
TMS320 DSP Algorithm Standard
Developer’s Guide

Literature Number: SPRU424C
October 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

This document is intended for DSP algorithm producers who want to take an
existing algorithm software module and make it compliant to the TMS320 DSP
Algorithm Standard (referred to as XDAIS throughout the rest of this docu-
ment). The procedures outlined will show the algorithm producer how to pre-
pare and/or rework the existing algorithm, create the standard interface files
required for compliance using a Code Composer Studio plug-in tool, and
then run the final deliverables through another pre-compliance Code Compos-
er Studio plug-in tool for immediate feedback.

DSP system integrators or XDAIS consumers should not follow the proce-
dures outlined in this document, as it only applies to producers of algorithm
software components. XDAIS consumers should refer to the application note,
A Consumer’s Guide to Using eXpressDSP-Compliant Algorithms
(SPRA810), instead of this user’s guide.

Code Composer Studio is a trademark of Texas Instruments.

Contents

v

Contents

1 Preliminary XDAIS Work and Preparation 2.

2 Defining the Module-Specific Abstract Interface 3.

3 The eXpressDSP Component Wizard 6.
3.1 Why use the eXpressDSP Component Wizard? 6.
3.2 eXpressDSP Component Wizard Initial Screen 7.
3.3 Selecting a DSP Target Platform 8.
3.4 Choosing an Algorithm and Vendor Name 9.
3.5 Determine the Number of Input and Output Arrays and Parameters

Variables Used by Your Algorithm 11.
3.6 Defining Local Arrays or Buffers (memTab Memory Descriptors)

Used by an Instance of Your Algorithm 14.
3.7 Algorithm’s Extended Method(s) 15.
3.8 VAB Specific Information 19.
3.9 Generating the Source Code Template 21.
3.10 Launching the Compiler 23.
3.11 Adding Your Algorithm to the XDAIS Source Code Template 24.

4 Testing the Algorithm and the Newly Generated XDAIS Interface Code 26.

5 XDAIS Library Creation 28.
5.1 Creating the XDAIS Library File 28.
5.2 Testing the XDAIS Library File 28.

6 Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool) 29.
6.1 Invoking the Plug-In 29.
6.2 Entering the Data to Create an Algorithm Information File 30.
6.3 Executing the Test 31.
6.4 The Document Generator 32.
6.5 Submitting Your Algorithm for eXpressDSP-Compliance Testing 32.

7 Conclusion 33.

A XDAIS Name Tables A-1.

B Template File Descriptions B-1.

C XDAIS Memory and Performance Characterization C-1.

D eXpressDSP-Compliance Report D-1.

Figures

vi

Figures

1 eXpressDSP Component Wizard Initial Screen 7.
2 Selecting DSP Target Platform Information 9.
3 Choosing an Algorithm Name and Vendor ID 10.
4 Describing Your Algorithm’s Input and Output 12.
5 Defining memTab Memory Descriptors 14.
6 Extended Algorithm Method Entry Screen 16.
7 Function Declaration 17.
8 Function Prototype Wizard Parameter Definition 17.
9 VAB Specific Information 20.
10 Generating a Source Code Template 22.
11 Generating a Source Code Template 23.
12 Algorithm Information Dialog Box 30.

Tables

1 Example Table for Naming the Module, Vendor, Variant,
Architecture, and Memory Model 2.

2 Example Table for Naming Extended Methods 3.
3 Name Selection A-1.
4 Instance Creation Parameters A-1.
5 Real-Time Status and Control Parameters A-2.
6 Extended IALG (IMODULE) Methods A-2.
7 Module C-1.
8 ROMable (Rule 5) C-1.
9 Heap Data Memory (Rule 19) C-1.
10 Stack Space Memory (Rule 20) C-2.
11 Static Data Memory (Rule 21) C-2.
12 Program Memory (Rule 22) C-2.
13 Interrupt Latency (Rule 23) C-2.
14 Period / Execution Time (Rule 24) C-3.
15 C55x Stack Configuration (Rule 31) C-3.
16 C55x B-Bus Data Access (Rule 34) C-3.

1

TMS320 DSP Algorithm Standard
Developer’s Guide

This document, along with the latest set of TMS320 DSP Algorithm Standard
Rules and Guidelines, (literature number SPRU352) and referred to as
“XDAIS” throughout the document, will help assist the algorithm developer
with implementing the XDAIS interface, as well as with creating a test applica-
tion. When the XDAIS conversion is complete, the algorithm should conform
to all the XDAIS rules. Also required is the Component Wizard plug-in for Code
Composer Studio , which greatly simplifies the XDAIS development effort.
Each copy of Code Composer Studio IDE contains this tool.

The latest version of the standard is found in the TI DSP Developer’s Village
(http://dspvillage.ti.com). Follow the link to the TMS320 DSP Algorithm Stan-
dard, look in the documentation section, and click on the appropriate link.

The XDAIS development procedure consists of seven sections. The first sec-
tion requires the developer to determine the present state of the algorithm, de-
cide on module names, and answer some preliminary questions. The second,
third, fourth, and fifth sections give the developer some detailed insight into the
XDAIS implementation details by leading him/her through the process of act-
ing as consumer, interface definer, and algorithm vendor. The fifth section de-
scribes how to create the XDAIS library deliverable. The sixth section de-
scribes how to prevalidate the XDAIS algorithm. Most of the procedures con-
tain examples based on a G.729 encoder algorithm.

Preliminary XDAIS Work and Preparation

2

1 Preliminary XDAIS Work and Preparation

This part of the process focuses the algorithm developer on the operation of
the algorithm and how the XDAIS interface ‘fits’ onto it. This section verifies
that the algorithm is in compliance with Rules 1-10 of the TMS320 DSP Algo-
rithm Standard (XDAIS) Rules and Guidelines document.

1) Is the testing environment already set up? There should be an application
program that calls the algorithm to process a test vector(s) and generates
an output vector(s). The output vector(s) is then compared to a known
‘good’ vector(s) for correctness. Make sure this test environment is set up
and the algorithm successfully passes the test process before proceeding.

2) The original algorithm must conform to the first 10 rules stated in the
XDAIS Rules and Guidelines document. It is a good idea to verify this step
before proceeding, but it could be temporarily postponed for the sake of
expediting the XDAIS process. Rule #8 (External Identifiers) can be
skipped for now — it will be addressed later in the build procedure.

3) What are the names for the module, version (optional), vendor, architecture,
and memory model? The MODULE and VENDOR names must be in all
capital letters and should be as short as possible, since they both will be
prefixed to all symbols visible to the client. Use Appendix A to record this
information and refer to Table 1 for an example. For the C54x architecture,
it is recommended to supply both near and far mode memory models. For
the C6x architectures, all algorithms must, as a minimum, be supplied in
little endian format, but it is recommended to supply a big endian model, as
well. The different variants/models should not produce different interfaces
for the same algorithm; the only difference will be the way the object files
are compiled within each library variant/model (and the file name of each
library).

4) Construct the Memory Table (memTab[]). This table describes the number
of memory blocks, and the quality of each memory block required to run
one instance of the algorithm. Go to Appendix C and create a table based
on the Instance Memory Table (Table C-3, Rule 19). Each row, starting
with memTab[1], should describe each block of memory needed to create
one instance of the algorithm. Leave memTab[0] blank for now.

Table 1. Example Table for Naming the Module, Vendor, Variant, Architecture, and
Memory Model

Module
Name

Vendor
Name Variant Architecture Memory model (optional)

G729ENC TI None [24 | 28 | 54 | 55 | 62 | 64 | 67] [far (f) | big endian (e)]

Defining the Module-Specific Abstract Interface

3TMS320 DSP Algorithm Standard Developer’s Guide

2 Defining the Module-Specific Abstract Interface

If there are sample APIs in the XDAIS Developers Kit which exist for your algo-
rithm, please use them (these will be the i<MODULE>.[ch] files in “c:\ti\<tar-
get>\xdais\src” directories). Some of the more common interfaces which TI
has defined and recommended to be used include CPTD, DTMF, LEC,
G.7XXDEC, and G.7XXENC modules. Note: <target> refers to C5400,
C5500, C6000, etc. If not, you must act as the Interface Definer (Service Pro-
vider) for your algorithm and create these files which are used by the applica-
tion. Determine what the extended methods of the IALG interface will be for
this algorithm. These are typically the module-specific “process and/or control”
functions. This interface must be extended by at least one process method to
allow the algorithm to be called, but any number of them can be defined in this
section. Typically, a generically named apply method is defined for each mod-
ule; in this case we use encode. Use the following example as a guideline for
naming the extended methods for the XDAIS algorithm. These module-specific
methods, along with the traditional IALG methods, make up the service provider
interface (SPI), which is supplied to the consumer/system integrator of the ap-
plication.

Note:

If your core algorithm contains one or more initialization functions, please do
not include these functions as part of the extended methods. The standard
IALG interface already defines a “per instance initialization function,” so all
internal initialization code should be manually placed within that function (the
function stub will be created by the name of <MODULE>_<VENDOR>_in-
itObj() after running the Component Wizard).

Table 2 shows an example of how to enter the newly named methods in Table 6
of Appendix A. Also, note that the IALG_Handle parameter does not need to be
entered in this table (the code generation tool will add it to all functions automati-
cally as the first parameter). XDAIS types are encouraged for the module-spe-
cific interface (most likely located in “c:\ti\<target>\xdais\include\xdas.h”).

Table 2. Example Table for Naming Extended Methods

Return
Type

Method
Name Param1 Type and Name Param2 Type and Name

Param3 Type
and Name

XDAS_Int8 encode XDAS_Int16 *in XDAS_Int8 *out N/A

Defining the Module-Specific Abstract Interface

4

Determine the interaction of the algorithm with the application (or framework).
In particular, what are the instance creation parameters and what are the real-
time status/control parameters? The instance creation parameters are values
passed to the algorithm when it is instantiated (i.e., only one time) and the sta-
tus/control parameters are algorithm status information that is read and/or
written while the algorithm is in operation. The complex types that deal with
these parameters are automatically generated by the Component Wizard us-
ing the names specified by the user. The source code listed below is an exam-
ple output of the Component Wizard. The developer simply supplies the struc-
ture member names and determines the appropriate parameter names and
enter Instance Creation Parameters in Table 4 and the Real-Time Status and
Control Parameters in Table 5 in Appendix A. In both cases, the size parame-
ter does not need to be entered in the table because it is automatically gener-
ated by the Component Wizard as the first field of all Params and Status struc-
tures.

The size field must be the first field of all Params and Status structures. This
variable is typically used to determine whether a Params or Status structure
has been extended by the Interface Definer. When Params and Status struc-
tures are extended (i.e., more fields are added), the original set of members
must still work, so any IALG function will be able to tell which structure (original
or extended) to use based on the value stored in the size field.

/* ig729enc.h */

#ifndef IG729ENC_

#define IG729ENC_

#include <ialg.h>

#include ”ig729.h“

/*

 * ======== IG729ENC_Obj ========

 * This structure must be the first field of all G729ENC instance objects.

 */

typedef struct IG729ENC_Obj {

 struct IG729ENC_Fxns *fxns;

} IG729ENC_Obj;

/*

 * ======== IG729ENC_Handle ========

 * This handle is used to reference a G729ENC instance object.

 */

typedef struct IG729ENC_Obj *IG729ENC_Handle;

/*

Defining the Module-Specific Abstract Interface

5TMS320 DSP Algorithm Standard Developer’s Guide

 * ======== IG729ENC_Params ========

 * This structure defines the creation parameters for all G729ENC instance ob-
jects.

 */

typedef struct IG729ENC_Params {

Int size; /* MUST be the first field */

Int frameLen;

Int pfo;

Int vad;

} IG729ENC_Params;

/*

 * ======== IG729ENC_Status ========

 * This structure defines the status parameters or values that can be

 * read and/or written while the algorithm is ‘live’.

 */

typedef struct IG729ENC_Status {

Int size; /* MUST be the first field */

Int maxChannels; /* Can be read/write */

Int frameLen; /* Can be read/write */

Int signalStatus; /* Read only */

} IG729ENC_Status;

/*

 * ======== IG729ENC_Fxns ========

 * This structure defines all of the operations on G729ENC objects.

 */

typedef struct IG729ENC_Fxns {

 IALG_Fxns ialg;

 XDAS_Int8 (*encode)(IG729ENC_Handle handle, XDAS_Int16 *in, XDAS_Int8 *out);

} IG729ENC_Fxns;

#endif /* IG729ENC_ */

The eXpressDSP Component Wizard

6

3 The eXpressDSP Component Wizard

The eXpressDSP Component Wizard from Hyperception is supplied as part
of the TMS320 Algorithm Developers Kit. The Component Wizard simplifies
the creation of eXpressDSP-compliant algorithms by generating the source,
header, and library build files. The resulting code can be used to create algo-
rithms that comply with the rules specified in the TMS320 DSP Algorithm Stan-
dard Rules and Guidelines (SPRU352). Please refer to TMS320 DSP Algo-
rithm Standard Developer’s Guide, (this document) to get further information
on how to make an existing algorithm eXpressDSP-compliant.

The Component Wizard tool leads users through a series of step-by-step
screens to get inputs, and produces a source code template and associated
project files that can be compiled into vendor-specific eXpressDSP-compliant
algorithm. Vendors need to supply the actual algorithm code to be implement-
ed and compile the project.

The Component Wizard for eXpressDSP can either create a new eXpressDSP
algorithm template from scratch or it can load an existing template file and al-
low you to make modifications. The resulting source code template and ac-
companying files will adhere to the Texas Instruments TMS320 DSP Algorithm
Standard.

The Component Wizard also generates optional block component for Hyper-
ception’s VAB DSP design tool.

3.1 Why use the eXpressDSP Component Wizard?

The Component Wizard greatly simplifies the creation of your eXpressDSP-
compliant algorithm. You are free to concentrate on your algorithm as opposed
to having to delve into all of the inner workings of the TMS320 DSP Algorithm
Standard. All aspects of the standard are handled automatically by the Com-
ponent Wizard, and are based upon data that you provide in a series of com-
fortable, easy-to-follow, setup screens. Implementation time and design com-
plexity is greatly reduced.

An added benefit of using the eXpressDSP Component Wizard is that you will
be able to automatically produce a block component for the VAB DSP design
tool. You will be able to harness the power of your eXpressDSP algorithm by
simply placing a block component onto a worksheet and using it interactively
with hundreds of other block components. Entire DSP applications can be
created graphically by simply placing these block components onto a work-
sheet and establishing a data flow with a few mouse clicks.

The eXpressDSP Component Wizard

7TMS320 DSP Algorithm Standard Developer’s Guide

3.2 eXpressDSP Component Wizard Initial Screen

To open the tool within the Code Composer Studio environment, follow this link
on the Code Composer Studio Toolbar: Tools → Algorithm Standard →
Component Wizard. When you first run the eXpressDSP Component Wizard
you should see a screen similar to the one shown below:

Figure 1. eXpressDSP Component Wizard Initial Screen

The Component Wizard is capable of producing two types of source code tem-
plates: a “DSP-side”, and a “PC-side.” The DSP-side template is the DSP
source code that will ultimately be compiled into your own eXpressDSP algo-
rithm. This is where your vendor algorithm will reside. The resulting code is ex-
ecuted on a target DSP, and will conform to the Texas Instruments TMS320
DSP Algorithm Standard.

Please refer to the document <ccsinstallpath>/plugins/xdais/cw/docs/comp-
wiz.pdf for further information on help.

The eXpressDSP Component Wizard

8

3.2.1 Creating a New Template

By selecting the New button from the initial screen you are choosing to create
a new template. This will cause the Component Wizard to initialize all subse-
quent screen entries to empty, and you will need to supply any pertinent infor-
mation as you step through the Component Wizard screens.

3.2.2 Opening an Existing Template

By selecting the Open button you are choosing to open up an existing tem-
plate. This will cause the Component Wizard to re-establish all of the setup in-
formation based upon the template you have selected. Using this option is
often useful for going back at a later date to adjust the parameters of your algo-
rithm and then recreate your eXpressDSP source code template.

When you select to open an existing template the Component Wizard will dis-
play a dialog box labeled Open that will allow you to Browse for the desired
template file. Template file extensions are .HBT, and have been created from
a previous usage of the Component Wizard. That is, the very first time you use
the Component Wizard you will need to use the New button and proceed to
enter information. Upon completion of a Component Wizard session a .HBT
file is generated.

3.3 Selecting a DSP Target Platform

The Component Wizard screen shown in Figure 2 will allow you to select some
information about the target DSP on which the algorithm is intended to run. You
will be able to select the DSP architecture (e.g., C62, C67, C54, etc.), as well
as data precision and model endianness.

Target Platform Specifies the DSP architecture that will be used

Data Precision Specifies the data precision

Endianness (6x) Specifies either little endian or big endian mode

Memory Model (5x) Specifies either far or near memory model

The eXpressDSP Component Wizard

9TMS320 DSP Algorithm Standard Developer’s Guide

Figure 2. Selecting DSP Target Platform Information

3.4 Choosing an Algorithm and Vendor Name

You will be able to choose your algorithm’s name and enter your vendor-spe-
cific name with this Component Wizard screen. A screen similar to the one
shown in Figure 3 will allow you to enter this information.

The eXpressDSP Component Wizard

10

Figure 3. Choosing an Algorithm Name and Vendor ID

Company Name Specifies your company name for
“bookkeeping” purposes (not required by
XDAIS specification)

Revision Specifies the revision or version of the
algorithm/module

Algorithm/Module Name Specifies the XDAIS algorithm/module name
(3-5 characters suggested)

Vendor Name Your unique vendor name (3-5 characters
suggested)

The eXpressDSP Component Wizard

11TMS320 DSP Algorithm Standard Developer’s Guide

Short description A short one-line description of the module (not
required by XDAIS specification)

Detailed description Detailed description of the module (not re-
quired by XDAIS specification)

All fields marked with a * are mandatory and should be filled.

3.5 Determine the Number of Input and Output Arrays and Parameters Variables
Used by Your Algorithm

3.5.1 Describing Your Algorithm’s Input and Output

Your XDAIS algorithm will need to be described in order for the Component
Wizard to properly generate a source code template that will “fit” your algo-
rithm. This screen will provide you with the means of being able to do this. But
before you begin you will need to have some information available on the algo-
rithm that you are creating.

You will need to define how your algorithm will operate functionally. For exam-
ple, maybe your algorithm takes-in a single input frame of data, performs
some operation based upon parameter variable information, and then outputs
a single frame of data. Or perhaps it requires multiple input frames of data, per-
forms the intended algorithm with the input frames of data, and then outputs
a single frame of data. There are many combinations to consider, but you may
find that typically your algorithm will operate on a single frame of data and out-
put a single frame of data.

There are a few important items that must be addressed before you can prop-
erly fill in the requested information in this screen. The number of input and
output frames of data required for your algorithm must be defined before you
should proceed.

The two entry fields listed below will allow you to determine the number of Input
Frames, and Output Frames that will be used by your algorithm. Don’t worry
about defining what these will be (e.g., choosing names and data types) in this
Component Wizard screen. There will be time to address this in the subse-
quent Component Wizard screens!

Inputs Specify the number of algorithm input data
frames

Outputs Specify the number of algorithm output
data frames

Your algorithm may require several variables that must be supplied to the algo-
rithm in order for it to operate properly. You’ll need to decide how many vari-
ables your algorithm will need.

The eXpressDSP Component Wizard

12

If you have determined that your algorithm will make use of parameter vari-
ables then you can add them via a Component Wizard screen similar to the
one shown below:

Figure 4. Describing Your Algorithm’s Input and Output

3.5.2 Defining your Algorithm’s Parameter Variables

Notes:

All parameter variables listed will always be made available as “in-scope” vari-
ables to the XDAIS algorithm. These variables do NOT have to be individually
passed to the algorithm through an extended algorithm method.

All parameter variables listed will also be available from the PC-side VAB block
component, and can be used to directly access the variables of the XDAIS al-
gorithm.

The eXpressDSP Component Wizard

13TMS320 DSP Algorithm Standard Developer’s Guide

You will need to take four steps for each and every variable that appears in the
Component Parameter listbox. These steps are outlined below:

1) Rename the variable

2) Select the data type for the variable

3) Select the default value for the variable

4) Choose variable to be instance creation, status/control, or both

3.5.3 Renaming the Variable

Each parameter variables will initially contain a generic name such as “param-
eter0,” “parameter1,” etc. You will want to change these generic names to
something more descriptive for your algorithm. To change a variable name,
simply highlight the variable name of interest and then choose the Edit button
and then type the name of the variable in the box labeled Name.

3.5.4 Selecting the Data Type for the Variable

First, highlight the variable name of interest. Then choose the Edit button and
select the appropriate data type by choosing one of the XDAIS data types pre-
sented. In addition to the XDAIS data types, variables can also be chosen from
several other types

3.5.5 Selecting the Default Value for the Variable

First, highlight the variable name of interest. Then select the Edit button and
enter the desired default value for the variable.

3.5.6 Choosing Instance Creation, Status/Control, or Both

Instance creation parameter variables are values passed to the algorithm
when it is instantiated. Status/control variables contain algorithm status infor-
mation that can be read and written as the algorithm is running. The Compo-
nent Wizard for eXpressDSP allows you to decide if your parameter variables
will be an instance creation variable, a status/control variable, or both. Simply
highlight the parameter variable name, and then choose the Edit button to se-
lect the desired parameter types.

The eXpressDSP Component Wizard

14

3.6 Defining Local Arrays or Buffers (memTab Memory Descriptors) Used By an
Instance of Your Algorithm

Additionally, you should decide whether your algorithm requires the use of any
local data array storage (e.g., delay elements for a filter). If you have deter-
mined that your algorithm will be using local memory arrays in the form of
MemTAB memory descriptors then you can add them via a Component Wizard
screen that looks similar to the one shown below:

Figure 5. Defining memTab Memory Descriptors

You will need to follow the steps that are listed below in order to configure prop-
erly the local array memory descriptors. To select individual memory descrip-
tors and then make unique changes for each you will need to first highlight a
memory descriptor name. Then you can modify the content by double-clicking
the name and then selecting the appropriate information for it (e.g., you can
change its name by typing in a new one, or select the data type, etc.).

The eXpressDSP Component Wizard

15TMS320 DSP Algorithm Standard Developer’s Guide

1) Rename the memory descriptor

2) Define the number of elements

Note:

If your algorithm requires a block of memory whose size is dependent upon
parameter variables (e.g., filter length, or input framesize) you can double-
click on the Number of Elements field and enter an equation using the param-
eter variable of interest; in some cases you may need to modify the resulting
vendor-specific source code file so that the number of elements used will be
based upon the proper parameter variable. The name of this file will be the
one that ends with an “_ialg.c”.

3) Select the data type for the elements

4) Select memory alignment

5) Select the memory space that will be used

6) Select the required memory attributes

3.7 Algorithm’s Extended Method(s)

You can add as many extended algorithm methods to your algorithm, as you
would like by simply using the Add button located directly to the right of the Al-
gorithm Methods list box. Selecting the Add button will cause the Function Pro-
totype Wizard to appear. This Wizard will allow you to individually specify each
function parameter of your extended method. The extended Algorithm Method
setup screen will appear similar to the one shown in Figure 6.

The eXpressDSP Component Wizard

16

Figure 6. Extended Algorithm Method Entry Screen

3.7.1 Adding a New Extended Algorithm Method

You can add as many extended algorithm methods to your algorithm as you
would like by simply using the Add button located directly to the right of the Al-
gorithm Methods list box. Selecting the Add button will cause the Function Pro-
totype Wizard to appear. This Wizard will allow you to individually specify each
function parameter of your extended method. The Function Prototype Wizard
is shown in Figure 7.

The eXpressDSP Component Wizard

17TMS320 DSP Algorithm Standard Developer’s Guide

Figure 7. Function Declaration

Figure 8. Function Prototype Wizard Parameter Definition

Function Name Specify the extended algorithm method’s
name

Return Type Specify the function return type

Function Parameters Specify the number of function parameters
that are passed

The first step in creating a new extended algorithm method is to provide a
name for the function. You will want to select an appropriate name for the func-
tion (e.g., “apply”, ”filter”, etc.), and type this name into the Function Name list
box provided in the Function Prototype Wizard screen.

The eXpressDSP Component Wizard

18

The next step will be to determine what sort of function return type will be used.
You can select the appropriate return type from the Return Type combination
box provided in the Function Prototype Wizard screen.

Next, you will need to enter the number of function parameters that your algo-
rithm will require. The default number of parameters will be based upon the
number of input and output data frames that you selected in an earlier Compo-
nent Wizard screen. You can change the number of function parameters by
simply changing the number shown in the Function Parameters edit control
box provided in the Function Prototype Wizard screen.

Note: You are free to add any number of function parameters that you require
for your algorithm. However, keep in mind that the parameter variables that
you specified in a previous Component Wizard screen are already provided
as “in-scope” variables to your XDAIS algorithm. You will not need to pass
them individually.

When all three of the above-referenced items have been entered then select
the Next button. This will cause the Function Prototype Wizard to proceed to
individual screens in which you will be able to select the Parameter Name and
Parameter Type for each function parameter. For example, if you selected four
function parameters, then you will need to setup the parameter name and pa-
rameter type four times. This is accomplished by simply typing in the desired
name for the parameter, and selecting the parameter type from a pull-down
combination box. When you have selected the name and data type, then you
can select the screen’s Next button. This will take you to the next function pa-
rameter. When you have entered appropriate information for all function pa-
rameters then the Function Prototype Wizard will close and you will have suc-
cessfully entered your own extended algorithm method into the Component
Wizard for eXpressDSP. To make any changes to an extended algorithm meth-
od simply double-click on the desired method that is listed and this will bring
up the Function Prototype Wizard so that you can make modifications.

3.7.2 Removing an Extended Method

You can remove an extended method from the Extended Method list box by
simply highlighting the function name with a mouse click and then selecting the
Remove button. Once you have removed the extended method you will not be
able to undo the operation.

The eXpressDSP Component Wizard

19TMS320 DSP Algorithm Standard Developer’s Guide

3.8 VAB Specific Information

Note: This Component Wizard screen will allow you to enter some “bookkeep-
ing” information that will be used by the VAB software program. The informa-
tion entered here is not used in any way for the subsequent DSP source code
generation, and has no bearing on the TMS320 DSP Algorithm Standard.
Non-VAB users may select the Next button directly.

Remember, the resulting VAB block component that is produced will make use
of your XDAIS algorithm. But you do not need to use this VAB block in order
to use the eXpressDSP-compliant DSP algorithm that has been produced by
the Component Wizard (but it does make it convenient to do so).

If you decide to generate a PC-based VAB block component in addition to the
DSP source code template, you will need to fill in the information requested
by this screen. This information will determine how your VAB block component
will be categorized when you want to select it for use within the VAB environ-
ment. VAB arranges block components into separate function Libraries (e.g.,
PC-based, DSP-based, eXpressDSP, or image processing, etc). Each library
contains multiple Groups that hold like-minded functions (e.g., DSP functions,
logical functions, etc.). Within each group the individual block component is
referenced by a menu name (e.g., FFT, magnitude, etc.).

The entry fields shown in Figure 9 are used by VAB only and have no bearing
on the TMS320 DSP Algorithm Standard.

The eXpressDSP Component Wizard

20

Figure 9. VAB Specific Information

3.8.1 Entering VAB Names

Library Specifies the library in which the resulting block compo-
nent will appear

Group Specifies the group in which the resulting block compo-
nent will appear

Menu Specifies the menu name by which the resulting block
component is listed

3.8.2 Entering Filenames

The information entered in this screen is used by the Component Wizard to
allow it to generate files in a directory of your choosing. The Component File-
name is used to specify the name of the PC-based VAB block component that

The eXpressDSP Component Wizard

21TMS320 DSP Algorithm Standard Developer’s Guide

will be produced. The Help and Icon filename are also associated with the PC-
based VAB block component. The Directory is used by the Component Wizard
to determine where to create the source code template files.

Component Specifies the VAB block component name

Help Specifies the VAB block component help filename

Icon Specifies the VAB block component icon filename

The source code templates produced by the Component Wizard for eX-
pressDSP are stored as follows.

3.8.3 Warning/Error Configuration

If you decide to compile the PC based source code template and create a block
component for use in the VAB environment, you will have a choice as to how
that block handles warnings/error conditions. Selecting one of the listed types
will allow your block component to determine how it will report anu algorithm
warnings or errors to the VAB program.

3.8.4 Channel Label and Dimension

These channel labels corresponds to the input and output frames of data and
are only used in the PC side of the source code template. The channel labels
field allows you to select a name that you would like to see when using the
block component in a worksheet.

3.9 Generating the Source Code Template

At this point, you have entered all of the required information so that the Com-
ponent Wizard for eXpressDSP will be able to generate the source code tem-
plate for your XDAIS algorithm. You will see a screen similar to the one shown
in Figure 10. Do you notice how there are two columns represented? The col-
umn on the right lists those source code files that will be generated for the PC-
based VAB block component that can make use of your XDAIS algorithm. The
column on the left lists those source code files that will be generated for the
DSP-based XDAIS algorithm. It is with the DSP-based files that you will be
adding your algorithm and source code changes.

The eXpressDSP Component Wizard

22

Figure 10. Generating a Source Code Template

Selecting the Generate Code button on this screen will cause the Component
Wizard for eXpressDSP to begin generating the source code files. The file
location for these generated files has been determined by the Directory infor-
mation that you selected in an earlier Component Wizard screen. You can use
the Back button to go back a few screens and review this specified file location
in the event that you have forgotten exactly where it was that you wanted to
place the files. Or, if you’d rather you can simply select the Generate Code but-
ton to proceed to the next screen where the project file information will be dis-
played.

The eXpressDSP Component Wizard

23TMS320 DSP Algorithm Standard Developer’s Guide

3.10 Launching the Compiler

After you have generated the source code you will see an Component Wizard
for eXpressDSP screen similar to the one shown in Figure 11.

Figure 11. Generating Source Code Template

As in the previous screen you will notice that there are two columns repre-
sented: the PC-side, and the DSP-side. Each column will list the actual source
code files that have been generated. At this point you have several options
available to you.

Note: Selecting the Finish button will cause the Component Wizard for eX-
pressDSP to close. If you do this before selecting the Start Code Composer
Studio button then the Component Wizard will close without creating a project
file for Code Composer Studio.

The eXpressDSP Component Wizard

24

3.10.1 Load Project to Code Composer Studio

Selecting the Load Project To Code Composer Studio button will cause the
Component Wizard for eXpressDSP to automatically create a Code Compos-
er Studio project file with all of the required files for your XDAIS algorithm and
load it in Code Composer Studio. You will need to modify some of the source
code files to add your algorithm (see Adding Your Algorithm to the XDAIS
Source Code Template).

3.10.2 Starting Visual C/C++ Compiler

Selecting the Start Visual C/C++ Compiler button will cause the Component
Wizard for eXpressDSP to automatically launch the Microsoft Visual C/C++
compiler and automatically create a project workspace for you. All that re-
mains to do is Build the project workspace with Visual C/C++; no source code
changes are required. The resulting block component file can be used by the
VAB software program and allow your new XDAIS algorithm to be used directly
within the graphical design environment that VAB provides you.

3.10.3 Closing the eXpressDSP Component Wizard

Now that you have successfully generated the XDAIS source code template
with the Component Wizard for eXpressDSP, and generated a Code Compos-
er Studio project and loaded it by selecting the Load Project To Code Compos-
er Studio button you can close the Component Wizard by selecting the Finish
button.

3.11 Adding Your Algorithm to the XDAIS Source Code Template

Now that you have successfully generated the XDAIS source code template
with the Component Wizard for eXpressDSP, and generated a Code Compos-
er Studio project by selecting the Start Code Composer Studio button, you are
ready to begin adding your algorithm.

What File Should I Modify?

Of the source code files generated you will want to concentrate on the vendor-
specific C source file. This will be the file that ends with an _ialg.c (e.g.,
G729ENC_HYP_ialg.c listed above). It is in this file that you will find the ex-
tended algorithm method shell(s) that you defined earlier in the Component
Wizard.

Where Should I Add My Algorithm?

Once you have opened up the vendor-specific (_ialg.c) source file you should
look for your extended algorithm method towards the end of the source file.

The eXpressDSP Component Wizard

25TMS320 DSP Algorithm Standard Developer’s Guide

You will notice that the comments provided show you which variables are avail-
able for use within your extended algorithm method. You will have access to
in-scope variables as well as to any input/output data pointers. You should add
your own modifications to this source code template as required by your algo-
rithm.

Also, if you have chosen to use MemTab memory descriptors (local arrays) for
your algorithm you may need to make some adjustments to the memory al-
location. You will need to do this if your MemTab array is size-dependent upon
some parameter variable (e.g., a filter length). The Component Wizard pro-
duces a template that is based upon a fixed length, and must be user-modified
if a variable length is required.

Hint: You may find it helpful as a starting point to simply echo the input data
back to the output data and then proceed with compiling and testing. Once you
have verified that the project is compiled correctly and runs as you expect, you
can go back and add your algorithm.

What Compiler Settings Should I Use?

You will need to make some modifications to the Code Composer Studio com-
piler options before compiling your project. For example, you will need to make
sure that you select the proper endianness is selected for your C6x algorithm.
Also, please keep in mind the XDAIS rules listed below:

� [C6x] XDAIS Rule 26: “All C6x algorithms must access all static and global
data as far data.” This is accomplished by setting the Code Composer Stu-
dio compiler options to use the -ml3 switch.

� [C54x] XDAIS Rules 28-30: If a ‘far’ model is desired, you must select the
“Use Far Calls” option (-mf) and select “548” for the Processor Version
field. Also verify that each individual OBJ file that makes up the algorithm
is less than 32K words in size.

� [C55x] XDAIS Rule 32: “All C55x algorithms must access all static and
global data as far data; also, the algorithms should be instantiable in a
large memory model”. This is accomplished by setting the Code Compos-
er Studio compiler options to use the [–ml] switch.

Once you have selected the appropriate Code Composer Studio compiler op-
tions, you can build the project. This will result in all source files being compiled
into DSP object files, and an example test program (.out) file being produced.

Testing the Algorithm and the Newly Generated XDAIS Interface Code

26

4 Testing the Algorithm and the Newly Generated XDAIS Interface Code

You can test your algorithm in Code Composer Studio IDE by simply loading
the DSP executable program and running it (either a simulation or on a target
DSP).

The Component Wizard also creates a sample “main.c” file that you can use
as a baseline to implement your test vectors. Refer to this file to see how a con-
sumer of your XDAIS algorithm writes the code to properly integrate the algo-
rithm into a DSP application. You will need to modify the supplied “main.c” file
so that it better represents a true test for your algorithm. Run the program with
the same test vectors normally used to properly exercise the algorithm. The
newly eXpressDSP-compliant algorithm should execute properly and yield the
same results as before.

#include <std.h>

#include ”g729enc.h”

#include ”g729enc_hyp.h”

int PtrIn0[256];

int PtrOut0[256];

void main()

{

 G729ENC_Handle handle;

 IG729ENC_Fxns fxns;

 G729ENC_Params params;

 fxns = G729ENC_HYP_IG729ENC;

 params = G729ENC_PARAMS;

 params.framesizeIn0 = 256;

 params.framesizeOut0 = 256;

 G729ENC_init();

 if((handle = G729ENC_create(&fxns, ¶ms)) != NULL)

 {

 // Call the control function to modify parameters as the algo runs

 G729ENC_Status status;

 // get current status

 G729ENC_control(pPtr->handle, G729ENC_GETSTATUS, &status);

 // modify/check status parameters before setting the new status info

Testing the Algorithm and the Newly Generated XDAIS Interface Code

27TMS320 DSP Algorithm Standard Developer’s Guide

 G729ENC_control(pPtr->handle, G729ENC_SETSTATUS, &status);

 /* Call XDAIS algorithm specific routine(s) */

 /* For example: */

 G729ENC_apply(handle, PtrIn0, PtrOut0);

 G729ENC_delete(handle);

 }

 G729ENC_exit();

}

Note:

If the new algorithm does not run properly, it is most likely that the algorithm
instance was not created successfully. Since the sample <MOD-
ULE>_create() function calls the ALG_create() function which dynamically
allocates the required memory blocks to create a new algorithm instance, the
ALG_create() function will return a NULL handle if the system failed to allo-
cate any of the memory blocks requested by the algorithm. Increase the size
of the system heap to faciliate the algorithm’s total memory requirement so
that the <MODULE>_create() function returns a valid pointer to the algorithm
instance object.

XDAIS Library Creation

28

5 XDAIS Library Creation

5.1 Creating the XDAIS Library File

When you have determined that the XDAIS algorithm is executing properly,
you will want to produce a vendor-specific library file to satisfy the XDAIS pack-
aging convention. This is easily accomplished by running the included make-
lib.bat file from a DOS prompt (this batch file is located in the same directory
as the source code template, but should be moved to the directory where the
OBJ files reside). Using the makelib batch file will result in two library files being
created. There is your vendor-specific file required for eXpressDSP com-
pliance, as well as an optional library file that allows the XDAIS algorithm to
be called through the sample framework files generated by Component Wiz-
ard (<MODULE.>.c and <MODULE>.h.

Note: The Component Wizard expects all libraries to be built in Release
mode; therefore, the algorithm object files will reside in the \Release folder
of the project directory. For the batch file to run successfully, it is necessary
to build the algorithm test project in Release mode. This way, the library build
scripts can find all the various algorithm object files to build the final library
deliverable.

5.2 Testing the XDAIS Library File

To test the newly created XDAIS library file, remove all the source files from
the project which make up the library file. Add the library file directly to the Code
Composer Studio project just as you would add a source file (i.e., Project →
Add Files to Project). Rebuild the project and run the program. The program
should still execute with the same results as expected.

Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)

29TMS320 DSP Algorithm Standard Developer’s Guide

6 Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)

Before submitting the algorithm files for official testing, it can be pre-tested us-
ing a Code Composer Studio plug-in, QualiTI. An algorithm submitted for com-
pliance testing consists of an algorithm library to be tested, all associated
header files, and documentation. QualiTI operates on the algorithm library and
the header files by running various automated tests to check for compliance
based on TMS320 DSP Algorithm Standard Rules and Guidelines
(SPRU352).

The compliance test is comprised of both static and dynamic tests. Static tests
are those that do not involve execution of the algorithm. Dynamic tests involve
linking the algorithm with a test framework and running the resulting execut-
able on a standalone simulator to determine the PASS/FAIL result.

QualiTI targets both algorithm developers and algorithm testers. The algo-
rithm developers may use the tool to perform pre-compliance of the algorithms
before they make a final submission to Texas Instruments (TI) for compliance
certification. This helps the algorithm developers to obtain a compliance certifi-
cate on the first submission and eliminates the cycle time of resubmitting/re-
testing an algorithm in case of non-compliance. The algorithm testers (third-
party testers employed by TI) use the tool to certify compliance for the algo-
rithms submitted for compliance testing. The algorithm tester’s intervention is
limited to providing the algorithm information such as Archive, Header files,
Vendor Name, Module Name, etc., that are provided in the documentation as-
sociated with the algorithm being tested.

6.1 Invoking the Plug-In

To invoke QualiTI, you first need to start Code Composer Studio by double
clicking on the Code Composer Studio Icon on your desktop or by selecting
Code Composer Studio from the Start menu. Once Code Composer Studio is
open, QualiTI can be started through the menu item Tools → Algorithm Stan-
dard → QualiTI or by clicking on the QualiTI icon in the tool bar.

Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)

30

6.2 Entering the Data to Create an Algorithm Information File

Once QualiTI is started, it appears with its interface docked to the lower edge
of Code Composer Studio. The QualiTI interface has two distinct sections: the
Algorithm Information File and the Output Window.

The Algorithm Information File section gives the user basic information about
the algorithm being tested. The Current File field indicates the algorithm infor-
mation file being used. This file contains detailed information about the algo-
rithm being tested, such as vendor name, algorithm name, algorithm archive,
header files, and other characterization data as explained below. The New
button deletes a previously created algorithm information database, creates
a new one, and takes you directly to the algorithm information dialog box. The
user is prompted to save if the loaded database has been changed.

Figure 12. Algorithm Information Dialog Box

When the QualiTI plug-in is opened for the first time, it displays an empty algo-
rithm information database that can be edited by using the Edit button. All the
data entered through the QualiTI interface can be saved as an XML file with
the extension .alg. After entering the data through the interface, use the Save
button to save the file for later retrieval. This feature eliminates repetitive entry
of algorithm information that can occur when the algorithm is being retested

Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)

31TMS320 DSP Algorithm Standard Developer’s Guide

after fixing non-compliances from a previous test run. A file saved through Qu-
aliTI can be retrieved by using the Load button.

6.3 Executing the Test

After the necessary information is entered and saved in the algorithm informa-
tion pages, you can proceed to the test step. Optionally, before the tests can
begin, you can choose any of the Test Options from the plug-in opening screen
to control the test flow. By default, the Run Till End option is selected and this
makes QualiTI test all the rules regardless of whether each rule passes or fails.
If the Abort At First Failed Rule option is selected, when the test encounters
its first failed rule, QualiTI will stop testing as soon as a rule fails. If you wish
to be prompted at every failed rule, then you can choose the option Report At
Every Failed Rule. You cannot control the order in which the rules are tested.
Once you decide on the Test Options you can click on the Begin Test button,
which will initiate testing. You will then be able to view the complete test report.

Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)

32

6.4 The Document Generator

QualiTI must have detailed information about an algorithm before testing it.
This information can be input manually through the QualiTI GUI or can be
loaded via an algorithm information file (.alg file). QualiTI also generates data
about the algorithm in terms of heap data memory requirements, static data
memory requirements, and program data memory usage. All of this informa-
tion can be saved in the form of an easily readable HTML document by clicking
on the Generate Doc button (QualiTI, Opening screen). This document
should be sent to TI as the associated document for the algorithm to be tested.
This helps maintain uniformity across documents submitted from various algo-
rithm vendors. Make sure to review the generated HTML file for accuracy and
completeness before submitting for compliance.

6.5 Submitting Your Algorithm for eXpressDSP-Compliance Testing

Texas Instruments has a program in place that allows you to submit your newly
created XDAIS algorithm for compliance testing. In addition to the vendor-spe-
cific library file, you will need to supply a document file that contains informa-
tion about your algorithm. Contact Texas Instruments for additional details
about submitting your algorithm for compliance testing.

Conclusion

33TMS320 DSP Algorithm Standard Developer’s Guide

7 Conclusion

This document helps the XDAIS algorithm developer through the entire XDAIS
conversion process. When completed, the algorithm should be submitted im-
mediately for compliance testing. Make sure all header files that are submitted
(file names and contents) follow the XDAIS naming conventions and header
file rules. The following files should be submitted:

� <MODULE>_<VENDOR>_<ARCH>.html (normally generated automati-
cally by QualiTI)

� The XDAIS Library file

� <MODULE>_<VENDOR>.h (and any other header files included in this
file)

� i<MODULE>.h (and any other header files included in this file)

� i<MODULE>.c

� <MODULE>.h

� <MODULE>.c

� Any additional header files inherently included by the above header files

� The actual linker command file used in your test application

� An algorithm User’s Guide (optional, but highly recommended)

A-1

Appendix A

XDAIS Name Tables

Please refer to Chapter 1, Section 2, Module-Specific Abstract Interface, for
instructions on how to enter information into the following tables.

Table 3. Name Selection

Module
Name

Vendor
Name Variant Architecture

Memory Model
 (optional)

Cores: ’24’, 28’, 54’, ‘55’, ‘62’, ’64’,
‘67’

‘f’ = far calls/returns
‘e’ = big endian
‘m’ = mixed calls

Table 4. Instance Creation Parameters

typedef struct I<MODULE>_Params {

No. Params Type Params Name

1.

2.

3.

4.

} I<MODULE>_Params;

Appendix A

XDAIS Name Tables

A-2

Table 5. Real-Time Status and Control Parameters

typedef struct I<MODULE>_Status {

No. Status/Control Type Status/Control Name

1.

2.

3.

4.

} I<MODULE>_Status;

Table 6. Extended IALG (IMODULE) Methods

No. Return Type Method Name
Param1 Type and
Name†

Param2 Type and
Name

Param3 Type and
Name

1

2

3

4

5

† The IALG_Handle parameter does not need to be specified because the Component Wizard will insert it by default.

B-1

Appendix A

Template File Descriptions

The Component Wizard automatically generates most of the following files
that make up the XDAIS layers of abstraction:

APPLICATION FRAMEWORK Concrete Interface (API)

(framework-specific set of sample

functions for framework to manage

algorithm instance objects)

<MODULE>.c (implementation of client API functions)

<MODULE>.h (client API interface definitions)

MODULE -- PUBLIC Module-Specific Interface (IMODULE)

(abstract interface)

i<MODULE>.c (definition of default parameter structure settings)

i<MODULE>.h (abstract interface definition header -- PUBLIC data types & methods)

ALGORITHM -- PRIVATE Vendor Specific Interface (IALG)

(algorithm-specific)

<MODULE> <VENDOR>.h (vendor implementation header file; used by application)

<MODULE> ialg.c (vendor-specific algorithm functions)

<MODULE> ialgvt.c (function v-table definitions)

Appendix B

C-1

Appendix A

XDAIS Memory and Performance
Characterization

This appendix contains a set of tables that help characterize the TMS320 DSP
Algorithm Standard (known as XDAIS) algorithm. This information can be ex-
tremely useful for integrating algorithms into a system that has limited memory.
Refer to the TMS320 DSP Algorithm Standard Rules and Guidelines
(SPRU352) document for details on how to complete the following tables with
the correct information.

Table 7. Module

Module Vendor Variant Arch Model Version Doc Date Library Name

G729ENC TI none 54 far none 05.05.2000 g729enc_ti.l54f

Table 8. ROMable (Rule 5)

Yes No

X

Table 9. Heap Data Memory (Rule 19)

memTab Attribute Size (bytes) Align (MAUs) Space

0 Persist 54 0 External

1 Scratch 256 32 DARAM0

2 Scratch 130 4 SARAM0

3 Persist 712 0 External

4 Scratch 656 64 DARAM1

5 Persist 256 16 SARAM1

Note: The unit for size is (8–bit) byte and the unit for align is Minimum Addressable Unit (MAUs).

Appendix C

XDAIS Memory and Performance Characterization

C-2

Table 10. Stack Space Memory (Rule 20)

Size (bytes) Align (MAUs)

Worst Case 256 0

Table 11. Static Data Memory (Rule 21)

.data .bss

Object File
Size

(bytes)
Align

(MAUs)
Read/
Write Scratch Object File

Size
(bytes)

Align
(MAUs)

Read/
Write Scratch

g729encTI.obj 325 0 R No g729enc_ti
_
ialgvt.obj

22 0 R No

Table 12. Program Memory (Rule 22)

Code

Code Sections Size (bytes) Object File

.text 7,782 g729encTI.obj

.text:algAlloc 128 g729encTI.obj

.text:algInit 209 g729encTI.obj

.text:algFree 86 g729encTI.obj

.text:algActivate 7 g729encTI.obj

.text:algMoved 9 g729encTI.obj

.text:algDeactivate 7 g729encTI.obj

.text:init 3 g729encTI.obj

.text:exit 3 g729encTI.obj

.cinit 24 g729encTI.obj

Table 13. Interrupt Latency (Rule 23)

Operation
Typical Call Frequency

(microsec)
Worst-Case

(Instruction Cycles)

encode() 2,000 50

Table 14. Period / Execution Time (Rule 24)

Operation
Typical Call Frequency

(microsec)
Worst-Case

Cycles/Period

encode() 2,000 16,000

XDAIS Memory and Performance Characterization

C-3XDAIS Memory and Performance Characterization

Table 15. C55x Stack Configuration (Rule 31)

This algorithm was based on the following stack configuration:

x Dual 16-bit stack with fast return

Dual 16-bit stack with slow return

32-bit stack with slow return (default at hardware reset)

Table 16. C55x B-Bus Data Access (Rule 34)

Number of memTab [] b locks that are accessed by the B-bus
Block

Numbers

2 1, 2

Data section names that are accessed by the B-bus
Block

Numbers

.data

.coefwords

D-1

Appendix A

eXpressDSP−Compliance Report

This section contains the official checklist used during compliance testing. It
is recommended to go through the entire checklist before submission.

TMS320 DSP Algorithm Standard (XDAIS)

XDAIS Compliance Testing

Compliance Test Report (preliminary)

Note: All references to Rules and Guidelines are from the February 2000 revision of SPRU352.

Date:

Vendor:

Algorithm

Incoming Inspection

documentation:

header file(s):

Rule 1: All algorithms must follow the run-time conventions imposed by TI’s implementation of the
C programming language.’

Report: Vendor should supply statement that this is correct.

Rule 2: All algorithms must be reentrant within a preemptive environment (including time-sliced
preemption).

Report: Vendor must state that algorithm is reentrant according to the definition of the DSP
Algorithm Standard

Rule 3: All algorithm data references must be fully relocatable (subject to alignment require-
ments). That is, there must be no “hard coded” data memory locations.

Report: Vendor should supply statement that this is correct.

Appendix D

TMS320 DSP Algorithm Standard (XDAIS)

D-2

Rule 4: All algorithm code must be fully relocatable. That is, there can be no hard coded program
memory locations.

Report: Vendor should supply statement that this is correct.

Rule 5: Algorithms must characterize their ROM-ability; i.e., state whether they are ROM-able or
not.

Report: Vendor must document that their code is ROM-able or not.

Rule 6: Algorithms must never directly access any peripheral device. This includes but is not limit-
ed to on-chip DMAs, timers, I/O devices, and cache control registers.

Report: Vendor should supply statement that this is correct.

Rule 7: All header files must support multiple inclusions within a single source file.

Report:

Rule 8: All external definitions must be either API identifiers or API and vendor prefixed.

Report:

Rule 9: All undefined references must refer either to the operations specified in Appendix B (a
subset of C runtime support library functions and the DSP/BIOS) or other eXpressDSP-compliant
modules.

Report:

Rule 10: All modules must follow the naming conventions of the DSP/BIOS for those external dec-
larations disclosed to the client.

Report: Vendor should supply statement that this is correct.

Rule 11: All modules must supply an initialization and finalization method.

Report:

Rule 12: All algorithms must implement the IALG interface.

Report:

Rule 13: Each of the IALG methods implemented by an algorithm must be independently relocat-
able.

Report:

Rule 14: All abstract algorithm interfaces must derive from the IALG interface.

Report:

Fxns:

Params:

Status:

TMS320 DSP Algorithm Standard (XDAIS)

D-3eXpressDSP-Compliance Report

Rule 15: Each eXpressDSP-compliant algorithm must be packaged in an archive which has a
name that follows a uniform naming convention.

Note: Refer to section 3.4 of the TMS320 DSP Algorithm Standard Rules and Guidelines
(SPRU352) for further guidance on file naming conventions.

Report:

Rule 16: Each eXpressDSP-compliant algorithm header must follow a uniform naming convention.

Header file name should be of the form:
<module><vers>_<vendor>_<variant>.h

Report:

Rule 17: Different versions of an eXpressDSP-compliant algorithm from the same vendor must
follow a uniform naming convention.

Report:

Rule 18: If a module’s header includes definitions specific to a “debug” variant, it must use the
symbol _DEBUG to select the appropriate definitions;

_DEBUG is defined for debug compilations and only for debug compilations.

Report:

Rule 19: All algorithms must characterize their worst-case heap data memory requirements (in-
cluding alignment).

Report:

Rule 20: All algorithms must characterize their worst-case stack space memory requirements (in-
cluding alignment).

Report:

Rule 21: Algorithms must characterize their static data memory requirements.

Report:

Rule 22: All algorithms must characterize their program memory requirements.

Report:

Rule 23: All algorithms must characterize their worst-case interrupt latency for every operation.

Report:

Rule 24: All algorithms must characterize the typical period and worst-case execution time for
each operation.

TMS320 DSP Algorithm Standard (XDAIS)

D-4

DSP-Specific Rules

Rule 25: All C6x algorithms must be supplied in little endian format.

Report: C6x Vendors should supply a statement that this is correct.

Rule 26: All C6x algorithms must access all static and global data as far data.

Report: C6x Vendors should supply a statement that this is correct.

Rule 27: C6x algorithms must never assume placement in on-chip program memory; i.e., they
must properly operate with program memory operated in cache mode.

Report: C6x Vendors should supply a statement that this is correct.

Rule 28: On processors that support large program model compilation, all core run-time support
functions must be accessed as far functions; for example, on the C54x, the calling function must
push both the XPC and the current PC.

Report: C54x Vendors should supply a statement that this is correct.

Rule 29: On processors that support large program model compilation, all algorithm functions
must be declared as far functions; for example, on the C54x, callers must push both the XPC and
the current PC and the algorithm functions must perform a far return.

Report: C54x Vendors should supply a statement that this is correct.

Rule 30: On processors that support an extended program address space (paged memory), the
code size of any object file should never exceed the code space available on a page when over-
lays are enabled.

Report: C54x Vendors should supply a statement that this is correct.

Rule 31: All C55x algorithms must document the content of the stack configuration followed.

Report:

Rule 32: All C55x algorithms must access all static and gobal data as far data; also, the algo-
rithms should be instantiable in a large memory model.

Report: C54x Vendors should supply a statement that this is correct.

Rule 33: C55x algorithms must never assume placement in on-chip memory; i.e., they must prop-
erly operate with program memory operated in instruction cache mode.

Report: C55x Vendors should supply a statement that this is correct.

Rule 34: All that access data by B-bus must document: (1) the instance number of the
IALG_MemRec structure that is accessed by the B-bus (heap data), and (2) the data section
name that is accessed by the B-bus (static data).

	IMPORTANT NOTICE
	Read This First
	About This Manual

	Contents
	Figures
	Tables
	TMS320 DSP Algorithm Standard Developer’s Guide
	Preliminary XDAIS Work and Preparation
	Defining the Module-Specific Abstract Interface
	The eXpressDSP Component Wizard
	Why use the eXpressDSP Component Wizard?
	eXpressDSP Component Wizard Initial Screen
	Creating a New Template
	Opening an Existing Template

	Selecting a DSP Target Platform
	Choosing an Algorithm and Vendor Name
	Determine the Number of Input and Output Arrays and Parameters Variables\ Used by Your Algorithm
	Describing Your Algorithm’s Input and Output
	Defining your Algorithm’s Parameter Variables
	Renaming the Variable
	Selecting the Data Type for the Variable
	Selecting the Default Value for the Variable
	Choosing Instance Creation, Status/Control, or Both

	Defining Local Arrays or Buffers (memTab Memory Descriptors) Used By a\n Instance of Your Algorithm
	Algorithm’s Extended Method(s)
	Adding a New Extended Algorithm Method
	Removing an Extended Method

	VAB Specific Information
	Entering VAB Names
	Entering Filenames
	Warning/Error Configuration
	Channel Label and Dimension

	Generating the Source Code Template
	Launching the Compiler
	Load Project to Code Composer Studio
	Starting Visual C/C++ Compiler
	Closing the eXpressDSP Component Wizard

	Adding Your Algorithm to the XDAIS Source Code Template
	What File Should I Modify?
	Where Should I Add My Algorithm?
	What Compiler Settings Should I Use?

	Testing the Algorithm and the Newly Generated XDAIS Interface Code
	XDAIS Library Creation
	Creating the XDAIS Library File
	Testing the XDAIS Library File

	Pre-Validation of Algorithms Using QualiTI (Pre-compliance Tool)
	Invoking the Plug-In
	Entering the Data to Create an Algorithm Information File
	Executing the Test
	The Document Generator
	Submitting Your Algorithm for eXpressDSP-Compliance Testing

	Conclusion

	XDAIS Name Tables
	Template File Descriptions
	XDAIS Memory and Performance Characterization
	eXpressDSP Compliance Report
	TMS320 DSP Algorithm Standard (XDAIS)
	XDAIS Compliance Testing
	DSP-Specific Rules

