
InterNiche's embFTP User's Guide
for PIC32MX/MZ (MPLABX Tools)

51 E. Campbell Ave
Suite 160
Campbell, CA. 95008
Copyright ©2013
InterNiche Technologies Inc.
email: Sales@iNiche.com
support: http://www.iniche.com/support

InterNiche Technologies Inc. has made every effort to assure the accuracy of the information contained in this documentation. We appreciate any feedback
you may have for improvements. Please send your comments to support@iniche.com.

The software described in this document is furnished under a license and may be used, or copied, only in accordance with the terms of such license.

Copyright © 2013 by InterNiche Technologies, Inc. All Rights Reserved

Revised: November 6, 2013

Trademarks

All terms mentioned in this document that are known to be service marks, tradenames, trademarks, or registered trademarks are property of their respective
holders and have been appropriately capitalized. InterNiche Technologies Inc. cannot attest to the complete accuracy of this information. The use of a term
in this document should not be regarded as affecting the validity of any service mark, tradename, trademark, or registered trademark.

Table of Contents

Overview
embFTP
Product Requirements
Installation

Product Registration
Project Integration
Installing the Example1 Demo Application
Sample Application Walkthrough

Debug vs Non-Debug Libraries
Configuration

Tunable and Reference Parameters
API
embFTP Menu CLI
Related Products
For Additional Information ...

Overview

This technical reference manual is provided with the InterNiche embFTP library. The purpose of this document is to provide enough

information so that a moderately experienced "C" programmer with a reasonable understanding of TCP/IP protocols can develop

FTP-based server applications using MPLABX development tools.

The primary features of this library are:

Small footprint

mailto:Sales@iNiche.com
http://www.iniche.com/support

"Device Locked" to PIC32MX/MZ Important Note: The software described in this document will not run on any component other

than the PIC32MX/MZ. For support of another controller, contact InterNiche Sales: Sales@iNiche.com

Supports a configurable number of concurrent connections.

Sample Applications

Example Menu System and Command Line Interface

DEBUG and Non-DEBUG versions of the library are provided.

Requires use of embTCP™

Requires existence of your own embedded file system.

A Note About this Document

Unless specifically mentioned otherwise, the term embTCP is intended to apply to both the embTCP and embDUAL embedded library

products.

embFTP

embFTP consists of libembftp.a, libembftp-debug.a, ftpdata.c, ftpdata.h, demo_vfs.c, a sample application called

"example1 and a licence object called "ftp_unregistered.o".

embFTP's API is implemented as a set of direct and callback functions. Direct functions are implemented within embFTP and are

invoked directly by the application. Access to these functions is also made available as menu commands.

Product Requirements

Installation

Before you start using this product, it is important that you have successfully built, downloaded and executed some small program

using InterNiche's TCP/IP Library to your PIC32MX/MZ based board using MPLABX development tools. This is so that you have some

end-to-end experience with your entire development environment and that you have confidence that your Ethernet and TCP/IP

stack works.

Product Registration

As provided, embFTP contains license information that will only allow it to operate for a finite period of time before halting.

Registration is accomplished by visiting www.TCPIPStack.com, submitting a simple form and checking your email for a

ftp_license.o file that should be used instead of ftp_unregistered.o

Project Integration

1. Begin with a working embTCP or embDUAL project ('debug' mode)

2. Unzip the package in to the same directory that contains the embsrc, emblibs and emb_h directories

mailto:Sales@iNiche.com
http://www.tcpipstack.com/

3. Add embFTP to your project:

1. edit tcpdata.c file and make the following modifications:

Add the following line early in the file:

extern struct net_module ftp_module;

Find the in_modules array and add the following line:

&ftp_module,

Verify that the file "inmain.c" contains a call to "example_init()" between the call to

nichestack_init() and TK_START_OS().

2. Add emblibs/embFTP-debug.a to your project

3. Include the file ftpdata.c into your existing project

4. Include the file ftp_license.o into your existing project

 NOTE: If you have not yet registered your product, use ftp_unregistered.o. Registration will enable full use of the library

and is accomplished by visiting www.TCPIPStack.com.

This will create an operating system task for embFTP and will integrate it with the protocol stack.

Installing the Example1 Demo Application

Example1 is a very simple application that uses embFTP. It is designed to show that embFTP is functioning and that a remote

system can connect to it. Once this is done, it should be removed from your project.

Example1 assumes that it is linked with a DEBUG version of embTCP and that the system has a console.

The file "example1.c" provides a fairly thorough implementation of this package, including initialization activities, callback

registration and actions to be taken when a status change occurs on a connection. ftpdata.c and demo_vfs.c demonstrate the

mapping of filesystem calls to your embedded file system.

To add Example1:

1. If your existing project contains references to the embTCP example, remove them from your project

2. Add ftp_examples/example1.c and demo_vfs.c to your project

3. Add embsrc/ftpdata.c to your project

4. Build and download the resulting image

5. Start your application. Once the system begins to execute, it will display on your configured output device a message similar

to the following:

embFTP - Licensed for CHIPNAME. 0000-0000-0000-0000

Licensed to: NAME, user@example.com, COMPANYNAME

For PRODUCTNAME on CHIPNAME

6. From another system open an FTP client application and connect to the IP address of the running embTCP and embFTP.

Example1 provides access using username "guest" and password "guest" (no quote characters, of course).

"220 Service ready. Welcome to InterNiche embFTP Server ";

**

**

http://www.tcpipstack.com/

Sample Application Walkthrough

Interaction between an FTP client, embFTP library, example1.c and ftpdata.c:

The embFTP task creation, global, connection, sessions and application statistics initialization will all be done at the initialization

time. After the initialization, the FTP server will be listening to the FTP client connections.

example1.c, the FTP example application, will communicate with the FTP clients through FTP library using the embFTP API.

embFTP will invoke functions in ftpdata.c which in turn will call functions in example1.c . example1.c maintains a database of

all active clients in the form of an array of structures. This structure is called ftpApp_connstats and the global array variable is

ftpAppstats. Both of these are declared in example1.c . The maximum number of clients is based on the constant

MAX_FTP_SESS, defined in ftpdata.h.

The embFTP server maintains a similar database which is allocated at the initialization time. The maximum number of simultaneous

clients for is specified by the max_ftp_conn variable which initialized to MAX_FTP_SESS. This variable itself is declared in

ftpdata.c. To change the number of supported connections, simply change MAX_FTP_SESS and recompile your application.

Provided that fewer than max_ftp_conn active connections exist, whenever a client establishes an FTP connection with embFTP,

it will allocate memory for the connection on the heap and assign a connection id. It will then transmit the login prompt to the client.

Once the client provides the username and password, the embFTP server will invoke the validate_ftpUser() function found in

ftpdata.c. If appropriate, this function can check if the client ip address is authorized by calling function check_ftpipAddr() in

example1.c. The function will then validate the username and password provided by the client. If found to be invalid, then the

client will be allowed ftp_max_login_tries (ftpdata.c) login attempts before embFTP terminates the connection and the

client will have to reconnect. Once the valid username and valid password have been provided, callback functions will be registered

(ftpApp_callbcks_reg()). This function will register two callback functions ftpApp_connsts() and ftpApp_errRecv(),

both of these functions can be found in example1.c.

If validate_ftpUser() function returns success, embFTP will invoke the ftpApp_connsts() function in example1.c with

status set to FTP_SESS_OPENED. If the call to ftpApp_connsts() succeeds, embFTP will present '230 User logged in' to

the ftp client.

When this occurs, example1.c will assign an entry to the connection in its ftpAppstats table and will store conn_state,

conn_ID and username and embFTP will be ready to accept commands from the client.

embFTP will close a client session under the following circumstances:

1. Normal termination by the FTP client

2. ftp_idle_time_enable was set and the client was idle for ftp_conntmo seconds (see ftpdata.c).

3. The embFTP application closed the connection through a call to ftp_closeconn() either through a menu command or

API call.

Whenever a connection is closed, embFTP will invoke the ftpApp_connsts() function with status set to FTP_SESS_CLOSED.

When this occurs in example1.c , the function clears the appropriate entries in the ftpAppstats table.

Based on the setting of MSGS_TO_CONSOLE (ftpdata.h), embFTP will display messages on the console or the serial port for the

following actions:

1. successful login;

2. call_back registration;

3. user logout.

Using the Example

example1.c is supported by a RAM-based demo file system supporting only four pseudo-files:

1. ftp_rdonly_bin.bin: a 2 Megabyte READ-ONLY binary file.

2. ftp_wronly_bin.bin: a WRITE-ONLY binary file with a maximum size of 2 Megabytes.

3. ftp_rdonly_ascii.txt: a 200 byte READ-ONLY ascii file.

4. ftp_wronly_ascii.txt: a WRITE-ONLY ascii file with a maximum size of 200 bytes.

These files can be manipulated and examined by appropriate use of an FTP Client's GET, PUT and DIR commands.

Debug vs Non-Debug Libraries

embFTP includes two versions of the library: Debug, which is intended for use during initial application development; and Non-

Debug, which is appropriate for use in your final product.

An Important Note Regarding Stack Sizes

It is important to recognize that the task stack size requirements must be set appropriately for the unique requirements of your

application and the requirements of your final product. Failure to properly tune the stacks will result in either wasted memory or

nearly impossible to diagnose runtime errors.

The size of embFTP's task stacks are specified in the ftpdata.c file. Please refer to FreeRTOS.org for information regarding

stack sizing and the debugging of stack overflow conditions.

Configuration

Tunable and Reference Parameters

The ftpdata.c file contains a set of parameters that may be tuned for the specific implementation. These are shown in the

following table and their values are set in ftpdata.h.

Type Parameter Default Value Description
uint16_t ftp_stksize 3072 Default size in bytes of embFTP's OS stack

int max_ftp_conn MAX_FTP_SESS Default max no. of ftp sessions

int ftp_port FTP_PORT Default ftp port

int ftp_max_login_tries FTP_MAX_LOGIN_TRIES Default ftp max login tries

int ftp_conntmo FTP_IDLE_TIME Default ftp idle time

int ftp_idle_time_enable FTP_IDLE_TMO ftp idle timeout enable

char ftp_slash FTP_SLASH ftp path delimiter

char * default_drive DEFAULT_DRIVE default drive

int drive_letters DRIVE_LETTERS drive letters enable

int filebuf_size FILEBUFSIZE default file send and recv buf size

char * ftpclient_banner "220 Service ready.

Welcome to InterNiche

embFTP Server "

String presented to client upon successful connection

establishment

From ftpdata.h:

#define MAX_FTP_SESS 2 /* Default max no. of ftp sessions */
#define FTP_PORT 21 /* ftp port */
#define FTP_MAX_LOGIN_TRIES 5 /* ftp client max no. of login tries */
#define FTP_IDLE_TIME 120 /* ftp idle time after which connection is deleted */
#define FTP_IDLE_TMO 1 /* enabling the session timeout */
#define FILEBUFSIZE 1024 /* ftp socket send/recv file buffer size */

/* set up file system options for target system */

#define FTP_SLASH '\\' /* use UNIX style slash('/' and '\\' for DOS file
systems OR leave it empty */
#define DEFAULT_DRIVE " " /* Default base directory, can be "c:" OR empty " "
*/
#define DRIVE_LETTERS 0 /* '0' indicates disabled, which sets default_drive to
" " */

API

The embFTP API is implemented as a set of functions falling into two categories:

1. Direct functions are implemented at the FTP server. These functions can be invoked by the application. Direct function

prototypes are available in ftpdata.h. These functions are also implemented in the form of menu commands.

2. Callback functions are to be implemented by the application developer. For examples, refer to example1.c.

Direct functions:

Name

ftp_startup()

Syntax

int ftp_startup(void);

Parameters

none

Description

At the initialization of the ftp module, this function is called. When this function is called, ftp server task would have been created

and would be in suspended state.

This function will initialize all the connections and statistics at the server and start listening to ftp client connections. Then it will

resume the ftp server task. This function sets a flag to indicate that this function is called and ftp server is resumed.

This is an embFTP library function. This function is implemented as a menu option(ftpstartup) at the console. This menu option is

associated with embftp group.

Returns

SUCCESS (0) or an error code

Example

{
 int err = 0;
 err = ftp_startup();

 if (err != 0)
 printf("App:Error in ftp_startup() \n");
}

Notes

Refer to the Man pages for the syntax to execute this function as menu command .

Name

ftp_shutdown()

Syntax

void ftp_shutdown(void);

Parameters

none

Description

It will delete all the active connections and set shut_down_pending flag and signal the ftp task. Task suspension will be done inside

the task body after the task checks that the flag is set and there are no active connections.

This function can be invoked by the application.

This is an embFTP library function. This function is implemented as a menu option(ftpshutdown) at the console . This menu option is

associated with embftp group.

Returns

nothing

Example

{
 ftp_shutdown();
}

Notes

Refer to the Man pages for the syntax to execute this function as menu command .

Name

ftp_closeconn()

Syntax

int ftp_closeconn(int ftpconnID);

Parameters

ftpconnID This is the connection id provided in the ftpApp_connsts() callback function

Description

This function frees memory that was allocated for the FTP connection. It deletes the object from the queue of open ftp connections

and also closes the underlying TCP connection. It also closes any file if it is open still. It may be called by the application.

This is an embFTP library function. This function is available as a menu option (ftpdelconn) at the console. This menu option is

associated with ftp group.

With the menu option, either a single connection can be deleted or all the active connections can be deleted.

Returns

SUCCESS (0) or an error code

Example

{
 int err = 0;
 int conn_id = 2;

 err = ftp_closeconn(conn_id);
 if (err != 0)
 printf("App:Error in ftp_closeconn() \n");
}

Notes

Refer to the Man pages for the syntax to execute this function as menu command .

Name

ftp_get_stats()

Syntax

int ftp_getstats(struct Ftp_API_Stats *statsArea);

Parameters

statsArea Memory address at which the statistics will be written

Description

This function can be called by the application. This function copies global and session statistics to the memory provided by the

calling application. Common stats will have number of opened connections, number of closed connections, number of active

connections. user session will have the information total bytes received, total no of commands executed, total number of bytes sent,

if the session is open/closed, the session duration in ticks, Session connectionID, ip address and the username.

This is an embFTP library function. This is accessible as a menu option (ftpstats). This menu option is associated with ftp group.

Returns

SUCCESS (0) or an error code

Example

{
 struct Ftp_API_Stats *stats;

 stats = (struct Ftp_API_Stats *)malloc(sizeof (struct Ftp_API_Stats)); /* Assuming malloc
() memory alloc function used */
 if (stats)
 {
 err = ftp_get_stats(stats);
 printf("Total connections opened = %ld\n", stats->ftpStats.conn_opened);
 }
 free (stats); /* Assuming free() is memory dealloc function used */
}

Notes

The calling application will have to allocate the memory and pass the pointer to this function.

Structure Ftp_API_Stats and associated structures are in the file, ftpdata.h.

Name

ftp_callbckfn_reg()

Syntax

int ftp_callbckfn_reg(int connID, int code_type, int (*func_ptr)(int, void *));

Parameters

connectionID This is the connection id provided in the ftpApp_connsts() callback function

code_type either CONN_STS or ERR_CODE

func_ptr address of function being registered with embFTP

Description

This is an embFTP library function. This function registers a call back function. Currently there is option to register two call back

functions per ftp session. Registration of both of them is shown in example1.c

Returns

SUCCESS (0) or an error code

Example

{
 int err = 0;
 err = ftp_callbckfn_reg(connID, CONN_STS, &ftpApp_connsts); /* Conn status call back
registration */
}

Callback functions in example1.c :

These functions will be called by the ftp server.

Name

ftpApp_connsts()

Syntax

int ftpApp_connsts(int conn_ID, void *parm1);

Parameters

connectionID This is the connection id provided in the ftpApp_connsts() callback function

param parameter passed for this function , which has state and username

Description

FTP server invokes this function when it recognizes one of the following events occurring on a ftp client:

1. Successful login (FTP_SESS_OPENED)

2. Successful Logout (FTP_SESS_CLOSED)

Returns

SUCCESS (0) or an error code

Name

ftpApp_errRecv()

Syntax

int ftpApp_errRecv(int conn_ID, void *parm);;

Parameters

connectionID This is the connection id provided in the ftpApp_connsts() callback function

param parameter passed for this function , which has state and username

Description

The FTP server invokes this function when there is an error. This function displays the error string. An example implementation of

this function is shown in example1.c

Returns

SUCCESS (0) or an error code

Other Functions in example1.c

Name

example_init()

Syntax

int example_init(void);

Parameters

none

Description

This function is called by the in_main.c module at initialization time. Put all initialization, needed by the application here. Currently,

for the example application there are four files created in this function, a write only ascii file, write only binary file, a rea donly ascii

file and a read only binary file.

Returns

SUCCESS (0) or an error code

Name

ftpApp_init()

Syntax

int ftpApp_init(void);

Parameters

none

Description

This function is called by the ftp server at initialization time.

Returns

SUCCESS (0) or an error code

Name

check_ftpipaddr()

Syntax

int check_ftpipAddr(struct sockaddr sin);

Parameters

sin This is the socket address of the FTP Client

Description

If IP filtering needs to be implemented for the IP address, from where ftp clients can login to the ftp server, that can be done in this

function. This function is invoked by validate_ftpUser() function in ftpdata.c

Returns

SUCCESS (0) or an error code

Name

ftpApp_callbcks_reg()

Syntax

int ftpApp_callbcks_reg(int connID,char *username);

Parameters

connID This is the connection id provided in the ftpApp_connsts() callback function

username This is the user name assiciated with this FTP session.

Description

This function registers the Call Back functions for the ftp application. There are two call back functions, one for the connection

status and the other for error code. This function is invoked by validate_ftpUser() function in ftpdata.c

Returns

SUCCESS (0) or an error code

Functions in ftpdata.c

All functions in ftpdata.c should be modified according to your specific requirements. These functions fall into two categories:

user validation and file system mapping.

As provided, the file system mapping functions are supported by a simple pseudo-file system implemented by

ftp_example/demo_vfs.c.

User Validation Function

Name

validate_ftpUser()

Syntax

int validate_ftpUser(int connID,char *username, char *password, struct sockaddr sin);

Parameters

connectionID This is the connection id

username ftp username to be validated

password ftp password to be validated

sin client socket address

Description

This is called from the ftp server. When a user logs in at ftp client, ftp server invokes this function. FTP Application is expected to

validate the username and password. Here a very simple user validation is implemented verifying if the username and password

both are guest. If the user validation is success, this function does the following:

Invoke callbacks registration function. /* In example1.c */

Invoke a function which can implement ip filtering for the ftp client ip address /* In example1.c */

Returns

SUCCESS (0) or an error code

File System Mapping functions

embFTP interacts with your file system through 10 function calls, which must be modified to make use of your specific file system.

int vf_init(void);

void *vfopen(char *filename, char *mode);

void vfclose(void *fptr);

int vfread(char *buf, unsigned size, unsigned count, void *fptr);

int vfwrite(char *buf, unsigned size, unsigned items, void *fptr);

int vfgetc(void *fptr);

int vunlink(char * name);

int fs_curwrkdir(char *drive, char *cwd, char *buf); /* current working directory */

int fs_dodir(void *ftp, char *dirname, char *buf);

int fs_chwrkdir(char *drive, char *cwd, char *path, char *filename, void *ftp, char *buf);

Name

vf_init()

Syntax

int vf_init(void);

Parameters

none

Description

Does any file system initialization that might be required. Add any needed file system initialization here

Returns

SUCCESS (0) or an error code

Name

vfopen()

Syntax

void *vfopen(char *filename, char* mode);

Parameters

filename This is the filename of the file to be opened.

mode mode in which the file needs to be opened.

Description

It opens a file whose name is in the parameter filename and the mode is in mode parameter. Mode can be r-- ASCII read, rb--

binary read, w-- ASCII write and wb-- binary write.

Returns

Pointer to open void structure

FAT/NTFS implementation example:

void *
vfopen(char *filename, char *mode)
{
 void *fptr;

 HT_VF_LOCK(); /* Resource Locking */

 /* Replace this with call to implementation function for your platform */
 fptr = (void *)fopen(filename, mode);

 HT_VF_UNLOCK(); /* Resource unlocking */

 return (fptr);
}

Name

vfclose()

Syntax

void vfclose(void *fptr);

Parameters

fptr Pointer to open void structure.

Description

The fclose() function causes the stream pointed to by fptr to be flushed and the associated file to be closed.

Returns

nothing

FAT/NTFS implementation example:

void
vfclose(void *fptr)
{
 HT_VF_LOCK();

 /* Replace this with call to implementation function for your platform */
 fclose(fptr);

 HT_VF_UNLOCK();
}

Name

vfread()

Syntax

int vfread(char *buf, unsigned size, unsigned count, void *fptr);

Parameters

buf buffer where data will be stored.

size size in bytes for each data item.

count number of data items to be read.

fptr pointer to an open void structure.

Description

The fread() function shall read into the array pointed to by buf up to count elements whose size is specified by size in bytes, from

the stream pointed to by fptr.

Returns

Number of items read.

FAT/NTFS implementation example:

int
vfread(char *buf, unsigned size, unsigned count, void *fptr)
{
 int rc;

 HT_VF_LOCK();

 /* Replace this with call to implementation function for your platform */
 rc = fread(buf, size, count, fptr);

 HT_VF_UNLOCK();

 return (rc);
}

Name

vfwrite()

Syntax

int vfwrite(char *buf, unsigned size, unsigned items, void *fptr);

Parameters

buf buffer containing data to be written.

size size in bytes for each data item.

count number of data items to be written.

fptr pointer to an open void structure.

Description

The fwrite() function shall write, from the array pointed to by buf, up to items elements whose size is specified by size, to the stream

pointed to by fptr.

Returns

Number of items written.

FAT/NTFS implementation example:

int
vfwrite(char *buf, unsigned size, unsigned items, void *fptr)
{
 int rc;

 HT_VF_LOCK();

 /* Replace this with call to implementation function for your platform */
 rc = fwrite(buf, size, items, fptr);

 HT_VF_UNLOCK();

 return (rc);
}

Name

vfgetc()

Syntax

int *vfgetc(void *fptr);

Parameters

fptr pointer to an open void structure.

Description

function will get the next character as an int, from the input stream pointed to by fptr, or EOF on failure.

Returns

character from current position of file pointer or EOF on failure.

FAT/NTFS implementation example:

int
vfgetc(void *fptr)
{
 int rc;

 HT_VF_LOCK();

 /* Replace this with call to implementation function for your platform */
 rc = fgetc(fptr);

 HT_VF_UNLOCK();

 return (rc);
}

Name

vunlink()

Syntax

int vunlink(char *name);

Parameters

name filename of the file to be deleted.

Description

deletes a file from the file system.

Returns

SUCCESS (0) or an error code

FAT/NTFS implementation example:

int
vunlink(char * name)
{
 int rc = 0;

 HT_VF_LOCK();

 rc = remove(name);

 HT_VF_UNLOCK();

 return (rc);
}

Name

fs_curwrkdir()

Syntax

int fs_curwrkdir(char *drive, char *cwd, char *buf);

Parameters

drive current working drive

cwd current working directory.

Description

current working directiory command (when pwd and CR is entered at the client window.) The user of this function is expected to

copy the present working drive and directory into the argument 'buf' which is passed on to it. This string will be displayed at the ftp

client window, by the caller of this function.

Returns

SUCCESS (0) or an error code

FAT/NTFS implementation example:

int
fs_curwrkdir(char *drive, char *cwd, char *buf)
{
 int ret = 0;

 ret = sprintf(buf, "257 \"%s%s\"\r\n", drive, cwd);

 return (ret);
}

Name

fs_chwrkdir()

Syntax

int fs_chwrkdir(char *drive, char *cwd, char *path, char *dirname, void *ptf, char *buf);

Parameters

drive current working drive like c:, d: etc

cwd current working directory, without any drive spec. At the end of this function it will have the changed

directory name without the drive letter.

path the directory name to be changed to.

dirname current working directory along with the drive letter.

ptf Variable used internally by the embftp library - Do Not Modify.

buf Buffer for the error message to be copied into, this message will be displayed onto the clients window.

Description

Change the current working directory to the directory specified in the request from the FTP client. If the requested path does not

exist, the implementation of this function should pass an error message in 'buf' and return an error code.

Returns

SUCCESS (0) or an error code

FAT/NTFS implementation example:

If the values of the variables before the successful execution of function are as follows:

drive c:

cwd "\"

path "temp"

dirname ""

ptf 0x00c19c18

buf ""

The values of the variables after the successful execution of the function should be as follows, so that the calling function in

embFTP can display it correctly:

drive c:

cwd "\temp"

path "temp"

dirname "c:\temp"

ptf 0x00c19c18

buf ""

If the directory (temp) is NOT valid, the buf should contain an error message, as shown below:

drive c:

cwd "\"

path "temp"

dirname "c:\temp"

ptf 0x00c19c18

buf 0x.... "550 Unable to find c:\temp"

Name

fs_dodir()

Syntax

int fs_dodir(void *ptf, char *dirname, char *buf);

Parameters

ptf Variable used internally by the embftp library. The value of ptf should not be modified.

dirname Current working directory along with the drive letter.

buf Buffer for the message to be copied into, this message will be displayed onto the clients window.

Description

fs_dodir() - when "dir" (or "ls" for UNIX) is typed at the current ftp client, this function will write the resulting text out on datasock,

which is open before this is called.

The function implementation should:

1. Invoke function dir_listing_start(ptf) to open the data connection, if not opened already.

2. Invoke xmit_dir_ent_txt(ptf) once for each file in the directory, providing a formatted line of text in buf.

3. Invoke function dir_listing_done(ptf) to close the data connection.

Returns

SUCCESS (0) or an error code

embFTP Menu CLI

ftpstats - Display FTP statistics

ftpstats

ftpstats - Display FTP statistics

Syntax

ftpstats [-c] [-s]

Parameters

-c Display Connection stats.

-s Display session stats

none

Description

This command displays ftp stats. If '-c' is specified, the connection stats are displayed. If '-s' is specified, session stats are displayed.

Specifying no parameters is an error.

Notes

If no parameters are specified, it is considered an error condition.

Location

This command is provided by the Ftp module when FTPSTATS is defined in ftpdata.c

Example

-> ftpstats -c -s

ftphexdump - Display the hexdump of the embFTP statistics structure

Name

ftphexdump - Display the hexdump of the embFTP statistics structure

Syntax

ftphexdump

Parameters

None

Description

This command displays the hexdump of the embFTP statistics structure.

Location

This command is provided by the FTP module when FTPHEXDUMP is defined in ftpdata.c.

Example

-> ftphexdump

ftpdelconn - Delete ftp connection/connections

Name

ftpdelconn - Delete ftp connection/connections

Syntax

ftpdelconn -c -n -a

Parameters

-c Delete a connection

-n Connection id

-a Delete all the active connections

Description

This command deletes a connection or all active connections.

Notes

This command is not valid within an ftp session. It can be executed at the console only.

Connection ids for all connections can be presented by the "ftpstats -s" command.

Location

This command is provided by the Ftp module when FTPDELCONN is defined in ftpdata.c.

Examples

1. To delete a specific connection:

-> ftpdelconn -c -n 2

Where in this example "2" is the connection id.

2. To delete all the active connections:

-> ftpdelconn -a

ftpshutdown - suspend the FTP task

Name

ftpshutdown - suspend the FTP task

Syntax

ftpshutdown

Parameters

None

Description

This command suspends the FTP task.

Location

This command is provided by the Ftp module when FTPSRVSHUTDOWN is defined in ftpdata.c.

Example

-> ftpshutdown

ftpstartup - start the FTP task

Name

ftpstartup - start the FTP task

Syntax

ftpstartup

Parameters

None

Description

This command starts the FTP task.

Location

This command is provided by the embFTP module when FTPSRVSTARTUP is defined in ftpdata.c.

Example

-> ftpstartup

Related Products

This product was derived from a portable, flexible and more full-featured product available from InterNiche Technologies, Inc. For

more information about this SOURCE CODE PRODUCT, please visit www.iNiche.com or email Sales@iNiche.com.

For Additional Information ...

InterNiche Support Site

FreeRTOS web site

http://www.iniche.com/
mailto:Sales@iNiche.com
http://www.iniche.com/embsupport.php
http://www.freertos.org/

	Local Disk
	InterNiche's embFTP User's Guide for PIC32MX (MPLABX Tools)

