Finding Digital Evidence In
Physical Memory

Mariusz Burdach

Overview

e Introduction

o Anti-forensics

e Acquisition methods

e Windows memory analysis

e Linux memory analysis

e Detecting hidden data on a live system
e Q&A

Past, Present & Future

e Forensic Analysis = File System Forensic
Analysis
— Well-developed procedures for seizing digital
evidence from hard disk (i.e. Imaging a hard
disk)
— Quite difficult to tamper evidence during
collecting data

— Well-known methods of analysis

Past, Present & Future

e Some evidence is temporary stored in
Sswap space

e Some evidence resides only in storages
(i.e. volatile memory)
e Anti-forensics

— Data contraception
— Data hiding
— Data destruction

BRBRTSis Types

Physical Storage Media Analysis| |Network Analysis

Source: ,File System Forensic Analysis”, Brian Carrier

Anti-forensics

e Syscall proxying - it transparently ,,proxies” a
process’ system calls to a remote server:

— Examples: CORE Impact, Immunity CANVAS

process syscall_client Syscall_server s

| [I
sysca |
bl ‘ |
| |
‘ SO FEE, ."'I syscall reguest| |
-
|

open()

- read(}

e In-Memory Library Injection — a library is
loaded into memory without any disk activity:
— Metasploit's Meterpreter (e.g. SAM Juicer)

Anti-forensics

e Anti-forensic projects focused on data

contraception:

— ,Remote Execution of binary without creating a
file on disk” by grugq (Phrack #62)

— ,Advanced Antiforensics : SELF” by Pluf & Ripe
(Phrack #63)

Anti-forensics

e Advanced rootkits

— Evidence gathering or incident response
tools can be easily cheated

— Examples: Hacker Defender/Antidetection,
FU/Shadow Walker

e In memory worms/rootkits

— Their codes exist only in a volatile memory
and they are installed covertly via an
exploit

— Example: Witty worm (no file payload)

Past, Present & Future

o If it is possible — a physical memory from a
suspicious computer has to be collected

e The operating system swaps out constantly
some data from a physical memory to hard
disk

e During forensic analysis of file systems we

could correlate data from swap space with
data which is resident in @ main memory

How to acquire volatile data?

e All data in @ main memory is volatile — it
refers to data on a live system. A volatile
memory loses its contents when a system is
shut down or rebooted

o It is impossible to verify an integrity of data

e Acquisition is usually performed in a timely
manner (Order of Volatility - RFC 3227)

e Physical backup instead of logical backup

e Volatile memory acquisition procedures can
be:

— Software-based
— Hardware-based

Software-based methods

e Software-based memory acquisitions:

— A trusted toolkit has to be used to collect volatile
data

— Every action performed on a system, whether
initiated by a person or by the OS itself, will alter
the content of memory:

e The tool will cause known data to be written to the
source

e The tool can overwrite evidence

— It is highly possible to cheat results collected in
this way

Hardware-based methods

e Hardware-based memory acquisitions:

— We can access memory without relying on the
operating system, suspending the CPU and using
DMA (Direct Memory Access) to copy contents of
physical memory (e.g. TRIBBLE — PoC Device)

. Rela)ted work (Copilot Kernel Integrity Monitor, EBSA-
285

— The FIREWIRE/IEEE 1394 specification allows
clients’ devices for a direct access to a host
memory, bypassing the operating system (128 MB
= 15 seconds)

e Example: Several demos are available at
http://blogs.23.nu/RedTeam/stories/5201/ by RedTeam

Physical Memory Devices

\\.\PhysicalMemory - device object in Microsoft
Windows 2000/2003/XP

/dev/mem — device in many Unix/Linux systems

/proc/kcore — some pseudo-filesystems provides
access to a physical memory through /proc

Software-based acquisition procedure
> dd.exe if=\\.\PhysicalMemory
of=\\<remote_share>\memorydump.img
DD for Windows - Forensic Acquisition Utilities is
available at http://users.erols.com/gmgarner/forensics/

DD for Linux by default included in each distribution
(part of GNU File Utilities)

Projects

o Web page: http://forensic.seccure.net

e Analysis of Windows memory images
— WMFT - Windows Memory Forensics Toolkit
— Written in C#
— .NET 2.0 Framework

e Analysis of Linux memory images

— gdb tool is enough to analyze a memory image,
but we can simplify some tasks by using the
IDETECT toolkit

e These tools could be used on a live system as
an integral part of incident response toolkit

DFRWS Challenge 2005

e Digital Forensic Research WorkShop
e The Memory Analysis Challenge

e Results: 2 new tools

— Memparser reconstructs a process list and
extracts information from a process
memory (Chris Betz)

— Kntlist interprets structures of memory
(George M. Garner Jr. and Robert Jan Mora)

Related work

e Memparser by Chris Betz

— Enumerates processes
(PsActiveProcessList)

— Dumps process memory to disk

— Dumps process strings to disk

— Displays Process Environment Information
— Displays all DLLs loaded by process

Related work

e Kntlist by George M. Garner Jr. and Robert Jan Mora

Copies, compresses, creates checksums & sends a physical
memory to a remote location

Enumerates processes (PsActiveProcessList)
Enumerates handle table
Enumerates driver objects (PsLoadedModuleList)

Enumerates network information such as interface list, arp
list, address object and TCB table

References are examined to find hidden data

e Object table, its members and objects inside object directory
point to processes and threads

e Enumerates contents of IDT, GDT and SST to identify loaded
modules

Preparation

o Useful files (acquired from a file system):
— Kernel image file
— Drivers/modules
— Configuration files (i.e. SAM file, boot.ini)

e These files must be trusted

— File Hash Databases can be used to compare hash
sums

e Map of Symbols
— System.map file

— Some symbols are exported by core operating
system files

Terminology

e Data — content of objec

Offset
ooo10000
oooi0010
oooi100z0
ooo104a30
oooi10040
oooi100s50
ooo10060

frame)

]
4D
ES
ao
ao
OE
[=3=]
7

1
Sh
ao
ao
ao
1F
73
=0

=
=1n]
m]n]
ao
] m]
EA
20

3
oo
oo
ao
m]m]
OE
v
[=1=]

%
o3
oo
oo
oo
oo
Va
=0

5
ao
ao
ao
ao
E4
aF

15
ao
ao
ao
ao
=]
a7
]

(S (data block | page

-
m]n]]
m]n] 40
ao oo
] m] oo
ch =1
7a = §
GE =0

=
oo
oo
ao
m]m]
ES
aD
1=

L B

oo
oo
oo
oo
ol
20

oo
oo
oo
oo
1
63
=0

3
FF
ao
ao
DS
ch
= §
33

i
FF
oo
oo
oo
=1
&6k
aF

E
oo
oo
ao
m]m]
54
&E
53

oo
oo
oo
oo
65
aF
=0

jugcim|

2}
g -~ f', LI'Th
i=s progrsm canno
t bhe run in DO3

e Metadata — prowdes detalls about any given

object (i.e. internal data structures)

kd> dt _EPROCESS 8932cda0

+0x000 Pcb

+0x06¢ ProcessLock

+0x070 CreateTime

+0x078 ExitTime
+0x080 RundownProtect
+0x084 UniqueProcessld
+0x088 ActiveProcessLinks

: _KPROCESS

: _EX PUSH_LOCK
: _LARGE_INTEGER 0x1c60ac5 b38bb370
: _LARGE_INTEGER 0x0
: _EX RUNDOWN_REF

: 0x00000b00
: _LIST_ENTRY [0x89267e28 - 0x89a7bc20]

Methods of analysis

String searches — extracting strings from images
— ASCII & UNICODE

Signature matching — identifying memory mapped
objects by using fingerprints (e.qg. file headers, .text
sections)

Interpreting internal kernel structures
— This is a very easy task on systems with the source code

— Analysis against Microsoft Windows systems is more
challenging
e For example: Windows NT family

e Symbols from MS web site + Livekd from Sysinternals are to
find some addresses (we have to be sure that a version of
operating systems are the same)

Enumerating & correlating all page frames

Windows memory analysis

o Information about the analyzed memory dump
— The size of a page = 0x1000 bytes
— Physical Address Extension (PAE)
— Architecture 32-bit/64-bit/IA-64

e Memory layout
— Virtual Address Space/Physical Address Space

— User/Kernel land (2GB/2GB by default)
o Kernel offset at 0x80000000

— The PFN Database at 0x80c00000
— The PTE Base at 0xC0000000
— Page directory — each process has only one PD

e Knowledge about internal structures is required

Virtual To Physical
Address Translation

CR3

FD

— -

1024 PDEs

— -

PT

1024 PTEs

pages

S - oATA

0000000000 0100101111

100110000000 0x12F980

PTE address = PTE BASE + (page directory index) * PAGE SIZE

+ (page table index) * PTE size

Important kernel structures

EPROCESS (executive process) block
KPROCESS (kernel process) block
ETHREAD (executive thread) block
ACCESS_TOKEN & SIDs

PEB (process environment) block
VAD (virtual address descriptor)
Handle table

PFN (Page Frame Number Entries) & PFN
Database

Page frames
— PTE_BASE, PAGE_DIRECTORY & PAGE_TABLES

Relations between structures

EPROCESS | EPROCESS 1 »| EPROCESS
»| Handle Table

= Access Token

| Seclion Object

Data Section Y

Control Area "1 PFN
Segmert Database

entry

File Object |-

Subsection |[a———r

Subsection Y
Subsection
Subsection —{ Page Table
Subsection

Identifying core addresses

Finding physical address (PA) of memory mapped kernel
— Kernel image file: ntoskrnl.exe
— Portable Executable (PE) file format
— Base Address (typically 0x00400000)
— Kernel offset = 0x80000000 (VA)
— ntoskrnl.exe — first module on PsLoadedModuleList

MODULE_ENTRY object

— 0x0 -> LIST_ENTRY module_list_entry;

— 0x18 -> DWORD driver_start;

— 0x30 -> DWORD UNICODE_STRING driver_name;

Extracting the ,ntoskrnl.exe” string from the image

Base Address and Kernel Image Address are used to
calculate various addresses

Identifying core addresses

O1De53E0 oD 00 OE 04 4D 6D 4C 64 50 53 26 51 03 5C Sa BDI MrLdPS-0 SVE

O1Dhe53C0 3 70 g0 13 00 00 0o 0o o0 0o o0 0o oo oo o0 Epse
O1D&a53D0 00 EO 4D S03Ee DV a&C 30 00 50 23 00 3C 00 3C 00 FMEC«1E P# < <«

O01De53EQ oz 00 o0 E1 15 00 15 a0 40 o0 oc a T-0 A
O1De53F0 01 oo oo oo oo oo oo oo oo T
O1D&e5400 00 00 00 00 eE OO 74 00 &F OO 73 00 6B 00 VE OO0 ST TR T
01Dh&a5410 gE 00 a&C 0O ZE OO &5 OO 73 00 EE o0 00 00 00 00 n 1l . B x e
O01be54=0 OE OO0 20 0L 4D &l Z0 Z0O OO0 OO OO oo oo oo oo oad Min

o VA (0x81965404) = PA (0x1D65404)
e driver_start (VA) = 0x804DEQ0OO

e Kernel image is loaded at (PA)
0x004DEOOO

Enumerating processes

e Debug section in the ntoskrnl.exe file
stores the PsInitialSystemProcess
symbol

_J b mSystemB angeStart [EI EIEIEIEFEEE]
| MmHighestUserfddress (0x0008FESEC)
_J F'EJ I:uTyp [EI EIEIEIEEIEEEI]

I_I_I_I_I_I_

Is hals petemProces) 4
_J F' F' T_l,'|:| [|:| DDDEDEFE]
_J Ps Th |:|T_l,'|:| [Ox00030EFC)

o PslnitialSystemProcess = 0x4DEOQOO +
0x90EF4 (RVA) = (PA) Ox56EEF4

o OX56EEF4 -> EPROCESS (System)

Doubly Linked List

e EPROCESS
e MODULE_ENTRY
o etc
OBJECT OBJECT OBJECT
LIST ENTRY { LIST ENTRY { LIST ENTRY {
g FLINK | FLINK | FLINK
BLINK } BLINK } BLINK)

Processes’ details

e SID of process owner inside
ACCESS_TOKEN

e CreationTime in EPROCESS

— KeQuerySystemTime is called to save the
Process’s Create Time

— System time is a count of 100-nanosecond
intervals since January 1, 1601. This value
iIs computed for the GMT time zone.

Dumping memory mapped files

e Data Section Control Area
e Page Tables

Fage Frame NMumber W

I protacixon

e PFN * 0x1000 (Page size) = Physical Address

e Page Table entries contain index numbers to
swapped-out pages when the last-significant bit is
cleared

» Index number * 0x1000 = swapped-out page frame

e Example:

» dd.exe if=c:\memorydump.img of=page4C41 bs=4096
count=1 skip=19521 (0x4C41)

String searches

e Any tool for searching of ANSI and
UNICODE strings in binary images

— Example: Strings from Sysinternals or
WinHex
e Identifying process which includes
suspicious content

— Finding PFN of Page Table which points to
page frame which stores the string

— Finding Page Directory which points to PFN
of Page Table

Linux memory analysis

o Information about the analyzed memory image
— The size of a page = 0x1000 bytes
— The total size of the physical memory < 896 MB
— Architecture 32-bit/64-bit/multi-threading support

e Memory layout

— Virtual Address Space/Physical Address Space

— User/Kernel land (3GB/1GB by default)
o Kernel offset (PAGE_OFFSET) at 0xc0000000

— ZONES
— Memory map array 0xc1000030

e Knowledge about internal structures is required

Zones and Memory Map array

e Physical memory is partitioned into 3
ZOnes:

— ZONE_DMA = 16 MB
— ZONE_NORMAL = 896 MB — 16 MB
— ZONE_HIGHMEM > 896 MB

e The mem_map array at 0xC1000030
(VA)

MEeMm_Map array

ZONE DMA SONE_NORMAL ZOMNEHIGHMEM

Important kernel structures

task_struct structure
mm_struct structure
vim_area_struct structure
inode & dentry structures
address_space structure
Page descriptor structure
mem_map array

Page frames

— PAGE DIRECTORY, PAGE MIDDLE DIRECTORIES &
PAGE TABLES

Relations
between

structures

task struct task struct task struct
next next next next
— - - -
prev prev prev prev
- -t ot -
mm mim mim
|
mmlist | om struct | Mmlist) struce | Mmilist | Loy struet | Miplist
mmap
vm_mm ¥ym_mm
vm_area stuct vin_next = vim_area struct
[
vm_file vm_file
- file -t
f dentry
]
dentry
i mmap
[
i dentry d_inode
inode
[
host i_ mapping
address space
mapping/ mapping/
list heads list heads
page page page
descriptor descriptor descriptor

Enumerating processes

init_task_union (process number 0)
— The address is exported by a kernel image file
— The address is available in the System.map file

init_task union struct contains list_head
structure

All processes (task_structs) are linked by a
doubly linked list

Virtual To Physical Address Translation
> VA — PAGE_OFFSET = PA

Dumping memory mapped files
(e.g. process image)

e Many Incident Response Toolkits use the
ptrace() function to dump a process memory

o Ptrace() based tools: memfetch, pcat, gdb,
memgrep, etc...

e Each process may be only attached by one
parent process

® Slmple LKM . Examples:

L [root@linux]# ./memgrep -p 9111 -d -a text -1 100
ptrace(ATTACH): Operation not permitted
memgrep_initialize(): Couldn't open medium device.
[root@linux bin]# ./pcat 9111
task_unlock(current); ./pcat: ptrace PTRACE_ATTACH: Operation not permitted

task_lock (current);
current->ptrace=1;

Dumping memory mapped files
(e.g. process image)

e An address_space struct points to all page descriptors

——e Page descriptor
— 0x0 —> list_head struct //doubly linked list
— 0x8 —> mapping //pointer to an address_space
— 0x14 —> count //number of page frames
— 0x34 —> virtual //physical page frame

» next page descriptor
> address_space

0x010abfd8:{0xc1074278|0xc29e9528 0xc29e952¢ 0x00000001
0x010abfe8: 0xc1059¢48 0x00000003 0x010400cc 0xc1095e04
0x010abff8: 0xc10473fc 0x03549124 0x00000099 Oxc1279fa4

0x010ac008: 0x03a7a30djx§ﬂzm_ <« (virtual - 0xc0000000) = PA

e Flags to reduce results (e.g. VM_READ, VM_EXEC, VM_EXECUTABLE)
—a vm_flags field

» dd if=memorydump.img of=page3123 bs=1 count=4096 skip=51523584

Finding ,terminated” files
(e.g. process image)

e Enumerating all page frames
— 0x01000030 (PA)

e Fields of page descriptors are not cleared completely
— a mapping field points to an address_space struct
— a list_head field contains pointers to related page descriptors

o Useful information from an address_space struct
— an i_mmap field is cleared
— all linked page frames (clean, dirty and locked pages)

— a host field points to an inode structure which, in turn,
points to a dirent structure

Correlation with Swap Space
(swap space and memory analysis)

e A mm_struct contains a pointer to the Page Global
Directory (the pgd field)

e The Page Global Directory includes the addresses of
several Page Middle Directories

e Page Middle Directories include the addresses of
several Page Tables

e Page Table entries contain index numbers to

swapped-out pages when the last-significant bit is
cleared

e The first page (index 0) of the swap space is
reserved for the swap header

> (Index number x 0x1000) + 0x1000 = swapped-out page
frame

Memory analysis of a live system

e Analysis of physical memory on a live system
can be used to detect system compromises

e Reading kernel structures directly

— Defeating all methods based on hijacking system
calls and on modifying various tables (e.g. IDT,
SDT)

— But some functions (i.e. sys_read()) can be
hooked or cheated
e Example: Shadow Walker, the FU rootkit component, is
used to defeat virtual memory scanners
— Moreover, Direct Kernel Object Manipulation
(DKOM) technique defeats a method of reading
internal kernel structures directly

Finding objects hidden by DKOM

e Methods

— Reading internal kernel structures which are not
modified by rootkits

e For example, instead of reading the list of linked
EPROCESS blocks, PsActiveProcessList, we read lists of
kernel threads

— Correlating data from page frames
e Elegant method of detecting hidden data
e 2 examples
— Detecting hidden processes on Windows
— Detecting hidden processes on Linux

Windows hidden processes

detection

We enumerate all linked EPROCESS blocks and store
addresses of each EPROCESS block

Next, we enumerate all entries in the PFN database

and read two fields:

— Forward link — linked page frames

— PTE address — virtual address of the PTE that points to this
page

PTE address is in system address space and is equal

to 0xC0300C00 (VA)

Forward link points to the address of EPROCESS
block

Finally, diff-based method is used to compare a result
with the doubly linked list of EPROCESS blocks

Linux hidden processes detection

e \We enumerate all linked task_struct structures and store
addresses of each mm_struct

e Each User Mode process has only one memory descriptor

e Next, we enumerate all page descriptors and select only page
frames with memory mapped executable files (the
VM_EXECUTABLE flag)

e Relations:

— The mapping filed of a page descriptor points to the address_space
struct

— The i_mmap field of an address_space structure points to a
vm_area_struct

— The vm_mm field of a vm_area_struct points to memory descriptor
e Diff-based method is used to compare results

Integrity checks

(file system and memory analysis)
e Verifying integrity of memory dump (important OS

elements)

— values stored in internal kernel tables (e.g. SCT)

— code sections (read-only)

e kernel image file from file system
e other important system files from file system

e Example: kcore dump against vmlinux kernel image

(from FS)

#gdb vmlinux kcore.image
(gdb) disass sys_read
Dump of assembler code for function sys_read:

0xc013fb70 <sys_read>: mov

$0xc88ab0a6,%ecx

0xc013fb73 <sys_read+3>: jmp *%ecx
0xc013fb77 <sys_read+7>: mov %esi,0x1c(%esp,1)

#gdb vmlinx
(gdb) disass sys_read
Dump of assembler code for function sys_read:

0xc013fb70 <sys_read>: sub $0x28,%esp
0xc013fb73 <sys_read+3>: mov
0x2c(%esp,1),%eax

0xc013fb77 <sys_read+7>: mov %esi,0x1c(%esp,1)

Conclusions

Memory analysis as an integral part of
Forensic Analysis

Evidence found in a physical memory can be
used to reconstruct crimes:

— Temporal (when)

— Relational (who, what, where)

— Functional (how)

Must be used to defeat anti-forensic
techniques

Can be useful in detecting system
compromises on a live system

References

e Daniel P. Bovet, Marco Cesati ,Understanding the Linux Kernel,
2nd Edition”

e Mark E. Russinovich, David A. Solomon, ,,Microsoft Windows
Internals, Fourth Edition: Microsoft Windows 2003, Windows XP,

and Windows 2000”
e Documents & tools at http://forensic.seccure.net

