

PROTECT YOUR COMPUTER, THE ENVIRONMENT, AND YOUR WALLET

PRACTICAL PROTECTION

IT SECURITY MAGAZINE

Vol.5 No.4 Issue 4/2010 (29) ISSN 1733-7186

FLASH MEMORY MOBILE FORENSIC IDENTITY THEFT PROTECTION

THREAT MODELING BASICS WRITING WIN32 SHELLCODE WITH A C-COMPILER FIREWALLS FOR BEGINNERS PWNING EMBEDDED ADSL ROUTERS

INTERVIEW WITH VICTOR JULIEN, LEAD CODER FOR THE OPEN INFORMATION SECURITY FOUNDATION AND FERRUH MAVITUNA, CREATOR OF NETSPARKER

(Solid State Disk) PLUS

IDENTITY THEFT PROTECTION SERVICES A NEW INDUSTRY IS BORN BY JULIAN EVANS

http://en.wikipedia.org/wiki/Solid-state_drive

SSD

SSD (Solid State Disk) drives

- Most SSD drives gives very good performance 4x ~ 100x
 - No noise, low weight, power and heat generation
 - Extremely low seek times and good resistance to shock
- SSD revolution (2008?)..., now evolution
 - Still expensive but will probably own a lot of the market in the next years to come
- Many different brands (> 50)
 - Intel, Samsung, OCZ, Corsair, Kingston...
- Especially well suited for laptops and RAID 0 since it scales well
 - Power consumption
 - Less wear and tear on cells
- A big step in the computer history! http://en.wikipedia.org/wiki/Category:Solidstate_computer_storage_media

SSD performance laptop USB-disk Intel X25-M G2 (MLC) SSD SATA 2 - 2009-08-15

🕞 CrystalDi	iskMark 2.2	_ D X
File Edit	Theme Help Languag	e
All	5 • 100MB •	C:Hard Disk [NTFS]
Seq	235.7	84.28
512K	162.7	82.51
4K	21 .15	46. 83
	Read [MB/s]	Write [MB/s]

How SSD work I

http://en.wikipedia.org/wiki/Flash_memory

- The building block of NAND flash is the N-channel MOSFET transistor cell
- Voltage levels

 2 and 4 levels
- SLC (Single-Level Cell)
 Holds 1 bit data
- MLC (Multi-Level Cell)
 Holds 2 bit data
- SLC vs. MLC performance

	SLC NAND flash	MLC NAND flash
Random Read	25 µs	50 µs
Erase	2ms per block	2ms per block
Programming	250 µs	900 µs

Trapped electrons in the FG holds a charge which controls the amount (or absence) of current flow thru the CG

How SSD work II

• Flash memory design and programming the cells

How SSD work III

- A group of cells is called a <u>page</u> which is the smallest structure that is programmable (writeable)
 Usually 2 or 4 kB
- A <u>block</u> consists of a number of pages
 Usually 64-128 pages, example: 128 * 4kB = 0.5 MB
- A block is the smallest structure you can erase!
- Just now the MLC flash disks can do around 10 000 erase/program cycles
 - With SLC it's around 100 000 because of the simplicity
- Remember reading does not "wear" the cell!
- Creating a small file and deleting it is not possible, controller will wait until a certain percent of pages are marked as invalid (dirty) within a block before copying valid pages to other blocks

Size of NAND flash x number of erase cycles x FAT overhead

Expected lifetime =

Bytes written per day

How SSD work IV

- The reclaim process as part of the wear levelling policy
 - The garbage collection is a background process
 - Example: 2 blocks in 3 steps
- Spare or OOB (Out Of Band) area
 - Cannot be addressed, it is used to store page status (valid or dirty) and ECC data etc.

How SSD work V

 Write amplification is the amount of NAND write performed for a requested amount of write from the host

Solid-state drive Flash memory

- Best controllers have a write amplification factor less than 1.1x
- Uses intelligent wear leveling algorithms in order to prolong the life of the drive
 - Spreading the usage of blocks over whole drive and limiting the damage even moving non changed data to other blocks
 - Will actually reuse a "dirty" block when all other blocks on the drive have been written to once
 - There are a certain extra percent of space on the drive left meant for reliability purposes which may be adjustable!
- Many different algorithms exists handling SSD disks and new ones will probably pop up
- Sources

http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3403 http://www.anandtech.com/storage/showdoc.aspx?i=3531 http://en.wikipedia.org/wiki/Write_amplification

How SSD work VI

- FTL (Flash Translation Layer) sector relocation MAP
 - VPM (Virtual Page Map)
 - VBM (Virtual Block Map)
 - BAM (Block Allocation Map)
- A logical unit (LUN) is the minimum unit that can independently execute commands and report status

How SSD work VII

Windows* 7 ATA Data Set Management Command (TRIM)

- TRIM command (only enabled on certain OS:es) http://en.wikipedia.org/wiki/TRIM_(SSD_command)
- SSDs do not know if a file is deleted until it want to use that adress again
- SSDs needs to keep track of every bit that has been written to it
- Deleteing with the ATA-TRIM instruction attaches addresses that are to be erased with the TRIM command
- SSD can free those addresses (blocks) when it "got time" in advance speeding up future writes
- Sources

http://www.anandtech.com/storage/showdoc.aspx?i=3631

http://anandtech.com/storage/showdoc.aspx?i=3667

After successful erase, block goes to Free Block Pool

SSD and forensics

- DEFCON 16 presentation http://www.defcon.org/
 - Data Recovery and Information about Solid State Devices and NAND Flash Memory
 - This is about two years of research about how these devices work and what will change with forensics and data recovery...
 - Solid State Drives will Ruin Forensics (5 parts)
 http://www.youtube.com/watch?v=WcO7xn0wJ2I
 - Very good view also info about "old world" disks!
 - Summary
 - SSD is virtualized using translation drivers for "old world" disks
 - The SSD drive is intelligent (you don't know what it does)
 - There will be less (or no) slack space and unallocated space
 - There is a lot of unknown functions and manufacturer specific stuff which need to be reverse engineered
 - Repairs is very hard to perform

SSD reference 1 - garbage collection

 Four pages (A-D) are written to a block (X). Individual pages can be written at any time if they are currently free (erased).

2. Four new pages (E-H) and four replacement pages (A'-D') are written to the block (X). The original A-D pages are now invalid (stale) data, but cannot be overwritten until the whole block is erased.

	f	£	f
	tree	tree	tree
ck X	free	free	free
Blo	free	free	free
	free	free	free
_			
	free	free	free
ck Y	free free	free E	free F
Block Y	free free G	free E H	free F A'

3. In order to write to the pages with stale data (A-D) all good pages (E-H & A'-D') are read and written to a new block (Y) then the old block (X) is erased. This last step is *garbage collection*.

SSD reference 2 TRIM 1

Works more or less as garbage collection but the NAND block is temporarily kept in a memory cache Pages to delete via TRIM NAND Block

4

ERASE BLOCK

Memory cache

Copy