

The development of the Crystal Clear Electronics curriculum was supported by the European Commission

in the framework of the Erasmus + programme in connection with the “Developing an innovative

electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” project

number.

The project was implemented by an international partnership of the following 5 institutions:

• Xtalin Engineering Ltd. – Budapest

• ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely

• Bolyai Farkas High School – Târgu Mureș

• Selye János High School – Komárno

• Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín

Copyrights

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the

coordinator. The materials are designed for educational use and are therefore free to use for this purpose;

however, their content cannot be modified or further developed without the written permission of Xtalin

Engineering Ltd. Re-publication of the materials in an unchanged content is possible only with a clear

indication of the authors of the curriculum and the source of the original curriculum, only with the written

permission of Xtalin Engineering Ltd.

Contact http://crystalclearelectronics.eu/en/

info@kristalytisztaelektronika.hu

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

12. Debugging – Troubleshooting in the
Program
Written by Dávid Kiss

English translation by Xtalin Engineering Ltd.

Revised by Gábor Proksa

Processors can perform various operations on binary numbers, such as addition, comparison, and other

logical operations. In order to do useful tasks for us, we need to tell the processor which operations to

execute. These commands are called instructions, and the set of all the instructions understood by a

specific processor is called an instruction set. You can assign a binary number to each instruction. By doing

this, we have solved the problem, because if we want to give a command to the processor, then we need

to send a binary number, which will tell the processor what to do.

The processor of a microcontroller works on the same principle: it reads numbers out of its program

memory and executes instructions based on them.

How does the instruction get into the program memory? The easiest thing would be to write the binary

numbers, belonging to the instructions, "manually" in the memory. We could do this if we only have a few

instructions, but it would take a long time to type them in case of a complicated program, not to mention

the amount possible of mistakes. That's why the assembly programming language was invented.

In assembly, the instructions are not referred to by binary numbers, but by short text (for example, "ADD"

means the addition). After writing a program in assembly another program called the assembler translates

this text into the binary instructions understood by the processor, called machine language.

The only problem with this method is that different processors may have different instruction sets, so

each processor has different assembly code. This problem can be overcome by using high-level

programming languages, such as the C language, which you are already familiar with from the previous

chapters of the curriculum. C code lines are compiled into assembly language by a computer program, the

compiler, and then the compiled assembly code will be assembled into machine binary code.

Figure 1 - C source code

The first figure shows some C source code, which is what we can read easily. Of course, our program does

not consist only of a single file, the operation of a program can be described with several “*.c” and “*.h”

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

files. The contents of such a “*.c” file can be seen in the figure above, and you will most often encounter

these files during the curriculum.

Wildcards

(In computer science, “*” is typically used to mean any number of characters can be at the place of “*”.

So “*.c” means all C files. You can try a “*.c” or “*.jpg” in the search engine of our computer; the latter

will list only pictures with jpg extension.)

Figure 2 - Assembly source code

The first step in the compilation is done by the preprocessor and the compiler. The compiler converts the

source of high-level C language into a lower-level, so-called Assembly language code. We can see this code

in the middle step. This file still contains readable information for human mortals. The assembly code

implements the functionality required by the C source with the processor's limited instruction set.

From here on, only one step separates us from the machine code, as it was mentioned before, the

assembly file can be matched one-to-one to machine instructions, only the words have to be replaced

with the corresponding byte sequences.

Figure 3 - Machine code

The last step is completely hidden from us, the computer solves this problem as well. We already had

several source files in our previous simple programs, and they are compiled to as many of these small

sequences as many “*.c” files we have. However, we can only upload one to the processor, so as a last

step, the so-called linker links these files to one whole.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Of course, this process is far from trivial, and the same C code can be implemented in several ways in

assembly. The compiler optimizes the code, executes some things in a different order, if we do not use a

variable, then the compiler will not create it unnecessarily, etc. We can turn off optimization and then

what happens is exactly what we described. During the curriculum, we will switch optimization off to avoid

any misunderstandings due to its operation.

There are still programs that are written in assembly language today. One of the reasons for this is to

control execution time and program size. When using assembly, you know exactly how much space is

occupied by each instruction and how many clock cycles does it take to execute them. Unfortunately, it is

not always possible to predict in advance what kind of instructions the compiler will use to implement our

program written in the language C.

The other reason is that we want full control over the processor. The code written in assembly is clearly

translated into machine code, the processor executes exactly what we have written. The C compiler is

also a program, made by humans so there may be errors in it, in some cases it can misinterpret our

instructions, and output something different.

Inline assembly

In C, it is also possible to write some code lines in assembly, these are simply copied into the assembly

program. So, in critical situations, we can take full control.

WHAT IS DEBUGGING?

Now that we know how our code is compiled, we can look for errors in it. During development, the first

requirement is to write syntactically correct code. We have discussed this in earlier sections. However,

correct syntax alone does not mean that the code behaves the way we designed it.

The processor executes commands millions of times every second, so we have no chance to follow it with

the naked eye. On the other hand, even if we could, we can’t really see the flow of things, because it is

very difficult to look at the dance of electrons in the silicon chip (and not just because it is in a black plastic

case). These problems are overcome by debugging, which is the process of troubleshooting. We have the

ability to run our code step by step, track the status of the different registers and variables, and thus verify

that the operation is correct.

Etymology

If you are well versed in the English language, you may wonder about the origin of the word "debugging".

The correct definition of the word is “identifying and removing errors”, but the question arises: Where

does the term come from? In the old days, even when computing was in its infancy, and the computational

capacity that is now in the small black case in front of you, filled an entire gym-sized room, debugging was

a bit different. In this huge space, the various components were placed and connected together with many

wires. These machines have not yet been programmed, the desired function has been achieved with the

right connection with tens of thousands of wires. Of course, this complex construction usually did not

work for the first time, it also contained errors that had to be discovered by the engineers. As a result of

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

the long research work and experimentation, an actual bug was found, which shorted several wires

together. After removing the bug, de-bugging, the system operated as expected so it turned out that there

was no design error.

A SIMPLE EXAMPLE

The first example, which we hope will highlight the criticality of debugging as a function, is a very simple,

single line small program. For a more spectacular result, connect an LED to the microcontroller’s PA0 pin

as we did in chapters 9 and 11. Upload the CE12_1_LED_blinking project into the microcontroller. If this

is done successfully, we will see that the LED on the PA0 pin lights up. Let's just look at the uploaded code!

Based on the lessons learned from the CE12_1_LED_blinking software, the LED should be blinking, and as

it has been discussed in the previous section, it is blinking as well. The processor runs the code very quickly,

while the LED is blinking, but so fast that the human eye is unable to detect, so we see it as constantly lit.

First, let's look at what is the basis for what the remainder of this chapter of the curriculum will be about.

To do this, just follow the instructions now and then we will look at the features in more detail later.

Before we would compile the project, we clarify some of the settings. During the introduction it was said

that optimization will not be our friend, so make sure that it is really turned off. This can be found in the

project settings on the Toolchain tab under the AVR/GNU C Compiler/Optimization section. Select None

(-O0) here.

Figure 4 - Switching off optimization

Run the code now in debug mode! To do this, click on the “Start Debugging” button. We can see that the

interface of Atmel Studio has changed slightly. In this mode, the code on the microcontroller runs the

same way as before, but the computer keeps continuously communicating with it, so we can influence

the running of the code, for example, to pause or move it line-by-line.

Let's try the latter too! In the first step, use the “Break all” (Ctrl + F5) button to stop the program from

executing, then use the “Step Over” (F10) button to step through within the code per line (function call).

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

In parentheses, you can find the key combination assigned to the functions, and we recommend that you

use them now, so you don't have to search for them on the toolbar.

Step by step, we can see that the LED really changes its state. So, the program works correctly,

only our eyes are not fast enough to detect the blinking. The LED blinking program written in the

previous section also worked the same way, but it contained a delay. This is necessary for our

eyes to be able to sense blinking. It may be interesting to try to find out how many ms delays are

needed in order to be able to distinguish the individual flashes with the naked eye.

OVERVIEW AND FUNCTIONS OF THE DEBUGGING INTERFACE

Figure 5 - Debugging menu bar

Now that we are beyond the first steps, let us get to know the rest of the buttons on this toolbar, which

we will use henceforth. The first three buttons affect the code run.

STOP DEBUGGING
This button is used to stop debugging. It terminates the debug process and the connection between the

microcontroller and our computer. It's important to stop debugging after we've finished debugging and

wanting to change the code. If we do not act like this, then we will not be able to upload the modified

program to the microcontroller because the programmer will be busy.

BREAK ALL
When we click this button, we are suspending our program. This should be imagined as if we could stop

the clock in the microcontroller. Of course, this is not the case in reality, since we would not be able to

communicate with it if it was.

CONTINUE
If we stop the program from running, somehow, we have to continue later. This button serves this

purpose.

The following buttons are also related to code execution, so we can “move” the code, i.e. run at the pace

we want.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

STEP INTO
It executes the following code sequence, so that if it is a function call or a block with braces, it enters it

and executes its first line.

STEP OVER
Also executes the following line. If it is a function call or a block with a bracket, it does not enter, but the

contents of the block are executed.

Suppose that an LED is not turned on and off by simple bitwise operation, but we have a SetLED() function.

When you move to this function with the “Step Over” button, you only see that the LED turns on, but if

you move on with “Step Into”, you get inside the function, where you can follow the steps to turn the LED

on.

Encapsulation

In terms of coding, it is more elegant to use the SetLED() function, as it hides the bit-behaviors

from the reader, and instead we call a function, whose name tells its function without

commenting and implements the necessary operations in the background.

STEP OUT
We can quit the function, in which we are in currently. The program stops at the next function call. Of

course, the rest of the function will be executed, but the run will not stop until the beginning of the next

function.

RUN TO CURSOR
The code will be executed until the position of the cursor.

RESET
It is used to restart the processor. It is practically equivalent to pull out and re-plug the processor's power

supply except the inconvenience that it is not needed to rebuild the debug connection.

Using the remaining buttons, we can open different views to get to know the internal state of the

processor. The common feature of these views is that we can not only read the different registers, but we

can interfere "by hand" into their state, that is, we can overwrite their values.

DISASSEMBLY
If you click here, the Assembly code will appear, which was compiled from our C file by the compiler.

We may need this view if we want to know exactly what happens in the processor.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

REGISTERS
This view allows us to monitor the contents of the CPU registers. There are 32 such 8-bit registers in the

microcontroller, these are temporary containers for the data we work with. For example, if we want to

add two numbers, then these two numbers are first put into two such registers and only then can the

processor add them together. If a loop is executed, the loop counter is also stored in such a

register.

Figure 6 – the registers of the ATmega16A microcontroller

They can be seen in the figure as GENERAL PURPOSE REGISTERS. It is not to be confused with the concept

of RAM, which is a memory area to be treated as a larger block. From this, the variables that are just

needed are copied to the registers.

MEMORY1
We can see the memory map of the CPU here. We can see all available memory areas, in raw form,

encoded in hexadecimal, and ASCII characters at the end of the rows.

PROCESSOR VIEW
This view provides access to the contents of registers that are closely related to the processor execution

unit. These are the following:

● Program Counter

● Stack pointer

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

● X register

● Y register

● Z register

● Status register

● and finally, the 32 general purpose registers

I/O VIEW
This view will be most useful to us. Here, we can examine and modify the state of all peripherals. For

example, you can easily determine if something has been configured incorrectly.

Figure 7 – I/O View panel

If PORTA is selected, the registers that belongs to port A will appear below. These are PINA, DDRA, and

PORTA.

The PINA register stores the logical value that the controller has read from the given pins. DDRA means

that a specific pin is configured for output or input. In the PORTA register we can write what value we

want to see on that leg if it is configured as output.

If you click on the rightmost bit of PORTA (the first square on the right), then we can see how the LED can

be switched on and off on the breadboard. Be patient for our configuration to become valid, we have to

wait for the programming tool to print the register contents, and then read the new ones. It is also an

interesting game to try to pinch these pins with your finger and step one on the program. If we are lucky,

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

we may experience some change in the value of the inputs. The reason for this is to look for the processor's

electronics structure, and the fact that these pins are not connected to anywhere, so they are “floating”.

WHEN THINGS GET MORE COMPLICATED

Let's complete our little program now with a few lines to see even more debug functionality. To do this,

open the CE12_2_LED_counter project. The purpose of our change is not to change the state of the LED

in every loop. To do this we will need a variable, which we will call counter. The value of this variable will

be changed between 0 and 9.

You may have been guessing what tricks we're going to make. Our new program increases the counter

variable by one in each loop, and when its value is smaller than a predefined number, in the example let

it be 4, the LED will be turned on, otherwise it will be turned off.

PWM

Practically we will implement PWM by software. But what is PWM? The three-letter magic

abbreviation is correctly resolved to Pulse Width Modulation.

You will meet several times with PWM later in the curriculum, we will build an analog PWM stage,

and we will also learn how to create a PWM signal using the digital peripherals built into the

microcontroller.

Pulse width modulation can, for example, affect the brightness of LEDs, the torque (and therefore

the speed) of motors. We rely on the fact that real physical systems, devices (such as our eyes or

an electric motor) cannot follow the changes of physical quantities as quickly as we can modify

them with a microcontroller.

That's exactly what happened in the first example, your eyes smoothed out the change. This is

why you see, for example, a picture moving on your monitor, but actually it shows a series of still

images really fast.

PWM is widely used. The closest practical example is in your pocket, so you can adjust the

brightness of the backlight of your cell phone’s display.

There is an intentional mistake in the program, which we will now discover using the debugging tool. First,

let's see what we see on the breadboard. The LED does not light up, although we have written a program

that flashes the LED, according to the best of our knowledge.

Turn on the line numbering in the Text Editor/All Languages tab of the Tools / Options window by

clicking the Line Numbers check box.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 8 –Enable line numbering

1. Start the program in Debug mode with the “Start Debugging” (F5) button. Then the program starts

running. The LED is still off.

2. In the next step, reset the processor using the “Reset” (Shift+F5) button. This is needed, because

if we stop the processor at any time, it will be over a lot of program lines because it is much faster

than us. We can even avoid this step by starting the debugging with the “Start debugging and

break” (Alt+F5). Go ahead with the “Step Over” (F10) button. You can see that we have now

jumped to line 14 where the counter is created.

Figure 9 – Creating the counter variable

3. The next step is the IOInit() function call on line 16.

4. If we step one more, we find ourselves on line 22. This line examines whether the value of the

counter variable has reached 10, if not, it will increase it. We have to make it less than 10, so

we don't have to increase it indefinitely. Step over it!

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 10 –Conditional test of the counter variable

5. Since the value of the counter variable was less than 10, it is increased as shown in line 24. Step

over it!

Figure 11 –Increasing the counter variable

6. Now we examine whether the counter variable is less than 4. If it is less, then we turn on the

LED, if it is greater, then it will be turned off. Step over it!

Figure 12 – Conditional test of the counter variable and then turning on the LED

7. The software stops on line 38, but it only indicates the end of the infinite loop, in which our

program runs, step it over as well!

8. The LED is on, and we are on line 22 at the evaluation of the counter variable. In order find

where things happen differently than our plan, it would be good to see the current value of the

variables. To do this, move the mouse over a copy of the counter.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 13 - visualization of the value of a variable

In this case, we can see the current value of the variable. If you click on the small drawing pin symbol, the

small window will remain there.

Figure 14 - Watch Window, continuous tracking of variables

Alternatively, you can display it in the Watch Window by typing the name of the variable in a free field of

the Name column.

9. Now move the code by pressing the F10 button (it is more convenient than clicking the “Step over”

button). We can see that the value of the counter is constantly increasing, and when it reaches

four, the LED turns off, as the expression in line 28 becomes false, so we will jump to line 36.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 15 – Turning off the LED

10. When the value of the counter reaches 10, an interesting phenomenon can be observed. The

value of the counter changes no longer. This is because we only increase the value if the counter

is less than 10. Yeah, but it's never going to be less than 4 such way. With this we found our fault!

11. Fix the code!

12. Don’t look at the solution, write the fix!

13. Is it ready?

14. Have you tried it out?

15. Does it work?

16. If so, good job! If you couldn’t figure out, don’t worry, here’s the solution:

Figure 16 – The necessary fix

Indeed, the counter must be reset if it has reached its maximal desired value.

17. Try the fixed version (if it wasn’t good until now), then experiment with other values between 0

and 9 instead of 4. We can see that the higher this value, the brighter the LED will light.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

WHEN THINGS GET MUCH MORE COMPLICATED

Take one more knack into our program. Use the push button on PB0 to adjust the brightness of the LED.

To do this, you need to initialize pin 0 on port B as input and connect a button to this pin. Our circuit on

breadboard looks like this:

Figure 17 – Implementation of a circuit using a push-button on a breadboard

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Let's look at how this circuit works, as we may need a push button later too. The figure below shows the

circuit schematic.

Figure 18 - LED circuit using push-button

The push-button circuit (on the left) consists of a pull-up resistor, a switch, and series resistor

and capacitor, which implements a low-pass RC filter (we will see a bit below that what is this,

and why we need it).

The most important of these is the pull-up resistor and the switch, let's look at this section now:

Figure 19 – The states of the push buttons

The circuit on the left shows the state when the button is not pressed while the circuit on the right shows

the pressed state. The following figure shows the voltage change on the microcontroller pin.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Figure 20 – The moment of button presses on the microcontroller pin

When are not pressing the button, there is virtually no current flowing through the resistor, so there is no

voltage drop across it, that’s why the supply voltage appears on the microcontroller pin; when the button

is pressed, then current starts flowing, so the voltage drops to near 0 V. (Thought-provoking task: how to

connect the button so that the voltage appears when the button is pressed?)

The remaining two components create a low-pass filter. This means that the resistor and capacitor are

acting as a short-circuit for all fast-changing signals, but in the case of DC signals it is as if they weren’t be

there. This behaves as a filter, it lets the slowly changing signals through, but fast-changing signals are

blocked. This is needed, because the internal mechanism of the push-button tends to bounce during key

pressing. Bouncing is a rather unfavorable behavior or mechanical switches where the contacts close and

release several times in rapid succession, which would register as more button presses on the

microcontroller, even though we only wanted to press the button once. This phenomenon is shown in the

figure below.

Figure 21 – The bouncing push-button

These so-called high-frequency components can be filtered out with our low-pass RC filter because they

are fast-changing signals and filter will not let them through.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Let's go back to our program, open the CE12_3_LED_pushbutton project. Previously, I promised that using

this software, we will be able to adjust the brightness of the LED using the push-button. However, in

practice it doesn’t work.

What went wrong? Why is nothing happening when pressing the button? To find out we will learn about

one of the most useful features of the debug environment. We can mark certain lines in our program, and

execution will stop when the microcontroller reaches them. When this happens, we can view the current

value of our variables and registers. Such markings are called breakpoints. We can place them by clicking

on the gray bar on the left-hand side of the program. If the placement is successful, a red circle will appear

indicating that the program will stop running when this line is reached. But where should we stop the

program? Let's look at whether it notices the button press, so put a breakpoint in the section which tests

it, that is, line 36.

Figure 22 – Setting a breakpoint

When pressing the button, the program should be stopped at the breakpoint, but unfortunately this is not

the case. The first thing we can suspect here is the hardware failure, but if you have built the circuit as we

have shown above, there shouldn’t be such a mistake. Still, it is worth checking if everything is properly

connected on the breadboard. The easiest way to do this is to measure the voltage using a multimeter on

the microcontroller’s pin to which the push-button is attached. When the button is not pressed, you

should see a value close to 5 V on the multimeter, and close to 0 V while the button is pressed. If you do

the measurements, you will see that the results are not what you’d expect. Perhaps the pin behaves

differently than we would like, for example, it drives the point we want to measure as an output.

But where's the problem? Think about what happens to the ports and pins in the software. In the first

step it is initialized, and then we look at its value in each loop. In this case, it is not so difficult to find out

which part of the theory does not work properly in practice. Let's look at the initialization code snippet

once more. The DDRB = 0xFF line may catch our eyes. This sets each bit of the DDRB register to 1,

which means that each pin is configured as output. Here's the problem, write it over to DDRB = 0x00.

Now all pins of port B are configured as inputs.

Let's restart the program by leaving the breakpoint in place. You can see that if you press the button now,

the program will be stopped on the right line. You can view the current value of the duty variable by

dragging the mouse over any occurrence of it in the code, or you can set its watch in "Watch window". In

this way, the correct operation of the program can be verified: when the value of the duty variable is

less than the value of the counter, the LED is lit. As a further observation, it can be noted that the value

of the duty variable will be increased by one at every button pressure. The interesting, first perhaps

incorrect part comes after 9, because the value of the variable will be 10. This is not a problem, the next

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

code snippet will take effect and will reset the value of the variable, this can be checked by stepping the

program.

Figure 23 – Reset the counter of the push-button

SUMMARY

Hopefully, these few simple examples above have successfully highlighted software debugging processes

and its tools. We will also implement more complex software later, and these tools will become useful

companions for development, programming, and debugging.

Useful tips

Sometimes an error occurs because the different files generated during compilation are not from the

same compilation. Do not work in a folder that synchronizes your computer for some cloud-based service

(Google Drive, Dropbox, etc.), as it can re-download files that should have been overwritten, or somehow

interfere with the compilation process. If you still get suspicious error messages, then use the Build / Clean

Solution command to remove all files generated during the compilation, then recompile. In this case, the

compilation process starts from scratch again the next time and the different references will be rebuilt.

There may be a problem with the optimization, which can be changed in the Project->Properties window.

For us, the only unacceptable option besides turning optimization off is “Optimize for size -Os”.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

