type:

enum STATE {DC, // gets O
ALABAMA, // gets 1
ALASKA, // gets 2
ARKANSAS, // gets 3
// ...and so on
}i
int n = ALASKA; // ALASKA is of type int

By default an individual entry is of type int but this can be changed in the
C++ 2011 standard:

enum ALPHABET:char {A = 'a', // gets 'a'
B, // gets 'b'
C, // gets 'c'
// ...and so on
I
char ¢ = A; // A is of type char

C++ 2011 allows a second format that does create a new type:

// the following enumeration defines a new type STATE

enum class STATE { DC, // gets O
ALABAMA, // gets 1
ALASKA, // gets 2
ARKANSAS, // gets 3
// ...and so on

i
STATE s = STATE::ALASKA; // now STATE is a new type
// the following uses a different underlying type
enum class ALPHABET:char {A = 'a',// gets 'a'

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 4/9

2/16/2016

ALPHABET c =

C++ for Dummies Cheat Sheet - For Dummies

B,
C,

b

ALPHABET: : A;

// gets 'b'
// gets 'c'
// ...and so on

// A is of type ALPHABET

Template declarations have a slightly different format:

// type T is provided by the programmer at use
template <class T,

template <class T,

Operators in C++ Programming

{...}> class ClassName {

{...}> type FunctionName ([arg list])
{..

b

All operators in C++ perform some defined function. This table shows the

operator, precedence (which determines who goes first), cardinality, and

associativity in the C++ program.

Highest
precedence

Operator

0n->.

I ~+-++ — & * (cast)
sizeof

*1 %

+ -

<< >>
<<= >>=
===

&

A

|

&&

|

?:
=*=[= Y= += = &= "= |:
<<= >>=

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html

Cardinality Associativity

unary

unary

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
ternary

binary

left to right

left to right

left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left

5/9

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies

Lowest , binary left to right
precedence

Flow Control in C++ Programming

The following C++ structures direct the flow of control through the program. If
you're an experienced programmer, the function of these structures will be
familiar from other languages.

IF

The following command evaluates booleanExpression. If it evaluates
totrue, then control passes to expressionsl. If not, then control passes to
the optional expressions?2

if (booleanExpression)

{

expressionsl;

}

[else

{

expressions?2;
H]
WHILE

The following command evaluates booleanExpression. If this evaluates
totrue, then control passes to expressions. At the end of the block,
control passes back to booleanExpression and repeats the process.

while (booleanExpression)

{

expressions;
t
DO...WHILE

The following command executes expressions. It then
evaluatesbooleanExpression. If this evaluates to true, control returns to
the top of the loop and repeats the process.

do
{

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 6/9

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies
expressions;

} while (booleanExpression);

FOR

The following command executes initCommand which may be an expression
or a variable declaration. It then evaluates boolExpression. If this
evaluates to true, then control passes to expressionsl.
IfooolExpression is false, then control passes to the first statement after
the closed brace of the for loop. Once expressions completes, control
passes to the expression contained in 1oopExpression before returning
toboolExpression to repeat the process. If initCommand declares a new
variable, it goes out of scope as soon as control passes outside of the loop.

for (initCommand; boolExpression; loopExpression)

{

expressions;
1
FOR (EACH)

The 2011 standard introduces a second form of for loop sometimes known
as a "for each" because of its similarity to the foreach found in some other
languages. In this form, the variable declared in declaration takes the
value of the first member of 1ist and executes the expressions block.
When complete, the declared variable takes the second value of 1ist and
executes expressions again. This process is repeated for each value
inlist.

for (declaration: list)

{

expressions;
}
SWITCH

The following command evaluates integerExpression and compares the
result to each of the cases listed. If the value is found to equal one of the
constant integral values, vall, val2, etc., control passes to the
corresponding set of expressions and continues until control encounters
abreak. If expression does not equal any of the values, control passes to
theexpressionsN following default.

switch (integerExpression)

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 79

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies
{

case vall:
expressionsl;
break;

case valZ2:
expressions?2;
break;

[default:

expressionsN;

}
BREAK, CONTINUE, GOTO

A continue passes control to the end of the closed brace of any of the
looping controls. This causes the loop to continue with the next iteration. For
example, the following loop processes prime numbers between 1 and 20:

for(int 1 = 0; 1 < 20; i++)
{
// 1if the number is not prime...
if (!isPrime (1))
{
// ...skip over to the next value of i
continue;
}

// proceed on processing

}

A break passes control to the first statement after the closed brace of any of
the looping commands. This causes execution to exit the loop immediately.
For example, the following reads characters until and end-of-file is
encountered:

while (true)
{
// read a line from input object
input >> line;
// if a failure or end-of-file occurs...

if (cin.eof () || cin.fail())

{

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 8/9

2/16/2016 C++ for Dummies Cheat Sheet - For Dummies

// ...then exit the loop
break;

}

// process the line

}

A goto label passes control to the label provided. The break example
above could have been written as follows:

while (true)
{
// read a line from input object
input >> line;
// if a failure or end-of-file occurs...
if (cin.eof () || cin.fail())
{
// ...then exit the loop
goto exitLabel;
}
// process the line
}
exitLabel:

// control continues here

http://www.dummies.com/how-to/content/c-for-dummies-cheat-sheet.html 9/9

