
Forensics II

File carving
What is file carving and why do it?

Simple file carving

The file carving process

File carving software

Advanced file carving

File carving fundamentals

• File Carving definition
– Carving is a general term for extracting structured data

(files) out of raw data, based on format specific
characteristics present in the structured data

• File carving is a powerful technique because it can
– Identify and recover files of interest from raw, deleted or

damaged file systems, memory, or swap space data
– Assist in recovering files and data that may not be

accounted for by the operating system and file system
• File metadata is no longer available

– Assist in simple data recovery
• http://www.forensicswiki.org/wiki/Tools:Data_Recovery

File carving details 1

• Identify and recover files based on analysis of file formats
• Header-footer or header-maximum file size carving

– Many file types have well-known values or magic numbers in the
first bytes of the file header and in the last bytes of the file

– Identify specific types of file headers and/or footers and carve
out blocks between these two boundaries

– Stop carving after a user-specified or set limit has been reached

– Unfortunately not all file types have a standard footer signature
so determining the EOF can be difficult – thus the need for limits

• File structure based carving (metadata in the file as well)

• Content based carving (semantics etc.)

File Structure and Content-based
Based Carving

• File Structure Based Carving
– This technique uses the internal layout of a file

– Elements are header, footer, identifier strings and size information etc.

– Known carvers which use this technique are Scalpel and PhotoRec

• Content-based Carving
– Content structure

• Loose structure (MBOX, HTML, XML)

– Content characteristics
• Character count

• Text/Language recognition

• White and Black listing of data (filter)

• Statistical attributes

• Information entropy

File carving details 2
• Many carving programs have an option to only look at or near

sector or cluster boundaries where headers are found
– File start is always at a sector boundary, but end is not

• However, searching the entire input can find files that have
been embedded into other files, such as JPEGs being
embedded into OLE documents etc.

– This may be considered an advantage or a disadvantage,
depending on the circumstances

• The majority of file carving programs will only recover files that
are contiguous on the media (in other words: files that are not
fragmented)

• Files may be incomplete

– Start, end, middle sectors may have been reused

FAT delete

• v

1

2

1

2

Ext3 delete

Block pointers are
zeroed out in the inode

Simple file carving example
• JPEG files start with 0xFFD8 and end with 0xFFD9
• To recover a JPEG file

– Find locations of its header and footer

– Carve out everything between those two endpoints

– If no end marker exists: Specify a maximum length
• File size (length) or location of next JPEG file (0xFFD8) etc.

• Works well only for non-fragmented files

– Improvements: Exclude all sectors in use by other real
(allocated) files and previously extracted files

Main problems of file carving
• File carving has a time complexity of NP-complete

– Cannot be solved and verified quickly (time consuming)

– You must try all possible combinations of fragments/sectors

– Optimizations are possible to reduce this somewhat

• Depending on the file system used, file types in question or additional
information, e.g. content redundancy etc.

• Many unreadable invalid and partial results
– May result in more data as output than input

• Quality of the tools are unclear

• File systems become larger (TB disks are inexpensive)
– Huge numbers of files and huge numbers of fragments!

– But, individual files usually lightly fragmented and files are usually
stored sequentially by the OS on media

Detecting the end of a file
• If a specific signature exists > Problem solved?

– Note: Some files may have header signatures or the footer
signatures occurring perhaps several times within the file!

• Length of the file may be found in the header
– Requires detailed knowledge of the file format which is

problematic with proprietary software

• Header signature of a new file exist in the carved candidate
– Embedded files can be troublesome in this respect!

– Possible premature termination > Be careful!

• Maximum file length reached
– This is a fallback and very inefficient!

– File viewers will usually ignore added data after the end

• End of image reached (or partition/disk etc.)

The file carving process 1

• v

The file carving process 2
• Preprocessing: Extracting information about the file

– Identify file type; identify start and end/length if possible

– Select all sectors which potentially could be part of the file

• Assembly: Generate a potential version of the file

– Decide which sectors to include

– Concatenate these sectors in a "sensible" manner
• According to various strategies and based on various data

– Note: Try "best" files first to reduce scope of searching!

• Discriminator: Check whether the result could be correct

– Can this file be "decompressed" (viewed) or does it make "sense"?

– Where in the file is the erroneous position?

– Some parts belonging at an absolute position?

– Usually based on known file viewers or printers
• Difficulties: No specific error reporting, internal error recovery

• Is additionally problematic if the file was corrupt before carving start

Carving software: Scalpel
• Reprogramming of "Foremost" for better performance and less

memory requirements
– Limited to two sequential passes over the whole image

– First: Create DB of file headers and search for possible footers
• Only when header found and reasonably near (max. file size)

– In between: Matching headers and footers to create files
• Creates work queues for each chunk (typical 10 MB)

– Second: Extract all files by working the queues for each chunk
• To avoid memory-to-memory copies

• Based on: File structure based carving
– Configuration file needed, which specifies for which information

to search (e.g. reducing scope to JPEG images)

– Produces therefore a lot of "garbage"!

Carving software: Scalpel

Richard, Golden G. III, Roussev, Vassil: Scalpel: A Frugal, High Performance File Carver

movie.mpgsmall.jpg

First
pass

Second
pass

Scalpel example configuration

• v

Carving software: X-Way Forensics (WinHex)
• File recovery by type

– Requires files to be not fragmented at all
• Uses no optimizations, just plain start to end/maximum size!

– Look for file headers (file system knowledge)
• Everywhere, free clusters only, allocated space only

– Search (alignment) of file start can be specified
• Cluster: Only possible searching for files in a "good" file system

• Sector: Find remnants of files in previous file systems/partitions

• Byte: When no alignment is possible (searching from raw data)

– Backup files, embedded objects (images within text documents)

– Increases the number of false positives significantly

– Signatures are stored in an Excel file
• Description, extension, header, offset (of header from file start), footer,

default size (override of the manually set size in the UI)

– Custom extensions to the list are possible

• Footer is only searched up to the maximum file size

Carving software: X-Way Forensics (WinHex)

• XWF
– Underrated SW

– Leading supplier of
forensic SW in
Europe!

• Help
– manual.pdf

– XWFQuickStart.pdf
by Brett Shavers

– Quick Guides

– Templates

– YouTube movie

Data recovery [part2]

• Tools > Disk Tools > File Recovery by Type
– Mark the file types you want to carve

Sliding entropy
• Entropy = Measure of randomness

– Large changes in entropy will usually indicate that this sector does
belong to a different file

– Attention: Embedded files; since these are seldom on sector boundaries
> Requires a sliding window smaller than a sector!

• Average = Measure average value of bytes (in combo with stddev)

• Sliding entropy is used to classify different data types

– Entropy 0-8 (8 = pure random)

• 4-6: Text and HTML blocks

• 7-8: Zip and JPEG blocks

• Additional measure: character type

– Counts the percentage of certain character classes

• Alpha(-numeric), ASCII, lower, printable, punctuation, space, …

• Not easy to fully automate

– Changes in entropy are best identified visually

Sliding entropy example

.

Images: Smith/Monroe/Bair: Digital Forensics File Carving Advances

Semantics-based file carving 1
• Current research project

– Carving of "text" files based on their semantic content
• txt, html, java, c, …Everything for direct human reading

• Basic idea: Searching in several stages
– Identify all potential sectors

• Recognizing text, programs, etc. is possible with a high certainty

– Programming languages: Idioms (for loop etc.), reserved words

– Natural languages: Check for spaces, letters, non-letters

– Detect language of the file
• Programming language or natural language?

– Natural language: Using ”stop word lists” is fast and easy!

– Programming language: Reserved words, regular expressions

» Example C: include "[a-zA-Z\-_0-9]*.h"\n

– Hierarchy check: Nesting for programming languages (indentation) and
html files (unopened/unclosed tags)
• Allows excluding certain sequence

Semantics-based file carving 2
– Boundary check: Is the first/last word a complete word or only a

fragment?
• Uses WordNet (http://wordnet.princeton.edu/) or custom lists

• Sorting fragments based on Google searches
– Build a combination of a small part of the end of a sector and small part

of the start of a sector

– Submit it as a fixed-string search to Google

– Count the results

– Which occurs most often (or is found at all) is the most likely
combination of sectors

• Based on the idea that texts and programs consist of common
fragments which can be found in the Internet
– Will not work for binary files

• These cannot be found by Google easily

• They are much rarer and often the exact file would be required

http://wordnet.princeton.edu/

Reducing the space requirements: CarvFS

• With huge hard disks, carving becomes more difficult
– Many carved files are very large, as they extend to the maximum size: the

footer (no longer/at all) exists!

– Copying file content takes a long time

• Solution: CarvFS
– Virtual file system on top of FUSE (Linux userland file system)

– Mounting a forensic image as a new read only file system

– Files created do not exist separately at all: They only refer to certain
positions within the image
• They are only symbolic links

• Many and overlapping files > No size on disk required at all!

• Metadata can be supplied in an additional XML file
– Depends on the image used, raw (dd) has none, EWF/AFF has

• LibCarvPath do the actual fragment mapping and annotation

Reducing the space requirements:
Conceptual differences between traditional

and in-place carving

IN-PLACEFILECARVING, Golden G. Richard III, Vassil Roussev,and Lodovico Marziale

Copy

Fragments

Reducing the space requirements: CarvFS

• The information on the position within the image is encoded
into the name of the file
– Consists of several fragments

• Each fragment is specified by <offset>":"<size>

– Fragments are separated by "_"

• Note: You can open ANY file in CarvFS, even if it does not
exist, but conforms to the filename specification!
– Example: "strings CarvFS/0:512.crv" will search the first 512 byte for any

text strings contained and print them

• Note: CarvFS is not compatible with other forensic tools!
– Tools must be adapted to be able to work with CarvFS, or they will just

copy out the data to a "normal" position
• No "automatic" creation of the links when writing to a file

• The tool must provide only the "coordinates" where to find a file

• Work has started to include LibCarvPath support into Photorec

JPG file structure (Exif)
• APP1 appears at the beginning

of an Exif file, contains the
thumbnail and cannot be more
that 64 Kb in size
– The Exif JPEG thumbnail may use

a JFIF header and footer
– JFIF standard (non-EXIF) use APP0

• Exif files allows for an
optional APP2 which contains
FlashPix extensions

thumbnail

Digital Still Camera Forensics

• SSDDFJ_V1_1_Cohen.pdf
• Some programs do not update the thumbnail
http://blogs.23.nu/disLEXia/2004/12/antville-5751/
• Exif extended data – APP2 (FlashPix)

• This is a
djungle and
hard to get
a grip on!

• Project
suggestion?

Exif JPEG
Thumbnail

exiftool
Thumbnail viewable
But only a fragment of
large picture viewable

Conclusions
• File carving is problematic: It takes a long time and the results

are often suboptimal
– Large numbers of huge files, which are incomplete

– View and classificate files takes forever...

• Fragmentation is not that common anymore, but still a
problem even for modern file systems
– Fragmentation may be worse when users upgrade to SSD drives
– File carving must cope with out-of-order and missing sectors
– Especially problematic are files with a missing start

• Improvements possible and under development towards
– Requiring less memory: Verification also "in-place"
– Needing less IO: Fewer passes
– Specialisation: Working for a single file format very well

• Based on the specific structure, content, properties, …

Ease review of data carving
• Keven Murphy at: http://www.citadelsystems.net have in his

blog post a solution: http://blogs.sans.org/computer-
forensics/2009/12/09/making-reviewing-files-from-data-
carving-easier-documents/comment-page-1/#comment-6856

• Fully automatic script solution
• Images processor

– Stego test, exif data and nudity score
• Documents processor

– Creates thumbnails of documents
• More processor modules on the way...
• Perl scripts
• Plugins support
• Looks very promising!

http://www.citadelsystems.net/

FTK >= 3.2 Custom Carvers

[server]\tools\AccessData\
More than 150 different carvers
http://www.youtube.com/watch?v=D3SVCsiYcug

FTK >= 3.2 Custom Carvers

FTK >= 3.2 Custom Carvers

Lab 1 - Eclipse with PyDev

Recommended IDE tool for lab1!

Last lecture slide!
References will follow

File Carving Taxonomy 1
• Carving (from: http://www.forensicswiki.org/wiki/Carving)

– General term for extracting data (files) out of undifferentiated
blocks (raw data), like "carving" a sculpture out of soap stone

• Block Based Carving
– Any carving method (algorithm) that analyzes the input on block-

by-block basis to determine if a block is part of a possible output
file. This method assumes that each block can only be part of a
single file (or embedded file).

• Characteristic Based Carving
– Any carving method (algorithm) that analyzes the input on

characteristic basis (for example, entropy) to determine if the
input is part of a possible output file.

• Header/Footer Carving
– A method for carving files out of raw data using a distinct header

(start of file marker) and footer (end of file marker).

http://www.forensicswiki.org/wiki/Carving

File Carving Taxonomy 2

• Header/Maximum (file) size Carving
– A method for carving files out of raw data using a distinct header

(start of file marker) and a maximum (file) size. This approach
works because many file formats (e.g. JPEG, MP3) do not care if
additional junk is appended to the end of a valid file.

• Header/Embedded Length Carving
– A method for carving files out of raw data using a distinct header

and a file length (size) which is embedded in the file format

• File structure based Carving
– A method for carving files out of raw data using a certain level of

knowledge of the internal structure of file types. Garfinkel called
this approach "Semantic Carving" in his DFRWS2006 carving
challenge submission, while Metz and Mora called the approach
"Deep Carving."

File Carving Taxonomy 3

• Semantic Carving
– A method for carving files based on a linguistic analysis of the

file's content. For example, a semantic carver might conclude
that six blocks of french in the middle of a long HTML file written
in English is a fragment left from a previous allocated file, and
not from the English-language HTML file.

• Carving with Validation
– A method for carving files out of raw data where the carved files

are validated using a file type specific validator.

• Fragment Recovery Carving
– A carving method in which two or more fragments are

reassembled to form the original file or object. Garfinkel
previously called this approach "Split Carving."

Sources and readings 1
• Cohen, Michael: Advanced Carving techniques

– http://sandbox.dfrws.org/2007/cohen/Advanced_Carving.pdf
• Kloet, S. J. J: Measuring and Improving the Quality of File Carving

Methods
– http://www.uitwisselplatform.nl/frs/download.php/461/thesis.pdf

• Carrier, Brian: Why Recovering a Deleted Ext3 File Is Difficult …
– http://www.linux.sys-con.com/read/117909.htm

• Wood, Carlo: HOWTO recover deleted files on an ext3 file system
– http://www.xs4all.nl/~carlo17/howto/undelete_ext3.html

• Richard, Golden G. III, Roussev, Vassil: Scalpel: A Frugal, High
Performance File Carver
– http://dfrws.org/2005/proceedings/richard_scalpel.pdf

Sources and readings 2
• LibCarvPathand CarvFS

– http://ocfa.sourceforge.net/libcarvpath/
• Smith, Jay, Monroe, Klayton, Bair, Andy: Digital Forensics File

Carving Advances
– http://www.korelogic.com/Resources/Projects/dfrws_challenge_2

006/DFRWS_2006_File_Carving_Challenge.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

