


Forensic Computing



Tony Sammes and Brian Jenkinson

Forensic Computing
Second edition

13



Tony Sammes, BSc, MPhil, PhD, FBCS, CEng, CITP
The Centre for Forensic Computing
DCMT
Cranfield University
Shrivenham, Swindon, UK

Brian Jenkinson, BA, HSc (hon), MSc, FBCS, CITP
Forensic Computing Consultant

Printed on acid-free paper

© Springer-Verlag London Limited 2007

First published 2000
Second edition 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

The use of registered names, trademarks etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regula-
tions and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006927421

ISBN-13: 978-1-84628-397-0 e-ISBN-13: 978-1-84628-732-9
ISBN-10: 1-84628-397-3 e-ISBN 10: 1-84628-732-4
ISBN 1-85233-299-9 1st edition



Dedication

To Joan and Val



Acknowledgements

The authors would like to thank all the members and former members of the
FCG Training Committee for the very valuable contributions that they made
to the first edition of this book. In particular, our grateful thanks go to Steve
Buddell, Tony Dearsley, Geoff Fellows, Paul Griffiths, Mike Hainey, Dave
Honeyball, Peter Lintern, John McConnell, Keith McDonald, Geoff Morrison,
Laurie Norton, Kathryn Owen and Stewart Weston-Lewis. For this second
edition we would, in addition, like to thank Lindy Sheppard, Dr Tristan
Jenkinson and John Hunter for their kind support. Our thanks also go to the
students of the 30 or so Forensic Computing Foundation Courses that have
now been run for all their helpful comments and suggestions. We would like
to add a sincere word of thanks to our publisher and editors, to Catherine
Brett, Wayne Wheeler, Helen Callaghan and Beverley Ford, all of Springer,
who, after much chivvying, eventually managed to get us to put pen to paper
for this second edition, and a most important thank you also to Ian Kingston
of Ian Kingston Publishing Services, who has made the result look so good.
Finally our contrite thanks go to our families, to whom we did sort of promise
that the first edition would be the last.



Contents

1 Forensic Computing . . . . . . . . . . . . . . . . . . . . . . . . . 1
Origin of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Understanding Information . . . . . . . . . . . . . . . . . . . . . 7
Binary Systems and Memory . . . . . . . . . . . . . . . . . . . . . 8
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Computer Programs . . . . . . . . . . . . . . . . . . . . . . . . . 27
Records and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
File Types and Signatures . . . . . . . . . . . . . . . . . . . . . . 29
Use of Hexadecimal Listings . . . . . . . . . . . . . . . . . . . . . 29
Word Processing Formats . . . . . . . . . . . . . . . . . . . . . . 30
Magic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Graphic Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Archive Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Quick View Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 IT Systems Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 49
Two Black Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
The Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . 53
Program, Data, Rules and Objects . . . . . . . . . . . . . . . . . . 62
Patterns Can Mean Whatever We Choose Them to Mean . . . . . 63
Software Development . . . . . . . . . . . . . . . . . . . . . . . . 64
Breaking Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 67
An Information Processing System . . . . . . . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 PC Hardware and Inside the Box . . . . . . . . . . . . . . . . . . 75
The Black Box Model . . . . . . . . . . . . . . . . . . . . . . . . . 75
The Buses and the Motherboard . . . . . . . . . . . . . . . . . . . 77

vii



Intel Processors and the Design of the PC . . . . . . . . . . . . . 86
A Few Words about Memory . . . . . . . . . . . . . . . . . . . . . 93
Backing Store Devices . . . . . . . . . . . . . . . . . . . . . . . . 96
Floppy Disk Drive Units . . . . . . . . . . . . . . . . . . . . . . . 98
External Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . 98
Expansion Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Disk Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A Little Bit of History . . . . . . . . . . . . . . . . . . . . . . . . . 103
Five Main Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Physical Construction of the Unit . . . . . . . . . . . . . . . . . . 104
Formation of Addressable Elements . . . . . . . . . . . . . . . . . 106
Encoding Methods and Formats for Floppy Disks . . . . . . . . . 107
Construction of Hard Disk Systems . . . . . . . . . . . . . . . . . 112
Encoding Methods and Formats for Hard Disks . . . . . . . . . . 114
The Formatting Process . . . . . . . . . . . . . . . . . . . . . . . 127
Hard Disk Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 130
IDE/ATA Problems and Workarounds . . . . . . . . . . . . . . . . 141
Fast Drives and Big Drives . . . . . . . . . . . . . . . . . . . . . . 157
Serial ATA (SATA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
The POST/Boot Sequence . . . . . . . . . . . . . . . . . . . . . . 160
A Word About Other Systems . . . . . . . . . . . . . . . . . . . . 172
The Master Boot Record and Partitions . . . . . . . . . . . . . . . 173
FATs, Directories and File Systems . . . . . . . . . . . . . . . . . . 189
RAID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6 The New Technology File System . . . . . . . . . . . . . . . . . . 215
A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
NTFS Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
NTFS – How it Works . . . . . . . . . . . . . . . . . . . . . . . . . 217
The MFT in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Analysis of a Sample MFT File Record with Resident Data . . . . 224
Analysis of a Sample MFT File Record with Non-Resident Data . 240
Dealing with Directories . . . . . . . . . . . . . . . . . . . . . . . 247
Analysis of a Sample MFT Directory Record with Resident Data . 248
External Directory Listings – Creation of “INDX” Files . . . . . . 261
Analysis of an “INDX” File . . . . . . . . . . . . . . . . . . . . . . 268
Some Conclusions of Forensic Significance . . . . . . . . . . . . . 270

7 The Treatment of PCs . . . . . . . . . . . . . . . . . . . . . . . . . 277
The ACPO Good Practice Guide . . . . . . . . . . . . . . . . . . . 278
Search and Seizure . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Computer Examination – Initial Steps . . . . . . . . . . . . . . . 288
Imaging and Copying . . . . . . . . . . . . . . . . . . . . . . . . . 291

viii Contents



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

8 The Treatment of Electronic Organizers . . . . . . . . . . . . . . 301
Electronic Organizers . . . . . . . . . . . . . . . . . . . . . . . . . 301
Application of the ACPO Good Practice Guide Principles . . . . . 311
Examination of Organizers and What may be Possible . . . . . . 313
JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . 324
A Few Final Words about Electronic Organizers . . . . . . . . . . 324
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

9 Looking Ahead (Just a Little Bit More) . . . . . . . . . . . . . . . 327
Bigger and Bigger Disks . . . . . . . . . . . . . . . . . . . . . . . 328
Live System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 332
Networked Systems Add to the Problems . . . . . . . . . . . . . . 333
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
A Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Appendices
1 Common Character Codes . . . . . . . . . . . . . . . . . . . 351
2 Some Common File Format Signatures . . . . . . . . . . . . 355
3 A Typical Set of POST Codes . . . . . . . . . . . . . . . . . 359
4 Typical BIOS Beep Codes and Error Messages . . . . . . . . 363
5 Disk Partition Table Types . . . . . . . . . . . . . . . . . . . 367
6 Extended Partitions . . . . . . . . . . . . . . . . . . . . . . 373
7 Registers and Order Code for the Intel 8086 . . . . . . . . . 379
8 NTFS Boot Sector and BIOS Parameter Block . . . . . . . . 387
9 MFT Header and Attribute Maps . . . . . . . . . . . . . . . 389
10 The Relationship Between CHS and LBA Addressing . . . . 411
11 Alternate Data Streams – a Brief Explanation . . . . . . . . 415

Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 425

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Contents ix



1. Forensic Computing

Introduction

Throughout this book you will find that we have consistently referred to the term
“Forensic Computing” for what is often elsewhere called “Computer Forensics”. In
the UK, however, when we first started up, the name “Computer Forensics” had been
registered to a commercial company that was operating in this field and we felt that it
was not appropriate for us to use a name that carried with it commercial connota-
tions. Hence our use of the term “Forensic Computing”. Having said that, however,
we will need on occasion to refer to “Computer Forensics”, particularly when
quoting from overseas journals and papers which use the term, and our use in such
circumstances should then be taken to be synonymous with that of “Forensic
Computing” and not as a reference to the commercial company.

In point of fact, we will start with a definition of Computer Forensics that has been
given by Special Agent Mark Pollitt of the Federal Bureau of Investigation as:
“Computer forensics is the application of science and engineering to the legal problem
of digital evidence. It is a synthesis of science and law” (Pollitt, undated). In his paper
he contrasts the problems of presenting a digital document in evidence with those of
a paper document, and states: “Rarely is determining that the [paper] document
physically exists or where it came from, a problem. With digital evidence, this is often a
problem. What does this binary string represent? Where did it come from? While these
questions, to the computer literate, may seem obvious at first glance, they are neither
obvious nor understandable to the layman. These problems then require a substantial
foundation being laid prior to their admission into evidence at trial.” These are
questions for which we try to provide the requisite technical knowledge in Chapters
2, 3, 4, 5 and 6.

In a second paper (Pollitt, 1995), Special Agent Mark Pollitt suggests that in the
field of computer forensics: “Virtually all professional examiners will agree on some
overriding principles” and then gives as examples the following three: “... that
evidence should not be altered, examination results should be accurate, and that
examination results are verifiable and repeatable”. He then goes on to say: “These
principles are universal and are not subject to change with every new operating
system, hardware or software. While it may be necessary to occasionally modify a
principle, it should be a rare event.” In Chapters 7 and 8 we will see that these
overriding principles are in complete accord with the practices that we recommend
and with those that have been put forward in the Good Practice Guide for Computer
based Electronic Evidence (ACPO, 2003) of the UK Association of Chief Police
Officers (ACPO).
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In short, it is the essence of this book to try to provide a sufficient depth of
technical understanding to enable forensic computing analysts to search for, find
and confidently present any form of digital document1 as admissible evidence in a
court of law.

Origin of the Book

The idea for the book sprang originally from a course that had been developed to
support the forensic computing law enforcement community. The then UK Joint
Agency Forensic Computer Group2 had tasked its Training Sub-Committee with
designing and establishing education and training courses for what was seen to be a

foundation course that would establish high standards for the forensic computing
discipline and would provide a basis for approved certification. The Training Sub-
Committee, in collaboration with academic staff from Cranfield University,designed
the foundation course such that it would give successful candidates exemption from
an existing module in Forensic Computing that was available within the Cranfield
University Forensic Engineering and Science MSc course programme. The Forensic
Computing Foundation course (FCFC) was thus established from the outset at
postgraduate level and it continues to be formally examined and accredited at this
level by the university.

The FCFC, of two weeks duration, is jointly managed and delivered by staff from
both the forensic computing law enforcement community and the university. It
covers the fundamentals of evidence recovery from mainly PC-based computers and
the successful presentation of that evidence before a court of law. The course does
not seek to produce computer experts. Rather, it sets out to develop forensic
computing analysts who have a proven capability for recovering evidential data from
computers whilst preserving the integrity of the original and who are fully
competent in presenting that evidence in an understandable form before a court of
law.

At the time of writing, some 30 cohorts have successfully completed the FCFC
since its inception in March 1998, and the taught material of the course has been
continually revised and updated in the light of much useful feedback and experience.
A full MSc in Forensic Computing is now offered by the university,of which the FCFC
is a core module, and the first cohort of students on this program graduated with

2 Forensic Computing

1 Document here refers to a document in the widest sense. It includes all forms of digital
representations: photographic images, pictures, sound and video clips, spreadsheets,
computer programs and text, as well as fragments of all of these.

2 The Joint Agency Forensic Computer Group was made up of representatives from
ACPO, the Inland Revenue, HM Customs and Excise, the Forensic Science Service and
the Serious Fraud Office. It has now been renamed the Digital Evidence Group and still
retains a similar composition.

rapidly developing and urgently needed discipline. The first requirement was for a



their MScs in 2005. It is the material from the FCFC that forms much of the substance
of this book.

The structure of the book differs a little from the way in which the material is
presented on the course itself, in order to make the sequencing more pertinent to the
reader. Nevertheless, it is intended that the book will also serve well as a basic
textbook for the FCFC.

Structure of the Book

Picking up on one of the key questions raised by Special Agent Mark Pollitt in the
earlier quotes – “... What does this binary string represent?” – we start our investi-
gation in Chapter 2 by considering what information is and just what binary strings
might represent. We look at number systems in some detail, starting with decimal
and then moving to binary, ranging through little endian and big endian formats,
fixed point integers and fractions, floating point numbers, BCD and hexadecimal
representations. We then look at characters, records and files, file types and file
signatures (or magic numbers) and hexadecimal listings. A number of file formats
are then considered, with particular reference to some of the better known word
processing, graphic and archive file formats. To complement this chapter, the ASCII,
Windows ANSI and IBM Extended ASCII character sets are listed at Appendix 1,
where mention is also made of UCS, UTF and Unicode, and the magic number signa-
tures of many of the standard file formats are listed at Appendix 2. In addition, the
order code for the Intel 8086 processor is listed in hexadecimal order at Appendix 7.
These appendices provide a useful reference source for the analysis of binary
sequences that are in hexadecimal format.

In Chapter 3, we look at fundamental computer principles: at how the Von
Neumann machine works and at the stored program concept. The basic structure of
memory, processor and the interconnecting buses is discussed and a worked
example for a simplified processor is stepped through. The ideas of code sequences,
of programming and of breaking sequence are exemplified, following which a black
box model of the PC is put forward.

Although the material in Chapters 2 and 3 has altered little, apart from some
minor updating, from that of the first edition, that of Chapter 4 has had to be signifi-
cantly updated to take account of the changes in technology that have occurred since
2000. Chapter 4 continues on from Chapter 3 and aims to achieve two goals: to put a
physical hardware realization onto the abstract ideas of Chapter 3 and to give a better
understanding of just what is “inside the box” and how it all should be connected up.
We need to do this looking inside and being able to identify all the pieces so that we
can be sure that a target system is safe to operate, that it is not being used as a storage
box for other items of evidential value, and that all its components are connected up
and working correctly. We again start with the black box model and relate this to a
modern motherboard and to the various system buses.Next we look at the early Intel
processors and at the design of the PC. This leads on to the development of the Intel
processors up to and including that of the Pentium 4 and then a brief look at some
other compatible processors.Discussion is then centred on memory chips,and this is

Forensic Computing 3



followed by a brief mention of disk drives, which receive a very much more detailed
treatment in a chapter of their own.Finally,a number of other peripheral devices and
expansion cards are discussed. Diagrams and photographs throughout this chapter
aim to assist in the recognition of the various parts and their relative placement in
the PC.

Chapter 5, on disk geometry, provides the real technical meat of the book. This is
the largest chapter by far and the most detailed. It too has been significantly updated
to reflect the advent of bigger and faster disks and to examine FAT32 systems in more
detail. In order to understand the second question posed by Special Agent Mark
Pollitt in the above quotes – “Where did it [this binary string] come from?”we need to
know a little about magnetic recording and rather a lot about disk drives. The
chapter opens with an introduction to five main issues: the physical construction of
disk drives; how addressable elements of memory are constructed within them; the
problems that have arisen as a result of rapid development of the hard drive and the
need for backward compatibility; the ways in which file systems are formed using the
addressable elements of the disk; and where and how information might be hidden
on the disk. Discussion initially centres on the physical construction of disks and on
CHS addressing. Encoding methods are next considered, together with formatting.
This leads on to hard disk interfaces and the problems that have been caused by
incompatibility between them. The 528 Mbyte barrier is described and the
workaround of CHS translation is explained, together with some of the translation
algorithms. LBA is discussed and a number of BIOS related problems are considered.
New features in the later ATA specifications, such as the Host Protected Area, are
mentioned and a summary of the interface and translation options is then given.
Details of fast drives and big drives are given, with particular reference to 48 bit
addressing, and mention is made of Serial ATA. This is followed by a detailed expla-
nation of the POST/Boot sequence to the point at which the bootstrap loader is
invoked. A full discussion of the master boot record and of partitioning then follows
and a detailed analysis of extended partitions is presented.Since our explanations do
not always fully conform with those of some other authorities, we expand on these
issues in Appendix 6, where we explain our reasoning and give results from some
specific trials that we have carried out. Drive letter assignments, the disk ID and a
brief mention of GUIDs is next made and then directories, and DOS and Windows
FAT (16 and 32) file systems, are described, together with long file names and
additional times and dates fields.We then give a summary of the known places where
information might be hidden and discuss the recovery of information that may have
been deleted. We conclude the chapter with a short section on RAID devices. Three
appendices are associated with this chapter: Appendix 3, which lists a typical set of
POST codes; Appendix 4, which gives a typical set of BIOS beep codes and error
messages; and Appendix 5, which lists all currently known partition types.

One of the major changes to the FCFC, made in recent years, has been to include
the practical analysis of NTFS file systems. We have had to find space to include this
in addition to the analysis of FAT-based file systems, as we now note an almost equal
occurrence of both file systems in our case work. In recognition of this, we have
introduced, for this second edition, a completely new Chapter 6 on NTFS. Some of
this material has been developed from an MSc thesis produced by one of the authors
(Jenkinson, 2005). Following a brief history of the NTFS system and an outline of its
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features, the Master File Table (MFT) is examined in detail. Starting from the BIOS
Parameter Block, a sample MFT file record with resident data is deconstructed line
by line at the hexadecimal level. The issue with Update Sequence Numbers is
explained and the significance of this for data extraction of resident data from the
MFT record is demonstrated. The various attributes are each described in detail and
a second example of an MFT file record with non-resident data is then deconstructed
line by line at the hexadecimal level. This leads to an analysis of virtual cluster
numbers and data runs.Analysis continues with a sample MFT directory record with
resident data and then an examination of how an external directory listing is created.
A detailed analysis of INDX files follows and the chapter concludes with the
highlighting of a number of issues of forensic significance. Three new appendices
have also been added: Appendix 8 provides an analysis of the NTFS boot sector, and
BIOS parameter block; Appendix 9 provides a detailed analysis of the MFT header
and the attribute maps; and Appendix 11 explains the significance of alternate data
streams.

A detailed technical understanding of where and how digital information can be
stored is clearly of paramount importance, both from an investigative point of view
in finding the information in the first place and from an evidential point of view in
being able to explain in technically accurate but jury-friendly terms how and why it
was found where it was. However, that admitted, perhaps the most important part of
all is process. Without proper and approved process, the best of such information
may not even be admissible as evidence in a court of law. In Chapter 7, the Treatment
of PCs, we consider the issues of process. We start this by looking first at the
principles of computer-based evidence as put forward in the ACPO Good Practice
Guide (ACPO, 2003). Then we consider the practicalities of mounting a search and
seizure operation and the issues that can occur on site when seizing computers from
a suspect’s premises. The main change here from the first edition is that today more
consideration may have to be given to some aspects of live analysis; in particular, for
example, where a secure password-protected volume is found open when seizure
takes place. Guidelines are given here for each of the major activities, including the
shutdown, seizure and transportation of the equipment. Receipt of the equipment
into the analyst’s laboratory and the process of examination and the production of
evidence are next considered. A detailed example of a specific disk is then given, and
guidance on interpreting the host of figures that result is provided. Finally, the issues
of imaging and copying are discussed.

In the treatment of PCs, as we see in Chapter 7, our essential concern is not to
change the evidence on the hard disk and to produce an image which represents its
state exactly as it was when it was seized. In Chapter 8 we look at the treatment of
organizers and we note that for the most part there is no hard disk and the concern
here has to be to change the evidence in the main memory as little as possible. This
results in the first major difference between the treatment of PCs and the treatment
of organizers. To access the organizer it will almost certainly have to be switched on,
and this effectively means that the first of the ACPO principles, not to change the
evidence in any way, cannot be complied with. The second major difference is that
the PC compatible is now so standardized that a standard approach can be taken to
its analysis. This is not the case with organizers, where few standards are apparent
and each organizer or PDA typically has to approached differently. The chapter
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begins by outlining the technical principles associated with electronic organizers
and identifying their major characteristics. We then go on to consider the appli-
cation of the ACPO Good Practice Guide principles and to recommend some guide-
lines for the seizure of organizers. Finally, we discuss the technical examination of
organizers and we look particularly at how admissible evidence might be obtained
from the protected areas.

The final chapter attempts to “look ahead”, but only just a little bit more. The
technology is advancing at such an unprecedented rate that most forward predic-
tions beyond a few months are likely to be wildly wrong. Some of the issues that are
apparent at the time of writing are discussed here. Problems with larger and larger
disks, whether or not to image, the difficulties raised by networks and the increasing
use of “on the fly” encryption form the major topics of this chapter.

Throughout the book, we have included many chapter references as well as a
comprehensive bibliography at the end. Many of the references we have used relate to
resources that have been obtained from the Internet and these are often referred to
by their URL. However, with the Internet being such a dynamic entity, it is inevitable
that some of the URLs will change over time or the links will become broken.We have
tried to ensure that, just before publication, all the quoted URLs have been checked
and are valid but acknowledge that, by the time you read this, there will be some that
do not work. For that we apologise and suggest that you might use a search engine
with keywords from the reference to see whether the resource is available elsewhere
on the Internet.
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2. Understanding Information

Introduction

In this chapter we will be looking in detail at the following topics:

● What is information?
● Memory and addressing
● Decimal and binary integers
● Little endian and big endian formats
● Hexadecimal numbers
● Signed numbers, fractions and floating point numbers
● Binary Coded Decimal (BCD)
● Characters and computer program codes
● Records, files, file types and file signatures
● The use of hexadecimal listings
● Word processing and graphic file formats
● Archive and other file formats

We note that the fundamental concern of all our forensic computing activity is for
the accurate extraction of information from computer-based systems, such that it
may be presented as admissible evidence in court.Given that,we should perhaps first
consider just what it is that we understand by this term information, and then we
might look at how it is that computer systems are able to hold and process what we
have defined as information in such a wide variety of different forms.

However,deciding just what it is that we really mean by the term information is not
easy. As Liebenau and Backhouse (1990) explain in their book Understanding Infor-
mation: “Numerous definitions have been proposed for the term ‘information’, and
most of them serve well the narrow interests of those defining it.” They then proceed
to consider a number of definitions, drawn from various sources, before concluding:
“These definitions are all problematic” and “... information cannot exist independ-
ently of the receiving person who gives it meaning and somehow acts upon it. That
action usually includes analysis or at least interpretation, and the differences between
data and information must be preserved, at least in so far as information is data
arranged in a meaningful way for some perceived purpose.”

This last view suits our needs very well: “... information is data arranged in a
meaningful way for some perceived purpose”. Let us take it that a computer system
holds data as suggested here and that any information that we (the receiving
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persons) may extract from this data is as a result of our analysis or interpretation of it
in some meaningful way for some perceived purpose. This presupposes that we have
to hand a set of interpretative rules, which were intended for this purpose, and which
we apply to the data in order to extract the information. It is our application of these
rules to the data that results in the intended information being revealed to us.

This view also helps us to understand how it is that computer systems are able to
hold information in its multitude of different forms. Although the way in which the
data is represented in a computer system is almost always that of a binary pattern, the
forms that the information may take are effectively without limit, simply because
there are so many different sets of interpretative rules that we can apply.

Binary Systems and Memory

That computer manufacturers normally choose to represent data in a two-state (or
binary) form is an engineering convenience of the current technology. Two-state
systems are easier to engineer and two-state logic simplifies some activities.
Provided that we do not impose limits on the sets of interpretative rules that we
permit, then a binary system is quite capable of representing almost any kind of
information. We should perhaps now look a little more closely at how data is held in
such binary systems.

In such a system, each data element is implemented using some physical device that
can be in one of two stable states: in a memory chip, for example,a transistor switch may
be on or off; in a communications line, a pulse may be present or absent at a particular
place and at a particular time; on a magnetic disk, a magnetic domain may be magne-
tized to one polarity or to the other; and,on a compact disc,a pit may be present or not at
a particular place. These are all examples of two-state or binary devices.

When we use such two-state devices to store data we normally consider a large
number of them in some form of conceptual structure: perhaps we might visualize a
very long line of several million transistor switches in a big box, for example. We
might then call this a memory. We use a notation borrowed from mathematics to
symbolize each element of the memory, that is, each two-state device. This notation
uses the symbol “1” to represent a two-state device that is in the “on” state and the
symbol “0”to represent a two-state device that is in the “off”state.We can now draw a
diagram that symbolizes our memory (or at least, a small part of it) as an ordered
sequence of 1s and 0s, as shown in Fig. 2.1.
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millions more

0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 . . . . . .

3rd 6th

Fig. 2.1 Memory.



Each 1 and each 0 is a symbol for one particular two-state device in the structure
and the value of 1 or 0 signifies the current state of that device. So, for example, the
third device from the left in the sequence is “on” (signified by a “1”) and the sixth
device from the left is “off” (signified by a “0”).

Although we can clearly observe the data as an ordered sequence of 1s and 0s, we
are not able from this alone to determine the information that it may represent.To do
that, we have to know the appropriate set of interpretative rules which we can then
apply to some given part of the data sequence in order to extract the intended
information.

Before we move on to consider various different sets of interpretative rules
however, we should first look at some fundamental definitions and concepts that are
associated with computer memory.Each of the two symbols “1”and “0”,when repre-
senting a two-state device, is usually referred to as a binary digit or bit, the acronym
being constructed from the initial letter of “binary”and the last two letters of “digit”.
We may thus observe that the ordered sequence in Fig. 2.1 above has 24 bits
displayed, although there are millions more than that to the right of the diagram.

Addressing

We carefully specified on at least two occasions that this is an ordered sequence,
implying that position is important, and this, in general, is clearly the case. It is often
an ordered set of symbols that is required to convey information: an ordered set of
characters conveys specific text; an ordered set of digits conveys specific numbers; an
ordered set of instructions conveys a specific process. We therefore need a means by
which we can identify position in this ordered sequence of millions of bits and thus
access any part of that sequence, anywhere within it, at will. Conceptually, the
simplest method would be for every bit in the sequence to be associated with its
unique numeric position; for example, the third from the left, the sixth from the left,
and so on, as we did above. In practical computer systems, however, the overheads of
uniquely identifying every bit in the memory are not justified, so a compromise is
made. A unique identifying number,known as the address, is associated with a group
of eight bits in sequence. The group of eight bits is called a byte and the bytes are
ordered from address 0 numerically upwards (shown from left to right in Fig. 2.2) to
the highest address in the memory. In modern personal computers, it would not be
unusual for this highest address in memory to be over 2000 million (or 2 Gbyte; see
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address 0

byte
address 1

byte
address 2

0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0

millions more

Fig. 2.2 Byte addressing.



Table 2.1).Our ordered sequence fragment can now be represented as the three bytes
shown in Fig. 2.2.

Today the byte is used as the basic measure of memory size, although other terms
are still often met: a nibble is half a byte = 4 bits; a word is 2 bytes = 16 bits; a double
word is 4 bytes = 32 bits. As computer memory and disk sizes have become very
much larger, so the byte has become a comparatively small unit, and various powers
of two are now used to qualify it: a kilobyte is 210 = 1024 bytes; a megabyte is 220 =
1,048,576 bytes; a gigabyte is 230 = 1,073,741,824 bytes; a terabyte is 240 =
1,099,511,627,776 bytes; and a petabyte is 250 = 1,125,899,906,842,624 bytes. This
sequence of powers of 2 units continues further with exabyte, zettabyte and
yottabyte. Traditionally, computing scientists have always based their memory units
on powers of 2 rather than on powers of 10, though this is a matter of some
contention within the standards community1. In Data Powers of Ten (Williams,
1996), the practical implications of some of these units are compared: a kilobyte is
likened to a very short story, a megabyte to a small novel, 5 megabytes to the
complete works of Shakespeare and a gigabyte to a truck filled with paper.

We can now move on to another very important idea.We can associate a particular
set of interpretative rules with a particular sequence of byte addresses in the
memory. This then tells us how the patterns of 1s and 0s at those addresses are to be
interpreted in order to extract the information that the data held there is intended to
represent2. It is important to note that these associations of rule sets with addresses
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● Nibble = half a byte = 4 bits

● Byte = 1 byte = 8 bits

● Word = 2 bytes = 16 bits

● Double word = 4 bytes = 32 bits

● Kilobyte = 1024 bytes = 210 bytes

● Megabyte = 1,048,576 bytes = 220 bytes

● Gigabyte = 1,073,741,824 bytes = 230 bytes

● Terabyte = 1,099,511,627,776 bytes = 240 bytes

● Petabyte = 1,125,899,906,842,624 bytes = 250 bytes

Table 2.1 Units of memory.

1 The issue is whether the prefixes kilo, mega, giga etc. should be raised to powers of two
as traditionally implemented by the computing fraternity or to powers of ten as decreed
by the General Conference of Weights and Measures for SI units. If they were to be
changed to powers of ten, kilo would become 103 = 1000 and mega would become 106 =
1,000,000. See Williams (1996).

2 The association of a set of interpretative rules with a sequence of memory addresses is
known as typing. In a strongly typed system, the computer programs will not only
contain rules about the interpretation that is to be applied to data at given memory
addresses, but will also contain rules that limit the ways in which that data may be
manipulated to those appropriate to the interpretation.



are completely flexible; in general, in a computer system any associations can be
made with any sequence of bytes, and these can be changed at any time.

There are, however, some standard interpretative rule sets which all computer
systems share and we will start by considering the most commonly used of these: the
interpretation of a binary data pattern as a decimal number.

Number Systems

Before we look at the interpretative rules for binary data patterns we should remind
ourselves of the rules for decimal data patterns. In the representation of numbers
generally, we use a notation that is positional. That is, the position of the digit in the
pattern is significant and is used to determine the multiplying factor that is to be
applied to that digit when calculating the number. In the Western decimal system,
each digit in the pattern can range in value from 0 to 9 and the multiplying factor is
always some power of 10 (hence the decimal system).

The particular power of 10 depends on the actual position of the digit relative to a
decimal point. The powers of 10 start from 0 immediately to the left of the decimal
point, and increase by one for each position we move to the left and decrease by one
for each position we move to the right. When writing down whole numbers, we tend
not to write down the decimal point itself, but assume it to be on the extreme right of
the positive powers of 10 digit sequence. Hence we often write down “5729” rather
than “5729.0”. All of this, which is so cumbersome to explain, is second nature to us
because we have learned the interpretative rules from childhood and can apply them
without having to think. As an example of a whole number, we read the sequence
“5729”as five thousand, seven hundred and twenty-nine. Analysing this according to
the interpretative rules we see that it is made up of:

5 × 103 + 7 × 102 + 2 × 101 + 9 × 100

or, in terms of the expanded multiplying factors, as shown in Fig. 2.3:

5 × 1000 + 7 × 100 + 2 × 10 + 9 × 1

As we described above, the powers of 10 which form the multiplying factors,
increase by one for every move of digit position to the left and decrease by one for
every move of digit position to the right.The use of this style of interpretative rule set
is not limited to decimal numbers. We can use the concept for any number system
that we wish (see Table 2.2). The number of different digit symbols we wish to use
(known as the base) determines the multiplying factor; apart from that, the same
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5 7 2 9 0

10 000 1000 100 10 1 1/10 1/100 1/1000

104 103 102 101 100 10 –1 10 –2 10 –3

decimal point

Fig. 2.3 Rules for decimal numbers.



rules of interpretation apply. In the case of the decimal system (base 10) we can see 10
digit symbols (0 to 9) and a multiplying factor of 10. We can have an octal system
(base 8) which has 8 digit symbols (0 to 7) and a multiplying factor of 8; a ternary
system (base 3) that has 3 digit symbols (0 to 2) and a multiplying factor of 3; or,even,
a binary system (base 2) that has 2 digit symbols (0 and 1) and a multiplying factor of
2. We will later be looking at the hexadecimal system (base 16) that has 16 digit
symbols (the numeric symbols 0 to 9 and the letter symbols A to F) and a multiplying
factor of 16.

Binary Numbers

Returning now to the binary system, we note that each digit in the pattern can range
in value from 0 to 1 and that the multiplying factor is always some power of 2 (hence
the term “binary”). The particular power of 2 depends on the actual position of the
digit relative to the binary point (compare this with the decimal point referred to
above).

The powers of 2 start from 0 immediately to the left of the binary point, and
increase by one for each position we move to the left and decrease by one for each
position we move to the right. Again, for whole numbers, we tend not to show the
binary point itself but assume it to be on the extreme right of the positive powers of 2
digit sequence (see Fig. 2.4). Now using the same form of interpretative rules as we
did for the decimal system, we can see that the binary data shown in this figure (this
is the same binary data that is given at byte address 0 in Fig. 2.2) can be interpreted
thus:

0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

which is equivalent, in terms of the expanded multiplying factors, to:

0 × 128 + 1 × 64 + 1 × 32 + 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 1 × 1
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0 1 1 0 1 0 0 1 0

128 64 32 16 8 4 2 1 1/2

27 26 25 24 23 22 21 20 2–1

binary pointThis binary pattern is equivalent to 105 in decimal

Fig. 2.4 Rules for binary numbers.

Binary Base 2 0 and 1

Ternary Base 3 0, 1 and 2

Octal Base 8 0 to 7

Decimal Base 10 0 to 9

Hexadecimal Base 16 0 to 9 and a to f

Table 2.2 Other number systems.



and this adds up to 105. It is left for the reader to confirm that the data in the other
two bytes in Fig. 2.2 can be interpreted, using this rule set, as the decimal numbers
110 and 102.

Taking the byte as the basic unit of memory, it is useful to determine the maximum
and minimum decimal numbers that can be held using this interpretation. The
pattern 00000000 clearly gives a value of 0 and the pattern 11111111 gives:

1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

which is equivalent to:

1 × 128 + 1 × 64 + 1 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 1 × 2 + 1 × 1

and this is equal to 255. The range of whole numbers that can be represented in a
single byte (eight bits) is therefore 0 to 255. This is often found to be inadequate for
even the simplest of arithmetic processing tasks and two bytes (a word) taken
together are more frequently used to represent whole numbers.However, this poses a
potential problem for the analyst as we shall see. We can clearly implement a number
in a word by using two bytes in succession as shown in Fig. 2.5.

However, we need to note that byte sequences are shown conventionally with their
addresses increasing from left to right across the page (see Figs.2.2 and 2.5).Contrast
this with the convention that number sequences increase in value from right to left
(see Fig. 2.4). The question now arises of how we should interpret a pair of bytes
taken together as a single number. The most obvious way is to consider the two bytes
as a continuous sequence of binary digits as they appear in Fig. 2.5. The binary point
is assumed to be to the right of the byte at address 57. As before, we have increasing
powers of 2 as we move to the left through byte 57 and, at the byte boundary with
byte address 56, we simply carry on. So, the leftmost bit of byte address 57 is 27 and
the rightmost bit of byte address 56 continues on as 28. Using the rules that we estab-
lished above, we then have the following interpretation for byte address 57:

0 × 128 + 1 × 64 + 1 × 32 + 0 × 16 + 1 × 8 + 1 × 4 + 1 × 2 + 0 × 1

together with this for byte address 56:

0 × 32768 + 1 × 16384 + 1 × 8192 + 0 × 4096
+ 1 × 2048 + 0 × 1024 + 0 × 512 + 1 × 256
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32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

215 214 213 212 211 210 29 28 2 7 2 6 25 24 2 3 22 21 2 0

0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0

byte byte

address 56 address 57

This binary pattern is equivalent to 26990 in decimal

Fig. 2.5 A number in a word.



The decimal number interpretation of the two bytes taken together in this way is
the total of all the individual digit values and is equal to the value 26990.

The range of numbers for the two bytes taken together can now readily be estab-
lished as 00000000 00000000 to 11111111 11111111. The first pattern clearly gives 0
and the pattern 11111111 11111111 gives 65535. The range of whole numbers using
this system is therefore 0 to 65535 and this is left for the reader to confirm. It is
evident that we could use a similar argument to take more than two bytes together as
a single number; in fact, four bytes (a double word) are often used where greater
precision is required.

Little Endian and Big Endian Formats

The approach adopted here of taking the two bytes as a continuous sequence of
binary digits may seem eminently sensible. However, there is an opposing argument
that claims that the two bytes should be taken together the other way round. The
lower powers of 2, it is claimed, should be in the lower valued byte address and the
higher powers of 2 should be in the higher valued byte address. This approach is
shown in Fig. 2.6 and is known as little endian format as opposed to the first scheme
that we considered, which is known as big endian format3.

Here we see that the digit multipliers in byte address 56 now range from 20 to 27

and those in byte address 57 now range from 28 to 215. Using this little endian format
with the same binary values in the two bytes, we see that from byte address 56 we
have:

0 × 128 + 1 × 64 + 1 × 32 + 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 1 × 1

and from byte address 57 we have:

0 × 32768 + 1 × 16384 + 1 × 8192 + 0 × 4096
+ 1 × 2048 + 1 × 1024 + 1 × 512 + 0 × 256
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128 64 32 16 8 4 2 1 32768 16384 8192 4096 2048 1024 512 256

215 214 213 212 211 210 29 282 7 2 6 25 24 2 3 22 21 2 0

0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0

byte byte

address 56 address 57

This binary pattern is equivalent to 28265 in decimal

Fig. 2.6 Little endian format.

3 The notion of big endian and little endian comes from a story in Gulliver’s Travels by
Jonathan Swift. In this story the “big endians” were those who broke their breakfast egg
from the big end and the “little endians” were those who broke theirs from the little end.
The big endians were outlawed by the emperor and many were put to death for their
heresy!



The decimal number interpretation of these same two bytes taken together in this
little endian format is 28265, compared with the 26990 which we obtained using the
big endian format.

The problem for the forensic computing analyst is clear. There is nothing to
indicate, within a pair of bytes that are to be interpreted as a single decimal number,
whether they should be analyzed using little endian or big endian format. It is very
important that this issue be correctly determined by the analyst, perhaps from the
surrounding context within which the number resides or perhaps from a knowledge
of the computer program that was used to read or write the binary data. It is known,
for example, that the Intel 80x86 family of processors (including the Pentium) use
little endian format when reading or writing two-byte and four-byte numbers and
that the Motorola processors use big endian format for the same purpose in their
68000 family4. Application software, on the other hand, may write out information in
little endian or big endian or in any other formats that the programmer may choose.

In order to examine this matter a little more closely, it is appropriate at this time to
consider another important number system: hexadecimal. We will return to our
examination of decimal numbers after this next section.

Hexadecimal Numbers

As we mentioned earlier, the hexadecimal number system uses base 16. It therefore
has 16 digit symbols: the numeric symbols 0 to 9 and the letter symbols A to F and it
has a multiplying factor of 16.

Its real value to the analyst is that it provides a much more compact and conve-
nient means of listing and interpreting binary sequences. It is more compact because
every four binary digits may be replaced by a single hexadecimal digit and it is more
convenient because translation between binary and hexadecimal can be done (with a
little practice) quickly and easily by inspection. At Table 2.3 we have shown the
binary equivalent for each of the 16 hexadecimal digits and we note that we need
exactly four binary digits to give each one a unique value. This, of course, should not
surprise us, since 24 is 16.We might also note that the decimal equivalent of each 4 bit
binary sequence is the actual value (0, 1, 2, 3 etc.) for the hexadecimal symbols 0 to 9,
and the values 10, 11, 12, 13, 14 and 15 for the hexadecimal symbols A, B, C, D, E and F
respectively.
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Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Table 2.3 Hexadecimal code table.

4 As reported on page 61 of Messmer (2002).



We note from this that each 4 bit half byte (that is, each nibble), can be represented
by exactly one hexadecimal digit and a full byte can therefore be exactly represented
by two hexadecimal digits.

Returning again to the two bytes that we were examining in Figs. 2.5 and 2.6
above, we can see, at Fig. 2.7 how the values in these two bytes can equally well be
represented by the four hexadecimal digits: 69H and 6EH. Two digits are used for
the value of the byte at address 56 and two digits for the value of the byte at address
57 and, in each case, a trailing “H” has been added to signify that these sequences
are to be interpreted as hexadecimal, rather than decimal. You may note from the
figure that either upper or lower case can be used both for the letter symbols and
for the “H” marker. Alternatively, 0x may be put in front of the number, thus: 0x69
and 0x6e. Throughout the book, we use a variety of forms for representing
hexadecimal numbers, in line with the screen shots from different software
packages.

Prior to becoming practised, the simplest means of translation is to look up the
values in Table 2.3. From this we can easily see that “6” is “0110" and “E” is “1110”,
and so 6EH is 01101110. We can also easily see the 4 to 1 reduction in size in going
from binary to hexadecimal.

More Little Endian

Now that we have at least a nodding acquaintance with hexadecimal, we can more
easily consider some of the issues surrounding the Intel processors, application
programmers and little endian. What we, as analysts, have to examine are often
sequences of binary (or more likely hexadecimal) digits that have been extracted
from memory or from disk.In interpreting these,we need to determine in what order
they should be examined, and that order will depend upon the type of processor and
the program that wrote them.

Consider, for example, that a program is designed to write out to disk a sequence
of four bytes that have been produced internally. Let us say that these four bytes are
(in hexadecimal) “FB 18 7A 35”.The programmer,when designing the program,may
decide that the Intel processor is to write out the sequence of four bytes, one byte at a
time,as four separate bytes.The result written out would be exactly as the sequence is
held internally:

FB 18 7A 35
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215 214 213 212 211 210 29 28 2 7 2 6 25 24 2 3 22 21 2 0

0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0

byte byte
6

69H or 69h or 0x69 6EH or 6eh or 0x6e

9 6 E

address 56 address 57

Fig. 2.7 Hexadecimal representation.



This is because little endian is not an issue at the level of the byte. Consider, now,
that the programmer, when designing the program, decided that the Intel processor
is to write out the sequence of four bytes as two words. To do this, the programmer
would use different instruction codes in this new program compared with the
previous program. Each word (of two bytes) would be written out by the Intel
processor in little endian format, reversing the order of each pair. The sequence on
the disk would then become:

18 FB 35 7A

Finally, consider that the programmer, when designing the program, decided that
the Intel processor is to write out the sequence of four bytes as a double word. Again,
the programmer would use different instruction codes, and this time the sequence
would be written out as:

35 7A 18 FB

Here, the order of all four bytes has been reversed. This is not the end. The processor
does the same with, for example, 8 byte date and time sequences, and we must know
enough to re-order such sequences before we attempt to interpret them.

What becomes very clear from this is that as analysts we must know the context
that is associated with any given binary sequence if we are to interpret the sequence
correctly.

A Simple Rule of Thumb for Numbers in Words

If the format is little endian, take the value of the left-hand byte and add to it 256
times the value of the right hand byte. Decimal value = LH + (256 × RH).

If the format is big endian, take the value of the left hand byte times 256 and add to
it the value of the right hand byte. Decimal value = (LH × 256) + RH.

Signed Numbers

So far we have only considered the representation of positive whole numbers.
Negative numbers are also required and these can be represented by taking out of use
one of the digit positions and re-employing it as a sign bit.This means,of course, that
it cannot then be used as part of the number itself. The digit position that is chosen is
always the leftmost bit in the sequence; in the case of a single byte, this is the 27 digit
position. If this particular bit is set to 1, by definition, the number is negative; if it is
set to 0, by definition the number is positive, as indicated in Fig. 2.8. In this figure we
have shown two bytes, which, unlike previous figures, are not to be taken together or
considered as a single number. Instead, for this example, each byte is to be inter-
preted as a separate signed number. The left-hand byte represents +1 and the right-
hand byte represents –1.

The data pattern in the right-hand byte may not appear as expected for a represen-
tation of –1 and this may need some explanation. In order to ensure that the mathe-
matics of positive and negative numbers works systematically we have to have a
representation where the binary number +1 when added to the binary number –1
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gives us the binary number 0. In a single byte, the binary number +1 is represented as
expected, and as shown in Fig. 2.8, by:

Sign

in binary

2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1

6 5 4 3 2 1 0

+

The number is positive because the sign bit is 0 and it is of value 1 because only the 20

column is set. Now we have agreed that negative numbers by definition will have the
sign bit set, so the most obvious pattern for –1 might simply be:

Sign

a suggestion for 1 in b

2 2 2 2 2 2 2

1 0 0 0 0 0 0 1

6 5 4 3 2 1 0

− inary

This number is negative because the sign bit is set to 1 and it would seem to be of
value 1 because only the 20 column is set. Hence, it is a possible –1. However, when we
add the +1 and the suggested –1 patterns together using the rules5 of binary
addition, the result is:

which, according to our same rules appears to be –2: a negative number because the
sign bit is set to 1 and of value 2 because the 21 column is set. This clearly does not
work. We now need to ask ourselves what pattern, when added to +1, would result in
0? There is only one such pattern, and it is as shown below. It works because 1 + 1
results in 0 with a 1 carried into the next left-hand column. We see that this sequence
causes a carry to occur from column to column until the last (27) column is reached,
whereupon the sign bit becomes a 0 and the final carry “falls off the end” or
overflows. This condition will be detected by most arithmetic units and in the case of
signed binary arithmetic would be classed as an acceptable result.
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0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

64 32 16 8 4 2 1

2 6 25 24 2 3 22 21 2 0Sign

64 32 16 8 4 2 1

2 6 25 24 2 3 22 21 2 0Sign

+1 in binary –1 in binary

Fig. 2.8 Two signed numbers.

Sign

+1 in bi

2 2 2 2 2 2 2

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0

6 5 4 3 2 1 0

nary

a suggestion for 1 in binary−

5 In binary addition: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; and 1 + 1 = 0 carry 1 to the next digit
on the left.



This structure for negative numbers is in what is known as two’s complement form.
As an analyst, it can be very useful to know how to determine the value of a negative
binary number that is held in two’s complement form, since it is not easy to see by
inspection.

A Simple Rule of Thumb for Negative Numbers

The rule is very simple. First write down the negative binary number, and then, on
the next line, we write down the inverted pattern with all the 0 digits replaced by 1s
and all the 1 digits replaced by 0s. Finally, to this result, we add the value of +1 in
binary. This sum is the equivalent positive number for the given negative number. As
an example, consider the value 1110 1101 as a signed number. It is clearly negative
since the 27 position is 1. We apply the rules as follows:

The value 1110 1101 is therefore equivalent to –19. It is interesting to note that this
process works both ways. We can take the positive number +19 and determine the
pattern for –19 by following exactly the same rules, as follows:

Sample Negative Number in a Word

When we are looking at signed numbers in hexadecimal (and we certainly have to do
that when we are examining NTFS MFT records) we have to remember that they are
probably stored in little endian and that they are sometimes negative. As an example
consider examining the two-byte hexadecimal sequence “74 FE”,which we are told is
a signed integer in little endian word format. What is its value?
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Sign

+1 in bi

2 2 2 2 2 2 2

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

6 5 4 3 2 1 0

nary

a pattern that sums to zero (the real 1)−

Sign

write down the negative

2 2 2 2 2 2 2

1 1 1 0 1 1 0 1

6 5 4 3 2 1 0

number in binary

0 0 0 1 0 0 1 0 change all the 1s to 0s and all the 0s to 1s

0 0 0 0 0 0 0 1 add 1 in binary

0 0 0 1 0 0 1 1 the result is 16 + 2 +1 = 19

Sign

write down the positive

2 2 2 2 2 2 2

0 0 0 1 0 0 1 1

6 5 4 3 2 1 0

number 19 in binary

1 1 1 0 1 1 0 0 change all the 1s to 0s and all the 0s to 1s

0 0 0 0 0 0 0 1 add 1 in binary

1 1 1 0 1 1 0 1 and the result is what we started with



We start by noting that it is a little endian word, so the pattern needs to be re-
ordered to “FE 74". Next we note that the leading hexadecimal digit is “F”, which is
1111, so the most significant bit of the word is a 1, indicating that the result is a
negative number. Now we write down the binary for this and follow the rules we
described above6

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 write down the
number FE 74 in
binary

0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 change all the 1s to
0s and all the 0s to
1s

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 add 1 in binary
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 the result is 256 +

128 + 8 + 4 = 396

The value FE 74 is therefore equivalent to –396.

Range of Signed Numbers

The range of signed numbers that can be represented in a single byte (the range we
considered previously was that of unsigned numbers) can now be seen to be from:

Sign 2 2 2 2 2 2 2

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

6 5 4 3 2 1 0

+127, the largest positive integer, to

128, the largest negative i− nteger

that is, from +127 (sign bit is zero) to –128 (sign bit is 1) and the range of signed
integers for two bytes can just as readily be calculated as +32,767 to –32,768. This is
an exercise left for the reader. At Table 2.4 we show a summary of the ranges for
signed and unsigned integers in one and two bytes.
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● Range of unsigned integers in one byte 0 to 255

● Range of signed integers in one byte +127 to –128

● Range of unsigned integers in two bytes 0 to 65,535

● Range of signed integers in two bytes +32,767 to –32,768

Table 2.4 Signed and unsigned integer ranges.

6 It is possible to perform these calculations in hexadecimal without converting first to
binary.



Fractions and Mixed Numbers

So far we have only looked at the representation of whole numbers or integers and
the form of representation that we have been considering is generally known as fixed
point. Although we will only touch on this here, fixed point representation can be
used for fractions and mixed numbers as well simply by considering the binary point
to be at some position other than at the extreme right-hand side of the digit
sequence. So, for example, in Fig. 2.9 the binary point is considered to be in between
the two bytes that are to be taken together as a single number.

As a result, the rightmost digit of the left-hand byte has a multiplying factor of 20

(which is 1) and the leftmost digit of the right-hand byte has a multiplying factor of
2–1 (which is ½). With all that has gone before we can readily see that the left-hand
byte may be interpreted as:

0 × Sign + 0 × 64 + 0 × 32 + 0 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1

and the right-hand byte may be interpreted, using vulgar fractions, as:

1 × 1/2 + 0 × 1/4 + 0 × 1/8 + 0 × 1/16 + 0 × 1/32 + 0 × 1/64 + 0 × 1/128 + 0 × 1/256

In decimal, the right-hand byte becomes:

1 × 0.5 + 0 × 0.25 + 0 × 0.125 + 0 × 0.0625 + 0 × 0.03125
+ 0 × 0.015625 + 0 × 0.0078125 + 0 × 0.00390625

and, by adding all the digits from this pair of bytes, we see that this represents the
number +3½ or +3.5.

As an exercise, attempt the interpretation of the two bytes in Fig. 2.7 as a mixed
decimal number with the binary point assumed to be between byte address 56 and
byte address 57. The result, you will find, is +105.4296875. A simpler way of calcu-
lating the mixed number value than adding up all the fractional parts is to take the
whole number value and scale it. In decimal arithmetic,dividing the number by ten is
equivalent to shifting the decimal point one position left. Similarly, in binary arith-
metic, dividing the number by two is equivalent to shifting the binary point one
position left.Using big endian interpretation, the whole number value for Fig.2.7 was
found to be 26,990. If we wish the binary point to be between the two bytes, this is
equivalent to shifting the binary point 8 positions to the left (the width of a byte)
which is also equivalent to dividing the number by 28 = 256. The number 26,990
divided by 256 does indeed result in +105.4296875.
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0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

64 32 16 8 4 2 1

2 6 25 24 2 3 22 21 2 0Sign 2 –1 2–2 2–3 2 –4 2–5 2–6 2 –7 2 –8

binary point

This binary pattern is equivalent to 3.5 in decimal

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

.

Fig. 2.9 Mixed numbers.



Floating Point

All the forms of number representation that we have so far considered belong to the
family of fixed point numbers. Another common form of number representation is
that of floating point. In this format, several bytes are used to represent a number.
The basis for this representation is the so-called scientific notation (also known as
exponential notation). In this notation, numbers are represented (on paper) in a
form such as +2.5 × 10+2, which is equivalent to +2.5 × 100 = +250.0. The signed
mixed number (+2.5), which is limited by normalization to be greater than 1.0 and
less than 10.0, is known as the mantissa or significand, and the signed power of 10
(+2) is known as the exponent or characteristic. In order to represent a number in
this format, the mantissa has to be adjusted until there is just one digit before the
decimal point and the remaining digits are after it (normalization). To maintain the
overall value of the number, the exponent then has to be increased or decreased
accordingly. It is this adjustment of the position of the decimal point that results in
the term “floating point”, as opposed to our earlier considerations of fixed point
format.

In representing floating point numbers in a binary system, one sequence of bits
is used for the exponent and another sequence of bits is used for the mantissa. The
base to which the exponent is raised is 2 in the binary system, as opposed to 10 in
the decimal system. Both the mantissa and the exponent may have positive or
negative values so the problem of representing negative numbers in binary
patterns arises in both cases. In the case of the mantissa, a separate sign bit is used
to indicate positive or negative values. However, it is important to note that a 2’s
complement format is not used for the rest of the mantissa, which is always left as a
positive number (unlike the fixed point representation that we considered above).
For the sign of the exponent, a so-called bias is used. In this form of representation,
a fixed value (the bias) is added to the exponent value prior to writing the data and
subtracted from the value immediately after reading the data. By this means, the
data placed in the exponent field is always kept positive. For example, with a bias of
127 and an exponent value of 42, the value placed in the exponent field would be
127 + 42 = 169. On reading the exponent field of 169, the bias would immediately be
subtracted giving 169 – 127 = 42. This results, of course, in the original exponent
value. For a negative exponent value of, say, –5, the value placed in the exponent
field would be 127 + –5 = 122 and the exponent read out from the field would be 122
– 127 = –5. In this way, all values stored in the exponent field are positive.

Complications arise because there are several different formats. Most systems
comply with the IEEE formats which define three floating point types: short real (1
bit for the sign of the mantissa, 8 bits for the exponent, and 23 bits for the mantissa
itself), long real (1 bit for the sign of the mantissa,11 bits for the exponent,and 52 bits
for the mantissa itself) and temporary real (1 bit for the sign of the mantissa, 15 bits
for the exponent, and 64 bits for the mantissa itself)7. In addition, Microsoft have
traditionally used their own (different) floating point formats in their BASIC
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7 ANSI/IEEE Standard 754-1985 Standard for Binary Floating Point Arithmetic.



programming interpreters. Figure 2.10 shows the format for the IEEE short real
representation.

The sign bit refers to the mantissa and therefore, in this case, indicates a positive
number. The exponent is not signed but has a 127 bias as explained above. This
means that the value of the exponent is the binary value of the data held in the
exponent field with the value of 127 subtracted from it. The binary value of the data
in the exponent field is clearly: 1 × 27 + 1 × 20 = 128 + 1 = 129. The value of the
exponent is therefore 129 – 127 = 2. The binary value of the mantissa field is clearly 1
× 2–1 = 0.5. However, with this format, by definition and as indicated in the diagram,
the value of the mantissa always has an implied 20 = 1 added to it (note that it starts at
2–1 in the diagram). As a result, the actual value of the mantissa is 0.5 + 1 = 1.5. The
overall decimal value of the number is thus: 1.5 × 22 = 1.5 × 4 = 6.0.

As we have seen above, the IEEE standard for floating point arithmetic requires,
for single precision (short real) floating point numbers, a 32 bit word, which may be
represented as shown below:

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

In this, the leading bit position is the sign bit, “S”, the next eight bits are the exponent
bits,“E”,and the final 23 bits are the mantissa or fractional part,“F”.Special cases for
the value of the floating point number, “V”, are then given in the IEEE standard by
the rules shown in Table 2.5.

Most modern computer systems have a mathematical co-processor which imple-
ments floating point arithmetic in the IEEE formats (see Table 2.6) and uses these
floating point representations for storing and manipulating so-called real numbers.

Binary Coded Decimal

Another number format which is often used is that of binary coded decimal, or BCD.
In this interpretation, the binary value of each byte in a sequence of bytes represents
directly a single decimal digit. So the decimal number 105 would be represented in
BCD by the three bytes shown in Fig. 2.11.The problem with this approach is that it is
very wasteful of storage. Each byte is capable of holding 256 different values (0 to
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Sign 72 26 25 24 23 22 21 20 2–1
2–2

2–3
2–4

2–5
2–6

2–7 2–8
2–9

2–10
2–11

2–12
2–13

2–14
2–15

2–16
2–17

2–18
2–19

2–20
2–21

2–22
2–23

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

exponent
(bias 127)

mantissa
(assumes 20 = 1)

sign
(of mantissa)

The exponent = 129 less bias of 127 = 2
The mantissa = 0.5 plus implied 1 = 1.5
The result = 1.5 × 22 = 1.5 × 4

This binary pattern is equivalent to 6.0 in decimal

Fig. 2.10 Floating point.



255) and this form of BCD only uses 10 different values (the digits 0 to 9). A more
efficient use is known as packed BCD where each decimal digit is held in a nibble (4
bits) instead of a byte. A byte in this representation can therefore hold two decimal
digits, as shown in Fig. 2.12.

All that has been done here is that the value 00000001 from the first byte of Fig.
2.11 has been reduced to a nibble of value 0001 and placed in the first nibble of the
first byte of Fig. 2.12. The value 00000000 from the second byte of Fig. 2.11 has been
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● If E = 255 and F is not zero, then V = “Not a Number” (NaN)
0 11111111 00000100000000000000000 = NaN
1 11111111 00100010001001010101010 = NaN

● If E = 255 and F is zero and S is 1, then V = –Infinity
1 11111111 00000000000000000000000 = –Infinity

● If E = 255 and F is zero and S is 0, then V = +Infinity
0 11111111 00000000000000000000000 = +Infinity

● If E = 0 and F is zero and S is 1, then V = –0
1 00000000 00000000000000000000000 = –0

● If E = 0 and F is zero and S is 0, then V = +0
0 00000000 00000000000000000000000 = +0

● If 0 < E < 255 then V is a normalized number (implied leading 1.0)
0 10000000 00000000000000000000000 = +1 × 2(128 – 127) × 1.0 = 2
0 10000001 10100000000000000000000 = +1 × 2(129 – 127) × 1.101 = 6.5
1 10000001 10100000000000000000000 = –1 × 2(129 – 127) × 1.101 = –6.5
0 00000001 00000000000000000000000 = +1 × 2(1 – 127) × 1.0 = 2(–126)

● If E = 0 and F is not zero then V is an “unnormalized” number (no leading 1.0)
0 00000000 10000000000000000000000 = +1 × 2(–126) × 0.1 = 2(–127)

Table 2.5 Rules and examples of IEEE single precision format.

● Short real 4 bytes 1 sign, 8 exponent, 23 mantissa

● Long real 8 bytes 1 sign, 11 exponent, 52 mantissa

● Temporary real 10 bytes 1 sign, 15 exponent, 64 mantissa

Table 2.6 IEEE floating point formats.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 0 5

27 26 25 24 23 22 21 20 27 26 2524 23 22 21 20 27 26 25 24 23 22 21 20

Fig. 2.11 Binary coded decimal.

0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1

1 0 5 7 93

23 22 21 20 23 22 21 20 23 22 2120 23 22 21 20 23 22 21 20 23 22 21 20

Fig. 2.12 Packed binary coded decimal.



reduced to a nibble of value 0000 and placed in the second nibble of the first byte of
Fig. 2.12. The value 00000101 of the third byte of Fig. 2.11 has been reduced to a
nibble of value 0101 and placed in the first nibble of the second byte of Fig. 2.12. All
that has been lost in each case are leading zeros, which do not contribute to the value
of the digit. What was in three bytes has now been packed into the three nibbles,
leaving room for another three digits to be represented (I have arbitrarily chosen “7”,
“3” and “9” in the figure). Figure 2.12 therefore represents the decimal number
105,739 held in three successive bytes in packed BCD form.

Characters

After numbers, the next most obvious sets of interpretative rules are those for
characters. By “character” we mean a single symbol that is to be printed on a printer
or displayed on a visual display unit and which includes within the set of all
characters, the letters of the alphabet, both upper and lower case,and the digits 0 to 9.
In most binary representations, a single character is represented by the data pattern
in a single byte. Since a byte can hold 256 different patterns (recall that the range of
numbers in a byte is 0 to 255) then up to 256 different characters can be defined.

American Standard Code for Information Interchange

Any character we wish could be associated with any of the 256 binary patterns.So, for
example, we could define quite arbitrarily that the character “A” be represented by
“00001000” and the character “B” be represented by “00001001” and so forth. In
practice, the association between a particular character and particular binary
pattern has to be standardized so that, for example, printers and display units will
operate compatibly between different systems.The most common set of associations
is the American Standard Code for Information Interchange, or ASCII as it is univer-
sally known. The ASCII code only actually defines characters for the first 128 binary
values (0 to 127), and of these the first 32 are used as non-printing control characters
originally intended for controlling data communications equipment and computer
printers and displays. IBM introduced for their personal computer (PC),an extended
ASCII code which is also in common use, as is the Windows ANSI code, which is used
in Microsoft Windows. In addition to the original ASCII meanings, these codes each
assign (typically different) particular character symbols to all those binary values in
the range 128 to 255. These two sets of extended ASCII character codes are given at
Appendix 1.

At Fig. 2.13, we have shown the three bytes we started with at Fig. 2.2, interpreted
now as three ASCII characters in sequence. The result of this interpretation is the
three letter sequence “inf”.Clearly,given the page layout and punctuation characters
that are available in ASCII, this approach can be used for representing arbitrarily
long text documents. A sequence of characters such as this is often known as a string.
In many systems, the end of a text string is marked by a binary all zeros byte (ASCII
code 0) and this is often referred to as an ASCIIZ string.
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Although ASCII code is certainly the most widely used representation for char-
acters,one other is still sometimes met with,particularly on IBM mainframes.This is
known as extended binary coded decimal interchange code or EBCDIC. In addition,
many personal information managers and electronic organizers use their own
particular modified versions of ASCII, which are often not published. An analyst will
need to know these when looking at internal memory.

Universal Character Set, Unicode and UTF-8

From the late 1980s onwards, work has been carried out by two independent organi-
zations to try to create a single unified character set that would embrace all possible
languages and dialects. The Unicode Project8 was established by a consortium of
manufacturers, mainly concerned with the development of multilingual software,
and the ISO 10646 Project was set up by the International Organization for Standard-
ization (ISO)9. Fortunately, in the early 1990s, members of the two project teams
commenced working together on creating a single code table, and the two standards
are now compatible.

The Universal Character Set (UCS), defined by ISO 10646, is a superset of all other
character set standards. It contains those characters that are required to represent
practically all known languages. It was originally defined as a 31 bit character set and
sub-sets within it which differ only in the least significant 16 bits are known as
planes. The most commonly used characters have been placed into what is called the
Basic Multilingual Plane (BMP) or Plane 0,and,within that plane, the UCS characters
U+000010 to U+007F are identical to those of ASCII. The value U+005A, for example,
refers to the character “Z”.

The encodings UCS-2 and UCS-4 refer to code sequences of 2 and 4 bytes respec-
tively. Unless otherwise stated, such sequences are big endian in order, with the most
significant byte coming first. ASCII characters can be converted to UCS-2 encoding
simply by inserting a 00H byte before the ASCII byte and can be converted to UCS-4
encoding simply by inserting three 00H bytes before the ASCII byte.
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0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0

“i” “n” “f”

Previously interpreted as 26990 and 28265

Fig. 2.13 ASCII characters.

8 See http://www.unicode.org/

9 See http://www.iso.org/iso/en/ISOOnline.frontpage

10 UCS characters in plane 0 are shown as “U+” followed by the two-byte (16 bit)
hexadecimal value of the character code



The original Unicode is, in effect UCS-2 encoding, and this is what we will find in
use when we consider, in a later section, the issue of long file names in Microsoft
Windows. However, UCS-2 is not a suitable encoding system for Unicode when it is
used in Unix systems. For this reason, other encoding systems were devised, and the
most prominent of these is the Unicode (some say UCS) Transformation Format-8
(UTF-8). This uses a variable number of bytes, depending upon the character.
Characters in the range U+0000 to U+007F are simply encoded as single bytes in the
range 00H to 7FH, exactly as for ASCII. Characters greater than U+007F are encoded
as a sequence of two or more bytes, with the first byte indicating how many more
bytes follow in the sequence.

UTF-16 provides what is in effect a 21 bit character set by reserving certain 16 bit
codes as the first word of a surrogate pair. The presence of such a 16 bit word signals
that a second 16 bit word follows, and this combined encoding then represents the
character. Clearly, this technique extends the range of characters that can be
represented.

It has become customary, particularly in Microsoft Windows systems, to specify
whether the Unicode bytes are to be read in little endian or big endian order by
starting the file with a Byte Order Mark (BOM). This is the sequence FEFFH, which,
when seen in this order, indicates big endian interpretation. When seen as FFFEH it
indicates little endian interpretation.For a good explanation of all of these issues, see
Kuhn (2005).

Computer Programs

There is one more standard form of interpretative rule set which we need to mention
before leaving this section. That is the interpretation of binary byte sequences as a
program of instructions to the computer. Because of the complexity of this topic,
however, detailed discussion is best left until we have considered the way in which a
computer operates. Suffice to say here that the binary patterns in a sequence of bytes
may be interpreted by the processor as an ordered sequence of operations that it
must perform. There are therefore sets of interpretative rules that the processor
follows to interpret the bit patterns as instructions to itself. We will consider this
further in a later chapter.

Records and Files

We have now looked at a number of different interpretations for the eight bit binary
patterns that can be held in one, two, three or four bytes (see Table 2.7).

The interpretations for one, two, three and four bytes that we have looked at are by
no means exhaustive, even for the very limited set of interpretative rules that we have
considered. Clearly, for example, we could have a mixed number or a fraction in a
single byte and we could have a fixed point whole number in four or even eight bytes.
As we have also seen, we can have a sequence of bytes of arbitrary length to represent
a string of characters of arbitrary length.
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The byte is often (though not always) used as the fundamental unit for making
more useful structures such as records and files. A record is a sequence of bytes,
which typically will have different sets of interpretative rules associated with
different parts of the byte sequence. Say, for example, we require to hold a military
vehicle registration number in a record. Such registration numbers are made up of a
two-digit decimal number followed by two letters followed again by another two-
digit decimal number, thus: 41 XY 73. We could choose to define a military vehicle
registration record in four bytes as follows. The first two-digit decimal number is
held as packed BCD in the first byte; then there are two ASCII character bytes, and
finally the second two-digit decimal number is again held as packed BCD in the
fourth byte, as shown in Fig. 2.14.

Our definition above defines the interpretative rules for both the construction and
the interpretation of our military vehicle registration record. In order to make
“sense” of these four bytes, the analyst must know, or be able to deduce, the interpre-
tative rules for this particular record.Clearly, there is no limit to the different types of
record that are possible nor to the complexity of any given record structure. If the
wrong11 interpretation is not to be made, it is essential that the analyst is able to
prove that the interpretative set of rules applied to the four bytes is that intended by
the originator for that record structure.

A sequence of records may be called a file. The records in the file may all be of the
same type,or they may be of a variety of types; they may be very complex or they may
be as simple as a single byte each. Again, there is no limit on the different types of file
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● One byte One fixed point unsigned whole number (0 to 255)
One fixed point signed whole number (+127 to –128)
One ASCII character

● Two bytes One fixed point unsigned whole number (0 to 65535)
One fixed point signed whole number (+32767 to –32768)
One fixed point mixed number or fraction
Four hexadecimal digits

● Three bytes Three BCD digits
Six packed BCD digits
Three ASCII characters

● Four bytes One IEEE “short real” floating point number

Table 2.7 Some possible interpretations.

0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1

Y4

23 22 21 20 23 22 21 2023 22 21 20 23 22 21 20

1 X 7 3

Fig. 2.14 Military vehicle registration record.

11 By “wrong” here we mean “not that intended” by the originator of the record.



possible. A file is the basic element that is normally stored in a file system. In most file
systems the file is given a name and often a type description. So, for example, in the
MS-DOS12 file system, a file is given a file name of up to eight characters and a file
type of up to three characters. When written down, it is normal practice to show the
file name separated from the file type by a period thus: TEST.TXT signifies a file of
file name “TEST” and of file type “TXT”.

File Types and Signatures

File types may be used to signify the types of record that are held in the file. This is
useful to the analyst as a starting point for deducing the appropriate set of interpre-
tative rules for the file. Some software packages might use this file type to confirm
initially that a suitable file is being processed, but this is never a sufficient test and
further checks are invariably made of the actual data. There is no guarantee that any
particular system will conform to the file typing practice and, indeed, a conscious
attempt to deceive subsequent analysis may have been made by deliberately
misusing a particular known file type. In addition, some files may have a sequence of
bytes at the beginning of the file that specifically indicate the type of file. This is
known as the file signature or magic number (see later section). Although this too
can be deliberately changed to hinder recognition by the analyst, it is less likely to be
done, since the associated application software would then be unable to recognize
the file until the correct signature had been restored. At Appendix 2 we have listed
some of the more common file signatures.

Use of Hexadecimal Listings

One of the simplest and most common forms of file is that of the plain text file. In
this, all the records are single bytes and each byte represents one ASCII character.
Such files are sometimes called ASCII files or text files and they are often signified by
a file type of “TXT”. Even with something as simple as this there are variations: the
end of each line of text in the file may be indicated by the two byte values 0DH
followed by 0AH, which represent the characters “carriage return” and “line feed”
respectively, or it may be indicated by the single byte 0AH, or it may be indicated by
the single byte 0DH. All three approaches are in common use, but few application
software packages recognize all three. Figure 2.15 shows an example of an ASCII text
file (TEST.TXT) in the form of a so-called hexadecimal listing. This form of listing is
very useful to the analyst and it is displayed here by means of a shareware program
called Gander for Windows produced by Dave Lord in 1991. This uses lower-case
letters for hexadecimal values and, to make the point that both cases are equally
acceptable,we use lower case in the rest of this section when referring to the figures.
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The listing of Fig. 2.15 shows the actual byte values in the file: in hexadecimal
number form in the left-hand panel and in ASCII character form in the right-hand
panel. If we examine the left-hand panel, we can see that the address of each byte is
given,also in hexadecimal number form,by the sum of the row and column numbers.
So, for example, the third byte in the sequence (of value 69H) is at address row 00H +
column 02H = 02H (remember addresses start from 0); the sixteenth byte (of value
66H) is at address row 00H + column 0fH = 0fH; and the thirty-sixth byte (of value
0dH) is at address row 20H + column 03H = 23H. It is at addresses 23H and 24H that
we see an example of the carriage return (0dH) line feed (0aH) sequence that we
referred to above. In the right hand-panel of the listing, we see the ASCII character
interpretation for each byte, but only where that interpretation results in a visible
character. So, for example, the effects of the ASCII characters associated with
addresses 23H and 24H (carriage return 0dH and line feed 0aH respectively) are not
implemented (we would get a new line of text in the display, if they were) but instead
a blob is put in their place, and this is repeated for all non-visible characters. The
ASCII text file, when printed out, displays the visible text shown in Fig. 2.16.

Word Processing Formats

In practice, there is not much to gain from using a hexadecimal viewer with a plain
text ASCII file. The real benefits come when the file is not made up solely of ASCII
characters. One type of word processor replaces some of the ASCII characters and
embeds its own word processing codes directly into the text of the file. These codes
signify, for example, the page layout, the type of printer and all those other elements
that determine the appearance of the document, such as bold, italic, underline and
the font types and point sizes etc. A second type of word processor leaves the text
alone but generates separate tables of codes that point to various elements of the text
and define the specific layout, appearance and edits that are to be applied. Both types
normally also include a file signature at the beginning of the file.
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Fig. 2.15 Hexadecimal listing of TEST.TXT.

This is a test file for ASCII text.
That was an example of a new line.

Fig. 2.16 Printout of TEST.TXT.



WordPerfect

At Fig. 2.17 we have shown a hexadecimal listing of some of the byte patterns that
result when the same text as that shown at Fig. 2.16 is processed using the Corel®

WordPerfect® version 8 word processing application (later versions are not signifi-
cantly different). The listing has been limited to two small parts: the first part is from
addresses 00H to 3fH and the second part is from addresses 730H to 7aaH. The detail
between addresses 3fH and 730H has been deliberately omitted in this example for
the purposes of clarity.

The first point to note is the significant increase in size of the word processor file
over that of the original ASCII file. The word processor file is 7abH bytes long (equal
to 1,963 bytes) and the ASCII file is only 47H bytes long (equal to 71 bytes). The
second point to note is the presence of a file signature in the first few bytes of the file.
Here we see in the first four bytes of this file the hexadecimal codes: “ff 57 50 43”13,
which is the known signature14 for a Corel WordPerfect word processor document
file. The third point we may note is that the ASCII text, which starts at 751H with the
byte value 54H for the character “T”, has been modified. The space character in
ASCII is 20H (for an example, see byte address 04H in Fig. 2.15), but here the space
character has been replaced with 80H (see, for example, byte address 755H in Fig.
2.17). In addition, there is nothing recognizable as a carriage return or a line feed
character, 0dH and 0aH respectively, between the two lines of ASCII text, in the area
of addresses 774H to 788H.
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Fig. 2.17 Hexadecimal listing of WordPerfect file.

13 The WordPerfect signature is often written as –1, “WPC”.

14 Many file signatures are listed in books such as The File Formats Handbook (Born, 1997)
and Encyclopedia of Graphics File Formats (Murray and vanRyper, 1996). See Appendix
2 for some examples.



As mentioned above, this word processor replaces some ASCII character codes
and uses embedded file format codes. The Software Development Kit15 provided
with Corel WordPerfect Suite 8 includes full details of all these codes. Using this
information,we are able to interpret the entire file should we so wish.This we will not
do, but a few simple examples will make the point. The four byte sequence “01 0a 02
03” at addresses 08H to 0bH specifies that the document was written by a
WordPerfect program, that it is a WordPerfect document and that the application
program was WordPerfect version 8. The two byte sequence “ab 07”at addresses 14H
and 15H is in fact the file size in little endian fixed point integer format. That is, it is
the number 07abH which is equal to 1,963 bytes, as we noted above. Finally, the
sequence of bytes that starts “d0 04” at addresses 774H and 775H and ends “00 d0” at
addresses 787H and 788H is called an “end-of-line group” and represents the end of
line characters between the two lines of text.

Provenance of Documents

Some important points for the analyst may be drawn from this limited analysis. One
of the most difficult issues for the analyst is in determining provenance for
documents which may have been deleted and subsequently partially overwritten.
Typically, a “cookie” file downloaded as a result of Internet browsing would only
overwrite the first sector (512 bytes) of a deleted file whose space had been reallo-
cated. This would certainly cause the file signature to be overwritten, but, specifically
for a WordPerfect file, it might not affect the text portions, which are located towards
the end of the deleted file. These text portions would be uniquely recognizable by the
embedded 80H codes present in place of spaces and the file format code sequences
indicating end of line, etc. A report that explained this analysis could well give suffi-
cient credibility to relevant text fragments for them to be admissible in court.

Microsoft Word for Windows

Of course, not all word processors are the same, and at Fig. 2.18 we see a hexadecimal
listing of some of the byte patterns that result when the ASCII text shown at Fig. 2.16
is processed using Microsoft Word for Windows 95 version 7 (newer versions are
similar). The listing this time has been limited to three small parts: the first part is
from addresses 00H to 1fH, the second part is from addresses 4f0H to 54fH, and the
third part is from addresses 2be0H to 2bffH. Here we note that the Microsoft Word
for Windows file is very much larger: 2c00H bytes (which is equal to 11,264 bytes)
compared with the WordPerfect file size of 1,963 bytes and the ASCII file size of 71
bytes (see Table 2.8). We also note that the signature for a Microsoft Word for
Windows file appears to extend from addresses 00H to 07H and to consist of the eight
hexadecimal codes: “d0 cf 11 e0 a1 b1 1a e1”. At address 507H we note that the space
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15 See WordPerfect Document File Format, Corel WordPerfect Suite 8 Software
Development Kit in Corel/SDKs/Suite8/DOCS/A_FRNTFF.htm on the WordPerfect CD-
ROM.



character is held using its ASCII value of 20H and that at address 523H the end of line
is indicated by an ASCII carriage return character with a byte value of 0dH.

This word processor is of the second type that we referred to above. It leaves the
text alone but generates tables of codes that point into the text and define the layout,
appearance and edits that are to be applied to it. This latter point is important, in that
we cannot assume that the form and order of the text that we see in the hexadecimal
listing is the form and order that will be displayed by the word processor application.
This is because there is what is called a piece table, which is generated during the
editing of the document, and which specifies how the text is to be broken up into
pieces and in what order those pieces are to be used. In non-complex documents
there is only one piece and so the problem does not arise, but the analyst needs to be
able to analyse the Word16 document in detail in order to be sure of this in the case of
a partially overwritten fragment.

Compound Documents

The file signature “d0 cf 11 e0 a1 b1 1a e1”is not,however, the particular signature for
a Microsoft Word document. It is instead the general signature for a Microsoft
compound document17, sometimes known as an OLE2 container. Compound
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Fig. 2.18 Hexadecimal listing of MS Word for Windows file.

● ASCII text file 71 bytes

● WordPerfect 8 1963 bytes

● Word for Windows 7 11264 bytes

Table 2.8 Typical file sizes.

16 Born notes in The File Formats Handbook (Born, 1997) that “... the complete structure of
the Winword format is confidential and may not be published here”. More recently,
however, detailed specifications have appeared on the Internet under the title
“Microsoft Word 97 Binary File Format”.

17 No details of this format were found in the public domain until relatively recently. Now a
number of sites are providing access to a Microsoft document entitled “Compound File
Binary File Format”. The URL of one such site, at the time of writing, is http://www.
aafassociation. org/html/specs/aafcontainerspec-v1.0.1.pdf (Microsoft, 2004).



documents are used throughout the Microsoft Office range, including Word, Excel
and PowerPoint. The concept was devised by Microsoft to permit many different
types of data objects to be contained within a single document. The idea is that the
tools required to edit the various objects can be automatically called up through the
object linking and embedding (OLE) mechanisms so that the user can concentrate on
the document itself rather than on the various applications associated with it. The
approach has evolved through a number of developments from OLE itself, through
OLE2 and a generic architecture known as the Component Object Model (COM) to
Distributed COM (DCOM).

In order to do this, each document contains structured storage and is similar to a
volume that has been set up with a FAT file system (see Chapter 5). The document
contains a root directory and a number of folders (known as storages) and a number
of files (known as streams). One such stream in a Word document container is the
current “WordDocument” stream, and it is this that contains the text we have been
looking at in Fig. 2.18. The Word document itself, however, also contains a number of
other streams, including standard streams (such as “SummaryInformation”) that
specify the properties of the document. Some of these values are displayed when, in
Windows, a right mouse button context menu is opened on the document and the
“properties” item is selected. Such data is often called metadata. In addition to the
standard streams, it is sometimes the case that previous versions of the Word
document are still present in the container as well as metadata that is not accessible
through normal application software.

There have also been reports of so called trash blocks being noted which hold data
from other applications and from other parts of the disk and the memory. This
appears to be an issue whereby the application does not clear newly allocated blocks
of their current content when, for example, extending the size of the file. The effect of
this is that sensitive data could become inadvertently saved within the Word file.
Examination of such blocks could provide useful additional information to an
analyst about other applications that have been run on the target machine, and this
can be done using a hexadecimal viewer such as Gander. There is also the possibility
that such data could be passed inadvertently from one system to another when Word
documents are enclosed in email messages. Of course, it would also be possible for
sensitive data to be hidden deliberately within a Word file and sent openly as an
email enclosure.

Although the authors have carried out a great deal of forensic case work involving
the analysis of OLE2 container documents, and currently run a course for forensic
practitioners on Microsoft Office Document Analysis and Reconstruction,we do not
feel that it would be appropriate to give a more detailed treatment here. It is a
complex subject and we believe that to do it justice would probably require a
complete book in itself.

Rich Text Format

In the previous two word processor examples we have been seeing a mixture of
binary control codes and ASCII text. For the last example in this section, we note at
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Fig. 2.19 the same information encoded in Rich Text Format (RTF) which was
designed to use only the displayable ASCII characters18.

In this example the listing has been limited to two parts: from addresses 00H to
4fH and from addresses d0H to 13aH.The file signature is evident at the beginning of
the file as “{\rtf1\ansi” and the text clearly starts at address e5H. In addition, it is
apparent that the formatting information is also held in text form; thus we see ASCII
character details about font and colour as well. Many applications support RTF, so it
can be a useful exchange medium between different products.

Magic Numbers

It is not just word processing packages that use file signatures to identify their appli-
cation files. The idea has been around since the very early days of computing, and in
the Unix community, in particular, the first few bytes of a binary file are often used to
indicate type. This is generally referred to as its “magic number” and is defined as:
“Special data located at the beginning of a binary data file to indicate its type to a
utility... once upon a time, these magic numbers were PDP-11 branch instructions that
skipped over header data to the start of executable code”19. There are now thousands
of such magic numbers, many not documented, many proprietary and many simply
picked at random.An attempt20 was being made to document and standardize magic
numbers as well as to specify basic rules for their future selection, but little action
seems to have been taken since 1998. A preliminary draft document21, dated
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Fig. 2.19 Hexadecimal listing of RTF file.

18 This format was designed by Microsoft as a method of encoding formatted text and
graphics for ease of transfer between different applications. It is used by the clipboard in
Windows. From (Born, 1997).

19 Quoted from URL http://www.science.uva.nl/~mes/jargon/m/magicnumber.html.

20 See URL http://www.catb.org/~esr/magic-numbers/ for the Magic Numbers Group
Home Page.

21 Rfc-draft, v1.2 1996/11/20 available at URL http://www.catb.org/~esr/magic-
numbers/rfc-draft.



November 1996, is still in existence which states: “... it is very desirable that files
should generally present themselves as self-describing objects from which an appli-
cation launcher or navigation tool can readily deduce both their uses and at least
some of the semantics of their contents.” Clearly, this work would be of much interest
to the forensic computing analyst, since it could assist in making the recognition and
interpretation of well-behaved files a routine activity22.We consider in a later section
the problem of badly behaved files and deliberate attempts to hide information.

Graphic Formats

It is in the digital representation of graphic images that we find perhaps the greatest
range of different file formats.Just to give a flavour for some of these graphic formats,
we will use the digital image of a Zeon Tech digital diary, shown at Fig. 2.20, as our
example. A high-resolution digital image was first taken with a digital camera and
then processed using a graphics software package (Paint Shop Pro) to give a series of
lower resolution 256 greyscale images in a number of different graphic formats. The
first of these that we will consider is that of the Graphics Interchange Format, or GIF.
developed by CompuServe in 1987 to permit the passing of graphic images by email.
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Fig. 2.20 Zeon Tech digital diary (photograph: Tony Sammes and Brian Jenkinson).

22 In Unix, there is a special program, file(1), which attempts to identify the type of any
given file from its magic number.



Graphic Interchange Format

GIF enables several pictures to be stored in one file and it uses a loss-free
compression algorithm23 to reduce the file size. The specification, published in 1987,
is referred to as “GIF87a” and an extended version published in 1989 is known as
“GIF89a”. In the case of our example, the resulting GIF file is 64 kilobytes in size and
two small segments of the file, examined using the Gander hexadecimal viewer, are
shown at Fig. 2.21.

The file signature (or magic number) can readily be seen in the first few bytes as
“47 49 46 38 39 61” or “GIF89a”. This is followed immediately by the logical screen
descriptor block, starting at address 06H, which specifies the width of the logical
screen in pixels as “40 01” (translated from little endian this becomes 0140H = 320
decimal) and the height of the logical screen in pixels as “d6 00” (again, translated
from little endian, this is 00d6H = 214 decimal). It also shows at address 0aH that
there is a global colour table and that the colour resolution is 8 bits for each primary
colour in the colour table24. The global colour table starts at address 0dH with “00 00
00” and consists of 256 triples, each triple representing the red, green, blue (RGB)
intensity values of one of the 256 possible colours in the colour palette. In this case,
the colours in the palette are all greyscale colours. We can tell this because the inten-
sities of each of the R, G and B values for each colour triple are identical, thus
resulting in a palette of grey/black tones.

Two small segments of the file have been shown. The second segment, starting
with address 300H, shows the last entry of the colour table at address 30aH with R, G,
B values “ff ff ff”. The next value, at address 30dH, is “2c” and this signals the start of
a GIF picture (there may be more than one). This is the first byte of the image
descriptor block which defines at address 30eH the left coordinate of the picture in
pixels, 0000H, at address 310H the top coordinate of the picture in pixels, 0000H, at
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Fig. 2.21 Hexadecimal listing of GIF file.

23 Lempel–Ziv–Welch (LZW) compression. See Blackstock (undated) for an outline of the
process.

24 For these and similar details see page 684 et seq. of Born (1997)



address 312H the width of the picture in pixels (again, to be translated from little
endian, thus 0140H = 320 decimal) and at address 314H the height of the picture in
pixels (also, to be translated from little endian, 00d6H = 214 decimal). Immediately
following this is a single flags byte and then, starting from address 317H, is the first
raster data block. This will typically be followed by a number of raster data sub-
blocks.

In constructing the GIF file, the original picture has been analysed, starting in
the top left-hand corner, and working, pixel by pixel, from left to right and from top
to bottom. Each pixel of the picture has been coded as a colour byte, the value of
which is the relative entry in the colour table of value 0 to 255. This stream of pixel
bytes has then been encoded using LZW compression and the resulting output
stream has been used to form the raster data block and sub-blocks, the first bytes of
which are the block lengths. Each data block therefore contains LZW compressed
data, which we will not attempt to analyse here. The first of the data blocks
commences with a code size byte which is used in the decompression process. In
our example, this byte is at address 317H (of value 08H) and the first raster data
block starts at address 318H and has a length of feH. The compressed data for this
block starts at address 319H.

LZW Legal Problems

Although GIF became one of the most widely used formats for graphic files, legal
difficulties have arisen in recent years. In 1977, Abraham Lempel and Jakob Ziv (Ziv
and Lempel, 1977) developed the first of the LZ compression algorithms (LZ77)
which are found in archiving programs such as zoo, lha and pkzip. In 1984, Terry
Welch, whilst working for Sperry Corporation, produced a modified version of the
LZ compression algorithm known as the LZW algorithm. It is this algorithm which is
used today in the GIF and TIFF graphic file formats. In 1983, Sperry Corporation
(and possibly IBM) applied for patents for the LZW algorithm in a number of
countries and the patent ownership was transferred from Sperry Corporation to
Unisys when the new company was formed. In 1994, CompuServe and Unisys came
to an agreement whereby the use of the LZW algorithm would be licensed for appli-
cation in the GIF file format. However, this was not as beneficial as it at first seemed
and it created many problems for the user community, who had understood from
CompuServe that the GIF format was freely available for unrestricted use. Up until
recently, licences have been required from Unisys for all software that reads or writes
the GIF format. The latest position is given in this quote from “The Free Software
Foundation” (Free Software Foundation, 2006): “We were able to search the patent
databases of the USA, Canada, Japan, and the European Union. The Unisys patent
expired on 20 June 2003 in the USA, in Europe it expired on 18 June 2004, in Japan
patent expired on 20 June 2004 and in Canada it expired on 7 July 2004. The U.S. IBM
patent expires 11 August 2006, (we are still searching the databases of other
countries).” It may well be that the GIF format makes a full come back in the near
future.
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Portable Network Graphic

The reaction of many in the graphics community to this problem, and, in particular,
that of the Free Software Foundation, was to drop GIF altogether and to embrace a
new format called Portable Network Graphic (PNG)25. This format uses an LZ77
variant of the compression algorithm which is not part of the Unisys patent and the
unofficial expansion of the acronym “PNG” is “PNG’s Not GIF”.

The PNG work has been well received by the graphics community and many
graphics packages now support it. Murray and vanRyper (Murray and vanRyper,
1996) state: “We are happy to report that the PNG specification is one of the most
complete, well-thought-out, and well-written file format specifications yet examined
by the authors of this book.”

Our second graphics example of the picture at Fig.2.20 shows at Fig.2.22 one small
segment of a PNG file, again examined using the Gander hexadecimal viewer. This
file is 44 kilobytes in length.The file signature is the first eight bytes and is always “89
50 4e 47 0d 0a 1a 0a”. This is not a random choice of values, since the bytes are used to
assist in detecting various kinds of errors. The value 89, for example, is used to detect
whether the file has passed through a 7 bit data transmission channel, in which case
the 89 would become 09. The characters “PNG” give an immediately recognizable
text signature. The byte pair 0d 0a is used to determine whether or not the file has
been manipulated by software that alters carriage return and newline sequences,and
the byte 1a prevents the listing of the file on MS-DOS operating systems, since this
byte value is the MS-DOS end of file marker, Control-Z.

Immediately after the signature is the Header chunk. The length of the data in the
chunk is given by the double word starting at address 08H and of value “00 00 00 0d”.
Note that this format uses big endian storage, and thus the value is equivalent to
0000000dH, which is decimal 13. Next follows the signature for the chunk, which are
the characters “IHDR” at address 0cH and then the 13 data bytes of the chunk
starting at address 10H. These take the form of a double word for the width of the
image in pixels “00 00 01 40”(big endian format of 00000140H results in 320 decimal)
followed by a double word for the height of the image in pixels “00 00 00 d6” (big
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Fig. 2.22 Hexadecimal listing of PNG file.

25 See article by Atzberger and Zolli (Atzberger and Zolli, 1996)



endian format of 000000d6H results in 214 decimal). Finally, the last five bytes “08 00
00 00 00”, starting from address 18H, indicate an 8 bit per pixel greyscale colour
depth26. These are exactly the same results as we obtained from interpreting the
equivalent GIF file.

The chunk ends at 1dH with a double word cyclic redundancy check and the next
chunk starts at address 21H with a chunk data length of “00 00 ad f2”, which is equiv-
alent to 44530 in decimal. The signature for this chunk, the Image Data chunk, is the
characters “IDAT” and the 44530 bytes of compressed data start at address 29H. The
image data is laid out as a bitmap which has been scanned from left to right and from
top to bottom and it is compressed using a variation of the deflate27 compression
method developed by Phil Katz, the author of the pkzip archiving program.Again,we
will not attempt to decode the compressed data of this example.

JPEG Compression

Both the graphic formats so far considered use lossless28 compression methods and,
at best, in practice, will only achieve an approximate halving of the file size. The final
example we will look at is a graphic format that utilises lossy compression methods
and one that can achieve much higher compression ratios. The Joint Photographic
Experts Group (JPEG) is a standards committee that was formed in 1987 from two
separate bodies, a CCITT (International Telegraph and Telephone Consultative
Committee) sub-group and an ISO (International Organization for Standardization)
sub-group.The two sub-groups had both been researching compression methods for
the transmission of graphic images and the combining of the two sub-groups
permitted the establishment of a single standard.

JPEG, unlike the previous formats, is not based on a single compression method29.
Rather it is a toolkit of methods that may be altered to fit the needs of the user.
Different compression methods may be used to trade quality of image against file
size. As mentioned above, JPEG also differs in that it primarily uses lossy methods of
compression. These work by discarding information that normally goes unnoticed
by the human eye. As a result, there need be no perceptible degradation in quality
despite achieving compression ratios of the order of 20:1. The JPEG ISO standard
(ISO, undated) describes the compression methods for images, but it does not define
a common file interchange format which will enable JPEG bitstreams to be
exchanged between a variety of platforms and applications. The JPEG File Inter-
change Format (JFIF) has been designed to meet just this need. In the 1992 specifi-
cation (Hamilton, 1992), the author states: “... the only purpose of this simplified
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26 For these and similar details see page 700 et seq. of (Murray and vanRyper, 1996)

27 See the file Application.txt available from URL: http://www.pkware.com/
documents/casestudies/APPNOTE.TXT.

28 In a lossless system, the original bit pattern can be restored in its entirety from the
compressed version.

29 See page 191 et seq. of Murray and vanRyper (1996) for a discussion of JPEG
compression.



format is to allow the exchange of JPEG compressed images”. Image files with file
types such as JPG, JIF, JPEG or JFIF are usually to be found in JFIF format (but see
section on EXIF below), and our final example of the picture at Fig. 2.20 is in just this
format.

JPEG File Interchange Format (JFIF)

At Fig. 2.23 two small segments of the JPG file are shown, again examined using the
Gander viewer. This file is only 17 kilobytes in length as a result of the lossy
compression. The quality of the image,however, is little different from that of the GIF
and PNG versions. The file signature is effectively the first four bytes “ff d8 ff e0”
although these are made up of two separate blocks. The start of image (SOI) marker
block, “ff d8”, is required by the JPEG standard to signal the start of a JPEG file and
the “ff e0” indicates an application (APP0) marker block which, together with the
characters “JFIF”, starting at address 06H identify this as a JFIF file30. Although not
shown, the file ends with “ff d9”, the end of image (EOI) marker.

Also of interest is the sequence that starts at address 59H of value “ff c0”. This is a
start of frame marker block which at address 5dH has the bits per pixel value of 08.At
address 5eH is a two-byte word giving the height of the image in pixels “00 d6” (big
endian format of 00d6H results in 214 decimal) and at address 60H is a two byte word
giving the width of the image in pixels “01 40”(big endian format of 0140H results in
320 decimal). Once again, these are exactly the same results as we obtained from
interpreting the equivalent GIF and PNG files. In the second segment of the file,
starting with address 13eH, we see the start of scan marker, “ff da”, and this is then
followed at 148H by the compressed image data, also scanned from left to right and
from top to bottom. It is at this point, once again, that we will leave the analysis31.
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Fig. 2.23 Hexadecimal listing of JPG file.

30 Compare this with the explanation for EXIF files below.

31 For more detail see page 895 et seq. of Born (1997).



Exchangeable Image file Format (ExIF)

Every JPEG file begins with the SOI (start of image) marker, “ff d8”, and ends with
the EOI (end of image) marker, “ff d9”. In between these two markers are a series of
blocks, each of which is defined by a specific marker. The size of each block is
specified within the block and this allows applications that do not understand a
particular marker to skip over the block concerned. It also provides considerable
flexibility in the overall structure of the file.

As we have seen, the first JPEG file format standard (JFIF), defined in 1992,
provides for the interchange of JPEG bit streams. It also permits key information to
be added to the file, such as resolution, colour space and a thumbnail image. As a
matter of interest, the thumbnail image can also be very useful to the analyst.
Where, perhaps, the actual JPEG file is damaged and cannot be displayed using
standard graphics software, it may be possible to extract the thumbnail as a
separate JPEG file and view, in miniature, what the larger picture would have
shown.

In 1998, the Japanese Electronic Industry Development Association (JEIDA)
developed a new standard called the Exchangeable Image file Format (ExIF).This has
been designed to allow camera and image metadata to be stored in JPEG (and TIFF)
files. This different form of a JPEG file is indicated by the APP0 marker, “ff e0”, being
replaced by a new application marker, APP1, of value “ff e1” and the letters “JFIF”
being replaced by the letters “Exif”. Such a file is easily recognizable using a
hexadecimal viewer.

The metadata stored may provide very valuable evidence to an investigator, since
it can include such details as when the picture was taken, what camera make and
model was used, what the camera settings were, whether the camera was on self
timer, and whether a flash was used. This information can be extracted using a
viewer designed for the purpose (one such is Exif Reader32) or by analyzing the
metadata directly using a hexadecimal viewer.Full details of this structure, including
all the metadata tags, are given in Brown (2004).

Other Graphic File Formats

There are many other graphic file formats: BMP, FLI, FLC, MAC, ICO, IMG, PAL, PIC,
PCX and TIF to name but a few. Some file signatures are listed at Appendix 2, but
reference books such as The File Formats Handbook (Born, 1997) and Encyclopedia
of Graphics File Formats (Murray and vanRyper, 1996) are essential for a detailed
analysis. The full specifications for many of these formats are also freely available on
the Internet33.
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32 See http://www.takenet.or.jp/~ryuuji/minisoft/exifread/english/.

33 See, for example, “The Graphics File Format Page”: http://www.dcs.ed.ac.uk/home/
mxr/gfx/.



Archive Formats

The file archive program pkzip has already been mentioned in the context of the LZ
compression algorithms, as have similar products such as zoo and lha. Archivers
such as these carry out two separate functions: they compress one or more files using
lossless compression and they archive the resulting compressed files into a single
archive file, which, in the case of pkzip, is given a file type of “ZIP”. Although this is
one of the most common archive systems in use today, implementations of it are
generally proprietary and licensed application programs have to be obtained. An
exception to this is gzip34, which is an open-source, patent-free variation of the LZ77
algorithm. This system is commonly used by HTTP servers to compress HTML web
pages and is also much in favour with the Unix community. Files compressed using
gzip are normally allocated a “Z” or “GZ” file type.

Pkzip

To demonstrate an archive format, the two word processing files TEST.DOC and
TEST.WPD, were archived using pkzip to form the file TEST.ZIP. At Fig. 2.24, two
small segments of the resulting file are shown, using the Gander hexadecimal viewer.
The ZIP file is 2597 bytes long compared with the 11,264 bytes of TEST.DOC and the
1963 bytes of TEST.WPD. The file signature can be seen in the first four bytes as “50
4b 03 04” and this is most readily recognized as starting with the characters “PK”.
This signature is part of the local file header and is repeated for every file in the
archive. Immediately after the signature are a series of bytes detailing the pkzip
version number, general purpose flags, the compression method used, the last
modified date and time of the file, a cyclic redundancy check, the compressed and
uncompressed file sizes and the file name in characters35.

The name of the first file in the archive starts at address 1eH and is seen to be
“TEST.DOC”. The length of this file name is confirmed at addresses 1aH and 1bH as
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Fig. 2.24 Hexadecimal listing of ZIP file.

34 See RFC 1952 (Deutsch, 1996).

35 For these, and details of the compression algorithms, see PKWARE (2006).



the two bytes “08 00", which translated from little endian is 0008H, equal to 8
characters. The compressed file size is the four bytes “7c 05 00 00” starting at 12H,
which translated from little endian is 0000057cH, equal to 1404 in decimal. The
original file size is the four bytes “00 2c 00 00” starting at 16H, which translated from
little endian is 00002c00H, equal to 11,264 in decimal (entirely as we expect). The
compression method is given at addresses 08H and 09H as the two bytes “08 00",
which translated from little endian is 0008H; this value specifies “deflation”. It is
interesting to note the very significant reduction in file size that is possible with
compressing this kind of word processing file. The last modified file time is given at
addresses 0aH and 0bH as the two bytes “29 9a” and the last modified file date is
given at addresses 0cH and 0dH as the two bytes “1b 23”. Taken together, after trans-
lation from little endian, these four bytes specify a DOS date and time of 27/08/1997
at 19:17:18, which is the last modified date and time value found on the file itself.
Starting at address 0eH are the four byte values “eb 72 3e ac”, and these, translated
from little endian to be ac3e72ebH, are the 32 bit cyclic redundancy check for the
uncompressed file. Immediately following the file name at address 26H is the start of
the compressed data of the file itself.

Each of the files in the archive follows a similar pattern: a local file header followed
by the compressed file data. At the end of the sequence of files, a central directory
record is established. In the second segment of the ZIP file, starting with address
9d9H, we see the signature “50 4b 01 02” of the second (and last)36 file header in this
central directory record. Each of these headers contains very similar information to
that held in the local file header, including, as can be seen starting at address a07H,
the file name in character form. The central directory record (and the ZIP file) is
terminated by an end of central directory record, starting at address a0fH with
signature “50 4b 05 06”. From the viewpoint of the forensic computing analyst, it is
useful to note that even if the ZIP file has been password protected, the file names
and other details are still available, both in the local file headers and in the central
directory record.

Other Applications

The final format considered in this chapter is the record structure found in the
memory of some Sharp organizers. The structure, shown at Fig. 2.25, takes the form
of a record signature, made up of the three bytes “20 07 00", which is preceded by two
counts, each of which are two bytes in length held in little endian format. Immedi-
ately after the signature are the character bytes of the record itself. The first two-byte
count specifies the length of the record, including the count bytes, and the second
two-byte count specifies the length of the preceding record.

In the first entry of the example shown in Fig. 2.25, the first count is “15 00”, which,
translated from little endian format gives 0015H, equal to 21 in decimal, and, taking
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into account the seven bytes of the two counts and the signature, gives a text
character record size of 14 bytes. The second count of this record indicates that the
previous record is “1c 00” (or 001cH translated from little endian), which is equal to
28 (in decimal) bytes long.

The second entry shows the first count as “1a 00” (or 001aH translated from little
endian), which is equal to 26 (in decimal) and, once again, taking into account the
seven bytes, gives a text character record size of 19 bytes. The second count of this
record is, of course, the same as the first count of the previous record.

Finally,at Fig.2.33 is shown a hexadecimal listing of part of the memory of a Sharp
organizer which uses this format for its record structure. Starting from address 529H
can be seen the two counts of values, “15 00”and “1c 00”, followed by the signature at
address 52dH of “20 07 00”. Following this are the 14 text character bytes of the
record. In this particular format, the value 00H is used to represent a newline. The
next record then starts at 53eH with the counts of values “1a 00” and “15 00”. Of
interest to the forensic computing analyst is the fact that the signature in this format
is changed for secret records to “A0 07 00”, although the text characters remain
unchanged. Direct access to the memory and a knowledge of the record structure
permits the analyst to extract password-protected records from this model of
organizer.
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20 00 70

15 00

15 00

19 byte record

1a 00

14 byte record

Fig. 2.25 Structure of a Sharp organizer record.

Fig. 2.26 Hexadecimal listing of part of a Sharp organizer memory dump.



Quick View Plus

This chapter would not be complete without reference to the file utility Quick View
Plus37. This program uses the file signature in a file to identify the file format and
then display it in accordance with the rules of that format. The outline specification
for the most recent version (9.0) at the time of writing, states: “Quick View Plus
provides real benefits by enabling you to access information in over 250 file types
without the native applications. Email attachments, Web files, legacy documents, and
more”.

A utility such as this, together with a hexadecimal viewer, is an essential tool for
the forensic computing analyst. It should be noted, however, that some members of
the forensic computing community take the view that computer output that is to be
presented in evidence should always be produced using the application software that
was used to create it. Quick View Plus and other tools are thus seen to be useful for
rapid review and to assist in identification, but evidence needs to be produced,
wherever possible, using the original software installed on the suspect machine.

Exercises

2.1 Interpret each of the pairs of binary byte patterns that follow as:

(1) a little endian unsigned decimal integer
(2) a little endian signed decimal integer
(3) a big endian unsigned decimal integer
(4) a big endian signed decimal integer
(5) two signed decimal integers
(6) a big endian unsigned mixed decimal number with the binary point

between the two bytes
(7) a packed binary coded decimal number
(8) a hexadecimal number
(9) two ASCII characters

Where a value is not relevant, such as a non-printing ASCII character or a BCD
digit outside of the range 0 to 9, write a “?” symbol.

(a) 01010111 01110110
(b) 10000000 01111111
(c) 01000110 01011001
(d) 00000101 10001000
(e) 00110111 10011001
(f) 01110010 00111111
(g) 10010001 01000010
(h) 01010101 01100001
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2.2 Write down the binary patterns in two bytes for the following:

(a) 7f 43 hexadecimal little endian
(b) 18ab hexadecimal big endian
(c) “Az” ASCII characters
(d) 1904 packed BCD
(e) 18956 unsigned decimal big endian
(f) 51423 unsigned decimal little endian
(g) –4 and –60 two signed decimal numbers
(h) 103.75 unsigned mixed decimal big endian with the binary point between

the two bytes

2.3 Write down the binary patterns in four bytes for the following short real
floating point numbers:

(a) +12.0
(b) +16.0
(c) +127.0
(d) –127.0

2.4 Write down the short real floating point numbers represented by the following
four byte sequences:

(a) 41 c6 00 00H
(b) c1 c6 00 00H
(c) 44 f8 40 00H
(d) c5 9d 08 00H

2.5 Examine the partial hexadecimal listing at Fig. 2.27 and answer the following
questions about the file to which it relates:

(a) Can you confirm that this is a graphics file?
(b) What are the dimensions of the image?
(c) Is the image colour or greyscale?
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3. IT Systems Concepts

Introduction

In this chapter we will examine the following topics:

● The memory and the processor
● Address and data buses
● The stored program concept
● Format of instructions
● The processor mechanism
● A worked example of processor execution
● Stepping through the worked example
● Program and data and rules and objects
● Software and programming
● Breaking sequence
● A black box model of the PC

In the previous chapter we have seen how we can use binary patterns, physically
implemented as the two-state devices of a computer memory, to represent infor-
mation in a wide variety of forms. We have looked, in some detail, at the represen-
tation of numbers, of text, and of pictures, and briefly at some other complex file
structures, and we may well have come to the conclusion that perhaps we really can
represent any real-world object by means of binary patterns in a computer memory.
For all practical purposes, this is indeed the case. We may recall that the reason for
this unbounded diversity of what can be represented from such simple patterns
stems from the limitless sets of rules that we may use to interpret and manipulate
them. In all that we have talked about so far, however, the processes of applying the
different rules of interpretation to the various binary patterns have all been carried
out, by each one of us individually, in our minds. These processes have then revealed
to each one of us the “meaning” of a particular pattern given a particular interpre-
tation. Another way of looking at this is that we have extracted information from
data.

In this next chapter, we examine the idea that the rules of interpretation and
manipulation, instead of just being in our minds for us to apply, might also be held in
the memory of a computer as a sequence of binary patterns. These patterns could
then be interpreted by the computer, as an ordered set of instructions which, when
executed, cause the computer to carry out a series of actions. If, in carrying out these
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actions, the computer were to manipulate and interpret other binary patterns of data
in its memory,we might see this as little different in principle from our own interpre-
tations of such patterns. We might then view the computer, when executing instruc-
tions, as a device that is capable of extracting information from data.

The part of the computer that carries out the function of executing instructions is
called the processor and the relationship between this element and the memory is
what we now need to examine in more detail. We will do this by means of a worked
example, showing step by step the principles involved and how data in the memory is
interpreted and manipulated by the processor. In order not to confuse the reader
with unnecessary detail at this stage, some simplifying assumptions will initially be
made, but these do not alter the principles that will be described.

Two Black Boxes

We start with a very simple diagram (Fig. 3.1) showing a processor and a memory as
two black boxes connected together by two arrowed lines. The black boxes are shown
as separate because it is very likely that they will be implemented using different
electronic chips: a processor chip and a memory chip (or possibly a set of memory
chips). They are connected together by flexible cables (or tracks on a printed circuit
board) which are made up of several wires in parallel. Such multiple connections are
called buses.

Buses

One bus (the address bus) has a single arrow on it, indicating a one-way transfer of
data and the second bus (the data bus) has two arrows, indicating a two-way transfer
of data. If we think about the requirement to pass binary patterns between the
processor and the memory we might consider an appropriate unit as being the byte.
Recalling that a byte consists of eight binary bits, a suitable form of connection that
would permit all eight bits of a byte to be transferred in one go would be eight
parallel lines: a separate line for each bit. This is precisely the form that a bus takes: a
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processor

memory

objects = data
rules = program

Fig. 3.1 Processor and memory.



set of parallel lines that permits the transfer of several bits of data all at once. Buses
come in many sizes, and the eight bit data bus suggested by this example is now
rather dated. However, it will serve our purposes well enough here and we will
consider bus sizes again in a later chapter.

The Stored Program Concept

Within the memory box we have indicated binary patterns that represent both
objects and rules. The objects are typified by the real-world objects that we were
considering in Chapter 2: numbers, text, pictures, record structures etc. It is perhaps
unfortunate that in this context such objects are also sometimes referred to as “data”,
an association that should not be confused with our earlier use of the word.The rules
are ordered sequences of instructions that are to be interpreted by the processor and
which will cause it to carry out a series of specific actions.Such sequences of rules are
called programs and the idea that the computer holds in its memory instructions to
itself is sometimes referred to as the stored program concept.

So we have the situation where the first of the two black boxes in the diagram, the
memory, contains not only the binary patterns that represent the real world objects
(the data) but also the binary patterns that represent the rules (the program). These
rules specify what is to be done to the binary patterns that are the data, and it is these
program rule patterns that are to be interpreted by the second of the two black boxes
shown in the diagram: the processor.

The idea can be quite difficult to grasp.There are binary patterns in one part of the
memory. These binary patterns are interpreted by the processor as a sequence of
rules. The processor executes this sequence of rules and, in so doing, carries out a
series of actions.These actions, typically, manipulate binary patterns in another part
of the memory. These manipulations then confer specific interpretations onto the
manipulated binary patterns. This process mimics, in a very simple form, our mental
interpretation of a binary pattern.

Instructions

Now let us consider the form that one such instruction or rule might take. Keeping
our example as uncomplicated as possible, we will define a rule as consisting of the
binary patterns in two consecutive bytes in memory, as shown in Fig. 3.2.

For our simplified processor, we will decree that the pattern in the first byte of the
pair (and we will take the diagram as being big endian) is to represent a doing code to

IT Systems Concepts 51

0 10 10 00 00 01 10 01 1

the code
this thing

the imperative

doing
do

verb
subtract

the code
this thing

the passive
the thing in byte 197

using
using

noun

Fig. 3.2 An instruction.



the processor. This is an imperative: do this thing; the actual details of what
particular thing is to be done are to be determined by the binary pattern in the doing
byte. In Fig. 3.2 this pattern is 00000101 and we have arbitrarily decided that this
should represent the action subtract one byte pattern from another.

We will further decree that the pattern in the second byte is to represent the object
on which the doing code action is to be carried out. We have called this the using
code. In Fig. 3.2 this pattern is 11000101, which in decimal is 197. In many cases, the
value of this second byte will refer to a starting place in memory where the object to
be manipulated resides; that is, it will often be a memory byte address.

The two-byte pattern may therefore be interpreted as an instruction, or rule,
which states: “subtract the thing in byte 197”. In a practical processor, we would
probably have a wide variety of different doing codes available, known collectively as
the order code for the processor, and these would associate specific patterns in the
doing byte with specific actions available in the hardware of the processor. Typical
examples might include: add a byte, subtract a byte, multiply a byte, divide a byte,
input a byte, output a byte, move a byte, compare a byte and so forth.

There may be similar actions which relate to two or more bytes taken together.The
range and functionality of these doing codes are defined by the hardware of the
processor1. For our example processor, however, we will only consider four such
doing codes – load a byte, store a byte, add a byte and subtract a byte – and we will
decree that load a byte is to be 00000001,store a byte is to be 00000010,add a byte is to
be 00000100, and subtract a byte is to be 00000101, as shown in Table 3.1.

The Processor

The basic mechanism for our example processor is very simple. The idea of the
stored program concept, as implemented in a modern computer, was first
expounded by John Von Neumann (1945). This idea decrees that instructions are
held sequentially in the memory and that the processor executes each one, in turn,
from the lowest address in memory to the highest address in memory, unless
otherwise instructed.

To achieve this the processor maintains a record of where it has got to so far in
executing instructions. It does this using an internal store that is variously called the
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Action Doing code

Load a byte 00000001

Store a byte 00000010

Add a byte 00000100

Subtract a byte 00000101

Table 3.1 Example doing codes.

1 Two approaches have been adopted by processor chip manufacturers: designs with large
numbers of complex instructions, known as Complex Instruction Set Computers
(CISC), and designs with a minimal set of high-speed instructions, known as Reduced
Instruction Set Computers (RISC).



counter register or the sequence control register or the program counter. This is a
small element of memory, internal to the processor, which normally holds the
address in the main memory of the next instruction that the processor is about to
execute. The processor will go through a series of steps to execute an instruction.
Again, for the purposes of our example, we have simplified this sequence into four
steps: fetch, interpret, update and execute. In the fetch step, the processor will first of
all use its program counter to send a signal to the main memory requesting that it be
sent a copy of the next instruction to be executed. It will do this using the address bus.
The memory will then respond by sending back a copy of the binary patterns that it
holds at the address it has been given. It will do this using the data bus.The processor
will then take the binary patterns that represent the instruction from the data bus
and place them in its instruction registers in readiness for decoding. Once the
transfer is complete, the processor will then enter the interpret step, where it will
interpret or decode the patterns as an imperative instruction. Part of the pattern will
be used to select the action that the processor should perform, and part will be used
to determine the object to which this action should be applied, as we described
above. On completion of its preparations to perform the instruction, the processor
will then enter the update step. In this step, the processor prepares its program
counter so that it is ready for the next instruction in sequence.

In general, it does this by calculating the length in bytes of the current instruction
and adding that value to its program counter.Given that the system is set up to obey a
sequence of instructions, one after the other, from lower address to higher address,
the program counter, having had this length added, will thus be pointing to the start
of the next instruction in the sequence. Finally, the processor enters the execute step,
where the action defined in the interpret step is applied to the object defined in the
interpret step. To do this, it may well use an additional register as a scratchpad for
interim results, and this is sometimes known as an accumulator or general purpose
register. After that, the processor repeats the cycle starting with the fetch step once
again.

The Worked Example

Fig. 3.3 shows a more detailed view of the two black boxes that we considered earlier,
now rotated through 90° and expanded so that we can see something of what they
contain. Here we are able to see into a small portion of the main memory on the left-
hand side and observe exactly what patterns are in the bytes with addresses 3,4 and 5
and 31 through to 36.

All that we require for the processor, on the right-hand side, is a small element of
internal memory for the registers and a four-step cyclic control mechanism which we
find useful to compare with the four stroke internal combustion engine. Where we
have “suck”, “squeeze”, “bang” and “blow” for the four strokes of the internal
combustion engine we have “fetch”, “interpret”, “update” and “execute” for the four
steps of the processor cycle. One rather important difference between the two
models, however, is their rotational speed. In the case of a typical modern processor,
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the Intel Pentium 4 for example, the speed of operation can be as high as 10 000 MIPs2

or more. This suggests that, since each “revolution” causes one instruction to be
carried out, the equivalent “rotational speed” is 10 000 million revolutions per
second, compared with the 4000 or so revolutions per minute of an internal
combustion engine.

The processor is shown connected to the main memory by the two buses, the
address bus at the top and the data bus at the bottom. There is a third bus, not shown
on the diagram for the sake of clarity, known as the control bus, and this is concerned
with control activities, such as the direction of data flow on the data bus and the
general timing of events throughout the system.

As was described above, the program counter in the processor holds the address of
where in main memory the next instruction that the processor is to execute can be
found (in this example, address 313) and the doing and using registers are our
versions of the instruction registers used by the processor to interpret the current
instruction. The gp register is the general purpose scratchpad register that was also
referred to earlier.We have used throughout registers that are only one byte in size so
as to keep the example simple. Again, this does not affect the principles, but modern
practical processors are likely to have two, four and even eight byte registers.

The in-built control mechanism of our example processor causes it to cycle
clockwise through the four steps: fetch, interpret, update and execute, over and over
again, repeating the same cycle continuously all the while that the processor is
switched on. We have earlier likened this to the four strokes of the internal
combustion engine (suck, squeeze, bang and blow), and these are also shown on the
diagram. The rate at which the processor cycle is executed is controlled by a system
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byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

10011011

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret
(squeeze)

update
(bang)

execute
(blow)

31

fetch
(suck)

Fig. 3.3 Looking inside.

2 MIPs stands for Millions of Instructions Per Second or, as some would have us say,
Meaningless Indicators of Performance.

3 This number would be held in the register in binary, but we have shown it here in
decimal so as not to over-complicate the example.



clock and, as mentioned above, this might well be running at several thousands of
millions of cycles per second4.

Executing the Worked Example

Using our example machine, we can now step through the processor cycle for
ourselves and determine exactly what happens at each stage and how each pattern in
memory is interpreted by the system. We start with the beginning of the fetch step, as
shown in Fig. 3.4.

Here the value of the program counter, shown as decimal 31 in the diagram, is
placed on the address bus by the processor and sent across to the memory in binary
by means of the eight parallel connections referred to earlier5. The memory is by this
means requested to transfer a copy of what is in bytes 31 and 32, that is, the patterns
of the next instruction, to the processor6.

In Fig.3.5 we see copies of the two bytes being passed across the data bus in binary,
one after the other, back to the processor. As these copies are received so the
processor places them in its doing and using registers respectively. On completion,
the processor then moves on to the interpret step, as shown in Fig. 3.6.
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byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

10011011

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

31

31
fetch

Fig. 3.4 Processor puts 31 on address bus.

4 One point arises from this speed of operation. Should you happen to note that your PC
is starting to behave suspiciously and you try to stop the current operation as quickly as
you can, you are almost certainly many thousands of millions of instructions too late in
the most rapid action that you could possibly take!

5 A modern processor is more likely to have an address bus of 32 bits.

6 The assumption is made here that the memory somehow “knows” that instructions are
two bytes long. In practice, the processor would request the appropriate number of
bytes for the particular instruction. This simplification does not affect the principles of
the example.



The “handshaking” process we have seen here is typical of the way in which the
various parts of the computer system interact with one another. Requests are sent
across the address bus and results are returned across the data bus, with control
being exercised by signals on the control bus, which for clarity we have not shown on
our diagrams. For example, signals on the control bus will indicate when the address
and data buses contain valid values and can therefore be read.

In Fig.3.6,we see that the patterns in the doing and using registers have been inter-
preted as the instruction “load byte 3”. We can interpret the doing code 00000001
from Table 3.1 as “load a byte”and the using code 00000011 as the “address of byte 3”.

The processor would now, at this step, have prepared its internal circuitry so as to
be ready to carry out the action “load address byte 3” when it reaches the execute
step.
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byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

10011011

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

31

31
fetch

00000001 00000011

Fig. 3.5 Memory sends copies of bytes 31 and 32.
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byte 33 byte 34

byte 35 byte 36
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01010011 00001111
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00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

31

fetch

load 3

Fig. 3.6 Interpret as load byte 3.



In Fig. 3.7, we see the effect of the update step. Here the value 2 has been added to
the program counter so that it now holds the address of the next instruction in the
sequence, address 33. In our example, we decided to make all instructions of the
same length, that is two bytes, and so arranging for the program counter to point to
the next instruction in the sequence is achieved simply by adding 2 to its value. As we
will see later, the update sequence occurs at this point in the cycle, because we may,
for certain functions, wish to modify the program counter in the execute step.

In the execute step, the instruction “load address byte 3” is carried out by the
processor. First of all a copy of the using register, shown as decimal 3 in Fig. 3.8, is
placed on the address bus by the processor and sent across to the memory in binary7.
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byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

10011011

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

33

fetch

load 3

Fig. 3.7 Update counter to 33.

byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

10011011

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

33

fetch

load 3

3

Fig. 3.8 Processor puts 3 on address bus.

7 Like the value for the program counter, this number would be held in the register in
binary, but we have shown it here in decimal so as not to over-complicate the example.



This requests the memory to transfer a copy of byte 3 to the processor over the
data bus. We see this happening in Fig. 3.9. When the processor receives the copy of
byte 3, it places the binary value, 01010011, into its general purpose (gp) register as
shown in the diagram. This completes the execution of the first instruction. The
processor then moves on to the next step which is the fetch step for the next
instruction as shown in Fig. 3.10.

Here we see the start of a similar cycle of events as before. The processor places the
value of the program counter, shown as decimal 33 in the diagram, onto the address
bus, thus requesting the memory to transfer a copy of what is in bytes 33 and 34, the
patterns of the next instruction, to the processor.

The memory responds, in a similar manner to that shown before, by transferring
copies of bytes 33 and 34 across the data bus. In this case 00000101 is sent first,
followed by 00000100,and these are written by the processor into its doing and using
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Fig. 3.9 Memory sends copy of byte 3 to processor.
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Fig. 3.10 Processor puts 33 on address bus.



registers respectively. This situation is then as shown at Fig. 3.11. From all that has
gone before, it is not difficult to work out what will happen at the interpret step,
which we have not shown as a separate diagram. The processor, at this step, decodes
the doing register as “subtract a byte” (see Table 3.1) and the using register as
“address byte 4”. The instruction set up internally by the processor is therefore
“subtract address byte 4”.

For the update step, which we have also not shown as a separate diagram, the
processor simply adds 2 to the program counter, which then becomes 35, to take
account of the fact that this is a Von Neumann sequential machine and that each
instruction is of two bytes in length.

Given all of that, the start of the execute step “subtract address byte 4” is then as
shown in Fig. 3.12. As before, a copy of the using register, shown as decimal 4 in Fig.
3.12, is placed on the address bus by the processor and sent across to the memory in
binary.
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Fig. 3.11 Memory sends copies of bytes 33 and 34.
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Fig. 3.12 Processor puts 4 on address bus.



This requests the memory to transfer a copy of byte 4 to the processor over the
data bus, and we see this happening in Fig. 3.13.

This time, however, something a little different happens. The doing action here is
not “load a byte” but “subtract a byte” and so rather than loading the value coming
across the data bus straight into the gp register, as occurred before, the processor this
time subtracts the value coming across the data bus from that already held in the gp
register, putting the result back into the gp register. We see, therefore, that the action,
in binary, of 01010011 subtract 00001111 equals 01000100.

This then completes the execution of the second instruction, and the processor
now moves on to the next step, which is the fetch step for the third instruction. Once
again, the processor puts the program counter value, decimal 35, onto the address
bus (which we have not shown as a separate diagram) and the memory sends copies
of the two bytes at addresses 35 and 36 across the data bus to the processor.As before,
these are placed in the doing and using registers,and this outcome can be seen in Fig.
3.14.
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Fig. 3.13 Memory sends copy of byte 4 to processor.
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It now becomes very easy to work out that for the interpret step, the processor
decodes the doing register as “store a byte” (see Table 3.1) and the using register as
“address byte 5”. The instruction is therefore set up by the processor as “store
address byte 5” (which we have not shown as a separate diagram). For the update
step, the processor again adds 2 to the program counter, which now becomes 37, and
this too we have not shown as a separate diagram.The result of all of this is that at the
start of the execute step we have the situation that is shown in Fig. 3.15.

As before, a copy of the using register, shown as decimal 5 in Fig. 3.15, is placed on
the address bus by the processor and sent across to the memory in binary. This time,
however, the request to the memory is rather different. Because the action in the
doing register is “store a byte”, the processor requests the memory not in this case to
send it a byte, but rather to be prepared to receive a byte. The memory must be
prepared to store at the address given on the address bus (in this case decimal 5), the
value which is about to come across the data bus. The processor achieves this
outcome by setting a special write enable signal on that third bus referred to earlier,
the control bus, which tells the memory that this is, for it, a write action rather than a
read action.

In Fig. 3.16 we see this happening. The pattern 01000100 from the gp register is
sent by the processor across the data bus and stored by the memory in the address
specified on the address bus, that is in byte address 5, completely overwriting what
was originally there.

This then completes the execution of the third instruction and the processor now
moves on to the next step, which is the fetch step for the fourth instruction. However,
that is as far as we are going to take this example, and we will leave the processor at
Fig. 3.17, calling for copies of the bytes at addresses 37 and 38; addresses that happen
not to be shown on our diagrams.

Having seen three instructions executed, we should now have a pretty sound
understanding of the processes that are involved, and this in turn should gives us a
good insight into the workings of all digital computers that are based on the Von
Neumann architecture, including, of course, the Personal Computer or PC
architecture.
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In a practical system, this entire process of executing three instructions would
have taken no more than the tiniest fraction of a billionth of a second. The processor
would not stop as we have done after the third instruction, but it would continue to
interpret and execute binary patterns as instructions, taking them in sequence from
bytes 37 and 38, 39 and 40, 41 and 42 and so forth, until it was switched off.

Program, Data, Rules and Objects

Now is a very good time for us to observe just how the various binary patterns in the
main memory have been interpreted – interpreted, it is important to recognise, not
by us in our minds, but by the computer system itself. Referring again to Fig. 3.17, we
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byte 3 byte 4

byte 5

byte 31 byte 32

byte 33 byte 34

byte 35 byte 36

memory

01010011 00001111

01000100

00000001 00000011

00000101 00000100

00000010 00000101

...

processor

counter gp

doing using

interpret

update

execute

37

fetch

store 5

37

01000100

Fig. 3.17 Processor puts 37 on address bus



see that the pairs of binary patterns in the bytes 31 and 32, 33 and 34, and 35 and 36
have each clearly been interpreted by the processor as instructions or rules, and this
interpretation has been guided by the changing value in the processor’s program
counter. It is the current value in the program counter, by definition, that determines
which patterns in memory are to be interpreted as the next instruction.

The patterns in bytes 3, 4 and 5, however, have not been interpreted by the
processor as instructions. Instead, they have been manipulated as a result of the
series of actions that came about when the processor executed the three instructions
in bytes 31 to 36. If we think about it, we can see that this manipulation has imposed a
specific interpretation upon the values in bytes 3, 4 and 5. Analysing this manipu-
lation, we see that the pattern in byte 3 was loaded into the gp register of the
processor, the pattern in byte 4 was subtracted from it using the rules of fixed point
binary arithmetic, and the resulting pattern was placed into byte 5. The patterns in
bytes 3, 4 and 5 have therefore been interpreted by the processor, because of this
execution of the three instructions in bytes 31 to 36,as binary integers; that is,as data
or real-world objects.Note that this interpretation is not by us as individuals; it is as a
result of the mechanistic execution of a series of instructions by the processor.

Patterns Can Mean Whatever We Choose Them to Mean

Hence we have a situation in which the execution by the processor of one set of
patterns in memory as a program of instructions or rules has given meaning to
another set of patterns in memory as data or real-world objects. Patterns in memory
can therefore represent whatever objects we choose them to represent; the specific
meaning of the patterns is determined only by the set of rules that we cause to be
applied by the processor. It rests upon us, however, to ensure that the set of rules that
we use to interpret and manipulate such patterns is consistent with the set of rules
that were used to establish the patterns in the first place. If we don’t do this, the
wrong8 meaning may be obtained.

This is particularly important to the forensic computing analyst who must be sure
that the correct9 interpretations are being placed on observed patterns. This is one
reason for recommending that the original software be used in analysis: to minimize
the likelihood of incorrect interpretations being made.

As far as the processor is concerned, it would have been equally acceptable for the
program counter to have been set initially to 3, in which case the patterns in the byte
pairs 3 and 4 onwards would have been interpreted as rules. It could then be said that
the processor was extracting the wrong meaning from the patterns; it would be
executing patterns as rules that we know were intended by the original programmer
to be interpreted as numbers. This is not an uncommon problem. The processor has
no intelligence; it slavishly, and at very high speed, executes as rules whatever
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9 Similarly, by “correct” we mean “consistent with the interpretation used to establish the
patterns”.



patterns it is directed to by its program counter, regardless of what the intentions of
the programmer might originally have been. The stored program computer is
completely general purpose, and in most systems any part of the memory can be
used for any purpose: for program or for data, for rules or for objects10. It is solely the
responsibility of the programmer to ensure that such use is always consistent with
the intended interpretations. In most modern machines the programmer will be
assisted in this activity by some form of hardware controls which confirm that an
address being accessed is within some permitted range.

Software Development

Given our understanding of the Von Neumann mechanism and the concepts of
representation and meaning, it is not difficult to believe that we ought to be able to
make a digital computer process representations of any thing that we wish, simply by
designing the appropriate sets of rules and objects (or programs and data). However,
it is not always as simple as it may sound. Practical difficulties lie in designing and
implementing effective programs; in understanding and formulating complete and
consistent sets of rules; and in representing objects completely, or at least adequately.
These are all problems found in software development. We will now briefly look at
one aspect of software development, that of programming, and examine how it is
that the instruction patterns actually get into the machine.

Programming

If we return to our original example program, held in bytes 31 to 36 of the memory
(see Fig.3.18), it is instructive to ask ourselves how it is that those patterns came to be
there.One possible answer would be for each bit of those six bytes to be implemented
as a physical on–off switch on some control panel accessible to the user.
Programming the memory could then simply be achieved by setting up the switches
appropriately:off off off off off off off on, that is byte 31; off off off off off off on on, that
is byte 32, and so forth. This is truly “programming in binary”, and some very early
computers were programmed just like this. However, it is such an error-prone and
tiresome task that had no alternative approach been developed it is doubtful whether
the modern digital computer would ever have come about.

A much better approach to programming is to utilize the digital computer itself to
assist in the process. There is no reason why we should not devise a computer
program that is designed to manipulate representations of rules or instructions; in
other words, to manipulate programs. Let us say that we arrange for an external
representation of the instructions that is convenient to us as programmers. Then we
arrange for the computer to run a translator program that has been designed to
convert that convenient-to-us representation of instructions to the much less
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10 An exception to this is the Harvard Architecture, in which instructions and data are
stored in separate memory areas each with their own bus system. This results in a
possible speed advantage, since instructions and data can be processed at the same time.



convenient-to-us binary form that the computer needs, and to place the resulting
binary patterns in the appropriate places in memory for us.

Perhaps the simplest form of external representation that we might use is the
hexadecimal equivalent of the binary values.We could then lay the three instructions
out on a piece of paper or type them it in at a terminal in the following format:

01 03 <newline>
05 04 <newline>
02 05 <newline>

We have here arranged for the doing code to be separated from the using code by a
space and for each separate instruction to start on a new line. We would also need to
specify to the translator program where in memory the sequence was to be placed (in
our example, from bytes 31 onwards). All that we have done is to use an external
abstraction that is a little more readable to us than the binary patterns the computer
uses. We have in fact defined a very simple programming language and in this format
the program statements would be known as machine code.

There is no reason, however, why we should limit ourselves to a numeric language
representation. We know that 00000001 means “load a byte”, 00000101 means
“subtract a byte” and 00000010 means “store a byte”, so we could use the words
“load”, “subtract” and “store” to represent the equivalent doing codes. In addition,
we could replace the byte addresses 3, 4 and 5 with suitably chosen names to give us a
much more readable format, thus:

load costprice
subtract vat
store dutyfree

We really do not mind which actual addresses in memory are used for the data,
provided that they are accessed consistently, so we can name them costprice, vat
and dutyfree and permit the translator to decide exactly where in memory they are
to be put. One of the benefits of this is that the purpose of the rules can become much
clearer if the names are sensibly chosen. In this format the program statements
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would be known as assembly language and the translating program would be called
an assembler.

It is possible to go further and develop a much more complex programming
language together with its translating program, then more usually called a compiler,
that permits statements such as:

dutyfree := costprice - vat;

These may then be compiled into the internal binary patterns that the machine
requires. Such statements are typical of so called High Order Languages (HOLs); that
is, languages that have been specifically designed to assist programming at a high
level of abstraction. Some examples of these are: ALGOL, COBOL, FORTRAN, Pascal,
C, C++ and Ada. It should be noted that what the programmer writes down in the
programming language is often called the source code and what is actually executed
by the computer, after translation or compilation, may be called the object code.

Practical Programming Systems

In a practical programming system, such as an integrated development environment
(IDE; see, for example,Borland (1994)),there will be more complications than this,of
some of which the forensic computing analyst needs to be aware. Source code files
will often have a file type that indicates the programming language in which they
have been written: PAS for Pascal, C for C, and CPP for C++ for example. Such files
will invariably be in ASCII text format. Many systems will also use ASCII text files of
type H for configuration and header information. In practice, most compilers do not
compile source code directly into the object code of the computer, but rather
generate an intermediate or semi-compiled file format that permits the linking of
library and other files to this semi-compiled file before the generation of the final
executable program. Such semi-compiled files often have the file type OBJ. Files of
type OBJ may also be grouped into library files of type LIB using library manager
software. The final executable program, of file type COM or EXE, is normally
produced by the linker. This takes the semi-compiled OBJ file and embeds within it
all the necessary library files and any other specified OBJ files to produce the final
executable form that we called above the object code.

However, this method can be wasteful when many EXE files all have copies of the
same library files within them. To overcome this, the concept of Dynamic Link
Library files or DLLs was conceived, and these are loaded by the operating system as
needed and provide common access to library files dynamically for all those EXE
files that support the facility.

If,during forensic analysis,a programming system is met with,all of these types of
files are likely to be found. In addition there may be DSK, PRJ and TC files which are
used by the programming environment to control the desktop, the project and the
programming environment configurations respectively11.
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Breaking Sequence

In all that has been described so far, the processor has had no option but to execute
one instruction after the other in sequence through the memory. This occurs
because the program counter is automatically incremented by two within the
processor control cycle, and the program counter always points to the next
instruction that the processor is to execute. In practice, however, this is not very
useful by itself. Many processes are highly repetitive and we would often like to be
able to repeat a sequence of instructions many times. This can be achieved if we
provide instructions which have doing actions that change the value of the program
counter. This can be made even more useful if we make the carrying out of these
doing actions conditional on some other register value.

So, we might invent a new instruction for the processor with doing code 00001000,
say, which has the following doing action: “if the gp register is not equal to zero then
subtract the value of the using code from the program counter”.

How might this work? Before we look at an example, it would be as well to establish
a method that avoids us having to draw quite so many diagrams as we used for the
previous example.

Finger Checks

When programming at very low level or when attempting to deal with a particularly
elusive bug, programmers will sometimes use what used to be known as finger
checks. As shown at Table 3.2 for the worked example of Fig. 3.4, the current values of
the processor registers and of any relevant memory addresses are placed in the
columns of a table and each row of the table is used to represent the execution of a
single instruction. In this way, the effects of the execution of each instruction by the
processor can be examined in detail without the need for all the diagrams that we
used above. In this instance, Table 3.2 encapsulates the effects of the execution of the
three instructions from our worked example.

In this table we have drawn up five columns. The first column shows the current
value of the program counter. For each program counter value we show a line of
values, with, in separate columns, the doing code (and its equivalent action), the
using code, and the current value in the gp register. We also show the values in all the
relevant memory addresses, 3, 4 and 5.
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Program counter Doing Using code gp Address

Code Action 03 04 05

31 01 load 03 53 53 0f 9b

33 05 subtract 04 44 53 0f 9b

35 02 store 05 44 53 0f 44

37

Table 3.2 Finger check of the worked example.



For this example, the program counter starts at 31, which refers to a doing code of
01H and a using code of 03H, resulting in the instruction “load 03”. The execution of
this instruction results in the gp register being set to 53H12.The memory addresses 3,
4 and 5 contain 53H, 0fH and 9bH respectively. Meanwhile, the program counter has
been stepped to 33 and this refers to a doing code of 05H and a using code of 04H,
resulting in the instruction “subtract 04”. The execution of this instruction results in
the value 0fH being subtracted from the 53H in the gp register giving the result in the
gp register of 44H. No changes occur to the memory bytes of 3, 4 or 5. Finally, the
program counter has been stepped to 35 and this refers to a doing code of 02H and a
using code of 05H, resulting in the instruction “store 05”. The execution of this
instruction results in the value in the gp register, 44H, being written into memory
address 5. No changes occur to the memory bytes of 3 or 4. Now we find that the
program counter has been stepped to 37, where we leave the example.

A Revised Example

Let us now consider a revised example, shown at Fig. 3.19, which incorporates our
new break sequence instruction, 00001000. We need to give this new instruction a
name, and in most programming languages it will be called something like: jump,
branch or goto and the conditional versions would be called jump if etc. We will call
ours “jump back if gp not zero”to describe its action and then use an acronym such as
“jbnz”. This is typical of the kinds of names that are given by processor manufac-
turers to their assembly language codes.

Now we will use our finger check technique to step through the actions of the
example in Fig. 3.19, the relevant table for which is shown at Table 3.3.

The program counter starts at 31, referring to the instruction “load 07” and the
execution of this results in the gp register being set to 03H. Meanwhile, the program
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Fig. 3.19 Example with break sequence instruction.

12 Note that we have used here hexadecimal format (hence the “H”) rather than the binary
format that appears in the worked example.



counter has been stepped to 33. The next instruction, at 33, is “subtract 08” and the
result of this execution is that 01H (the value in byte address 08) is subtracted from
03H in the gp register,giving 02H.Again, the program counter has been stepped,now
to 35, whence our new instruction “jbnz 04” comes into effect. By this time, the
program counter has already been stepped to 3713 when the action “if the gp register
is not equal to zero then subtract the value of the using code from the program
counter” is carried out. The gp register is 02H, which is not zero, so the program
counter is changed to 37 – 4 = 33, which has the effect of executing the “jump back if
gp not zero” doing code. The instruction at 33, “subtract 08”, is therefore repeated
and the result of this execution is that once again the value 01H is subtracted, this
time from the value 02H in the gp register, giving the value 01H. Again, we find that
the program counter has been stepped to 35, and our new instruction “jbnz 04”
comes into effect once more.This time the gp register is 01H,which is still not zero,so
the program counter is changed once more to 37 – 4 = 33.

So the process repeats again. The instruction at 33, “subtract 08”, is executed once
more and the result of this execution is that the value 01H is subtracted, this time
from the value 01H in the gp register, giving a value of 00H. Again, the program
counter has been stepped to 35 and our new instruction “jbnz 04” comes into effect.
This time, however, the gp register is 00H, which is indeed zero. So, on this occasion,
the value of the using code is not subtracted from the program counter, which
therefore remains at 37. From here on the processor continues to execute instruc-
tions in sequence through the memory until instructed otherwise by some other
jump type instruction.

Some analysis of this construct is useful. The two instructions at 33 and 35 were
executed in sequence three times; precisely the number of times that is specified by
the value in byte 7. The gp register was used as a counter. It was set initially to the
value of byte 7, and was then reduced by one each time the loop of instructions was
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Counter register Doing Using code gp Address

Code Action 07 08 09

31 01 load 07 03 03 01 44

33 05 subtract 08 02 03 01 44

35 08 jbnz 04 02 03 01 44

37 – 4 = 33 05 subtract 08 01 03 01 44

35 08 jbnz 04 01 03 01 44

37 – 4 = 33 05 subtract 08 00 03 01 44

35 08 jbnz 04 00 03 01 44

37

Table 3.3 Finger check of the new example.

13 Recall that the update step takes place before the execute step, so the program counter is
set to the next instruction before the current instruction is executed.



executed until it reached zero, This is a typical construct for controlling a loop. What
has been demonstrated with this example is a counter-controlled loop.

This loop has not done anything interesting,and that is simply in order to keep the
example clear and to limit the number of instructions that we would have to examine
each time we worked round the loop. In practice, we might think of a small program
that repeats a sequence of operations on a very large database. Let us say that, the
sequence is, for every record in the database (perhaps 1 000 000 records or more):

open the next record
extract the name field
print the name field

Now we can conceive of first writing the relatively few instructions needed to carry
out this sequence of operations once. Then we put, at the beginning of those instruc-
tions,code that loads a counter with 1 000 000 and,we put,at the end of those instruc-
tions, code that subtracts 1 from the counter. Finally, we put at the very end a jbnz
command to jump back to the start of “open the next record” if the new value of the
counter is not yet zero. In this way, the sequence of instructions to open a record and
extract and print the name field would be carried out exactly 1 000 000 times, once
for each record in the database.

An Information Processing System

If what has been covered to this point is clear, then a very reasonable understanding
of the principles by which all Von Neumann architecture computers operate and are
programmed should have been gained. In a later chapter we will examine the specific
architecture and workings of the PC, but this should not now hold any surprises in
store for us. To complete this chapter, we should now develop our two black boxes of
processor and memory into a complete system.

Expanding on our two black boxes of Fig. 3.1, we now include an input device, an
output device and a backing store to obtain the black box model of a complete infor-
mation processing system,as shown in Fig.3.20.This is a typical black box model of a PC.
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Fig. 3.20 Black box model of an information processing
system.



A typical input device would be a keyboard and a typical output device would
be a visual display unit (VDU) or monitor. Up until relatively recently most
monitors would have been based on the cathode ray tube (CRT) display, but today
a flat screen panel liquid crystal display (LCD), is much more likely. Many other
kinds of input and output devices may of course be connected, ranging for
example from printers and sound cards to modems and mice. All have access to the
processor and memory, either directly or indirectly, through the address, data
and control buses.

Because the main memory is usually volatile and loses all information at power
down, it is essential that we are able to load previously developed programs and data
from some external source into the main memory and save our programs and data
that we wish to use again onto a more permanent medium. A device which provides
this facility is called a backing store, and this is the lower black box in our diagram. In
principle, at least, a backing store is very simple. When it is required to save a
program or a piece of data, the binary patterns in memory representing the relevant
information are transferred, for example, to a magnetic disk, where they are used to
record equivalent magnetic patterns on the surface of the disk. When it is required to
restore the program or piece of data, then the relevant part of the magnetic disk is
played back and the resulting binary patterns are used to reset the memory
addresses to their original values. In this way, any information may be saved and
reloaded from disk.In Chapter 5 we will examine this process in much more detail.

Several forms of magnetic disk have become available over the years, including
various sizes of floppy disk, various sizes of hard disk and several versions of Zip disk.
However, magnetic disk is not the only medium for backing store. Magnetic tape was
first used, with rows of large reel-to-reel systems once typifying the layman’s image
of a computer centre. Today magnetic tape is still used, though more usually in the
form of cartridge tapes.

Non-magnetic systems are also widely used, the most common of these being
CD-ROM devices, where the binary patterns are implemented as pits in the surface
of the disk and are read back by laser light. Originally these were classed as
WORM14 systems that could not be rewritten to, but nowadays so-called rewritable
CD-ROM devices have become very common. DVD (which originally stood for
Digital Video Disc but is now more usually called Digital Versatile Disc) has
become the major substitute for CD-ROM drives on all modern systems. DVD
operates in a similar manner to CD-ROM, using lasers to read pits on the surface of
the disk, and it is of the same physical dimensions. The major differences, however,
are that it uses a higher frequency laser, has a smaller track pitch and pit size and
can be double-layered and double-sided. In comparison with a CD-ROM, which
has a capacity of around 700 Mbyte, the single-sided, single-layered DVD has a
capacity of 4.7 Gbyte, and a double-sided, double-layered DVD can hold up to 17
Gbyte.
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Exercises

3.1 Using Table 3.1 and a finger check table as required, determine the actions that
will occur when the instructions shown in Fig. 3.21, from address 31 onwards,
are executed.

3.2 Examine the diagram at Fig. 3.22. This is a more extensive piece of program
code and data than we have used before. For this reason, a diagram such as Fig.
3.21 has not been used, but rather the program code and data segments have
been written down in a tabular form, much as early programmers used
programming sheets. Assuming that the program counter starts at 31, and
using the doing codes that we have defined, determine the final value of
memory address 09. What process is carried out by this code?

3.3 List a sequence of instructions, using only “jbnz” and those listed in Table 3.1,
that will result in the value in memory address 05 being multiplied by the value
in memory address 06 and the byte result left in memory address 07. Assume
that memory address 05 contains the value 3 and that memory address 06
contains the value 7. Confirm, after execution of the program using a finger
check, that memory address 07 contains 21. Because this is quite difficult, three
hints are given as follows: (1) Note that multiplication can be implemented by
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successive addition. (2) You will need to use some additional memory bytes for
temporary storage. (3) The program is at least 11 instructions long.
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08 01
09 00
0a 01

program data
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4. PC Hardware and Inside the
Box

Introduction

In the previous two chapters we have looked first at how information can be repre-
sented and then at how the principles of a von Neumann machine may be used to
construct an information processing system. In this chapter we will take the black
box model of chapter 3 and develop from that the actual hardware of a modern PC.
As we do that, we will look inside the box so that we can identify all the pieces. This is
an important part of an analyst’s task. A detailed internal examination of a PC is
invariably going to be required since we will wish to know firstly that it is safe to
operate, and then to see whether it is being used as a storage box for other items of
possible evidential value, and finally whether all its components are connected up
correctly. An ability to recognize what should be there and how the bits should be
connected together is therefore of some considerable importance. This is summa-
rized as follows:

● Revision of the black box model
● The mother board and all the buses
● Packaging of chips
● The 8088 and the design of the PC
● System resources
● The Intel processors
● Static RAM, dynamic RAM and ROM
● Connection of backing store devices
● Connection of peripherals
● Expansion cards

The Black Box Model

Just to remind us, the black box model of Chapter 3, has been shown again as Fig. 4.1.
We can use this to identify the elements of a real PC that we will need to look at. The
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first element we are going to consider, rather surprisingly perhaps, is the mechanism
by which the major elements are connected up.

We have shown in the diagram the interconnections between the major elements:
we referred to these in Chapter 3 as the address and data buses. Recalling that they are
simply sets of electrical connections, it will be no surprise to note that they tend to be
implemented as parallel tracks on a printed circuit board (PCB).This brings us then to
the most important component of all, the motherboard. This normally hosts the
processor and the memory chips, and as a result the buses between them are usually
just parallel tracks on the motherboard. Also on the motherboard is the chipset that
carries out all the housekeeping needed to keep control of the information transfers
between the processor, the memory and all the peripheral devices. In addition, the
motherboard hosts the real-time clock, which contains within it the battery-backed
memory known as the CMOS or Complementary Metal Oxide Semiconductor memory,
and the Basic Input Output System (BIOS) Read-Only Memory (ROM).One particularly
clever idea in the original design of the PC was to arrange for the various buses to be
accessible in a standard form so that expansion cards could be fitted into expansion
slots on the motherboard and thus gain access to all the buses. The motherboard
normally has a number of these expansion slot connectors either directly fitted onto
the motherboard itself, or fitted onto a separate riser board or daughterboard that may
be connected at right angles to the motherboard.

The next item we need to look at is the processor. This technology has advanced at
an unprecedented rate, in terms of both performance and price, over the past 25
years, and a little bit of the history of the PC needs to be covered because of the way
that various legacy issues still affect us today. Then we must look at the memory, and
this too has advanced rapidly both in performance and price, resulting in very much
greater capacities becoming the norm. We need also to look at the backing store, of
which the floppy disk and the hard disk are the most common examples. Although
we will examine these in much greater detail in Chapter 5, we need here to note the
various other kinds of backing store that we might come across, and to be able to
recognize them and understand how they are connected into the system.

For the external peripherals of the system, such as the display, the mouse, the
keyboard, the printer and the scanner,we will do no more than mention how they are
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connected. Finally, we need to look at some of the possible expansion cards, such as
the video card, the network card and the sound card, at least in enough detail to be
able to recognize them.

The Buses and the Motherboard

We start our exploration with the buses. As we have seen earlier, the buses are no
more than a set of parallel electrical connections: one connection for each bit of
information.Hence an eight bit bus can transfer eight bits or one byte of information
at a time. From this, it becomes apparent that although the speed at which the
processor operates is a very important factor in the overall performance of the
system, it is the data transfer rates across the system buses which effectively act as
bottlenecks and limit the performance of the whole. For this reason, there has been
much development of buses throughout the life of the PC to try to overcome these
various performance bottlenecks as the major elements of the system have all
become so much faster.

Three Buses

A simplistic view of the PC considers the major elements to be interconnected by
means of three main buses: the address bus, the data bus and the control bus. In Fig.
4.2 we have taken as an example the interconnections of these three buses between
the processor unit and the memory unit.

Here the address bus provides the means by which, for example, the processor can
signal the memory with the address of a byte to which it wants access. We saw this in
action in Chapter 3. More generally, the address bus is used by any autonomous1
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1 Autonomous devices are devices that can operate without every action being controlled
by the main processor. The writing of a memory block to a hard disk drive, for instance,
would be initiated by the processor, but the disk controller might then carry out the
detailed transfer of each byte of memory autonomously, referring back to the processor
with an interrupt only when the transfer was complete. This is sometimes also referred
to as Direct Memory Access (DMA).



device to specify the address of some other device (or the address of part of some
other device such as a memory byte) with which it wishes to communicate. The data
bus, in the above diagram, provides the means by which the data bits are passed, in
parallel, between the memory and the processor after the address of the required
byte has been specified by the address bus. Again, we saw this in action in Chapter 3.
The control bus carries, as you might expect, a number of control lines concerned
with the housekeeping that is necessary to make this all work. Examples of such
control lines include signals to indicate that the data bus is being used to read a byte
from memory, the data bus is being used to write a byte into memory, the values on
the address bus are currently valid, the processor is using the system buses, and so
forth. In addition, a number of clock timing signals are also distributed by means of
the control bus.

The three-bus model derives from the early processors, with their sets of data,
address and control pins, which were used to construct the first PCs. The buses are
implemented in such a way as to provide a standard interface to other devices.
Using this standard interface, expansion cards containing new devices can easily be
slotted into spare sockets on the motherboard and be connected directly to the
three buses.

Size of Buses

Clearly the size of the data bus, that is, the number of bits that can be transferred in
parallel, is going to be a major factor in determining overall system performance.
The wider the bus, the more data that can be passed in parallel on each machine cycle
and hence the faster the overall system should be able to run. The data bus width is
often used to categorize processors.Very early processors are known as 8 bit,because
they have only 8 pins for access to their external data bus. In the mid- to late 1970s
came the first of the 16 bit processors, and the Intel Pentium processors of today are
64 bit, which means that they can transfer 8 bytes at a time over their external data
bus. One point worth noting, in passing, is that modern processors are likely to have
much larger internal data buses, which interact with their on-chip caches, than the
external data buses that are evident to the rest of the system. In the case of the Intel
Pentium 4, the internal data bus, on the chip itself, is 256 bits wide.

The width of the address bus, on the other hand, determines the maximum
number of different devices or memory bytes that can be individually addressed. In
practice, it imposes a limit on the size of the memory that is directly accessible to the
processor, and thus dictates the memory capacity of the system.

Packaging of Chips

Obviously then, for high performance and high capacity, we want the data and
address buses to be as large as possible. One limitation that is imposed on the size of
these buses is the need to connect each separate contact point on the tiny processor
chip to a corresponding pin on some supporting container package and then to be
able to plug that package into a suitable socket on the motherboard.
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One standard packaging arrangement that has been around since the early days of
the PC is for the Dual In Line (DIL) chip as shown at Fig. 4.3 (from Microsoft ClipArt
Gallery 2.0), and this is often known as a Dual In line Package (DIP). For the
processor at the heart of the original IBM PC, the Intel 8088, the DIL package has 40
pins, with 20 down each side. The data bus is 8 bits wide and the address bus is 20 bits
wide,but 20 pins on the package are also needed for control signals and for the power
supply. In order to fit all of this onto a 40 pin package, many of the pins have to be
used for more than one purpose at different times in the processor cycle. With the
Intel 8088, the address pins 0 to 7 also double up as the eight data bus pins and the
address pins 16 to 19 carry status information as well. This technique is known as
multiplexing and obviously adds additional complication to the motherboard in
having to separate out the various signals. DIL packages with more than 40 legs were
found to be very unwieldy and difficult to plug into their sockets, although the Texas
Instruments TMS9900 had 64 pins in a DIL package (see Adams, 1981). In later
processor systems, as the number of pin connections required increased, the DIL
packaging was found to be too limiting and was replaced by a square- or rectangular-
shaped package with several rows of pins on each side, known as a Pin Grid Array
(PGA).

With this packaging, now often referred to as the form factor of the chip, we see the
more frequent use of Zero Insertion Force (ZIF) sockets, which allow the relatively
easy replacement and upgrading of pin grid array processor chips. A ZIF socket
allows a chip to be inserted into the socket without using any significant force. When
the chip is properly seated in the socket, a spring-loaded locking plate is moved into
place by means of a small lever, which can be seen to the left of Fig. 4.4, and this grips
all the pins securely making good electrical contact with them. In Fig. 4.4 the lever is
shown in the down (locked) position on a Socket 939 ZIF socket. The form factors of
processor chips for the PC introduced by Intel over the years have seen a variety of
pin grid array systems, initially known as Socket 1 through to Socket 8, as shown at
Table 4.12. Socket 8 is a Staggered Pin Grid Array (SPGA), which was specially
designed for Pentium Pro with its integrated L2 cache.

Intel also introduced what they called a Single Edge Contact (SEC) cartridge for
some of the Pentium II and III processors.This form factor is called Slot 1 and is a 242
contact daughter card slot. They then increased the number of contacts on the SEC
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Fig. 4.3 A typical DIL chip.

2 See http://en.wikipedia.org/wiki/CPU_socket.



cartridge to 330 and this became known as Slot 2. Other manufacturers produced
Slot A and Slot B SEC form factors.

Subsequently, for the Pentium III and Pentium 4, the Socket form factor returned
to favour and a variety of different Socket numbers were produced by Intel with the
Socket number indicating the number of pins on the PGA. Some examples are:
Socket 370, Socket 423, Socket 478, Socket 479, Socket 775 and so forth. In addition,
other manufacturers produced their own versions, such as: Socket 754, Socket 939
(the one shown in Fig. 4.4 for an AMD chip), Socket A, Socket F and so forth.

A more radical approach to the packaging problem is to place the die (or silicon
chip) directly onto the printed circuit board and bond the die connections straight
onto lands set up for that purpose on the PCB. The die is then covered with a blob of
resin for protection. This technique is known as Chip on Board (COB) or Direct Chip
Attach (DCA) and is now frequently found in the production of Personal Digital
Assistants (PDAs) and electronic organizers.
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Fig. 4.4 A Socket 939 ZIF socket (photograph:
Tony Sammes and Brian Jenkinson).

Socket No. of pins Layout Processor types

Socket 1 169 17 × 17 486SX, SX2, DX, DX2, DX2 and DX4 Overdrive

Socket 2 238 19 × 19 486SX, SX2, DX, DX2, DX2 and DX4 Overdrive
486 Pentium Overdrive

Socket 3 237 19 × 19 486SX, SX2, DX, DX2, DX4
486 Pentium Overdrive

Socket 4 273 21 × 21 Pentium 60, 66 and Pentium 60, 66 Overdrive

Socket 5 320 37 × 37 Pentium 75–133, Pentium 75 + Overdrive

Socket 6 235 19 × 19 486DX4, 486 Pentium Overdrive

Socket 7 321 37 × 37 Pentium 75–200, Pentium 75 + Overdrive

Socket 8 387 34 × 37 Pentium Pro

Table 4.1 Initial Socket numbers.



Bus Routes

As the PC developed, the simple idea of having just one set of buses (the address bus,
the data bus and the control bus) which connected everything to everything was
found wanting. The problem is that different parts of the system operate at different
speeds and require different bus widths, so the “one size fits all” approach leads to
unacceptable data transfer bottlenecks.

In order to try to reduce these bottlenecks, a number of different buses were intro-
duced which were tailored to connect particular parts of the system together. In the
early designs, these buses might be called, for example, the processor bus, the I/O
(input–output) bus and the memory bus.

At Fig. 4.5 we see a typical case, where the processor bus connects the processor
both to the bus controller chipset and to the external cache memory (ignoring for the
moment the connection to the local bus). This processor bus is a high-speed bus,
which for the Pentium might have 64 data lines, 32 address lines and various control
lines, and would operate at the external clock rate. For a 66 MHz motherboard clock
speed, this means that the maximum transfer rate, or bandwidth, of the processor
data bus would be 66 × 64 = 4224 Mbit per second.

Continuing with our example case, the memory bus is used to transfer infor-
mation from the processor to the main dynamic random access memory (DRAM)
chips of the system. This bus is often controlled by special memory controller chips
in the bus controller chipset because the DRAM operates at a significantly slower
speed than the processor. The main memory data bus will probably be the same size
as the processor data bus, and this is what defines a bank of memory. When adding
more DRAM to a system, it has to be added, for example, 32 bits at a time if the
processor has a 32 bit data bus.For 30 pin,8 bit SIMMs (see later section on memory),
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four modules will be required to be added at a time. For 72 pin, 32 bit SIMMs, then
only one module is required to be added at a time.

In our example case, the I/O bus is the main bus of the system. It connects the
processor, through the chipset, to all the internal I/O devices,such as the primary and
secondary IDE (Integrated Drive Electronics) controllers, the floppy disk controller,
the serial and parallel ports, the video controller and, possibly, an integrated mouse
port. It also connects the processor, through the chipset, to the expansion slots.
Newer chipsets were designed to incorporate what is called bus mastering, a
technique whereby a separate bus controller processor takes control of the bus and
executes instructions independently of the main processor.

I/O bus architectures have evolved since the first PC, albeit rather slowly. The
requirement has always been quite clear. In order to capitalize on the rapid improve-
ments that have taken place in chip and peripheral technologies, there is a need to
increase significantly the amount of data that can be transferred at one time and the
speed at which it can be done. The reason for the relatively slow rate of change in this
area has been the need to maintain backward compatibility with existing systems,
particularly with respect to expansion cards.

The original IBM PC bus architecture used an 8 bit data bus which ran at 4.77 MHz
and became known as the Industry Standard Architecture (ISA).With the introduction
of the PC AT, the ISA data bus was increased to 16 bits and this ran first at 6 MHz and
then at 8 MHz.However,because of the need to support both 8 bit and 16 bit expansion
cards, the industry eventually standardized on 8.33 MHz as the maximum transfer rate
for both sizes of bus, and developed an expansion slot connector which would accept
both kinds of cards. We rarely see ISA connector slots on motherboards today.

When the 32 bit processors became available, manufacturers started to look at
extensions to the ISA bus which would permit 32 data lines. Rather than extend the
ISA bus again, IBM developed a proprietary 32 bit bus to replace ISA called Micro
Channel Architecture (MCA). Because of royalty issues, MCA did not achieve wide
industry acceptance and a competing 32 bit data bus architecture was established
called Extended Industry Standard Architecture (EISA) which can handle 32 bits of
data at 8.33 MHz.

All three of these bus architectures (ISA, MCA and EISA) run at relatively low
speed and as Graphical User Interfaces (GUIs) became prevalent, this speed
restriction proved to be an unacceptable bottleneck, particularly for the graphics
display. One early solution to this was to move some of the expansion card slots from
the traditional I/O bus and connect them directly to the processor bus. This became
known as a local bus, and an example of this is shown in our example at Fig. 4.5. The
most popular local bus design was known as the Video Electronics Standards Associ-
ation (VESA) Local Bus or just VL-Bus and this provided much improved perfor-
mance to both the graphics and the hard disk controllers.

Several weaknesses were seen to be inherent in the VL-Bus design. In 1992 a group
led by Intel produced a completely new specification for a replacement bus archi-
tecture. This is known as Peripheral Component Interconnect (PCI). Whereas VL-Bus
links directly into the very delicate processor bus, PCI inserts a bridge between the
processor bus and the PCI local bus.This bridge also contains the memory controller
that connects to the main DRAM chips. The PCI bus operates at 33 MHz and at the
full data bus width of the processor. New expansion sockets that connect directly to
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the PCI bus were designed and these, together with expansion sockets for updated
versions of this bus, are what are likely to be found on most modern motherboards.
The design also incorporates an interface to the traditional I/O bus, whether it be
ISA, EISA or MCA, and so backward compatibility is maintained.

Further development of this approach led to the Northbridge and Southbridge
chipset that we find in common use today. At Fig. 4.6 we show a typical layout
diagram of a motherboard that uses these chipsets. The Northbridge chip connects
via a high-speed bus, known as the Front Side Bus (FSB) directly to the processor. We
have attempted, in the diagram, to give some idea of relative performance of the
various buses by making the thickness of the connecting lines indicative of their
transfer rates. We may note that the memory slots are connected to the Northbridge
chip, as is the Accelerated Graphics Port (AGP). More recently, we may find high-
performance PCI Express slots connected to both the Northbridge and Southbridge
chips. This is a very fast serial bus consisting of between 1 and 32 lanes, with each
lane having a transfer capability of up to 2.5 gigabits per second.

The Northbridge chip is connected to the Southbridge chip, which in turn
connects to a wide variety of devices, such as the PCI expansion slots, the Serial ATA
(SATA) disk interface, the Parallel ATA (PATA) disk interface, the sound system,
Ethernet, the ISA bus (if one exists) and so forth. In addition, the slower speed
devices, such as the parallel port (for printers), the serial communication ports, the
PS2 mouse port, the floppy disks and the keyboard, are often connected to the
Southbridge chips via a Super IO chip, as shown in Fig. 4.6.

Intel then introduced the Intel Hub Architecture (IHA)3 where, effectively, the
Northbridge chip is replaced by the Memory Controller Hub (MCH) and the
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Southbridge chip is replaced by the I/O Controller Hub (ICH). There is also a 64 bit
PCI Controller Hub (P64H). The Intel Hub Architecture is said to be much faster than
the Northbridge/Southbridge design because the latter connected all the low-speed
ports to the PCI bus, whereas the Intel architecture separates them out.

Finally, before leaving this section, we should mention two other technologies
which are in widespread use. FireWire is a serial bus technology with very high
transfer rates which has been designed largely for audio and video multimedia
devices. Most modern camcorders include this interface, which is sometimes known
as i.Link. The official specifications for Firewire are IEEE-1394-1995, IEEE 1394a-
2000 and IEEE 1394b (Apple Computer Inc., 2006), and it supports up to 63 devices
daisy chained to a single adapter card. The second technology is that of Universal
Serial Bus (USB) (USB, 2000), which is also a high-speed serial bus that allows for up
to a theoretical maximum of 127 peripheral devices to be daisy chained from a single
adapter card. The current version, USB 2.0, is up to 40 times faster than the earlier
version of USB 1.1. A good technical explanation of USB can be found in Peacock
(2005). With modern Microsoft Windows systems, “hot swapping4” of hard disk
drives can be achieved using either Firewire or USB connections. This is of signifi-
cance to the forensic analyst in that it enables the possible collection of evidence
from a system that is kept running for a short while when first seized. This might be
required when, for example, an encrypted container is found open on a computer
that is switched on (see Chapter 7 for more details).

A Typical Motherboard

At Fig. 4.7 is shown a typical modern motherboard, an Asus A8N32-SLI (Asus, 2005).
On the left-hand side of the diagram we can see clearly the three PCI expansion slots.
This modern board, as expected, has no ISA or VESA slots, but it does have three of
the relatively new PCI Express slots.Two of these slots are PCI Express × 16 with what
is known as Scalable Link Interface (SLI)5 support, and this provides the mother-
board with the capability for fitting two identical graphics cards in order to improve
overall graphics performance. These two slots are of a darker colour than the PCI
slots and slightly offset from them. One is located between the first and second PCI
slot and the other,which is marked “PCI Express”in the diagram, is to the right of the
third PCI slot. The third PCI Express slot is a × 4 slot, which is much smaller and is
located just to the right of this second PCI Express slot.

We can also clearly see the ZIF Socket 939 for the AMD processor. The two IDE
sockets for the ribbon cables to the Primary and Secondary parallel ATA hard disks
are at the bottom of the diagram close to the ATX power socket and the floppy disk
controller socket. This motherboard also has four Serial ATA sockets to the left of the
Primary IDE parallel socket, and at the top of the diagram can be seen in addition a
Serial ATA RAID socket.
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logging out of the system.
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At the bottom left of the diagram can be seen an 8 Mbyte flash EPROM, which
contains the BIOS, and the motherboard is controlled by Northbridge and
Southbridge chips which, as can be seen, are connected together by a copper
heatpipe. This is said to be provide a innovative fanless design for a much quieter
motherboard. This motherboard is also fitted with a Super I/O chip, as we discussed
above.

Along the left-hand side of the diagram we note the COM1 port socket, USB and
FireWire (IEEE 1394) sockets, and the CR2032 lithium cell battery which provides
power for the real-time clock and the CMOS memory. Along the top we note gigabit
Local Area Network (LAN) sockets, more USB sockets, the audio sockets, the parallel
port and the PS2 mouse and keyboard sockets.

The main random access memory is fitted into DIMM (Dual In-line Memory
Module) slots, of which four 184 pin Double Data Rate (DDR) slots can be seen in the
diagram, although two are darker in colour and are not quite so evident. This
motherboard supports a maximum of 4 Gbyte of memory and, as for most mother-
boards, there are various rules about what mix of memory modules are permitted in
the four memory slots.

In recent years, motherboards have been designed so that the sockets for many of
the peripheral devices can be brought out on the rear panel of a computer in a
standardized way without the requirement for a plethora of connecting cables.These
sockets are set at right angles to the motherboard and fit through a template on the
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rear computer panel. A typical set is shown for the Asus A8N32-SLI motherboard at
Fig. 4.8 and this is the rear panel view of the sockets that are shown at the top right-
hand side of Fig. 4.7.

Intel Processors and the Design of the PC

The original IBM PC architecture, dating from 1981, was based on the Intel 8088
processor chip. This architecture became known as the PC/XT with XT referring to
Extra Technology. The Intel 8088 is a later version of the Intel 8086, a processor chip
that was first produced in 1976. Microcomputer systems of this time were all 8 bit
and the 8086, which was one of the first chips to have an external data bus of 16 bits,
did not immediately gain widespread support, mainly because both the chip and
the 16 bit motherboard designed to support it were, at the time, very expensive. In
1978, Intel introduced the 8088, which is almost identical (Intel, 1979) to the 8086,
but has an 8 bit external data bus rather than the 16 bits of the 8088. Both these
processors have a 16 bit internal data bus and fourteen 16 bit registers. They are
packaged as 40 pin DIL chips and have an address bus size of 20 bits, enabling them
to address up to 220 bytes; that is, up to 1,048,576 bytes or 1 Mbyte. With the XT
architecture designed round the 8088 chip it was able to use the then industry
standard 8 bit chip sets and printed circuit boards that were in common use and
relatively cheap. Bus connections in the original XT architecture were very simple.
Everything was connected to every thing else using the same data bus width of 8
bits and the same data bus speed of 4.77 MHz. This was the beginning of the 8 bit
ISA bus that we discussed above.

The PC Memory Map

The layout of the PC memory map (see Fig.4.9) and part of the basic design of the PC
is a consequence of the characteristics of these Intel 8088 and 8086 processors. The
memory map is, of course, limited to 1 Mbyte, which is the address space of this
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processor family (20 bits). The first 1024 bytes of this address space are reserved by
the processor for its interrupt vectors, each of which is a four byte pointer to an
interrupt handling routine located elsewhere in the address space. To ensure a
flexible and upgradeable system, the interrupt vectors are held in RAM so that they
can be modified. In addition, when the processor is first switched on, and before any
volatile memory has yet been loaded with programs, it expects to start executing
code from an address that is 16 bytes from the top of the address space.This indicates
that this area will have to be ROM.

The memory map that results is thus not surprising. The entire address space of 1
Mbyte cannot all be allocated to RAM. The compromise made was to arrange for the
lower 640 kbyte to be available as the main RAM6 and the upper part of the address
space to be taken up with the ROM BIOS, with the video RAM and to give room for
future expansion with BIOS extensions. The reason for the 640 kbyte figure is said to
be that the original designers looked at the then current microprocessor systems7,
with their address buses of 16 bits and their consequent user address spaces of 64
kbyte of RAM, and felt that ten times this amount was a significant improvement for
the new PC. In practice, of course, the transient program area in which the user ‘s
application programs run does not get the whole of the 640 kbyte. Some is taken up
by the interrupt vectors and by the BIOS data, and some by the disk operating system
(DOS), as shown in Fig. 4.9.
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6 Because of cost, many early systems did not have the whole of the 640 kbyte populated
with memory chips.

7 One of the most popular chips of the time was the Zilog Z80 using the CP/M operating
system.



Design of the PC

The basic philosophy behind the design is very sound. The ROM BIOS, produced
for the manufacturer of the motherboard, provides the programs for dealing in
detail with all the vagaries of the different kinds and variations of the specific
hardware related to that motherboard. The operating system and the application
programs can interact with the standard interface of the BIOS and, provided that
this standard is kept constant, both the operating system and the application
programs are transportable to any other PC that observes this same standard. The
standard BIOS interface utilises yet another feature of this processor family, that of
the software interrupt. This works in a very similar manner to the hardware
interrupt. On detection of a particular interrupt number, the processor saves the
current state of the system, causes the interrupt vector associated with that number
to be loaded and then transfers control to the address to which the vector points. In
the case of a hardware interrupt, this will be to the start location of where code to
deal with some intervention request from the hardware resides. In the case of a
software interrupt, which calls on the BIOS, this will have been issued as an INT
instruction code by some calling program,and will cause an appropriate part of the
BIOS ROM code to be executed. In both cases, when the interrupt is complete, the
original state of the system, saved at the time of the interrupt, will be restored. One
of the major benefits of this approach is the ability to change the interrupt vectors,
because they are held in RAM. Let us consider, for example, that we are using the
original BIOS to control our graphics display and that this therefore contains a set
of programs which control the actual display controller chip which is on our
motherboard.When one of our applications uses the display, it will issue a standard
BIOS software interrupt and the associated interrupt vector will have been set up to
transfer control to where these original BIOS graphics programs reside. Now
consider the case where we purchase a super, high-performance, modern graphics
controller expansion card and fit that into one of the expansion slots on our PC. On
the graphics expansion card will be new BIOS programs for dealing with the high-
performance graphics controller that is fitted to this card. What is arranged for us
by the system, during the bootstrap sequence, is that the graphics controller
interrupt vector is changed from pointing to the original BIOS addresses to now
pointing to the appropriate addresses in the BIOS extensions area of the memory
space where our new graphics card BIOS has been installed. Precisely how the
interrupt vectors are changed we will see when we look at the bootstrap sequence
in Chapter 5. It is enough for now to recognize that the same application, issuing the
same software interrupt as before, now automatically gets access to the new high
performance graphics controller system.

PC System Resources

Hardware interrupts are transmitted along Interrupt Request channels (IRQs)
which are used by various hardware devices to signal to the processor that a request
needs to be dealt with. Such a request may arise, for example, because input data is
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now available from the hardware and needs processing, or because output data has
now been dealt with by the hardware and it is ready for the next tranche. There are a
limited number of IRQs available and each has its own specific address in the
interrupt vector table which points to the appropriate software driver to handle the
hardware that is assigned to that IRQ. Many IRQs are pre-assigned by the system to
internal devices and allocation of IRQs to expansion cards has to be carried out
with great care, since the system is not able to distinguish between two hardware
devices which have been set to use the same IRQ channel. Often, an expansion card
will have DIP (Dual Inline Package) switches which enable one of a number of
different IRQ channels to be selected for a given configuration in an attempt to
avoid IRQ conflicts.

Autonomous data transfer,which is the sending of data between a hardware device
and the main memory without involving the main processor, is provided by Direct
Memory Access (DMA) channels, and these too are a limited resource. Again, some of
the channels are pre-assigned by the system and others are available for use by
expansion cards and may also be set by DIP switches on the card. Conflicts can arise
if two different hardware devices are trying to use the same DMA channel at the same
time, though it is possible for different hardware devices to share channels providing
that they are not using them at the same time.

The third system resource is the I/O port address. The Intel 8088 processor, in
addition to being able to address 1 Mbyte of main memory, can also address, quite
separately, up to 65,535 I/O ports. Many hardware device functions are associated
with an I/O port address. For example, the issuing by the processor of an IN
instruction to a particular port address may obtain from the hardware associated
with that address the current contents of its status register. Similarly, the issuing by
the processor of an OUT instruction to a port address may transfer a byte of data to
the hardware. This type of activity is known as Programmed I/O (PIO) or Processor I/
O as opposed to Memory Mapped I/O (MMIO), where the 65,535 port addresses are
each assigned space in the overall main memory map. Using MMIO, any memory
access instruction that is permitted by the processor can be used to access a port
address. Normally a particular hardware device will be allocated a range of port
addresses.

The final system resource, and perhaps the one in greatest demand, is that of
main memory address space itself (see Fig. 4.9). MMIO is rarely used in the PC
because it unnecessarily takes up valuable main memory address space in the
upper part of the memory map, space that is required for the use of any BIOS exten-
sions in particular.

When a new expansion card is fitted, therefore, consideration has to be given to
what of these limited system resources it is going to require. It may have to be
allocated an IRQ, a DMA channel, a set of port addresses and, possibly, some address
space in the upper part of the memory map for a BIOS extension.The concept of Plug
and Play (PnP) was introduced with Microsoft Windows 95 to try to automate this
process of assigning these limited system resources. The system BIOS, the operating
system and the PnP-compatible hardware devices have to collaborate in order to
identify the card, assign and configure the resources and find and load a suitable
driver.
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The Intel 80286 and the AT Architecture

In 1981 a new processor chip was introduced by Intel, the 802868 (often just called the
286).This offers an external data bus of 16 bits and a wider address bus of 24 bits.The
24 bits of the address bus potentially gives access to 224 bytes of memory, that is, to 16
Mbyte, and the resulting memory above the 1 Mbyte region became known as
Extended Memory. The 80286 chip is fully compatible with the 8086 and 8088 chips
and it adds a new mode of operation called Protected Mode, which enables access to
this extended memory. The original mode of operation then became known as Real
Mode.

IBM developed the AT (Advanced Technology) architecture, based on this new
chip, because it was fully compatible with the 8088 and all software that ran on the
earlier systems should be able to run on the AT. The new chip was much faster than
the 8088, and the original AT, which first ran at 6 MHz, was some five times faster
than the 8088 running at 4.77 MHz. In practice, the AT systems using the 80286 were
seen, from a user viewpoint, to be little more than very fast XTs, though there were
some other important changes in the architecture. For example, combined 8 bit and
16 bit ISA expansion slots were introduced to take advantage of the new 16 bit data
bus, without losing the legacy 8 bit systems. The IRQ and DMA channel allocations
set by the system were changed and an increased range of both IRQ and DMA
channels was made available. However, because the operating system and much of
the available software was unable to use the new protected mode of the chip, useful
advantage could not be taken of the additional memory access that the system could
provide.

The 80386 Chip

When Intel introduced the 80386 (often just called the 386) in 1985, it rightly
promised a vast improvement in the performance of PCs. The chip can operate at
clock speeds from 16 MHz up to 33 MHz. With its 32 bit address bus it provides an
address space of 4 Gbyte, and with a 32 bit internal and a 32 bit external data bus it
can transfer 4 bytes of data at a time. It is fully backward compatible with the 8086,
8088 and the 80286 processors and it adds yet a further mode to the protected and
real modes of its predecessor, that of Virtual 8086 Mode, which is sometimes called
Virtual Real Mode. This new mode allows a control program to create what are in
effect a series of “virtual”8086 systems on the one PC, each of which is operating in a
protected mode which prevents it from interfering with the others.

Many variations of the 386 chip exist. The original 80386 became known as the
386DX when Intel introduced a cheaper version of the chip known as the 386SX.
Whilst retaining the internal 32 bit data bus, the external data bus on the 386SX was
reduced to 16 bits. This move took advantage of the large number of 16 bit ISA
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cards, which by that time were in common use, and 386SX-based systems rapidly
became popular entry level computers. A coprocessor, used to perform floating
point arithmetic in hardware, thus improving the performance of scientific and
engineering calculations, was produced for the 80386, and this was designated the
80387.

The 80486 Chip

The 80486,which is normally called the 486, is essentially an 80386 with an enhanced
80387 coprocessor built onto the chip. It also incorporates enhanced memory
management, 8 kbyte of internal cache memory and a more efficient design. A 486
will run, for the same clock speed, about twice as fast as the equivalent 386, and the
chip is fully compatible with the 8086, 8088, 80286 and 80386 processors. Initial chips
ran at a clock rate of 25 MHz, but later ones were available in 33 MHz and 50 MHz
versions. The 486 effectively created a revolution. Before its introduction, Graphical
User Interfaces (GUIs), such as those used by Microsoft Windows, had not achieved
widespread, popularity largely because of performance limitations, often charac-
terized by the appearance of the dreaded hourglass icon. The 486 changed that,
providing a performance that made GUIs more acceptable.

Many variations of the 486 chip also exist. The original 80486 chip became known
as the 486DX when the cheaper 486SX was introduced. This 486SX is essentially a
486DX without the onboard maths coprocessor, and the early 486SXs were simply
486DXs with their maths coprocessor element disabled, although the chip later
became established as a design in its own right. Intel also produced the 487SX as a
separate maths coprocessor for those who wished subsequently to upgrade their
486SX systems. Motherboards of upgradeable systems were fitted with an extra
socket into which this 487SX could be fitted. In practice, the 487SX is a fully
functional 25 MHz 486DX, and when it is installed in its socket it completely disables
the original 486SX via a new signal from one of its pins, and takes over all processor
functions from the 486SX.

The big advance, based on this same idea, was the introduction of the OverDrive
processor. This was before the widespread use of ZIF sockets, and the exercise of
prising out a 169 pin processor chip and replacing it with another was not a recom-
mended practice. Instead, the idea of fitting a new processor chip into a separate
upgrade socket which automatically disabled the existing processor seemed like a
very sensible strategy. The 486DX2 overdrive processor uses the same pinout as the
487SX and therefore can be fitted into the same upgrade socket. The 486DX2
achieves clock speed doubling by running at twice the speed of the motherboard
clock. For a 33 MHz clock this means that the 486DX2 runs internally at 66 MHz. In a
similar manner, the 486DX4 triples the clock speed.

None of these chips is being marketed today, although forensic computing
analysts may still come across systems using them. The separate OverDrive socket
idea has also now been dropped in favour of the ZIF socket. The original OverDrive
socket is now called Socket 1 (see Table 4.1), and the current upgrade strategy is to
remove the processor chip from its ZIF socket and replace it with the upgrade rather
than to add a second chip which disables the first.
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The Pentiums – Through Pro to 4

In 1993,Intel shipped the first of what they designated the Pentium processor.As part
of a natural progression, it might well have been called the 80586,but, since a number
cannot be trademarked, Intel chose this time to give the chip a name in order to try to
protect themselves against possible future clones. The original chip was about twice
as fast as the 80486 for the same clock rate. It can effectively be thought of as two
80486 processors with separate 8 kbyte code and 8 kbyte data caches connected
internally by a 256 bit data bus. The chip has an external data bus of 64 bits and an
address bus of 32 bits, and is fully software compatible with the 386 and 486
processors.Like the 486DX,the Pentium incorporates an internal maths coprocessor,
which is much improved over its predecessors. As mentioned above, the Pentium
processor is designed to connect to the rest of the system through the PCI bus, which
runs at 33MHz and can be 32 or 64 bits wide.

The first generation systems ran at 60 MHz and 66 MHz clock speeds. Second
generation systems run at 75, 90, 100, 120, 133, 150,166 and 200 MHz from basic
motherboard speeds of 50, 60 and 66 MHz. This range is achieved by on chip clock
multiplication, which is activated by two pins on the chip labelled BF1 and BF2. The
four combinations possible with these two pins give clock multipliers of 1.5, 2, 2.5
and 3, resulting in the variety of Pentium speeds quoted. Most motherboards have
jumper pins which allow these settings to be changed. Selecting a setting that is
above that recommended for the processor is known as overclocking. The third
generation of Pentium processors incorporates MMX (Multi Media eXtension)
technology and has additional instructions and data types that have been designed
for high-performance multimedia and communications applications. These run at
166, 200 and 233 MHz.

The Pentium Pro was introduced in 1995 with clock speeds of 150, 166 and 200
MHz. They became commercially available in early 1996, but were rapidly replaced
by the Pentium IIs in 1997, with clock speeds from 233 MHz to 450 MHz. The
Pentium III was being offered from early 1999 with clock speeds ranging from 550
MHz to 1.0 GHz and, at the time of writing (March 2007) we currently have the
Pentium 4 processor with clock rates from 1.30 GHz to 3.80 GHz and dual core,which
has two complete processor chips in the one package.

Compatible Processors

A number of compatible processors have been produced by manufacturers other
than Intel, the most notable being AMD (Advanced Micro Designs) and Cyrix (now
taken over by VIA).

These chips are fully compatible in terms of emulating the processor instructions,
and some are also pin-compatible. For those that are not pin-compatible, specialist
motherboards are provided. Recent versions of the AMD chips are the Athlon 64 FX
which operates at up to 2.80 GHz, and the AMD Sempron, which operates at up to 2.0
GHz. At Fig. 4.10 we have shown the top and bottom views of an AMD Athlon 64 FX
processor.
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A Few Words about Memory

Memory chips are made up of an array of transistor type cells each of which can be in
one of two states: either on or off, representing the values 1 or 0. Random access
memory (RAM) is characterized by being volatile (that is, it loses its information
when power is removed) and by being capable of easy modification (that is, it accepts
both read and write operations).

SRAM and DRAM

Static RAM (SRAM) uses between 4 and 6 transistor memory elements for each
switch cell9 to form a logical unit known as a bistable flip-flop.The flip-flop may be in
one of two stable states and, once set in a particular state, and provided the power
remains applied, it will continue in that state until a new state is set. Dynamic RAM
(DRAM), on the other hand, uses a single transistor-based capacitor10 for each
switch cell and the small charge on the capacitor is used to determine its state. As a
result of leakage current, however, the charge on each capacitor dissipates quite
quickly, and thus has to be refreshed at regular intervals, of the order of a few tens of
microseconds or so. It is this characteristic that gives it the name dynamic RAM.
Because of the need for this regular refresh, additional circuitry is required, internal
addressing is much more complicated and the speed of access is reduced. However,
DRAM is much cheaper to manufacture than SRAM, since DRAM requires only one
memory element to every six required for SRAM.

These characteristics determine the way in which we use the two kinds of RAM in
the PC. Since DRAM is relatively cheap, it is used for the whole of the main RAM
memory,which today might be as much as 4 Gbyte.However,since its performance is
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Fig. 4.10 The AMD Athlon 64 processor (photograph: Tony Sammes and Brian Jenkinson).

9 IBM uses 6 transistor memory elements for an SRAM cell. See IBM (1997).

10 In IBM DRAM this is known as a trench capacitor. See IBM (1996a).



slow compared with SRAM and it would significantly delay the modern processor, a
cache memory is often provided, the purpose of which is to provide a high-speed
buffer between the processor and the slower main memory. In the past, two levels of
cache were often found: L1 (or Level 1) SRAM cells built onto the processor chip itself
and L2 (Level 2) SRAM chips that were installed on the motherboard. More recently,
processors such as the Pentium 4 have contained both L1 and L2 caches on the
processor chip itself, and where a further SRAM cache is installed on the mother-
board, this is then known as L3 (Level 3) cache.

Memory chips are packaged in many ways. Older chips still use the DIL standard
package that we have referred to before, and we may still find some SRAM in sockets
on the motherboard in this form. More likely today, however, SRAM will be in PLCC
(Plastic Leaded Chip Carrier) or TQFP (Thin Quad Flat Plastic) packages, that are
surface mounted onto the motherboard. For the DRAM we may find 100, 168, 184 or
240 pin DIMMs (Dual Inline Memory Modules) or 72,144 or 200 pin SODIMMs (Small
Outline DIMMs) in sockets on the motherboard. Typical memory module sizes
currently range from 168 Mbyte to 4 Gbyte, and, as we discussed above, various rules
as to the mix of modules permitted are associated with each motherboard. You may
recall that our example motherboard of Fig. 4.7 has four 184 pin DDR (Double Data
Rate) DIMM sockets. We show an example of a 1 Gbyte 184 pin DIMM memory
module at Fig. 4.11.

Advances in the performance of DRAMs have come over the last few years as a
result of making changes to the basic DRAM architecture of the chip. The internal
layout of a DRAM chip can be likened to that of a spreadsheet with all of its cells in a
series of columns and rows. Access to any particular cell may then be made by
selecting a specific column and row address.Because of the refresh cycles that have to
take place, selecting both the column and the row address takes time. One
improvement in the design of the DRAM is to arrange for the rows to have a relatively
large number of columns and then to ensure that successive data items are held in the
same row. This has the benefit of saving the time needed to select the row address
when accessing successive data items, since it already remains selected. Each row can
be considered to be a page, and chips using this mode of operation are often called
Fast Page Mode (FPM) DRAMs. A further extension to this idea is implemented in
Extended Data Out (EDO) DRAMs (IBM, undated). Normally, the cell data is only
available while the row and column addresses remain selected. We have seen that
with FPM,the row address remains selected between accesses,but clearly the column
address cannot if we want to select another element. With EDO, the DRAM holds the
data valid on its output pins, even after the column selection has become invalid for
the current element and we are starting to access the next element.This speeds up the
rate of access and gives an extended period of time over which the processor can
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access the data. Clearly the motherboard must be “EDO aware” for this to work. EDO
is also sometimes called Hyper Page Mode.

Another advance occurred with the development of Synchronous DRAM
(SDRAM) (IBM, 1996b). Where FPM and EDO DRAMs are driven asynchronously,
with each access being initiated by control signals from the processor, SDRAM is
operated synchronously with all its accesses controlled by the same external clock as
that used by the processor. This, together with a burst capability, permits much faster
consecutive read and write operations compared with FPM and EDO. In addition,
SDRAM may have two internal banks, so that while one bank is being accessed, the
other is being prepared.

Double Data Rate (DDR) SDRAM is essentially an improvement over the earlier
SDRAM. It is very similar to SDRAM in design and operation, the main difference
being that it can transfer data on both the rising and falling edges of a clock cycle.
Compared with traditional SDRAM, which can only transfer on the rising edge, this
gives DDR SDRAM effectively twice the bandwidth, and by 2005 it had become the
mainstream memory technology to be found on most motherboards. From 2003,
however, development had started on the next generation of memory, Double Data
Rate 2 (DDR2) SDRAM, and this improves performance by permitting faster clock
rates whilst still maintaining a clean data output. Several motherboards were
available at the time of writing which were fitted for DDR2 SDRAM.

Video RAM (VRAM) and Synchronous Graphics RAM (SGRAM) (IBM, 1996c) are
DRAMs that have been designed specifically for graphics applications. VRAM is
based on the standard asynchronous DRAM architecture, but has the addition of a
high-speed serial port and a serial access memory (SAM) that is designed to hold
part of a page of data from the internal DRAM array. The VRAM has a standard
DRAM interface as well and this permits data to be read from or written to the
VRAM whilst serial data is continuously being written to the video interface.Such an
approach is sometimes referred to as dual port. SGRAM is video RAM that is very
similar in operation to that of SDRAM but has been optimized for graphics-intensive
operations. More recently, high-performance graphics cards are beginning to be
found with Double Data Rate 3 (DDR3) SDRAM fitted.

ROM

Read-Only Memory (ROM) is characterized by being non-volatile and read-only.The
information stored in it may be built into the chip during manufacture or it may be
subsequently placed there by programming the chip. Chips that are capable of being
programmed after manufacture are known as Programmable ROMs (PROMs) and
the simplest form is programmed by permanently fusing selected links in the
memory chip so that it retains the required binary pattern. This is a one-time
process, and such chips cannot be reused.

Reusable read-only memory chips are called Erasable PROMs (EPROMs) or
Electrically Erasable PROMs (EEPROMs). EPROMs, together with a later devel-
opment known as Flash Memory, are looked at in more detail in Chapter 8, when we
consider the significance of the memory type in the treatment of organizers. An
example of a Flash EPROM is the BIOS chip seen on the motherboard of Fig. 4.7.
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Backing Store Devices

A variety of devices can be used for backing store, of which the most familiar are
probably the standard 3.5 inch floppy disk drive and the hard disk drive. We devote
the main chapter of the book, Chapter 5, to the topic of magnetic disk drives, since it
is of such fundamental importance to the forensic computing analyst. Other backing
store devices of some importance include 120 Mbyte floppy disk drives, CD-ROM
(Compact Disc Read-Only Memory) drives, DVD (Digital Versatile Disk) drives,
Iomega ZIP drives, and a wide assortment of magnetic tape units. Most of these
devices come in one of two flavours: internal fitting, where they are connected to an
IDE slot or to a SCSI card, and external fitting, where they may be connected via a
USB or FireWire port. Some external drives, in the past, could be connected via a
parallel printer port, and we may even still see the old 5.25 inch floppy disk drive on
some elderly systems. Becoming increasingly popular in the last few years is the so-
called Thumb Drive. This is also normally connected via a USB port and appears to
the PC as another ATA hard drive. It is made up of flash memory and to date the
largest size in production is 64 Gbyte11.

Hard Disk Drive Units

At Fig. 4.12 we have shown a picture of a (now) relatively small hard disk drive. It is a
Seagate Medalist 8641, Model ST38641A, and the CHS parameters are given on the
label as Cylinders 16,383,Heads 16 and Sectors 63.The disk has an 8.4 Gbyte capacity.
On the right-hand side of the figure, in the top corner, can be seen fitted a typical
standard power supply connector, recognizable by its four coloured leads: a red, two
blacks and a yellow.

The connector is shaped so that it will only fit in the socket one way round.
Immediately beneath the power connector can be seen fitted the IDE ribbon cable
connector.The ribbon cable is 2 inches wide and contains 40 parallel lines12.One line
is invariably coloured red and this is line 1 of the cable. Current ribbon cable sockets
and connectors tend not to be shaped or to have guards which prevent incorrect
connection and it is thus very important to match the red line of the cable with pin
number one in the sockets at both ends of the cable. Incorrect connection will
certainly ensure that the disk drive does not work and may damage it. The other end
of the ribbon cable, of course, connects to one of the two IDE slots that we saw in Fig.
4.7 on the motherboard, or, possibly, to an IDE expansion card. Most motherboards
have at least two slots, which permit up to four IDE devices, such as hard drives, CD-
ROM and DVD drives, and 120 Mbyte floppy disks, to be connected to the system.
One slot is the IDE primary and the other is the IDE secondary. From each slot, the
ribbon cable can connect up to two devices,a master and a slave.Which is master and
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which is slave is determined not by position on the cable, as it is in the case of floppy
disks, but by jumper settings on the disk itself.

We have also shown at Fig. 4.13 details of the type of socket found on the Seagate
Medalist drive of Fig. 4.12. On the left-hand side of the figure can be seen the 40 pin
socket for the IDE ribbon cable, with pin number 1, the one associated with the red
line, on the right-hand side of the socket.

On the right-hand side of the figure can be seen the power socket and the shaped
surround that ensures that its connector can only be fitted one way round. In
between the two sockets can be seen three pairs of jumper pins with a jumper set on
the left-hand side. A jumper is set by sliding a small connector over both the top and
bottom pins of a pair, which then makes electrical connection between the two.
Reference to the disk manufacturer’s documentation for the particular drive should
provide details of what all the various jumper settings do. In the case of this disk, the
jumper as fitted sets the disk up as a master. Other settings would switch it into slave
mode or to cable select. A check of these jumper settings is of much importance to
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Fig. 4.12 A Seagate Medalist 8641 hard disk drive (photograph: Tony Sammes and Brian Jenkinson).

Fig. 4.13 Parallel ATA disk drive sockets and jumpers (photograph: Tony Sammes and Brian Jenkinson).



the forensic computing analyst in order to ensure that the disk has been set up
correctly.

Increasingly, we are seeing more and more Serial ATA (SATA) disks. At Fig. 4.14 we
show the connections for such a disk,which are quite different from those for Parallel
ATA (PATA). The power cable socket is the bigger of the two, shown on the left of the
diagram, and the serial signal cable socket is shown in the centre. According to
current specifications, the jumpers are “for factory use only”, as each device has its
own cable and is designated a master on that cable.

Floppy Disk Drive Units

These are connected via a ribbon cable similar to those used for parallel ATA disks.In
this case the cable is 1.75 inch width, and connects the (up to two) floppy disks to the
Floppy Disk Controller (FDC) slot on the motherboard. This slot can be seen marked
“Floppy” in Fig. 4.7. The ribbon cable again has one line coloured red to identify pin
1, and it has a total of 34 lines. It is easily recognizable in the system because the cable
is split and has 8 lines that have one full twist in them just before it connects to one of
the two floppy disk units that it supports. It is this set of twisted cables that allow the
two floppy drives, A: and B:, to be separately identified. Power connectors are
identical to those for hard drive units in the case of 5.25 inch floppy drives and
similar, but slightly smaller for 3.5 inch floppy drives.

External Peripherals

Most of the external peripherals connect to the buses of the motherboard by means
of appropriate sockets, connectors and cables. The keyboard may have its own PS/2
socket on the motherboard, and this is shown in Fig. 4.7. In some older systems, the
PS/2 socket on the motherboard might not be accessible from outside the casing and
a short connecting cable then had to be fitted from the PS/2 socket on the mother-
board to an external PS/2 socket on the casing of the main unit.

The mouse may also have a socket on the motherboard for a PS/2 cable
connection. This too, on older systems, might require a cable to the casing of the
main unit, as described for the keyboard connection. Similarly, short ribbon cables
might be needed to connect the serial port sockets and the parallel port socket, seen
in Fig. 4.7, to the appropriate serial and parallel port sockets on the main casing. It
was to avoid all these cables that the standardized set of sockets mounted directly on
the motherboard and designed to fit through the rear panel of the PC was introduced
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Fig. 4.14 Serial ATA disk drive sockets and jumpers (photograph: Tony Sammes and Brian Jenkinson).



(see Fig. 4.8). The serial ports were once widely used for devices such as the mouse,
modems, digital cameras and perhaps PC links to organizers, mobile phones and
other electronic equipment. These days, such devices are more likely to be connected
via USB or FireWire ports. The parallel port was once used for devices such as
printers, plotters and scanners, and sometimes even for interconnecting with other
PCs. Again, printers are now often connected via USB ports and the parallel port is
less frequently used.

The only major peripheral not so far dealt with is the display. For this mother-
board, the display will have its own expansion card, slotted into one of the PCI
Express expansion slots, and a socket on the card will provide the video connection
to the display. Some older motherboards have their own onboard display controllers,
and then there will be a video socket for this purpose on the motherboard.

Expansion Cards

A very brief look at some typical expansion cards now follows. The first of these is
shown at Fig. 4.15: an ASUS EAX1300PRO graphics card.

One point is particularly noteworthy with respect to this example. Although not
obvious at first sight, this is a PCI Express card and not a PCI card.The clues are in the
positioning of the space between the two sets of contacts on the connector and in the
tail on the right-hand side of the connector, just under the centre of the fan.Ordinary
PCI cards do not have tails, and it is this tail, trapped by the retention mechanism on
the PCI Express x16 socket on the motherboard, that locks the card in place, a feature
that has been found necessary for graphics cards. Although a similar retention
system is used with the older AGP sockets, the positioning of the space between the
two sets of contacts is different between the AGP cards and the PCI Express x16 cards.
Close examination of the PCI and PCI Express x16 sockets in Fig.4.7 shows that these
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Fig. 4.15 ASUS EAX1300PRO graphics card (photograph: Tony Sammes and Brian Jenkinson).



too have different spaces between the two sets of contacts, and this spacing can be
used to aid identification of the different expansion cards.

At Fig. 4.16 we have shown an old AWE32 Sound Blaster card. Although these are
now obsolete, as we would expect audio to be implemented directly on the mother-
board these days, we have shown this card for two main reasons.

First of all it is a good example of a 16 bit ISA card, and this can be recognized by
the position of the split between the two sets of contacts seen at the bottom of the
figure. Also just visible on the right-hand side of the figure is the metal plate, which
forms part of the outer casing, and a number of sockets through which various
sound connections can be made. The second reason for showing this card is that this
model, in common with many sound cards that were manufactured before the IDE
CD-ROM drive interface had been developed, has three different CD-ROM interface
sockets on the left-hand side of the figure. These enable a CD-ROM drive to be fitted
which interfaces through the Sound Blaster card, the technique that was most
frequently used on older systems to provide a CD-ROM facility.

The final picture, at Fig. 4.17, is that of a simple network card. Again, this has a PCI
connection, shown at the bottom of the picture, and we can just see a network cable
plugged into a 10BaseT socket on the left-hand side of card.
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Fig. 4.16 AWE32 Sound Blasfer card (photograph: Tony Sammes and Brian Jenkinson).

Fig. 4.17 Simple network card (photograph: Tony Sammes and Brian Jenkinson).



Although there are very many different kinds of expansion card, these three
examples should give a reasonable view of what to expect inside the box. Often the
purpose of an expansion card becomes evident from the connections that are made
to it. Equally often, there is useful information screen printed on the printed circuit
board which will help identify the manufacturer of the card and its type.
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5. Disk Geometry

Introduction

In this chapter we look in detail at the geometry of floppy and hard disk drives to find
out exactly how information is stored and how it might be hidden. The topics we are
going to consider are the following:

● The development of the hard disk
● Physical construction – heads, tracks and cylinders
● Formation of addressable elements
● Encoding methods and formats for floppy disks
● Encoding methods and formats for hard disks
● The formatting process
● Hard disk interfaces
● IDE/ATA problems and workarounds
● The boot sequence and POST
● The master boot record and partitions
● Directories and file systems
● Hiding information

A Little Bit of History

One of the most important devices from a forensic computing viewpoint is the hard
disk drive, which today may contain hundreds of gigabytes of information. It is of
more than passing historical interest to note, however, that the very early IBM
Personal Computers, released in 1981, were not provided with any kind of hard disk
drive; indeed there was no program code (Majors, 1995) in their BIOS that could
recognize a hard drive nor any provision in the early versions of their operating
systems for hard disk support. PC-DOS versions 1.0 and 1.1 and MS-DOS versions
1.0 and 1.25 had no support at all.

It was not until MS-DOS version 2.0, released in March 1983, that hard disk
support was provided in the operating system code (Duncan, 1988). In addition, the
lack of any subdirectory facilities in the file structure of these operating systems
meant that there was a very low upper limit (Duncan, 1988) on the numbers of files
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that could be stored on a disk. MS-DOS 1.0 and its file system was based on the 16 bit
operating system 86-DOS, and this in turn had been designed by Seattle Computer
Products to be upwards compatible with C/PM-80, the Digital Research 8 bit
operating system,which was then the current standard for the Intel 8080 and Zilog Z-
80 microprocessors.In the CP/M file systems,the directory area on the disk is of fixed
size and typically can contain only some 64 entries. This does not necessarily
represent even 64 files, since multiple directory entries may be needed for a single
file (Clarke and Powys-Lybbe, 1986). However, since these file structures were
designed solely for floppy disk support and these, at the time, had a capacity of only
160 kbyte per disk, this did not pose a real problem. Even with support for hard disks
in MS-DOS 2.0, the amount of data on a disk did not pose the problem that it does
today.

Five Main Issues

From a forensic computing viewpoint, there are five main issues that we need to
consider with respect to disk drive units. These are:

● the physical construction of the unit itself
● the way in which addressable elements of memory are formed within the unit
● the variety of interfacing issues and problems that have arisen as a result of rapid

development
● the implementation of file systems using the addressable elements of memory
● the ways in which information might be hidden on the disk

In this chapter, we will consider each of these five issues in turn.

Physical Construction of the Unit

We will start with floppy disk units, not only because these were the sole forms of
backing store available on the early PCs, but also because they are the simplest in
structure and in concept.

We see at Fig.5.1 a simple conceptual model of a floppy disk drive unit.A magnetic
disk or platter, contained in a protective envelope or hard plastic case, is inserted into
the drive and automatically locked onto a spindle. It is then rotated at a constant
speed by means of a spindle motor. The disk itself is a circular piece of very flexible
plastic (hence the term floppy disk), coated on both sides with a magnetic material. A
head assembly, consisting of two magnetic read/write heads, one in contact with the
upper surface of the disk and one in contact with the lower surface of the disk,may be
moved in discrete steps across the disk by means of a stepper motor.

Because the magnetic read/write heads are in contact with the two surfaces of the
disk, physical wear occurs and the rotational speed has to be limited to ensure a
reasonable life for the disk and drive unit. For the standard 3.5 inch, 1.44 Mbyte
floppy, the rotational speed is limited to 360 revolutions per minute.
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Tracks and Cylinders

Given that the head assembly is held at some particular position in its series of steps
across the surface of the disk, the area of magnetic material that is passing under the
upper head as a result of the rotation of the disk is seen to be a very narrow circular
strip.

This is shown as a dashed oval in Fig.5.1.The strip is called a track, and,since there
is one track swept out by the upper head and a second track swept out by the lower
head, the two tracks taken together are referred to as a cylinder. The number1 of
possible cylinders for a given drive is clearly determined by the number of discrete
steps available to the stepper motor. This concept of a cylinder is more explicitly
illustrated in Fig. 5.2, where three disk platters and six tracks are shown2.

Clearly, information may be magnetically recorded onto a given track by moving
the head assembly to the appropriate step position, switching to one of the two heads
electronically, and writing electromagnetically to the disk surface for the period of
one rotation. Similarly, the information may be “played back” by moving the head
assembly to the appropriate step position, switching to the appropriate head, and
reading electromagnetically from the disk surface for a period of one rotation.
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Fig. 5.1 Physical construction.

1 For the standard 3.5 inch, 1.44 Mbyte floppy, the number of possible steps and hence the
number of cylinders is 80.

2 We will use the terms track and cylinder from now onwards, usually without
distinguishing between them, to mean a particular positioning of the head assembly.



One problem that becomes evident from this simple approach is the determi-
nation of where a track, which is circular, begins and ends. This is where the index
hole (see Fig. 5.1) comes in for older floppy disks; it helped to mark the beginning
and end of a track.

For the standard 3.5 inch, 1.44 Mbyte floppy, a metal slot on the floppy disk is
mated with a pin on the drive spindle, which registers the disk in relationship to the
spindle motor. Given this registration, timing pulses can be used to help determine
the start and end of tracks.

Formation of Addressable Elements

In practice, the track is found to be too large a unit for storing information, so it is
divided into a number of equal sized sectors. Shown in Fig. 5.1 are 9 sectors per track
(spt), which is typical for the older 5.25 inch floppy disks. The later ones use 15
sectors per track whilst the standard 3.5 inch, 1.44 Mbyte floppy has 18 sectors per
track.

The position of each sector can be determined by timing pulses that are generated
in conjunction with the index hole and the rotation of the spindle motor. In this way,
any information unit on the disk can be uniquely identified and accessed. First the
head assembly must be moved to the correct cylinder position, then the appropriate
head must be switched in electronically to access the correct track, and then the read
process must start when the timing pulses indicate that the correct sector is passing
under the head.
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CHS Addressing

This led to the use of so-called CHS addressing: C for the cylinder number (starting
from 0), H for the head number (starting from 0) and S for the sector number
(starting from 1).The formation of addressable elements of disk memory is achieved
by means of this physical CHS address, which uniquely identifies every sector on the
disk3. Although this form of addressing has today become obsolete for the majority
of modern hard disks, we cannot, as forensic analysts, ignore how it works. This is
because CHS addressing is still used by most bootstrap programs when the
computer first starts up. It is also used by most floppy disks and other media such as
thumb drives and CF cards, and we may well come across some older hard disks for
analysis that can only be addressed in this way.

Reading from or Writing to a CHS Disk

We can now visualize the way in which an operating system might read from or write
to a CHS addressed disk. The operating system would need first to send a
“command”to the disk controller to move the head assembly by means of the stepper
motor to the required cylinder (or track) position; the “C” of the CHS address. It
would then need to send a second “command” to the controller to switch in the
required head electronically; the “H”of the CHS address. Then it would need to send
a third “command” to the controller to allow the disk to rotate until the particular
required sector was coming under the head assembly; the “S” of the CHS address.
The operating system would then need to send a “command” instructing the
controller to read from or write to the sector as it passes under the head assembly. In
practice these “commands” are all loaded into the registers of the processor and are
passed to the disk controller by means of an INT 13h software interrupt, which we
discuss in more detail later. Part of the CHS address design is to place on the surface
of the disk, in each sector, a copy of the actual CHS address for that sector known as
the ID Address Mark (IDAM). The disk controller, when instructed to read from or
write to a sector at a specific CHS address, first reads the IDAM at the sector it has
selected to confirm that carrying out these three physical CHS commands has
resulted in the correct sector being accessed. This is an important part of the control-
ler’s error-checking mechanism.

Encoding Methods and Formats for Floppy Disks

The format of the information recorded on the track and on each sector within the
track is very important in helping to identify sector addresses. A track consists of a
serial sequence of bits which are all interpreted as 8 bit bytes. One might reasonably
assume that these bit patterns are simply recorded directly onto the magnetic platter
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as a sequence of small magnetized areas, with a “0” being represented by, say, a
“north–south” magnetized area and a “1” by a “south–north” magnetized area.

In practice this is not done, because the magnetic heads operate by detecting
changes in magnetization, so a long run of 1s or 0s using our simple-minded
approach would not generate any signals. Instead, an encoding method is used which
ensures that there are plenty of changes in the magnetization, whatever the bit
pattern of our track data happens to be.

To clarify the distinction between the encoding method and the format we should
note that the encoding method determines how a bit is actually encoded on the
magnetic surface of the disk and the format determines what sequences of bytes are
used to represent the various data structures that are required. These data structures
include, for example, the CHS address for each sector, the sector data blocks and any
error-detecting or correcting codes.

FM and MFM Encoding

Two encoding methods exist for floppy disks: Frequency Modulation (FM) and
Modified Frequency Modulation (MFM). At Fig. 5.3 we see FM and MFM encoding
methods compared for the same data pattern. This data pattern is an example byte of
value 41h representing the character “A”. The byte is shown, for example purposes,
with a leading and trailing 0 to make it up to the ten bit sequence: 0010000010. The
information is written as a continuous bit stream onto the magnetic surface.

In the case of FM, information is stored in a bit cell and this consists of a clock bit
and a place for a data bit. Electromagnetic theory tells us that only a flux change can
create a signal, so every bit needs to be implemented by some kind of flux change,
usually a reversal of magnetization. Each set clock or data bit is therefore established
by a reversal of magnetization. Typical of FM is a clock bit present for every bit cell
and a data bit present only where there is a 1 in the data stream and absent where
there is a 0 in the data stream. In the FM encoding section of Fig. 5.3 we can see, as
magnetic flux density reversals, the clock bits for each bit cell and the two set data
bits for the byte 41h (0100 0001).
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It was very soon recognized that, for FM encoding, many of the clock bits are, in
fact, redundant. Their presence is only required to identify the start of a bit cell, thus
helping to maintain synchronization of the controller with the data stream.However,
synchronization is only a problem where the data stream consists of a series of 0s
together and a reversal does not occur for some time. Provided that reversals occur
frequently enough, synchronization can be maintained.

In the MFM encoding method, two simple rules were established that determined
when a clock bit needs to be written in order to maintain synchronization and when
it can be ignored.The rules are shown in Table 5.1.What these rules are doing is to set
a clock bit whenever a run of two 0 data bits occurs. This can be clearly seen from the
MFM encoding section of Fig. 5.3, which shows the same byte, 41h, encoded using
these rules.

By comparing the flux reversals in the two sections it is not difficult to see that
MFM will permit, on average, twice the information density over that of FM for the
same recording density. As a result, FM encoding is almost never used today.

Floppy Disk Low-Level Format

A slightly different low-level format is specified for the two encoding methods, but
both of these formats require, for each track on the disk, a start of track sequence of
bytes, a sector format sequence which includes the CHS address and the data block
for each of the sectors, and an end of track sequence of bytes.

As mentioned earlier, bytes are recorded sequentially along the track, with each
byte itself being recorded as eight serial bits. At Table 5.2 (Messmer, 2002, p. 791) we
have shown the sequence of bytes that are required for a 5.25 inch floppy disk track in
IBM format using the MFM (Modified Frequency Modulation) encoding method
that we discussed in the previous section.

Referring to Table 5.2, we note that a track always starts with a so-called GAP 4A
sequence, which consists of 80 bytes each of value 4eh. This is the hex value that is
used for all gaps in this format. Although early floppy disk controllers could
recognize the beginning of the track by means of the index hole on the floppy, as we
mentioned above, the physical size of this hole is far too large and its physical
position is far too imprecise to determine precisely where the track on more modern
disks begins4. The 80 byte 4eh pattern warns the disk controller that the track is
about to start and gives the electronics time to synchronize with the 12 byte sequence
of 00h which follows. This is known as the synchronization (SYNC) block.

The four bytes of the Index Address Mark (IAM) tell the controller that the sectors
of the track are about to follow, and immediately after this there is another gap of 50
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● A data bit is always written if it is equal to 1.

● A clock bit is only written if the preceding bit cell as well as the current bit cell does not
have a data bit set.

Table 5.1 Rules for MFM encoding.

4 Data bits on a 15 sector per track floppy are only about 2 microns apart, whereas the
index hole is about 1 mm in diameter.



bytes of 4eh, GAP 1. It is this Index Address Mark that signals the true start of the
track5.

After the start of track sequence, the sectors proper begin. Each of the sectors (and
in this format there are 15 of them) has ten sections, of which only those for sector 1
are shown in the diagram. After another synchronization (SYNC) sequence of 12
bytes of 00h, the ID Address Mark (IDAM), which we mentioned above, follows; this
indicates the start of the ID or identification field for the sector concerned and is
where the CHS address is held. The ID field is made up of four bytes, of which three
are used for cylinder, head and sector addressing and the fourth is used to indicate
the sector size for floppy disks and as a flag byte for hard disks, the details of which we
will look at later. At Fig. 5.4 we have shown the layout of the first three of the four ID
bytes which provide the CHS address for the sector.Ten bits are used for the cylinder6

address with the leading two bits of that address being taken from the high end of the
sector byte (the third byte). This gives a maximum cylinder address of 1023, and
since the cylinder count starts from 0,we may address up to 1024 cylinders.Eight bits
are used for the head address (the whole of the second byte) giving a maximum value
of 255, and since the head count starts from 0 we may address up to 256 heads. Only
six bits are used for the sector address (the remainder of the third byte), giving a
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GAP 4A 80 bytes 4eh Start of track

SYNC 12 bytes 00h

IAM 4 bytes c2h c2h c2h fch

GAP 1 50 bytes 4eh

SYNC 12 bytes 00h Start of sector 1

IDAM 4 bytes a1h a1h a1h feh

ID 4 bytes cylinder head sector sector-size
1024 cylinders, 256 heads, 63 sectors

CRC 2 byte CRC value

GAP 2 22 bytes 4eh

SYNC 12 bytes 00h

DAM 4 bytes a1h a1h a1h fbh (or f8h)

Data 512 bytes data

CRC 2 byte CRC value

GAP 3 80 bytes 4eh End of sector 1

... Sectors 2 to 15

GAP 4B ?? bytes 4eh End of track

Table 5.2 5.25 inch floppy disk format MFM encoding.

5 Floppy disks used to fail rather more frequently than today, and one error message
would often be “Missing index address mark”.

6 Recall that cylinder numbers are the same as track numbers; they represent the position
of the head assembly.



maximum value of 63, and, since the sector count conventionally always starts from
1, we may address up to 63 sectors.

Because of the importance of these ID marks,a two-byte Cyclic Redundancy Check
(CRC)7 is calculated and stored at format time for the IDAM and ID fields. Another
gap then follows of 22 bytes of 4eh, GAP 2, which is deliberately put there to give the
controller time to check this CRC, and then there is another synchronization (SYNC)
sequence of 12 bytes of 00h.This is followed by the Data Address Mark (DAM), which
signals the start of the actual 512 bytes of data8.

After this data block comes another two-byte CRC, calculated for the whole of the
data area, and the sector is finally terminated by another gap, GAP 3, of 80 bytes of
4eh. This gap is designed to be long enough to allow for any variations in recording
speed and thus avoid the inadvertent overwriting of the following sector. This first
sector is then followed by the other 14 sectors, using exactly the same format, and
then the End of Track is written as GAP 4B, a variable number of 4eh bytes forming a
flexible buffer which finally links up with GAP 4A. With all of this laid down during
formatting, we can easily see why a formatted disk has less usable data space than an
unformatted disk. We can also see how a disk controller can confirm that it has
accessed the correct CHS address by checking the sector ID field.

The 8.4 Gbyte Barrier

Having discussed track and sector formatting now in some detail, it might be useful
at this point to consider what implications, if any, these data structures could have on
hard disk capacity. Although there is not going to be any problem for current floppy
disks, with their very limited capacity, it is important to understand that we have, at
the level of the disk format itself, imposed limits on the range of CHS addresses that
are possible.This is because we have used fixed sizes for the numbers of bits that have
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7 A cyclic redundancy check is a form of checksum that can be used to detect certain
kinds of error. For a good detailed explanation, see Messmer (2002, pp. 796–800).

8 Data sizes other than 512 bytes are possible for floppy disks and these would be
indicated appropriately by the setting in the fourth byte of the ID. However, 512 bytes is
the size most usually adopted.



been allocated to each of the three CHS parameters, namely: 1024 cylinders (0 to
1023 in 10 bits), 256 heads (0 to 255 in 8 bits) and 63 sectors (1 to 63 in 6 bits).

The maximum number of sectors it is thus possible to address is 1024 × 256 × 63,
and given that the normal sector data size is 512 bytes, we can calculate the
theoretical maximum size of a formatted disk as 1024 × 256 × 63 × 512 bytes =
8,455,716,864 = 8.4 Gbyte9. Here is one of the factors that originally resulted in the
so-called 8.4 Gbyte barrier.This ID field structure is the structure of the original low-
level format design for floppy disks which was carried over with little modification
into the ST412/506 low-level format design when hard disks first became available. It
is also precisely the same structure that is used for the INT 13h10 disk access
mechanism where the three bytes of Fig. 5.4 equate to the three registers CH, DH and
CL respectively.We will be looking at this in detail in a later section in order to under-
stand many of the hard disk design concepts. Hard disk manufacturers have tended
subsequently, in their low-level formatting design, to utilize these four ID bytes in
rather different ways in order to help overcome this barrier, as we shall note later.
However, since the low-level format structure is completely hidden from the outside
world by the disk controller in modern hard disks, some manufacturers11 have
radically revised the data structures which they use in their low-level formats. As a
result, the four ID bytes are no longer a factor in the 8.4 Gbyte barrier.

Construction of Hard Disk Systems

One of the big differences between floppy disks and hard disks is that the heads do
not (normally) touch the surface of a hard disk except when at rest. The hard disk is,
as the name suggests, made up of a number of rigid hard platters and the head–disk
assembly is enclosed in a dust-free environment.

All the heads are fixed to the same actuator and fly free just above the surface of
the disk, held up by aerodynamic pressure (Fig. 5.5). At the time of writing, a
common size of disk platter, usually referred to as the form factor, is 3.5 inches,
although 2.5 inches is often used for notebook computers and is becoming more
common for standalone drives. The number of heads is likely to be between two and
six and the rotational speeds are typically from 3,600 to 7,200 revolutions per
minute12.Servo control circuits are used to position the head assembly and to reduce
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9 Note that this figure is calculated using powers of ten units for kilo, mega and giga, for
which we divide by 1000 × 1000 × 1000. If we were to use powers of two units, more
normal for computer work, we would divide by 1024 × 1024 × 1024 and get a result of
7.87 Gbyte, a number which is also sometimes used.

10 Throughout we have used “INT 13h” to refer to the legacy disk interrupt mechanism
and “INT 13h extensions” to refer to the extended system.

11 IBM have designed a new low-level format which does not use ID bytes at all. It is called
the No-ID™ sector format; see IBM (1995).

12 At the time of writing, disks from a number of manufacturers now have rotational
speeds of 15,000 rpm.



any rotational variations in speed to approximately ±0.1%. A nice analogy for the
standard of engineering required is quoted here from Seagate (1995a): “Today’s new
generation of disc drives achieve the engineering equivalent of a Boeing 747 flying at
Mach 4 just two meters above the ground, counting each blade of grass as it flies over.”

As in the case of floppy disks, except for high-performance systems and RAID (see
later section), only one head is active at any one time for reading or writing data.
Having said that, in some hard disk systems, one of the disk surfaces13 may be used
for holding pre-formatted control information, and thus its associated head is also in
use at the same time as the data head for servo control purposes. Tracks on this
surface are called servo tracks or index tracks and the head itself is known as the
servo head or the index head. Disks that use this technique often appear to have an
odd number of real physical heads, since one has been reserved for servo use. Other
systems may instead embed the servo information into the data tracks as servo
sectors (IBM, 1995). The head assembly, instead of being positioned by a stepper
motor actuator14 is controlled by a linear motor system which is often referred to as a
voice coil actuator. In this system, the head reads the preset data on the servo tracks
and uses this with a feedback loop to position the voice coil actuator and the head
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Fig. 5.5 Western Digital Caviar (with kind permission of Western Digital Corporation).

13 Usually the topmost.

14 An outdated mechanical head positioning system that was used with early hard disks
drives and is still used for floppy disk drives.



assembly very accurately to any particular cylinder position. It is this approach that
has led to a rapid expansion in the capacity of hard disks by radically increasing the
number of real physical cylinders15. This development was apparently not foreseen
by the early designers who, if the low-level format ID data structure sizes are any
indication, expected instead the number of heads to increase towards 256. We recall
from our discussion above of the 8.4 Gbyte barrier that the ID field in a sector only
has scope to specify up to 1024 cylinders, rather than the many thousands that we
may find in modern hard disks. This is yet another limitation to which we will return
shortly.

When the drive is switched off, the heads rest on the surface. Most modern disks
“park” their heads automatically onto an unused track as they power down, though
earlier disks had a special PARK program designed for this purpose. It is certainly
unwise practice to use any version of this program with a modern self-parking disk!
Typical distances for heads flying free are 0.2 to 0.5 microns above the surface, or
some 12 millionths of an inch. By comparison, a fingerprint and a smoke particle are
some five to ten times thicker at 3 microns and a hair is some thirty times thicker at
10 microns. Contamination can therefore be a serious potential problem.

Hard disks have an internal air filter which is used for filtering the air already in
the case. To avoid the head–disk assembly exploding as a result of low external air
pressure,such as might occur in an aircraft cabin at high altitude, the case has a venti-
lation slit which is also protected by an air filter.

Note, however, that it is not a good idea to place your laptop in the hold baggage
compartment when flying without first removing the hard disk(s) and carrying
them in the cabin with your hand baggage. It is not that the decompression of the
hold will itself damage the disks; air will simply be forced out of the ventilation slits.
The problem occurs on returning to normal atmospheric pressure. Air will then be
forced back into the disk, and this air may contain contaminants which the simple
filters cannot handle. The result can be a catastrophic head crash. Another problem
that can arise is that of thermal shock. The temperature may change from about
–25 °C in the hold at cruising height to +20 °C on the ground over a period of about
half an hour, and this may result in severe physical damage to the disk.

Encoding Methods and Formats for Hard Disks

A very similar approach to that used for floppy disks was originally adopted for the
encoding and low-level formatting of hard disks. Indeed, the approaches can be seen
to have developed directly from their floppy disk controller antecedents. Three
encoding methods may be met with: Modified Frequency Modulation (MFM)
encoding, Run Length Limited (RLL) encoding and Advanced Run Length Limited
(ARLL) encoding.Again slightly different low-level formats are used for the different
encoding methods and also between hard disk manufacturers.
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15 The Cheetah from Seagate has 6,526 cylinders; see Seagate (1997a).



RLL Encoding

We will first look briefly at RLL encoding and compare it with MFM. It is an area that
tends to be shrouded in mystery, quite unjustifiably so as it turns out.

We saw earlier how MFM can provide,on average,a 2 to 1 improvement over FM by
writing a clock bit only if two 0 data bits occur in succession. However, if we were to
have all 512 data bytes in a sector filled with 0s we would still have 409616 clock bits
using MFM. With RLL, there are no clock bits, but this means that with long
sequences of 0 data bits we would have no 1 bits set at all in the recorded stream and
the controller would quickly lose synchronization.

What Run Length Limited means is that although there might be no clock bits in
the stream to be recorded, we first encode that stream, before recording, into one
which does have 1s at sufficiently small intervals to maintain synchronization. We do
this by limiting the run length of any sequence of 0s to something that is short
enough for the controller to maintain synchronization; hence run length limited.
With one of the most widely used RLL methods17, there are,by definition,at least two
and at most seven 0 bits between any two 1 bits in the recorded stream. This is
achieved by encoding the original data bit pattern in terms of a well-defined set of
(what we have called here) data chunks. These data chunks, together with their
appropriate RLL 2,7 codes are shown in Table 5.3. You will note if you look at the
resultant code fragments that you can never have sequences that have less than two
or more than seven 0s,no matter what sequences of RLL 2,7 code you use.If,as shown
in the example, we wanted to encode a sequence of nine 0s we would use the 000
chunk three times, thus generating: 000100 000100 000100. We note two things from
this: first that the largest run length that has been generated is five and the smallest
run length is two, fulfilling the required conditions, and that there has been a signif-
icant increase in size, with 9 bits becoming 18. In fact, we find that RLL 2,7 doubles
the number of bits needed for any given data sequence.

If we now consider Fig. 5.6 we see the same example that we used before in Fig. 5.3
to compare FM with MFM; that is, the data bits 0010000010, representing the

Disk Geometry 115

Data chunk RLL 2,7 code

000 000100

10 0100

010 100100

0010 00100100

11 1000

011 001000

0011 00001000

Table 5.3 Code for RLL 2,7.

16 512 bytes × 8 bits = 4096 bit cells, each requiring a clock bit.

17 Known as RLL 2,7.



character “A” of byte value 41h with a leading and trailing 0. The MFM flux density
encoding for the character “A”, in the upper half of the diagram,can be clearly seen to
require seven flux reversals. In the lower half of the diagram, the data bits have been
re-encoded into RLL 2,7 form using the three chunks – 0010, 000 and 010 – resulting
in the RLL 2,7 recorded bit stream of 00100100 000100 100100. The flux density for
this same character “A”, encoded using RLL, can be seen in the lower half of the
diagram to require only five flux reversals.

From this we can clearly see the advantage when we look at the two flux densities.
For RLL we have no clock bits at all and hence there is a significant saving of the
order of 3 to 1 over the equivalent MFM. However, because we have increased the
recorded bit pattern size by re-encoding it into RLL 2,7 code, there is also a loss of the
order of 2 to 1 through using RLL. Combining these two, we find a net gain on
average, using RLL 2,7 over MFM, of about 1.5 to 1.

One problem with the RLL method is that if the system does lose synchronization,
a burst error of up to five bits can result.This requires much more sophisticated error
detection and correction,so RLL controllers tend to use error-correcting codes (ECC)
in their formats rather than the simpler CRC codes we saw in the MFM format. Other
RLL methods exist which may be referred to as Advanced RLL or ARLL. Examples
include RLL 1,7 and RLL 3,9. In both these cases the encoding overhead is even
higher and the larger number of 0 bits permitted between two 1 bits makes greater
demands on system synchronization. The payoff, however, is that data density
improvements of up to 90% over that of MFM can be realized.

Hard Disk Low-Level Format

As in the case of the floppy disk low-level format, the original hard disk low-level
format requires, for each track on the disk, a start of track sequence of bytes, a sector
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Flux density

MFM encoding

Flux density

RLL encoding

Chunk 0010 Chunk 000 Chunk 010

0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0

Clock bits
Data bits

0 0 1 0 0 0 0 0 1 0

Byte is 41h = “A”

Fig. 5.6 RLL encoding.



format sequence which includes the CHS address and the data block for each of the
sectors, and an end of track sequence of bytes. As before, bytes are recorded sequen-
tially along the track,with each byte itself being recorded as eight serial bits. It should
be noted that for hard disks the actual format is very controller dependent, and this
usually means that the format performed by one controller cannot be utilized by
another.

At Table 5.4 (see Messmer,2002,p.859) is shown the hard disk format for an ST412/
506 controller using RLL encoding. As can be seen, the fields and sectors are very
similar to those for the 5.25 in floppy disk format using MFM encoding that we saw at
Table 5.2.

The first point to note is that all the gaps are very much smaller (GAP 1 is 12 bytes
instead of 50, GAP 2 is 5 bytes instead of 22, and GAP 3 is 20 bytes instead of 80). This
reduction in gap size is made possible because the rotation of the disk is much more
stable, partly because of the lack of any friction between the surface of the disk and
the heads and partly because of the servo feedback loop that we referred to earlier.
We might also note the 4 byte error-correcting code (ECC) fields in place of the 2 byte
cyclic redundancy checks (CRCs) that we saw with MFM encoding.

When discussing RLL encoding above, we identified the need for more extensive
error correction in order to deal with the burst errors that can be a feature of this
form of encoding. Some formats use 6 bytes for the ECC fields, permitting the
controller electronics to detect and correct an even greater range of errors. The ID
fields again use four bytes and the first three bytes specify cylinder, head and sector
numbers exactly as for the MFM encoded format (see Fig. 5.4). The implication is, of
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SYNC 11 bytes 00h Start of track

IAM 2 bytes a1h fch

GAP 1 12 bytes ffh

SYNC 10 bytes 00h Start of sector 1

IDAM 2 bytes 5eh a1h

ID 4 bytes cylinder head sector flags
1024 cylinders, 256 heads, 63 sectors

ECC 4 byte ECC value

GAP 2 5 bytes 00h

SYNC 11 bytes 00h

DAM 2 bytes 5eh a1h

Data 512 bytes data

ECC 4 byte ECC value

GAP 3 3 bytes 00h and 17 bytes ffh End of sector 1

... Sectors 2 to 26

GAP 4B approx. 93 bytes 00h End of track

Table 5.4 ST412/506 hard disk format RLL encoding.



course, that the 8.4 Gbyte barrier will still apply to hard disks that are formatted in
this way.

The fourth byte is not used to specify sector size, as is the case with the floppy disk
MFM encoded format, but instead it is used as a sector flag which enables the
controller to perform bad sector mapping. The details of this sector flag are shown at
Fig. 5.7.

Bad Sector Mapping and Defect Lists

The need for bad sector mapping and the sector flag arises because of micro-defects
that are found to exist on the magnetic surface of the disk at the time of manufacture.
Seagate (1995a) states that there should be less than one defect per formatted
megabyte and that the disk should be defect-free for the first two cylinders. The
defects are of two types: hard, which usually relate to a surface problem, and soft,
which is normally some kind of magnetic anomaly. Although hard defects can be
discovered relatively easily with low-level formatting software, soft defects can only
be found after much testing with very sophisticated test equipment. The manufac-
turer used to perform such tests over a period of several hours and from these tests
would determine a manufacturer’s defect list of all the bad sectors. Such lists were
often marked on the casing of the drive as a defect label in a form similar to that
shown in Table 5.5.

With modern Zoned Bit Recording disks (see later section), defect labels are no
longer used and bad sector mapping strategies, as described in this section, are
completely hidden by the internal controller. The issues, however, are still relevant
and are described here for two reasons: firstly, because it is important to understand
that although hidden, bad sector mapping strategies continue to be required, with
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bad sector

bad track – no alternative assigned

bad track – ID points to alternative

alternative track

reserved

7 6 5 4 3 2 1 0

Fig. 5.7 Sector flag details.

Cyl Hd BFI

72 0 5314

73 0 5315

74 0 5316

161 2 1816

Table 5.5 Defect label.



more comprehensive ones now being used to give the appearance of a fault-free disk;
and, secondly, because it is possible for forensic computing analysts to come across
older disks which still visibly exhibit these characteristics.

In the old style of defect list, each bad sector is specified by its cylinder and head
number, which defines the track, and the bytes from index (BFI)18 value. This
specifies the number of bytes from the start of track index mark to where the bad
area exists. This index mark, which is usually generated by a Hall sensor embedded
in the spindle motor or encoded onto the servo tracks, is considered the absolute
point of reference for the BFI value. During the low-level formatting process, the
controller performs bad sector mapping to remove the effects of these defects. This
used to be achieved by a number of strategies.

If the controller identified a defect that only affected a single sector of the track it
would attempt to shift the sector formatting slightly so that the defect occurred in
one of the sector or track gaps, where it would have no effect. This is known as sector
slipping. If this was not possible, the controller would mark the sector concerned as
bad by setting bit 0 of the sector flag to 1 (see Fig. 5.7). The controller would not then
permit any accesses to this bad sector. Some controllers were also able to format an
additional spare sector on the track to replace this bad sector, thus ensuring that
there would be no loss of formatted disk capacity.

Where there was more than one defective sector in a track, the controller could
apply one of two strategies. In the first strategy, it could mark the entire track as bad
by setting bit 1 of the sector flag to 1 in all the sectors of the track. The controller
would not then permit any access to any of the sectors in that track. The effect of this
was to reduce the formatted disk capacity and create a “hole” in the disk address
space where the bad track resided.

A better strategy was to mark the complete track as bad by setting bit 2 of the
sector flag to 1 in all the sectors of that track and assigning an alternative track
starting from the highest numbered cylinder.The CHS address values of the ID fields
in all these bad sectors were then set to point to their replacement counterparts in the
alternative track. So, when a seek to a sector in a bad track was made, the controller
simply looked up the alternative sector address in the ID field of the sector in the bad
track and then performed a seek to that alternative sector instead. Any track that had
been assigned in this way as an alternative track had bit 3 of the sector flag set to 1 in
all of its sectors. This strategy could still result in a loss of formatted disk capacity, in
that the alternative track would no longer be available for use in its own address
position. However, it does have the benefit of ensuring that there would then be no
“hole”in the disk address space, since the addresses of the bad track would all appear
to work correctly using the alternative track sectors. In any case, most disks were
designed to have some spare capacity, outside of the user address space, which was
specifically set aside for this defective sector or defective track reallocation purpose.
For example, the Seagate ST-225 had a nominal capacity of 20 Mbyte and an actual
capacity of 21.4 Mbyte, making up to 1.4 Mbyte available for reallocation to defective
sectors and tracks. Substantial spare capacity is normally built in to all modern hard
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18 Sometimes also called the byte count after index (BCAI).



disk drives,but this is only accessible to the drive controller and is not part of the user
address space.

Finally, it should be noted that there are four reserved bits in the sector flag shown
at Fig. 5.7. We will return to these bits when we examine the ATA (AT Attachment)
interface and LBA (Logical Block Addressing) in a later section.

A Possible Place to Hide

The reader might at this stage be wondering why it should be necessary to examine
the hard disk geometry down to this level of detail. The reason is that sectors that
have been marked as bad by the controller in this way could well be a very good place
in which to hide information. Consider the situation where a particular track is used
for storing some incriminating information and then deliberately marked as bad
using, for example, the legacy controller command19 REASSIGN ALTERNATIVE
TRACK.This would not cause a new format to be laid down,so no information would
be overwritten, but it would cause the controller to adjust its bad sector mapping
such that all references to this track now point to the specified alternative track.
Someone with a reasonable technical competence and a knowledge of the specific
controller commands should certainly be able to do this. It would then not be
possible for anyone else to access this incriminating information, or even necessarily
be aware of its existence, without reassigning the track. Although this scenario is not
a particularly likely one in practice, forensic computing analysts do need to be aware
of the possibilities. One possible indicator here of something amiss is that there
might then appear to be one formatted track too few for the known physical disk
geometry.

Cylinder Number –1 and the Service Area

The early controllers that carried out bad sector mapping often reserved the first
physical cylinder on the disk for their own use. Where this was the case, the physical
cylinder was often assigned the artificial cylinder number “–1”.As such, it was acces-
sible only to the controller using specific internal commands, since it did not appear
in the normal data address space of the disk. It was on this cylinder that the defect list
was stored, often in two parts: the original manufacturer’s defect list as described
above and as illustrated at Table 5.5, and a so-called grown defect list, which was
determined by the controller during formatting and added to by the subsequent use
of manufacturer specific bad sector mapping commands.
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19 Note that this discussion applies specifically to ST412/506 controllers which have now
largely been replaced by ATA disks (see later section). However, it should be possible to
obtain a similar effect with ATA disks using manufacturer-specific commands where
these are known. Some modern disks can be switched into a so-called “factory mode”,
where a special set of diagnostic and defect management commands becomes available.
Such commands might be password-protected. On floppy disks, use of the WRITE
DELETED SECTOR command will permit the hiding of information that can only be
read back using the READ DELETED SECTOR command.



These same techniques can still be found in modern hard disks.Cylinder –1 is now
often replaced by an on-disk service area, which may well be larger than a single
cylinder. This area may contain not only the manufacturer’s defect list (now more
usually known as the primary or P-List) and the grown defect list (now more usually
known as the G-List), but also copies of the controller firmware, SMART20 (Self-
Monitoring, Analysis, and Reporting Technology) counters, as well as the sector
translation and zone allocation tables (see later section on Zoned Bit Recording). In
addition, there is likely to be a substantial part of the disk reserved for the reallo-
cation of defective sectors.

The main difference between the two original defect lists is that the sophisticated
testing that was carried out by the manufacturer was able to identify both hard and
soft defects and was able to measure the exact byte positions of such defects using the
bytes from index (BFI) count. It was these counts that were then placed in the
manufacturer’s defect list, as we have seen.

The disk controller, however, was not able to identify soft defects and did not
normally measure BFIs, so the grown defect list differed in these two respects.
Detailed information about the physical disk geometry together with the disk model
and the manufacturer’s name was also often written to cylinder –1 by the manufac-
turer. This was of particular importance for autoconfiguring controllers which could
determine their own physical disk geometry by simply reading the first physical
sector on the disk.

At Table 5.6 is shown the way in which a manufacturer’s defect list, the grown
defect list and the disk geometry information was typically written onto cylinder –1.
Given 17 sectors per track,we note that the information was restricted to the first two
heads (because these were present on all hard disks) and that more than one copy of
the lists was held.
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Sector Head 0 Head 1

1 Disk geometry copy 1 Disk geometry copy 3

2 Disk geometry copy 2 Disk geometry copy 4

3–8 Reserved Reserved

9–10 Manufacturer’s defect list copy 1 Reserved

11–12 Manufacturer’s defect list copy 2 Reserved

13–14 Grown defect list copy 1 Reserved

15–16 Grown defect list copy 2 Reserved

17 Reserved Reserved

Table 5.6 Controller cylinder –1.

20 Most modern disk systems incorporate SMART technology. The internal operations of
the disk are continuously monitored by a suite of diagnostic programs and any unusual
events are recorded, analysed and, if necessary, reported to the user. This provides an
early warning of impending disk failure which should be sufficient to permit the safe
backing up of all user data.



A typical structure for the disk geometry information that was held in sectors 1
and 2 of tracks 0 and 1 of cylinder –1 is shown at Table 5.7. It is important to note that
these details refer to the now obsolete ST412/506 controllers (Messmer, 2002, p. 866).
With the more modern ATA or Integrated Drive Electronics (IDE) drives (see later
section on interfacing) an IDENTIFY DEVICE command can be issued to the
controller to obtain 512 bytes of detailed device information, with the interpretation
to be placed on each byte defined in the ATA-2 (and later) specifications, and
associated ANSI standards (ANSI, 1996). This information can be used for
autoconfiguration of the disk by the BIOS. It may also be used in conjunction with
specialist software made available by some disk manufacturers21 to provide a
detailed printout of an IDE hard disk as shown at Fig. 5.8.

There are a number of points that arise from the printout of Fig. 5.8 that we will be
returning to later: the different cylinder, head and sector numbers in the three
columns, and the meanings of the terms LBA, DMA and PIO, for example. Before we
do that, however, there are still some points related to Table 5.7 that need to be
discussed, the first of which is the interleave factor.

The Interleave Factor

This has to do with the problem of reading two successive sectors and not having
enough time to transfer the buffer from the first sector across the interface into the
computer before the second sector comes under the read head. This might be
because error-correcting codes are being used and the controller has to wait until the
whole sector is available in the buffer before it can be checked, or it might be because
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Byte Contents

0–1 Signature 0dabeh of geometric information

2–3 Number of cylinders

4 Number of heads

5 Number of sectors per track

6–7 Reserved

8 Interleave factor

9 BIOS flag byte

10 Number of cylinders for alternative tracks

11 Reserved

12–13 Start cylinder of write precompensation

14–20 Manufacturer’s name (ASCII)

21–39 Product name

40–511 Reserved

Table 5.7 Disk geometry information.

21 See, for instance, the program FIND-ATA.EXE from Seagate (Seagate, 1994) that was used
to produce Fig. 5.8.



the interface itself is too slow. The problem can be overcome by interleaving. Instead
of having sector 2 physically follow sector 1 on the track, it is placed, for example,
physically one sector further on. In this way there is time for the buffer to be emptied
between transfers,since we now read every other sector but still receive the sectors in
numerical sequence.

In Fig.5.9 we have shown three cases: interleave factor 1:1,which means there is no
interleaving; interleave factor 2:1, which is the example we described above with one
sector in between; and interleave factor 3:1, where there are two sectors in between.
With many older disk controllers it was possible to specify the interleave factor
required when performing a low-level format. Software was available to test the
effect of different interleave factors on such drives and to help determine an
optimum value when fitted in particular computer systems.

Interleaving is no longer an issue when using a modern hard disk drive. Such
drives normally have a memory buffer which can hold an entire track at a time,
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Find-ATA v1.0

Drive: ST32140A                                Port: Primary (01F0h)
Serial #:             JB192001  CMOS Type: 1      Unit: 0 - Master

Hardware       DOS            Current          Max ECC: 22 bytes
Cylinders: 4095           1023           4095

Heads: 16             64             16
Sectors: 63             63             63
Capacity: 2,113,413,120  2,111,864,832  2,113,413,120

Available  Information
R/W Multiple Mode:    Yes      32 sectors Max  Current: 32 sectors/block

LBA Mode:    Yes      4127760
DMA Mode:    Yes      Single: 0  (0111)  Multi: 1  (0111) 180 nsec

Advanced PIO Mode:    Yes      (0011)    +,-IORDY: 120 nsec, 180 nsec

Default PIO Mode: 2, 240 nsec, up to 8.33 MB/Sec

Buffer: 128 KBytes Type: A dual ported multi-sectored buffer capable of
simultaneous transfers with a read caching capability.

Copyright 1994 Seagate Technology, Inc. All rights reserved

Fig. 5.8 Disk information from Find-ATA program.

Interleave factor 1:1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10 11 12 13

Interleave factor 2:1

1 2 3 4 5 14 6 15 7 16 8 17 9

37 8 9 10 11 1213 151 2 4 514 616 17

Interleave factor 3:1

Fig. 5.9 Interleave factors.



instead of just a sector, and this completely obviates the need for any form of
interleaving.

Write Precompensation

Also referred to in Table 5.7 is the start cylinder of write precompensation. This too
applies only to older hard disk systems. These systems use the same number of
sectors per track (spt),which was 17 for the earliest systems, for every cylinder on the
disk. Since tracks are concentric circles, that means that as we move in closer to the
spindle the physical track length gets less and hence the packing density of the bits
increases22. This makes magnetic interactions between certain bit patterns more
likely and so to limit this effect, the electronic process of write precompensation
arranges for particular bits in particular bit patterns to be written to the disk a little
earlier or a little later than normal. The outermost cylinder number from which
these timing adjustments are to be applied is referred to as the start cylinder of write
precompensation.

Zoned Bit Recording

The capacity and performance of hard disk systems have improved radically since
those early systems that we have been talking about above,and one means by which a
considerable improvement has been made is to utilize better the so-called areal
density of the disk: that is, the number of bits that can be packed into each unit of area
on the disk. As we noted above, if we keep the same number of sectors per track
across the whole disk then the packing density towards the centre is much greater
than the packing density at the outermost edge. If we are to make the most of the
allowable areal density across the whole surface of the disk, it is essential that we have
different numbers of sectors per track for different groups of cylinders on the disk.
Then, as we move outwards from the centre of the disk, and the track length
increases, so outer cylinders could have more sectors per track than inner cylinders
for the same bit density. When using this technique, of course, write precompens-
ation becomes less of an issue.

Having more than one set of sectors per track on the disk is known as zoned bit
recording (ZBR)23. With this approach, tracks are grouped into zones and each zone
on the disk has a different number of sectors per track. As we move from the
innermost zone outwards so the sectors per track figure increases such that the bit
packing density within all the tracks is now more even.

At Fig. 5.10 we see the 15 zones of a 3.8 Gbyte Quantum Fireball™ hard disk
(Quantum, 1996), with sectors per track ranging from 122 to 232, and with each zone
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22 Clearly, if we are to get the same number of bits (because there are the same number of
sectors per track) into a smaller track length, then they have to be closer together.

23 Also known as multiple zone recording (MZR) and zoned constant angular velocity
recording (ZCAV).



consisting of 454 tracks24. We may wish to note the very large number of tracks25 (15
× 454 = 6810) on this disk and the much larger numbers for sectors per track26

compared with the 17 of early disks.Not shown on this diagram are the different data
transfer rates for the various zones. Since the angular velocity of the disk is constant
and there are substantially more sectors on the outer tracks than there are on the
inner ones, then the data transfer rates for the outer tracks must be higher than those
for the inner ones. An interesting side effect of this feature is that benchmark tests
run on the disk when new, and then again after being in use for some time, might
suggest that the disk is getting slower. In fact, all that is happening is that the
benchmark tests are being run on unused tracks that are now closer to the centre
than when the disk was new. This is because sectors are normally assigned by the file
system from the outermost cylinder inwards. What the benchmark is telling us is
what we already knew: the data transfer rates of the inner zones are slower than those
of the outer zones.

This ZBR approach, however, now poses us a serious problem. Our use of CHS
addressing has always assumed a known constant value27 for sectors per track across
the whole of the disk. If that assumption is now no longer true, then we would need to
give a fourth parameter with each CHS address: that of the sectors per track for the
particular zone within which that address resided. This would significantly
complicate the disk interface.

A much better solution is for the controller to pretend to us that there is no zoning
and to provide to us a contrived sectors per track value, normally 63, that is constant
for the whole disk. When the controller receives, from the outside world, a CHS
address that is based on this contrived sectors per track value, it simply translates
this external CHS address into its own internal zoned address. In this way, we need
have no knowledge of the zoning within the disk system in order to address it. We
also need have no knowledge of any of the low-level formatting data structures,
encoding methods or bad sector mapping strategies that may be used by the
manufacturer, since the controller hides all of this from us. Indeed, modern
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Zone 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Spt 122 135 142 153 162 170 180 185 195 205 214 225 225 229 232

Tracks 454 454 454 454 454 454 454 454 454 454 454 454 454 454 454

Fig. 5.10 Zoned bit recording.

24 It is not a requirement that zones be of equal numbers of tracks. This disk just happens
to be built this way.

25 Just a reminder that tracks in this context is synonymous with cylinders.

26 Note that the figure of 225 for both zones 2 and 3 is correct.

27 If in doubt about this, consider repeatedly incrementing the sector count by 1 and then
trying to decide when the sector count should revert to 1 and the head count should be
incremented. The CHS address system only works for a fixed sector per track value
across the disk.



controllers constantly monitor the internal state of the disk, using spare capacity as
we have described above to re-map sectors and tracks as defects are detected, so that
the disk appears “perfect” for most of its life.

Such a re-mapping strategy has important implications for forensic computing
analysts. If the disk has been used to hold unlawful material, it is possible that some
of the sectors holding that unlawful material might have become re-mapped inter-
nally by the disk controller following the detection of defects. Under these circum-
stances, the material from the bad sectors would automatically be duplicated and
held in the re-mapped good sectors elsewhere. To the external world, only the good
sectors would be apparent or accessible, but the disk would still contain copies in the
bad sectors that were now inaccessible. This means that even the most compre-
hensive of normal disk wipes would not remove the bad sector copies, since they are
no longer accessible outside of the controller. Although these re-mapped bad sectors
might be technically quite difficult to access, knowledge of the manufacturer’s
controller program and, in particular, the factory mode special command set for the
controller, might permit some of the material to be restored. The implications of this
are that completely wiping a ZBR disk using normal processes will not guarantee the
removal of all unlawful material,and therefore a hard disk which had contained such
material should not be returned to a defendant. This was the ruling given in a
Manchester Crown Court judgement in 2002 (R v Aslett, 2002).

However, it should be noted that later versions of the ATA specifications, which we
discuss in a subsequent section, include an optional security feature, which is
described as follows: “When normal erase mode is selected, the SECURITY ERASE
UNIT command writes binary zeroes to all user data areas. The enhanced erase mode
is optional. When enhanced erase mode is selected, the device writes predetermined
data patterns to all user data areas. In enhanced mode, all previously written user
data is overwritten, including sectors that are no longer in use due to reallocation”
(McLean, 2001, p. 231). This implies that all disks conforming to this ATA specifi-
cation can be expected to include commands for a “normal erase mode”. This mode
enables complete wiping, by the disk controller, of the user area, but does not include
wiping of the re-mapped bad sectors. It further implies that disks conforming to this
ATA specification optionally may include commands for an “enhanced erase mode”.
This mode enables complete wiping, by the disk controller, of the user area and does
include wiping of the re-mapped bad sectors. However, there is no guarantee
currently that any particular disk will support this optional feature.

Finally, to conclude this section, it should be noted that the internal sector trans-
lation that is carried out by the disk controller to convert those outside world CHS
addresses that use a contrived sectors per track value to its own internal zoned address
form is not to be confused with the CHS address translation issues that we are going to
be discussing shortly in connection with the various legacy interface problems.

Head and Cylinder Skewing

The last issue that we need to consider in this section is skewing. If we consider a
drive that has two physical heads, then the sequence for accessing consecutive
sectors,assuming there are 17 to the track (given an older non-ZBR disk system),will
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be as follows: cylinder 0,head 0,sectors 1 to 17; then cylinder 0,head 1,sectors 1 to 17;
then cylinder 1 head 0, sectors 1 to 17 and so forth.

Clearly, in the interests of performance, the head assembly is left at a particular
cylinder position until each head has been accessed before moving it to the next
cylinder position. The time taken to switch a head electronically is much shorter
than the time taken to move the head assembly one cylinder position. Nevertheless,
even the head switching time can be significant when compared with the speed at
which sectors are passing under the heads.

If the head switching time is greater than the time it takes for the gap between
sector 17 and sector 1 to pass under the heads and the sectors are physically lined up
such that sector 1, head 0 is immediately above sector 1 head 1 on the platters, as
shown in the upper part of Fig. 5.11, then we are going to miss reading sector 1 head 1
immediately after we have read sector 17 head 0. This means that we will have to wait
an entire revolution of the disk before we can access it again. Head skewing recog-
nizes this problem and arranges for sector 1 head 1 to be physically located further
round the track; in the case shown in the lower half of Fig.5.11,physically under head
0 sector 3, giving a head skew of 2. A similar problem arises with the time it takes to
move the head assembly from cylinder 0 to cylinder 1. In this case the time is much
longer but the principle is exactly the same. Here we apply what is known as cylinder
skew and shown in Fig. 5.11 is a cylinder skew of 8 such that sector 1 of head 0
cylinder 1 is physically located under sector 9 head 1 cylinder 0. Hence, after we have
read sector 17 head 1 cylinder 0, we have the time it takes for 8 sectors to pass before
we must start to read sector 1 head 0 cylinder 1; sufficient time to move the head
assembly one track position.

The Formatting Process

Another major difference between hard disks and floppy disks is to be found in the
formatting process. For floppy disks we identify two stages of formatting: low-level
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and high-level (see Table 5.8), and for hard disks there are three stages: low-level,
partitioning and high-level (see Table 5.9).

Floppy Disk Formatting

The two stages for floppy disks are both carried out by the standard DOS program
FORMAT. This first of all performs the low-level format function itself by writing on to
the floppy disk,a track at a time,all the gaps,address marks,sectors and CRCs that we
have described above, together with all the sector data areas filled with a series of f6h
bytes.After writing each track, it then reads back all the sectors of that track,recalcu-
lating and checking the data area CRCs and making a note of any sectors that are
bad28.

The FORMAT program next performs a high-level format, which for floppy disks is
invariably a FAT-based system, by setting up an MS-DOS or Windows file system on
the disk (of which more in a later section). This involves writing the boot sector, the
two file allocation tables (FATs) and the root directory. The FORMAT program then
marks the FATs appropriately with any bad sectors that it identified during the low-
level formatting process. We will see how this is done in more detail in a later section.
Note for now that this is not the same process as the bad sector mapping that we saw
carried out by the controller of the hard disk. In this case it is a part of the file system
structure (the file allocation table laid down by the high-level format) that is being
marked, as opposed to the sector flag bytes written by the low-level format that we
saw before (see Fig. 5.7).

If, when initiating the FORMAT program, the /S option had been selected, the
program then copies onto the floppy disk the system files IO.SYS, MSDOS.SYS and
COMMAND.COM, making the disk bootable. Finally, the FORMAT program prompts for a
volume label which is to be set on to the floppy disk,and then the process terminates.
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● Low-level formatting, which is carried out to establish the tracks and sectors with all the
address marks, IDs and gaps we have discussed above.

● High-level formatting, during which the file system for the particular operating system is
established.

Table 5.8 Formatting floppy disks.

● Low-level formatting, which is carried out to establish the tracks and sectors with all the
address marks, IDs and gaps we have discussed above.

● Partitioning, which enables more than one logical volume to be associated with a disk.

● High-level formatting, during which the file system for the particular operating system is
established on a volume.

Table 5.9 Formatting hard disks.

28 Bad sectors in this context are those where the CRC calculated from the sector data just
read does not agree with the CRC that was written to that sector during the format.



Hard Disk Formatting

What is often a source of confusion concerning the FORMAT program is that it can
carry out, without intervention, both a low-level format and a high-level format on
floppy disks, yet it is not able to perform a low-level format on any hard disks. It is,
however, invariably used for establishing the MS-DOS file system on a hard disk; that
is, performing the high-level format. In the case of hard disks, the low-level format is
invariably done by the manufacturer and the general advice is never to attempt to
carry out a low-level format of a hard disk unless you are an expert. There are some
good reasons for wanting to do a low-level format on certain types of older hard
disks and some very good reasons for not doing it on other kinds of hard disk.
Amongst the very good reasons for not doing it on some early IDE disks is the risk of
losing the factory written manufacturer’s defect list (which includes the soft defect
listings that are virtually impossible for a user to determine) and the loss of any
optimized interleave and skewing values. On later disks, internal address translation
(see the section on Zoned Bit Recording) and internal sector mapping may be
operative.When the disk is in this mode29 (and disks that use zoned bit recording are
always in translation mode), a low-level format is harmless to the defect mapping
files and the skewing values. If, however, the disk is in physical mode, the defect
mapping files and skewing values may again be lost. All the low-level format might
do when the disk is in translation mode is to “scrub”the data in all the sectors; it does
not re-write the formatting structure. It should be noted, however, that it is
completely destructive to all the data on the disk. This is sometimes referred to as
intermediate or mid-level formatting (Seagate,1997b).Amongst the good reasons for
perhaps wanting to do this are the contraction of a virus, the increasing incidence of
bad sectors, or the complete removal of an operating system.

Since the DOS FORMAT program cannot be used to low-level format a hard disk, the
manufacturer may provide special programs30 specifically for this purpose. Alterna-
tively, there may be formatting utilities built into the BIOS of the PC or the BIOS of
the hard disk itself which can be accessed using the DOS DEBUG31 command. Again,
none of these utilities should be invoked unless the analyst has a very high level of
expertise in hard disk systems.

Partitioning

Given a hard disk with an appropriate low-level format, the next step is to partition it,
even if only one partition is to be used. Partitioning is the process of dividing the
hard disk up into a number of logical pieces, each piece being a partition. A useful
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29 Some non-ZBR drives can be switched between a physical mode and a translation mode
(non-physical geometry).

30 SGATFMT4.EXE is one such program, provided by Seagate for use on their ATA (IDE)
hard drives (Seagate, 1995a).

31 This DEBUG command takes the form -G=C800:5, where G is for GO and C800 is the
upper memory address of the disk BIOS.



way of thinking of a hard disk partition is to consider it as being a big floppy. The
process of partitioning allows for a logical volume to be associated with each
partition and for different operating systems to be associated with different volumes.
The standard program that is often used to carry out partitioning is FDISK, though
manufacturers sometimes provide their own utilities (Seagate, 1995b),and specialist
software such as Partition Magic (PowerQuest, 1996) can make this rather arcane
task much easier. We will examine the details of partitions, the master boot record
and the whole boot process itself in a later section.

The final activity required is a high-level format of each partition. As in the case of
the floppy disk, a high-level format is carried out to set up the file system for the
particular operating system that is to be used with this partition. Again, as for the
floppy disk, FORMAT is often used for this process and this will involve, for a FAT-
based file system, writing the boot sector, the two file allocation tables (FATs) and the
root directory32. At this stage in the floppy disk format, the FORMAT program would
mark the FATs with any bad sectors that it identified during the low-level formatting
process. However, in the case of modern hard disks, bad sector mapping has already
been carried out by the controller internally, so the disk should appear to be perfect
to the FORMAT program and there thus should be no bad sectors to report or to mark
in the FATs. An analyst might reasonably take the view that any bad sectors found in
the FAT tables associated with a modern ZBR disk should be treated with suspicion.

If the /S option has been selected, FORMAT then copies onto the hard disk the
system files IO.SYS,MSDOS.SYS and COMMAND.COM33, making the hard disk partition
bootable under certain conditions (see later section). Finally, the FORMAT program
prompts for a volume label which is to be set on to the hard disk partition and then
the process terminates.

It is worth noting here that when a volume label is set at the end of the FORMAT
process, the volume label text may be placed in the boot record at offset 2bh (see
Table 5.18) and also as a Volume directory entry in the Root Directory (see Fig. 5.39).
However, it should not be assumed that this is always so, and we recommend that
tests be carried out to confirm the particular circumstances of any given case where
this is of significance.

Hard Disk Interfaces

We have now seen in quite some detail how data is stored on a hard disk and how it is
addressed. We now need to consider how data gets transferred between the PC and
the hard disk. In other words, we need to look at the various software and hardware
interfaces.
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32 A FAT-based file system has been used here as the example. See later sections for details
of the NTFS file system.

33 A DOS operating system has been used here as the example. A similar set of files would
be used for Windows operating systems.



The BIOS and Interrupt Vectors

We start with a reminder of how the memory of the PC is laid out (see Fig. 5.12). As
we will see later, this is how all PC systems are currently initialized. The processor
always starts up in 16 bit real mode and uses the segment offset addressing system
for which Fig.5.12 is the memory map. It is only at some later stage that the processor
may be switched to 32 bit protected mode by a command from within an appropriate
operating system. We need, therefore, to know about 16 bit mode in order to under-
stand the bootstrap sequence to which we will be returning in a later section. For
now, we need to recall that the design of the PC incorporates the concept of a basic
input/output system (the System BIOS) which is permanent program code held in
read-only memory (ROM) in the upper memory block area. This provides us with a
standardized low-level interface to the specific hardware of the computer. The
particular functions of the BIOS are accessed by means of interrupt call instruction
codes (INTs) and different interrupt numbers access different parts of the BIOS
software that controls different parts of the hardware.

For example: INT 10h deals with the video system, INT 13h deals with the disk
system, INT 14h deals with the serial communications ports and INT 16h deals with
the keyboard. In addition, different function numbers within an interrupt carry out
different actions. For example: INT 13h function 2 reads a disk sector, INT 13h
function 3 writes a disk sector and INT 13h function 5 formats a disk track. In this
way, application software that interacts with the BIOS can be independent of the
specific hardware of the particular machine but instead can deal with generic
hardware functions that are standardized. This makes any software that uses this
BIOS interface portable across PC systems.
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There is considerable flexibility in the PC design for exactly where the BIOS
program code that implements any particular interrupt might be located, since all
interrupt calls are redirected through an interrupt vector table that is held in random
access memory (RAM) at address 0000:0400 and below. This table has a 4 byte
pointer34 for each interrupt and is built afresh each time the PC carries out its boot-
up sequence. It is therefore possible to cause any interrupt to go to any place in real
mode memory simply by changing the 4 bytes of the relevant interrupt vector. This
enables us to place interrupt program code anywhere in the real mode memory and,
perhaps, change an interrupt from taking us to the standard BIOS code and instead
going to where some revised set of functions have been placed. We will come back to
this point again.

Whereas there is considerable flexibility in where the INT routines are located and
in the ways in which they are implemented,and thus in the functionality that they are
able to exhibit, there is little flexibility in the form of the interfaces that they present
to the software that uses them. This is always the problem with any kind of interface
standard: if it is to be useful it must remain constant, or, at the very least, be
backward-compatible with all previous versions if legacy systems are to continue to
work. Such constancy, over time, risks having to live with a dinosaur that inhibits the
implementation of any new features or of any new developments.

It is this problem of standards and of legacy systems that, throughout its relatively
short history, has so bedevilled the hard disk story and has caused to be imposed on
the user a variety of performance and capacity limitations for which often less than
elegant solutions have had to be devised. In order to make sense of this we do need to
be aware of a little of this history.

The ST412/506 Interface

In the very beginning there were no hard disk drives for PCs and, as a result, no
inbuilt BIOS support for them. Hard disks had been available to mainframe and
minicomputer systems for many years prior to this time,so it was not long before this
technology was targeted at the new Personal Computer. It initially came in the form
of a separate cabinet which contained the hard disk drive itself, the disk controller
electronics, and an internal power supply. In addition, an 8 bit host adaptor
expansion card would be fitted inside the PC in a spare expansion slot,and this would
be connected by cables to the disk controller in the cabinet. The controller in turn
was connected to the hard disk drive (see Fig. 5.13).

Hard disks such as these became known as Winchester Drives. The term seems to
have been taken from an old IBM drive of the 1960s which had 30 Mbyte of fixed
storage and an option for a further 30 Mbyte of removable storage. This drive was
informally known as the “30-30” and from this name came an association with the
calibre (.30) and the number of grains of black powder (30) used by the famous “30-
30” Remington rifle, otherwise known as the “Winchester”. The term “Winchester”
soon came to signify any fixed disk for the PC.
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There were no INT 13h BIOS functions for the PC at this time, so special-purpose
software had to be provided. The host adaptor in the expansion slot would be
addressed by this special software, through which would be sent appropriate
commands to the disk controller. The disk controller would then transfer the
required data to and from the hard disk itself.

A system typical of the time was the Seagate ST-506, introduced in 1980,which had
a formatted capacity of just 5 Mbyte. At Fig. 5.14 is shown part of its specification
(Seagate, 1991a). It may be noted that it used MFM encoding, had a stepper type
actuator, 153 cylinders, 4 heads and 17 sectors per track. This gave it a capacity of 153
× 4 × 17 × 512 = 5,326,848 bytes. The ST-506 design incorporated a very well defined
interface between the disk drive and the controller.

Introduced about a year later, its successor, the Seagate ST-412 (Seagate, 1991b),
had a 10 Mbyte capacity and a slightly modified interface which added a “buffered
seeks”facility. It was these two, now obsolete, systems that contributed their interface
specifications and their combined names to what became the de facto standard for
connecting hard disk drives to controllers in the early 1980s: the ST412/506 Interface.
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UNFORMATTED CAPACITY (MB) ________________6.38
FORMATTED CAPACITY (17 SECTORS) (MB) _____5.0
ACTUATOR TYPE ____________________________STEPPER
TRACKS ___________________________________612
CYLINDERS ________________________________153
HEADS ____________________________________4
DISCS ____________________________________2
MEDIA TYPE _______________________________OXIDE
RECORDING METHOD _________________________MFM
TRANSFER RATE (mbits/sec) ________________5.0
INTERFACE ________________________________ST506

Fig. 5.14 Part of the ST-506 specification (with kind permission of
Seagate Technology).



In the ST412/506 design, up to two disk drives could be connected to the controller
by a single 34 line control cable and separate 20 line data cables for each drive. None
of the intelligence was in the drives, which responded to very simple control signals
from the controller, such as: switch the head assembly to move in a particular
direction, step the head assembly one step, select a particular head and so forth. The
control program for all of these actions was held in the controller itself, which was
also responsible for interpreting all commands from the PC, encoding and decoding
read and write serial data to and from the drive, transferring 8 bit bytes to and from
the PC,generating and identifying address marks and other formatting information,
and similar housekeeping activities. At the PC interface the commands to the
controller, sent by the special software referred to above, were the forerunners of the
INT 13h BIOS functions, such as: read a sector, write a sector, format a track and seek
to a specific cylinder.

In 1983, when the IBM XT (eXtended Technology) became available, with its built-
in 10 Mbyte fixed disk, some of these ideas were seen to have evolved further. First of
all, the disk controller35 had been removed from the disk drive box and built right
onto a bus interface expansion card, thus doing away with the host adaptor
expansion card. Further, program code had been provided on a ROM chip on the
controller card itself which supplemented the standard BIOS functions and obviated
the need for the special software to be installed.The design utilized interrupt request
line 5 (IRQ 5), I/O port addresses 320h to 32fh and direct memory access channel 3
(DMA 3). From an earlier section, we may recall that the IRQ channel permits a
hardware interrupt to be raised by the connected device, in this case the hard disk
controller. Such an interrupt will cause the processor to suspend temporarily its
current activity and execute code designed to service the device raising the interrupt.
In addition, we may recall that the port addresses are the outlets through which
commands and data are sent to and received from hardware devices, and the DMA
channel permits a hardware device to send and receive data autonomously from the
PC’s memory without involving the processor.

In 1984, the introduction of the IBM AT (Advanced Technology) saw a complete
overhaul of the hard disk system. The PC command interface to the controller was
now incorporated into the ROM BIOS on the motherboard of the PC as standard INT
13h functions (today known as the INT 13h legacy functions), thus removing the
need for a separate ROM BIOS chip on the controller card. Disk drive parameters as
well as other motherboard configuration details were held in a low-power Comple-
mentary Metal Oxide Silicon (CMOS) RAM chip that was used by the real-time clock
and backed up by a small battery. Some 14 different disk types were initially recog-
nized, ranging from 10 to 112 Mbyte capacity. Any drive with physical parameters
which did not match one of the 14 had to be incorporated either by means of a ROM
extension on the disk controller card or by using special device driver software
loaded at boot time. The AT design for hard disks utilized interrupt request line 14
(IRQ 14) and I/O port addresses 1f0h to 1f8h, but did not use a direct memory access
channel at all. This was because the DMA controller and the buses to which it was
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connected were found to be too slow for efficient disk data transfers and so
programmed input output (PIO) was used instead. In this approach, the processor
carries out all the transfer activity itself by means of IN and OUT instructions and no
autonomous transfers take place.

This is broadly the hard disk system structure that we have today. The number of
supported disk types has expanded considerably and current BIOSes provide a user-
definable type which allows parameters to be set to match any drive. Most BIOSes
now have an autoconfiguration mode which enables the drive to be interrogated
by the BIOS and to provide its own parameter information at boot time, a facility
that became standardized when the AT Attachment (ATA) specifications were
implemented.

Background to the Legacy Problem

The real legacy problem of the PC disk system lies in the INT 13h BIOS functions that
provide the standard command interface between any software that requires disk
facilities and the disk controller. This includes the structure of a CHS address that
has to be passed from the BIOS to the controller. This structure36 exactly mimics that
of the CHS address held in the ID field of the hard disk sector format (see Fig. 5.4)
and therefore permits a maximum CHS address of 1024 cylinders, 256 heads and 63
sectors. This interface has had to remain constant37 since 1984 despite some quite
radical changes in the physical interfaces between the PC and the controller and the
controller and the disk drive. The bus architecture linking the PC to the controller,
and the interface between the controller and the hard drive, have both been changed
a number of times in the past 20 years or so in order to take advantage of advances in
technology and to improve performance and cost effectiveness. We will look first,
very briefly, at the changes in bus architectures.

Bus Architectures

The original bus architecture of the PC-AT, although not formally specified by IBM,
eventually evolved into what is now known as the Industry Standard Architecture
(ISA). This has the ability to transfer data at a maximum speed of 8.33 Mbyte/s and
has a data bus width of 16 bits. With the introduction of the 386 and 486 processors,
which have a 32 bit data bus, an extension to the ISA architecture was made and this
is called the Extended Industry Standard Architecture (EISA). This can transfer data
at up to 33 Mbyte/s and has a 32 bit data bus. Meanwhile, IBM had continued devel-
opment of the PC and produced the PS/2 which utilized a new bus architecture that
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36 As described earlier, the CH register holds 8 bits of the cylinder value, the DH register
holds the 8 bits of the head value, and the CL register holds the two most significant bits
of the cylinder value and the 6 bits of the sector value, all in accord with Fig. 5.4. In
addition, the DL register holds the drive number.

37 In 1995, extensions to the INT 13h interface were defined (Phoenix, 1995). These
extensions are now to be found as standard in modern BIOSes.



they called Micro Channel Architecture (MCA). This too has a 32 bit data bus and can
transfer data at up to 20 Mbyte/s or 40 Mbyte/s for short periods.

As the technology continued to develop, so even these buses were found wanting,
particularly in the area of graphics and disk activity.The Video Electronics Standards
Association (VESA) developed a Local Bus, bypassing the main buses, which became
known as VESA Local Bus or just VLB, to address this performance problem. It too
has a 32 bit data bus but can transfer data at 133 Mbyte/s or 160 Mbyte/s, depending
on version.

With the introduction of the Pentium processor, Intel developed a new bus archi-
tecture that they designated Peripheral Component Interconnect (PCI). This 32 bit
standard bus can transfer data at 133 Mbyte/s and this can be expanded to 64 bits
with a data rate of 266 Mbyte/s. Most modern Pentium systems use this bus archi-
tecture today. However, more recent developments have included PCI-X, PCI-X 266,
PCI Express and InfiBand, a comparative summary of which can be found in
Mellanox (2002).

If the bus architectures have changed significantly in the past 20 years, then the
disk controller to disk interfaces have changed even more significantly. The typical
hard disk capacities have increased from 10 Mbyte to 400 Gbyte and the typical
transfer rates have increased from 5 Mbit/s to 150 Mbyte/s (Maxtor,2003) in the same
period. In addition, the form factor has reduced from 5.25 inches to 3.5 inches38 and
the unit cost per megabyte has become significantly cheaper. We will look at some of
these hard disk interface developments next.

The Enhanced Small Device Interface (ESDI)

The ST412/506 interface was soon found to be wanting. Problems arose over data
integrity and speed because the raw encoded data was having to travel over lengthy
cables between the read/write heads of the drive and the electronics of the controller.
In addition, the controller had to be optimized by the user for the drive attached to it
by setting interleave factors and so forth.

A first attempt at improving this situation was achieved by moving some of the
controller electronics from the controller card on to the hard drive itself. At Fig. 5.15
we have shown a number of options for the distribution of controller functions
between a separate controller card and the drive itself. The leftmost column of the
table shows the ST412/506 situation with all of the controller functions on the
controller card and none on the drive. The next column to the right shows the data
separator electronics and the ST412/506 interface removed from the controller card
and placed on the drive itself. This has the considerable advantage of getting rid of
the lengthy raw data cables and thus improving both performance and error rates.

It was this approach that was adopted in the Enhanced Small Device Interface
(ESDI) design. Although it was an improvement, it became obsolete very quickly
because a much cheaper and more effective solution was seen to be to move all of the
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controller electronics except for a vestigial interface adaptor onto the drive itself.
This became known as Integrated (or Intelligent) Drive Electronics (IDE).

Integrated Drive Electronics (IDE) and AT Attachment (ATA)

The name “Integrated Drive Electronics”or “IDE”was used to signify this placement
of all of the controller electronics onto the drive itself, as shown in the third column
of Fig. 5.15. This name is still in very common use today to identify, for example, the
disk drive cables and connectors and the IDE sockets on the motherboard. The name
can be misleading, since other systems,such as the Small Computer Systems Interface
(SCSI)39, also integrate the controller electronics onto the drive, as we have indicated
in the fourth column of Fig. 5.15.

A better term is “AT Attachment” or “ATA”, which defines the standard interface
between the hard disk IDE system and the AT-style PC to which it is connected. The
specification for this interface eventually became defined as an ANSI standard. This
was done by the industry in an attempt to eliminate some of the incompatibility
problems that surrounded the early IDE/ATA drives. These were particularly evident
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39 SCSI, pronounced “scuzzy”, is not just a hard disk interface. It is a flexible and powerful
standard (ANSI X3T9.2) for connecting peripheral devices to computers. Up to eight
intelligent devices may be connected on to the SCSI bus, one of which is the SCSI host
adaptor which connects to the PC. SCSI drives are met with less frequently in PC
systems than are IDE/ATA drives, and most of the problems that are identified in the
next section for the IDE/ATA interface do not apply to the SCSI interface. We therefore
do not consider it further here.



when attempting to install a master and slave on the same IDE/ATA channel using
drives from different manufacturers. Very often the disks would not work together.
The first ATA standard, drawn up in 1994, states: “The PC AT Bus is a widely used and
implemented interface for which a variety of peripherals have been manufactured. As
a means of reducing size and cost, a class of products has emerged which embed the
controller functionality in the drive. These new products utilize the AT Bus fixed disk
interface protocol, and a subset of the AT bus. Because of their compatibility with
existing AT hardware and software this interface quickly became a de facto industry
standard. The purpose of the ATA standard is to define the de facto implementations“
(Lamers, 1994).

In addition to specifying a comprehensive command set and protocol that
operates between the INT 13h BIOS functions and the ATA/IDE drive, this first ATA
standard stipulates:

● that there is to be a single channel shared by up to two hard disks configured as
master and slave;

● that programmed input–output (PIO) modes 0,1 and 2 are to be supported,which
are defined as 3.3, 5.2 and 8.3 Mbyte/s transfer rates respectively; and

● that direct memory access (DMA) modes 0, 1 and 2 for single words, defined as
2.1, 4.2 and 8.3 Mbyte/s respectively, and mode 0 for multiwords defined as 4.2
Mbyte/s, are also to be supported.

As we mentioned earlier, the basic DMA facilities provided by the standard PC-AT
over ISA buses did not make DMA an attractive transfer mechanism for perfor-
mance reasons and PIO tended to be used by most disk controllers instead. However,
modern IDE/ATA hard disks are now likely to have their own DMA controllers on
board and therefore do not need to use the slow DMA controller that is built into the
PC-AT. This system is often called bus mastering and requires the use of a PCI bus to
support it.

Although this original standard proved well suited for the early IDE/ATA disks, the
rapid improvements in disk technology soon saw the need for faster transfer rates
and enhanced features. An ATA-2 specification, backward-compatible with the
original standard, was drawn up in 1996.

Amongst the myriad of definitions in this second specification is the following,
which we will refer back to in a later section: “A CHS address is made up of three
fields: the sector address, the head number and the cylinder number. Sectors are
numbered from 1 to the maximum value allowed by the current CHS translation mode
but can not exceed 255. Heads are numbered from 0 to the maximum value allowed by
the current CHS translation mode but can not exceed 15. Cylinders are numbered
from 0 to the maximum value allowed by the current CHS translation mode but
cannot exceed 65,535” (Finch, 1995).

This ATA-2 specification became a second ANSI standard (ANSI, 1996) and
included the following features:

● faster PIO modes,3 and 4,which are defined as 11.1 and 16.6 Mbyte/s respectively;
● faster multiword DMA modes, 1 and 2, which are defined as 13.3 and 16.6 Mbyte/s

respectively;
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● a new block transfer mode;
● logical block addressing (LBA), which we will be looking at later; and
● an improved IDENTIFY DRIVE (now known as IDENTIFY DEVICE) command

which permits BIOS software to obtain more accurate details about the drive

Since then, the specifications have continued to be produced on a regular basis.
ATA-3 was drawn up in 1995, though this was not much referred to by the disk
manufacturers of the time, who invented a variety of marketing names (see below)
for their drives to signify additional or enhanced features over the ATA-2 standard.
ATA-3 is a minor revision of the ATA-2 standard, with which it is backward-
compatible, and it defines means for improving the reliability of the higher speed
transfer modes and introduces the new features of Security Mode and of Self-
Monitoring, Analysis and Reporting Technology (SMART) which we referred to
earlier.

Ultra-ATA is an unofficial standard of that same time which refers to the use of a
higher speed DMA transfer mode (multiword DMA mode 3,sometimes called DMA-
33) running at 33.3 Mbyte/s.This required a modified BIOS that supported the Ultra-
ATA protocol. Ultra-ATA may also be called Ultra-DMA or ATA-33.

In addition, the ATA Packet Interface (or ATAPI) was defined as an ANSI standard,
to permit CD-ROM and tape drives to be plugged into the standard IDE interface and
to be configured as master or slave in just the same way as a hard disk. However,
because the ATAPI protocol was not identical to the ATA-2 command set used for the
hard disks, a special ATAPI driver had to be installed to communicate with these
devices.

As mentioned above,a number of marketing names have been used by some of the
disk manufacturers to refer to additional or enhanced features. These are not
standards as such, but it is important to be aware of them because the names were in
common use at the time and disks claiming these features may still be met with. Fast
ATA and Fast ATA-2 (Seagate, 1997c) were used by Seagate and Quantum to refer to
what is essentially ATA-2. Fast ATA complies with ATA-2 except for PIO mode 4 and
multiword DMA mode 2, and Fast ATA-2 appears to be no more than just ATA-2.
Enhanced IDE or EIDE (Western Digital, 1997a) was used by Western Digital to refer
to systems that, in addition to complying with ATA-2, included support for ATAPI
and dual IDA/ATA host adaptors, permitting up to four IDE/ATA/ATAPI devices to
be used. This is now the norm for most systems.

In due course the ATA specifications caught up with the various approaches
adopted by the manufacturers and the majority of these features have now been
incorporated into published ANSI standards based on ATA/ATAPI-4, ATA/ATAPI-5,
ATA/ATAPI-6 and ATA/ATAPI-7. These standards are intended to be backward-
compatible as evidenced by this statement from the T13 Technical Committee web
site40, which refers to the ATA/ATAPI-7 standard: “This standard maintains a high
degree of compatibility with the AT Attachment – 6 with Packet Interface (ATA/
ATAPI-6), 1410D, and while providing additional functions, is not intended to require
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changes to presently installed devices or existing software”. Similar statements are
given for each of the three earlier standards. At the time of writing, the T13 Technical
Committee is currently reviewing, in draft form, the ATA/ATAPI-8 (Stevens, 2005)
standard. Landis (2005) suggests that ATA-6 is the last of the PATA (Parallel ATA)
interface standards that should be used, in that ATA-7 attempts to describe both
PATA and SATA (Serial ATA), resulting in what “... can be a confusing mess”.

At Annex C to ATA/ATAPI-6 (McLean, 2001) can be found an explanation of
UDMA which is typical of the kind of additional functions that have been incorpo-
rated.The explanation includes the statement: “With the advent of faster host systems
and devices, the definition of the bus has been expanded to include new operating
modes. Each of the PIO modes, numbered zero through four, is faster than the one
before (higher numbers translate to faster transfer rates). PIO modes 0, 1, and 2 corre-
spond to transfer rates for the interface as was originally defined with maximum
transfer rates of 3.3, 5.2, and 8.3 megabytes per second (MB/s), respectively. PIO mode
3 defines a maximum transfer rate of 11.1 MB/s, and PIO mode 4 defines a maximum
rate of 16.7 MB/s. Additionally, Multiword DMA and Ultra DMA modes have been
defined. Multiword DMA mode 0, 1, and 2 have maximum transfer rates of 4.2, 13.3,
and 16.7 MB/s, respectively. Ultra DMA modes 0, 1, 2, 3, 4, and 5 have maximum
transfer rates of 16.7, 25, 33.3, 44.4, 66.7, and 100 MB/s, respectively”.

Host Protected Area (HPA)

Since ATA-4, there has been specified a little known facility called the Host Protected
Area feature set which permits the reservation of a protected area of the disk that
cannot be accessed by conventional methods. The specification states: “The SET
MAX ADDRESS or SET MAX ADDRESS EXT41 command allows the host to redefine
the maximum address of the user accessible address space... when the SET MAX
ADDRESS or SET MAX ADDRESS EXT command is issued with a maximum address
less than the native maximum address, the device reduces the user accessible address
space to the maximum specified by the command, providing a protected area above
that maximum address... the device shall report only the reduced user address space in
response to an IDENTIFY DEVICE command... Any read or write command to an
address above the maximum address specified by the SET MAX ADDRESS or SET
MAX ADDRESS EXT command shall cause command completion with the IDNF bit
set to one and ERR set to one, or command aborted” (Stevens, 2005).

In February 2002, Paul Sanderson, of Sanderson Forensics42, drew attention to a
possible forensic imaging problem that could arise from this feature. Some imaging
software, at that time, did not take the Host Protected Area feature into account and,
if a maximum address had been set on the disk that was less than the native address
of the disk, imaging occurred only up to the address that had been set and not to the
end of the disk. Most imaging software producers, at the time of writing, now take
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this feature into account in their imaging software, but it is still important, from a
forensic viewpoint, to be aware if the maximum address has been changed. One
means by which this can be checked is by the use of a software product called
BXDR43 that is produced by Paul Sanderson for this purpose. Consistency checks
should also be made between the manufacturer’s label, the model details from the
manufacturer’s web site and the reported parameters obtained from the BIOS or the
IDENTIFY DEVICE command.

Device Configuration Overlay (DCO)

An even less well known facility was introduced in ATA-6 called the Device Configu-
ration Overlay feature set. This states: “The optional Device Configuration Overlay
feature set allows a utility program to modify some of the optional commands, modes,
and features sets that a device reports as supported in the IDENTIFY DEVICE or
IDENTIFY PACKET DEVICE command response as well as the capacity reported”.
What this means in practice is that a DEVICE CONFIGURATION SET command may
also be used to change the effective disk size, and this is more powerful than the HPA
SET MAX ADDRESS command. A very useful paper which covers some of the
forensic implications of both the HPA and the DCO is that of (Vidström, 2005). This
outlines the possible forensic use of SMART and gives some limited advice on defect
sectors.

IDE/ATA Problems and Workarounds

Having now looked a little at both the INT 13h BIOS interface and the plethora of
standards that make up the IDE/ATA hard disk interface (see Table 5.10) we will now
consider in the next section what the problems have been in bringing the two
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Bus architectures
Industry Standard Architecture (ISA)
Extended Industry Standard Architecture (EISA)
Micro Channel Architecture (MCA)
Video Electronics Standards Association (VESA) Local Bus (VLB)
Peripheral Component Interconnect (PCI), PCI-X, PCI-X 266, PCI-Express and Infiband

Drive interfaces
Seagate Technologies ST412/506
Enhanced Small Drive Interface (ESDI)
Integrated Drive Electronics (IDE) and AT Attachment (ATA)
Small Computer System Interface (SCSI)
ATA, ATA-2, ATA-3, ATA-4, ATA-5, ATA-6, ATA-7, ATA-8
Ultra-ATA, Ultra-DMA, ATA-33, DMA-33, ATA-33, DMA-33, Ultra-DMA, ATA/66. ATA

100, ATA/133
ATA Packet Interface (ATAPI)
Fast ATA and Fast ATA-2, Enhanced IDE (EIDE)

Table 5.10 A plethora of standards.

43 See http://www.sandersonforensics.com/bxdr.htm.



together. The first serious problem arises from the CHS addressing structure that is
used by the INT 13h BIOS interface and the way in which this differs from the CHS
addressing structure that is used by IDE/ATA devices. The problem originally
became known as the 528 Mbyte Barrier.

CHS Addressing and the 528 Mbyte Barrier

The details can perhaps best be understood by reference to Table 5.11. Here we see in
three columns the CHS addressing structure for the INT 13h BIOS, the IDE/ATA
interface and the combined effect of the two connected together in the column
labelled “Limitation”.

The CHS values for the INT 13h BIOS column are easily recognizable from what
has been discussed before. There are 10 bits for the number of cylinders, resulting in
a maximum of 1024 (0 to 1023,because cylinder counting starts from 0); 8 bits for the
number of heads, resulting in a maximum of 256 (0 to 255, because head counting
starts from 0); and 6 bits for the number of sectors,resulting in a maximum of 63 (1 to
63 because sector counting starts from 1).This gives a total possible disk size in bytes,
assuming 512 bytes per sector, of 1024 × 256 × 63 × 512 = 8,455,716,864. In SI units
(powers of ten units) this is 8.45 Gbyte and in powers of two units we have to divide
by 1024 × 1024 × 1024 to get 7.87 Gbyte44. The CHS values for the IDE/ATA column
can be determined by reference back to the quote from the ATA-2 interface specifi-
cation. There we may recall that the quote states that cylinders are permitted to be of
values 0 to 65,535 = 65,536 (16 bits),heads are permitted to be of values 0 to 15 = 16 (4
bits),and sectors are permitted to be of values 1 to 255 = 255 (8 bits).This gives a total
possible disk size in bytes of 65,536 × 16 × 255 × 512 = 136,902,082,560. In SI units
this is 136.9 Gbyte and in powers of two units it is 127.5 Gbyte. The “limitation”arises
when we try to connect the two interfaces together. If we imagine that each bit is a
separate water pipe45 coming out of the interface then we would have 10 cylinder
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INT 13h BIOS IDE/ATA Limitation

Cylinders 1024 (10) 65 536 (16) 1024

Heads 256 (8) 16 (4) 16

Sectors per track 63 (6) 255 (8) 63

Bytes per sector 512 512 512

Size in bytes 8 455 716 864 136 902 082 560 528 482 304

SI units 8.45 Gbyte 136.9 Gbyte 528 Mbyte

^2 units 7.87 Gbyte 127.5 Gbyte 504 Mbyte

Table 5.11 Connecting the interfaces.

44 We have calculated both sets of units here because either may be quoted in the
literature, often without any reference to derivation. We have also seen this value
expressed as 8,455,716,864/1024 × 1024 = 8064 Mbyte = 8 Gbyte.

45 From an idea developed by Martyn Halsall whilst on a Forensic Computing Foundation
course.



pipes, 8 head pipes and 6 sector pipes coming out of the INT 13h BIOS interface and
we would have 16 cylinder pipes, 4 head pipes and 8 sector pipes coming out of the
IDE/ATA disk drive interface. If we now arrange for a plumber to connect all possible
pipes coming out of the two interfaces together, we end up with the arrangement that
we can see in Fig. 5.16. We see then that the only pipes that are connected up between
the two interfaces are 10 cylinder pipes, 4 head pipes and 6 sector pipes.

This accounts for what we see in the “Limitation” column of Table 5.11. What have
been connected are 10 pipes for the cylinders, resulting in a maximum of 1024 (0 to
1023, because cylinder counting starts from 0); 4 pipes for the number of heads,
resulting in a maximum of 16 (0 to 15, because head counting starts from 0); and 6
pipes for the number of sectors, resulting in a maximum of 63 (1 to 63 because sector
counting starts from 1). This gives a total accessible disk size in bytes of 1024 × 16 ×
63 × 512 = 528,482,304. In SI units this is 528 Mbyte and in powers of two units it is
504 Mbyte. We can therefore see that connecting the two interfaces together limits
the maximum possible disk size to 528 Mbyte. It should also be noted, since we will
return to this later, that the maximum number of cylinders is limited to 1024,because
only 10 of the cylinder pipes are connected.

One might be tempted to wonder why the designers of the IDE/ATA specification
did not think of these problems. It is almost certain that they did. They might have
chosen the design they did because disks as large as 528 Mbyte were not widely
available at the time when the first ATA specification was written, but more likely it
was because they recognized that future development was taking the hard disk into
rapidly increasing numbers of cylinders at the expense of numbers of heads, and it
was really the INT 13h BIOS structure that needed to be changed.

Whatever the reasons, the PC user of the first IDE/ATA disks was limited to 528
Mbyte of addressable space until a workaround could be established, although it was
not until about 1994 that disks of that size and greater started to become available.
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Extended CHS (ECHS) Translation

A possible solution to this problem can be spotted easily from Fig. 5.16. We could
simply arrange to connect some of the unused head pipes at the INT 13h BIOS
interface to some of the unused cylinder pipes at the IDE/ATA disk drive interface. In
other words, we could try trading some of the spare head bits (4) at the INT 13h BIOS
interface for some of the spare cylinder bits (6) at the IDE/ATA disk drive interface.
Clearly, there are many ways in which this trade could be carried out.

One approach that was adopted by the PC industry is to take the maximum
number of cylinders value at the IDE/ATA interface and, if it is greater than 1024,
determine the smallest power of two which when divided into it makes it less than or
equal to 1024. We can then think of a cylinder’s address at the IDE/ATA interface as
being divided by this power of two before it is passed to the cylinders register at the
INT 13h BIOS interface, and, at the same time, a heads address at the IDE/ATA
interface as being multiplied by the same power of two before it is passed to the heads
register at the INT 13h BIOS interface. The smallest power of two is used because this
ensures that the address space at the IDE/ATA interface that is lost by the division
and rounding down process is kept to a minimum. Clearly, when moving from the
INT 13h BIOS interface to the IDE/ATA interface we can think of a complementary
process being carried out whereby a cylinder’s address is multiplied by that same
power of two and a head’s address is divided by that same power of two.

This results in the same CHS address having different values at the two interfaces.
In order to distinguish between a CHS address at the INT 13h BIOS interface from
one at the IDE/ATA interface, we use the terms Logical-CHS (or L-CHS) for CHS
addresses at the INT 13h BIOS interface and Physical-CHS (or P-CHS) for CHS
addresses at the IDE/ATA interface.

In the preceding discussion, we used the phrase “we can think of” quite deliber-
ately. The elegant idea of simply dividing and multiplying the cylinder and head
components of CHS addresses by the same power of two will not work in practice
because CHS addresses are whole numbers, and rounding effects of the division will
not map addresses uniquely on translation. Consider, for example, a multiplying
factor of 2 and the two logical CHS addresses listed below. They both translate, using
the simple algorithm of doubling the cylinder number and halving the head number,
to the same physical CHS address, as, of course, do many, many more.

L-CHS (4, 6, 10) Æ P-CHS (4 × 2, 6/2, 10) = P-CHS (8, 3, 10)

L-CHS (4, 7, 10) Æ P-CHS (4 × 2, 7/2, 10) = P-CHS (8, 3, 10)

A slightly more complex algorithm, based on the same idea, needs to be used in
order to achieve both a unique mapping of CHS addresses and a sector ordering on
the disk which is consistent46 with logical block addressing (LBA), an alternative
addressing system which we describe in a later section.This algorithm may be imple-
mented by the following rules, for translating from L-CHS to P-CHS:
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P-C = (L-C × N) + (L-H/P-Hn)
P-H = (L-H mod P-Hn)
P-S = L-S

In these rules, P-C, P-H and P-S are the components of the CHS address at the IDE/
ATA or physical interface; L-C,L-H and L-S are the components of the CHS address at
the INT 13h or logical interface; N is the power of two factor; P-Hn is the maximum
number of heads at the physical interface; mod is the modulus function and / is the
integer division function with the result rounded down. If we now consider the two
translations in our example above, assuming N is 2 and P-Hn is 16, we obtain the
following:

L-CHS (4,6,10) Æ P-CHS ((4 × 2) + (6/16)),(6 mod 16),10) = P-CHS (8,6,10)

L-CHS (4,7,10) Æ P-CHS ((4 × 2) + (7/16)),(7 mod 16),10) = P-CHS (8,7,10)

We now see that the mapping is unique, at least for these values. Further analysis
would show that it genuinely is unique and consistent throughout.Because the factor
N is always a power of two, these rules may be implemented by shifting bits the
appropriate number of places left or right. For this reason it is often referred to as the
bit shifting method.

At Fig. 5.17 we have shown the CHS values for a 540 Mbyte hard drive which, at the
IDE/ATA (P-CHS) interface, requires a maximum number of cylinders of 1057
(addresses 0 to 1056), a maximum number of heads of 16 (addresses 0 to 15) and a
maximum number of sectors of 63 (addresses 1 to 63). We note that, at 540 Mbyte,
this drive breaches the 528 Mbyte barrier. Using the approach described above, the
maximum number of cylinders value at the INT 13h BIOS (L-CHS) interface is calcu-
lated, rounding down, as 1057/2 = 528 (cylinder addresses 0 to 527) and the
maximum number of heads value at the INT 13h BIOS (L-CHS) interface is calcu-
lated as 16 × 2 = 32 (heads addresses 0 to 31). The maximum number of sectors
remains as 63 (sector addresses 1 to 63). The largest L-CHS address (527, 31, 63) is
now well within the range of the INT 13h BIOS registers and the disk appears to the
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Fig. 5.17 CHS translation.



BIOS, and, of course, to all the software that uses it, to be of a quite different but
entirely acceptable geometry.

It should be noted that we can lose some capacity by this translation process. The
original disk geometry (P-CHS) of a maximum number of cylinders of 1057, of a
maximum number of heads of 16 and of a maximum number of sectors of 63 results
in a total capacity of 1057 × 16 × 63 × 512 = 545,513,472 bytes. Using a similar calcu-
lation, the INT 13h BIOS translated geometry (L-CHS) results in a total capacity of
528 × 32 × 63 × 512 = 544,997,376 bytes. This is a loss of 516,096 bytes, or about 0.1%.
We also note that the largest logical CHS address translates,using the rules described
above, to the following physical CHS address:

L-CHS (527, 31, 63) Æ P-CHS ((527 × 2) + (31/16)), (31 mod 16), 63)
Æ P-CHS (1055, 15, 63)

This shows that we have lost a cylinder through translation,the largest available P-CHS
cylinder number being 1056. This is a loss of 16 heads × 63 sectors per track = 1008
sectors = 1008 × 512 = 516,096 bytes, the figure that we have already obtained above.

We are now in a good position to interpret much of the data that was given by the
Find-ATA program for the ST32140A hard disk (see Fig. 5.8). In the “Hardware”
column we see that the maximum number of cylinders is 4095, the maximum
number of heads is 16 and the maximum number of sectors is 63. The physical disk
capacity is shown as 2,113,413,120 bytes. These figures are clearly the P-CHS values
for the IDE/ATA interface and we can confirm that 4095 × 16 × 63 × 512 is indeed
2,113,413,120 bytes. In the “DOS” column we are seeing the L-CHS translated values
at the INT 13h BIOS interface. The maximum number of cylinders value is calculated
as 4095/4 = 1023 (rounding down) and the maximum number of heads value is
calculated as 16 × 4 = 64,both as shown in the figure.The logical capacity can then be
calculated as 1023 × 64 × 63 × 512 = 2,111,864,832 also as shown in the figure.We also
note that the largest logical CHS address translates, using the rules described above,
to the following physical CHS address:

L-CHS (1022, 63, 63)Æ P-CHS ((1022 × 4) + (63/16)), (63 mod 16), 63)
Æ P-CHS (4091, 15, 63)

This shows that we have lost three cylinders through translation, the largest P-CHS
cylinder number being 4094. This is a loss of 3 cylinders × 16 heads × 63 sectors per
track = 3024 sectors = 3024 × 512 = 1,548,288 bytes, which accounts exactly for the
difference between the physical capacity shown for the disk of 2,113,413,120 bytes
and the logical capacity shown for the disk of 2,111,864,832 bytes.

Considering the other parameters given in Fig.5.8,we should now be familiar with
the terms DMA (Direct Memory Access) and PIO (Programmed Input Output)
which we have discussed earlier. The final term, LBA, for Logical Block Addressing,
we will consider very shortly.

CHS Translation Options

The translation algorithm, which operates between the two interfaces, has to reside
as some form of software in the PC. There are a number of options for this. All
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modern BIOSes will already have the translation algorithm software built into their
INT 13h functions and will automatically be capable of what is sometimes known as
Extended CHS (ECHS) Translation or just simply Large Mode. Such BIOSes are often
referred to as enhanced47 or translating BIOSes and the translation algorithm as the
ECHS translation method. If a user has an earlier BIOS, however, which does not
incorporate such translation facilities, there are three possibilities for using disks
larger than 528 Mbyte.

The first involves using special software drivers that do the translation for us.They
are sometimes referred to as Dynamic Drive Overlays or DDOs. They are typified by
EZ-Drive from Microhouse (Western Digital,1999),and Disk Manager from Ontrack
(IBM, 1999), and many hard disk manufacturers provide software of this nature with
their disk products in order to deal with the non-translating BIOS problem. Both
work in similar ways. During the first setting up of the disk, the DDO is placed by the
initialization software in some spare disk space just after the partition table and at
boot time it gets loaded into memory as the CHS translating software. We will look at
this process in more detail later. Suffice to say, at this stage, that, having been loaded
into memory, the CHS translating software of the DDO first adjusts the INT 13h
vector in memory to point to where it, the DDO, now resides, so that all INT 13h calls
thereafter are automatically handled by the translation routines.

In passing we should note the earlier comment that, without translation, the
maximum number of cylinders accessible by the INT 13h BIOS is 1024. This has an
important effect when we have a non-translating BIOS and are using a DDO. Prior to
the DDO being activated, all INT 13h BIOS calls are subject to the non-translating
BIOS limitations. In particular, this means that a boot sector, if it has to be accessed
before the DDO is established48, cannot normally reside on the disk beyond what is
called the 1024 cylinder limit.

A further important point is that DDOs are usually loaded through execution of
the hard disk boot sequence. When booting from floppy disk to DOS, with a non-
translating BIOS, the hard disk may not be accessible at all because the DDO has not
been loaded. Most DDOs provide a workaround process for this problem, which may
involve either pressing a particular key during the boot sequence or preparing a
floppy disk with the DDO installed on it. This is vitally important to note from a
forensic imaging viewpoint when rehosting a suspect drive that has been installed
with a DDO. It is essential that the DDO is loaded from floppy disk into the forensic
host machine before attempting to access the suspect drive.

The second approach to the problem is to use a disk drive unit which has its own
version of the INT 13h translating BIOS routines built into its onboard ROM. During
the boot process, the INT 13h vector is adjusted to point to the translating BIOS of the
hard disk ROM rather than to the standard internal INT 13h BIOS routines. The 1024
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cylinder boot limit always applies here because the INT 13h vector does not get
changed until after the boot sector has been accessed, but the floppy boot to DOS
problem should not arise in this case as it does for the DDO. The third approach to
the problem, long since outdated since all modern BIOSes now contain the updates,
was to change the system BIOS. This could have been done either by obtaining an
updated chip and replacing the current BIOS with it or, with the later flash BIOS
systems,downloading a modification patch from the supplier and changing the flash
memory.

If we refer back to Table 5.11,we may note that the total number of bits required by
the ATA specification is 16 for cylinders + 4 for heads + 8 for sectors/track, giving a
total of 28. In the low-level formatting discussion, we saw that three bytes (Fig. 5.4)
were used for the CHS of the sector ID field, which only gives us 24 bits. However, we
also saw (Fig. 5.7) that 4 bits of the sector flag in the sector ID field were “reserved”,
and by using these as well we can obtain the 28 bits required for P-CHS addressing.
An approach used by one manufacturer (Seagate, 1995a) is shown at Fig. 5.18. Here
the first two byes are used to hold the cylinders number (0 to 65,535), the last three
bits of the third byte to hold the heads number (0 to 7) and the fourth byte to hold the
sectors number (1 to 255).

Logical Block Addressing (LBA)

Logical Block Addressing (LBA) is an alternative form of addressing to that of CHS
and it has been included since the first ATA specification, which states: “A drive can
operate in either of two addressing modes, CHS or LBA, on a command by command
basis”. In LBA, the 28 bits of the sector ID field are used as a single number, starting
from 0 to identify each sector in sequence from the first to the last. The maximum
possible number of sectors is, of course, 228 = 268,435,456, and this, for 512 byte
sectors, results in a maximum possible size of 137,438,953,472 bytes (137 Gbyte in SI
units and 128 Gbyte in powers of 2 units).

It is important to recognize that LBA is not a solution to the 528 Mbyte problem.
All software which uses the INT 13h BIOS interface will be addressing the disk
system using CHS addresses. Even though the IDE/ATA interface of the hard disk
may be in LBA mode,all LBA addresses will have to be translated to and from the INT
13h BIOS CHS addresses that the software uses. In other words, a translating BIOS is
always required, and it is the translating BIOS that provides the solution to the 528
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Mbyte problem. In fact, the CHS bit shifting method described above is technically a
short cut for the “correct” translating procedure, which should be the two steps:

1. Translate the L-CHS to an LBA
2. Translate the LBA to a P-CHS

We translate a CHS address to an LBA address by means of the following formula:

LBA = C × heads-per-cylinder × sectors-per-track
+ H × sectors-per-track + S – 1

and we translate an LBA address to a CHS address using the following:

C = LBA/(heads-per-cylinder × sectors-per-track)

H = (LBA mod (heads-per-cylinder × sectors-per-track))/sectors-per-track

S = ((LBA mod (heads-per-cylinder × sectors-per-track))
mod sectors-per-track) + 1

Using one of the bit shifting examples from above, we note an L-CHS address of (4,
7, 10), a logical heads-per-cylinder of 32, a physical heads-per-cylinder of 16 and a
sectors-per-track, both logical and physical, of 63. We may now make the following
calculations, where mod is the modulus function and / is the integer division
function with the result rounded down, as above:

LBA = (4 × 32 × 63) + (7 × 63) + 10 – 1
= 8064 + 441 + 10 – 1
= 8514

P-C = 8514/(16 × 63)
= 8514/1008
= 8

P-H = (8514 mod (16 × 63))/63
= 450/63
= 7

P-S = ((8514 mod (16 × 63)) mod 63) + 1
= (450 mod 63) + 1
= 10

From this we can see quite clearly that L-CHS (4, 7, 10) first translates to LBA 8514
and this then translates to P-CHS (8, 7, 10), just as we found with the bit shifting
method.

Problems with Different Translation Methods

You might reasonably assume that there is only one agreed way of translating L-CHS
to P-CHS and only one agreed way for converting CHS to LBA and LBA to CHS.
Unfortunately, this is not the case. There is no standard algorithm and different
BIOSes and different operating systems may well use different methods. As you
might expect, different methods are likely also to yield different results. There is
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therefore a real risk when hosting a hard disk from a suspect machine that uses a
non-standard BIOS on a forensic machine for imaging that the translations
performed by the forensic machine may not be correct for the disk, with potentially
harmful results. This will normally only apply to older disks and older BIOSes; most
modern BIOSes tend to use the de facto (nearly) standard method that has been
described above, so the problem of incorrect translation when re-hosting should not
occur very often.

The second most common translation method is the so-called LBA assisted
method, which is rather different from the bit shifting method we discussed earlier.
Here the rule is to translate the CHS address at the INT 13h interface to an LBA
address and use that LBA address at the IDE/ATA interface, and vice versa. This
method is perhaps best understood by looking at Table 5.12. To convert an LBA
address to an L-CHS address, the total capacity (cap) of the drive in bytes is first
calculated. Depending upon this capacity a particular line item in Table 5.12 is
selected and the cylinders, heads and sectors values are calculated according to the
appropriate entries. One particular point should be noted from this figure: the heads
value and the relevant cylinders divisor for 4032 to 8032.5 Mbyte capacity is 255
rather than 256. This is because of an operating system problem which we will be
looking at shortly,and makes this, in point of fact, the revised LBA assisted method.

If we now re-consider the example of Fig. 5.8, we recall that, at the ATA/IDE
interface (P-CHS), the maximum number of cylinders is 4095, the maximum number
of heads is 16 and the maximum number of sectors is 63, and that this gives a disk
capacity of 4095 × 16 × 63 × 512 = 2,113,413,120 bytes. From this we can determine
the capacity in megabytes as 2,113,413,120/1024 × 1024 = 2015.5 Mbyte49 and look
that up in Table 5.12.

The appropriate line entry in the table is the “1008 < cap < 2016 Mbyte” line, so the
cylinders become 2,113,413,120/(63 × 64 × 512) = 1023.75.Rounding down,this gives
us a maximum number of cylinders of 1023, together with a maximum number of
heads of 64 and a maximum number of sectors of 63. The highest available LBA
address for this translation is the total number of sectors minus 1 (because LBA
addresses start with 0). This is (1023 × 64 × 63) – 1 = 4,124,735.The INT 13h BIOS (L-
CHS) translated address for this highest available LBA address of 4,124,735 is
therefore: cylinders 1022, heads 63 and sectors 63. This is exactly the same as that
obtained using the bit shifting method above for the highest CHS address at the INT
13h BIOS (DOS) interface. Note that this will not always be the case. The two
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Capacity Sectors Heads Cylinders

1 < cap < 504 Mbyte 63 16 cap/(63 × 16 × 512)

504 < cap < 1008 Mbyte 63 32 cap/(63 × 32 × 512)

1008 < cap < 2016 Mbyte 63 64 cap/(63 × 64 × 512)

2016 < cap < 4032 Mbyte 63 128 cap/(63 × 128 × 512)

4032 < cap < 8032.5 Mbyte 63 255 cap/(63 × 255 × 512)

Table 5.12 LBA assisted method.

49 Note that Table 5.12 is in powers of two units.



translation methods produce the same CHS values in many cases, but not in all. The
LBA-assisted method always uses 63 sectors per track. The bit shifting method uses
whatever sectors per track the drive reports from the IDE/ATA interface. If this is not
63, the two algorithms will produce completely different results50. It can therefore be
very destructive of data to change translation modes, in SETUP, between ECHS
(Large) and LBA on a working drive. The actual sectors accessed could be different
between the two modes for the same CHS addresses called by the software.

The 2 Gbyte Problem

Some older translating BIOSes cannot accept a cylinders value at the IDE/ATA
interface that is greater than 4095 because they only allocate 12 bits for the number of
cylinders in the CMOS RAM. This results in a maximum physical drive geometry of
4095 cylinders, 16 heads and 63 sectors, which is a capacity of 4095 × 16 × 63 × 512 =
2,113,413,120 bytes and is known as the 2 Gbyte problem. Three problem scenarios
have been noted (Western Digital, 1998a): the BIOS can only see a maximum of
2015.5 Mbyte and truncates the remaining space; the BIOS loses all cylinder bits
above 12 and may lose 2016 Mbyte of space or more; the BIOS completely locks up at
boot time. A comprehensive solution to this problem is to use a dynamic drive
overlay (DDO). However, if the BIOS locks up at boot time, it will be necessary to
configure the drive (incorrectly) as 1023 cylinders, 16 heads and 63 sectors in CMOS
SETUP. In this way the BIOS does not see the problem and does not lock up. The
DDO, when activated, fetches the true CHS parameters from the drive itself and
carries out the appropriate translation. One difficulty that may have to be overcome
is getting into CMOS SETUP. The option to enter SETUP comes after the BIOS has
detected all the hard drives, and as the lockup will occur when the drive is detected,
SETUP is not at that stage accessible.The way round this problem is to disconnect the
offending drive from its cable, then boot and enter SETUP to put in the artificial safe
parameters. When the drive is reconnected, it should then be possible to boot and to
establish the DDO.

The 4 Gbyte Problem

Older BIOSes may exhibit another problem with disks that have a cylinders value at
the IDE/ATA interface that is greater than 8191.For a drive that has 8192 cylinders,16
heads and 63 sectors, this results in a capacity of 8192 × 16 × 63 × 512 = 4,227,858,432
bytes = 4032 Mbyte; hence this is known as the 4 Gbyte problem. In accordance with
the bit shifting method, this requires the cylinders value at the IDE/ATA interface to
be divided by 16 in order for the translated cylinders value to be in the INT 13h BIOS
interface range. However, this then results in a translated heads value of 16 × 16 = 256
and it is this translated heads value which causes the problem. This is because both
MS-DOS up to version 6.22 and Windows 95 hold the number of heads in an 8 bit
register and the maximum number of heads can then only be 255, resulting in the 4

Disk Geometry 151

50 As an example, the Western Digital WDAC2420, which is a 425 Mbyte disk, specifies 56
sectors per track. See Western Digital (1997b).



Gbyte limit. Although this is an operating system problem, BIOS manufacturers
decided to deal with it by modifications to the translating BIOS (Micro Firmware,
1998). These need to be applied both to the bit shifting or ECHS translation method
and to the assisted LBA method.

The revised ECHS translation method makes the following adjustment. If, at the
IDE/ATA interface, the number of cylinders is greater than 8191 and the number of
heads is 16, then the cylinders value is multiplied by 16/15 and the heads value is set
to 15 before the standard bit shifting algorithm is applied.

As an example, the Maxtor CrystalMax 1080, model number 84320A8 (Maxtor,
1996) shows 8,400 cylinders, 16 heads and 63 sectors per track as the geometry at the
IDE/ATA interface. This gives us 8,400 × 16 × 63 × 512 = 4,335,206,400 bytes capacity.
Using the standard bit shifting or ECHS translation method this results in 8400/16 =
525 cylinders and 16 × 16 = 256 heads,causing the problem that we referred to above.
The revised ECHS translation, however, first gives us 8,400 × 16/15 = 8,960 cylinders
and 15 heads, and then this in turn is translated to 8,960/16 = 560 cylinders and 15 ×
16 = 240 heads. The resulting capacity is the same as before (this is not always the
case), that is: 560 × 240 × 63 × 512 = 4,335,206,400 bytes. The largest L-CHS address
for this disk at the INT 13h BIOS interface for the revised ECHS translation method is
therefore (559, 239, 63).

In the case of the LBA-assisted method, the necessary adjustment has already been
built into Table 5.12.We noted in passing at the time that for the 4032 to 8032.5 Mbyte
capacity the heads value and the relevant cylinders divisor are both 255 rather than
the expected 256. This is, in fact, an implementation of the revised assisted LBA
method. We can now calculate the translated CHS addresses using the revised
assisted LBA method from Table 5.12 in the following manner.We again note that the
total byte capacity is 8,400 × 16 × 63 × 512 = 4,335,206,400 bytes and this, divided by
1024 × 1024, gives us 4134.375 Mbyte. We therefore have to use the “4032 < cap <
8032.5 Mbyte” entry in the table giving us a cylinders value of 4,335,206,400/(63 ×
255 × 512) = 527 when rounded down. The heads figure is 255 and the sectors figure
is 63, giving us a total capacity of 527 × 255 × 63 × 512 = 4,334,722,560. In addition,
the largest L-CHS address for this disk at the INT 13h BIOS interface for this revised
assisted LBA translation method is therefore (526,254,63).Note that neither the total
capacity for the translated disk nor the largest L-CHS address are the same as those
obtained using the revised ECHS method. Here we see that the two translations are
completely incompatible with one another.

Other Translation-Related Problems

It has also been found (Seagate,1998) that some older BIOSes do not properly handle
a cylinders value that is in excess of 6,322. For a drive that has 6,322 cylinders, 16
heads and 63 sectors, this results in a capacity of 6,322 × 16 × 63 × 512 = 3,262,758,912
bytes = 3,262 Mbyte (powers of ten); hence this is sometimes known as the 3.27
Gbyte problem. It generally shows up when the cylinders value in CMOS SETUP has
been set larger than 6,322. As in the case of the 2 Gbyte problem, the computer locks
up at boot time and the solution options are very similar.Either set the CMOS SETUP
values to 1023 cylinders, 16 heads and 63 sectors and use a DDO, or obtain an
upgrade for the BIOS.
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Another problem reported (Western Digital, 1998b) is that of the 240 head
limitation. Many BIOSes are only able to report a maximum of 240 heads in the INT
13h function 8 call51. This results in a maximum recognized capacity of 1024
cylinders × 240 heads × 63 sectors × 512 bytes = 7,927,234,560 bytes = 7927 Mbyte
(powers of ten) and this is sometimes called the 7.9 Gbyte problem.

Overcoming the 8 Gbyte Barrier

At the time of writing, disks very much larger than 8.4 Gbyte have become the norm
on most modern PCs. If we refer back to Table 5.11, we can readily see that it is the
cylinders, heads and sectors per track maximum sizes of the original INT 13h BIOS
that impose upon us this 8.4 Gbyte limit. This first has an impact when the drive is
being detected and an INT 13h BIOS Function 8, “Get Drive Parameters”, is invoked.
This will execute code that causes an IDENTIFY DEVICE command to be issued to
the IDE ATA interface. Without going into a lot of detail, the drive will respond with
cylinder, head and sector information in words 1, 3 and 6 of the data structure it
returns. Each of these words on the ATA interface can contain up to the value 65,535,
so this is not restricting us. However, the INT 13h BIOS registers can only hold, and
hence identify, maximum values for cylinders up to 1024 (0 to 1023), heads up to 256
(0 to 255) and sectors up to 63. A drive larger than 8.4 Gbyte cannot therefore be
properly identified as such by the standard INT 13h BIOS functions. For the same
reasons, it cannot be read from or written to above the 8.4 Gbyte limit.

This is where the Enhanced BIOS comes in. As is the case with so much in this field,
lax use of terminology leads to so much possible confusion. The terms “enhance-
ments” and “extensions” have both been used by different sources to apply to those
modifications that were made to the original (often referred to as the legacy) INT 13h
BIOS functions to enable CHS translation. A BIOS that can perform such translation
is also sometimes known as a translating BIOS and contains code modifications that
enable CHS translation to take place,by, for example,using the bit shifting or assisted
LBA methods that we discussed earlier. Unfortunately, the same terminology tends
to be applied to something that is quite different: the INT 13h Extensions.

The legacy INT 13h function numbers range from 00h to 1Ah; the INT 13h exten-
sions specify completely new INT 13h function numbers which range in value from
41h to 48h. That is not all that is different. The register conventions have been
changed to permit the passing of a data structure or packet and all addressing infor-
mation is now passed via such structures rather than having to be limited by the
fixed size of some register. The size of the field in the data structure used for the
starting LBA address is four bytes, enabling disks as large as 264 sectors to be
connected. This, of course, far exceeds the capacity of the IDE/ATA interface itself,
which can only handle, as we have seen in Table 5.11, a field of 28 bits for LBA, which
is made up of 16 bits for the cylinders value, 4 bits for the heads value and 8 bits for
the sectors value. This gives us 228 sectors and the extensions thus move the barrier
from 8.4 Gbyte CHS to 127.5 Gbyte LBA.

Disk Geometry 153

51 This call is the “Get Drive Parameters” function call, which the BIOS uses to build the
disk parameter tables.



The INT 13h extensions Function 48h, “Get Drive Parameters”, obtains its infor-
mation about the drive from words 60 and 61 in the data structure that the IDE/ATA
IDENTIFY DEVICE command returns. This double word value holds the drive’s
maximum LBA address and thus its full capacity can be recognized.

An enhanced BIOS, with the INT 13h extensions, still has the legacy INT 13h
functions, so, for disks smaller than 8.4 Gbyte, it can operate as we have described
earlier. For disks greater than 8.4 Gbyte, however, the operating system and all the
application software using the disk must be able to make use of the INT 13h BIOS
Extensions and address the disk in LBA mode.

The Microsoft/IBM INT 13h Extensions document describes the original de
facto standard, and a superset of this is the BIOS Enhanced Disk Drive Specifi-
cation (Phoenix, 1995, 1998). Most BIOS manufacturers use this Phoenix
Enhanced BIOS specification, though a competing and incompatible version, the
Western Digital Enhanced IDE Implementation Guide, was also published. Disks
formatted using BIOS extensions based on the Western Digital specification may
be unreadable on other BIOSes, the majority of which use the Phoenix specifi-
cation. We have mentioned this Phoenix specification before in footnotes when
we discussed the background to the legacy problem and the CHS translation
options.

From all that has been said before, another obvious possibility for overcoming the
8.4 Gbyte problem is a dynamic drive overlay (DDO) such as EZ-Drive or Disk
Manager which simulates these INT 13h BIOS extensions; but note that we must still
have an operating system and software that is able to make use of them and can
address the disk in LBA mode.

Why CHS Translation is Still Relevant

You might by this stage be justifiably thinking that all of the CHS translation
issues that we have described above are now ancient history and no longer of
relevance, since modern systems are fully LBA capable and can use true LBA
addressing. If we examine the ATA-6 (McLean, 2001, p. 21) specification we find
the following statement which seems to confirm just this view: “All devices shall
support LBA translation. In standards ATA/ATAPI-5 and earlier, a CHS translation
was defined. This translation is obsolete but may be implemented as defined in
ATA/ATAPI-5”.

So CHS translation is now obsolete. If we then examine the relevant part of the
ATA-5 (McLean, 1999, p. 19) specification we find the following statements:

Devices shall support translations as described below:

� All devices shall support LBA translation.
� If the device’s capacity is greater than or equal to one sector and less than or equal to

16,514,064 sectors the device shall support CHS translation.
� If the device’s capacity is greater than 16,514,064 sectors, then the device may support

CHS translation.

Up until ATA-6, it is quite clear that CHS translation was the required way of
dealing with disks smaller than 8.4 Gbyte and was optionally supported for larger
disks. This changed with ATA-6, though you might note that it is not ruled out.
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There are, in fact, several very good reasons why CHS translation is still relevant
even today and why an understanding of it is essential to a forensic computing
analyst. The most important of these reasons include:

● The MS-DOS operating system and the Master Boot Record (see later) are still
based on CHS addressing and use the INT 13h BIOS Function 8 “Get Drive Param-
eters” to obtain CHS addresses. Any operating system that is to be installed on the
same disk must also understand CHS addressing.

● The initial bootstrap disk processing and loading of the operating system is all
done in CHS mode, and, again, the INT 13h BIOS Function 8 “Get Drive Param-
eters” is used to obtain CHS addresses.

● Microsoft has been quoted as saying that their operating systems will not use any
disk capacity that cannot also be accessed by the INT 13h BIOS legacy functions
(Landis, 2001).

● Where partition tables (see later) contain CHS addresses, these are always held in
L-CHS translated form.

In practice we find that the majority of hard disks continue to implement the ATA-
5 CHS translation specifications for sizes less than 8.4 Gbyte. In fact, without this,
those operating systems (including MS-DOS) and those software applications, of
which there are still many, that are not themselves LBA-capable, could not access the
disk at all.

Finally,of course,as forensic analysts,we may very well come across old hard disks
that only use CHS addressing and exhibit many of the translation problems that we
have described above.

It may perhaps have been thought that with modern systems all being fully LBA-
capable the CHS translation problems of the past have gone away. Unfortunately, this
is not the case; they have only been hidden and our modern BIOSes still do ECHS
and Assisted LBA translations.

Summary of BIOS Interface Issues

At Fig. 5.19 we have shown a summary of the major interfacing issues that arise
between the BIOS and IDE/ATA drives.

Communication between the applications software and the BIOS is by means of
the legacy INT 13h BIOS interface. This expects CHS addressing (known as Logical
CHS or L-CHS) and has cylinder, head and sector per track maximum sizes of 1024,
256 and 63 respectively. This gives us the 8.4 Gbyte limit as well as the 1024 cylinder
problem. If we are to exceed the 8.4 Gbyte limit, the applications software must use
the INT 13h extensions (functions in the range 41h to 48h) and Logical Block
Addressing or LBA.

With a very old BIOS no CHS translation is carried out and LBA is not possible.We
therefore have the 1024 cylinder problem and the 528 Mbyte limit, unless we use a
dynamic drive overlay. The 528 Mbyte limit stems from having to use the minimum
set of the two interface geometries: Logical CHS being 1024, 256 and 63 and Physical
CHS being 65536, 16, 255, giving a minimum set of 1024, 16, 63 from which the 528
Mbyte value results. With a more recent translating or extended BIOS the limitations
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of Logical CHS and Physical CHS geometries taken together no longer need apply
since the BIOS can trade excess cylinder size for spare head capacity according to
some agreed translation algorithm. If the drive supports LBA, similar translations
can be performed by the BIOS between the legacy Logical CHS interface and LBA. A
modern BIOS will provide the INT 13h extensions and these enable the direct use of
LBA. The BIOS will pass LBA addresses direct to the drive, provided that the drive is
also able to use LBA. If the drive is not LBA-capable, the BIOS will have to translate
the LBA addresses into Physical CHS addresses before passing them to the drive, and
this will again reduce the capacity to a maximum of 8.4 Gbyte.

Communication between the drive and the BIOS is across the IDE/ATA interface.
This may use CHS addressing (known as Physical CHS or P-CHS) and has cylinder,
head and sector per track maximum sizes of 65536, 16 and 255 respectively. This
gives a theoretical maximum of 127.5 Gbyte. LBA may be used directly if the drive
supports this. Big drives (see section below), however, now support a theoretical
maximum of 144 Pbyte (petabytes).

Finally, for completeness, we have shown the internal interface between the
controller and the disk itself. This might perform what is known as sector trans-
lation, particularly where zoned bit recording is in use. The Physical CHS addresses
specified at the IDE/ATA interface are not, in such cases, an accurate representation
of the physical structures internal to the drive.

Summary of BIOS Translation Options

At Fig. 5.20 is shown a summary of the translation options that might be carried out
by the three different classes52 of BIOSes. The old BIOS class can only provide a
straight through capability of Logical CHS to Physical CHS. No translation or use of
LBA is possible. The translating or extended BIOS class can perform translations
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from Logical CHS to Physical CHS, from Physical CHS to LBA and from Logical CHS
to LBA. The enhanced BIOS or INT 13h extensions BIOS class can perform LBA
direct and translation from LBA to Physical CHS. Each higher level class can, in
addition, perform all the functions of the classes below it.

From a forensic computing viewpoint, we need to recall that there are a variety of
possible translation algorithms and not all BIOS implementations are the same. We
also need to be aware that there are at least two different and incompatible imple-
mentations of the INT 13h extensions: that of Phoenix (1995, 1998) and most other
BIOS manufacturers,and that of Western Digital (1997a,undated b).The problem for
the forensic computing analyst arises when there is a need to host a hard disk on a
system other than the original machine. We need to be very sure that the Physical
CHS or LBA addresses calculated by our host BIOS are exactly those that would have
been calculated by the original BIOS given the same Logical CHS addresses, and vice
versa. If we detect the presence of a DDO on the evidence disk then we must make
specific arrangements to ensure that a copy of the relevant DDO software is loaded
into memory on our forensic machine before trying to access the disk.

We should also be aware that some protected mode operating systems that do
not use INT 13h directly have their own drivers, and these too will make assump-
tions about the translation that has been used in formatting and writing to the disk.
Using such software, when a drive has been rehosted, needs to be done with much
caution.

When a re-hosting problem arises, the first symptom is likely to be a failure by the
imaging software to image the disk correctly on the forensic machine. To deal with
this, the analyst will need a very good understanding of these legacy issues.

Fast Drives and Big Drives

New features called Ultra ATA/66 and ATA/100, sometimes also known as Ultra-
DMA/66 or UDMA/66 and UDMA/100, provided improved performance for the
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“Enhanced” IDE hard disk drive by introducing new interface cables. These contain
80 conductors in the ribbon cable that connects the disk drive to the motherboard
IDE socket,as opposed to the 40 conductors of the earlier systems.The new cables are
easily recognized by having twice the number of slightly thinner conductors in the
ribbon. Although there are 80 conductor cables, there are still only 40 pin connec-
tions with the extra wires being used as earth returns to reduce crosstalk between the
lines and hence permit the higher transfer rates. In order to use these enhanced IDE
ribbon cables, both the motherboard and the hard drives themselves must support
the new interface.

In July 2001, Maxtor announced the Ultra ATA/133 hard drive interface. This
increased the top transfer rate to 133 megabytes per second compared with the 100
megabytes per second of the ATA/100. Maxtor referred to their Ultra-ATA/133
technology as Fast Drives.

At about the same time, Maxtor, Intel and Via Technologies announced the
creation of the so-called Big Drive specification, which represented the first imple-
mentation of the ATA-6 specification that enabled drive capacities to exceed the 127
Gbyte barrier (Maxtor, 2001).

This specification allowed ATA drives to utilize 48-bit data addressing as opposed
to the then current 28-bit addressing, thus pushing the theoretical disk capacity of an
ATA drive upwards to 248 sectors or 144 Pbyte (petabytes). These so-called ATAPI-6
drives also increased the maximum amount of data that could be transferred per
command for ATA devices from 256 sectors (about 131 kbyte) to 65,536 sectors
(about 33 Mbyte).

The relevant sections (McLean, 2001, p. 50) in the ATA-6 standard state: “The
optional 48-bit Address feature set allows devices with capacities up to
281,474,976,710,65553 sectors or approximately 281 tera sectors. This allows device
capacity up to 144,115,188,075,855,36054 bytes or approximately 144 peta bytes. In
addition, the number of sectors that may be transferred by a single command are
increased by increasing the allowable sector count to 16 bits”,and: “The 48-bit Address
feature set operates in LBA addressing only. Devices implementing the 48-bit Address
feature set shall also implement commands that use 28-bit addressing. 28-bit and 48-
bit commands may be intermixed”.

It is also noted from the specification that the 48 bit addressing feature is imple-
mented by converting three existing 8 bit registers,LBA Low,LBA Mid and LBA High,
to first-in, first-out (FIFO) stacks that are two values deep. The three registers
between them provide 24 bits55 but each may be written to twice to provide the 48 bit
address. Writing twice to the registers overcomes the 28 bit limitation that would
otherwise apply across the ATA interface.

At the time of writing, 250 Gbyte hard disks have become commonplace and sizes
appear set to increase well beyond that. Many hard disks larger than 127 Gbyte are
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connected via a special expansion card56 fitted to the PCI bus, which has its own
BIOS to provide enhanced services for up to four large hard drives in addition to the
possible four IDE devices that are now standard on most motherboards. We are also
seeing large hard drive capability being incorporated directly onto the latest
motherboards.

Serial ATA (SATA)

In August 2001,a new ATA interconnection interface was published by the Serial ATA
Working Group which consisted of representatives from Dell, Intel, Maxtor, Seagate,
and APT Technologies. The document is known as the Serial ATA 1.0 Specification.
This was followed, in October 2002, by the publication of additional new Serial ATA
extensions which are defined in the Serial ATA II Specification. Copies of both of
these documents may be obtained from the web site http://www.serialata.org/ .
Serial ATA (or SATA) has been designed to be “... a high-speed serial link replacement
for the parallel ATA attachment of mass storage devices” (Deyring, 2003).

Useful overviews of Serial ATA can be found in a Microsoft paper (Microsoft,
2003) and a Dell White Paper (Pratt, 2003) from which the following quote is taken:
“Serial ATA eliminates the limitations of the current parallel ATA interface. Because
the initial Serial ATA architecture changes the physical interface layer only, it
maintains register and software compatibility with parallel ATA. No device driver
changes are necessary and the Serial ATA architecture is transparent to the BIOS and
the operating system”.

The main benefits of SATA would appear to be: a much thinner and more flexible
cable than the 40 line parallel ATA bus, with the potential for it being significantly
longer, up to 1 metre compared with 18 inches; lower operating voltages and smaller
connection pin counts; and improved transfer rates of 150 Mbyte/s compared with
the parallel ATA rate of 133 Mbyte/s. Future development is looking to improve the
transfer rates further to 600 Mbyte/s.

SATA does not have much immediate impact on the forensic computing analyst,
since the architecture is transparent to the BIOS and the operating system. We will
need write blockers for hosting SATA disk drives in addition to those for parallel ATA
systems and we should perhaps note that one of the changes is that the true SATA
interface only permits one drive per channel and we do not have the concept of
MASTER and SLAVE on the same IDE cable. We should however also note the
following quote taken from Microsoft (2003): “... the Emulating Parallel ATA mode
defines a transfer level equivalent of parallel ATA for Serial ATA controllers. In this
mode, a Serial ATA controller can emulate master-only (device 0) parallel ATA or
shared channel parallel ATA. In master-only parallel ATA emulation, the Serial ATA
controller presents itself to the computer as a parallel ATA controller with only a single
master storage device attached to a channel. In shared channel parallel ATA
emulation, the controller uses two Serial ATA channels, each only attach to a single

Disk Geometry 159

56 Large drives may also be connected via USB or FireWire.



storage device, as a single parallel channel attaching two storage devices. Both forms
of emulation work with Serial ATA controllers that use Windows parallel ATA
(atapi.sys) drivers”.

The POST/Boot Sequence

Before we start this section we need to remind ourselves of addressing in real mode
and the layout of the PC memory and its use. We will then look in turn at the start of
boot sequence, the Power On Self Test (POST) processes, the BIOS, the CMOS and the
bootstrap loader.

Addressing in Real Mode

As we mentioned earlier, the processor always starts up in 16 bit real mode using the
segment offset addressing system. We need to understand this if we are to under-
stand the boot sequence. Internally, the Intel 8086 and 8088 microprocessor chips,on
which the PC was first based, have 16 bit registers and hence the maximum number
that any of them can contain is 216 – 1 which is 65,535 in decimal or FFFFh in
hexadecimal. If a single register were to be used for memory addressing, the
maximum size of memory that could be accessed would thus be 64 kbyte. However,
the Intel 8086 and 8088 chips actually have 20 address lines (A0 to A19) in their
external address bus and so are capable of accessing addresses up to 220 – 1, which is
1,048,575 in decimal or FFFFFh in hexadecimal. This permits the maximum size of
memory to be 1 Mbyte.

In order to provide the external 20 bit address, two 16 bit registers are used
together, as shown in Fig. 5.21. One 16 bit register is known as the segment register
and the other as the offset register. The segment register value is shifted left by four
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places (equivalent to multiplying by 16) before being added to the offset register
value to give a 20 bit external address value as shown57.

In the example we see a segment register holding the value 2308h being shifted left
by four places and then being added to an offset register holding the value 4B75h.
The result forms the external 20 bit address of 27BF5h.Also shown in the figure is the
standard way in which the segment and offset addresses are written. In this case we
see 2308:4B75 as the segment:offset values, with no “h” being necessary since
hexadecimal notation is always implied. This form of segment:offset addressing
means that any given external address may be specified in a number of different
ways.For example, the external address 00082 hexadecimal could be expressed as any
of the following:

0000:0082 = 00000 + 0082 = 00082

0001:0072 = 00010 + 0072 = 00082

0002:0062 = 00020 + 0062 = 00082

...

0008:0002 = 00080 + 0002 = 00082

Note, as we have shown above, that the simplest way for us to translate from
segment:offset form to external 20 bit address form is to take the segment value in
hexadecimal,place an additional trailing zero on its right-hand side and then add the
result to the offset address in hexadecimal.

In practice, PC programmers tend to use blocks of code and data which reside
within 64 kbyte memory segments. The Intel 8086 and 8088 microprocessor chips
have both data segment (DS) and code segment (CS) registers, amongst a number of
others. It is common practice when programming to set the DS and CS registers to
the start of the main data segment and the start of the main code segment memory
addresses respectively58. That way, any references to code or data in the current code
or data segments may be made by means of 16 bit offset values, sometimes called
near or relative pointers. Only when it is required to refer to code or data in some
other segment is it necessary to specify both the 16 bit segment and the 16 bit offset
values of the address, giving rise to what is sometimes known as far or absolute
pointers. What then has to happen is that the appropriate segment register, either DS
or CS, depending upon whether we are dealing with data or code, has to be loaded
with the 16 bit far pointer segment value before the 16 bit far pointer offset value can
be used and the external address accessed.
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57 This is a high-level explanation and is sufficient for our purposes. In fact, the segment
register is made up of a number of hidden registers called descriptor cache registers
which are also used in protected mode.

58 The memory model determines the number of code and data segments that are made
available to the program. The small model has one 64 kbyte data segment and one 64
kbyte code segment. The large model has multiple 64 kbyte data segments and multiple
64 kbyte code segments. A number of other such models are defined.



We can now see, as we explained earlier, that the 4 byte entries in the interrupt
vector table are actually far pointers which allow any place in the 1 Mbyte memory
address space to be accessed and thus used as the starting location for the code of a
device driver or interrupt handler.

Memory Layout

The original Intel 8086 and 8088 microprocessors had only the one mode of
operation, and within this was implemented the segment:offset addressing archi-
tecture that we have discussed above. It is this architecture that is used by the
bootstrap system and by MS-DOS, dating from the days of the original PC. In order
to maintain backward compatibility with the MS-DOS operating system, all subse-
quent Intel microprocessor chips in the PC range have included an operating mode
that provides this segment:offset addressing mechanism. It is known as real mode,
and within it we can only address up to 1 Mbyte of memory because of the internal
segment:offset design and the 20 bit external address lines of the original chips. The
Intel 80286 and i386SX microprocessors have in fact 24 bit external address lines and
can thus address up to 224 – 1 = 16,777,215 or 16 Mbyte of memory and the Intel
i386DX, i486 and the early Pentium microprocessors have 32 bit external address
lines and can thus address up to 232 – 1 = 4,294,967,295 or 4 Gbyte of memory. These
greatly enhanced addressing capabilities only work, however, when the micropro-
cessor is switched to a completely different operating mode, called protected mode59,
within which an entirely different form of addressing architecture is employed60. In
protected mode, memory can be addressed right up to 4 Gbyte, and it is not unusual
to find PCs these days with one or more Gbyte of RAM fitted. Any memory above the
1 Mbyte real mode limit is known as extended memory.

In order to discuss the various memory issues, an expanded version of Fig. 5.12 is
shown at Fig. 5.22. Here we see the 1 Mbyte memory area that is addressable in real
mode. In fact, it extends above the 1 Mbyte point because of a design “flaw” that was
made into a feature. The segment:offset addressing scheme clearly permits at the top
of the memory the following segment:offset values61:

FFFF:000F = FFFF0 + 000F = FFFFFh = 1,048,575 1 Mbyte – 1

FFFF:0010 = FFFF0 + 0010 = 100000h = 1,048,576 1 Mbyte exactly
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59 There is a third mode, known as virtual 8086 or V86 mode, which we will not consider
any further here.

60 The segment register no longer provides part of the address itself but now acts as a
selector into one of two tables: the Global Descriptor Table (GDT), common to all
applications, or the Local Descriptor Table (LDT), specific to a task. Each table contains
8 byte (64 bit) entries which include a 32 bit base address to which a 16 or 32 bit offset
address may be added, a 16 bit limit address and access flags. The hidden descriptor
cache registers referred to earlier are used in this process. For more details see Collins
(2003).

61 Note that FFFF:000F is the same external address as F000:FFFF.



FFFF:0011 = FFFF0 + 0011 = 100001h = 1,048,577 1 Mbyte + 1

...

FFFF:FFFF = FFFF0 + FFFF = 10FFEFh = 1,114,095

which is all but 16 bytes of the next 64 kbyte block above the top of memory
In the original PC there were only 20 address lines (A0 to A19), so programs which

tried to address 100000h or above using the permitted segment:offset values of
FFFF:0010 up to FFFF:FFFF caused a wraparound. That is, the leading 1 bit (which
would be address line A20 if it existed) was ignored and the external memory
addresses of 100000 up to 10FFEFh became 00000h up to 0FFEFh instead,resulting in
a wraparound from the top of memory back to the bottom. This design “flaw” was
turned into a useful feature when the Intel 386 microprocessor came along and
memory above 1 Mbyte could be addressed in protected mode. In this case, address
lines A20 and higher are physically implemented for protected mode addressing
beyond 1 Mbyte and it was decided to utilize address line A20 in real mode as well. A
switch was provided to activate address line A20 and with that active, instead of
wraparound occurring, all but 16 bytes of the 64 kbyte segment above 1 Mbyte
became addressable in real mode. This became known as the high memory area. The
A20 switch has to be controlled carefully because some early versions of MS-DOS
rely on the wraparound feature being present. Control of the switch is invested in the
software driver HIMEM.SYS, which not only gives real mode access to the high
memory area but also enables controlled access to the rest of the extended memory
(XMS, 1991). It does this by switching the processor into protected mode in order to
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access data in extended memory and then back again into real mode in order to
permit MS-DOS to function properly. It often does this in conjunction with another
software driver, EMM386.SYS. This driver takes the extended memory provided by
HIMEM.SYS and uses it to emulate expanded memory or to provide Upper Memory
Blocks (UMBs) or both (EMS, 1987).

Expanded memory was a concept jointly developed by Lotus, Intel and Microsoft
(LIM Expanded Memory System or LIM EMS) to provide access on the original 8086
PC to a much larger memory area than was possible using the 20 bit external address
lines directly. The concept (see Fig. 5.22) entails allocating a spare 64 kbyte slot in the
upper memory area where the adaptor card and BIOS extension ROMs are usually
fitted. This slot is then viewed as an EMS window which contains four 16 kbyte pages.
The pages can be physically mapped onto four 16 kbyte areas of memory on a card
populated with up to 8 Mbyte of memory. The four pages can each be switched to
access any 16 kbyte memory area on the card, and thus programs can have real mode
access to a maximum of 8 Mbyte of memory, albeit only 64 kbyte at a time.

As mentioned above, the driver EMM386.SYS provides an emulation of the EMS
card facility. Almost no systems these days have separate EMS memory cards.
Instead, EMM386.SYS takes the high memory made available by HIMEM.SYS and uses
that as though it were being accessed from an EMS memory card.This therefore gives
us one means of providing real mode access to extended memory blocks. There are a
number of other proprietary memory managers that operate in a similar fashion.

The expanded memory provided by EMM386.SYS may be used in a number of ways
to reduce the loading of the very limited 640 kbyte region. Software drivers may be
loaded in emulated expanded memory by means of the DEVICEHIGH command in
CONFIG.SYS and terminate and stay resident programs may similarly be loaded in
emulated expanded memory by means of the LOADHIGH command in AUTOEXEC.BAT.
In addition, BIOS code can be copied into emulated expanded memory and the
addressing and interrupt vectors adjusted accordingly. The advantage of this is that
execution of code in, for example, 64 bit extended memory DRAM tends to be faster
than execution of the same code in 8 bit BIOS ROM (Intel, 1998a, p. 12). Extended
memory used in this way is often called Shadow RAM and this may be specified in
the BIOS SETUP program. Finally, using HIMEM.SYS, parts of MS-DOS can be loaded
directly into the high memory area by means of the DOS=HIGH command.

The Start of the Bootstrap Sequence

When power is first applied to the PC, tests of all the voltage and current levels are
carried out by the power supply. When power is stable and all levels are acceptable,
the power supply sends a Power Good (PWRGD) signal to the processor and timer
chip. It might take up to half a second for the power supply to stabilize and, during
this time, the timer chip has been continually sending reset signals to the processor,
preventing it from executing code. When the timer chip receives the Power Good
signal, it stops sending reset signals to the processor, which in turn allows the
processor to commence the execution of code. The Intel processor is designed to
start its execution of code from a specific place in the memory map, that is, at the
segment:offset address of FFFF:0000. This is just 16 bytes from the top of the 1 Mbyte
real mode memory where the start of the ROM BIOS is located.
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At Fig. 5.23 we have shown the start of the bootstrap code sequence in three
separate sections. The code sequence is shown starting in ROM BIOS at F000:FFF0,
which is precisely the same external address as FFFF:0000 that is referred to in the
previous paragraph. The code listing segment and offset addresses are shown in this
particular format in the figure to make address references contained in the code
easier to place. In the upper section of Fig. 5.23 is the commencement of the code for
the cold boot. The instruction sequence EA 5B E0 00 F0 decodes as a far jump (code
EA) to a full segment:offset address which follows in the next four bytes.However,we
need to recall that Intel implements little endian storage, which means that the two
bytes 5B E0 must be switched to become the 16 bit value E05B and the two bytes 00 F0
become F000. In addition, we need to note that the offset address is the first pair and
the segment address is the second pair. Hence the jump is to the absolute address
F000:E05B. The remaining ten bytes to the top of memory hold data concerning the
date of the BIOS and the model of PC for which it is designed.

The middle section of Fig.5.23 shows the code that is located at address F000:E05B,
the location to which the first section has caused the microprocessor to jump. The
code starts 0Bh bytes into the F000:E050 line with the sequence E9 12 70. This
decodes as a near relative jump (code E9), meaning that the segment address value is
the current segment and the offset address value is taken to be relative to the current
address value. We have to note first the little endian reversal of the two address bytes
from 1270 to become 7012 and then that the starting address of the next instruction
is E05E which is the value that has to be added to the relative address 7012. This gives
E05E + 7012 = 5070 using 16 bit arithmetic. The result therefore is an instruction to
jump within the current segment (F000) to an offset address of 5070.

The bottom section of Fig. 5.23 shows part of the code that starts at this address. It
is in fact the start of the Power On Self Test, or POST, sequence and we will be looking
at some of the processes carried out by these code sequences in the next section.

Before we leave Fig. 5.23, however, it is useful to note that in some systems the EA
5B bytes at the beginning of the cold boot sequence are replaced by the code bytes CD
19 after the cold boot has completed. These translate to INT 19h, which is the warm
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Fig. 5.23 Start of the bootstrap sequence.



boot BIOS interrupt which gets activated by the CTRL-ALT-DEL keyboard sequence
on most systems. In case you might be wondering how code in read-only memory
gets changed, the answer is of course, that it does not. This change can only be made
if the BIOS code has been placed in shadow RAM,in which case it is the shadow RAM
version that gets changed and not the ROM itself.

Typical Actions by POST

The POST sequence software, held in the ROM BIOS, initializes as necessary and
then carries out diagnostic tests on each of the various hardware components of the
system. Before entering each step in the sequence, the BIOS writes a one-byte identi-
fying code, usually to I/O port 80h, which signals a successful completion of the
previous step. This code is commonly referred to as a POST code.

By means of a special POST code reader the last valid code sent to the port can be
observed. Such a reader may simply consist of an ISA plug-in card with a seven-
segment display to show the POST code value. In the event of a hardware failure,
often signalled by some kind of system lockup, the value on this display can give a
good indication of the device that has failed by taking note of the last action that was
successful.BIOS and motherboard handbooks often include a table of port 80h POST
codes62 and specialist software can be obtained that operates in conjunction with a
POST reader to identify POST code values for a range of current BIOSes. An example
screenshot from a typical program (MicroSystems, undated) of this type is shown at
Fig. 5.24.

The reason for needing POST codes is not difficult to see. Because much of the
POST diagnostic testing is taking place before the display system has been activated,
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Fig. 5.24 POST code monitor and database.

62 The codes seem to be unique to the particular BIOS. See, for example, Appendix 3 and
Intel (1998a, p. 75).



error messages cannot be written to the screen, as they would be when the display
becomes active. It is for this reason that the system speaker is used to generate so
called beep codes. As well as writing a POST code to port 80h, the BIOS will, when
there is an error, send a specific sequence of beeps to the system speaker. Some beep
codes are simply a number of same length beeps, some are a combination of low and
high tones, some are a series of long and short beeps and some are a series of beeps
and pauses. These latter are usually shown as 1-2-2-3, which is read as: 1 beep, pause,
2 beeps,pause,2 beeps,pause,3 beeps.The meanings of each of these beep sequences
should be listed63 in BIOS and motherboard handbooks together with any BIOS text
error messages which might be written after the display becomes active.

One point of significance for the forensic computing analyst is that a successful
completion of all the POST diagnostic tests normally results in a single short beep
being sent to the speaker just prior to the loading of the operating system. Making a
note in the log on hearing this short beep can provide some useful formal assurance
that the computer concerned was operating correctly at the time that it was being
used, in that it had signalled a successful passing of all of its POST diagnostic tests.At
one time, a “Section 69” certificate was a legal requirement, whereby an analyst was
required to certify that any computer equipment used in preparing evidence was
working correctly at the time that it was used. Although this is no longer essential, it
is still good practice to log such tests.

The POST first tests individual functions of the processor, its registers and some
instructions; see Table 5.13. If the processor passes these tests, a checksum is then
computed for each of the ROMs that form the BIOS and these computed values are
compared with those that had originally been stored within the ROMs when they
were programmed to give some assurance that the BIOS code has not become
corrupted. A similar check is made of the CMOS RAM, which we will consider
further in a moment. Each chip on the main board is then tested and initialized as
necessary. These include the DMA controller, the keyboard controller, the first 64
kbyte of RAM, the interrupt controller, the cache controller and the video controller.
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● Perform function check of CPU

● Test BIOS ROM checksum

● Test CMOS RAM checksum

● Test/initialize DMA controller

● Test/initialize keyboard controller

● Check first 64 kbyte RAM

● Test/initialize interrupt controller

● Test/initialize cache controller

● Test/initialize video controller

Table 5.13 Typical actions by POST – part I.

63 See Appendix 4 and Intel (1998b, p. 57).



Of course, once the video controller has been tested and initialized, any POST error
messages can then be sent directly to the display screen.

After the main board has been tested, the POST tests the other peripherals, such as
the serial and parallel interfaces and the remaining RAM above 64 kbyte; see Table
5.14. It then tests and initializes the floppy disk and hard drive controllers before
setting up the BIOS variables.

The BIOS data area, as we may have noted from Fig. 5.22, is located at the very
beginning of the real mode memory. It is 256 bytes long starting at address 0040:0000
(00400) and it is sometimes called the BIOS variable range or the BIOS variable
segment (Tischer and Jennrich, 1996, p. 67 et seq.). In particular, at 0040:0072 (00472)
is a marker which indicates whether this is to be a warm boot, for which the main
memory checks are not carried out, or a cold boot. If the value is 1234h it is to be a
warm boot; for all other values, it is to be a cold boot. The values in this segment can
be examined and interpreted using specialist software such as Biosr.com (Postuma,
1995).

The CMOS RAM

The POST routines obtain some of the information that is required to establish the
BIOS variables from the CMOS RAM; see Table 5.15.

The original PC-AT had 64 bytes of CMOS battery-backed RAM that was part of
the Motorola MC 146818 real-time clock chip. More recent systems (Intel, 1998a, p.
18) contain 256 bytes of CMOS battery-backed RAM in the real-time clock chip
which is all reserved for use by the BIOS. The CMOS RAM is not included in the real
mode memory address space.but is accessed via the port addresses64,70h and 71h,of
the real-time clock. As we saw earlier, disk drive parameters as well as many other
motherboard configuration details are held in the CMOS RAM, which replaces the
multitude of onboard DIP (Dual In-Line Package) switches which were to be found
on the old PC-XT.

Because of the importance of this configuration information and, in particular,
because the hard disk might not boot if the disk geometry parameters in the CMOS
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● Test/initialize serial and parallel interfaces

● Check RAM above 64 kbyte

● Test/initialize floppy disk and hard drive controllers

● Set up BIOS variables

● Set up the interrupt vector table

● Search for BIOS extensions

● System and video BIOS may be transferred to shadow RAM

● Initiate bootstrap loader

Table 5.14 Typical actions by POST – part II.

64 70h is used to specify the CMOS address with an OUT instruction and 71h is used to
read or write data to that address using an IN or OUT instruction respectively.



RAM become corrupted65, it is a good idea to save the details on to a separate floppy
disk. A typical example of software specially written for the purpose of saving and
restoring the CMOS RAM details is the program CMOSRAM2.EXE (Mosteller, 1995).

To allow the user to alter the CMOS settings, the BIOS gives access to a program called
SETUP during the boot sequence. SETUP is normally entered by pressing a special key
combination such as DEL or ESC or CTRL-ESC or F1 or F2, to name but a few examples,
just after the POST diagnostic sequence has completed.On the other hand,some BIOSes
permit SETUP to be entered at any time by pressing, for example, CTRL-ALT-ESC.

Typically the CMOS RAM will contain information such as the date and time
settings, the hard drive types and disk geometry parameters, the memory configu-
ration (including any EMS and shadow memory), and any power management or
password protection settings, as well as the checksum, referred to above, which is
used by the POST routines to confirm that none of the CMOS data has become
corrupted. Some SETUP programs may permit the CHS disk address translation
mode to be set using terms such as NORMAL, LARGE and LBA. The meanings of
these terms are as follows:

SETUP name Translation method Disk addressing method
NORMAL None CHS
LARGE Revised ECHS CHS or LBA
LBA LBA Assist LBA

Most modern BIOSes will perform an automatic translation setting using AUTO
which issues the ATA command IDENTIFY DEVICE and obtains the relevant infor-
mation from the disk itself.

Continuing with POST

After setting up the BIOS variables, the interrupt vector table is built; see Table 5.14.
We discussed interrupts earlier and saw that they force the processor temporarily
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● Complementary Metal Oxide Semiconductor
– 64 bytes of battery-backed RAM
– Contains BIOS user-adjustable configuration details
– Replaces multitude of DIP switches

● SETUP
– Used to alter the CMOS settings
– Entered during boot via F1 key, for example

● Typical settings
– Date and time
– Hard drive types and geometry
– Memory configuration
– Power management
– Password protection

Table 5.15 CMOS RAM.

65 Which, of course, will inevitably happen when the CMOS backup battery dies.



to suspend the program currently being executed, saving enough information to
permit a subsequent return, and then to execute some interrupt handler program
associated with the interrupt number. We also saw that an interrupt may be caused
either by an external hardware event or by an internal software code.

In fact, all well-behaved calls to the BIOS and the MS-DOS functions are made via
internal software code interrupts. The Intel 8088 microprocessor design has some
256 interrupt vectors in its interrupt vector table and each entry in the table, as we
have seen, consists of four bytes: the 16 bit offset address and the 16 bit segment
address of the start of the program code for that particular interrupt. The table is
located from address 0000:0000 (00000) to address 0000:03FF (003FF) and it is this
table that is built at this time.

Because the vector table is held in RAM and is rebuilt each time we go through the
POST/boot sequence, interrupt vectors can easily be overwritten if new or modified
facilities need to be added. This is typically what happens at POST/boot time when
extension cards have been added which themselves contain either replacement or
updated BIOS functions in their own onboard ROM chips.

Part of the POST/boot sequence includes the search for BIOS extensions, as shown
in the flowchart of Fig. 5.25, which is the next step in the process. These, you will
recall, are in the memory area C000:0000 (C0000) to F400:0000 (F4000), so the search
is carried out across this area by looking for the two identifier bytes 55AAh which
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Look for BIOS
extensions

set pointer = C0000h

BIOS
identifier
55AAh?

Call BIOS
initialization function

pointer =
F4000h?

End

pointer =
pointer + 800h

no

yes

yes

no

Table 5.25 Search for BIOS extensions.



always start a BIOS extension code sequence66. If a BIOS extension is found, the
initialization function for that extension is called at this time. This will often add or
alter a vector in the interrupt vector table thus enabling subsequent execution of
code resident in the BIOS extension ROM in preference to the code of the standard
BIOS function.

Once the search for BIOS extensions is complete, the POST/boot sequence may
then copy BIOS program code into shadow RAM to improve performance before,
finally, initiating the bootstrap loader as described in the next section.

Initiating the Bootstrap Loader

All bootable floppies have a boot sector placed by high-level formatting at the
standard fixed position of cylinder 0,head 0,sector 1,on the floppy disk. Similarly, all
hard disks have a master boot record placed at the same position of cylinder 0,head 0,
sector 1 on the hard disk. In this way, both DOS and the BIOS can access floppy and
hard disk bootstrap information without knowing which form of data carrier is
being used. At the end of POST, the BIOS code reads the sector at cylinder 0, head 0,
sector 1 by means of INT 19h67 which in turn uses INT 13h to access a disk drive. It
tries first the floppy drive68, and if a floppy disk is present it reads from that. If a
floppy disk is not present, it tries the hard disk69,and reads from that. In either case, it
loads a 512 byte sector from the disk at CHS address (0, 0, 1) into memory starting at
address 0000:7C00 (07C00). Once the sector has been written into memory, the BIOS
code branches to the first byte at offset 00h of the sector in memory and the
processor starts to execute the values it finds there as program code.

If the sector has been loaded from a floppy disk, these first few bytes will cause a
jump to the start address of the bootstrap loader, the code for which is held within
the sector that has just been loaded. Also included in this sector is the BIOS
Parameter Block or BPB, which is a table of values placed immediately after the jump
instruction. As the bootstrap loader code for an MS-DOS system executes, it checks
to see whether the hidden system files IO.SYS and MSDOS.SYS70 are present on the
disk. If the loader program finds them, they too are loaded into main memory to
build the MS-DOS operating system and the bootstrap loading process continues. If
these files are not found, we then get the familiar “Non-System disk or disk error...”
message.
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66 Following the two-byte 55AAh identifier is a one-byte size of ROM field in units of 512
bytes, and after this is a two-byte relative address field of the start of the initialization
function.

67 It is INT 19h that is invoked when we depress the CTRL-ALT-DEL keys for a warm boot.

68 For most modern BIOSes, the order in which boot devices are to be accessed can be
changed in SETUP.

69 Alternatively, the system could be set to boot from a CD or a network.

70 IBMBIOS.SYS and IBMDOS.SYS in the case of PC-DOS.



If, on the other hand, the boot is taking place from a hard disk rather than a floppy
disk, the first few bytes at the beginning of the sector will cause a jump to the start
address of the partition analysis program, the code for which is contained within the
sector that has just been loaded. This program looks at the partition table, also
contained within the sector that has just been loaded, and determines which (if any)
is the current active (or bootable) partition on the hard disk. Having determined the
addresses of the active partition from the partition table, it then reads the first sector
of that partition, loading the 512 bytes of the sector into memory again starting at
address 0000:7C00 (07C00), and overwriting what is already there. From here, it
continues as for the floppy disk case, jumping to the first byte at offset 00h of the
sector in memory and starting to execute the values it finds there as program code.
This should be the code of a partition boot sector containing a BIOS Parameter
Block, just as for the case of the floppy disk. In many ways, the hard disk partition
appears to the system just like a large floppy disk. We will look at this process in some
more detail when we have looked at the master boot record and the partition tables.

It is important to note that the processor is still at this stage switched to 16 bit real
mode. As such, it is using the segment:offset addressing system that we have
described above.Further, it should be noted that all the disk accesses have been made
by means of legacy INT 13h calls. Only when the code for a more advanced operating
system has been loaded and starts to execute, will there be the possibility of
switching the processor to protected mode, of directly accessing the extended
memory via the protected mode addressing system, of using 32 bit functions, and of
using drivers that enable true LBA access. It is for these reasons that we need to be
familiar with all the apparently outdated legacy issues that we have been discussing
in the last few sections.

A Word About Other Systems

One of the difficulties about writing a practitioner’s guide on the foundations of a
rapidly changing subject is in trying to stay focused on the essential principles
without becoming too sidetracked into explaining about other, less frequently
encountered systems, or in becoming bogged down in a mass of technical detail
about the latest technologies and developments. However, we also have to be aware
that some advances do significantly change the nature of the practitioner’s work and
it is essential that we do cover these areas in sufficient detail.

In almost all the computers that we have encountered in our forensic case work to
date, the operating systems have been Microsoft Windows-based and the platforms
have been the PC-AT. It is for this reason that we have concentrated our analysis and
examples on these operating systems and on this platform. That is not to say that we
do not recognize the existence of Apple Macs or Unix/Linux-based systems or even
Itanium microprocessors and the Extensible Firmware Interface (EFI). It is just that,
at this time, in the domain within which we are operating, they are not mainstream
and the fundamental principles can be better explained using the mainstream
examples.
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It was for a similar reason, in the first edition of the book, that we concentrated
solely on the FAT-based file system, since other file systems were rarely encountered
at the time of writing. Now, the NTFS (New Technology File System) has assumed a
much greater prominence on the Microsoft Windows PC platform, to the point
where it is probably at least as frequently encountered as the FAT-based file systems.
However, FAT-based file systems are still very relevant since they are invariably used
for removable devices such as floppy disks and solid state media drives, as well as
providing a simpler, and sometimes preferable, alternative to NTFS for certain PC
systems as well as support for those operating systems that are not able to use NTFS.

The approach we have taken in this edition is to continue to use in this chapter the
FAT-based file system as our exemplar in order to explain the principles.However,we
have also incorporated an entirely new follow-on chapter which is devoted to the
NTFS system.

In addition, we have continued to use master boot record partitioning for our
examples and only note here in passing the 128 partitions that are possible with the
GUID partition table (GPT) system that is used with the Extensible Firmware
Interface. We have not discussed in what follows the Dynamic Disk facility that is
provided with Windows 2000, Windows XP and Windows Vista.

The Master Boot Record and Partitions

At Fig. 5.26 is shown a hexadecimal listing of part of the master boot record (MBR)
from a typical hard disk. As we have seen, the MBR is held at cylinder 0,head 0,sector
1 on the hard disk and it is, like nearly all sectors on modern hard disks,512 (or 200h)
bytes long. In the listing we have shown two parts of the sector: the first part is from
addresses 00h to 2fh and the second part is from addresses 160h to 1ffh, which is at
the end of the sector.

As we outlined above, the POST/boot sequence causes this sector to be loaded into
memory at address 0000:7C00 (07C00) onwards and it then causes a jump to the first
address at offset 00h executing what it finds there as code. In fact, for the example in
Fig. 5.26, all the bytes up to 1bdh form the partition analysis program, which is here
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Fig. 5.26 Part of the master boot record.



different from the standard FDISK version because an EZ-Drive DDO has been
installed on this disk.We can infer that this is the case by looking at the text bytes that
start at 19ch and read: “(C)1993-95 Micro House Int’l”. The standard FDISK version
of the partition analysis program extends only from 00h to d9h with zeros from that
point on to 1bdh. For an excellent exposition of how the standard partition analysis
program works, see Landis (1997a).

Detailed examination of the analysis program shows that it simply searches the
four entries in the partition table for an active partition. If an active partition is
found, it continues to look at the remaining entries to make sure that there is only the
one active entry, otherwise it displays the message “Invalid Partition Table”. If there
is only one active entry, it uses an INT 13h call to fetch the boot sector that is specified
by the CHS start address of that entry, and it overwrites the memory area from
0000:7C00 (07C00) with this new sector. It then jumps to the first address at offset 00h
of the sector keeping a pointer to the active partition table entry.

The partition table always starts at offset address 1beh in the master boot record
sector. There can only be four entries in the master boot record partition table and
each entry is 16 bytes long. The first entry of our example master boot record is
shown outlined in Fig. 5.26. The four entries take us to offset address 1fdh in the
sector and the final two bytes71 of the partition table are always of value 55h and aah,
as shown.

At Table 5.16 is shown the use of each of the bytes in the partition table entry. The
first byte is the boot flag, which indicates whether or not the partition is active, the
value being either 80h for active or 00h for not. It is useful to note that it is this boot
flag value which is used to identify the device in the INT 13h call72 to fetch the boot
sector of the active partition. Because the active flag is always 80h, this is one of the
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Offset Meaning Notes

00 1 byte boot flag 80h = active (bootable)
00h = inactive (not bootable)

01–03 3 bytes start of partition h7–h0 | c9 c8 s5–s0 | c7–c0
max: c 1023, h 255, s 63

04 1 byte partition type 0 = not used, 1 = DOS 12 bit FAT,
4 = DOS 16 bit FAT, 5 = Extended DOS,
6 = DOS > 32 Mbyte and many more

05–07 3 byte end of partition h7–h0 | c9 c8 s5–s0 | c7–c0
max: c 1023, h 255, s 63

08–0b 4 bytes LBA address of start sector relative to start of disk (little endian)

0c–0f 4 bytes number of sectors in the partition (little endian)

Table 5.16 Partition table entry.

71 Many systems will refuse to boot if these two bytes are not set to 55aah. This has been
used by one imaging company in the past to set what they call a “Diblock” on a disk to
prevent it from being further accessed by replacing 55aah with 55cfh in the MBR.

72 The value is loaded into the DL register.



reasons why, on some older systems, only the first hard disk, that is the device with
the identifier 80h, could be used as the boot drive.

The next three bytes starting from offset 01h hold the CHS start address of the
partition, that is,where the boot sector is.All eight bits of the first byte, offset 01h,are
used to represent the heads value, giving a maximum of 256 heads (0 to 255).The two
most significant bits of the second byte, offset 02h, together with the 8 bits of the
third byte, offset 03h, form the 10 bit value for cylinders, giving a maximum of 1024
cylinders (0 to 1023). Finally, the remaining 6 bits of the second byte, offset 02h, form
the sectors value with a maximum of 63 sectors (1 to 63).First we may note that this is
exactly the same format as that used for the ID field at Fig. 5.4 and also the same
format as that used by the INT 13h registers, where offset 01h equates to the DH
register,offset 02h equates to the CL register and offset 03h equates to the CH register.
This is not really surprising; the designers of the partition table decided to hold these
values in a form that would simplify loading into and out of the INT 13h registers.

Secondly, we may note that we have here come up against the 528 Mbyte barrier
again. More importantly we see that if the drive is larger than 528 Mbyte, then the
CHS addresses that are held in the partition table must be translated addresses, that
is, what we have earlier called L-CHS addresses rather than P-CHS addresses. Finally,
we may note that the boot sector for the active partition cannot normally73 reside
beyond cylinder 1024.

The next byte, at 04h, indicates the type of partition. Although only five types are
shown in Table 5.16, there are in fact many more than this, with a possible maximum
of 256. Because of the importance of these types to the forensic computing analyst in
helping to identify the use to which the partition is being put, a detailed list of all
those currently known74 is given at Appendix 5.

At offset 05h, another three bytes are used to specify the CHS address of the last
sector of the partition, in exactly the same format as that used for the start address.
Naturally, the same comments apply about this having to a be a translated CHS
address if the disk size is greater than 528 Mbyte.

At offset 08h, four bytes are used to represent the start sector in LBA address form,
that is, as a single number relative to the start of the disk, with the first sector on the
disk being LBA 0. One word of caution might be appropriate here. In calculating this
value it is essential to remember that it is held in little endian format. Finally, the last
four bytes, commencing at offset 0ch, represent the number of sectors in the
partition, again, held in little endian format.

This analysis allows us now to determine the meaning of all the entries in the
partition table at Fig. 5.26. At 1beh the value 80h identifies this entry as the entry for
the active partition. The following three bytes, at 1bfh to 1c1h, describe the starting
CHS address of this active partition as cylinders 0, heads 1, sectors 1, and these may
be calculated as follows:
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73 Some more modern boot loaders are able to overcome this limitation.

74 An updated list can be found at http://www.win.tue.nl/~aeb/partitions/
partition_types-1.html; see Brouwer (2005).



Address Value Interpretation Result

1bfh 01h = 00000001 = heads = 1 H

1c0h 01h = 000001 = sectors = 1 S

= 00 = cylinders

1c1h 00h = 00000000 = cylinders = 0 C

At 1c2h we note that the partition type is 06h, which is a DOS partition greater than
32 Mbyte, sometimes known as BIGDOS. Then the three bytes at 1c3h to 1c5h
describe the CHS address of the end of the partition as cylinders 255, heads 63 and
sectors 63 in the following way:

Address Value Interpretation Result

1c3h 3fh = 00111111 = heads = 63 H

1c4h 3fh = 0 0111111 = sectors = 63 S

= 00 = cylinders

1c5h ffh = 11111111 = cylinders = 255 C

Starting at 1c6h we have the four bytes of the LBA address as 3f 00 00 00. Recalling
that this number is held in little endian format, we reorder these to be 00 00 00 3f and
calculate the number as 3fh = LBA sector 63. Similarly, at 1cah we have the four bytes
of the partition size as c1 bf 0f 00 and again, reordering these gives us 00 0f bf c1
which is fbfc1h = 1,032,129 sectors. With a sector size of 512 bytes this results in a
partition size of 1,032,129 × 512/(1024 × 1024) = 504 Mbyte.

At Fig. 5.27 is shown the Norton Disk Editor (Symantec, 1999) “partition table
view” of the same partition table. It is particularly important to note that Norton
Disk Editor uses Side for Head and lists the table in Side Cylinder Sector order and
not in the CHS order that we (in common with most other writers) have been using
throughout. Since Norton Disk Editor is an important tool, which we use quite
frequently, this is a major potential source of confusion and should be well noted. It is
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Physical Sector: Cyl 0, Side 0, Sector 1

+------+----+--------------------+--------------------+-----------+------------+

| | | Starting Location | Ending Location | Relative | Number of |

|System|Boot|Side Cylinder Sector|Side Cylinder Sector| Sectors | Sectors |

+------+----+--------------------+--------------------+-----------+------------+

|BIGDOS| Yes| 1 0 1 | 63 255 63 | 63 | 1032129 |

|EXTEND| No | 0 256 1 | 63 522 63 | 1032192 | 1076544 |

|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |

|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |

+------+----+--------------------+--------------------+-----------+------------+

Fig. 5.27 Partition table entries – Norton Disk Editor partition table view.



now left as an exercise to the reader (see exercises at the end of the chapter) to
confirm from Figs. 5.26 and 5.27 the details for the second (EXTEND) entry in the
partition table.

Unwritten Rules for Partition Tables

As we described in the section on formatting, the partition table is constructed by
the program FDISK (or some such similar utility) at the time the high-level
formatting process is carried out. There do not seem to be any formal written rules
laid down about how partition tables should work, although most versions of FDISK
appear to conform with the set of unwritten rules (Landis, 1997b) that are shown in
Table 5.17.

As we have seen, up to four 16 byte partition entries can be held in the master boot
record partition table from 1beh to 1fdh. Each of these four entries may refer to a
primary partition, that is, a partition that can contain a bootstrap loader in the first
sector75 together with associated operating system code elsewhere in the partition.
There will normally be a file system, appropriate to the particular operating system,
also set up in the partition. Any primary partition entry can be flagged as “active” or
“bootable”, but only one such partition entry can be flagged at any one time. When
one primary partition is flagged as active, file systems in other primary partitions
are not generally accessible; thus the file system in a primary partition is accessed, for
all practical purposes, only by the operating system that is booted from that
partition76.

The partition analysis program in the master boot record looks for this one
“active” or “bootable” partition entry and from this partition it loads the bootstrap
loader, which in turn loads the operating system code from that partition into the
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● In the master boot record there can only be up to four primary partition entries or up to
three primary partition entries and up to one extended partition entry.

● In an extended partition there can be up to one secondary partition entry and up to one
extended partition entry.

● Only primary partitions can be marked as “active” (that is, bootable) and only one of
them can be marked as such at any one time.

● It is usual for a partition table to start at head 0, sector 1 of a cylinder and the boot
record to start at head 1, sector 1 of a cylinder.

● The slots in the partition table can be used in any order and an unused slot can occur in
the middle of the table.

● Some operating systems may indicate that a partition spans or starts beyond cylinder
1024 by setting the starting and ending CHS values all to ffh.

Table 5.17 Unwritten rules for partition tables.

75 This is the boot sector, sometimes also called the boot record.

76 More recent Microsoft Windows operating systems do now permit access to file systems
that are in other primary partitions.



main memory. In this way, up to four77 different operating systems may reside on the
same hard disk, in different partitions, with only one of them being active at any one
time.Special boot manager software (PowerQuest,1998) may be used to select from a
menu of different operating systems that may be loaded at boot time, and this is
usually achieved simply by installing a modified partition analysis program in the
master boot record and placing the associated boot manager code in unassigned
sectors on the disk.

Extended Partitions

To overcome the limitation of having only four partitions on the disk, one of the
entries in the master boot record partition table can be set instead to be an extended
partition entry by means of the partition type values 05h or 0fh (see Appendix 5).
This first extended partition,which takes up a primary partition slot, is essentially no
more than a container for one or more enclosed logical or secondary partitions. The
first sector of the first extended partition holds another partition table, with the rest
of that sector usually set to zeros.This extended partition table (see Fig.5.28) starts at
the same offset address within the sector as the master boot record partition table,
that is, at 1beh and although it is four 16 byte partition entries in length, terminated
as before by 55h aah, it is only permitted to hold a maximum of two partition entries.

The first of these entries is likely to specify a logical partition, sometimes referred
to as a secondary partition, and this partition may contain a file system and, excep-
tionally, an operating system. If an operating system is to be used, it must be one that
is capable of being booted from a logical partition (as opposed to a primary
partition). Operating systems which are believed to incorporate this feature include
Windows NT, OS/2 and Linux78. The second entry in the extended partition table
may specify another extended partition which itself starts with an extended
partition table.

Terminology is likely to get in the way again here. These inner secondary extended
partitions are rather different from the outer primary extended partition container,
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Fig. 5.28 Extended partition table.

77 However, some operating systems can be booted from an extended partition so it is
possible to have more than four.

78 The Windows XP help file states: “The active partition must be a primary partition on a
basic disk”.



although the same partition type code is used throughout and they are all referred to
simply as extended partitions. The outer or first extended partition is a container for
all the logical partitions; the inner secondary extended partitions each contain just a
single logical partition. This is shown diagrammatically at Fig. 5.29.

Here we see a master boot record79 (marked mbr) at CHS 0,0,1 with two entries in
the partition table. The first entry is a primary partition starting at CHS 0,1,1 and
ending at CHS 255,63,63. This, in the example shown, is the active partition and
contains the operating system. It would normally be assigned the drive letter “C:” by
MS-DOS. The second entry is the first extended partition starting at CHS 256,0,1 and
ending at CHS 522,63,63. This partition is never assigned a drive letter and, as can be
seen from the diagram, it simply acts as a container for the three logical partitions. In
the first sector (CHS 256,0,1) of the first extended partition we find the extended
partition table80 (marked ept1) and this contains two entries. The first is a logical
partition starting at CHS 256,1,1 and ending at CHS 380,63,63. If there were no other
drives with a primary partition in the system, this logical partition would be
assigned the logical drive letter “D:” by MS-DOS (see following section for details of
drive letter allocations). The second entry in the extended partition table at CHS
256,0,1 is a secondary extended partition. This starts at CHS 381,0,1 and ends at CHS
505,63,63. We can see from the diagram, that, unlike the first extended partition that
contains all the logical partitions, this secondary extended partition only contains
one logical partition. At the beginning of the partition (CHS 381,0,1), we find
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0,0,1 0,1,1 255,63,63
mbr | primary |

256,0,1 522,63,63
| first extended partition (container) |

256,1,1 380,63,63
ept1 | logical |

381,0,1 505,63,63
| extended |

381,1,1 505,63,63

ept2 | logical |

506,0,1 522,63,63
| extended |

506,1,1 522,63,63
ept3 | logical |

Fig. 5.29 Extended and logical partitions.

79 This is the same master boot record as is shown in Figs. 5.26 and 5.27.

80 This is the same extended partition table as is shown at Fig. 5.28.



another extended partition table, marked ept2 in the diagram, again with two
entries. The first entry is a logical partition starting at CHS 381,1,1 and ending at
CHS 505,63,63. If there were no other drives with a primary partition in the system,
this logical partition would be assigned the logical drive letter “E:” by MS-DOS. The
second entry in the extended partition table, ept2, at CHS 381,0,1 is another
secondary extended partition. This starts at CHS 506,0,1 and ends at CHS 522,63,63.
At the beginning of this partition (CHS 506,0,1), we find another extended partition
table, marked ept3, this time with only one entry. This entry is a logical partition
starting at CHS 506,1,1 and ending at CHS 522,63,63. If there were no other drives
with a primary partition in the system, this logical partition would be assigned the
logical drive letter “F:” by MS-DOS.

It should be noted that our explanation of how extended partitions are
constructed does not entirely conform with some of the published literature on the
subject. It is, however, an accurate representation of what we have found in a series of
experiments that we carried out in order to determine precisely the binary format of
the extended partition structures when using the standard Micrososft FDISK
functions. We have given more details of these experiments at Appendix 6, and Fig.
5.29 represents, in effect, a summary of our findings.

Drive Letter Assignments

Microsoft Knowledge Base Article 5197881 describes in detail how MS-DOS (and this
includes Windows 95, Windows 98 and Windows ME) assigns drive letters to parti-
tions. In essence, drive letters are assigned at boot time in a fixed sequence that
cannot be changed. Regardless of whether or not floppy disk drives are present
(these always get assigned the drive letters A and B), MS-DOS assigns the drive letter
C to the primary MS-DOS partition on the first physical hard disk. It then goes on to
check for a second physical hard disk. If one is found with a primary MS-DOS
partition on it, MS-DOS assigns to that partition the drive letter D. MS-DOS
continues to assign successive letters of the alphabet to the first primary MS-DOS
partitions found on all succeeding physical drives. When all physical drives have
been checked for a first primary partition, MS-DOS returns to the first physical drive
and continues to assign drive letters alphabetically to all logical drives that might be
found in the extended partitions. MS-DOS repeats this process of assigning drive
letters in sequence to logical drives across all the physical drives in order.Finally,MS-
DOS again returns to the first physical drive and assigns drive letters to any other
further primary MS-DOS partitions that might exist on the drive. It repeats this
process for all the other physical drives.

From this it can be seen that MS-DOS (and Windows 95, Windows 98 and
Windows ME) do not remember drive letter assignments between boots; rather, the
drive letter assignment is re-determined for every single boot, and, given different
drive configurations the drive letter assignment could well change between boots. If,
for example, we had a system with two physical drives, each with a single primary
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81 See http://support.microsoft.com/default.aspx?scid=kb;EN-US;51978.



partition and each with two secondary logical partitions, we would note after a boot
with both disks fitted, the following drive letter assignment:

Disk 1 primary: C
Disk 2 primary: D
Disk 1 first logical: E
Disk 1 second logical: F
Disk 2 first logical: G
Disk 2 second logical: H

If, for the next boot, we removed the second disk, the drive letter assignment would
become:

Disk 1 primary: C
Disk 1 first logical: D
Disk 1 second logical: E

From this, it can clearly be seen that the Disk 1 logical drive letters have both changed
between the two boots, bringing with it all the attendant problems of possibly
incorrect shortcuts and drive letter pointers. It may be of interest to note that some
users of these early Windows systems would deliberately set the Disk 2 primary
partition to be very small and hidden in order to avoid this problem. It is left as an
exercise to the reader to work out what effect this would have.

This inability to remember the drive letter assignment does not occur, however,
with Windows NT, Windows 2000, Windows XP and Windows Vista. With these
operating systems it is possible to specify drive letter assignments using, for example,
the “Disk Management” application and to know that they will be remembered
between boots. How this is achieved is explained in the next section.

Disk ID and Partition Signature

Windows NT, 2000, XP and Vista keep a list of all mounted partitions, each identified
by a unique partition signature, together with the assigned drive letter, in the registry
key [HKEY_LOCAL_MACHINE\System\MountedDevices] . By referring to these
entries the operating system is able to remember the drive letters assigned to each
partition between boots.

The partition signature is made up of the disk ID (also known as the NT Serial
Number) which is the four bytes that are recorded by these operating systems at
address 01B8h in the master boot record, together with the starting sector number of
the particular partition multiplied by 2. Shown at Fig. 5.30 is a portion of a more
recent master boot record, that has been generated using Windows XP, and which
incorporates this disk ID, which is seen to be of value “46 A9 46 A9”.

It may also be seen that the starting sector number of the first (and only) partition,
shown here in little endian, is “3F 00 00 00”. The partition signature for this partition
is then generated as the following construct:

46 A9 46 A9 00 7E 00 00 00 00 00 00
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This is made up of the disk ID, “46 A9 46 A9”, followed by “00”, followed by the
starting sector number “3F 00 00 00” doubled to give “7E 00 00 00”, followed in turn
by “00 00 00”. If we look in the registry associated with this system, we find under
HKEY_LOCAL_MACHINES\SYSTEM\MountedDevices\ the following two keys:

● The key: DosDevices\C:, which contains the value “46 A9 46 A9 00 7E 00 00 00 00
00 00”, the partition signature that we have just constructed, and we can see that
this entry defines the drive letter for this partition as C:

● The key: ??\Volume{BF77BEC6-9779-11D8-AAA6-806D6172696F} , which also
contains the value “46 A9 46 A9 00 7E 00 00 00 00 00 00”, the partition signature
that we have just constructed, and we can see that this entry defines what is called
the Volume GUID (Globally Unique Identifier) for this partition as “{BF77BEC6-
9779-11D8-AAA6-806D6172696F}”.

A Brief Note on GUIDs

From the “11D8” section of the GUID we can determine82 that this is a version 1
GUID with a date and time based section of the following value: “1D8-9779-
BF77BEC6”. This may be interpreted as the count of 100 nanosecond intervals since
00:00:00.00, 15 October 1582 (the date of Gregorian reform to the Christian
calendar). This value resolves83 to 12:03:36 GMT on 26/04/2004, which is probably
the date and time on the PC when the Volume GUID was first established.From this it
can be seen that Volume IDs and GUIDs can potentially prove very useful to a
forensic computing analyst.

Disk Mapping

We strongly recommend that all disks that are submitted for forensic analysis should
be mapped in the detail that we have shown in Fig. 5.29. For completeness we
recommend that partition size and operating system information and LBA address
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Fig. 5.30 Disk ID and Start Sector Number.

82 For details of the structure see Leach (1998) or (Leach et al., 2004).

83 This can be calculated using the “Timescale Interconverter” provided by Stockton
(2005).



values are also added to such disk maps, which can then be used by the analyst to
identify and investigate all the unaddressed areas on the disk. We return to this
subject in Chapter 7.

Circular Extended Partitions

Mike Lambert and Charles Moore (1992) describe the effects that can occur in the
presence of a so-called circular extended partition. This is where one of the entries in
an extended partition table points back to an extended partition table that is earlier
in the chain. For example, consider, in Fig. 5.29, the case where the second entry of
ept3, instead of being blank,points back to ept1.We have now implemented a circular
extended partition. This carries the risk that some disk analysis routines, attempting
to determine how many logical drives exist on the disk, will loop forever around the
sequence ept1, ept2, ept3, ept1, ept2, ept3... etc. In fact, as we describe below, many
versions of IO.SYS, right up to the time of writing (2007), still do just that.

One of the tasks of IO.SYS, during the bootstrap sequence, is to mount the logical
volumes. To do this, it first examines the master boot record partition table to
determine whether or not an extended partition entry is specified. If one is found, it
then progresses through the extended partition chain finding and mounting each
logical volume in turn. If the chain is circular, however, IO.SYS might not terminate
because of a coding error.

In the course of discussing the Rainbow virus, which uses the circular extended
partition technique to make it more difficult to remove84, Lambert (1995) describes
the symptoms as follows: “...when booted, the operating system load hangs and the
hard disk access light stays on steadily. The kernel is hung in a loop, reading the same
block (or circular chain of blocks) from the hard disk...”.

Now, the apparently obvious work around is to attempt a boot from a floppy disk.
However, this will not work either if the version of IO.SYS on the floppy disk contains
the same coding error. The outcome is that the PC cannot be booted with the
offending disk fitted to the system. This has very important implications for the
forensic analyst, since the disk appears to be unusable and therefore cannot be
imaged or examined.

Lambert (1995) notes that this problem occurred with all Microsoft, IBM and
DR-DOS versions implementing extended partitions up until December 1992, but
that he and Moore notified all three operating system developers in September/
October 1992. However, in 1995, he goes on to state (Lambert, 1995) “Microsoft v6.0,
v6.2, v6.21 and v6.22 all still have the same bug in IO.SYS, meaning that MS-DOS
v3.3 to 6.22 (PC-DOS v3.3 to 5.02 and DR-DOS v6.0) will not boot in the presence of a
circular extended partition. IBM v6.1 and v6.3 do not have the bug. As I have not
been able to test with the latest version of DR-DOS, I do not know if the problem has
been corrected as yet”.
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84 When booted from the Rainbow infected hard disk, the virus loads first and uses the
original non-circular partition table that it has stored at 0,0,6, thus hiding the problem.
When booted from a clean floppy, IO.SYS may loop as described in this section.



There are two possible solutions for the forensic analyst on encountering these
symptoms. One is to use a version of DOS that does not contain the IO.SYS coding
error,such as FreeDOS85 or Caldera OpenDOS86.The second is to use a patch for MS-
DOS 6.x that has been provided by Lambert that simply prevents IO.SYS from
carrying out the extended partition analysis. Using a hexadecimal editor, find in
IO.SYS the sequence 07 72 03 (which should start at offset 2918h) and change the 03
at offset 291Ah to 06 and write the result back to disk.This will prevent the looping so
that the hard disk can be examined and the circular extended partition removed.
Note, however, that this patched version of MS-DOS will not mount the logical
volumes.

Hidden Partitions

It is possible, using specialist software, to mark a partition as “hidden” such that
many operating systems will no longer access it. PartitionMagic (PowerQuest, 1996)
uses a partition type of 16h to hide a primary DOS partition originally of type 06h.
More generally, it seems that many hidden partitions can be obtained by performing
an OR function on the partition byte with the value 10h. This is certainly the case for
partition bytes 01h, 04h, 06h, 07h, 0bh, 0ch, 0eh, 0fh and 83h resulting in the hidden
equivalents 11h, 14h, 16h, 17h, 1bh, 1ch, 1eh, 1fh and 93h (see Appendix 5). One
possible benefit of hiding a partition, apart from the obvious one of attempting to
conceal information, has already been outlined in the section above on Drive Letter
Assignments.

More Places to Hide

As indicated in Fig. 5.29, it is normal practice for partition tables (mbr or ept) to start
at head 0, sector 1 of a cylinder, and for the first sector of the partition proper, that is
the boot record, to start at head 1, sector 1 of a cylinder. The consequence of this
practice is that there will invariably be a number of unused sectors at the beginning
of each partition, between the partition table sector and the boot record sector. For
example, in Fig. 5.29 it can be seen that sectors CHS 0,0,2 to CHS 0,0,63, sectors CHS
256,0,2 to CHS 256,0,63,sectors CHS 381,0,2 to CHS 381,0,63 and sectors CHS 506,0,2
to CHS 506,0,63 are all unused87. Clearly, information could be safely hidden in these
sectors without any risk of it being detected by normal use of the file systems. As we
described earlier (see section on CHS Translation Options),some of these sectors are
precisely where software such as EZ-Drive places its Dynamic Drive Overlays
(DDOs). These are also very good places to look for hidden virus code.
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85 See http://www.freedos.org/.

86 See http://www.caldera.com/.

87 Note that the gap of 62 sectors is because of a sector per track (spt) size of 63. Some
disks, for example the Western Digital WDAC2420, have 56 sectors per track and thus
this will have a spacing of 55 sectors between partition table and boot record.



In addition, we may note that only the master boot record (mbr) normally
contains a partition analysis program. The extended partition tables (ept1, ept2 and
ept3) just contain the one or two entries of the extended partition table starting at
1beh and invariably leave the rest of the sector unused. Again, this is a possible place
to hide information.

The Example Boot Sector – Windows 95 FAT16

We should now return to the example boot sector (sometimes also referred to as a
boot record), which we considered briefly in a previous section. We may recall that
floppy disks have a boot sector placed at cylinder 0, head 0, sector 1 of the disk by the
high-level formatting process. Similarly, a boot sector or boot record is placed in the
first sector of each primary or logical partition on a hard disk when that partition is
formatted. As mentioned earlier, this means that each formatted hard disk partition
looks to the system in many ways just like a big floppy disk.

At Fig. 5.31 we have shown a hexadecimal listing of the first few bytes of the actual
boot sector at cylinder 0,head 1,sector 1 of the primary partition that is referred to in
Figs. 5.27 and 5.29. It is shown in Fig. 5.27 as the entry marked “BIGDOS”, meaning
that it is an MS-DOS file partition that may exceed 32 Mbyte in size. Most of the boot
sector contains the bootstrap loader program code that we referred to above, but, in
addition, there is a block of data called the BIOS parameter block (BPB) that contains
detailed information about the particular floppy disk or hard disk partition on which
this boot sector resides. It should be noted, in passing, that although each operating
system will follow the same rules for creating the master boot record and the
partition tables, they can do whatever they like within the partition and they will
almost certainly have their own boot sector format.
Recalling that this MS-DOS boot sector will have been loaded into memory starting
from address 0000:7C00 (07C00), the first bytes to be executed as program code will
be:

0000:7C00 EB3C JMP to 7C02 + 3C
0000:7C02 90 NOP
0000:7C03 4D Start of BIOS parameter block
...
0000:7C3E FA Start of loader program
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Fig. 5.31 Hexadecimal view of part of the boot sector or boot record.



This code represents a relative jump around the BIOS parameter block to the start of
the loader program at 0000:7C3E (07C3E). The loader program then gets a copy of
the disk parameter table, modifies it using information from the BIOS parameter
block and then sets an interrupt vector to point to the altered disk parameter table. It
then computes the start sector address of the root directory,and reads the first sector
of the root directory into memory. It confirms that the first two entries in the root
directory are the hidden system files IO.SYS and MSDOS.SYS, and if this is the case, it
then reads the first three sectors of IO.SYS into memory. If this is not the case, it
causes the message “Non-System disk or disk error ...” to be displayed. Finally, once
the three sectors of IO.SYS have been successfully loaded into memory, the
bootstrap loader transfers control to the beginning of the IO.SYS program which
then proceeds to build the rest of the operating system. For an excellent analysis of
the floppy disk boot sector code see Landis (1995b).

The BIOS parameter block starts at 0000:7C03 (offset 03h in the boot record) and
continues to 0000:7C3D (offset 3dh in the boot record) inclusive.The details of all the
information held in this parameter block are shown at Table 5.18. Listed here are the
offset addresses in hexadecimal form from the boot record of Fig. 5.31 together with
the use to which each field is put, the values in hexadecimal obtained from Fig. 5.31
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Offset Use Hex values Meaning

00–02 Jump instruction eb 3c 90 Jump

03–0a OEM name and version 4d 53 44 4f 53 35 2e 30 MSDOS5.0

0b–0c Bytes per sector 00 02 512

0d Sectors per cluster 10 16

0e–0f Reserved sectors 01 00 1

10 Number of FATs 02 2

11–12 Root directory entries 00 02 512

13–14 Total sectors (unused) 00 00 0

15 Media descriptor byte f8 f8h

16–17 Sectors per FAT fc 00 252

18–19 Sectors per track 3f 00 63

1a–1b Number of heads 40 00 64

1c–1f Hidden sectors 3f 00 00 00 63

20–23 Big total sectors c1 bf 0f 00 1032129

24 Physical drive number 80 128

25 Reserved 00 0

26 Extended boot signature 29 29h

27–2a Volume serial number f1 15 3b 1c 1c3b15f1h

2b–35 Volume label 54 45 53 54 31 20
20 20 20 20 20

TEST1

36–3d File system ID 46 41 54 31 36 20 20 20 FAT16

Table 5.18 BIOS parameter block.



and the interpretation that is to be placed on each field. Note, once again, that all the
decimal numbers are converted using little endian format.

Although it is important to be aware of the low-level details, we do not need to do
all this interpretation ourselves. At Fig. 5.32 is shown the Norton Disk Editor Boot
Record view of the same boot sector listed at Fig. 5.31. From this we can obtain many
of the details about the hard disk partition. The first point of interest to note is the
Norton Disk Editor reference in the heading to “Sector 0”. This is because Norton
Disk Editor is being used in “logical” mode, that is, a mode in which the sectors are
counted from zero from the beginning of the logical partition. This is in contrast
with “physical”mode, where sectors are counted from the very beginning of the hard
disk itself. The corresponding physical mode heading produced by Norton Disk
Editor for this boot record is either “Physical Sector: Cyl 0, Side 1, Sector 1” or
“Physical Sector: Absolute Sector 63”.

The first item of Fig. 5.32 identifies the operating system88 for which this partition
was formatted and we note that this partition has the standard 512 bytes per sector.
We also see that there are 16 sectors to the cluster, and this is a term which we will be
discussing in a later section. The “Reserved sectors at beginning” entry refers to the
number of sectors reserved for the boot record. In all the MS-DOS systems that we
have seen, this has always been a single sector as it is also in the case of Windows 95
FAT16. However, for Windows 95 FAT32 and Windows 98 FAT32, more than one
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Sector 0
OEM ID: MSDOS5.0

Bytes per sector: 512
Sectors per cluster: 16

Reserved sectors at beginning: 1
FAT Copies: 2

Root directory entries: 512
Total sectors on disk: (Unused)
Media descriptor byte: F8 Hex

Sectors per FAT: 252
Sectors per track: 63

Sides: 64
Special hidden sectors: 63

Big total number of sectors: 1032129
Physical drive number: 128

Extended Boot Record Signature: 29 Hex
Volume Serial Number: 1C3B15F1 Hex

Volume Label: TEST1
File System ID: FAT16

Fig. 5.32 The boot sector – Norton Disk Editor boot record view.

88 For floppy disks, we will often find that this field contains ASCII characters, such as:
“,&%|PIHC”, the last three letters invariably being "IHC" as shown. This is a “disk id”
that is written by Windows to any floppy disk that is not write protected so that
Windows can detect when floppy disks are swapped. Once written by Windows, this
sequence will remain the same for any further reads or writes until the disk is
reformatted. Some believe that “IHC” are the first three letters, reversed, of
“CHICAGO”, the original code name for Windows.



sector is allocated for the boot record and we discuss the reasons for this in a later
section.

Two independent copies of the File Allocation Table (FAT) are kept because this is
the key means by which resources are allocated to files, and any damage to the FAT
can cause serious loss of data. Keeping two copies helps reduce the risk of data loss.
Again, we will discuss the FAT in more detail in a later section. The root directory is
of fixed size in FAT16 systems and the “Root directory entries” figure defines how
many directory entries can be held in this partition. Here we see a figure of 512 and
since each entry is 32 bytes long, this indicates that the root directory is 512 × 32 =
16,384 bytes or 32 sectors in size. In passing, it is worth noting that this next field
“Total sectors on disk”was one of the reasons for the infamous 32 Mbyte maximum
partition size that existed for MS-DOS versions before version 3.0. Only two bytes
are available for this value (see offsets 13–14h in Table 5.18), which give us 65,536 as
the maximum number of sectors and results in a maximum partition size of 65,536
× 512 = 32 Mbyte. This problem was overcome in MS-DOS version 3.0 and above by
using an alternative field of 4 bytes (“Big total sectors”) at offsets 20–23h in the
boot sector. The “Total sectors” field is now only used if the size of the volume is
small enough, otherwise it is normally set to zero. The “Media descriptor byte”
identifies the kind of medium that is in use; here we see f8h, which signals that this
is a hard disk as opposed to some specific floppy disk. A variety of media types are
defined for the various floppy disks, but only one value, f8h, is used for all hard
disks. Details of the specific hard disk can, of course, be obtained from the CMOS
RAM. The size of each FAT is given here as 252 sectors and then there are figures for
sectors per track (63) and number of heads (64) both entirely as expected. The
“Special hidden sectors”entry refers to the number of sectors on the disk before the
start of the first partition and this is the “Relative Sectors” number we noted before
against the BIGDOS entry in the partition table at Fig. 5.27. Similarly, we saw the
“Big total number of sectors” figure of 1,032,129 as the “Number of Sectors” value
for the same BIGDOS entry in the partition table at Fig. 5.27. The “Physical drive
number” is 128 or 80h indicating that this is drive 0 and the next three entries are
just signatures and labels. Finally, the “File System ID”signals that this is formatted
as a DOS FAT16 partition.

The MS-DOS operating system uses logical sector numbers (LSNs) which start
from 0 at the very beginning of the partition. Given the details from the boot
record, and knowing that MS-DOS FAT16 uses a fixed structure of boot sector, FAT
1, FAT 2, root directory and files area, we can now draw up the layout of this logical
partition as seen by MS-DOS. The first sector (LSN 0) contains the boot record and
then there are 252 sectors for the first FAT (LSN 1 to LSN 252), followed by a further
252 sectors for the second FAT (LSN 253 to LSN 504). After this comes the root
directory with 32 sectors (LSN 505 to LSN 536) and finally the start of the files area
proper at LSN 537, which would appear to continue to LSN 1,032,128 (that is, the
“Big total number of sectors” less 1, since LSN counting starts at 0). However, the
files area only actually extends to LSN 1,032,120, and this is because of the cluster
size, which we will be looking at in the next section. The details of this partition are
shown at Fig. 5.33.
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Another Possible Hiding Place

It is possible to produce yet another hiding place on both floppy and hard disks,
which cannot be addressed in the normal way through the file or operating system,
by tampering with the “Total sectors”and “Big total sectors”fields in the boot record.
As an example, reducing the value in the “Big total sectors” field at Fig. 5.32 from
1,032,129 to 516,065 would nearly halve the size of the volume within the partition.
The last LSN for the new volume would now be 516,064, and the sectors from LSN
516,065 to LSN 1,032,128 would not be addressable by the file or operating system. It
should be noted that the partition table in the master boot record has not been
altered to achieve this effect (see Fig. 5.27). An analyst should be aware that it is
prudent to examine these fields in the boot records of all floppy and hard disk parti-
tions to ensure that they have not been modified to produce more possible hiding
places. This applies to all FAT and NTFS disks.

FATs, Directories and File Systems

From the viewpoint of MS-DOS,each hard disk partition (or floppy disk) provides us
with a set of logical sectors, each normally of 512 bytes in size, which are sequentially
numbered from 0 to the end of the partition or floppy disk. However, we need more
than just a sequence of sectors to make an effective file management system.We need
to have structures in place that permit the sectors to be viewed as a set of files. There
are two fundamental requirements here: one is for a means by which a file can be
named and its characteristics be recorded,and the other is for a mechanism by which
files, which use more than just a single sector, can have their sector numbers
recorded in an appropriate order. A number of strategies are possible to meet these
two requirements, and different operating systems typically use different
approaches, with the result that they are rarely compatible with one another. MS-
DOS meets the first requirement by means of the root directory89 and the second
requirement by means of the File Allocation Table or FAT. Before looking at the
specific details of our example partition, we will consider the principles as outlined
in Fig. 5.34.
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sector

1

0 1–252 253–504 505–536 537 Logical sector numbers 1,032,120 1,032,128

FAT 1
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FAT 2

252

Root
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Fig. 5.33 Layout of the partition.

89 There was only the root directory for MS-DOS version 1. Since version 2, subdirectories
are also permitted as we will see later.



FATs and Clusters

Here we see a much simplified directory entry for a file called TEST.DOC.The original
MS-DOS file naming scheme allows for 8 upper-case90 characters in the file name
and 3 upper-case characters in the file extension. By convention, when writing down
a reference to the file, the file name is shown separated from the file extension by a
period; hence the reference: TEST.DOC. This example directory entry has been
simplified by removing references to various file characteristics such as the file
attributes, the time and date created and the file size, for example, and we will be
coming back to all this in a moment. What is shown in the entry is a numeric pointer
to a logical starting cluster or allocation unit for the file. For the time being we will
make the assumption91 that the cluster is equivalent to a sector. The pointer here
shows that the first part of the file TEST.DOC starts in logical cluster 0032.

The lower part of the diagram shows some of the entries in the File Allocation
Table or FAT. At entry 0032 we find a pointer to logical cluster 0036. This indicates
that the second part of the file TEST.DOC is contained in logical cluster 0036. At entry
0036 we find a pointer to logical cluster 0038. This indicates that the third part of the
file TEST.DOC is contained in logical cluster 0038. Finally, at entry 0038 we find the
value FFFF which signals the end of the cluster sequence. What the combination of
the directory entry and the FAT has told us is that the file TEST.DOC is contained in
the cluster sequence 0032–0036–0038.This system permits files to be spread over any
number of clusters, which need not be either sequential or contiguous. Clearly, there
are improvements in access time to be obtained if the clusters of a file are sequential
and contiguous since disk head movement is then minimized. After a period of use,
the file system is likely to become fragmented with portions of files spread all over
the partition. For this reason, defrag programs are often used to reassign, as far as
possible, sequential and contiguous cluster sequences to all files in order to improve
the file access efficiency.

Referring back to Fig. 5.33, we may note that the first logical sector number
available to the files area is LSN 537. Continuing, for the moment, with our
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Directory entry Starting cluster

FAT

TEST DOC 0032

0000 0036 0000 0000 0000 0038 0000 FFFF

0031 0032 0033 0034 0035 0036 0037 0038

Fig. 5.34 Principles of the MS-DOS file system.

90 Together with numerals and a limited set of other symbols.

91 Which is correct for floppy disks.



assumption that clusters are equivalent to sectors, this would then form logical
cluster 2. You may wonder why clusters should start at 2 and not 0. Cluster 0 in the
FAT would have to have a reference to it of 0000,and since this value is used in the FAT
to indicate a free cluster it could not, of course, be allocated. In addition, this first
cluster was used by MS-DOS Version 1 to determine the type of disk (see later
section) and is still used today to hold a copy of the Media byte value from the BPB
(see offset 15h, Table 5.18) in its low 8 bits, with all other bits set to 1. Cluster 1 in the
FAT is set by the FORMAT program to the end of cluster chain mark, which for FAT16 is
FFFFh. In addition, the file system driver may use the two most significant bits of the
Cluster 1 entry as dirty volume flags with all other bits left set to 1. These flags are
used to indicate when a mounted volume has not been updated or dismounted
cleanly and action by a disk checking program is required on the next boot. Note,
from a forensic viewpoint, that when Windows mounts a volume it will very likely
change these flags in the FAT unless it is prevented from doing so by some form of
write blocking device. Windows might also attempt to establish recycle bins on each
volume as well as altering the last accessed dates and times on many files and
changing the contents of several of the system files. All of this, of course, alters the
original evidence and should never be allowed to occur.

FAT12, FAT16 and FAT32

We have now made several references variously to FAT16, FAT32, 16 bit FATs and 12
bit FATs and it is perhaps useful at this stage to consider what these mean. They all
simply refer to the number of bits used in the FAT table to describe one entry. So, a 12
bit FAT (FAT12 or more often just FAT) uses 12 bits (1.5 bytes) per FAT entry, a 16 bit
FAT (FAT16) uses 16 bits (2 bytes) per FAT entry and a 32 bit FAT (FAT32) uses 32 bits
(4 bytes) per FAT entry. Note, however, that a FAT32 entry is actually only a 28 bit
entry for the FAT itself, since the four most significant bits of each entry are reserved
for other purposes.The possible values that may be given to each entry in the FAT are
listed at Table 5.19. In addition to what has been described before, we see that FF7h
(and FFF7h and 0FFFFFF7h) are used to mark a cluster as bad, FF8h to FFEh (and
FFF8h to FFFEh and 0FFFFFF8h to 0FFFFFFEh) are reserved and FFFh (and FFFFh
and 0FFFFFFFh) are the markers for the last cluster in a file92. In passing, we may
note that clusters marked in the FAT as bad are another possible place where infor-
mation could be hidden.

There has been some lack of clarity in the past over precisely what FAT system type
should be used for any particular disk size and it is likely that a number of disks with
incompatible FAT systems exist as a result. Microsoft have produced a definitive
document for their operating systems (Microsoft, 2000), and within it is the
following statement: “This is the one and only way that FAT type is determined. There
is no such thing as a FAT12 volume that has more than 4084 clusters. There is no such
thing as a FAT16 volume that has less than 4085 clusters or more than 65,524 clusters.
There is no such thing as a FAT32 volume that has less than 65,525 clusters. If you try
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92 Note, however, that there are various disk utilities for Microsoft operating systems that
use a different value for the last cluster in a file marker; see Microsoft (2000).



to make a FAT volume that violates this rule, Microsoft operating systems will not
handle them correctly because they will think the volume has a different type of FAT
than what you think it does”.

The original MS-DOS FAT used 12 bits per entry and the consequence of this is
that only 212 (that is, 4096) allocation units or clusters can be addressed. In fact the
number is less than this since 000h and 001h are not used and FF6h to FFFh are
reserved or used for other purposes leaving 002h to FF5h (2 to 4085) as the range of
possible clusters.If we are to use one sector per cluster,as we have assumed above, the
maximum number of sectors that we can address is 4084 (the maximum number of
clusters for FAT12 according to the Microsoft statement above) and at 512 bytes per
sector this gives us 4084 × 512 = 2,091,008 bytes, which is slightly less than 2 Mbyte.
This would mean that the largest disk that we can deal with is only 2 Mbyte in size.
This is quite satisfactory for conventional floppy disks and is precisely what is used
by MS-DOS for the standard floppy disk. For larger disks, however, we need to use
more than one sector per cluster.

For disks up to 16 Mbyte, Microsoft systems used to use eight sectors per cluster
with a 12 bit FAT (making the cluster size 8 × 512 = 4 kbyte) and this gives us a
maximum size of 4084 (the maximum number of clusters for FAT12 according to the
Microsoft statement above) × 4096 (the cluster size in bytes) = 16,728,064 bytes,
which is just under 16 Mbyte. However, the following statement has been included in
the Microsoft (2000) document: “If your media is larger than 4 MB, do not bother
with FAT12. Use smaller BPB_SecPerClus93 values so that the volume will be FAT16”.
For example, if we had an 8 Mbyte disk (8,388,608 bytes) and specified 2 sectors per
cluster (1,024 bytes), it would require 8,388,608/1,024 = 8,192 allocation units. This
exceeds the 4084 maximum for FAT12 and would therefore force the format to be
FAT16.

For disks between 16 Mbyte and 2 Gbyte, Microsoft systems use a series of powers
of 2 sectors per cluster (see Table 5.20) up to a maximum of 64 sectors per cluster
(making the cluster size 64 × 512 = 32 kbyte). This gives us a maximum size of 65,524
(the maximum number of clusters for FAT16 according to the Microsoft statement
above) × 32,768 (the cluster size in bytes) = 2,147,090,432 bytes, which is just under 2
Gbyte.
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FAT12 FAT16 FAT32 Meaning

000h 0000h 00000000h Available for allocation

001h 0001h 00000001h Never used

002h 0002h 00000002h Next cluster in file

... ... ... Next cluster in file

FF5h FFF5h 0FFFFFF5h Next cluster in file

FF7h FFF7h 0FFFFFF7h Bad cluster

FFFh FFFFh 0FFFFFFFh Last cluster in file

Table 5.19 FAT cluster values.

93 This is the name given to the BPB sector per cluster field.



The significance of the cluster size is, of course, that this is the smallest unit of disk
memory that can be allocated at a time.Even if we have a file of only one or two bytes,
we are forced to allocate a minimum of 32 kbyte to that file if the disk is larger than
1024 Mbyte and we are using FAT16. Prior to the introduction of FAT32 there were,
therefore, real advantages in partitioning a large disk into a number of smaller
logical partitions in order to reduce the cluster size in each of the partitions and
hence the amount of wasted space. This wasted space between the end of the file and
the rest of the cluster is known as slack space. The cluster size and the FAT type are
decided by the FORMAT program when high-level formatting is carried out on the
partition and the rules applied are those that are given in the Microsoft (2000)
document.

You may have noted that the largest sectors per cluster value in Table 5.20 is 64,
resulting in a cluster size in bytes of 32,768. The reason for this limit, apart from not
increasing further the amount of wasted space, is understood to be that some 16 bit
programs make the assumption that the cluster size in bytes (which must be a power
of two) will always fit into a 16 bit word. The value 32,768 (or 64 sectors per cluster)
does fit, but the next power of two, 65,536 (or 128 sectors per cluster) does not, since
the range in 16 bits is 0 to 65,535. The consequence of this is that no normal FAT16
partition may exceed 32,768 (the maximum cluster size in bytes that will fit into a 16
bit word) times 65,524 (the maximum number of clusters for FAT16 as given in the
Microsoft (2000) document) which, as stated above, is just under 2 Gbyte. This is
where the 2 Gbyte maximum partition limit comes from. Although it is possible,
using Windows NT utilities, to produce FAT16 partitions which have 128 sectors per
cluster (64 kbytes) and are 4 Gbyte in size, such partitions are not recommended by
Microsoft (see Microsoft, 1999a) for use with MS-DOS or Windows 9x.

Returning for a moment to Fig. 5.33, we can now also see why the files area does
not extend to the very end of the partition. The total number of sectors available for
the files area in Fig. 5.33 is 1,032,128 – 536 = 1,031,592. Dividing this by the cluster
size, 16, we obtain 64,474 clusters, with a remainder of 8 sectors. This means that the
last 8 sectors in the partition cannot be addressed by the file system, which extends
only to LSN 64,474 × 16 + 536 = 1,032,120. This lost area, in this case of 8 sectors, is
called “Volume Slack” by some authorities and is yet another good place to hide
information.
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Logical drive size FAT type Sectors per cluster Cluster size

0–4 Mbyte 12 bit 8 4 kbyte

4.1–15 Mbyte 16 bit 2 1 kbyte

16–127 Mbyte 16 bit 4 2 kbyte

128–255 Mbyte 16 bit 8 4 kbyte

256–511 Mbyte 16 bit 16 8 kbyte

512–1023 Mbyte* 16 bit 32 16 kbyte

1024–2047 Mbyte* 16 bit 64 32 kbyte

Table 5.20 Microsoft hard disk cluster sizes up to 2 Gbyte.



With Windows 95 OEM Service Release 2 (OSR2) and Windows 98, Microsoft (see
Microsoft, 1999b) introduced an updated version of the FAT system called FAT32.
This uses four bytes (32 bits) per FAT entry and can address up to 228 = 268,435,456
clusters; 228 rather than 232 because the most significant four bits of each entry are
reserved (see section above).

Given that the maximum possible number of sectors is 232 = 4,294,967,296 (see “Big
total sectors”offset 20–23 in Table 5.18) and we could address them all at 16 sectors per
cluster, (16 × 268,435,456 = 4,294,967,296) we could have disks as large as 4,294,967,296
× 512 = 2,199,023,255,552 bytes = 2 Tbyte. In practice, a number of different powers of
2 sectors per cluster are used for different disk sizes in a manner similar to that for
FAT16 and the details for FAT32 are shown in Table 5.21. A cluster size of 8 sectors per
cluster (4 kbyte) is used for volumes up to 8 Gbyte, 16 sectors per cluster (8 kbyte) for
volumes up to 16 Gbyte, 32 sectors per cluster (16 kbyte) for volumes up to 32 Gbyte,
and 64 sectors per cluster (32 kbyte) for volumes above 32 Gbyte.

In both Tables 5.20 and 5.21, the 512–1024 Mbyte and 1–2 Gbyte entries are shown
marked with an asterisk. This is to indicate that although disks in these size ranges
can be formatted as FAT16, they will normally be formatted by default as FAT32.

The other major difference with FAT32, is that the root directory is no longer of
fixed size but is held in a cluster chain just like all other files.

Boot Sector and BPB Differences between FAT12, FAT 16 and FAT32

In the first implementation of the FAT file system (MS-DOS version 1), there was no
BPB94 in the boot sector and the determination of the media type, of which only two
were possible95, was carried out by looking at the first byte of the FAT itself as we
mentioned above. This was changed in MS-DOS version 2 by placing a BPB in the
boot sector.This BPB only allowed for a FAT volume with less than 65,536 sectors due
to the fact that the “Total sectors” field was only two bytes in size and this resulted in
the 32 Mbyte limit, again as we mentioned above. This limitation was lifted in MS-
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Logical drive size FAT type Sectors per cluster Cluster size

512–1024 Mbyte* 32 bit 8 4 kbyte

1–2 Gbyte* 32 bit 8 4 kbyte

2–8 Gbyte* 32 bit 8 4 kbyte

8–16 Gbyte 32 bit 16 8 kbyte

16–32 Gbyte 32 bit 32 16 kbyte

> 32 Gbyte 32 bit 64 32 kbyte

Table 5.21 Microsoft hard disk cluster sizes for FAT32.

94 In Microsoft (2000) a distinction is made between table entries that are deemed to be
part of the boot sector and table entries that are deemed to be part of the BPB. We have
not made that distinction here.

95 Either single-sided or double-sided 360 kbyte 5.25-inch floppy disks.



DOS 3 where the BPB was modified to include a new alternative 4 byte field for the
“Big total sectors” value.

With the introduction of FAT32 in the Microsoft Windows 95 operating system
(OSR2), the BPB was again modified. This new version exactly matches the FAT12
and FAT16 BPB up to but excluding offset 24h (see Table 5.18). Thereafter, the
changes are as shown in Table 5.22.

It should be noted that the FAT32 boot record is contained in three logical sectors:
0, 1 and 2. Each of these sectors has the values “55 AA” in the last two bytes of the
sector. The BPB and initial bootstrap code are contained within sector 0 and an
information structure called FSInfo is normally held in sector 1 (see offset 30–31,
Table 5.22). Much of the code which enables the boot record to read FAT32 entries is
held in sector 2. A copy of all three sectors of the boot record is normally held in
sectors 6 to 8 (see offset 32–33, Table 5.22).

The FSInfo structure contains two signatures, a lot of reserved space and two
entries that might be useful for an analyst to examine,namely: a count of free clusters
and the next available cluster. The count of free clusters is a 4 byte field located at
offset 1E8h from the start of the sector. If the value is FFFFFFFFh, then the count is
unknown, otherwise it is the last known count of free clusters on the volume. The
literature helpfully tells us that it might not be correct! The four byte value at offset
1ECh is a hint to the FAT driver of where to start looking for the next free cluster.
Again, if its value is FFFFFFFFh there is no hint, otherwise it might be the next
available free cluster.

The Example FAT

At Fig. 5.35 we have shown, in Norton Disk Editor FAT view, a small part of the first
FAT for the same example partition that we referred to in Figs. 5.31,5.32 and 5.33 and
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Offset FAT32

24–27 Count of sectors occupied by one FAT

28–29 Flags

2a–2b Revision number

2c–2f First cluster of root directory

30–31 Sector number of FSInfo (normally 1)

32–33 Sector number of copy of boot sector (normally 6)

34–3f Reserved

40 Physical drive number (as for offset 24 in FAT16)

41 Reserved (as for offset 25 in FAT16)

42 Extended boot signature (as for offset 26 in FAT16)

43–46 Volume serial number (as for offsets 27–2a in FAT16)

47–51 Volume label (as for offsets 2b–35 in FAT16)

52–59 File system ID (as for offsets 36–3d in FAT16)

Table 5.22 Additional BIOS parameter block for FAT32.



Table 5.18. From this we can readily see that one file probably starts at cluster 2,
continues with clusters 3, 4 and 5, and ends with cluster 6. It is a safe bet that the next
file starts with cluster 7 and continues with 8, 9 and 10 and ends with cluster 11.
However, to confirm all this, we really need to examine the root directory, and it is
this that we will look at next.

The Root Directory

As described earlier,MS-DOS directory entries are each 32 bytes in length.The first 8
bytes of the entry (see Table 5.23) are the eight characters of the file name, padded
out, if necessary, with spaces (20h) to the end of the field.

The first byte of the file name has a special significance depending upon its value.
If it is 00h, it indicates that the entry has not been used before and we have reached
the last entry in the directory list. If it is e5h, which corresponds to the character “s”,
then the directory entry has been deleted. We will look at file and subdirectory
deletion in a later section. If it is the value 05h, then this indicates that the first file
name character should be “s”, which cannot, of course be stored as itself without
signalling a deleted entry! Finally, if it is the value 2eh, which corresponds to the
character “.”, this signifies that this entry refers to a directory, and we will say more
about that in a moment.
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Sector 1
Clusters 2 - 255

3 4 5 6 <EOF> 8
9 10 11 <EOF> 13 14 15 16
17 18 <EOF> 0 0 0 0 0
0 0 0 <EOF> <EOF> <EOF> <EOF> 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 5.35 The 1st FAT – Norton Disk Editor FAT view.

Offset Meaning

00–07h Filename 8 bytes padded with spaces

08–0ah File extension 3 bytes padded with spaces

0bh File attributes 1 byte

0c–15h Reserved (MS-DOS 1.0–6.22) 10 bytes

16–17h Time of last change 2 bytes

18–19h Date of last change 2 bytes

1a–1bh First cluster 2 bytes

1c–1fh File size 4 bytes

Table 5.23 32 byte directory entry.



The next three bytes are the three characters of the file extension, again padded
out as necessary with spaces (20h) to the end of the field. It should be noted that the
period that conventionally separates the file name from the file extension in all MS-
DOS 8.3 references is not actually held in the directory entry.

The next byte in the sequence is the file attributes byte; see Fig. 5.36. This indicates
whether the file is write-protected, hidden, a system file or changed since it was last
backed up by an archive program.In addition, the entry may, instead of referring to a
file, be a volume label or a subdirectory. If the volume label bit is set, and only one
entry in the root directory may have this bit set, the file name and file extension fields
are taken together without an intervening period as the 11 byte volume name for the
partition.If the sub directory bit is set, the “first cluster”field points to a subdirectory
rather than to a file, though in many ways a subdirectory can be considered as a
special case of a file.

The next 10 bytes in the directory entry are reserved in MS-DOS 1.0 to MS-DOS
6.22.In passing,we should note that seven of these bytes are used in MS-DOS 7 and in
Windows 9x for additional date and time information and two of them are used in
FAT32 systems to specify the additional two bytes (making four in all) that are
required for the “first cluster” value (see later section).

Following the reserved bytes are two bytes (in little endian order) used to specify
the time of last change made to the file and then a further two bytes (also in little
endian order) to specify the date of last change made to the file.These four bytes have
a very specific structure, as shown in Fig. 5.37. Looking at them in sequence, having
remembered to reorder them to account for their being in little endian, the first five
bits specify the hours, the next six bits specify the minutes and the last five bits
specify the number of two-second intervals. To obtain the actual seconds we need to
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1 = write protected
1 = hidden file
1 = system file
1 = volume name
1 = subdirectory
1 = archive
reserved

7 6 5 4 3 2 1 0

Fig. 5.36 File attributes byte.

year from 1980 day of month

month (1–12)

7 77 76 66 65 55 54 44 43 33 32 22 21 11 10 00 0

2 second intervals

minutes

hours

Fig. 5.37 Time and date field bytes.



multiply the value from this field by 2. For the date fields, the first seven bits specify
the number of years since 1980, the next four bits specify the month number, 1 to 12,
and the last five bits specify the day of the month, 1 to 31.

The next field in Table 5.23 identifies the starting cluster for the file or subdi-
rectory to which this entry refers. For FAT16 we simply need the two bytes as given
here, but for FAT32, as mentioned above, two more bytes are needed, and these are
taken from the reserved field. Note that these numbers are all little endian and that,
for FAT32, the “first cluster” field contains the least significant values.

The final field in Table 5.23 is the file length in bytes and this is held little endian in
the last four bytes of the entry.

At Fig. 5.38 we have shown the root directory details in hexadecimal of the
example partition. Taking the first entry we see that at offsets 00–07h is the file name
IO padded out with spaces and at offsets 08–0ah is the file extension SYS. At offset
0bh is the file attributes byte of value 27h, and this represents a write-protected,
hidden, system file with the archive bit set. Offsets 0c–15h are not used and are set to
00h. At offsets 16–17h is the time of the last update as 3280h, reordered from little
endian. In binary this is 0011 0010 1000 0000, and when divided up as in Fig. 5.37 this
is equivalent to 00110 hours, 010100 minutes, and 00000 × 2 seconds, giving us
06:20:00. Similarly, the date of the last update is at offsets 18–19h and is 1b3eh,
reordered from little endian. In binary this is 0001 1011 0011 1110 and when divided
up as in Fig. 5.37 this is equivalent to 0001101 years from 1980, 1001 number of
month, and 11110 day of month, giving us 30/09/1993. At offsets 1a–1bh is the first
cluster number in little endian, that is 0002,and finally,at offsets 1c–1fh is the file size
in little endian, that is 00009e76h, which is equivalent to 40,566 in decimal.

Deleted Files

Immediately below the three files IO.SYS,MSDOS.SYS and COMMAND.COM specified in
this root directory, there is a deleted file which used to be DBLSPACE.BIN, starting at
offset 60h. The first character of the name has been overwritten with the deleted
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Fig. 5.38 Hexadecimal view of the root directory.



marker e5h. When files are deleted in the MS-DOS file system, the directory entry for
the file is not removed; it is simply marked as deleted in this way. If we look at the first
cluster field for the file at offsets 7a–7bh we find that the value 0013 (decimal 19) is
still present as is the original file size at offsets 7c–7fh of 0000faf6h (decimal 64,246).
If we look, however, at the FAT table of Fig. 5.35,we see that clusters 19 to 26 are all set
to 0, although clusters 27 to 30 are in use, all marked with <EOF>. This suggests that
the DBLSPACE.BIN file originally used clusters 19 to 26,but these were returned to the
available pool once the file had been deleted. What is important from a forensic
viewpoint, however, is that on deletion of a file, MS-DOS does not delete the infor-
mation contained in the clusters; it merely marks them as available for reallocation.
It is therefore quite possible to restore a file that has been deleted provided that the
clusters of the file have not been reused. The deleted directory entry will often
contain details of the first cluster and the file length, as is the case here, and this can
greatly assist the process.Utility programs,such as UNDELETE.EXE and UNERASE.EXE,
attempt to automate the recovery of deleted files, but an analyst using Norton Disk
Editor, for example, is likely to be much more effective in difficult cases.

The degree of success obtained in undeleting a file is obviously related to the
likelihood of the original file clusters being reallocated by MS-DOS. In early versions
of MS-DOS (1.0 and 2.0), a search for the next free cluster to be allocated was always
made from the beginning of the FAT, but in later versions a more complicated
algorithm is used, and an unused cluster near the other clusters of the file being
extended is sought.

Volume Label and Subdirectory Entries

The next entry beneath the deleted file entry is a volume label, TEST1, and beneath
that are two subdirectory entries, SUB1 and RECYCLED. Examination of the volume
label shows that the volume name extends over the 11 bytes of offsets 80–8ah and is
padded out with spaces. The file attributes byte at 8bh is of value 28h and this
signifies that the volume name and the archive bits are set. The time field, at offsets
96–97h, is 744ch, and this gives 0111 0100 0100 1100 which divides up as 01110 hours,
100010 minutes and 01100 × 2 seconds, and results in 14:34:24. The date field, at
offsets 98–99h, is 270ah, and this gives 0010 0111 0000 1010 which divides up as
0010011 years from 1980, 1000 number of month, and 01010 day of month, and
results in 10/08/1999. The first cluster field at offsets 9a–9bh and the file size field at
offsets 9c–9fh are both seen to be zero.

For the subdirectory, SUB1, a similar analysis could be performed and here we
would find that the directory bit is set in the file attributes byte at offset abh (value is
10h) and that the first cluster is at 001bh (offsets ba–bbh) which is decimal 27.

Although it is important to be able to analyse the details in this way, Norton Disk
Editor provides a directory view which can be used to show most of this information
for us. Such a view of the example directory is given at Fig. 5.39.

From our previous analysis, all the entries in the table of Fig. 5.39 should be self-
explanatory. The start sector of the root directory is 505, which conforms with our
analysis at Fig. 5.33.The only unexplained item is the heading 76,which simply refers
to the two reserved bits, 7 and 6, in the attribute byte.
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In passing, we might also note that the RECYCLED subdirectory has been added
automatically to our partition by Windows 98. It is a system, hidden, directory
and it is noteworthy because it breaks our forensic rules of not changing the
evidence during examination. As was mentioned earlier, using Windows to
examine a disk, without a write blocker in between, will result in changes such as
this being made.

We should note that for FAT12 and FAT16, the size of the root directory is fixed and
is given in offsets 11–12h of the BIOS Parameter Block as the number of 32 byte
entries.For FAT32,however, the root directory is of variable size and is a cluster chain
just like any other file. Its starting cluster is given in offsets 2c–2fh of the BIOS
Parameter Block.

Subdirectories

As mentioned above, a subdirectory can be considered to be a special case of a file.
It is, in fact, a file that contains directory entries in just the same format as the root
directory. The contents of a subdirectory may be file entries or further subdi-
rectory entries, but, unlike the FAT12 and FAT16 root directories, because subdi-
rectories are specified as a cluster chain they are not constrained to being of fixed
length.

At Fig. 5.40, we have shown a hexadecimal view of the subdirectory SUB1. In
common with all subdirectories, the first two entries are pre-defined.The first,as can
be seen from offsets 00–0ah is called “.” and stands for this directory itself. Its
attribute byte at offset 0bh has just the directory bit set (10h) and the first cluster
value at offsets 1a–1bh is 001bh or decimal 27, which from Fig. 5.39 we can see is the
first cluster of this subdirectory SUB1.

The second entry at offsets 20–2ah is similarly called “..” and this stands for the
parent directory of this directory. The parent, in this case, is the root directory and
the first cluster for that is shown at offsets 3a–3bh as 0000. Apart from these two
entries, all the other entries in the subdirectory will either be file name entries or
subdirectory entries in the form that we have seen before, with one exception, that of
the long file name (LFN), which can also occur in the root directory.
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Sector 505
Name .Ext ID Size Date Time Cluster 76 A R S H D V
--------------------------------------------------------------------------------
IO SYS File 40566 30/ 9/93 6:20am 2 A R S H - -
MSDOS SYS File 38138 30/ 9/93 6:20am 7 A R S H - -
COMMAND COM File 54619 30/ 9/93 6:20am 12 A - - - - -
õBLSPACE BIN File 64246 30/ 9/93 6:20am 19 A - - - - -
TEST1 Vol 0 10/ 8/99 14:34pm 0 A - - - - V
SUB1 Dir 0 15/ 8/99 10:01am 27 - - - - D -
RECYCLED Dir 0 15/ 8/99 10:23am 29 - - S H D -

Fig. 5.39 Norton Disk Editor directory view of the root directory.



Long File Names

At Fig. 5.41, we have shown the Norton Disk Editor directory view of the sub
directory,SUB1, that we were examining in hexadecimal form at Fig. 5.40. This shows
clearly the two entries for “.” and “..” and confirms the details that we established
above. It also shows four entries marked LFN and a normal file entry named
THISIS~1.TXT.

With Windows 95 and 98, Microsoft removed the limitation of only 8 characters
for the file name and 3 characters for the file type from file and directory names and
introduced the so-called long file name, which can be up 255 characters in length.
Both upper- and lower-case letters are permitted in long file names and the range of
other characters that may be used has also been increased. However, in order to
maintain compatibility with MS-DOS and to continue to operate within the existing
file systems, the long file name is spread over a number of standard 32 byte directory
entries and it is always matched with a short file name (SFN) alias which conforms to
the old 8.3 naming conventions. Windows automatically generates the SFN alias
from the long file name. In our example case, the long file name is This is a text
file with a very long file name.txt, and the SFN generated by Windows is
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Fig. 5.40 Hexadecimal view of a subdirectory.

Cluster 27, Sector 937
Name .Ext ID Size Date Time Cluster 76 A R S H D V
--------------------------------------------------------------------------------
. Dir 0 15/ 8/99 10:01am 27 - - - - D -
.. Dir 0 15/ 8/99 10:01am 0 - - - - D -
le name.txt LFN 0 - R S H - V
very long fi LFN 0 - R S H - V
t file with a LFN 0 - R S H - V
This is a tex LFN 0 - R S H - V
THISIS~1 TXT File 115 15/ 8/99 10:23am 28 A - - - - -

Fig. 5.41 Norton Disk Editor directory view of the subdirectory SUB1.



THISIS~1.TXT. Although the actual generation algorithm is quite complicated in
detail, most of the principles are clear from this example. Lower case is translated to
upper case, spaces are removed and the first six characters of the resulting LFN are
then used followed by a “~”and a digit to make the SFN up to 8 characters. If there is a
file extension specified, the first three characters of this are used. The reason for the
“~” and the digit at the end is to permit Windows to differentiate from, say, another
long file name such as This is a shorter file name.txt which would then
receive an SFN of THISIS~2.TXT96.

One consequence of this approach that it is important for a forensic analyst to be
aware of is that SFNs of copied files, which are generated by Windows at the time of
the copy, may be different in different directories. This is because the value of the last
digit in the SFN will depend upon whether there are one or more files with similar
starting LFNs in the directory to which the copy is being made. Although the LFN of
the copied file will always be the same as the original, the SFN of the copied file might
not be the same.This means that we could have LFNs of the same name and referring
to copies of the same file residing in different directories each having entirely
different SFNs. We could also have SFNs of exactly the same names in different direc-
tories referring to entirely different files.

Returning to our subdirectory entry for THISIS~1.TXT at Fig. 5.41,we see that this
is in exactly the same format as that for the other files we have seen at Fig. 5.39. What
we do need to look at a little more closely are the four LFN entries which specify the
long file name. We can see that as many 32 byte directory entries as are necessary are
used to record the LFN. Each entry can hold a maximum of 13 characters of the long
file name, since each of the characters is recorded in Unicode and requires two bytes
to represent it.

A Brief Digression on Unicode and UTF

Unicode and Unicode Transformation Format (UTF) are today a rather complex
subject. A useful outline of Unicode and the development of UTF is given in Davis
(1999), from which the following quotes are taken: “In the beginning, Unicode was a
simple, fixed-width 16-bit encoding. Under its initial design principles, there was
enough room in 16 bits for all modern writing systems. But over the course of
Unicode’s growth and development, those principles had to give way.When characters
were added to ensure compatibility with legacy character sets, available space
dwindled rapidly.... Unicode needed an extension mechanism to get up to a larger
number of characters.... As a result of these different requirements, there are now three
different forms of Unicode: UTF-8, UTF-16, and UTF-32”.

Continuing with the Example

We can relate the four entries of the example back to the hexadecimal view of Fig.
5.40 by noting that they start at offsets 40h, 60h, 80h and a0h respectively. The first
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96 If we were to have more than nine files of This is ..., the tenth would become
THISI~10.TXT, and so on.



byte in each entry is the sequence number; that is, it specifies the order in which the
entries are to be taken to restore the text of the long file name.

We can see clearly what that order should be in the example LFN by inspection of
Fig. 5.41, and if we examine offsets a0h, 80h, 60h and 40h in that order we see the
values 01h, 02h, 03h and 44h in the relevant first bytes The last byte in this sequence
of four has bit 6 set as well as the value 04h (thus giving 44h) to indicate that it is the
last entry of the long file name. All four of these bytes would have been set to E5h if
the file had been deleted. These LFN slots are always directly above the regular short
file name file directory entry.

At Table 5.24, we have shown the details of the LFN directory entry. Offset 0bh, the
file attributes byte is always set to 0fh. This gives file attributes (see Fig. 5.36) of read-
only, hidden, system and volume, as we see in Fig. 5.41.

When the LFN structures were being developed, it was found that directory entries
with these attributes were generally ignored by existing software and so LFN entries
such as these could safely be used with legacy systems without causing problems. At
offset 0dh is a checksum byte which is the checksum of all the characters in the file
name and file type fields of the associated SFN directory entry. This checksum is used
by Windows to detect orphaned or corrupt LFN entries. The process involved to
generate the checksum is as follows: Take the ASCII value of the first character. Rotate
all the bits of the result rightward by one bit. Add the ASCII value of the next character.
Rotate all the bits of the result rightward by one bit. Add the ASCII value of the next
character. Keep repeating this process until all 11 characters in the 8.3 file name have
been processed. It is left as an exercise for the reader (see exercises at the end of the
chapter) to confirm that the checksum for THISIS~1TXT is 43h, as shown for the LFN
entries at offsets 4dh, 6dh, 8dh and adh in Fig. 5.40.

Additional Times and Dates

Finally, as we mentioned above, it should be noted that the 10 reserved bytes in the
normal file directory entry are used in MS-DOS 7 and Windows systems for
additional dates and times. The details of these are shown at Table 5.25. Using the
same format as that shown in Fig. 5.37, the file creation time is held in little endian
form in offsets 0e–0fh, the file creation date is similarly held in offsets 10–11h and the
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Offset Meaning

00h Sequence number 1 byte

01–0ah First five characters of LFN in Unicode 10 bytes

0bh File attributes 1 byte (always 0fh)

0ch Type indicator 1 byte

0dh Checksum 1 byte

0e–19h Next six characters of LFN in Unicode 12 bytes

1a–1bh First cluster 2 bytes (always 0000h)

1c–1fh Next two characters of LFN in Unicode 4 bytes

Table 5.24 LFN directory entry.



last access date is held in offsets 12–13h. At offsets 14–15h are the high two bytes of
the 4 byte start cluster for FAT32 systems.The difference between these various times
and dates is as follows: the original last modified time and date stamp of the file is
that as given at offsets 16–19h; the creation time and date on the MS-DOS 7 or
Windows system is that as given at 0e–11h, and the last access date made to the file is
that as given at offsets 12–13h.

It is important to note that in the original date and time system, which is still used
in all these fields, the time is only accurate to two seconds, since the seconds field
contains a count of two second intervals (see Fig. 5.37). However, the new creation
date and time has an additional field (offset 0dh) which is a count of the number of 10
millisecond units past the creation time that is given in offsets 0e–0fh.The maximum
number that can be held in 1 byte is 255 and this times 10 milliseconds gives a
maximum time value of 2.55 seconds. In other words, this additional field (offset
0dh) permits the accuracy of a creation time to be specified to within 10 milliseconds
rather than the two seconds of the last modified field.The correct process to establish
the creation date and time therefore is first to carry out the calculations on offsets
0e–0fh and 10–11h as given in Fig. 5.37 and then to add to the result the number of
seconds and fractions of a second obtained from offset 0dh, adjusting the date and
time as necessary. It is possible, for example, for the creation date and time to be two
seconds before midnight and for the 10 milliseconds field to be greater than two
seconds. This would require the creation date to be adjusted as well as the creation
time. Not all forensic software carries out this process correctly and it would be as
well for the analyst to check sample creation dates and times by hand.

If we examine the THISIS~1.TXT entry in the subdirectory at Fig.5.40 we may note
that the reserved ten bytes are in use, unlike the entries in the root directory at Fig.
5.38, which all have their corresponding ten bytes set to 0. The reason for this
difference is not a function of root or subdirectories; nor is it a function of LFN or
SFN entries. It is solely because the LFN entries and the associated SFN entry in the
subdirectory were placed there using Windows 98,which has the additional time and
date facility, whereas the entries in the root directory were placed there using MS-
DOS 6.20,which does not.This can be a useful indicator on, for example,a floppy disk
to determine whether or not it has been used in a Windows system.

You might note from Fig. 5.41 and Fig. 5.39 that the Norton Disk Editor directory
view only appears to show the original last modified date and time. In fact, the screen
may be scrolled horizontally to show all the date and time information for a directory
entry.
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Offset Meaning

0ch Reserved 1 byte

0dh 10 millisecond units past creation time 1 byte

0e–0fh File creation time 2 bytes

10–11h File creation date 2 bytes

12–13h Last access date 2 bytes

14–15h High word of start cluster (FAT32) 2 bytes

Table 5.25 Additional time and date fields.



Hiding and Recovering Information

In this section we first briefly review where information might be hidden on a disk
and then we consider the possibility of recovering information that has not neces-
sarily been deliberately hidden. A variety of opportunities exist for hiding infor-
mation on hard disks, as listed below:

● With older controllers, sectors or tracks might be marked as bad within the
controller when in fact they are perfectly good and are being used to hide infor-
mation. This technique requires a reasonably high level of technical expertise (see
Bad Sector Mapping and A Possible Place to Hide). This might also be possible
with some later controllers.

● Some partitions may be deliberately marked as hidden using, for example,
PartitionMagic (see Hidden Partitions).

● The accessible partitions may not use the whole of the disk. This may be
accidental or deliberate. The partition table may have been modified using, for
example, a disk editor so that one or more of the working partitions are no longer
recorded. These conditions can be tested for by comparing the physical disk size
with the sum of all the indicated partition sizes.

● The translated disk geometry may not permit access to the entire physical disk.
We saw this with Fig. 5.8, where a physical geometry of 4095 cylinders and 16
heads translates to only 1023 cylinders and 64 heads. This is because 4095 is not
exactly divisible by 4 and it results in a loss of (4095 – 1023 × 4) × 16 × 63 = 3024
sectors. With a different BIOS, these sectors might have been accessible.

● Logical partitions may not fill the whole of the first extended partition (see
Extended Partitions).

● Unassigned sectors following the partition tables and between partitions may
have been used to hide information. Even the extended partition table sectors
themselves should be examined, since only the last 66 bytes of the sector are used
by the system for the partition table (see More Places to Hide)

● The usable files area may not extend to the end of the defined partition because of
the cluster size (see Fig. 5.33). Any last few sectors should be checked.

● The boot record sector size field may have been altered so that the volume size is
less than the partition size.

● Clusters may have been marked in the FAT as bad and then used to hide infor-
mation (see FATs and Clusters).

Opportunities exist for the recovery of information that has not been deliberately
hidden but has perhaps been deleted or has been saved unwittingly in various
buffers or temporary files:

● It may be possible to restore some deleted files, where clusters have not yet been
reused, by “following” the cluster chains in the FAT (see Deleted Files). Note that
although these clusters will have all been marked as 0 (available for reallocation)
in the FAT, we can often infer from the sequences of 0s that are present where a
chain used to be. By examining the last few bytes in one cluster and the first few

Disk Geometry 205



bytes in the next cluster we may be able to confirm,particularly with text files, that
they used to form part of a chain.

● Where a file does not use all of the last (or only) cluster assigned to it, there may be
information from previous files still accessible beyond the end of the sector in
which the current file ends and up to the end of the cluster. This is known as
cluster slack space.

● Where the last part of a file does not completely fill the standard sector buffer,
there may be memory-resident data associated with some other process beyond
the end of the file and up to the end of the sector buffer. This is known as buffer
slack space or RAM slack space.

● Clusters currently unallocated may contain information from previous files.
● System files, such as the Windows swap file, may contain printer and other

temporary file buffers that are no longer directly accessible.

At Fig. 5.42 we have shown a summary of many of these issues in diagrammatic
form. The first line in the diagram shows a map of the physical disk. As expected, this
starts with a master boot record (mbr) and continues with a primary partition which
has been allocated the drive letter C: This is followed by a hidden partition which
would appear in the partition table with the partition type byte set to hidden. Next is
a partition marked “not in table”. This represents a partition that has been used but
whose entry has been edited out of the partition table. Then comes the first extended
partition container in the form that we have seen before. This takes up the rest of the
disk except for the part marked “lost”. This represents those sectors that cannot be
accessed because of the translated disk geometry. Between each partition and the
partition tables we see unused space and this occurs because partition tables
invariably start at head 0 sector 1 and boot records start at head 1 sector 1.

Within the first extended partition container we see an extended partition table
followed by a logical partition that has been allocated the drive letter D:, and this is
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| mbr | | primary C: | | hidden | | not in table | | first extended partition | lost |

| ept1 | | logical D: | | ept2 | | logical E: | unused |

br fat1 fat2 root files area lost

cluster 9 cluster 10 cluster 11 cluster 12
file in file system

s100 s101 s102 s103 s104 s105 s106 s107
details of last cluster containing end of file

eof cluster slack space

details of sector containing end of file

eof buffer slack space

Fig. 5.42 Summary of disk and file issues.



followed by another extended partition table and another logical partition that has
been allocated the drive letter E:. We also see beyond this last partition that there is
unused space within the first extended partition container. In addition, we may note
that once again, between each logical partition and the extended partition tables,
there is unused space for precisely the same reasons as before.

The diagram also shows, for the primary C: partition an exploded view of the file
system in the partition and we note the possibility of lost sectors at the end of the
files area because of the need to divide sectors exactly by the sectors per cluster value
(always a power of two). We have shown, in addition, an exploded view of a typical
file which uses the four clusters 9 to 12 for its data. We note that the end of the file
(eof) occurs part way through cluster 12 and on examining an exploded view of this
cluster we see that it is made up of the eight sectors 100 to 107. Again we note that the
end of file occurs in sector 104, which means that sectors 105, 106 and 107 are not
used at all by this file.These three sectors are known as cluster slack space.Further,an
exploded view of sector 104,which contains the end of file,shows that only part of the
sector buffer is taken up with file data.From the end of the file to the end of the sector
will be information that was in the buffer before this file update was written. This
information is known as buffer slack space or RAM slack space.

RAID

Before leaving this chapter we should just make mention of Redundant Arrays of
Inexpensive Disks or RAID. The concept came from the University of California at
Berkeley in the mid-1980s and the original paper (Patterson et al., 1988) on the
subject was published at SIGMOD in 1988. Today, the word “inexpensive” that was
used by the original designers is more often replaced by the word “independent”.

A RAID system is a set of independent disks which appear to the operating system
as a single drive. The original paper defines five levels of RAID, numbered 1 to 5,
which adopt various strategies to utilize the independent disks in different ways to
improve the overall reliability and performance of the RAID system. RAID is
designed to improve reliability by distributing data over multiple drives and by
calculating and storing parity information about it. This redundancy permits data to
be restored if a drive fails. RAID is designed to improve performance by distributing
the disk read processes over several disks so that transfers can take place in parallel.
From a forensic viewpoint, it is best to treat a RAID unit as a single device and to
image it as such.Reconstructing a RAID unit from its separately imaged components
can be a difficult and time-consuming process.

Although the original paper referred only to five levels of RAID, most authorities
today would list at least nine and perhaps as many as twelve levels,as outlined below.

RAID Level 0

Strictly speaking,RAID Level 0 is not a RAID system at all and it was not described in
the original paper. It is however referred to as such and it has therefore been included
in this brief overview. RAID Level 0 uses what is known as sector striping to increase
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performance. This means that sectors or blocks are written in turn to different
drives. So, for example, given three drives, sector 1 of a file would be written to drive
1,sector 2 to drive 2,sector 3 to drive 3 and then sector 4 to drive 1 again,and so forth.
The file would be striped across the three drives. Such striping does not need to be at
the sector or block level; it can be at the byte or even the bit level. RAID Level 0 does
not provide any redundancy or improved reliability, but it can be used to improve
overall performance.

RAID Level 1

RAID Level 1 uses mirroring or duplexing to improve data reliability. Mirroring
simply means that each drive has a duplicate, and when data is written to one drive it
is simultaneously mirrored or duplicated on the second. If one drive fails, the other
can be used to restore the data. Clearly the process of having to write to both drives
increases the performance overheads.

RAID Level 2

This system distributes data across multiple drives at the bit level, using Hamming
code error detection and correction. A system with four data drives, for example,
would also require three parity drives for the error detecting and correcting codes.
Because it operates at the bit level, every disk access occurs in parallel, making the
transfer of large amounts of contiguous data particular efficient, and the degree of
redundancy is the highest of any of the RAID levels.

RAID Levels 3 and 4

RAID Level 3 combines striping at the byte level with a single drive assigned for
parity. So, typically, there might be four data drives and one parity drive in such a
system.Byte 1 of a transfer would then be written to drive 1,byte 2 to drive 2,byte 3 to
drive 3 and byte 4 to drive 4, then a parity value byte for those 4 bytes would be calcu-
lated and written to the parity drive; after that, byte 5 would be written to drive 1
again, and so forth.

RAID level 4 is very similar. This system combines striping at the sector or block
level with a single drive assigned for parity. So, with four data drives and one parity
drive, sector 1 is written to drive 1, sector 2 to drive 2, sector 3 to drive 3 and sector 4
to drive 4, then a parity sector is calculated and written to the parity drive; following
that, sector 5 is written to drive 1 again, and the process continues as before.

RAID Level 5

This approach combines sector or block striping with distributed parity. In this
system there is no dedicated parity disk, parity sectors or blocks are written to the
next available disk in sequence. So, given, for example, five disks as before, sector 1 is
written to disk 1, sector 2 to disk 2, sector 3 to disk 3, sector 4 to disk 4 and sector 5 to
disk 5; then the parity sector is calculated and written to disk 1, and then sector 6 is
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written to disk 2 and so forth. The parity sectors are therefore distributed across all
the disks.

Other RAID Levels

RAID Level 6 is similar to RAID Level 5 but incorporates a second parity scheme.
RAID Level 7 is a proprietary system that incorporates a real-time embedded
computer and operating system as a controller. RAID Level 10 is a combination of
mirroring and striping using RAID Level 1 and RAID Level 0 (RAID-1+0) or a
combination of striping and mirroring using RAID Level 0 and RAID Level 1 (RAID-
0+1). RAID Level 50 is a combination of RAID Level 5 and RAID Level 0 and RAID
Level 53 is a combination of RAID Level 5 and RAID Level 3. RAID Level S is another
proprietary system similar to RAID Level 5. For a clear treatment of RAID see
Appendix C to Zacker (1995).

Formal Specifications

Work is now in progress to establish formal industry-wide specifications for RAID
systems with the “Common RAID Disk Data Format Specification”, Revision
01.00.00 of which was published on 14 December 2004; see Storage Networking
Industry Association (2004).

Exercises

5.1 Comparing Fig.5.43 with Fig.5.6,show that this RLL encoded signal represents
the character “Y” and sketch the equivalent MFM encoded signal.

5.2 At Fig. 5.44 is shown part of the listing from the Find-ATA program for a
Quantum Pioneer hard disk. Using Fig. 5.8 as an example, calculate, assuming
512 bytes per sector, the capacities in bytes for the columns marked
“Hardware”, “DOS” and “Current” and also the number of sectors in LBA
mode.

Determine the number of sectors that are inaccessible on this disk as a result
of the translation shown.
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5.3 Given a Logical Block Address of 1,045,721 for a disk which has 16 heads and 63
sectors per track, calculate the equivalent CHS address. Then use these CHS
values to confirm the LBA address.

5.4 A Seagate ST38410A hard disk drive is marked with the following physical CHS
values: cylinders 8391, heads 16, and sectors per track 63. Calculate the logical
numbers of cylinders, heads and sectors per track at the INT 13h interface for
this disk when it has been translated using: (a) the standard bit shifting
method; (b) the revised ECHS method; and (c) the Revised LBA Assisted
method. Determine the numbers of sectors lost for each form of translation.

5.5 Determine all the details of the second partition in the partition table of the
master boot record shown at Fig. 5.26, starting from address 1ceh, and confirm
that these are correctly given by the Norton Disk Editor view at Fig. 5.27.

5.6 Analyse the directory record for the entry “SUB1” at offset a0h in Fig. 5.38 and
show that it conforms with the detail give by the Norton Disk Editor directory
view in Fig. 5.39.

5.7 Using the process described below to generate an LFN checksum,show that the
checksum for THISIS~1TXT is 43h. Note that the “.” is not included in the
calculation. A program to carry out this process, called lfn_crc.exe, is
available from http://www.dmares.com/maresware/lo.htm (Mares, 2006).

Take the ASCII value of the first character. Rotate all the bits of the result
rightward by one bit. Add the ASCII value of the next character. Rotate all the
bits of the result rightward by one bit. Add the ASCII value of the next
character.Keep repeating this process until all 11 characters in the 8.3 file name
have been processed.

5.8 Analyse the subdirectory record for the entry THISIS~1.TXT at offset c0h in
Fig. 5.40 and determine the values of the additional time and date fields.

References

ANSI (1996) ANSI X3.279-1996 – AT Attachment Interface with Extensions (ATA-2), American
National Standards Institute, 11 West 42nd Street, New York, NY 10036.

Brouwer, A. E. (2005) Partition Types: List of Partition Identifiers for PCs. URL: http://
www.win.tue.nl/~aeb/linux/partitions/partition_types-1.html.

210 Forensic Computing

Drive: QUANTUM Pioneer SG 1.0A Port: Primary (01F0h)
Hardware DOS Current Max ECC: 4 bytes

Cylinders: 2097 524 2097
Heads: 16 64 16

Sectors: 63 63 63
Capacity: , , , , , , , , ,

LBA Mode: Yes

Fig. 5.44 Part of the Find-ATA analysis of a Quantum Pioneer.



Clarke, A. R. M. and Powys-Lybbe, D. (1986) The Amstrad CP/M Plus, MML Systems Ltd,
London.

Collins,R. (2003) Dr Dobbs Microprocessor Resources, Protected Mode Basics,Copyright © 2003
Dr. Dobb’s Journal. URL: http://www.x86.org/articles/pmbasics/.

Davis, M. (1999) Forms of Unicode, President of the Unicode Consortium, IBM, 1 September.
Downloaded from: http://icu.sourceforge.net/docs/papers/forms_of_unicode/.

Deyring, K.-P. (ed.) (2003) Serial ATA: High Speed Serialized AT Attachment, Revision 1.0a, 7
January.

Duncan, R. (1988) Advanced MS-DOS Programming, Microsoft Press, Redmond, WA.
EMS (1987), LOTUS(R)/INTEL(R)/MICROSOFT(R), EXPANDED MEMORY SPECIFICATION

[1], Version 4.0, 300275-005, October. Copyright © 1987, Lotus Development Corporation,
Intel Corporation, Microsoft Corporation.

Finch, S. G. (ed.) (1995) Information Technology – AT Attachment Interface with Extensions
(ATA-2),Working Draft,Proposed American National Standard,X3T10 948D,Revision 3,17
January. URL: http://alpha1.dyns.net/files/Drive/d0948r4c.pdf.

IBM (1995) No-ID Sector Format. Dr Steven R Hetzler, IBM Research Division, Almaden
Research Center, San Jose, CA. Now Hitachi – see http://www.hitachigst.com/hdd/
ipl/oem/tech/noid.htm.

IBM (1998) IBM Deskstar 25GP and Deskstar 22GXP Hard Disk Drives, IBM Storage Systems
Division, 5600 Cottle Road, San Jose, CA 95193. Now Hitachi – see http://
www.hitachigst.com/tech/techlib.nsf/techdocs/
85256AB8006A31E587256A79006E5943/$file/djna_ds.pdf.

IBM (1999) Disk Manager (version 9.47), 25 March, IBM Storage Systems Division, 5600 Cottle
Road, San Jose, CA 95193. Now Hitachi – see http://www.hitachigst.com/hdd/
support/download.htm#Diskmanager.

Intel (1998a) SE440BX Motherboard Technical Product Specification,March, Intel Corporation,
PO Box 5937, Denver, CO 80217-9808.

Intel (1998b) SE440BX Motherboard Product Guide, Intel Corporation, PO Box 5937, Denver,
CO 80217-9808.

Lambert, M. (1995) Circular extended partitions: round and round with DOS, Virus Bulletin,
September, p. 14. Mike Lambert, Virus Bulletin Ltd, The Quadrant, Abingdon, Oxfordshire,
OX14 3YS.

Lambert, M. and Moore, C. (1992) Circular Extended Partitions: A DOS Vulnerability or When
the Magic Floppy Won’t Boot, Mike Lambert, Before Disaster Strikes, 1153 Dublin Place,
Herndon, VA 22070, and Charles Moore, Automation Mentors, Inc., 12220 Wye Oak
Commons, Burke, VA 22015.

Lamers, L. J. (ed.) (1994) Information Technology – AT Attachment Interface for Disk Drives,
Working Draft, Proposed American National Standard, X3T10 719D, Revision 4c.

Landis, H. (1995a) How It Works – BIOS Types, CHS Translation, LBA and Other Good Stuff,
Version 4a. URL: http://www.ata-atapi.com/.

Landis, H. (1995b) How It Works – DOS Floppy Disk Boot Sector, Version 1a, hiw@sugs.
talisman.com.

Landis,H.(1997a) How It Works – Master Boot Record, Version 1b,hiw@sugs. talisman.com.
Landis,H.(1997b) How It Works – Partition Tables, Version 1e.URL: hiw@sugs.talisman.com.
Landis, H. (2001) How It Works: CHS Translation. URL: http://www.ata-atapi.com/.
Landis,H.(2005) Information, Test Software and Consulting Services for Developers of Products

using ATA (PATA, IDE/EIDE), Serial ATA (SATA), ATAPI, and CE-ATA and Other ATA Related
Interfaces, 27 October. URL: http://www.ata-atapi.com/.

Leach, P. J (1998) UUIDs and GUIDs, Internet Draft, Network Working Group, Microsoft, Rich
Salz, Certco.

Leach, P., Mealling, M. and Salz, R. (2004) A UUID URN Namespace, Internet Draft, Network
Working Group.

Majors, N. (1995) Technicians’ Guide to PC Hard Disk Subsystems, Data Recovery Labs. URL:
http://www.programmersheaven.com/download/1471/download.aspx.

Mares, D. (2006) Computer Forensics and Data Analysis. Mares and Company, LLC, PO Box
464429, Lawrenceville, GA 30042-4429, USA. URL: http://www.dmares.com/.

Disk Geometry 211



Maxtor (1996) Maxtor’s CrystalMax 1080 Model Number 84320A8,Rev A 3/18/96.URL: http:/
/www.mysimon.com/Hard-Drives/9025-11620_8-20142861.html.

Maxtor (2001) Big Drives: Breaking the 137 Gigabyte Barrier. URL: http://www.maxtor.com/
products/bigdrive/whitepaper.htm. No longer available.

Maxtor (2003) DiamondMax Plus 9 Specification, Maxtor Corporation, 500 McCarthy
Boulevard, Milpitas, CA, 95035. DS-DiamondMaxPlus9-5/03-CL.

McLean, P. T. (ed.) (1999) Information Technology – AT Attachment with Packet Interface – 5
(ATA/ATAPI-5), Working Draft, T13 1321D, Revision 1c, 31 August.

McLean, P. T. (ed.) (2001) Information Technology – AT Attachment with Packet Interface – 6
(ATA/ATAPI-6), Working Draft, T13 1410D, Revision 1e, 26 June.

Mellanox (2002), Understanding PCI Bus, PCI-Express and InfiniBand Architecture, White
Paper, Rev 1-20. Mellanox Technologies Inc, 2900 Stender Way, Santa Clara, CA 95054, USA.
URL: http://www.mellanox.com/.

Messmer, H.-P. (2002) The Indispensable PC Hardware Book, 4th edn, Addison-Wesley,
Reading, MA.

Micro Firmware (1998) Issues with Hard Drives over 4GB. Micro Firmware Tech Support, 330
W Gray Street, Norman, Oklahoma. URL: http://www.allensmith.net/Storage/
firmware/over4gb.htm.

Microsoft Corporation (1999a) Problems Accessing FAT16 Drives Larger Than 2 GB, Article ID:
Q127851, 15 January. URL: http://www.allensmith.net/Storage/HDDlimit/
FAT16.htm.

Microsoft Corporation (1999b) Description of FAT32 File System, Article ID: Q154997, 8
August, URL: http://support.microsoft.com/support/kb/Q154997.

Microsoft Corporation (2000) Hardware White Paper, Microsoft Extensible Firmware
Initiative FAT32 File System Specification, FAT: General Overview of On-Disk Format,
Version 1.03, December 6.

Microsoft Corporation (2003) Serial ATA in the Microsoft Operating System Environment, 18
July. URL: http://www.microsoft.com/whdc/device/storage/serialATA_FAQ.mspx.

MicroSystems (undated) POST CODE MASTER Version 1.40, MicroSystems Development, Inc.
4100 Moorpark Ave. Suite #104, San Jose, CA 95117.

Mosteller, T. (1995) CMOSRAM2.EXE. Tellerware, 1872 Rampart Lane, Lansdale, PA 19446-
5051.

Patterson, D. A., Gibson, G. A.and Katz,R. H. (1988) A case for redundant arrays of inexpensive
disks (RAID), SIGMOD Conference, pp. 109–16.

Phoenix (1995) BIOS Enhanced Disk Drive Specification Version 1.1, 9 May. Phoenix Technol-
ogies Ltd, 2575 McCabe Way, Irvine, CA 92714. URL: http://www.phoenix.com/.

Phoenix (1998) BIOS Enhanced Disk Drive Specification, Version 3.0, 12 March. Phoenix
Technologies Ltd,2575 McCabe Way,Irvine,CA 92714.URL: http://www.phoenix.com/.

Postuma, P. (1995) BIOS Reporter, version 1.1. ppostuma@nbnet.nb.ca, 16 Fullyer Drive,
Quispamsis, NB, Canada E2G 1Y7.

PowerQuest (1996) PartitionMagic 3.0 User Guide, PowerQuest Corporation, 1083 N State
Street, Orem, UT. URL: http://www.powerquest.com/.

PowerQuest (1998) BootMagic User Guide, PowerQuest Corporation, PO Box 1911, Orem, UT.
Now Symantec – see http://www. symantec.com/techsupp/home_homeoffice/
products/pmagic/pmagic_8/manuals.html.

Pratt, T. (2003), Serial ATA Interface on Client Systems, Dell White Paper, June. URL: http://
www.dell.com/r&d.

Quantum (1996) Quantum Fireball™ 1.0/1.2/1.7/2.1/2.5/3.2/3.8 GB AT Product Manual,
Chapter 5, Table 5.1, Quantum Corporation.

R v Aslett (2002), IN THE CROWN COURT AT MANCHESTER, T2001/0383, Wednesday 25th
September, 2002, BEFORE: HIS HONOUR JUDGE GEAKE, REGINA -v- JONATHAN
ASLETT, Transcript of the Official Palantype Note of Cater Walsh & Co., Suite, 410, Crown
House, Kidderminster, DY10 2DH.

Seagate (1991a) Specifications for ST-506. URL: http://www.seagate.com/support/disc/
specs/mfm/st506.html.

212 Forensic Computing



Seagate (1991b) Specifications for ST-412. URL: http://www.seagate.com/support/disc/
specs/mfm/st412.html.

Seagate (1994) FIND-ATA.EXE v1.0, An ATA Interface Identify Drive Utility. Seagate
Technology, Inc., B-5 Technical Support, 920 Disc Drive, Scotts Valley, CA 95066. URL:
http://www.infoatec.it/download/findat10.zip.

Seagate (1995a) SGATFMT4.EXE v4.0, Seagate Format Drive Utility. Seagate Technology, Inc.
URL: http://www.infoatec.it/download/sgatfmt4.zip.

Seagate (1995b) NFDisc v1.20, Partition Record Display and Maintenance. Seagate Technology,
Inc. URL: http://www.seagate-asia.com/sgt/korea/discutil.jsp.

Seagate (1997a) Cheetah 4.5- to 9.1-Gbyte Capacity Disc Drives. URL: http://
www.seagate.com/, publication number 1480-002. No longer available.

Seagate (1997b) Low-level Formatting an ATA (IDE) Hard Drive. Seagate Technology, Inc., B-5
Technical Support, 920 Disc Drive, Scotts Valley, CA 95066. URL: http://
www.seagate.com/ww/v/
index.jsp?vgnextoid=95f0781e73d5d010VgnVCM100000dd04090aRCRD&locale=en-
US.

Seagate (1997c) Seagate Fast ATA/Fast ATA-2 Fact Sheet. Seagate Technology, Corporate
Communications. URL: http://www.seagate.com/support/kb/disc/fastfs.html.

Seagate (1998) FAQ Disk Manager Basics, BIOS Limitations. Seagate Technology, Inc. URL:
http://www.seagate.com/support/kb/disc/bioslmt.html.

Stevens, C. E. (ed.) (2005) Information Technology – AT Attachment – 8 ATA/ATAPI Command
Set (ATA8-ACS), Working Draft, T13 Project 1699D, Revision 1e, 20 June.

Stockton, J. R. (2005) Date and Time Scales. URL: http://www.merlyn.demon.co.uk/
dayscale.htm.

Storage Networking Industry Association (2004) Common RAID Disk Data Format Specifi-
cation, Revision 01.00.00, 14 December. URL: http://www.snia.org/tech_activities/
ddftwg.

Symantec (1999) Norton Utilities Version 4, User’s Guide,Norton Disk Editor.Symantec Corpo-
ration, Peter Norton Group, 10201 Torre Avenue, Cupertino, CA 95014.

Tischer, M. and Jennrich, B. (1996) PC Intern, The Encyclopedia of System Programming,
Abacus, Data Becker Edition.

Vidström, A. (2005) Computer Forensics and the ATA Interface, Technical Report FOI-R--1638-
-SE, February 2005, 1650-1942, Swedish Defence Research Agency, Command and Control
Systems, Box 1165, SE-581 11 LINKÖPING, Sweden.

Western Digital (1997a) Enhanced IDE Interface. Western Digital Corporation, 8105 Irvine
Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

Western Digital (1997b) Drive Parameters, 25 March.Western Digital Corporation,8105 Irvine
Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

Western Digital (1998a) Large Disk Integration, 7 October. Western Digital Corporation, 8105
Irvine Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

Western Digital (1998b) 8.4 GB Capacity Barrier. Western Digital Corporation, 8105 Irvine
Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

Western Digital (1999) EZ-Drive FAQ Sheet, 9 March.Western Digital Corporation,8105 Irvine
Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

Western Digital (undated a) User’s Guide WD1003V-MM1 Winchester Disk Controller (also
MM2, SR1 and SR2). URL: http://www.wdc.com/.

Western Digital (undated b) Enhanced IDE Implementation Guide, Version 5, Western Digital
Corporation, 8105 Irvine Center Drive, Irvine, CA 92618. URL: http://www.wdc.com/.

XMS (1991), eXtended Memory Specification (XMS), ver 3.0, January 1991. Copyright © 1988,
Microsoft Corporation, Lotus Development Corporation, Intel Corporation, and AST
Research, Inc.

Zacker, C. (1995) Upgrading and Repairing Networks, Que, San Francisco, CA.

Disk Geometry 213



6. The New Technology File
System

Introduction

The NTFS (New Technology File System) file system has been used by Microsoft
since the mid-1990s.It was rarely seen by forensic practitioners until the distribution
of Windows 2000. With the introduction of Windows XP, particularly as a pre-
installed operating system on new machines for use in the home, it is now encoun-
tered more often than the old FAT (File Allocation Table) based systems.

A Brief History

In the early 1990s both Microsoft and IBM recognized that the current filing system,
FAT, had almost reached the end of its development road. FAT had distinct short-
comings when it came to “serious” computing, particularly in the area of networks
and security1.

At that time Microsoft were using the FAT system,which they had developed in the
days of DOS and the early days of Windows. They realized that to move forward into
the corporate market they needed a more powerful, more reliable and more secure
filing system. Further development of FAT, albeit with later “kludges and fudges”,
would never achieve the level of performance required for them to gain the foothold
they needed in that lucrative market. They needed a filing system powerful enough
and flexible enough to take on UNIX2.

Microsoft joined forces with IBM, mainly because their futures were, at that time,
inextricably linked. They developed a new filing system called HPFS (High Perfor-
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mance Filing System) which was the native filing system for a new operating system,
OS/23.

OS/2 never really took off. It is still seen on some machines, but is regarded as a
“niche” operating system rather than a mainstream one. Sitting behind OS/2 was
HPFS, which still had some problems and required further development. It seems
that Microsoft and IBM could not reach an agreement as to the direction in which the
future development of the system should go.It is also suggested in some quarters that
Microsoft, having seen a vision whilst developing HPFS, decided that they needed
total control and decided to go their own way. In any event the project was
abandoned and OS/2 with HPFS remained with IBM alone4.

Microsoft set out, using many ideas and concepts from the HPFS project, to
develop and market a totally new filing system called NTFS (New Technology Filing
System). This new system was earmarked to lie behind a new Windows product
specifically aimed at the commercial market, Windows NT5.

NTFS Features

Built into NTFS are the following features:

● Reliability and resilience. Although it is arguable that this has been achieved,
particularly amongst those who have suffered by losing data on an NTFS system,
Microsoft have made efforts within the new system to reduce data loss and
improve recoverability when the system crashes or suffers from a “power-out”.

● Networking. Microsoft recognized that networking of desktop machines in
particular was going to become an important area. The networking of machines
using this filing system was borne in mind as the system was developed and this
has made it much easier for the operating system to integrate with the filing
system for networking purposes.

● Long file names. The original DOS and Windows had been restricted to an 8:3
filename system. Windows 95 did manage to introduce a long file name system,
but this was accomplished by a quick-and-dirty “kludge” of using additional
directory entries (as we describe in Chapter 5) and all files still had to have an 8:3
name to be used by the system when accessing files. NTFS, on the other hand,
allows full 255 character file names in the directory entry.

● Storage efficiency. By the early 1990s, FAT16 was found to be imposing severe
limitations on the size of volumes. FAT32, which was introduced in the mid-1990s,
did address this problem, but all FAT systems use a method of grouping a number
of disk sectors into what are known as “allocation units” or “clusters”. This
approach can result in a loss of storage space to “slack”. For example, a one byte
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file could commonly be allocated a 64 sector cluster, resulting in a slack space loss
of 32 kbyte less the one byte. NTFS addresses this problem by using a totally
different method for file space allocation. This system also permits the existence
of very large volumes.

● Access control and security. A major shortcoming of the FAT systems is the lack of
any facility for file-level security; for example, who did and who did not have
access to particular files. NTFS includes access control at the file level, and also
allows the implementation of upper level access control by groups of users.

● Future proofing. Having learned lessons from the FAT systems, Microsoft have
also built in scope for expansion of the NTFS system without the need for a major
re-write. For instance, users can create their own “attributes” for inclusion within
the filing system simply by defining them and placing the specifications within
reserved areas of the system files. Some of these reserved areas have already been
used. In particular, in the latest release, MFT record numbers have been included
within MFT entries6.

Development of NTFS continued throughout its use with Windows NT. The most
common version, originally dubbed NTFS 1.1, is more commonly known as NTFS 4
because of its release with Windows NT4. In typical Microsoft style, the next version
of NTFS was shipped with a new operating system. This operating system was not
named Windows NT5 but Windows 2000. NTFS 5, as the filing system was officially
named, contained some new elements within it, such as the Active Directory Service,
Reparse Points, Change Journals, On-the-Fly Encryption and Sparse File Support7.

With the release of Windows XP, Microsoft made clear their intention to make
NTFS the filing system of preference. Users buying new systems find themselves
coerced into installing NTFS in preference to FAT32. Windows XP’s default filing
system is NTFS, without any apparent choice. FAT32 can be forced as an option only
if a FAT system is present on the hard disk before the installation of the Windows XP
operating system is commenced. Normal users would not know how to create the
provision of this choice. As a result, NTFS is thus growing exponentially in the home-
use area8.

NTFS – How it Works

NTFS is based around a relational database. This is the MFT or Master File Table. All
“objects” stored on the volume are regarded as files, except for the Partition Boot
Record. The MFT contains details of every file on the volume, including the
management files that are used for the filing system. A sizeable area of the volume is
reserved for the MFT to avoid it becoming fragmented as it grows in size. This area,
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by default, is about 12.5% of the volume size and is known as the “MFT Reserved
Area”.

The filing system itself relies upon a series of management files, known as
metadata files (data about data). These files are invisible to the user and manage the
partition in terms of allocation of storage space, identification of space available,
recovery information and descriptions of the file “attributes”available.All except the
Partition Boot Record have a file record in the MFT. A detailed explanation of the
MFT is given later in this chapter.

Metadata Files

As already mentioned, in addition to the MFT, there are a number of metadata files
that are used by NTFS to manage the filing system, and each has a record in the MFT
as follows:

● $MFTMirr. This file is located at the very centre of the volume where it can thus
easily be found in the case of damage to the filing system. It contains duplicate
MFT entries for the $MFT, $MFTMirr (itself), $Logfile and $Volume files. It is a
“backup” of the first four entries of the MFT file and can be used in an attempt to
recover from some system problems.

● $Logfile. This file is a relational database that records transactions to and from the
disk. It can be used to recover from a system failure. NTFS uses a “lazy write”
caching system where data is not immediately written to disk, and it also needs
more than one transaction to complete a filing task.For example, two transactions
are needed to update a file: one to update the file itself and a second to update the
details in the MFT with respect to file dates and times and so forth. Should a
power failure occur between the two transactions, recovery can be effected by
completing the missed task, as indicated by the $Logfile. The size of the $Logfile
depends on the volume size.

● $Volume. This file contains information about the volume, such as the volume
label, the NTFS version number, the creation time and date and the “dirty flag”.
This latter item is used to indicate whether or not a clean shutdown took place on
the last use of the volume.

● $AttrDef. This is a table of Attribute names, allocated identifier numbers, and
descriptions. Its record length is 160 bytes. The most common of these Attributes
are discussed later and are also listed in Appendix 9.

● $. (dollar dot). This is a symbol for the root directory of the volume.
● $Bitmap. This is a bitmap of the logical clusters on the volume. It is simply made

up of binary flags,where “1”symbolizes that a cluster is in use,and “0”symbolizes
that a cluster is not in use. In some respects, it is similar to a FAT but without the
pointer values. $Bitmap simply records the use of the storage blocks on the
volume.

● $Boot. This is the Boot Record for the volume. It includes the BPB (BIOS
Parameter Block) which is used to mount the volume as well as additional
bootstrap loader code which is used if the volume is bootable. The details of the
BPB are given in Appendix 8.
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● $BadClus. This is a file which addresses the whole volume and which reports its
size as being the whole volume size. It should be noted that this file only refers to
clusters and not to sectors. If one sector in a cluster is found to be bad then the
whole cluster is marked as bad and an appropriate entry is made in the $Bad
stream of this file. The cluster is also marked as “used” in $Bitmap to ensure that
no data is stored there. NTFS does implement a feature on fault-tolerant volumes
where, on identifying a bad sector, all data within the cluster concerned is moved
to another location and the file details are amended appropriately. However, as a
result of advanced disk management techniques at the physical level of the disk
(see Chapter 5) it is rare with modern disks for the $Bad stream to contain entries.

● $Quota. This file was used in earlier versions of NTFS and is reportedly not used
in Windows 2000 or later. The file was implemented to manage volume allocation
quota sizes to users; that is, to control the amount of data that any specific user
could have stored on the volume.

● $Secure. This file contains unique security descriptors for all the files within a
volume. The security id field within the Standard Information Attribute of each
file record within the MFT is an index into the file $Secure.

● $Upcase. This file simply contains characters in the Unicode character set. It is
used to compare and sort filenames with a Unicode system without having to
make reference to the code page.

● $Extend. This is a directory within which extended system files such as $Quota
(see above), $ObjId, $Reparse and $UsnJrnl are located.

● $ObjId. This file is used for distributed link tracking. This allows shortcuts and
OLE links to continue to work after the target file is renamed or moved. When a
shortcut to a file on an NTFS volume is created, this system places a unique object
identifier (ID) into the target file. The object ID is also stored within the link file
and it is this object ID that is used to locate the target file. $ObjId uses a file named
Tracking.log for management information.

● $Reparse.This file contains details of the reparse points which may be used to give
additional functionality to applications that are able to make use of them.
Identified within the MFT record for the application, system calls can be inter-
cepted and then fed through further software.

● $UsnJrnl.This is a change journal file in which are recorded changes that are made
to an “object”. The changes are recorded at the end of the file, listing the file name
and the time and the type of the change. No actual data that changed is kept in the
file, which is a special hidden file.

The MFT in Detail

In this chapter,we set out to discuss sufficient of the low-level workings of the MFT as
to enable a forensic analyst to examine in some detail the structure and working of
an NTFS volume with a view to extracting evidence. It should be noted that much of
the material that follows has been obtained through a series of experiments that have
been carried out by the authors. Due to the limitations of both machine and man, all
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possible combinations of circumstances could not be tested.All direct references and
examples listed here refer to a sterile, standalone, Windows 2000 installation that was
created for the purpose of identifying and testing certain aspects of MFT use. It is
hoped that publication of this material will precipitate feedback from readers to
expand upon the base of reliable knowledge in this area. As always, the authors
strongly recommend that any such findings that an analyst relies upon are retested
for correctness, in the specific environment of the case, by the analyst personally.

Objects and Records

The MFT contains all details of all “objects”on the volume and thus it is the first port
of call for evidence regarding the presence of files, the relevant dates and times of
files, file sizes and identifications as well as their storage locations on the volume.

Each record within the MFT is of a fixed size and is numbered from the beginning
of the MFT, starting from 0. The position of any specific record in the MFT can be
found by multiplying its record number by the fixed record size and going to that
byte offset within the MFT file. In earlier versions of NTFS the record number was
not stored within the MFT record and its record number was determined implicitly
from its physical position within the MFT file. However, the version of NTFS shipped
with Windows XP does store the record number explicitly within the MFT record.

The MFT record is usually fixed at 1024 bytes. Although facilities are available to
accommodate other sizes,1024 bytes is the only size that has been seen to date within
the forensic computing field.

Attributes and Resident Data

Each object, whether it be a file or directory, has its own MFT record. The object is
seen as a collection of “attributes” which include details of the file or directory, the
associated dates and times and the data that makes up the file. Most attributes are
stored within the MFT record, including, if the data is sufficiently small in size, the
file data itself. This data is known as resident data. For example, a record for a small
.gif file of a few hundred bytes would be made up of the file details followed by the
data itself, all accommodated within the 1024 byte MFT record. We shall see how this
is stored in a later section.

If the amount of data for a file is too large to be accommodated within the MFT
record, then the data is stored elsewhere on the volume in a separate cluster or series
of clusters. Pointers within the MFT record indicate the location of this data on the
volume and its size.

Directories and INDX Records

Directories are dealt with in a similar manner. If the directory listing (which is
similar to a text file) can be accommodated within the MFT record then it becomes
resident data. If it grows to exceed the space available it is placed out on the volume,
again with pointers used to identify its location and size. The growing of files and
directories is of great interest to the forensic practitioner as the majority of the
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resident data remains as “slack” in the record when the object is moved out of the
MFT to the volume storage area. The data in the “slack” area may be of great
evidential importance, as it could be the only record of details referring to deleted
files. It is possible that the MFT record retains some entries as resident and some
entries as non-resident. Non-resident data is stored out on the volume in “Index
Buffer” files. These do not appear as files to the operating system or, indeed, to
forensic software. These files start with the keyword “INDX” and are laid out inter-
nally in a similar manner to MFT records using attributes. They are pointed to by the
use of data runs in the MFT record.

Pointers are used a great deal within MFT records, not only internally within the
record itself, but also to point to references elsewhere. For instance, pointers are used
to identify what directory a file exists in, and the MFT record for the file would
contain a pointer to the MFT record which contains the parent directory. Thus the
MFT can be used to create a screen display of a directory listing with links to the
actual files contained within that directory. This permits the directory tree structure,
familiar to most users, to be retained. It would be fair to say that the screen displays
presented to the user are little different from those produced using a FAT system,
except that more features are available, particularly in the security area.

The availability of storage space out on the volume is governed by a simple bitmap
system. As explained in the section on $Bitmap above, each cluster (or storage block)
is allocated one binary digit within the bitmap to signify the state of that cluster, with
“1” signifying that the cluster is in use and “0” signifying that the cluster is available
for use.

Storing a File

In simple terms, to store a file on the system, the following processes are carried out,
though not necessarily in the order shown:

● A search is made of the MFT to find the first available record.
● If the file is small enough to fit into the MFT record together with the file

Attributes it is written there; otherwise a search is made of the volume storage
area bitmap to identify a location and space where the file data can be recorded
out on the volume.

● The Attributes of the file are written to the MFT.
● The file data is written to the MFT or volume.
● Pointers are updated in the MFT to identify the location where the file data is

stored.
● For non-resident data the bitmap is updated to show that the cluster(s) occupied

by the file are now in use.
● The parent directory listing is updated and re-sorted.

Deleting a File

To delete a file on the system, the following processes are carried out, though not
necessarily in the order shown:
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● The MFT record is marked as deleted (a one byte flag).
● For non-resident data the bitmap is updated to show that the cluster(s) occupied

by the file are now available for use.
● The file entry in the parent directory listing is removed and the listing is re-sorted.

Note, however that the MFT record for the file itself will remain intact until
overwritten.

The BIOS Parameter Block

Before a single, and complete, MFT record can be identified the defined size of each
record must be known.This is available from the BIOS Parameter Block (BPB),which
would have been created on the disk at the time of installation of the NTFS file
system on the partition. The BPB is located within the Boot Record of the partition
and details of the BPB are given at Appendix 8.

Table 6.1 Boot sector and BIOS parameter block.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   EB 52 90 4E 54 46 53 20  20 20 20 00 02 08 00 00   ëR_NTFS    .....
00000016   00 00 00 00 00 F8 00 00 3F 00 80 00 3F 00 00 00   .....ø..?._.?...
00000032   00 00 00 00 80 00 80 00  40 2A 4C 00 00 00 00 00   ...._._.@*L.....
00000048 04 00 00 00 00 00 00 00 A4 C2 04 00 00 00 00 00   ........¤Â......
00000064 F6 00 00 00 01 00 00 00  B2 7C 0C D0 9E 0C D0 A0   ö.......²|.Ð_.Ð
00000080   00 00 00 00 FA 33 C0 8E  D0 BC 00 7C FB B8 C0 07   ....ú3À_Ð¼.|û¸À.
00000096   8E D8 E8 16 00 B8 00 0D  8E C0 33 DB C6 06 0E 00   yØè..¸.._À3ÛÆ...
00000112   10 E8 53 00 68 00 0D 68  6A 02 CB 8A 16 24 00 B4   .èS.h..hj.ËŠ.$.´
00000128   08 CD 13 73 05 B9 FF FF  8A F1 66 0F B6 C6 40 66   .Í.s.¹ÿÿŠñf.¶Æ@f
00000144   0F B6 D1 80 E2 3F F7 E2  86 CD C0 ED 06 41 66 0F   .¶Ñ_â?÷â†ÍÀí.Af.
00000160   B7 C9 66 F7 E1 66 A3 20  00 C3 B4 41 BB AA 55 8A   ·Éf÷áf£ .Ã´A»ªUŠ
00000176   16 24 00 CD 13 72 0F 81  FB 55 AA 75 09 F6 C1 01   .$.Í.r._ûUªu.öÁ.
00000192   74 04 FE 06 14 00 C3 66  60 1E 06 66 A1 10 00 66   t.�...Ãf`..f¡..f
00000208   03 06 1C 00 66 3B 06 20  00 0F 82 3A 00 1E 66 6A   ....f;. ..‚:..fj
00000224   00 66 50 06 53 66 68 10  00 01 00 80 3E 14 00 00   .fP.Sfh...._>...
00000240   0F 85 0C 00 E8 B3 FF 80  3E 14 00 00 0F 84 61 00   .…..è³ÿ_>....„a.
00000256   B4 42 8A 16 24 00 16 1F  8B F4 CD 13 66 58 5B 07   ´BŠ.$...‹ôÍ.fX[.
00000272   66 58 66 58 1F EB 2D 66  33 D2 66 0F B7 0E 18 00   fXfX.ë-f3Òf.·...
00000288   66 F7 F1 FE C2 8A CA 66  8B D0 66 C1 EA 10 F7 36   f÷ñzÂŠÊf‹ÐfÁê.÷6
00000304   1A 00 86 D6 8A 16 24 00  8A E8 C0 E4 06 0A CC B8   ..†ÖŠ.$.ŠèÀä..Ì¸
00000320   01 02 CD 13 0F 82 19 00  8C C0 05 20 00 8E C0 66   ..Í..‚..ŒÀ. ._Àf
00000336   FF 06 10 00 FF 0E 0E 00  0F 85 6F FF 07 1F 66 61   ÿ...ÿ....…oÿ..fa
00000352   C3 A0 F8 01 E8 09 00 A0  FB 01 E8 03 00 FB EB FE   Ã ø.è.. û.è..ûë�
00000368   B4 01 8B F0 AC 3C 00 74  09 B4 0E BB 07 00 CD 10   ´.‹x¬<.t.´.»..Í.
00000384   EB F2 C3 0D 0A 41 20 64  69 73 6B 20 72 65 61 64   ëòÃ..A disk read
00000400   20 65 72 72 6F 72 20 6F  63 63 75 72 72 65 64 00    error occurred.
00000416   0D 0A 4E 54 4C 44 52 20  69 73 20 6D 69 73 73 69   ..NTLDR is missi
00000432   6E 67 00 0D 0A 4E 54 4C  44 52 20 69 73 20 63 6F   ng...NTLDR is co
00000448   6D 70 72 65 73 73 65 64  00 0D 0A 50 72 65 73 73   mpressed...Press
00000464   20 43 74 72 6C 2B 41 6C  74 2B 44 65 6C 20 74 6F    Ctrl+Alt+Del to
00000480   20 72 65 73 74 61 72 74  0D 0A 00 00 00 00 00 00    restart........
00000496   00 00 00 00 00 00 00 00  83 A0 B3 C9 00 00 55 AA   ........ƒ ³É..Uª

Table 6.1 shows, in a hexadecimal and ASCII display format, the boot sector and
BIOS parameter block for our example system. The defined size of the MFT record
on this system is specified at byte offset 64. This is a signed 8 bit number which is
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used in two different ways.If this number is positive (between 00–7Fh) it defines how
many clusters there are for each MFT record. If this number is negative (80–FFh) it
defines how many bytes there are for each MFT record. The actual value is calculated
by raising 2 to the power of the absolute value of this number. In this case it may be
seen that the byte at offset 64 (black background) is F6h.

The 8 bit signed value of the number, F6, is –10 and its absolute value is 10. Thus
the number of bytes (because it is negative) in each MFT record entry is 210 = 1024
bytes. This conforms with our current experience that all systems seen to date have a
1024 byte record size.

The size of the MFT records in the example MFT has now been identified and from
this we know that each record will appear at 1024 byte intervals throughout the MFT.

The location of the start of the MFT is also given within the BPB. The logical
cluster number of the start of the MFT is given at byte offsets 48 to 55 as a 64 bit little-
endian number. In this case the MFT is seen to start at logical cluster 4 (mid-grey
background). At byte offset 13 the sector-per-cluster count is shown as 8 (light grey
background), and so the MFT starts at logical sector 4 × 8 = 32. This is equivalent to
physical sector 95, since there is normally one track from the partition table to the
boot record, and this partition has 63 sectors per track. This is confirmed by byte
offset 24 (double underline) which contains the value 3Fh = 63.

As might be expected, the MFT file itself is the subject of the first record in the
MFT. Its size is defined within the Attribute Header for the Data Attribute within the
record. In this case the physical size of the file, the logical size of the file and the
initialized stream are all specified at 6,750,208 bytes, and the data run specifies a run
length of 1,648 clusters starting at cluster 4. For details on how these items are
identified see Appendix 9.

Types of Record

By inspection, we find that there are four types of record in our sample MFT:

● Records for files with resident data.
● Records for files with non-resident data.
● Records for directories with resident data.
● Records for directories with non-resident data.

Attribute IDs

We also note that the MFT entries are made up of a series of “Attributes” which are
declared in the metadata file $AttrDef, as mentioned earlier. A scan of the $AttrDef
file in our sample MFT shows that the following Attributes with their ID numbers are
declared (see Table 6.2).

The ID number is a 4 byte identifier found at byte offset 129 of each record in the
$AttrDef file. The record length, from inspection, is 160 bytes, the identifiers having
been found to be 160 bytes apart in every case. This is easily determined using a
hexadecimal viewer to view the binary layout of the file. Table 6.2 indicates that there
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are 15 possible types of Attribute within the sample MFT, although it is unlikely that
all will be used.

Experimentation has shown that every record in the MFT has a "FILE" Record
Header which is always the same length for a given operating system. In the case of
Windows 2000 it is 48 bytes, and for Windows XP its is 56 bytes. This header is
followed by a number of Attributes which themselves have anAttribute Header. The
Attribute header contains a field which stores the length of the Attribute. The next
series of bytes following that stated length should either be the header field for the
next Attribute or the end of record marker, FF FF FF FFh.

All MFT records in the sample MFT have the following overall structure:

● File Record Header
● Attribute Header
● Attribute Proper
● Attribute Header
● Attribute Proper
● Further Attribute Header and Attribute Proper pairs
● End of Record marker (FF FF FF FFh)
● Error Check Sequence (4 bytes)

It should be noted at this point that the Attribute Header can vary in size and
content.The type of template to be applied depends upon bytes at offsets 8 and 9 of the
header itself. These bytes indicate whether the Attribute is Resident or Non-Resident,
Named or Un-Named. Details of the four templates are given in Appendix 9.

Analysis of a Sample MFT File Record with Resident Data

At Table 6.3 is shown our sample MFT record with resident data in a hexadecimal and
ASCII display format. Inspection of this record shows a probable filename in
Unicode at offset 234 (black background) as being immediately recognizable. To the
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Standard_Information ID 10 00 00 00
Attribute_List ID 20 00 00 00
File_Name ID 30 00 00 00
Object_ID ID 40 00 00 00
Security_Descriptor ID 50 00 00 00
Volume_Name ID 60 00 00 00
Volume_Information ID 70 00 00 00
Data ID 80 00 00 00
Index_Root ID 90 00 00 00
Index_Allocation ID A0 00 00 00
Bitmap ID B0 00 00 00
Reparse_Point ID C0 00 00 00
EA_Information ID D0 00 00 00
EA ID E0 00 00 00
Logged_Utility_Stream ID 00 00 00 00

Table 6.2 Attributes and IDs in sample MFT.



practised eye there appears to be a set of four 8-byte Microsoft “FILETIME”date and
time entries at offset 72 (light grey background) and again at offset 176 (mid-grey
background). Forensic practitioners will frequently come across such date and time
entries and the “C0 01” and “C4 01” values are an immediate clue as to there being a
possibly correct FILETIME interpretation. Microsoft FILETIME is a date and time
field that is defined as a 64 bit number (held here in little endian format) that repre-
sents the number of 100 nanosecond intervals that have elapsed since 00:00:00 GMT
on 1 January 1601.

The file data itself appears to start at offset 464 with the known start string of a
.gif file, GIF89a (double underline). The data appears to end at offset 727.

Table 6.3 Sample MFT record with resident data.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00 6D A1 8C 00 00 00 00 00   FILE*...m¡Œ.....
00000016   01 00 01 00 30 00 01 00  D8 02 00 00 00 04 00 00   ....0...Ø.......
00000032   00 00 00 00 00 00 00 00  05 00 03 00 84 94 00 00   ............„”..
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........
00000064   48 00 00 00 18 00 00 00 00 E0 48 68 B6 D7 C0 01 H........àHh¶×À.
00000080 00 E0 48 68 B6 D7 C0 01  76 2F 3F 3C 8A 57 C4 01 .àHh¶×À.v/?<ŠWÄ.
00000096 98 EF 7F 33 89 57 C4 01 20 00 00 00 00 00 00 00   ˜ïÇ3‰WÄ. .......
00000112   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000144   30 00 00 00 78 00 00 00  00 00 00 00 00 00 04 00   0...x...........
00000160   5A 00 00 00 18 00 01 00  48 00 00 00 00 00 01 00   Z.......H.......
00000176 60 53 63 33 89 57 C4 01  98 EF 7F 33 89 57 C4 01 `Sc3‰WÄ.˜ïÇ3‰WÄ.
00000192 98 EF 7F 33 89 57 C4 01  98 EF 7F 33 89 57 C4 01 ˜ïÇ3‰WÄ.˜ïÇ3‰WÄ.
00000208   00 01 00 00 00 00 00 00  FF 00 00 00 00 00 00 00   ........ÿ.......
00000224   20 00 00 00 00 00 00 00  0C 03 69 00 70 00 70 00 .........i.p.p.
00000240 5F 00 30 00 30 00 30 00  35 00 2E 00 67 00 69 00 _.0.0.0.5...g.i.
00000256 66 00 18 00 00 00 01 00  50 00 00 00 B0 00 00 00   f.......P...°...
00000272   00 00 00 00 00 00 03 00  94 00 00 00 18 00 00 00   ........”.......
00000288   01 00 04 84 78 00 00 00  88 00 00 00 00 00 00 00   ...„x...ˆ.......
00000304   14 00 00 00 02 00 64 00  04 00 00 00 00 10 18 00   ......d.........
00000320   A9 00 12 00 01 02 00 00  00 00 00 05 20 00 00 00   ©........... ...
00000336   21 02 00 00 00 10 18 00  A9 00 12 00 01 02 00 00   !.......©.......
00000352   00 00 00 05 20 00 00 00  23 02 00 00 00 10 18 00   .... ...#.......
00000368   FF 01 1F 00 01 02 00 00  00 00 00 05 20 00 00 00   ÿ........... ...
00000384   20 02 00 00 00 10 14 00  FF 01 1F 00 01 01 00 00    .......ÿ.......
00000400   00 00 00 05 12 00 00 00  01 02 00 00 00 00 00 05   ................
00000416   20 00 00 00 20 02 00 00  01 01 00 00 00 00 00 05    ... ...........
00000432   12 00 00 00 9C 52 84 94  80 00 00 00 18 01 00 00   ....œR„”_.......
00000448   00 00 18 00 00 00 01 00  FF 00 00 00 18 00 00 00   ........ÿ.......
00000464 47 49 46 38 39 61 0F 00  0F 00 C4 FF 00 C0 C0 C0   GIF89a....Äÿ.ÀÀÀ
00000480   6B 6B 39 63 63 31 73 73  39 6B 6B 31 84 8C 4A 73   kk9cc1ss9kk1„ŒJs
00000496   7B 42 7B 84 42 6B 73 39  7B 84 4A 8C 9C 52 03 00   {B{„Bks9{„JŒœR..
00000512   52 7B 8C 4A 73 84 42 9C  B5 63 94 AD 5A 8C A5 5A   R{ŒJs„BÉFc”−ZŒ¥Z
00000528   94 AD 63 AD CE 7B A5 C6  73 9C BD 6B AD D6 7B B5   ”−c−Î{¥Æsœ½k−Ö{µ
00000544   DE 84 00 00 00 00 00 00  00 00 00 00 00 00 00 00   Þ„..............
00000560   00 00 00 00 00 00 00 00  00 00 00 00 00 21 F9 04   .............!ù.
00000576   01 00 00 00 00 2C 00 00  00 00 0F 00 0F 00 00 05   .....,..........
00000592   7C 20 20 8A D1 03 29 CB  A8 02 54 4B 45 D0 52 1C   |  ŠÑ.)Ë¨.TKEÐR.
00000608   2B 35 DD AD B9 24 C6 68  4B 15 1C 6C C1 30 20 44   +5Ý−¹$ÆhK..lÁ0 D
00000624   B6 8A 25 F8 8A 15 8C 80  C8 AF 22 99 34 77 87 80   ¶Š%øŠ.Œ_È¯"™4w‡_
00000640   E0 E1 B0 E1 1C 11 14 0F  21 80 44 BA 2D 70 8C 71   àáEá....!_Dº-pŒq
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00000656   18 10 08 0A 73 64 6E 12  1B 05 82 C5 22 0E E9 EB   ....sdn...‚Å".éë
00000672   13 0D 06 5A 04 00 05 7A  87 05 09 6D 01 04 02 22   ...Z...z‡..m..."
00000688   09 90 89 90 06 03 5A 78  23 06 99 99 03 08 83 8E   ._‰_..Zx#.™™..ƒ_
00000704   2A 08 9D 01 96 97 2B 22  8D 78 84 2A 21 00 3B 00   *._.–—+"_x„*!.;.
00000720   FF FF FF FF 82 79 47 11  00 00 00 00 00 00 00 00   ÿÿÿÿ‚yG.........
00000736   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000752   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000768   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000784   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000800   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000816   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000832   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000848   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000864   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000880   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000896   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000912   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000928   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000944   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000960   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000976   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000992   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00001008   00 00 00 00 00 00 00 00  00 00 00 00 00 00 03 00   ................

Normal user access to this file, via a directory folder view in Windows Explorer,
shows at Table 6.4 the file details reported by the operating system, Windows 2000.

Table 6.4 Windows Explorer file directory details.
File Name & Path \WINNT\Web\printers\images\ipp_0005.gif
Size (bytes) 255
Last Accessed 21/06/04 12:13
Last Written 08/05/01 12:00
File Created 08/05/01 12:00
Attributes Archive bit set

With an image of the system loaded as a virtual disk, forensic software was used to
examine the directory details of this file, with the results as shown at Table 6.5.

Table 6.5 Forensic software file directory details.
File Name ipp_0005.gif
Last Access 21/06/04 12:13:45
Last Written 08/05/01 12:00:00
File Created 08/05/01 12:00:00
Entry Modified 21/06/04 12:21:10
Logical Size 255
Physical Size 255
Starting Extent 0C-C177
Physical Location PS:1481, SO:464
Full Path WINNT\Web\printers\images\ipp_0005.gif

Taking it Apart – the FILE Record Header

The FILE record header appears at the beginning of all MFT records. As mentioned
above, its length is 48 bytes for the sample MFT because this is a Windows 2000
system. For Windows XP the header length is 56 bytes because this later version of
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NTFS adds the MFT record number into the record header. In what follows, it should
also be noted that almost all hexadecimal values are shown in little endian format,
which is the format in which they are stored.

We now examine the header, line by line. At Table 6.6 we see that the first 4 bytes
spell out the word “FILE” (black background), which identifies the entry as a file
record. From an inspection of the sample MFT we note that all records start in this
way.

Table 6.6 Start of file record header.
00000000 46 49 4C 45 2A 00 03 00 6D A1 8C 00 00 00 00 00   FILE*...m¡Œ.....

At Table 6.7 we see that the next two bytes (black background) are the value 2A 00,
which in little endian is 002A = decimal 42. This is the offset pointer to the Update
Sequence Number and Array and counts from the beginning of the header. It is
typically different for different operating systems. In the case of Windows XP, where
the MFT Record Number is allocated an additional field in this Header, the value in
these two bytes will point six further bytes into the record. In what follows, we have
only shown the situation for Windows 2000. See Appendix 9 for further details.
Examination of the two bytes at offset 42 shows them to contain the values 03 00 and
we will be discussing the significance of this in a later section.

Table 6.7 Offset to Update Sequence Number.
00000000   46 49 4C 45 2A 00 03 00 6D A1 8C 00 00 00 00 00   FILE*...m¡Œ.....

Byte offsets (counting from zero) 6 and 7 specify the size of the update sequence,
and this is another two byte integer in little endian format.As can be seen at Table 6.8,
the value here is 03 00 (black background) or decimal 3. This number here is used to
represent the number of words rather than the number of bytes. It indicates that
three words are used for the Update Sequence Number and the Update Sequence
Array (see Tables 6.18 and 6.19). Further explanation is given below, where the
update sequence itself is explored and discussed. From an inspection of the MFT, we
note that all records in the sample file contain 03 00h at this location.

Table 6.8 Size of update sequence.
00000000   46 49 4C 45 2A 00 03 00 6D A1 8C 00 00 00 00 00   FILE*...m¡Œ.....

Highlighted (black background) in Table 6.9, the next 8 bytes (offsets 8 to 15) refer
to the $Logfile sequence number (see $Logfile above).

Table 6.9 $Logfile sequence number.
00000000   46 49 4C 45 2A 00 03 00 6D A1 8C 00 00 00 00 00 FILE*...m¡Œ.....

Bytes 16 and 17 (black background) in Table 6.10, are referred to as the “Record
Use Sequence Number”, which is set to “1” when the MFT record is first used. It is
subsequently incremented each time that the record is reused. It is interesting to note
that the actual increment operation is made when the record is marked as deleted
and available for reuse.See the item on “Identification of Files in Unallocated Space –
Deleted Files” at the end of this chapter for possible other uses of this number in
directory records.

Table 6.10 Record use sequence number.
00000016 01 00 01 00 30 00 01 00  D8 02 00 00 00 04 00 00   ....0...Ø.......

The New Technology File System 227



Bytes 18 and 19 (black background) in Table 6.11 refer to the hard link count for
this file, stored as a two-byte integer number. Microsoft9 define hard links as:

“NTFS-based links to a file on an NTFS volume. By creating hard links, you can have a
single file in multiple folders without duplicating the file. You can also create multiple
hard links for a file in a folder if you use different file names for the hard links. Because all
of the hard links reference the same file, applications can open any of the hard links and
modify the file.”

Table 6.11 Hard link count.
00000016   01 00 01 00 30 00 01 00  D8 02 00 00 00 04 00 00   ....0...Ø.......

Bytes situated at offsets 20 and 21 (black background) in Table 6.12 are again a
two-byte integer value specifying the “Offset to First Attribute”in this record.As with
most of the pointers in the MFT, the figure is calculated from the start of the header.
This pointer indicates that the first Attribute starts at 0030h which is byte offset 48.

Table 6.12 Pointer to first Attribute.
00000016   01 00 01 00 30 00 01 00  D8 02 00 00 00 04 00 00   ....0...Ø.......

The next two bytes, 22 and 23 (black background) in Table 6.13, are a set of flags.
The two bytes, and in particular the byte at offset 22, refer to the current state of this
particular record. The possible values are: 00 00 = a deleted FILE record, 01 00 = a
FILE record in use, 02 00 = a deleted DIRECTORY record, and 03 00 = a DIRECTORY
record in use. In this case we note that the value is 01 00 and that it is a FILE record in
use.

Table 6.13 Record flags.
00000016   01 00 01 00 30 00 01 00 D8 02 00 00 00 04 00 00   ....0...Ø.......

Bytes at offsets 24 to 27 (black background) in Table 6.14 indicate the “real” length
of the file record. To clarify this, it is referred to here as the “logical size” in keeping
with the standards operated within the forensic community relating to file size and
allocated space size. This “logical”size is the actual number of bytes of data stored in
the record.By inspection of the sample MFT record (Table 6.3), the probable size may
be identified visually as 728 bytes. Stored as a 4 byte integer in little endian format,
the value 000002D8h equates to 728 decimal, exactly as expected!

Table 6.14 Logical size of record.
00000016   01 00 01 00 30 00 01 00 D8 02 00 00 00 04 00 00   ....0...Ø.......

The final four bytes of this line, from offsets 28 to 31 (black background) in Table
6.15, indicate the allocated storage size of the file record. This is referred to as the
“physical” size and you will recall that this size has already been preset to 1024 bytes
by the BPB. In this case translation from the little endian format gives 00000400h,
which does indeed equate to 1024 decimal.

Table 6.15 Physical size of record.
00000016   01 00 01 00 30 00 01 00  D8 02 00 00 00 04 00 00 ....0...Ø.......
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The bytes at offsets 32 to 39 (black background) in Table 6.16, store the “Base File
Reference” that is used when the record to be stored exceeds the allocated space of
one or more MFT records. When this occurs, the succeeding records, which may be
considerably detached from the first one used, contain a reference at this location to
their “parent” record. It is not necessarily the case that the next record in the MFT
will be used to store such “overflow” data; the record used could be anywhere in the
MFT and some distance, in terms of records, from the first one used. Experiments
carried out on this “Base File Reference” concept found the name to be a rather poor
description of this field. The 8 byte number is actually made up of more than one
value. The function of the whole number is unclear, but it seems likely that the first
six bytes specifically identify the record number in the MFT of the “parent” record
and the last two bytes of the field may well be a sequence number or identifier. In
addition to these “backward” pointers to the parent in these Base File Reference
fields, there are a series of “forward” pointers to the children (the extended records)
in the parent record itself. These forward pointers are in the order that the children
are to be read. In this particular case, there is no parent record and the value in the
Base File Reference is 00 00 00 00 00 00 00 00.

Table 6.16 Base file reference.
00000032 00 00 00 00 00 00 00 00 05 00 03 00 84 94 00 00   ............„”..

Two bytes, at offset 40 and 41 (black background) in Table 6.17, appear to be used
to identify the value of the ordinal number for the next Attribute to be added to this
record. In this case, the record is reported to contain four Attributes, so the next one
will be the fifth. This fact will be seen to be confirmed for this record as the decons-
truction analysis progresses. However, visual inspection of 100 other records in this
MFT revealed that the value is unreliable as an indicator of the number of Attributes
present. It may well be that it is a count of Attributes that have been used within the
record and that it reverts to zero on record reuse. Experiments have shown that the
count is incremented when an Attribute is added but does not seem to be decre-
mented when one is removed.

Table 6.17 Possible Attribute count.
00000032   00 00 00 00 00 00 00 00 05 00 03 00 84 94 00 00   ............„”..

Bytes 42 and 43 (black background) in Table 6.18 have already been identified
above as the “Update Sequence Number”. This is apparently used to check the
integrity of each MFT record. As may be noted by inspection, this same number (in
this case 03 00h) also appears as the last two bytes of each physical sector of the MFT
record. The explanation for this is given in the next section.

Table 6.18 Update Sequence Number.
00000032   00 00 00 00 00 00 00 00  05 00 03 00 84 94 00 00   ............„”..

The final four bytes of the “FILE” header, offsets 44 to 47 (black background) in
Table 6.19, are used for the “Update Sequence Array”. In this case the sequence array
consists of the four bytes 84 94 00 00h. In order to check the consistency of MFT
records, and other protected records, NTFS uses a “fix-up” code that it places in the
final two bytes of each sector. In this case that code is 03 00h, the number that is
identified as the “Update Sequence Number”. The bytes which originally occupied
these locations in each sector are placed in a buffer, the buffer we are now examining
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at bytes 44 to 47. There are two sectors in an MFT record and therefore four bytes are
replaced. The four replaced bytes are 84 94h for the first sector and 00 00h for the
second sector.

Table 6.19 Update Sequence Array.
00000032   00 00 00 00 00 00 00 00  05 00 03 00 84 94 00 00 ............„”..

Use of the Update Sequence Number and the Update Sequence Array

When the record is read by the operating system the sequence bytes in the last two
bytes of the sector are checked to ensure that the sector has been read correctly. Once
this has been done the appropriate two bytes are copied from the sequence array
buffer into the correct location in the read data. As a check of this process, the file to
which this record refers was copied out to a FAT-based disk.At Table 6.20 is shown the
first part of the file as we found it held resident in the MFT record. We see (black
background) the Update Sequence Number, 03 00h, in the last two bytes of the sector,
offsets 510 and 511. The values that were originally there we see as the first two bytes
of the Update Sequence Array, 84 94h, in Table 6.19.

Table 6.20 Start of GIF file resident in MFT.
00000464   47 49 46 38 39 61 0F 00  0F 00 C4 FF 00 C0 C0 C0   GIF89a....Äÿ.ÀÀÀ
00000480   6B 6B 39 63 63 31 73 73  39 6B 6B 31 84 8C 4A 73   kk9cc1ss9kk1„ŒJs
00000496   7B 42 7B 84 42 6B 73 39  7B 84 4A 8C 9C 52 03 00 {B{„Bks9{„JŒœR..
00000512   52 7B 8C 4A 73 84 42 9C  B5 63 94 AD 5A 8C A5 5A   R{ŒJs„Bœµc”−ZŒ¥Z

At Table 6.21,we show the first part of the GIF file as we found it when copied out to
a FAT-based disk. Here we see, at offsets 510 and 511, the correct sequence of 84 94h,
again with a black background. It is clear, that, on copying out, these two bytes are
reset from the Update Sequence Number of 03 00h, present whilst they are held
within the MFT record, to their correct file values of 84 94h, that had been saved in
the Update Sequence Array.

Table 6.21 Start of GIF file as copied out.
00000464   47 49 46 38 39 61 0F 00  0F 00 C4 FF 00 C0 C0 C0   GIF89a....Äÿ.ÀÀÀ
00000480   6B 6B 39 63 63 31 73 73  39 6B 6B 31 84 8C 4A 73   kk9cc1ss9kk1„ŒJs
00000496   7B 42 7B 84 42 6B 73 39  7B 84 4A 8C 9C 52 84 94 {B{„Bks9{„JŒœR„”
00000512   52 7B 8C 4A 73 84 42 9C  B5 63 94 AD 5A 8C A5 5A   R{ŒJs„Bœµc”−ZŒ¥Z

The area of the MFT record beyond the “logical” record length is often (as is the
case here; see Table 6.3) occupied by zeros. Therefore bytes 46 and 47 of the Update
Sequence Array (see Table 6.19) are zero. These are the true values for the last two
bytes of the record, which in the MFT have also been replaced with 03 00h at offsets
1022 and 1023 (see Table 6.3).

This replacement of bytes can have a significant effect on the forensic extraction of
files directly from the MFT in raw form. If the file is copied out normally using the
NTFS system, the last two bytes in each sector will be replaced correctly and
automatically by NTFS. If, however, the file is extracted directly from the MFT record
using, for example, a hexadecimal editor, this replacement process will not occur and
the last two bytes of each sector will continue to contain the Update Sequence
Number. This means, of course, that MD5 signatures for the two versions will be very
different. Analysts must be aware of the issues surrounding the Update Sequence
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Number, so that extractions of this type can be made correctly. They should also be
able to explain the differences between the storage of files using this system and the
storage of files in FAT-based systems.

A similar arrangement applies to other “protected” records. These include
external “INDX” index records where the length of allocation blocks is fixed at 4096
bytes. A brief examination of an “INDX” record on the sample volume showed that
the Size of Update Sequence here is reported to be 9. Since the record is of 4096 bytes
in length, which is 8 sectors, we would expect there to be 8 pairs of bytes (one pair for
each sector) to be held in the Update Sequence Array. Thus a reported length of 9
must refer to nine words,one word for the Update Sequence Number and eight words
for the Update Sequence Array.

A random inspection of the records in the sample MFT showed the two bytes to be
consistently present at offsets 42 and 43 with values 03 00h. They were also noted to
be consistently present at record offsets 510, 511, 1022 and 1023 for every record
examined.

Further experiments showed that the same cloned NTFS volume, mounted on 18
identical machines each with identical Windows 2000 operating systems, generated
several different Update Sequence Numbers when they were mounted as secondary
volumes. This suggests that NTFS not only checks the consistency of the MFT during
a mount but may also rewrite part or all of the MFT with a different Update Sequence
Number during this check. This, too, has considerable significance from a forensic
viewpoint.

Taking it Apart – the Standard Information Attribute

Every MFT is made up of a series of “Attributes”. Following the FILE Record header,
described above, is the first of these, the Standard Information Attribute. The
Attribute ID for this Attribute (see Table 6.2) is 10 00 00 00h. The first part of this
Attribute follows a regular pattern known as the Attribute Header, which is here 24
bytes long. The length of this header varies according to whether or not it is Resident
(offset 8 of the header) or named (offset 9 of the header).

The Attribute Header

Continuing with our sample record from Table 6.3, the bytes at offsets 48 to 51 (black
background) at Table 6.22 make up the four-byte identifier for this Attribute. These
Attribute IDs are defined, as already mentioned, in the $AttrDef file, and we have
shown the specific ones for this sample at Table 6.2.

Table 6.22 Attribute ID.
00000048 10 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00 ....`...........

Bytes 52 to 55 (black background) at Table 6.23 define the length of this Attribute.
This conforms with the common practice of defining the length of an entry immedi-
ately following the identifier. The length shown here is 00000060h, which is 96
decimal. Inspection of Table 6.3 shows that 96 bytes on from the beginning of this
Attribute (offset 48), at byte offsets 144 to 147, are the four values 30 00 00 00h. This is
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a set of four bytes which should be another Attribute ID. In this case it is the ID for a
File Name Attribute (see Table 6.2), which is a valid entry, as we will see later.

Table 6.23 Length of Attribute.
00000048   10 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00   ....`...........

At Byte 56 (black background) at Table 6.24 is the resident/non-resident flag. This
is signified by 00h for a resident Attribute and 01h for a non-resident Attribute. The
flag refers to the body of the Attribute itself. Other Attributes will have similar
headers in which each Attribute will be defined as resident or non-resident.

Table 6.24 Resident/non-resident flag.
00000048   10 00 00 00 60 00 00 00 00 00 00 00 00 00 00 00   ....`...........

The next byte, at offset 57 (black background) at Table 6.25, is the length of the
name of the Attribute. In this case the length is zero, since this Attribute is not
allocated a name.

Table 6.25 Length of name of Attribute.
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........

The bytes at offsets 58 and 59 (black background) at Table 6.26 indicate the offset
value to the start of the Attribute proper. These are not always used, as here, where
they are shown as 00 00h. It is not known why two similar fields are included in this
header; both are used in the sample MFT. See Tables 6.30 and 6.59.

Table 6.26 Offset to name of Attribute.
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........

The bytes at offset 60 and 61 (black background) at Table 6.27 are identified as a set
of flags which signify the following states: 00 00h = normal, 01 00h = compressed, 40
00h = encrypted and 80 00h = sparse. It may well be, and the authors suspect this to
be the case, that this field is included in the Attribute Header for use only with a Data
Attribute. These offsets were examined right across the sample MFT and no non-
zero hits were found. However, examination of other systems revealed that files
marked as compressed did have the associated value (01 00h) stored at this location
within the relevant Data Attributes.

Table 6.27 Flags.
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........

The purpose of the bytes at offsets 62 and 63 (black background) at Table 6.28 is
unclear. Some sources suggest they are used as some form of Attribute ID. Explo-
ration of other MFTs suggest that these may be used for a number of purposes which
have not yet been sufficiently well identified by the authors. It is possible that part of
the field may be used as a flag to show virus-infected and virus-cleaned files.

Table 6.28 Not yet known.
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00 ....`...........

The four bytes from offset 64 to offset 67 (black background) at Table 6.29 define
the length of the Attribute proper. In this case the value is 00000048h, which is 72 in
decimal.This Attribute Header is 24 bytes long and the complete Attribute, including
this header, is defined at bytes 52 to 55 (see Table 6.23) as 96 bytes. The value of the
Attribute proper should therefore be 96 – 24 = 72, which is what is stored here.
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Table 6.29 Length of Attribute proper.
00000064 48 00 00 00 18 00 00 00  00 E0 48 68 B6 D7 C0 01   H........àHh¶×À.

The next two bytes, at offsets 68 and 69 (black background) at Table 6.30, indicate
the offset from the beginning of this Attribute to the start of the Attribute proper.
This is where the Standard Information Attribute details start,after the header that is
currently being deconstructed. The value is 0018h which equals 24 decimal. Noting
from Table 6.22 that the start offset for this Attribute is 48, then the Attribute proper
starts at offset 48 + 24 = 72.

Table 6.30 Offset to start of Attribute proper.
00000064   48 00 00 00 18 00 00 00  00 E0 48 68 B6 D7 C0 01   H........àHh¶×À.

Highlighted (black background) at Table 6.31 are byte offset 70, reported to be the
“indexed” flag, and byte offset 71, reported to be padding to an 8 byte boundary. As
will be seen, this padding is not unusual.

Table 6.31 Indexed flag and padding.
00000064   48 00 00 00 18 00 00 00 00 E0 48 68 B6 D7 C0 01   H........àHh¶×À.

The Standard Information Attribute Proper

The first 32 bytes of this Attribute proper from byte offset 72 to byte offset 103 (black
background) at Table 6.32, refer to four dates and times.

Table 6.32 Four dates and times.
00000064   48 00 00 00 18 00 00 00 00 E0 48 68 B6 D7 C0 01 H........àHh¶×À.
00000080 00 E0 48 68 B6 D7 C0 01  76 2F 3F 3C 8A 57 C4 01 .àHh¶×À.v/?<ŠWÄ.
00000096 98 EF 7F 33 89 57 C4 01 20 00 00 00 00 00 00 00   ˜ïÇ3‰WÄ. .......

The values stored in these bytes are in a format known as a “FILETIME”, which we
mention above (see Table 6.3). This is a 64 bit number (held here in little endian
format) that represents the number of 100 nanosecond intervals that have elapsed
since 00:00:00 GMT on 1 January 1601. The date and time values in these 32 bytes are
shown in Table 6.33.

Table 6.33 Date and time values.
Bytes 72 to 79 Creation Date and Time 08/05/01 12:00:00 GMT
Bytes 80 to 87 Last Modified Date and Time 08/05/01 12:00:00 GMT
Bytes 88 to 95 Last MFT Record Change Date and Time 21/06/04 12:21:10 GMT
Bytes 96 to 103 Last Access Date and Time 21/06/04 12:13:45 GMT

An examination of the reported times and dates by the operating system and by
forensic software (see Tables 6.4 and 6.5 respectively) reveals that they are consistent
with those recorded here.

Byte offsets 104 to 107 (black background) at Table 6.34 are used for File Permis-
sions, which are similar to the FAT attribute byte in a directory entry. This attribute
byte system, in the style of MS-DOS, is used on byte offset 104 with further attributes
being set by byte offset 105. It is understood that the byte offsets 106 and 107 are
reserved for similar use.

Table 6.34 File permissions.
00000096   98 EF 7F 33 89 57 C4 01 20 00 00 00 00 00 00 00   ˜ïÇ3‰WÄ. .......
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At Table 6.35 are shown the values that we have identified. Those with an asterisk
are file permissions that we have not ourselves tested.

Table 6.35 File permissions values.
01 00 00 00 = Read Only
02 00 00 00 = Hidden
04 00 00 00 = System
20 00 00 00 = Archive
40 00 00 00 = Device*
80 00 00 00 = Normal*
00 01 00 00 = Temporary*
00 02 00 00 = Sparse File*
00 04 00 00 = Reparse Point
00 08 00 00 = Compressed
00 10 00 00 = Offline*
00 20 00 00 = Not Content Indexed*
00 40 00 00 = Encrypted

Byte offsets 108 to 111 (black background) at Table 6.36 are said to be allocated for
“Maximum Number of Versions”. When zero, as here, it is understood that version
numbering is disabled. This field is thought to be associated with Network Security,
where there are multiple users and multiple files.

Table 6.36 Maximum Number of Versions.
00000096   98 EF 7F 33 89 57 C4 01  20 00 00 00 00 00 00 00 ˜ïÇ3‰WÄ. .......

Byte offsets 112 to 115 (black background) at Table 6.37 are described as a “Version
Number”and byte offsets 116 to 119 as a “Class ID”. Experiments were carried out to
try to identify useful records for these fields, but none were found. No conclusions
have so far been reached regarding the proven use of these particular byte offsets.

Table 6.37 Version Number and Class ID.
00000112 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................

It is claimed that byte offsets 120 to 123 (black background) at Table 6.38 are the
“Owner ID”. No relevant records were found in the sample MFT.

Table 6.38 Owner ID.
00000112   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................

Byte offsets 124 to 127 (black background) at Table 6.39 are understood to be a
“Security ID”. Experiments were carried out to try to identify records within which
these bytes are used. By extracting the record number of each successful “hit” and
looking it up in the file list table of the volume, produced by forensic software, the
values allocated to these bytes can be linked to the name and path of the referenced
file. By sorting this combined list by the values of the bytes, a pattern of allocation is
detectable. It appears that the system uses these bytes to “categorize”the file to which
the value is applied. It is not known what use the system makes of this on a
standalone machine, but the use of a categorized index could have a number of uses
on a network. Whether these values are used as a “Security ID” has not been deter-
mined experimentally by the authors; certainly these bytes are used by the system for
some purpose involving the type of file referenced, but the detail of this use is not
known at the present time.
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Table 6.39 Security ID.
00000112   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

It is claimed that byte offsets 128 to 135 (black background) at Table 6.40 are the
“Quota Charged”. The MFT was parsed for any non-zero values in these bytes,but no
relevant records were found. If of zero value, as seen here, then it is understood that
Quotas are disabled.

Table 6.40 Quota charged.
00000128 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................

It is claimed that byte offsets 136 to 143 (black background) at Table 6.41 are
claimed to be the “Update Sequence Number” for the file $USNJRNL. The MFT was
searched for any non-zero values in these bytes, but no relevant records were found.
When of zero value,as seen here, it is likely that the $USNJRNL function has not been
activated.

Table 6.41 Update Sequence Number.
00000128   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Taking it Apart – the File Name Attribute

The start of the File Name Attribute is signalled by the identifier 30 00 00 00h at byte
offset 144. This is the first field of another Attribute Header of exactly the same
structure as that which we examined in Tables 6.22 to 6.31.

The Attribute Header

At byte offsets 144 to 167 (black background) at Table 6.42 are the details of this
Attribute Header.

Table 6.42 Attribute header – File Name Attribute.
00000144 30 00 00 00 78 00 00 00  00 00 00 00 00 00 04 00 0...x...........
00000160 5A 00 00 00 18 00 01 00 48 00 00 00 00 00 01 00   Z.......H.......

At Table 6.43 is shown the analysis of the Attribute Header for this File Name
Attribute.

Table 6.43 Attribute Header – analysis.
Bytes 144 to 147 Attribute ID 30 00 00 00
Bytes 148 to 151 Length of Attribute 00000078h = 120

From offset 144 to 263
Byte 152 Resident/Non-Resident Flag 00h = resident
Byte 153 Length of Name of Attribute 00h = no name
Bytes 154 to 155 Offset to Start of Attribute Proper 0000h = not used
Bytes 156 to 157 Flags 0000h = normal
Bytes 158 to 159 Not Yet Known 0004h (see Table 6.28)
Bytes 160 to 163 Length of Attribute Proper 0000005Ah = 90

From offset 168 to 257
Bytes 164 to 165 Offset to Start of Attribute Proper 0018h = 24

144 + 24 = 168
Byte 166 Indexed flag 01h = indexed
Byte 167 Padding to 8 byte Boundary 00h
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The File Name Attribute Proper

Starting from byte offset 168 is the File Name Attribute Proper.The first 8 bytes of the
Attribute (black background) at Table 6.44 are a reference to the parent directory. It is
believed that these bytes are in exactly the same format as those referring to the
“Base File Reference” in the Attribute Header Block as described in the discussion of
Table 6.16. We note that the value in these first six bytes is 0000000048h, which is
equivalent to 72 in decimal. This is the record number of the directory
\WINNT\Web\printers\images in which this file appears.The use of the subsequent
two bytes 01 00h is not clear at this time. See the item on deleted files in unallocated
space at the end of this chapter for possible other uses of this number in identifying
parent directory records.

Table 6.44 Reference to parent directory.
00000160   5A 00 00 00 18 00 01 00 48 00 00 00 00 00 01 00 Z.......H.......

To the practised forensic eye four dates and times may be recognized between byte
offsets 176 and 207 (black background) at Table 6.45.

Table 6.45 Four dates and times.
00000176 60 53 63 33 89 57 C4 01  98 EF 7F 33 89 57 C4 01 `Sc3‰WÄ.˜ïÇ3‰WÄ.
00000192 98 EF 7F 33 89 57 C4 01  98 EF 7F 33 89 57 C4 01 ˜ïÇ3‰WÄ.˜ïÇ3‰WÄ.

The date and time values in these 32 bytes are shown in Table 6.46.

Table 6.46 Date and time values.
Bytes 176 to 183 Creation Date and Time 21/06/04 12:13:45 GMT
Bytes 184 to 191 Last Modified Date and Time 21/06/04 12:13:45 GMT
Bytes 192 to 199 Last MFT Record Change Date and Time 21/06/04 12:13:45 GMT
Bytes 200 to 207 Last Access Date and Time 21/06/04 12:13:45 GMT

Byte offsets 208 to 215 (black background) at Table 6.47 are an 8 byte number
specifying the “physical” size of the file. In this case the “physical” size is
0000000000000100h = 256 bytes.

Table 6.47 Allocated size of file.
00000208 00 01 00 00 00 00 00 00 FF 00 00 00 00 00 00 00   ........ÿ.......

Byte offsets 216 to 223 (black background) at Table 6.48 are an 8 byte number
specifying the “logical”size of the file. In this case the real size is 00000000000000FFh
= 255 bytes. It is thought that within the MFT record system, a padding strategy is
operated such that no variable field begins or ends other than on a 4 or 8 byte
boundary.This example conforms with that view,with this file being 255 bytes in real
size (FFh) and 256 bytes in “physical” size (100h). This suggests that padding has
taken place here.

Table 6.48 “Logical” size of file.
00000208   00 01 00 00 00 00 00 00 FF 00 00 00 00 00 00 00 ........ÿ.......

Byte offsets 224 to 227 (black background) at Table 6.49 are stated to be “Flags”.
These are similar to the FAT attribute byte in a directory entry, in the style of MS-
DOS. We discussed these kind of flags when we examined byte offsets 104 to 107 at
Table 6.34.The values which they can take are identical to those given at Table 6.35. In
this case 20 00 00 00h represents a file with the Archive bit set.
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Table 6.49 Flags.
00000224 20 00 00 00 00 00 00 00  0C 03 69 00 70 00 70 00    .........i.p.p.

Byte offsets 228 to 231 (black background) at Table 6.50 are reportedly used by
extended attributes and reparse points. A search of the volume did not reveal any
relevant records with non-zero entries at this location.

Table 6.50 Extended attributes and reparse points.
00000224   20 00 00 00 00 00 00 00 0C 03 69 00 70 00 70 00    .........i.p.p.

Byte offset 232 (black background) at Table 6.51 is a one-byte field containing the
length of the filename in characters. In this case it is seen to be 0Ch, which is 12
decimal. In Unicode, which has two bytes per character, this will mean a byte length
of 24. Inspection of the file name, ipp_0005.gif, which follows, shows this to be
correct. The use of one byte to store this value imposes a restriction on file name
length of 255 characters. It should be noted that Unicode characters occupy 2 bytes but
count as one character.

Table 6.51 Length of file name in characters.
00000224   20 00 00 00 00 00 00 00 0C 03 69 00 70 00 70 00    .........i.p.p.

Byte offset 233 (black background) at Table 6.52 is a one-byte field that records the
type of the file name. In this case it is seen to be 03h, which indicates that it is both
Win32- and DOS-compliant (see Table 6.53).

Table 6.52 Type of file name.
00000224   20 00 00 00 00 00 00 00  0C 03 69 00 70 00 70 00    .........i.p.p.

Of the four categories shown in Table 6.53, the most general is that of POSIX, with
value 00h,and this permits use of all Unicode characters and allows a file length of up
to 255 characters.Win32,with value 01h,is a subset of POSIX and this prohibits use of
a small number of Unicode characters. It is equivalent to the FAT Long File Name
(LFN). DOS, with value 02h, is a subset of Win32, and this permits only single-byte
upper-case characters, prohibits use of a small number of these, and requires file
names to be constrained within the standard DOS 8.3 format. It should be noted that,
for compatibility with other systems, it may be necessary to record both the Win32
file name and a DOS-compliant file name in two separate File Name Attributes.
However, where the Win32 file name is itself DOS-compliant, this is not necessary
and the name need only be recorded once. The final category, Win32 & DOS, of value
03h, is used to signal this situation; that the file name is both Win32- and DOS-
compliant.

Table 6.53 File name types.
00h = Posix Type
01h = Win32 Type (Long File Name)
02h = DOS Type (8.3-compliant)
03h = Win32 & DOS Type (both Win32- and DOS-compliant)

As stated above, the value here is 03h, indicating that the filename is DOS-
compliant and thus there is no need to store a Long File Name, since this would be
identical. An examination of the MFT shows that where a file name is outside the
constraints of the 8.3 DOS name, then two File Name Attributes are present in the
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record; one containing the Win32 Long File Name and one containing the DOS-
compliant 8.3 file name.

As can be seen, byte offsets 234 to 257 (black background) at Table 6.54 contain the
file name, the character length of which (12) is given in Table 6.51. This file name
field, of value here ipp_0005.gif, has to be of variable length in order to permit the
use of long file names. The six bytes from offset 258 to offset 263 are padding that has
been added to ensure that the next Attribute starts on an 8-byte boundary. It appears
to be standard practice for all Attributes to start on 8-byte boundaries.

Table 6.54 File name.
00000224   20 00 00 00 00 00 00 00  0C 03 69 00 70 00 70 00 .........i.p.p.
00000240 5F 00 30 00 30 00 30 00  35 00 2E 00 67 00 69 00 _.0.0.0.5...g.i.
00000256 66 00 18 00 00 00 01 00  50 00 00 00 B0 00 00 00   f.......P...°...

Taking it Apart – the Security Descriptor

At byte offsets 264 to 267 (black background) at Table 6.55 is seen to be the start of the
next Attribute.The value 50 00 00 00h is its Attribute ID number and this is seen from
Table 6.2 to be a Security Descriptor Attribute.

Table 6.55 Attribute ID.
00000256   66 00 18 00 00 00 01 00 50 00 00 00 B0 00 00 00   f.......P...°...

The Attributes starts with an Attribute Header and the length of the Attribute is
defined in the next four bytes at offsets 268 to 271. These are highlighted (black
background) at Table 6.56, and have a value of 000000B0h, which is 176 in decimal.
The next Attribute therefore starts at byte 264 + 176 = 440.

Table 6.56 Length of Attribute.
00000256   66 00 18 00 00 00 01 00  50 00 00 00 B0 00 00 00 f.......P...°...

According to many sources on the Internet, this Attribute is present for backward
compatibility with previous versions of NTFS. The Windows 2000 version of NTFS
stores all security descriptors in the $Secure metadata file, sharing descriptors
among files and directories that have the same settings. Previous versions of NTFS
stored private security description information with each file and directory. The
entire Attribute is shown at Table 6.57, but because it is no longer relevant we have
not deconstructed it further.

Table 6.57 Security Descriptor Attribute.
00000256    .  .  .  .  . .  .  .  50 00 00 00 B0 00 00 00           P...°...
00000272   00 00 00 00 00 00 03 00  94 00 00 00 18 00 00 00   ........”.......
00000288   01 00 04 84 78 00 00 00  88 00 00 00 00 00 00 00   ...„x...ˆ.......
00000304   14 00 00 00 02 00 64 00  04 00 00 00 00 10 18 00   ......d.........
00000320   A9 00 12 00 01 02 00 00  00 00 00 05 20 00 00 00   ©........... ...
00000336   21 02 00 00 00 10 18 00  A9 00 12 00 01 02 00 00   !.......©.......
00000352   00 00 00 05 20 00 00 00  23 02 00 00 00 10 18 00   .... ...#.......
00000368   FF 01 1F 00 01 02 00 00  00 00 00 05 20 00 00 00   ÿ........... ...
00000384   20 02 00 00 00 10 14 00  FF 01 1F 00 01 01 00 00    .......ÿ.......
00000400   00 00 00 05 12 00 00 00  01 02 00 00 00 00 00 05   ................
00000416   20 00 00 00 20 02 00 00  01 01 00 00 00 00 00 05    ... ...........
00000432   12 00 00 00 9C 52 84 94                            ....œR„”_
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Taking it Apart – the Data Attribute with Resident Data

This Attribute is the final Attribute within this sample record. It starts at byte offset
440 with its Attribute ID of 80 00 00 00h. This is the first field of another Attribute
Header of exactly the same structure as that which we examined in Tables 6.22 to
6.31.

The Attribute Header

At byte offsets 440 to 463 (black background) at Table 6.58 are the details of this
Attribute Header.

Table 6.58 Attribute Header – Data Attribute
00000432   12 00 00 00 9C 52 84 94 80 00 00 00 18 01 00 00 ....œR„”_.......
00000448 00 00 18 00 00 00 01 00  FF 00 00 00 18 00 00 00 ........ÿ.......

At Table 6.59 is shown the analysis of the Attribute Header for this Data Attribute.

Table 6.59 Attribute Header – analysis.
Bytes 440 to 443 Attribute ID 80 00 00 00
Bytes 444 to 447 Length of Attribute 00000118h = 280

From offset 440 to 719
Byte 448 Resident/Non-Resident Flag 00h = resident
Byte 449 Length of Name of Attribute 00h = no name
Bytes 450 to 451 Offset to Start of Attribute proper 0018h = 24

Points to 440 + 24 = 464
Bytes 452 to 453 Flags 0000h = normal
Bytes 454 to 455 Not Yet Known 0001h (see Table 6.28)
Bytes 456 to 459 Length of Attribute Proper 000000FFh = 255

From offset 464 to 718
Bytes 460 to 461 Offset to Start of Attribute Proper 0018h = 24

440 + 24 = 464
Byte 462 Indexed flag 00h = not indexed
Byte 463 Padding to 8 byte Boundary 00h

The Data Attribute Proper

The Data Attribute Proper,which is the data itself starts,as we note from Table 6.59,at
byte offset 464. The length of the Attribute is 280 bytes, which we may also note from
Table 6.59, so the actual data run is that figure less the header length of 24, which is
256 bytes. This is the “physical” size, as we may find in Table 6.47. The length of the
Attribute Proper is 255 bytes, which again is listed in Table 6.59, and we show these
Attribute Proper bytes at Table 6.60 (black background). The final byte in the
“physical” size of 256 bytes is slack space.

Table 6.60 The Data Attribute Proper.
00000464 47 49 46 38 39 61 0F 00  0F 00 C4 FF 00 C0 C0 C0 GIF89a....Äÿ.ÀÀÀ
00000480 6B 6B 39 63 63 31 73 73  39 6B 6B 31 84 8C 4A 73 kk9cc1ss9kk1„ŒJs
00000496 7B 42 7B 84 42 6B 73 39  7B 84 4A 8C 9C 52 03 00 {B{„Bks9{„JŒœR..
00000512 52 7B 8C 4A 73 84 42 9C  B5 63 94 AD 5A 8C A5 5A R{ŒJs„Bœµc”−ZŒ¥Z
00000528 94 AD 63 AD CE 7B A5 C6  73 9C BD 6B AD D6 7B B5 ”−c−Î{¥Æsœ½k−Ö{µ
00000544 DE 84 00 00 00 00 00 00  00 00 00 00 00 00 00 00 Þ„..............
00000560 00 00 00 00 00 00 00 00  00 00 00 00 00 21 F9 04 .............!ù.
00000576 01 00 00 00 00 2C 00 00  00 00 0F 00 0F 00 00 05 .....,..........
00000592 7C 20 20 8A D1 03 29 CB  A8 02 54 4B 45 D0 52 1C |  ŠÑ.)Ë¨.TKEÐR.
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00000608 2B 35 DD AD B9 24 C6 68  4B 15 1C 6C C1 30 20 44 +5ÝÝ¹$ÆhK..lÁ0 D
00000624 B6 8A 25 F8 8A 15 8C 80  C8 AF 22 99 34 77 87 80 ¶Š%øŠ.Œ_È¯"™4w‡_
00000640 E0 E1 B0 E1 1C 11 14 0F  21 80 44 BA 2D 70 8C 71 àáEá....!_Dº-pŒq
00000656 18 10 08 0A 73 64 6E 12  1B 05 82 C5 22 0E E9 EB ....sdn...‚Å".éë
00000672 13 0D 06 5A 04 00 05 7A  87 05 09 6D 01 04 02 22 ...Z...z‡..m..."
00000688 09 90 89 90 06 03 5A 78  23 06 99 99 03 08 83 8E ._‰_..Zx#.™™..ƒ_
00000704 2A 08 9D 01 96 97 2B 22  8D 78 84 2A 21 00 3B 00   *._.–—+"_x„*!.;.

Taking it Apart – the End of Record Marker

We made mention earlier of the End of Record Marker,FF FF FF FFh,and we find this
at byte offsets 720 to 723,shown in Table 6.61 (black background).As can be seen, this
End of Record Marker occupies the first four bytes of a new 8-byte segment. By
inspection this appears to be the norm with the use of padding, as necessary,
preceding the End of Record Marker. This is followed by a further four bytes which
are used as a Cyclic Redundancy Check (CRC) consistency check. It should be noted
that the remainder of this particular record is almost entirely populated with zeros.
This area, between the End of Record Marker (+4 bytes) and the end of the space
allocated, is known as “MFT Record Slack Space”. The value to the analyst of data
found here is discussed in a later section.

Table 6.61 The End of Record Marker.
00000720 FF FF FF FF 82 79 47 11  00 00 00 00 00 00 00 00   ÿÿÿÿ‚yG.........

This completes the deconstruction of an MFT file record with resident data. By
using the reference material that is provided in Appendix 9,most MFT records can be
deconstructed in a similar manner.

Analysis of a Sample MFT File Record with Non-Resident

Data

In order to compare and contrast an MFT record with resident data, the decons-
truction of which we describe in detail above, with an MFT record with non-resident
data, we now select for further examination the sample record which we show at
Table 6.62. Inspection of this record shows a probable filename in Unicode starting at
byte offset 234 (black background). Again, to the practised eye, there appears to be a
set of four 8-byte Microsoft “FILETIME” date and time entries starting at byte offset
72 (light grey background) and again at byte offset 176 (mid-grey background).

In this case, there are no file data bytes resident and there are no further non-zero
values (other than the Update Sequence Number – see Table 6.66) in the MFT record
beyond byte offset 335.

Table 6.62 Sample MFT record with non-resident data.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  A1 3A 24 01 00 00 00 00   FILE*...¡:$.....
00000016   01 00 01 00 30 00 01 00  50 01 00 00 00 04 00 00   ....0...P.......
00000032   00 00 00 00 00 00 00 00  06 00 02 00 00 00 00 00   ................
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........
00000064   48 00 00 00 18 00 00 00 80 F3 B4 1B 8F 57 C4 01 H......._ó´._WÄ.
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00000080 08 4C 2F DE 85 57 C4 01  5E 2D CF 1B 8F 57 C4 01 .L/Þ…WÄ.^-Ï._WÄ.
00000096 5E 2D CF 1B 8F 57 C4 01 20 00 00 00 00 00 00 00   ^-Ï._WÄ. .......
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0A 01 00 00   ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000144   30 00 00 00 70 00 00 00  00 00 00 00 00 00 05 00   0...p...........
00000160   56 00 00 00 18 00 01 00  30 19 00 00 00 00 01 00   V.......0.......
00000176 80 F3 B4 1B 8F 57 C4 01  08 4C 2F DE 85 57 C4 01 _ó´._WÄ..L/Þ…WÄ.
00000192 08 4C 2F DE 85 57 C4 01  5E 2D CF 1B 8F 57 C4 01 .L/Þ…WÄ.^-Ï._WÄ.
00000208   00 30 00 00 00 00 00 00  A6 26 00 00 00 00 00 00   .0......|&......
00000224   20 00 00 00 00 00 00 00  0A 03 53 00 61 00 6D 00 .........S.a.m.
00000240 70 00 6C 00 65 00 2E 00  6A 00 70 00 67 00 00 00   p.l.e...j.p.g...
00000256   80 00 00 00 48 00 00 00  01 00 00 00 00 00 04 00   _...H...........
00000272   00 00 00 00 00 00 00 00  02 00 00 00 00 00 00 00   ................
00000288   40 00 00 00 00 00 00 00  00 30 00 00 00 00 00 00   @........0......
00000304   A6 26 00 00 00 00 00 00  A6 26 00 00 00 00 00 00   |&......|&......
00000320   31 03 46 E9 05 00 00 00  FF FF FF FF 82 79 47 11   1.Fé....ÿÿÿÿ‚yG.
00000336   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................

Normal user access to this file, via a directory folder view in Windows Explorer,
shows at Table 6.63 the file details reported by the operating system,Windows 2000.

Table 6.63 Windows Explorer file directory details.
File Name & Path \Documents and Settings\NTFS TEST\My Documents

\My Pictures\Sample.jpg
Size (bytes) 9,894
Last Accessed 21/6/04 12:56
Last Written 21/6/04 11:49
File Created 21/6/04 12:56
Attributes Archive bit set

With an image of the system loaded as a virtual disk, forensic software was used to
examine the directory details of this file, with the results as shown at Table 6.64.

Table 6.64 Forensic software file directory details.
File Name Sample.jpg
Last Access 21/06/04 12:56:03
Last Written 21/06/04 11:49:54
File Created 21/06/04 12:56:03
Entry Modified 21/06/04 12:56:03
Logical Size 9,894
Physical Size 12,288
Starting Extent 0C-C387398
Physical Location PS:3099247, SO:0
Full Path \Documents and Settings\NTFS TEST\My Documents

\My Pictures\Sample.jpg
MFT Record Number 6489

Taking it Apart – the FILE Record Header

As with all MFT records, this record starts with a FILE Record Header and the
structure and layout of this FILE Record Header is identical to the one we decons-
tructed above and described in Tables 6.6 to 6.19. At Table 6.65, we show (black
background) the bytes of the FILE Record Header for this sample MFT record from
byte offsets 0 to 47.
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Table 6.65 FILE Record Header.
00000000 46 49 4C 45 2A 00 03 00  A1 3A 24 01 00 00 00 00 FILE*...¡:$.....
00000016 01 00 01 00 30 00 01 00  50 01 00 00 00 04 00 00 ....0...P.......
00000032 00 00 00 00 00 00 00 00  06 00 02 00 00 00 00 00 ................

At Table 6.66 we show the detailed analysis of this File Record Header, using the
same descriptors as we used at Tables 6.6 to 6.19.

Table 6.66 FILE Record Header – analysis.
Bytes 0 to 3 Start of File Record Header “FILE”
Bytes 4 and 5 Offset to Update Sequence Number 002Ah = 42
Bytes 6 and 7 Size of Update Sequence 0003h = 3
Bytes 8 to 15 $Logfile Sequence Number 0000000001243AA1h
Bytes 16 and 17 Record Use Sequence Number 0001h = 1
Bytes 18 and 19 Hard Link Count 0001h = 1
Bytes 20 and 21 Pointer to First Attribute 0030h = 48
Bytes 22 and 23 Record Flags 0001h = FILE Record in use
Bytes 24 to 27 Logical Size of Record 00000150h = 336
Bytes 28 to 31 Physical Size of Record 00000400h = 1024
Bytes 32 to 39 Base File Reference 0000000000000000h
Bytes 40 and 41 Possible Attribute Count 0006h = 6
Bytes 42 and 43 Update Sequence Number 0002h = 2
Bytes 44 to 47 Update Sequence Array 00 00 00 00

Taking it Apart – the Standard Information Attribute

The start of the Standard Information Attribute is signalled by the identifier 10 00 00
00h at byte offset 48.As with all Attributes, this Standard Information Attribute starts
with an Attribute Header.

The Attribute Header

At byte offsets 48 to 71 (black background) at Table 6.67 are the details of this
Attribute Header. Its layout is identical to the Attribute Headers that we have encoun-
tered and deconstructed above.

Table 6.67 Attribute Header – Standard Information Attribute.
00000048 10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00 ....`...........
00000064 48 00 00 00 18 00 00 00 80 F3 B4 1B 8F 57 C4 01   H......._ó´._WÄ.

At Table 6.68 is shown the analysis of the Attribute Header for this Standard Infor-
mation Attribute.

Table 6.68 Attribute Header – analysis.
Bytes 48 to 51 Attribute ID 10 00 00 00
Bytes 52 to 55 Length of Attribute 00000060h = 96

From offset 48 to 143
Byte 56 Resident/Non-Resident Flag 00h = resident
Byte 57 Length of Name of Attribute 00h = no name
Bytes 58 to 59 Offset to Start of Attribute Proper 0000h = not used
Bytes 60 to 61 Flags 0000h = normal
Bytes 62 to 63 Not Yet Known 0000h
Bytes 64 to 67 Length of Attribute Proper 00000048h = 72

From offset 72 to 143
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Bytes 68 to 69 Offset to Start of Attribute Proper 0018h = 24
48 + 24 = 72

Byte 70 Indexed flag 00h = not indexed
Byte 71 Padding to 8 byte Boundary 00h

The Standard Information Attribute Proper

The Standard Information Attribute Proper extends from byte offsets 72 to 143 as
shown (black background) at Table 6.69.

Table 6.69 Standard Information Attribute Proper.
00000064   48 00 00 00 18 00 00 00 80 F3 B4 1B 8F 57 C4 01 H......._ó´._WÄ.
00000080 08 4C 2F DE 85 57 C4 01  5E 2D CF 1B 8F 57 C4 01 .L/Þ…WÄ.^-Ï._WÄ.
00000096 5E 2D CF 1B 8F 57 C4 01  20 00 00 00 00 00 00 00 ^-Ï._WÄ. .......
00000112 00 00 00 00 00 00 00 00  00 00 00 00 0A 01 00 00 ................
00000128 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

At Table 6.70 is shown the analysis of the Standard Information Attribute Proper
as described in Tables 6.32 to 6.41.

Table 6.70 Standard Information Attribute Proper – analysis.
Bytes 72 to 79 Creation Date and Time 21/06/04 12:56:03 GMT
Bytes 80 to 87 Last Modified Date and Time 21/06/04 11:49:54 GMT
Bytes 88 to 95 Last MFT Record Change Date and Time 21/06/04 12:56:03 GMT
Bytes 96 to 103 Last Access Date and Time 21/06/04 12:56:03 GMT
Bytes 104 to 107 File Permissions 20 00 00 00 = archive set
Bytes 108 to 111 Maximum Number of Versions 00000000h = disabled
Bytes 112 to 115 Version Number and Class ID 0000000000000000h
Byte 120 to 123 Owner ID 00000000h
Bytes 124 to 127 Security ID 0000010Ah
Bytes 128 to 135 Quota Charged 0000000000000000h
Bytes 136 to 143 Update Sequence Number 0000000000000000h

An examination of the reported times and dates by the operating system and by
forensic software (see Tables 6.63 and 6.64 respectively) reveals that they are con-
sistent with those recorded here.

Taking it Apart – the File Name Attribute

The start of the File Name Attribute is signalled by the identifier 30 00 00 00h at byte
offset 144. As with all Attributes, this File Name Attribute starts with an Attribute
Header.

The Attribute Header

At byte offsets 144 to 167 (black background) at Table 6.71 are the details of this
Attribute Header. Its layout is identical to the Attribute Headers that we have encoun-
tered and deconstructed above.

Table 6.71 Attribute Header – File Name Attribute.
00000144 30 00 00 00 70 00 00 00  00 00 00 00 00 00 05 00 0...p...........
00000160 56 00 00 00 18 00 01 00 30 19 00 00 00 00 01 00   V.......0.......

At Table 6.72 is shown the analysis of the Attribute Header for this File Name
Attribute.
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Table 6.72 Attribute Header – analysis.
Bytes 144 to 147 Attribute ID 30 00 00 00
Bytes 148 to 151 Length of Attribute 00000070h = 112

From offset 144 to 255
Byte 152 Resident/Non-Resident Flag 00h = resident
Byte 153 Length of Name of Attribute 00h = no name
Bytes 154 to 155 Offset to Start of Attribute Proper 0000h = not used
Bytes 156 to 157 Flags 0000h = normal
Bytes 158 to 159 Not Yet Known 0005h = possible ID
Bytes 160 to 163 Length of Attribute Proper 00000056h = 86

From offset 168 to 253
Bytes 164 to 165 Offset to Start of Attribute Proper 0018h = 24

144 + 24 = 168
Byte 166 Indexed flag 01h = indexed
Byte 167 Padding to 8 byte Boundary 00h

The File Name Attribute Proper

The File Name Attribute Proper extends from byte offsets 168 to 253 as shown (black
background) at Table 6.73.

Table 6.73 File Name Attribute Proper.
00000160   56 00 00 00 18 00 01 00 30 19 00 00 00 00 01 00 V.......0.......
00000176 80 F3 B4 1B 8F 57 C4 01  08 4C 2F DE 85 57 C4 01 _ó´._WÄ..L/Þ…WÄ.
00000192 08 4C 2F DE 85 57 C4 01  5E 2D CF 1B 8F 57 C4 01 .L/Þ…WÄ.^-Ï._WÄ.
00000208 00 30 00 00 00 00 00 00  A6 26 00 00 00 00 00 00 .0......|&......
00000224 20 00 00 00 00 00 00 00  0A 03 53 00 61 00 6D 00 .........S.a.m.
00000240 70 00 6C 00 65 00 2E 00  6A 00 70 00 67 00 00 00   p.l.e...j.p.g...

At Table 6.74 is shown the analysis of the File Name Attribute Proper as described
in Tables 6.44 to 6.54.

Table 6.74 File Name Attribute Proper – analysis.
Bytes 168 to 175 Reference to Parent Directory 0001000000001930h = 6448

“My Pictures”
Bytes 176 to 183 Creation Date and Time 21/06/04 12:56:03 GMT
Bytes 184 to 191 Last Modified Date and Time 21/06/04 11:49:54 GMT
Bytes 192 to 199 Last MFT Record Change Date and Time 21/06/04 11:49:54 GMT
Bytes 200 to 207 Last Access Date and Time 21/06/04 12:56:03 GMT
Bytes 208 to 215 “Physical” Size of File 0000000000003000h = 12,288
Bytes 216 to 223 “Logical” Size of File 00000000000026A6h = 9,894
Bytes 224 to 227 Flags 20 00 00 00h = archive set
Bytes 228 to 231 Extended Attributes and Reparse Points 00000000h
Byte 232 Length of File Name in Characters 0Ah = 10
Byte 233 Type of File Name 03h = Win32 & DOS
Bytes 234 to 253 File Name “Sample.jpg”

As can be seen from Table 6.74, the reference to the parent directory is record
number 6448 decimal, and this is identified in the sample MFT as the folder My
Pictures, which does contain this file. It should be noted that there is a difference in
the Last MFT Record Change Date and Time recorded in this attribute (Table 6.74)
and the equivalent date and time recorded in the Standard Information Attribute
(Table 6.70). Following a number of experiments, the authors are currently of the
view that none of the dates and times in this attribute should be relied upon until the
rules by which they are updated are fully understood.
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It may be noted that the Type of File Name entry is Win32- and DOS-compliant
(see Table 6.53), thus indicating that only the one File Name Attribute is required
here. It may also be noted that there are two bytes of padding at byte offsets 254 to 255
to bring the next entry onto an 8-byte boundary.

Taking it Apart – the Data Attribute with Non-Resident Data

The start of the Data Attribute is signalled by the identifier 80 00 00 00h at byte offset
256. As with all Attributes, this Data Attribute starts with an Attribute Header.
However, this Attribute Header is identical to previous ones encountered only for the
first 16 bytes. This is because this Data Attribute is non-resident.

The Attribute Header

At byte offsets 256 to 271 (black background) at Table 6.75 are the details of the first
16 bytes of this Attribute Header. This Attribute Header is interpreted differently
from the previous versions analyzed because the data is non-resident (see Appendix
9 for the template applied).

Table 6.75 First part Attribute Header – non-resident Data Attribute.
00000256 80 00 00 00 48 00 00 00  01 00 00 00 00 00 04 00 _...H...........

At Table 6.76 is shown the analysis of the first part of the Attribute Header for this
non-resident Data Attribute.

Table 6.76 First part Attribute Header – analysis.
Bytes 256 to 259 Attribute ID 80 00 00 00
Bytes 260 to 263 Length of Attribute 00000048h = 72

From offset 256 to 327
Byte 264 Resident/Non-Resident Flag 01h = non resident
Byte 265 Length of Name of Attribute 00h = no name
Bytes 266 to 267 Offset to Name of Attribute 0000h = not used
Bytes 268 to 269 Flags 0000h = normal
Bytes 270 to 271 Not Yet Known 0004h = possible ID

Byte offsets 272 to 279 (black background) at Table 6.77 are reported to record the
Virtual Cluster Number (VCN) of the first virtual cluster in the data run and byte
offsets 280 to 287, also highlighted (black background) at Table 6.77, are reported to
record the Virtual Cluster Number of the last virtual cluster occupied by the data.

Table 6.77 Starting VCN and Last VCN.
00000272 00 00 00 00 00 00 00 00  02 00 00 00 00 00 00 00 ................

In this case the Starting VCN can be seen to be 0000000000000000h = 0 and the
Last VCN can be seen to be 0000000000000002h = 2. The “logical” size of the file (see
Table 6.74) is 9,894 bytes and it will therefore need a minimum of 20 sectors10. Since
there are eight sectors per cluster on this particular disk (see offset 13 of the BIOS
Parameter Block at Table 6.1) then the file will be allocated three clusters, which
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conforms with our findings of the data being held in VCN 0 to VCN 2. The use of
three clusters results in an allocated size of 3 × 8 = 24 sectors = 12,288 bytes.

The two bytes at offsets 288 and 289 (black background) at Table 6.78 are used to
store the offset to the data runs. In this case the offset is 0040h = 64 decimal which
points to byte 256 + 64 = 320.

Table 6.78 Offset to the data runs.
00000288 40 00 00 00 00 00 00 00  00 30 00 00 00 00 00 00   @........0......

The two bytes at offsets 290 and 291 (black background) at Table 6.79 are reported
as storing the compression unit size for compressed data. In this case the value is
0000h, which indicates no compression. The four bytes at offsets 292 to 295 are
padding.

Table 6.79 Compression unit size.
00000288   40 00 00 00 00 00 00 00  00 30 00 00 00 00 00 00   @........0......

The four bytes at offsets 296 to 303 (black background) at Table 6.80 are reported
to be the allocated size of the attribute. In this case we see that it is
0000000000003000h, which equals 12,288 decimal. This conforms with our findings
above of a disk allocation of three clusters,each of eight sectors and each of 512 bytes,
making a total of 12,288 bytes in length. This is the “physical” size of the file and
confirms that value noted in Table 6.74.

Table 6.80 “Physical” size of Attribute.
00000288   40 00 00 00 00 00 00 00 00 30 00 00 00 00 00 00 @........0......

The four bytes at offsets 304 to 311 (black background) at Table 6.81 are recorded
as being the real size of the attribute. In this case we see that it is 00000000000026A6h,
which equals 9,894 decimal. This is the “logical” size of the file and confirms that
value noted in Table 6.74.

The four bytes at offsets 312 to 319 are recorded as being the initialized size of the
data stream.It is unclear why this value is required.In this case the value is exactly the
same as that for the real size of the attribute.

Table 6.81 “Logical” size of Attribute.
00000304 A6 26 00 00 00 00 00 00 A6 26 00 00 00 00 00 00   |&......|&......

The Data Attribute Proper – a data run descriptor

The Data Attribute Proper, shown (black background) at Table 6.82, extends, as we
note at Table 6.78, from byte offset 320 to byte offset 327. It is a data run descriptor
that is held in the last few bytes of the Attribute.

Table 6.82 Data run descriptor.
00000320 31 03 46 E9 05 00 00 00 FF FF FF FF 82 79 47 11   1.Fé....ÿÿÿÿ‚yG.

Non-resident attributes are stored in a series of data runs, with each data run
specifying the number of contiguous clusters in the run and the starting cluster
number for the run. Each data run commences with a one-byte header (which is 00h
to mark the end of the series) followed by one or more bytes which specify the
number of clusters, which in turn are followed by one or more bytes which specify
the starting cluster number.The header is used to specify how many bytes are used in
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the data run to contain the number of clusters and how many bytes are used in the
data run to contain the starting cluster number.

The first nibble of the header byte is used to specify how many bytes are used in
the data run to contain the starting cluster number. The second nibble of the header
byte is used to specify how many bytes are used in the data run to contain the number
of clusters.

Thus, in this case, we have at byte offset 320 the first data run header byte of 31h.
The first nibble is 3, indicating that three bytes are used in this data run to contain the
starting cluster number.The second nibble is 1, indicating that one byte is used in the
data run to contain the number of clusters.

Noting that the bytes which specify the number of clusters come next, we expect to
find one byte for this purpose (from the second nibble of the header byte) and that
should be at offset 321. We note that it is of value 03h, which indicates that three
contiguous clusters are in use for this data run.

We now expect to find three bytes in use (from the first nibble of the header byte)
to specify the starting cluster number and this sequence should be from offsets 322 to
324. Here we find the values 46 E9 05h, which when converted from little endian give
05E946h = 387,398 decimal. The data stream therefore starts at cluster 387,398 and
extends for three clusters.

It is important to note that the start cluster value represents a signed integer. The
value as held in the data descriptor may have a trailing zero (00h) added to ensure
that the leading (sign) bit is zero for positive numbers. This trailing zero will become
a leading zero (and hence a positive sign) when the number is re-ordered from little
endian for interpretation. It is therefore very important that the correct number of
bytes is identified when extraction is taking place. Any further data runs simply
follow the current set and are in exactly the same format. Negative numbers are
possible as the figure is an offset value and not actually a cluster number.The value in
the first data run is the offset from the beginning of the volume. For subsequent runs,
the values are an offset from the location of the previous run’s first cluster. A
fragment of the file may therefore be stored in a cluster earlier on the volume than a
previously stored fragment. Finally, at offset 325, we note the value 00h for the next
header byte. This signifies the end of the data run.

At byte offsets 328 to 331 (black background) at Table 6.83 we find the End of
Record Marker followed, in byte offsets 332 to 335,by the Cyclic Redundancy Check.

Table 6.83 End of Record Marker and CRC.
00000320   31 03 46 E9 05 00 00 00 FF FF FF FF 82 79 47 11 1.Fé....ÿÿÿÿ‚yG.

This completes the deconstruction of an MFT file record with non-resident data.

Dealing with Directories

NTFS deals with directories in a similar way to that of files, with each directory
having its own MFT record. This record is made up of headers and Attributes, in just
the same way as file records, and where file records have either resident or non-
resident data associated with them, directories have either resident or non-resident
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file lists associated with them.A directory listing is re-sorted each time a file is added
to or deleted from the directory.

The MFT record containing the directory listing starts in an identical manner to
that of any other MFT record. The name of the directory is dealt with in exactly the
same way as if it was the name of a file. The Index Root Attribute is introduced after
the appropriate File Name Attribute(s).

The directory listing itself is split into a number of parts, similar to a series of
Attributes. Within each entry are details of the file to which the entry refers. These
details include a pointer to the MFT record for the file itself; thus a link is made from
the directory to the file (or to a further subdirectory). As has already been seen
above, details within the MFT record for the file point to the “parent” MFT record,
which is usually a directory. It is a similar pointer mechanism which is used to
establish the directory to file (or subdirectory) relationship.

The Index Root Attribute starts the directory listing system. As with all Attributes
the Index Root Attribute always starts with the Attribute Header. This is followed by
the Index Root Attribute Proper, which defines the size and shape of the Directory
Entries. This is followed by an Index Header and one or more Index Entry Header
and Index Entry Data pairs, all of which are part of the Index Root Attribute. The
overall construction is as follows:

● AttributeHeader
● Index Root Attribute Proper
● Index Header
● Index Entry Header
● Index Entry Data
● Index Entry Header
● Index Entry Data
● Further Index Entry Header and Index Entry Data pairs
● Index Entry Header [with final entry flag set ]

And as normal:

● End of Record marker (FF FF FF FF)
● Error Check Sequence (4 bytes)

Analysis of a Sample MFT Directory Record with Resident

Data

In order to compare and contrast MFT file records with MFT directory records, we
now select a sample MFT directory record with resident data for further exami-
nation, as shown at Table 6.84.

Table 6.84 Sample MFT directory record with resident data.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  B4 73 24 01 00 00 00 00   FILE*...´s$.....
00000016   01 00 02 00 30 00 03 00  98 02 00 00 00 04 00 00   ....0...˜.......
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00000032   00 00 00 00 00 00 00 00  04 00 02 00 00 00 00 00   ................
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........
00000064   48 00 00 00 18 00 00 00  5A BF 1E 1B 8F 57 C4 01   H.......Z¿.._WÄ.
00000080   9C 8C 11 FA 85 57 C4 01  46 01 36 21 8F 57 C4 01   ÉŒ.ú…WÄ.F.6!_WÄ.
00000096   5E 2D CF 1B 8F 57 C4 01  01 00 00 00 00 00 00 00   ^-Ï._WÄ.........
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0B 01 00 00   ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000144   30 00 00 00 70 00 00 00  00 00 00 00 00 00 03 00   0...p...........
00000160   52 00 00 00 18 00 01 00  2F 19 00 00 00 00 01 00   R......./.......
00000176   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000192   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000208   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000224   00 00 00 10 00 00 00 00  08 02 4D 00 59 00 50 00   ..........M.Y.P.
00000240   49 00 43 00 54 00 7E 00  31 00 72 00 65 00 73 00   I.C.T.~.1.r.e.s.
00000256   30 00 00 00 70 00 00 00  00 00 00 00 00 00 02 00   0...p...........
00000272   58 00 00 00 18 00 01 00  2F 19 00 00 00 00 01 00   X......./.......
00000288   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000304   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000320   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000336   00 00 00 10 00 00 00 00  0B 01 4D 00 79 00 20 00   ..........M.y. .
00000352   50 00 69 00 63 00 74 00  75 00 72 00 65 00 73 00   P.i.c.t.u.r.e.s.
00000368   90 00 00 00 20 01 00 00  00 04 18 00 00 00 01 00   _... ...........
00000384   00 01 00 00 20 00 00 00  24 00 49 00 33 00 30 00   .... ...$.I.3.0.
00000400   30 00 00 00 01 00 00 00  00 10 00 00 01 00 00 00   0...............
00000416   10 00 00 00 F0 00 00 00  F0 00 00 00 00 00 00 00   ....�...�.......
00000432   5B 19 00 00 00 00 01 00  68 00 58 00 00 00 00 00   [.......h.X.....
00000448   30 19 00 00 00 00 01 00 80 F3 B4 1B 8F 57 C4 01   0......._ó´._WÄ.
00000464   46 01 36 21 8F 57 C4 01  46 01 36 21 8F 57 C4 01   F.6!_WÄ.F.6!_WÄ.
00000480   46 01 36 21 8F 57 C4 01  B8 01 00 00 00 00 00 00   F.6!_WÄ.¸.......
00000496   B6 01 00 00 00 00 00 00  06 00 00 00 00 00 02 00   ¶...............
00000512   0B 03 44 00 65 00 73 00  6B 00 74 00 6F 00 70 00   ..D.e.s.k.t.o.p.
00000528   2E 00 69 00 6E 00 69 00  59 19 00 00 00 00 01 00   ..i.n.i.Y.......
00000544   68 00 56 00 00 00 00 00  30 19 00 00 00 00 01 00   h.V.....0.......
00000560   80 F3 B4 1B 8F 57 C4 01  08 4C 2F DE 85 57 C4 01   _ó´._WÄ..L/Þ…WÄ.
00000576   5E 2D CF 1B 8F 57 C4 01  5E 2D CF 1B 8F 57 C4 01   ^-Ï._WÄ.^-Ï._WÄ.
00000592   00 30 00 00 00 00 00 00  A6 26 00 00 00 00 00 00   .0......|&......
00000608   20 00 00 00 00 00 00 00  0A 03 53 00 61 00 6D 00    .........S.a.m.
00000624   70 00 6C 00 65 00 2E 00  6A 00 70 00 67 00 00 00   p.l.e...j.p.g...
00000640   00 00 00 00 00 00 00 00  10 00 00 00 02 00 00 00   ................
00000656   FF FF FF FF 82 79 47 11  00 00 00 00 00 00 00 00   ÿÿÿÿ‚yG.........
00000672   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000688   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000704   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000720   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000736   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000752   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000768   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000784   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000800   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000816   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000832   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000848   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000864   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000880   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000896   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000912   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
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00000928   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000944   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000960   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000976   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000992   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00001008   00 00 00 00 00 00 00 00  00 00 00 00 00 00 02 00   ................

Normal user access to this directory, via a directory folder view in Windows
Explorer, shows at Table 6.85 the file details reported by the operating system,
Windows 2000.

Table 6.85 Windows Explorer file directory details.
File Name & Path \Documents and Settings\NTFS TEST\My Documents

\My Pictures
Size (bytes) 0
Last Accessed 21/6/04 12:56
Last Written 21/6/04 11:50
File Created 21/6/04 12:56
Attributes Read Only bit set

With an image of the system loaded as a virtual disk, forensic software was used to
examine the directory details of this directory,with the results as shown at Table 6.86.
It should be noted that this is the directory that is the “parent” of the previous file
examined, Sample.jpg.

Table 6.86 Forensic software file directory details.
File Name My Pictures
Last Access 21/06/04 12:56:03
Last Written 21/06/04 11:50:41
File Created 21/06/04 12:56:02
Entry Modified 21/06/04 12:56:12
Logical Size 256
Physical Size 256
Starting Extent 0C-C1616
Physical Location PS:12991, SO:400
Full Path \Documents and Settings\NTFS TEST\My Documents

\My Pictures
MFT Record Number 6448

Taking it Apart – the FILE Record Header

As with all MFT records, this record starts with a FILE Record Header and the
structure and layout of this FILE Record Header is identical to the ones that we have
deconstructed. At Table 6.87, we show (black background) the bytes of the FILE
Record Header for this sample MFT record from byte offsets 0 to 47.We note that this
header starts with the normal “FILE” marker, even though the record is for a
directory.

Table 6.87 FILE Record Header.
00000000 46 49 4C 45 2A 00 03 00  B4 73 24 01 00 00 00 00 FILE*...´s$.....
00000016 01 00 02 00 30 00 03 00  98 02 00 00 00 04 00 00 ....0...˜.......
00000032 00 00 00 00 00 00 00 00  04 00 02 00 00 00 00 00 ................

At Table 6.88 we show the detailed analysis of this File Record Header, using the
same descriptors as we used at Table 6.66.

250 Forensic Computing



Table 6.88 FILE Record Header – analysis.
Bytes 0 to 3 Start of File Record Header "FILE"
Bytes 4 and 5 Offset to Update Sequence Number 002Ah = 42
Bytes 6 and 7 Size of Update Sequence 0003h = 3
Bytes 8 to 15 $Logfile Sequence Number 00000000012473B4h
Bytes 16 and 17 Record Use Sequence Number 0001h = 1
Bytes 18 and 19 Hard Link Count 0002h = 2
Bytes 20 and 21 Pointer to First Attribute 0030h = 48
Bytes 22 and 23 Record Flags 0003h =

Directory Record in use
Bytes 24 to 27 Logical Size of Record 00000298h = 664
Bytes 28 to 31 Physical Size of Record 00000400h = 1024
Bytes 32 to 39 Base File Reference 0000000000000000h
Bytes 40 and 41 Possible Attribute Count 0004h = 4
Bytes 42 and 43 Update Sequence Number 0002h = 2
Bytes 44 to 47 Update Sequence Array 00 00 00 00

Taking it Apart – the Standard Information Attribute

The start of the Standard Information Attribute is signalled by the identifier 10 00 00
00h at byte offset 48.As with all Attributes, this Standard Information Attribute starts
with an Attribute Header.

The Attribute Header

At byte offsets 48 to 71 (black background) at Table 6.89 are the details of this
Attribute Header. Its layout is identical to the Attribute Headers that we have encoun-
tered and deconstructed above.

Table 6.89 Attribute Header – Standard Information Attribute.
00000048 10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00 ....`...........
00000064 48 00 00 00 18 00 00 00 5A BF 1E 1B 8F 57 C4 01   H.......Z¿.._WÄ.

At Table 6.90 is shown the analysis of the Attribute Header for this Standard Infor-
mation Attribute.

Table 6.90 Attribute Header – analysis.
Bytes 48 to 51 Attribute ID 10 00 00 00
Bytes 52 to 55 Length of Attribute 00000060h = 96

From offset 48 to 143
Byte 56 Resident/Non-Resident Flag 00h = resident
Byte 57 Length of Name of Attribute 00h = no name
Bytes 58 to 59 Offset to Start of Attribute Proper 0000h = not used
Bytes 60 to 61 Flags 0000h = normal
Bytes 62 to 63 Not Yet Known 0000h
Bytes 64 to 67 Length of Attribute Proper 00000048h = 72

From offset 72 to 143
Bytes 68 to 69 Offset to Start of Attribute Proper 0018h = 24

48 + 24 = 72
Byte 70 Indexed flag 00h = not indexed
Byte 71 Padding to 8 byte Boundary 00h
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The Standard Information Attribute Proper

The Standard Information Attribute Proper extends from byte offsets 72 to 143 as
shown (black background) at Table 6.91.

Table 6.91 Standard Information Attribute Proper.
00000064   48 00 00 00 18 00 00 00 5A BF 1E 1B 8F 57 C4 01 H.......Z¿.._WÄ.
00000080 9C 8C 11 FA 85 57 C4 01  46 01 36 21 8F 57 C4 01 ÉŒ.ú…WÄ.F.6!_WÄ.
00000096 5E 2D CF 1B 8F 57 C4 01  01 00 00 00 00 00 00 00 ^-Ï._WÄ.........
00000112 00 00 00 00 00 00 00 00  00 00 00 00 0B 01 00 00 ................
00000128 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

At Table 6.92 is shown the analysis of the Standard Information Attribute Proper
as described in Table 6.70.

Table 6.92 Standard Information Attribute Proper – analysis.
Bytes 72 to 79 Creation Date and Time 21/06/04 12:56:02 GMT
Bytes 80 to 87 Last Modified Date and Time 21/06/04 11:50:41 GMT
Bytes 88 to 95 Last MFT Record Change Date and Time 21/06/04 12:56:12 GMT
Bytes 96 to 103 Last Access Date and Time 21/06/04 12:56:03 GMT
Bytes 104 to 107 File Permissions 01 00 00 00 = read only set
Bytes 108 to 111 Maximum Number of Versions 00000000h = disabled
Bytes 112 to 115 Version Number and Class ID 0000000000000000h
Bytes 120 to 123 Owner ID 00000000h
Bytes 124 to 127 Security ID 0000010Bh
Bytes 128 to 135 Quota Charged 0000000000000000h
Bytes 136 to 143 Update Sequence Number 0000000000000000h

An examination of the reported times and dates by the operating system and by
forensic software (see Tables 6.85 and 6.86 respectively) reveals that they are con-
sistent with those recorded here.

Taking it Apart – the File Name Attribute [1]

This is the first of two File Name Attributes that occur in this record. The start of the
File Name Attribute is signalled by the identifier 30 00 00 00h at byte offset 144. As
with all Attributes, this File Name Attribute starts with an Attribute Header.

The Attribute Header

At byte offsets 144 to 167 (black background) at Table 6.93 are the details of this
Attribute Header. Its layout is identical to the Attribute Headers that we have encoun-
tered and deconstructed above.

Table 6.93 Attribute Header – File Name Attribute.
00000144 30 00 00 00 70 00 00 00  00 00 00 00 00 00 03 00 0...p...........
00000160 52 00 00 00 18 00 01 00 2F 19 00 00 00 00 01 00   R......./.......

At Table 6.94 is shown the analysis of the Attribute Header for this File Name
Attribute.
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Table 6.94 Attribute Header – analysis.
Bytes 144 to 147 Attribute ID 30 00 00 00
Bytes 148 to 151 Length of Attribute 00000070h = 112

From offset 144 to 255
Byte 152 Resident/Non-Resident Flag 00h = resident
Byte 153 Length of Name of Attribute 00h = no name
Bytes 154 to 155 Offset to Start of Attribute Proper 0000h = not used
Bytes 156 to 157 Flags 0000h = normal
Bytes 158 to 159 Not Yet Known 0003h = possible ID
Bytes 160 to 163 Length of Attribute Proper 00000052h = 82

From offset 168 to 249
Bytes 164 to 165 Offset to Start of Attribute Proper 0018h = 24

144 + 24 = 168
Byte 166 Indexed flag 01h = indexed
Byte 167 Padding to 8 byte Boundary 00h

The File Name Attribute Proper

The File Name Attribute Proper extends from byte offsets 168 to 249 as shown (black
background) at Table 6.95.

Table 6.95 File Name Attribute Proper.
00000160   52 00 00 00 18 00 01 00 2F 19 00 00 00 00 01 00 R......./.......
00000176 5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01 Z¿.._WÄ.Z¿.._WÄ.
00000192 5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01 Z¿.._WÄ.Z¿.._WÄ.
00000208 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
00000224 00 00 00 10 00 00 00 00  08 02 4D 00 59 00 50 00 ..........M.Y.P.
00000240 49 00 43 00 54 00 7E 00  31 00 72 00 65 00 73 00   I.C.T.~.1.r.e.s.

At Table 6.96 is shown the analysis of the File Name Attribute Proper as described
in Table 6.74.

Table 6.96 File Name Attribute Proper – analysis.
Bytes 168 to 175 Reference to Parent Directory 000100000000192Fh = 6447

“My Documents”
Bytes 176 to 183 Creation Date and Time 21/06/04 12:56:02 GMT
Bytes 184 to 191 Last Modified Date and Time 21/06/04 12:56:02 GMT
Bytes 192 to 199 Last MFT Record Change Date and Time 21/06/04 12:56:02 GMT
Bytes 200 to 207 Last Access Date and Time 21/06/04 12:56:02 GMT
Bytes 208 to 215 "Physical" Size of File 0000000000000000h = 0
Bytes 216 to 223 "Logical" Size of File 0000000000000000h = 0
Bytes 224 to 227 Flags 00 00 00 10h
Bytes 228 to 231 Extended Attributes and Reparse Points 00000000h
Byte 232 Length of File Name in Characters 08h = 8
Byte 233 Type of File Name 02h = DOS
Bytes 234 to 249 File Name "MYPICT~1"

As can be seen from Table 6.96, the reference to the parent directory is record
number 6447 decimal, and this is identified in the sample MFT as the folder My
Documents, which does contain this folder. It should be noted that there are differ-
ences in the Last Modified Date and Time, the Last MFT Record Change Date and
Time and the Last Access Date and Time recorded in this attribute (Table 6.96) and
the equivalent dates and times recorded in the Standard Information Attribute
(Table 6.92). As mentioned above, the authors are currently of the view that none of
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the dates and times in this attribute should be relied upon until the rules by which
they are updated are fully understood.

It may be noted that the Type of File Name entry here is DOS-compliant (see Table
6.96), indicating that a second LFN File Name Attribute is probably required. It may
also be noted that there are six bytes of padding at byte offsets 250 to 255 to bring the
next entry onto an 8-byte boundary.

At byte offset 227,part of the four-byte sequence that is set aside for flags,we note a
value of 10h.The known range of values for the bytes at offsets 224 to 227 are listed in
Table 6.35 with the values of the bytes at 226 and 227 shown as zero in all cases.This is
the first occasion on which a value other than zero has been seen in the File Name
Attribute at this location. Suspecting that byte 227, or at least one bit within it, might
be a flag that marks the record as a directory, a number of experiments were carried
out. Although not documented in any reference seen by the authors, the experiments
clearly demonstrated that this value is almost certainly a flag that marks this record as
a directory or marks some item peculiar to a directory. It may be noted that the same
value also appears in the second File Name Attribute which follows.

Taking it Apart – the File Name Attribute [2]

This is the second of two File Name Attributes that occur in this record. The start of
the File Name Attribute is signalled by the identifier 30 00 00 00h at byte offset 256.As
with all Attributes, this File Name Attribute starts with an Attribute Header.

The Attribute Header

At byte offsets 256 to 279 (black background) at Table 6.97 are the details of this
Attribute Header. Its layout is identical to the Attribute Headers that we have encoun-
tered and deconstructed above.

Table 6.97 Attribute Header – File Name Attribute.
00000256 30 00 00 00 70 00 00 00  00 00 00 00 00 00 02 00 0...p...........
00000272 58 00 00 00 18 00 01 00 2F 19 00 00 00 00 01 00   X......./.......

At Table 6.98 is shown the analysis of the Attribute Header for this File Name
Attribute.

Table 6.98 Attribute Header – analysis.
Bytes 256 to 259 Attribute ID 30 00 00 00
Bytes 260 to 263 Length of Attribute 00000070h = 112

From offset 256 to 367
Byte 264 Resident/Non-Resident Flag 00h = resident
Byte 265 Length of Name of Attribute 00h = no name
Bytes 266 to 267 Offset to Start of Attribute Proper 0000h = not used
Bytes 268 to 269 Flags 0000h = normal
Bytes 270 to 271 Not Yet Known 0002h = possible ID
Bytes 272 to 275 Length of Attribute Proper 00000058h = 88

From offset 280 to 367
Bytes 276 to 277 Offset to Start of Attribute Proper 0018h = 24

256 + 24 = 280
Byte 278 Indexed flag 01h = indexed
Byte 279 Padding to 8 byte Boundary 00h
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The File Name Attribute Proper

The File Name Attribute Proper extends from byte offsets 280 to 367 as shown (black
background) at Table 6.99.

Table 6.99 File Name Attribute Proper.
00000272   58 00 00 00 18 00 01 00 2F 19 00 00 00 00 01 00 X......./.......
00000288   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01 Z¿.._WÄ.Z¿.._WÄ.
00000304   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01 Z¿.._WÄ.Z¿.._WÄ.
00000320   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
00000336   00 00 00 10 00 00 00 00  0B 01 4D 00 79 00 20 00 ..........M.y. .
00000352   50 00 69 00 63 00 74 00  75 00 72 00 65 00 73 00 P.i.c.t.u.r.e.s.

At Table 6.100 is shown the analysis of the File Name Attribute Proper as described
in Table 6.74.

Table 6.100 File Name Attribute Proper – analysis.
Bytes 280 to 287 Reference to Parent Directory 000100000000192Fh

= 6447 “My Documents”
Bytes 288 to 295 Creation Date and Time 21/06/04 12:56:02 GMT
Bytes 296 to 303 Last Modified Date and Time 21/06/04 12:56:02 GMT
Bytes 304 to 311 Last MFT Record Change Date and Time 21/06/04 12:56:02 GMT
Bytes 312 to 319 Last Access Date and Time 21/06/04 12:56:02 GMT
Bytes 320 to 327 “Physical” Size of File 0000000000000000h = 0
Bytes 328 to 335 “Logical” Size of File 0000000000000000h = 0
Bytes 336 to 339 Flags 00 00 00 10h
Bytes 340 to 343 Extended Attributes and Reparse Points 00000000h
Byte 344 Length of File Name in Characters 0Bh = 11
Byte 345 Type of File Name 01h = Win32
Bytes 346 to 367 File Name “My Pictures”

As can be seen from Table 6.100, the reference to the parent directory is record
number 6447 decimal, and this is identified in the sample MFT as the folder My
Documents, which does contain this folder. It should be noted, as explained above,
that there are differences in the Last Modified Date and Time, the Last MFT Record
Change Date and Time and the Last Access Date and Time recorded in this attribute
(Table 6.100) and the equivalent dates and times recorded in the Standard Infor-
mation Attribute (Table 6.92). None of the dates and times in this attribute should be
relied upon until the rules by which they are updated are fully understood.

It may be noted that the Type of File Name entry here is Win32-compliant (see
Table 6.100) indicating that this is an LFN File Name Attribute.At byte offset 339,part
of the four-byte sequence that is set aside for flags, we note a value of 10h and
interpret this as a flag that marks the record as a directory (see above). We may also
note that no padding bytes are required in this instance.

Taking it Apart – the Index Root Attribute

The start of an Index Root Attribute is signalled by the identifier 90 00 00 00h at byte
offset 368. As with all Attributes, this Index Root Attribute starts with an Attribute
Header.
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The Attribute Header

At byte offsets 368 to 383 (black background) at Table 6.101 are the details of the first
part of this Attribute Header. This Attribute Header is interpreted differently from
the previous versions analyzed because the Attribute is Named (see Appendix 9 for
the template applied).

Table 6.101 Attribute Header – Index Root Attribute – first part.
00000368 90 00 00 00 20 01 00 00  00 04 18 00 00 00 01 00 _... ...........
00000384 00 01 00 00 20 00 00 00 24 00 49 00 33 00 30 00   .... ...$.I.3.0.

At Table 6.102 is shown the analysis of the first part of the Attribute Header for the
Index Root Attribute.

Table 6.102 Attribute Header – First part – analysis.
Bytes 368 to 371 Attribute ID 90 00 00 00
Bytes 372 to 375 Length of Attribute 00000120h = 288

From offset 368 to 655
Byte 376 Resident/Non-Resident Flag 00h = resident
Byte 377 Length of Name of Attribute 04h = 4
Bytes 378 to 379 Offset to Name of Attribute 0018h = 24

368 + 24 = 392
Bytes 380 to 381 Flags 0000h = normal
Bytes 382 to 383 Not Yet Known 0001h = possible ID
Bytes 384 to 387 Length of Attribute Proper 00000100h = 256

From offset 400 to 655
Bytes 388 to 389 Offset to Start of Attribute Proper 0020h = 32

368 + 32 = 400
Byte 390 Indexed flag 00h = not indexed
Byte 391 Padding to 8 byte Boundary 00h

This Attribute Header is interpreted differently from what we have seen before,
because this Attribute is named (see Table 6.102). Byte offsets 392 to 399 (black
background) at Table 6.103 contain the details of this name, which is “$I30” in
Unicode.

Table 6.103 Attribute Header – Index Root Attribute – second part.
00000384   00 01 00 00 20 00 00 00 24 00 49 00 33 00 30 00 .... ...$.I.3.0.

The Index Root

The Index Root Attribute is an Attribute that we have not so far examined. The first
four bytes at offsets 400 to 403 (black background) at Table 6.104, identify the type of
entry as listed in the $AttrDef file (see Table 6.2). In this case we note that 30 00 00 00h
is a File Name type.

Table 6.104 Type of entry.
00000400 30 00 00 00 01 00 00 00  00 10 00 00 01 00 00 00   0...............

Byte offsets 404 to 407 (black background) at Table 6.105 are reported to be an
indication of the collation rule. This byte sequence identifies the rule that is to be
used to sort the following index entries. If the type is File Name, as is the case here,
then the rule COLLATION_FILENAME is used.

Table 6.105 Collation rule.
00000400   30 00 00 00 01 00 00 00 00 10 00 00 01 00 00 00   0...............
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Byte offsets 408 to 411 (black background) at Table 6.106 contain the size of the
Index Allocation Entry. The value here of 00001000h is equal to 4096 decimal. A scan
of the sample volume reveals that “INDX” files, which are directory listings held as
non-resident data in blocks on the “user” area of the disk, are 4096 bytes long. Each
block is headed with the four characters “INDX”. Any further space that is required
by the file is allocated in blocks of the same size, which may or may not be
contiguous. It will be seen later that “INDX” files are pointed to by data runs in just
the same way as is the file data.

Table 6.106 Size of Index Allocation Entry.
00000400   30 00 00 00 01 00 00 00 00 10 00 00 01 00 00 00   0...............

Byte offset 412 (black background) at Table 6.107 is declared to be the Number of
Clusters per Index Record. It is known from the BPB (see Table 6.1) at byte offset 13h
that the cluster size on this disk is eight sectors, and thus this value of 1 equates to 8 ×
512 = 4096 bytes. The remaining three bytes, offsets 413 to 415, are padding.

Table 6.107 Number of Clusters per Index Record.
00000400   30 00 00 00 01 00 00 00  00 10 00 00 01 00 00 00   0...............

The Index Header

The next part of this Attribute is known as the Index Header. Byte offsets 416 to 419
(black background) at Table 6.108 record the offset to the first index entry. In this
case the value is 00000010h, which equals 16 decimal. This value therefore points to
offset 416 + 16 = 432.

Table 6.108 Offset to first Index Entry.
00000416 10 00 00 00 F0 00 00 00  F0 00 00 00 00 00 00 00   ....�...�.......

Byte offsets 420 to 423 (black background) at Table 6.109 record the total size of the
Index Entries. The value 000000F0h is equal to 240 decimal. Applied from the start of
this Index Header, the last byte in the index should be at byte offset 416 + 240 – 1 =
655. This coincides with the declaration in the Attribute Header (see Table 6.102).

Table 6.109 Total size of Index Entries.
00000416   10 00 00 00 F0 00 00 00 F0 00 00 00 00 00 00 00   ....�...�.......

The allocated size of the Index Entries is recorded in byte offsets 424 to 427 (black
background) at Table 6.110. The value is again 000000F0h which is equal to 240
decimal. This is identical to the total size of the Index Entries seen in Table 6.109 and
it is likely that this value will be of more significance in non-resident records.

Table 6.110 Allocated Size of Index Entries.
00000416   10 00 00 00 F0 00 00 00 F0 00 00 00 00 00 00 00   ....�...�.......

Byte offset 428 (black background) at Table 6.111 is reported to be a flag which
signals whether the Index is a “Small” index which will fit within the MFT record or a
“Large”index that requires an external Index Allocation Unit. In this case 00h signals
that this is a “Small” index, whereas 01h would signal it was a “Large” index. Experi-
ments have shown that part directory listings may be retained within the MFT
record both with and without external “INDX” buffer files. Where both types are
present (internal and external) this flag will be set to 01h. Where there are no entries

The New Technology File System 257



in the listing (an empty directory) or entries are resident only, this flag will be set to
00h. The remaining three bytes at offsets 429 to 431 are undocumented and are likely
to be padding.

Table 6.111 Small or Large index flag.
00000416   10 00 00 00 F0 00 00 00  F0 00 00 00 00 00 00 00   ....�...�.......

Index Entries

The next part of the Attribute can be interpreted in a number of different ways,
depending upon its content (for details see Appendix 9). In this case, there are three
Index Entries and each starts with its own Index Entry Header which is 16 bytes in
length. The first two entries do not have the Last Entry flag set; the final entry, which
is a null entry, signals that it is also the last entry.

The eight bytes at offsets 432 and 439 (black background) at Table 6.112 point to
the MFT record entry for this item.The values are in the same format as we have seen
before where we called them “Base File Reference” (see, for example, Table 6.44). The
value of the first six bytes 0000195Bh is equal to 6491 decimal, which refers to MFT
record number 6491. This record is found to contain the details concerning a file
called Desktop.ini.

Table 6.112 MFT reference for this item.
00000432 5B 19 00 00 00 00 01 00 68 00 58 00 00 00 00 00   [.......h.X.....

The two bytes at offsets 440 and 441 (black background) at Table 6.113 are stated to
be the value of the length of the Index Entry, including the Index Entry Header. The
value 0068h, which is 104 decimal, indicates that the Index Entry ends at byte 432 +
104 – 1 = 535.

Table 6.113 Length of Index Entry.
00000432   5B 19 00 00 00 00 01 00 68 00 58 00 00 00 00 00   [.......h.X.....

The two bytes at offsets 442 and 443 (black background) at Table 6.114, are stated
to be the length of the stream attached to this Entry. This is the length of the File
Name Attribute proper attached to this Index Entry Header. The value here is 0058h,
which equals 88 in decimal. The stream starts, according to the specification, at an
offset of 16 decimal from the beginning of the Index Entry,which, in this case is at 432
+ 16 = 448. It extends to 448 + 88 – 1 = 535.

Table 6.114 Length of stream.
00000432   5B 19 00 00 00 00 01 00  68 00 58 00 00 00 00 00   [.......h.X.....

The byte at offset 444 (black background) at Table 6.115 is a listing flag byte with
values: 00h = Internal MFT listing only, 01h = External “INDX” file exists, 02h = Last
Index Entry in directory, and 03h = Internal listing exists and External “INDX” file
exists. Here the value is zero, indicating that an internal listing exists.

Table 6.115 Listing flag.
00000432   5B 19 00 00 00 00 01 00  68 00 58 00 00 00 00 00   [.......h.X.....

There appears to be some confusion over the purpose of this flag (at Table 6.115)
and the purpose of the flag in the Index Header (see Table 6.111). A comparison of
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the two flags across a series of records in the sample MFT revealed the details shown
at Table 6.116.

Table 6.116 Comparison of flags.
Index Header Index Entry Header
Table 6.111 Table 6.115 Findings in MFT Record
00h 00h Resident listing only
00h 02h Final null entry in listing (includes empty listing)
01h 01h Resident and external listing exists
01h 03h No resident listing, external listing only exists

The remaining three bytes at offsets 445 to 447 are probably padding. This is the
end of the Index Entry Header and the start of the first Index Entry proper.

As noted from Table 6.114, the File Name Type Index Entry stream is from byte
offsets 448 to 535, and these are highlighted (black background) at Table 6.117. The
data stream for a File Name Type Index Entry appears to be very similar to that for a
File Name Attribute proper (see, for example, Table 6.99).

Table 6.117 File Name Type Index Entry.
00000448 30 19 00 00 00 00 01 00  80 F3 B4 1B 8F 57 C4 01 0......._ó´._WÄ.
00000464 46 01 36 21 8F 57 C4 01  46 01 36 21 8F 57 C4 01 F.6!_WÄ.F.6!_WÄ.
00000480 46 01 36 21 8F 57 C4 01  B8 01 00 00 00 00 00 00 F.6!_WÄ.¸.......
00000496 B6 01 00 00 00 00 00 00  06 00 00 00 00 00 02 00 ¶...............
00000512 0B 03 44 00 65 00 73 00  6B 00 74 00 6F 00 70 00 ..D.e.s.k.t.o.p.
00000528 2E 00 69 00 6E 00 69 00 ..i.n.i.

At Table 6.118 is shown the analysis of the File Name Type Index Entry using, as a
template, the descriptors from Table 6.100.

Table 6.118 File Name Type Index Entry – analysis.
Bytes 448 to 455 Reference to Parent Directory 0001000000001930h

= 6448 “My Pictures”
Bytes 456 to 463 Creation Date and Time 21/06/04 12:56:03 GMT
Bytes 464 to 471 Last Modified Date and Time 21/06/04 12:56:12 GMT
Bytes 472 to 479 Last MFT Record Change Date and Time 21/06/04 12:56:12 GMT
Bytes 480 to 487 Last Access Date and Time 21/06/04 12:56:12 GMT
Bytes 488 to 495 "Physical" Size of File 00000000000001B8h = 440
Bytes 496 to 503 "Logical" Size of File 00000000000001B6h = 438
Bytes 504 to 507 Flags 06 00 00 00h =

System, Hidden
Bytes 508 to 511 Extended Attributes and Reparse Points 00000000h
Byte 512 Length of File Name in Characters 0Bh = 11
Byte 513 Type of File Name 03h = Win32 & DOS
Bytes 514 to 535 File Name “Desktop.ini”

It should be noted that bytes 510 and 511 are shown in Table 6.117 as 02 00h respec-
tively. These are, of course, the Update Sequence Number for this record (see Table
6.88) and they thus need to be replaced, before analysis, by the appropriate values
from the Update Sequence Array. In this case, the values are 00 00h and this is what is
shown against the Extended Attributes and Reparse Points entry in Table 6.118.

We now repeat this analysis for the second Index Entry, starting with its Index
Entry Header at byte offset 536 and continuing to byte offset 551. This is shown
(black background) at Table 6.119.
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Table 6.119 Index Entry Header.
00000528 59 19 00 00 00 00 01 00 Y.......
00000544 68 00 56 00 00 00 00 00 30 19 00 00 00 00 01 00   h.V.....0.......

At Table 6.120 is shown the analysis for the second Index Entry Header. The three
bytes at offsets 549 to 551 are probably padding to an 8 byte boundary.

Table 6.120 Index Entry Header – analysis.
Bytes 536 to 543 MFT Reference for this Item 0001000000001959h

= 6489 “Sample.jpg”
Bytes 544 to 545 Length of Index Entry 0068h = 104

From offset 536 to 639
Bytes 546 to 547 Length of Stream 0056h = 86

From offset 552 to 637
Byte 548 Listing Flag 00h = resident listing

This is the end of the Index Entry Header and the start of the second Index Entry
proper. As noted from Table 6.120, the File Name Type Index Entry stream is from
byte offsets 552 to 637,and these are highlighted (black background) at Table 6.121.

Table 6.121 File Name Type Index Entry.
00000544   68 00 56 00 00 00 00 00 30 19 00 00 00 00 01 00 h.V.....0.......
00000560 80 F3 B4 1B 8F 57 C4 01  08 4C 2F DE 85 57 C4 01 _ó´._WÄ..L/Þ…WÄ.
00000576 5E 2D CF 1B 8F 57 C4 01  5E 2D CF 1B 8F 57 C4 01 ^-Ï._WÄ.^-Ï._WÄ.
00000592 00 30 00 00 00 00 00 00  A6 26 00 00 00 00 00 00 .0......|&......
00000608 20 00 00 00 00 00 00 00  0A 03 53 00 61 00 6D 00 .........S.a.m.
00000624 70 00 6C 00 65 00 2E 00  6A 00 70 00 67 00 00 00   p.l.e...j.p.g...

At Table 6.122 is shown the analysis of the File Name Type Index Entry using, as a
template, the descriptors from Table 6.100. The two bytes at offsets 638 and 639 are
probably padding to an 8 byte boundary.

Table 6.122 File Name Type Index Entry – analysis.
Bytes 552 to 559 Reference to Parent Directory 0001000000001930h

= 6448 “My Pictures”
Bytes 560 to 567 Creation Date and Time 21/06/04 12:56:03 GMT
Bytes 568 to 575 Last Modified Date and Time 21/06/04 11:49:54 GMT
Bytes 576 to 583 Last MFT Record Change Date and Time 21/06/04 12:56:03 GMT
Bytes 584 to 591 Last Access Date and Time 21/06/04 12:56:03 GMT
Bytes 592 to 599 “Physical” Size of File 0000000000003000h = 12,288
Bytes 600 to 607 “Logical” Size of File 00000000000026A6h = 9,894
Bytes 608 to 611 Flags 20 00 00 00h = Archive set
Bytes 612 to 615 Extended Attributes and Reparse Points 00000000h
Byte 616 Length of File Name in Characters 0Ah = 10
Byte 617 Type of File Name 03h = Win32 & DOS
Bytes 618 to 637 File Name “Sample.jpg”

Finally, we repeat this analysis for the third Index Entry starting with its Index
Entry Header at byte offset 640 and continuing to byte offset 655. This is shown
(black background) at Table 6.123.

Table 6.123 Index Entry Header.
00000640 00 00 00 00 00 00 00 00  10 00 00 00 02 00 00 00 ................

At Table 6.124 is shown the analysis for the third Index Entry Header. It is the last
Index Entry of zero stream length, as there is no Index Entry following. The three
bytes at offsets 653 to 655 are probably padding to an 8 byte boundary.
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Table 6.124 Index Entry Header – analysis.
Bytes 640 to 647 MFT Reference for this Item 0000000000000000h = 0
Bytes 648 to 649 Length of Index Entry 0010h = 16

From offset 640 to 655
Bytes 650 to 651 Length of Stream 0000h = 0
Byte 652 Listing Flag 02h = Last Index Entry

At byte offsets 656 to 659 (black background) in Table 6.125, we find the End of
Record Marker followed in byte offsets 660 to 663, the Cyclic Redundancy Check.

Table 6.125 End of Record Marker and CRC.
00000656 FF FF FF FF 82 79 47 11 00 00 00 00 00 00 00 00   ÿÿÿÿ‚yG.........

External Directory Listings – Creation of “INDX” Files

Taking the directory listing (MFT record number 6448) that we have just examined
as a baseline, we now explore the issue of creating an external directory listing, that
is, an “INDX” file. By continuing to add files to the My Pictures subdirectory it is
apparent that at some stage the listing will become too big to be retained within the
one MFT record.

This sample MFT record originally contained details of two files within its
directory listing:Desktop.ini and Sample.jpg.We noted the End of Record marker
at offset 656 (see Table 6.125) and the FILE Record Header reports the logical size of
the record to be 664 bytes in length (see bytes 24 to 27 in Table 6.88). This logical
length includes the End of Record Marker and the four check bytes immediately
following.

At Table 6.126,we show the details for this same record after further files have been
added to the directory. The files added were, in the order shown: MFTtest1.txt,
AMFTtst2.txt,ZMFTtst2.txt and JMFTtst2.txt. It was noted that the last file that
was added made the listing too big to hold it in the MFT record and this forced the
operating system to generate external storage for the entire listing. It was also noted
that on each occasion a file was added, the file list was re-sorted. It was to test this
effect that we used different characters at the beginning of each file name.Table 6.126
shows the revised MFT record following the addition of the four files, and the subse-
quent creation of external storage.

Table 6.126 Revised MFT record.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  C1 36 A0 01 00 00 00 00   FILE*...Á6 .....
00000016   01 00 02 00 30 00 03 00  48 02 00 00 00 04 00 00   ....0...H.......
00000032   00 00 00 00 00 00 00 00  07 00 06 00 00 00 00 00   ................
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00   ....`...........
00000064   48 00 00 00 18 00 00 00  5A BF 1E 1B 8F 57 C4 01   H.......Z¿.._WÄ.
00000080   E6 F3 4F E6 51 26 C6 01  E6 F3 4F E6 51 26 C6 01   æóOæQ&Æ.æóOæQ&Æ.
00000096   E6 F3 4F E6 51 26 C6 01  01 00 00 00 00 00 00 00   æóOæQ&Æ.........
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0B 01 00 00   ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000144   30 00 00 00 70 00 00 00  00 00 00 00 00 00 03 00   0...p...........
00000160   52 00 00 00 18 00 01 00  2F 19 00 00 00 00 01 00   R......./.......
00000176   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
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00000192   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000208   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000224   00 00 00 10 00 00 00 00  08 02 4D 00 59 00 50 00   ..........M.Y.P.
00000240   49 00 43 00 54 00 7E 00  31 00 72 00 65 00 73 00   I.C.T.~.1.r.e.s.
00000256   30 00 00 00 70 00 00 00  00 00 00 00 00 00 02 00   0...p...........
00000272   58 00 00 00 18 00 01 00  2F 19 00 00 00 00 01 00   X......./.......
00000288   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000304   5A BF 1E 1B 8F 57 C4 01  5A BF 1E 1B 8F 57 C4 01   Z¿.._WÄ.Z¿.._WÄ.
00000320   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00   ................
00000336   00 00 00 10 00 00 00 00  0B 01 4D 00 79 00 20 00   ..........M.y. .
00000352   50 00 69 00 63 00 74 00  75 00 72 00 65 00 73 00   P.i.c.t.u.r.e.s.
00000368   90 00 00 00 58 00 00 00  00 04 18 00 00 00 06 00   _...X...........
00000384   38 00 00 00 20 00 00 00  24 00 49 00 33 00 30 00   8... ...$.I.3.0.
00000400   30 00 00 00 01 00 00 00  00 10 00 00 01 00 00 00   0...............
00000416   10 00 00 00 28 00 00 00  28 00 00 00 01 00 00 00   ....(...(.......
00000432   00 00 00 00 00 00 00 00  18 00 00 00 03 00 00 00   ................
00000448   00 00 00 00 00 00 00 00  A0 00 00 00 50 00 00 00   ........ ...P...
00000464   01 04 40 00 00 00 04 00  00 00 00 00 00 00 00 00   ..@.............
00000480   00 00 00 00 00 00 00 00  48 00 00 00 00 00 00 00   ........H.......
00000496   00 10 00 00 00 00 00 00  00 10 00 00 00 00 06 00   ................
00000512   00 10 00 00 00 00 00 00  24 00 49 00 33 00 30 00   ........$.I.3.0.
00000528   31 01 0D FC 04 00 00 00  B0 00 00 00 28 00 00 00   1..ü....°...(...
00000544   00 04 18 00 00 00 05 00  08 00 00 00 20 00 00 00   ............ ...
00000560   24 00 49 00 33 00 30 00  01 00 00 00 00 00 00 00   $.I.3.0.........
00000576   FF FF FF FF 82 79 47 11  46 01 36 21 8F 57 C4 01   ÿÿÿÿ‚yG.F.6!_WÄ.
00000592   26 97 9A 5F 50 26 C6 01  B8 01 00 00 00 00 00 00   &—š_P&Æ.¸.......
00000608   B6 01 00 00 00 00 00 00  06 00 00 00 00 00 00 00   ¶...............
00000624   0B 03 44 00 65 00 73 00  6B 00 74 00 6F 00 70 00   ..D.e.s.k.t.o.p.
00000640   2E 00 69 00 6E 00 69 00  BF 19 00 00 00 00 02 00   ..i.n.i.¿.......
00000656   70 00 5A 00 00 00 00 00  30 19 00 00 00 00 01 00   p.Z.....0.......
00000672   EA 6D C3 64 50 26 C6 01  00 B2 FB 45 50 26 C6 01   êmÃdP&Æ..²ûEP&Æ.
00000688   EA 6D C3 64 50 26 C6 01  EA 6D C3 64 50 26 C6 01   êmÃdP&Æ.êmÃdP&Æ.
00000704   30 00 00 00 00 00 00 00  2B 00 00 00 00 00 00 00   0.......+.......
00000720   20 00 00 00 00 00 00 00  0C 03 4D 00 46 00 54 00    .........M.F.T.
00000736   74 00 65 00 73 00 74 00  31 00 2E 00 74 00 78 00   t.e.s.t.1...t.x.
00000752   74 00 00 00 00 00 00 00  59 19 00 00 00 00 01 00   t.......Y.......
00000768   68 00 56 00 00 00 00 00  30 19 00 00 00 00 01 00   h.V.....0.......
00000784   80 F3 B4 1B 8F 57 C4 01  08 4C 2F DE 85 57 C4 01   _ó´._WÄ..L/Þ…WÄ.
00000800   5E 2D CF 1B 8F 57 C4 01  5E 2D CF 1B 8F 57 C4 01   ^-Ï._WÄ.^-Ï._WÄ.
00000816   00 30 00 00 00 00 00 00  A6 26 00 00 00 00 00 00   .0......|&......
00000832   20 00 00 00 00 00 00 00  0A 03 53 00 61 00 6D 00    .........S.a.m.
00000848   70 00 6C 00 65 00 2E 00  6A 00 70 00 67 00 00 00   p.l.e...j.p.g...
00000864   C1 19 00 00 00 00 01 00  70 00 5A 00 00 00 00 00   Á.......p.Z.....
00000880   30 19 00 00 00 00 01 00  8A 0C 83 92 51 26 C6 01   0.......Š.ƒ’Q&Æ.
00000896   00 A1 45 84 51 26 C6 01  E4 6E 85 92 51 26 C6 01   .¡E„Q&Æ.änƒ’Q&Æ.
00000912   E4 6E 85 92 51 26 C6 01  30 00 00 00 00 00 00 00   änƒ’Q&Æ.0.......
00000928   2B 00 00 00 00 00 00 00  20 00 00 00 00 00 00 00   +....... .......
00000944   0C 03 5A 00 4D 00 46 00  54 00 74 00 73 00 74 00   ..Z.M.F.T.t.s.t.
00000960   32 00 2E 00 74 00 78 00  74 00 00 00 00 00 00 00   2...t.x.t.......
00000976   00 00 00 00 00 00 00 00  10 00 00 00 02 00 00 00   ................
00000992   FF FF FF FF 82 79 47 11  00 00 00 00 00 00 00 00   ÿÿÿÿ‚yG.........
00001008   00 00 00 00 00 00 00 00  00 00 00 00 00 00 06 00   ................

We now examine Table 6.126, using the same section headings as above, and
compare the results with our findings for Table 6.84 to establish any major differ-
ences that have occurred.In the first section we look at the new FILE Record Header.
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The FILE Record Header

At Table 6.127, we show (black background), the bytes of the FILE Record Header for
this revised sample MFT record from byte offsets 0 to 47. We note that this header
starts with the normal “FILE” marker.

Table 6.127 FILE Record Header.
00000000 46 49 4C 45 2A 00 03 00  C1 36 A0 01 00 00 00 00 FILE*...Á6 .....
00000016 01 00 02 00 30 00 03 00  48 02 00 00 00 04 00 00 ....0...H.......
00000032 00 00 00 00 00 00 00 00  07 00 06 00 00 00 00 00 ................

At Table 6.128 we show the detailed analysis of this File Record Header, using the
same descriptors as we used at Table 6.88.Where the values in Table 6.128 differ from
those in Table 6.88, they are highlighted (black background).

Table 6.128 FILE Record Header – analysis.
Bytes 0 to 3 Start of File Record Header “FILE”
Bytes 4 and 5 Offset to Update Sequence Number 002Ah = 42
Bytes 6 and 7 Size of Update Sequence 0003h = 3
Bytes 8 to 15 $Logfile Sequence Number 0000000001A036C1h
Bytes 16 and 17 Record Use Sequence Number 0001h = 1
Bytes 18 and 19 Hard Link Count 0002h = 2
Bytes 20 and 21 Pointer to First Attribute 0030h = 48
Bytes 22 and 23 Record Flags 0003h =

Directory Record in use
Bytes 24 to 27 Logical Size of Record 00000248h = 584
Bytes 28 to 31 Physical Size of Record 00000400h = 1024
Bytes 32 to 39 Base File Reference 0000000000000000h
Bytes 40 and 41 Possible Attribute Count 0007h = 7
Bytes 42 and 43 Update Sequence Number 0006h = 6
Bytes 44 to 47 Update Sequence Array 00 00 00 00

We note that the record has been changed in a number of ways. The logical length
is now shown as 584 (bytes 24 to 27), so the End of Record marker is now present at
offsets 576 to 579 and the CRC at offsets 580 to 583. A different $Logfile Sequence
Number (bytes 8 to 15) has been assigned, and this is expected since it should change
for each transaction. Also, as might be expected, the Possible Attribute Count (bytes
40 and 41) and the Update Sequence Number (byte 42 and 43) have been changed.

The Standard Information Attribute

At Table 6.129, we show (black background) the bytes of the Standard Information
Attribute (together with its Attribute Header) for this revised sample MFT record
from byte offsets 48 to 143.

Table 6.129 Standard Information Attribute.
00000048 10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00 ....`...........
00000064 48 00 00 00 18 00 00 00  5A BF 1E 1B 8F 57 C4 01 H.......Z¿.._WÄ.
00000080 E6 F3 4F E6 51 26 C6 01  E6 F3 4F E6 51 26 C6 01 æóOæQ&Æ.æóOæQ&Æ.
00000096 E6 F3 4F E6 51 26 C6 01  01 00 00 00 00 00 00 00 æóOæQ&Æ.........
00000112 00 00 00 00 00 00 00 00  00 00 00 00 0B 01 00 00 ................
00000128 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

The New Technology File System 263



At Table 6.130 we show the detailed analysis of the Standard Information
Attribute, using the same descriptors as we used at Tables 6.90 and 6.92. Where the
values in Table 6.130 differ from those in Tables 6.90 and 6.92, they are highlighted
(black background).

Table 6.130 Standard Information Attribute – analysis.
Bytes 48 to 51 Attribute ID 10 00 00 00
Bytes 52 to 55 Length of Attribute 00000060h = 96

From offset 48 to 143
Byte 56 Resident/Non-Resident Flag 00h = resident
Byte 57 Length of Name of Attribute 00h = no name
Bytes 58 to 59 Offset to Start of Attribute Proper 0000h = not used
Bytes 60 to 61 Flags 0000h = normal
Bytes 62 to 63 Not Yet Known 0000h
Bytes 64 to 67 Length of Attribute Proper 00000048h = 72

From offset 72 to 143
Bytes 68 to 69 Offset to Start of Attribute Proper 0018h = 24

48 + 24 = 72
Byte 70 Indexed flag 00h = not indexed
Byte 71 Padding to 8 byte Boundary 00h
Bytes 72 to 79 Creation Date and Time 21/06/04 12:56:02 GMT
Bytes 80 to 87 Last Modified Date and Time 31/01/06 10:34:22 GMT
Bytes 88 to 95 Last MFT Record Change Date and Time 31/01/06 10:34:22 GMT
Bytes 96 to 103 Last Access Date and Time 31/01/06 10:34:22 GMT
Bytes 104 to 107 File Permissions 01 00 00 00 = read only set
Bytes 108 to 111 Maximum Number of Versions 00000000h = disabled
Bytes 112 to 115 Version Number and Class ID 0000000000000000h = 0
Byte 120 to 123 Owner ID 00000000h
Bytes 124 to 127 Security ID 0000010Bh
Bytes 128 to 135 Quota Charged 0000000000000000h = 0
Bytes 136 to 143 Update Sequence Number 0000000000000000h = 0

Here we note that the only changes made to the Standard Information Attribute are
to the Last Modified Date and Time, the Last MFT Record Change Date and Time and
the Last Access Date and Time. We would expect these dates and times to change for
each transaction made.

The File Name Attributes

A detailed comparison of the values at byte offsets 144 to 367 in Tables 6.84 and 6.126
show them to be identical, indicating that there have been no changes to either of the
File Name Attributes.

The Index Root Attribute

At Table 6.131, we show (black background), the bytes of the Index Root Attribute
(together with its Attribute Header) for this revised sample MFT record from byte
offsets 368 to 415.

Table 6.131 Index Root Attribute.
00000368 90 00 00 00 58 00 00 00  00 04 18 00 00 00 06 00 _...X...........
00000384 38 00 00 00 20 00 00 00  24 00 49 00 33 00 30 00 8... ...$.I.3.0.
00000400 30 00 00 00 01 00 00 00  00 10 00 00 01 00 00 00 0...............
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At Table 6.132 we show the detailed analysis of the Index Root Attribute, using the
same descriptors as we used at Tables 6.102 to 6.107. Where the values in Table 6.132
differ from those in Tables 6.102 to 6.107, they are highlighted (black background).

Table 6.132 Index Root Attribute – analysis.
Bytes 368 to 371 Attribute ID 90 00 00 00
Bytes 372 to 375 Length of Attribute 00000058h = 88

From offset 368 to 455
Byte 376 Resident/Non-Resident Flag 00h = resident
Byte 377 Length of Name of Attribute 04h = 4
Bytes 378 to 379 Offset to Name of Attribute 0018h = 24

368 + 24 = 392
Bytes 380 to 381 Flags 0000h = normal
Bytes 382 to 383 Not Yet Known 0006h = possible ID
Bytes 384 to 387 Length of Attribute Proper 00000038h = 56

From offset 400 to 455
Bytes 388 to 389 Offset to Start of Attribute Proper 0020h = 32

368 + 32 = 400
Byte 390 Indexed flag 00h = not indexed
Byte 391 Padding to 8 byte Boundary 00h
Bytes 392 to 399 Name of Attribute "$I30"
Bytes 400 to 403 Type of Entry 30 00 00 00 = File Name
Bytes 404 to 407 Collation Rule 00000001h = 1
Bytes 408 to 411 Size of Index Allocation Entry 00001000h = 4096
Byte 412 Number of Clusters per Index Record 01h = 1
Bytes 413 to 415 Padding to 8 byte Boundary 00 00 00

Here we note that changes have been made to the Length of Attribute (see byte
offsets 372 to 375), reducing it from 288 to 88 bytes, and the Length of Attribute
Proper (see byte offsets 384 to 387) reducing it from 256 to 56. In addition, the
possible attribute ID number (byte offsets 382 to 383) has been changed from 1 to 6.

The Index Header and Index Entry Header

At Table 6.133, we show (black background) the bytes of the Index Header, from
offsets 416 to 431, and the bytes of the Index Entry Header from offsets 432 to 447.

Table 6.133 Index Header and Index Entry Header.
00000416 10 00 00 00 28 00 00 00  28 00 00 00 01 00 00 00 ....(...(.......
00000432 00 00 00 00 00 00 00 00  18 00 00 00 03 00 00 00 ................

At Table 6.134 we show the detailed analysis of the Index Header and Index Entry
Header, using the same descriptors as we used at Tables 6.108 to 6.115. Where the
values in Table 6.134 differ from those in Tables 6.108 to 6.115, they are highlighted
(black background).

Table 6.134 Index Header and Index Entry Header – analysis.
Bytes 416 to 419 Offset to First Index Entry 00000010h = 16
Bytes 420 to 423 Total Size of Index Entries 00000028h = 40

From 416 to 455
Bytes 424 to 427 Allocated Size of Index Entries 00000028h = 40
Byte 428 Small or Large Index Flag 01h = Large (external)
Bytes 429 to 431 Padding to 8 byte Boundary 00 00 00
Bytes 432 to 439 MFT Reference for this Item 0000000000000000h
Bytes 440 to 441 Length of the Index Entry 0018h = 24

From 432 to 455
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Bytes 442 to 443 Length of Stream 0000h = 0
Byte 444 Listing Flag 03h = No resident

External Only
Bytes 445 to 447 Padding to 8 byte Boundary 00 00 00
Bytes 448 to 455 Remainder of Allocated Block 0000000000000000h

Here we note for the Index Header that changes have been made to the Total Size of
the Index Entries (see byte offsets 420 to 423) and the Allocated Size of Index Entries
(see byte offsets 424 to 427) reducing them both from 240 to 40 bytes. We may also
note that the Index Flag (see byte offset 428) now shows a “Large Index” indicating
that external storage has been allocated.

For the Index Entry Header, we note that no Base File Reference (see byte offsets
432 to 439) is recorded, that the Length of the Index Entry (see byte offsets 440 to 441)
has been reduced from 104 to 24 and that the Length of Stream (see byte offsets 442
to 443) has been reduced from 88 to 0. At byte offset 444, we note that the Listing Flag
now shows that there are no resident listings but that an external “INDX”file exists.

Further analysis shows that two new Attributes have been added: an Index
Allocation Attribute and a Bitmap Attribute. We consider each of these in detail in
the next two sections.

The Index Allocation Attribute

The start of an Index Allocation Attribute is signalled by the identifier A0 00 00 00h
at byte offsets 456 to 459. As with all Attributes this Index Allocation Attribute starts
with an Attribute Header, the layout of which is identical to one of the Attribute
Headers that we have encountered and deconstructed above. The details of this
Index Allocation Attribute are shown, from byte offsets 456 to 535 (black
background) at Table 6.135.

Table 6.135 Index Allocation Attribute.
00000448 A0 00 00 00 50 00 00 00 ...P...
00000464 01 04 40 00 00 00 04 00  00 00 00 00 00 00 00 00 ..@.............
00000480 00 00 00 00 00 00 00 00  48 00 00 00 00 00 00 00 ........H.......
00000496 00 10 00 00 00 00 00 00  00 10 00 00 00 00 06 00 ................
00000512 00 10 00 00 00 00 00 00  24 00 49 00 33 00 30 00 ........$.I.3.0.
00000528 31 01 0D FC 04 00 00 00 1..ü....

At Table 6.136 we show the detailed analysis of this Index Allocation Attribute. In
this case we are examining a non-resident, named Attribute and we follow the layout
described in Tables 6.76 to 6.82 for the second part of the Attribute Header.

Table 6.136 Index Allocation Attribute – analysis.
Bytes 456 to 459 Attribute ID A0 00 00 00
Bytes 460 to 463 Length of Attribute 00000050h = 80

From offset 456 to 535
Byte 464 Resident/Non-Resident Flag 01h = non resident
Byte 465 Length of Name of Attribute 04h = 4
Bytes 466 to 467 Offset to Name of Attribute 0040h = 64

456 + 64 = 520
Bytes 468 to 469 Flags 0000h = normal
Bytes 470 to 471 Not Yet Known 0004h = possible ID
Bytes 472 to 479 Starting VCN 0000000000000000h = 0
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Bytes 480 to 487 Last VCN 0000000000000000h = 0
Bytes 488 to 489 Offset to the Data Runs 0048h = 72

456 + 72 = 528
Bytes 490 to 491 Compression Unit Size 0000h = 0
Bytes 492 to 495 Padding to 8 byte Boundary 00 00 00 00
Bytes 496 to 503 Allocated Size of Attribute 0000000000001000h = 4096
Bytes 504 to 511 Real Size of Attribute 0000000000001000h = 4096
Bytes 512 to 519 Initialized Size of Stream 0000000000001000h = 4096
Bytes 520 to 527 Attribute Name "$I30"
Bytes 528 to 535 Data Run Descriptor 31 01 0D FC 04 00 00 00h

It should be noted that bytes 510 and 511 are shown in Table 6.135 as 06 00h respec-
tively. These are, of course, the Update Sequence Number for this record (see Table
6.128) and they thus need to be replaced, before analysis, by the appropriate values
from the Update Sequence Array. In this case, the values are 00 00h and this is what is
included in the value for the Real Size of Attribute entry in Table 6.136.

The Index Allocation Attribute proper is simply the Data Run Descriptor shown
starting at offset 528. All that goes before this is the Attribute Header for the Index
Allocation Attribute. Using the technique described when examining Table 6.82, this
Data Run Descriptor can be analysed as follows:

● The data run header byte, at offset 528, is 31h. This indicates that three bytes are
used in this run to contain the starting cluster number and one byte is used to
contain the number of clusters.

● The next byte,at offset 529,is 01h and this indicates that the number of clusters is 1.
● The next three bytes,at offsets 530 to 532,when re-ordered from little endian form

04FC0Dh = 326,669 decimal. This is the starting cluster number and so this run is
of one cluster at LCN 326,669.

● The next byte,at offset 533,is a null header byte that indicates the end of the runs.

The Bitmap Attribute

The start of a Bitmap Attribute is signalled by the identifier B0 00 00 00h at byte
offsets 536 to 539.As with all Attributes this Bitmap Attribute starts with an Attribute
Header, the layout of which is identical to one of the Attribute Headers that we have
encountered and deconstructed above. The details of this Bitmap Allocation
Attribute are shown,from byte offsets 536 to 575 (black background) at Table 6.137.

Table 6.137 Bitmap Attribute.
00000528 B0 00 00 00 28 00 00 00 °...(...
00000544 00 04 18 00 00 00 05 00  08 00 00 00 20 00 00 00 ............ ...
00000560 24 00 49 00 33 00 30 00  01 00 00 00 00 00 00 00 $.I.3.0.........

At Table 6.138 we show the detailed analysis of this Bitmap Attribute. In this case
we are examining a resident, named Attribute and we follow the layout described in
Table 6.102 for the Attribute Header.

Table 6.138 Bitmap Attribute – analysis.
Bytes 536 to 539 Attribute ID B0 00 00 00
Bytes 540 to 543 Length of Attribute 00000028h = 40

From offset 536 to 575
Byte 544 Resident/Non-Resident Flag 00h = resident
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Byte 545 Length of Name of Attribute 04h = 4
Bytes 546 to 547 Offset to Name of Attribute 0018h = 24

536 + 24 = 560
Bytes 548 to 549 Flags 0000h = normal
Bytes 550 to 551 Not Yet Known 0005h = possible ID
Bytes 552 to 555 Length of Attribute Proper 00000008h = 8

From offset 568 to 575
Bytes 556 to 557 Offset to Start of Attribute Proper 0020h = 32

536 + 32 = 568
Byte 558 Indexed flag 00h = not indexed
Byte 559 Padding to 8 byte Boundary 00h
Bytes 560 to 567 Attribute Name "$I30"
Bytes 568 to 575 Binary Map 0000000000000001h

The Bitmap Attribute proper occupies bytes 568 to 575 and is a binary map of the
allocation areas that are used by the external “INDX” file. At byte offsets 576 to 579
(black background) in Table 6.139 we find the End of Record Marker, followed, in
byte offsets 580 to 583, by the Cyclic Redundancy Check.

Table 6.139 End of Record Marker and CRC.
00000576 FF FF FF FF 82 79 47 11 46 01 36 21 8F 57 C4 01   ÿÿÿÿ‚yG.F.6!_WÄ.

Discussion

We note, from comparing these two samples of the MFT record, that as files are added
to the directory the listings are initially built within the MFT record itself. When no
further entries can be added because all space within the MFT record has been used,
the MFT directory listing is changed from resident to non-resident. When this
occurs, the MFT record is truncated and some of the Index Entries in the Index Root
Attribute are overwritten by two new Attributes which define the external storage:
the Index Allocation Attribute and the Bitmap Attribute. No directory listing entries
(in this case) have been retained as part of the MFT record

It should be noted that, in some cases, directory listings are present both in the
MFT record itself and in an external “INDX” file.

The data between the end of the logical record and the end of the record space is
known as MFT Record Slack. As can be seen in Table 6.126, MFT record slack could
still contain much meaningful data. For example, part details of Desktop.ini, and
full details of MFTtest1.txt, Sample.jpg and ZMFTtst2.txt are all still accessible
from Table 6.126. Such data could well be of some significance in a forensic investi-
gation, as it might be the only record of the file or files having been present on the
machine.

Analysis of an “INDX” File

For completeness we now carry out a partial analysis of the external “INDX” file that
was created during the production of the Revised MFT Record of Table 6.126. The
“INDX” file was found in cluster 326,669 and extends from offset 0 to offset 4095.
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The INDX Record Header

At Table 6.140 we show (black background) the bytes of the INDX Record Header
from byte offsets 0 to 63. We note that this header, which has some similarities with
the FILE Record Header, starts with an “INDX” marker.

Table 6.140 INDX Record Header.
00000000 49 4E 44 58 28 00 09 00  B3 35 A0 01 00 00 00 00 INDX(...³5 .....
00000016 00 00 00 00 00 00 00 00  28 00 00 00 C8 02 00 00 ........(...È...
00000032 E8 0F 00 00 00 00 00 00  02 00 01 00 00 00 00 00 ................
00000048 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

At Table 6.141 we show the detailed analysis of this “INDX” Record Header.

Table 6.141 INDX Record Header – analysis.
Bytes 0 to 3 Start of INDX Record Header “INDX”
Bytes 4 and 5 Offset to Update Sequence Array 0028h = 40
Bytes 6 and 7 Size of Update Sequence Array (words) 0009h = 9
Bytes 8 to 15 $Logfile Sequence Number 0000000001A035B3h
Bytes 16 to 23 Virtual Cluster Number of this Allocation 0000000000000000h
Bytes 24 to 27 Offset to Index Entry Header 00000028h = 40 +24 = 64
Bytes 28 to 31 Offset to End of Final Entry 000002C8h = 712 + 24 –1 = 735
Bytes 32 to 35 Allocated Size of Index Entries 00000FE8h = 4072

To 4072 + 24 – 1 = 4095
Byte 36 Index Type Flag 00h = small
Byte 37 to 39 Padding to 8 byte Boundary 00 00 00h
Bytes 40 and 41 Update Sequence Number 0002h = 2
Bytes 42 to 59 Update Sequence Array 01 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00
Bytes 60 to 63 Padding to 8 byte Boundary 00 00 00 00

The Index Entry Header

At byte offsets 64 to 79 (black background) at Table 6.142, we find the Index Entry
Header for the First Index Entry.

Table 6.142 Index Entry Header.
00000064 C0 19 00 00 00 00 01 00  70 00 5A 00 00 00 00 00 À.......p.Z.....

At Table 6.143 is shown the analysis for this first Index Entry Header.

Table 6.143 Index Entry Header – analysis.
Bytes 64 to 71 MFT Reference for this Item 00010000000019C09h

= 6592 “AMFTtst2.txt”
Bytes 72 to 73 Length of Index Entry 0070h = 112

From offset 64 to 175
Bytes 74 to 75 Length of Stream 005Ah = 90

From offset 80 to 169
Byte 76 Listing Flag 00h = resident listing
Bytes 77 to 79 Padding to 8 byte Boundary 00 00 00

The Index Entry

The Index Entry stream, as indicated in Table 6.143, extends from byte offsets 80 to
169, and these are shown (black background) at Table 6.144.
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Table 6.144 Index Entry Stream.
00000080 30 19 00 00 00 00 01 00  00 15 BF 3C 51 26 C6 01 0.........Â<Q&Æ.
00000096 00 CC 3F 2D 51 26 C6 01  00 15 BF 3C 51 26 C6 01 .Ì?-Q&Æ...Â<Q&Æ.
00000112 00 15 BF 3C 51 26 C6 01  30 00 00 00 00 00 00 00 ..Â<Q&Æ.........
00000128 2B 00 00 00 00 00 00 00  20 00 00 00 00 00 00 00 +....... .......
00000144 0C 03 41 00 4D 00 46 00  54 00 74 00 73 00 74 00 ..A.M.F.T.t.s.t.
00000160 32 00 2E 00 74 00 78 00  74 00 00 00 00 00 02 00  2...t.x.t.......

At Table 6.145 is shown the analysis for this first Index Entry stream. This is of a
similar form to that for the File Name Attribute Proper (see Table 6.74).

Table 6.145 Index Entry Proper – analysis.
Bytes 80 to 87 Reference to Parent Directory 0001000000001930h = 6448

“My Pictures”
Bytes 88 to 95 Creation Date and Time 31/01/06 10:29:38 GMT
Bytes 96 to 103 Last Modified Date and Time 31/01/06 10:29:12 GMT
Bytes 104 to 111 Last MFT Record Change Date and Time 31/01/06 10:29:38 GMT
Bytes 112 to 119 Last Access Date and Time 31/01/06 10:29:38 GMT
Bytes 120 to 127 "Physical" Size of File 0000000000000030h = 48
Bytes 128 to 135 "Logical" Size of File 000000000000002Bh = 43
Bytes 136 to 139 Flags 20 00 00 00h = archive set
Bytes 140 to 143 Extended Attributes and Reparse Points 00000000h
Byte 144 Length of File Name in Characters 0Ch = 12
Byte 145 Type of File Name 03h = Win32 & DOS
Bytes 146 to 169 File Name "AMFTtst2.txt"

The next Index Entry Header then follows just as we found in the sample MFT
listings.

Some Conclusions of Forensic Significance

From our experiments and from the work of others who have contributed to the
analysis of the NTFS system, notably the linux-ntfs project at sourceforge.net, we are
able to draw a number of conclusions that we believe have some forensic signifi-
cance. It should be noted that this work is by no means complete nor are all interpre-
tations that we have made necessarily correct.This is a work in progress,and,as such,
should be used as a guideline for forensic practitioners. As always, we strongly
recommend that an analyst personally carries out specific experiments to confirm
any conclusions that are relied upon in Court.

Dates and Times and DOS Attributes

As the reader will be aware, there are a large number of different dates and times
associated with the files and directories within an NTFS system. The questions that
arise are which set is the most reliable and accurate, and which set is used by typical
forensic software?

A series of experiments were carried out to try to clarify the problem of primacy
of dates and times as well as of the DOS attributes. Our initial conclusions are listed
below:
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● The file dates and times reported by Encase forensic software reflect the entries in
the Standard Information Attribute of the entry in the MFT for the file itself. DOS
attributes are also read from this Standard Information Attribute.

● The file dates and times reported by the Windows system to a normal user reflect
the current data in the Index Entry for that file. DOS attributes are also read from
this Index Entry.

● The file dates and times reported by the Windows system rely upon the dates and
times (and the DOS attributes) that are in the Standard Information Attribute,
being correctly read from that Standard Information Attribute and written to the
Index Entry whenever entries are updated.

● However, there is no automatic consistency checking that the file dates and times
and the DOS attributes are matched between the Standard Information Attribute
and the Index Entry. In fact, no errors were reported by the system when deliber-
ately incorrect and inconsistent values were inserted into the Attributes.

The Update Sequence Array

The use of MD5 (or similar) hash values of files is commonplace within the forensic
computing field. It is often the case that the analyst wishes to prove that two files have
the same binary image. It may be that two or more files have been found on a volume
and their locations or times and dates are relevant, providing they are copies of the
same file. It may be that a large number of unlawful images have been found (collec-
tions of 25,000 or more are common) and it is required to grade the images for Court
purposes. The MD5 hash values of the files can be searched automatically across a
database of known images and some unlawful ones can be identified without neces-
sarily having to view them.

It almost goes without saying that the recovery of the file in question from the
evidential exhibit must be complete and accurate. Otherwise, the comparison of the
file using an MD5 hash will return no match. However, the existence and significance
of the update sequence array within NTFS volumes appeared not to have been
reported within the forensic computing community until it was first described by the
authors following a series of experiments.

As noted above, the final field of the FILE header is used for this “Update Sequence
Array” (see Table 6.19). In the case of MFT records with 1024 bytes, the sequence
array consists of 4 bytes.

In order to check the consistency of MFT records, and other protected records,
NTFS uses a specified value which is placed in the final two bytes of each sector
(offsets 510 to 511, and 1022 to 1023 etc.). This value is identified as the “Update
Sequence Number” and is stored in byte offsets 42 and 43 of the MFT record. The
bytes which originally occupied these end of sector locations are placed in a buffer
known as the “Update Sequence Array”. There are two sectors in an MFT record and
therefore four bytes are replaced.

When the record is read by the operating system the set of two bytes at the end of
each sector are checked to ensure that the sector has been read correctly. Once this
has been done the original bytes are read from the “Update Sequence Array” and
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placed into their correct locations in the read data. The operation of this system can
be easily checked and tested.

However, this automatic replacement of bytes by the NTFS system means that the
forensic recovery of files direct from the MFT record in raw form requires a manual
restoration of these update sequence bytes. Analysts must be aware of the update
sequence system described above so that recoveries of this type can be made
accurately.

It can be seen that if a forensic analyst recovers a file of resident data from the MFT
record in raw form, the extraction will still contain the Update Sequence Number in
the last two bytes of every sector. Clearly, the problem only arises if the extracted file
crosses a sector boundary. An inspection of resident data in the sample MFT shows
that the crossing of a sector boundary by a file is a very common occurrence. Should
the MD5 hash of the extracted file be compared against a database, or even a single
file, no match will be reported. This problem also applies to any record which crosses
or reaches a sector boundary, including material obtained from record “slack space”
(see discussion below).

There are occasions when this matching of files is of ultimate importance to a prose-
cution. For instance, a blackmail note created on one machine and then transferred to
that of an accomplice for printing or checking can easily tie two defendants together. If
the prosecution produces the two files they might look identical, but, if extracted in
raw form, the MD5 hashes are unlikely to match. This might be because the sector
boundaries occur in different places in the two files, or it might be because the Update
Sequence Number is different for each of the two files. This failure of the MD5 hashes
to match could easily be seized upon by the defence to suggest unreliability in the
prosecution case as a whole and of the forensic examination in particular.

It should be pointed out that the same circumstances equally apply should a raw
recovery take place from an NTFS system and the file be compared against the same
file stored on a FAT system, which does not replace the end of sector bytes.

It is unfortunate that commonly used forensic software does not report the relocation
of end of sector bytes in the MFT when they fall within the data of a file or of an
Attribute.This forensic software, in File View,replaces the bytes in their correct locations
but does not report that it has done so.Stepping through the file in Hexadecimal View,the
software reports that the bytes are actually on the physical disk at the end of the affected
sectors when they are in fact located within the Update Sequence Array and the bytes in
the affected sectors actually contain the Update Sequence Number.

This serves to confirm the authors’ view that forensic analysts must have a
thorough grounding in the principles of binary storage and disk systems in order to
be able to test for themselves what the forensic tools may be telling them.

Identification of Files in Unallocated Space – Deleted Files

When a file is deleted using an NTFS system one byte of the MFT record entry is
changed (see Table 6.13) to mark that record as deleted. Although the file itself
remains untouched out on the volume, both the record and the area occupied by the
file become liable for overwriting. A second pair of bytes is changed, the record use
sequence number (see Table 6.10), with the value in this pair being incremented.
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If the record entry and the file data have remained untouched since deletion
occurred it is a simple matter to recover detail from the record and to extract the file
data from its location(s) on the volume.

There are circumstances where data from unallocated space can be connected with
some detail from the MFT or external “INDX” files which may have been deleted.

Using the older File Allocation Table (FAT) file system the locations of the file
pieces on the volume are stored in a “chain” of entries. When a file is deleted the
details of the chain are also destroyed. In the case of a non-fragmented file, recovery
is a simple exercise as the starting location and the file size are retained within the
directory entry (until that is overwritten) and a contiguous chain of clusters can be
followed to the end of the file. In the case of a fragmented file, the first part of the file
can be identified, but little clue remains as to the location of further file fragments.

In the NTFS system each and every file fragment is recorded in size and location
within the data runs of the MFT record for the file (see Table 6.82). So, even if the
early part of a file has been overwritten the remaining parts are still capable of being
identified. Knowing the original file size, the extent of overwriting can be established
using the data runs and the file size of the “overwriting” file. Any data remaining
from the original file can still be recovered,and,depending upon the file type,may be
capable of being reconstructed into a meaningful file. The exact identification of the
data runs is crucial to this exercise. The reverse is also true. The MFT record, if it still
exists,can be tied to data found on the volume by reconstruction of the data runs and
searching for the values within the MFT.

When attempting to tie recovered data and MFT records to a directory, a word of
warning. The MFT record of the recovered file can be identified to the recovered data
by data runs, file size etc., but there is always the possibility that the original MFT
record for the directory in which the file resided has also been deleted. Some forensic
software makes the assumption that if a directory exists in the MFT record pointed to
by the Base File Reference of the file record, then the file did originally belong in that
directory. This assumption may well be wrong if the original directory has been
deleted and a new one created which happens to use the same record space.

From examination of the sample file set it has been established that the record use
sequence number bytes (see Table 6.10) present in the FILE header of a directory
record may also be used as an identifier of the current incarnation of that directory
MFT record. It has also been noted that it is common for files residing in that
directory to bear the same value two bytes as the most significant bytes in the Base
File Reference field at the beginning of the File Name Attribute (see Table 6.44).Thus,
it would seem, the Base File Reference points to the MFT record of the “parent”
directory, and the incarnation of that particular record is identified by the record use
sequence number (see Table 6.10). This same number is likely to appear as the two
unidentified bytes next to the Base File Reference field.

MFT Record Slack Space

A detailed inspection of the sample MFT has shown that a considerable number of
records contain material in “slack space”. An example of this is the Revised MFT
Record which we examined above (see Table 6.126). The End of Record Marker (FF
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FF FF FFh) was found starting at offset 576. Beyond that point we noted a number of
Index Entries which contain file dates and times, file sizes and file names. These
details are all outside the current record and are not recognized by the NTFS system.
No current forensic software deals with this data or attempts to use it.

If a file is found in unallocated space and it is of evidential value some evidence
connecting it with the defendant needs to be found. One favoured defence is the “I
bought the disk at a car boot sale”, claim, which seeks to suggest that material found
in unallocated space was already on the disk when the defendant obtained it, and is
the responsibility of some previous owner. Without any evidence to the contrary, the
file found in unallocated space could be excluded.

By searching the “slack space” of MFT records it is possible to find full or partial
detail of a file which must have been present on the volume at the date and time of the
entry. If a connection can be made between the file in unallocated space and the
detail from “slack space” the file can be dated and the claim can be proved or
disproved.To this end the file name and the file size may well assist,particularly if the
file appears in some known database using that file name and that file size. The
actual location of the file, perhaps within an area occupied by other files of a
particular date may also add to the circumstantial evidence.

By way of explanation, it is clear that when populating a directory, the NTFS
system acts quite logically. It first creates the directory record within the MFT and
then populates it with resident entries until no room is available for further entries.
At this point an external “INDX” directory file is created and the record is modified
to reflect the existence of this external listing. The entries already present are copied
into the new “INDX” file and the End of Record Marker in the MFT record is now set
much earlier in the record than previously, since the record no longer contains a list
of file entries. The data making up the later file entries in the record are still present
but now outside the stated length of the record. This leaves an amount of data
referring to files in that directory between the new End of Record Marker and the
end of the allocated space for that record. This is what we call “MFT Record Slack
Space”.

MFT Slack Space

When an MFT is created on a volume, about 12.5% of the volume is reserved to
provide space for the MFT.This is known as the MFT Zone. The MFT will grow as it is
used and, to avoid fragmentation, the MFT Zone is reserved to permit the expansion
of the MFT into the unused areas of the Zone. However, should the MFT grow to fill
the entire MFT Zone, a further area of the disk will be allocated, resulting in a
fragmented MFT.

The MFT will usually start at the same location on the volume,and reformatting of
the volume will cause a new MFT to be located starting from the same place. As an
MFT is constructed, it is filled from the front.When a new file is created the new MFT
record will be placed in the first available slot, either overwriting a deleted record or
placed at the current end of the MFT, the MFT file size being adjusted to accom-
modate the new record. This system can cause a new MFT to be written over an old
MFT and,as the old MFT is not usually cleaned,old entries will possibly remain up to
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the end of the MFT Zone, if the old MFT reached that far. Such entries are fully
populated and recoverable, and the data runs may well point to files still present in
the now unallocated space of the disk. The recovery of these files using the MFT
records from the old MFT will be evidentially reliable, as the records themselves are
untouched. The area between the current end of the MFT and the end of the MFT
Zone is known as MFT Slack Space.

It is also worth bearing in mind that, as with all Windows systems, bits and pieces
of data are written to various areas of the disk without user request or knowledge.
The authors have recovered MFT records from unallocated space outside the MFT
Zone which have been used to identify files that were present on the volume.
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7. The Treatment of PCs

Introduction

Up to this point, we have concentrated in the book on the technical issues: on how
computers work and their construction; on how information is stored; and, in
particular, on how and where information can be hidden or inadvertently left on
hard disk drives. This technical understanding gives us both the knowledge and the
confidence that will enable us to find information of evidential value from a PC.
However,unless we carry out the investigative processes in ways which guarantee the
integrity of that evidence, it is unlikely to be admissible in court. Thus we now need
to concern ourselves with perhaps the most important part of all: the processes that
we need to carry out and the practices that we need to observe in order to extract
information from PCs and present it as admissible evidence in court. In this chapter
we are going to consider the treatment of PCs and will be looking at the topics listed
below:

● A guide to good practice
● The principles of computer-based evidence
● Search and seizure
● Intelligence, preparation and briefing
● At the search scene
● The operating dilemma
● Shutdown, seizure and transportation
● Computer examinations
● Physical disks and logical drives
● Interpreting partition tables
● Imaging and copying

In the next chapter, we will be looking at the rather different processes involved in
the treatment of electronic organizers.

We first look at the principles of computer-based evidence as recommended in the
ACPO Good Practice Guide. Then we look at the problems of mounting a search and
seizure operation and the issues that might occur on site when seizing computers
from the premises of a suspect. Guidelines are given for each of the major activities,
including the shutdown, seizure and transportation of the equipment. The next
section considers the receipt of the equipment into the analyst’s laboratory and the
process of examination and the production of evidence. An example of a specific
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disk with a number of partitions set up on it is then described in detail, and full
guidance is given on interpreting the host of figures that result. Finally, the issues of
imaging and copying are outlined and compared.

The ACPO Good Practice Guide

The Association of Chief Police Officers (ACPO), in conjunction with the National
Hi-Tech Crime Unit (NHCTU)1 has produced a Good Practice Guide for Computer
Based Electronic Evidence, the most recent version of which is version 3 dated
September 2003 (ACPO, 2003). The document is written as a guide to good practice
when dealing with computers and other electronic devices in the possession of a
suspect. It is intended for use by officers attending a search and seizure operation, by
investigating officers, by computer evidence recovery personnel and by external
consulting witnesses. The ACPO Good Practice Guide is fully supported by the
authors of this book.

The Principles of Computer-Based Evidence

Four principles have been established, and these, together with a brief explanation
from the Good Practice Guide, are reproduced here, with the kind permission of
ACPO:

● Principle 1
No action taken by law enforcement agencies or their agents should change data
held on a computer or storage media which may subsequently be relied upon in
court.

● Principle 2
In exceptional circumstances, where a person finds it necessary to access original
data held on a computer or on storage media, that person must be competent to
do so and be able to give evidence explaining the relevance and the implications
of their actions.

● Principle 3
An audit trail or other record of all processes applied to computer based
electronic evidence should be created and preserved. An independent third party
should be able to examine those processes and achieve the same result.

● Principle 4
The person in charge of the investigation (the case officer) has overall responsi-
bility for ensuring that the law and these principles are adhered to.
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Explanation of the Principles

Data held on a computer is no different from information or text contained on a
document. For this reason, evidence that is based on a computer or on computer
media is subject to the same rules and laws that apply to documentary evidence.

The Doctrine of Documentary evidence may be explained as: “The onus is on the
prosecution to show to the Court that the evidence produced is no more and no less
now than when it was first taken into the possession of police”.

Operating systems and other programs frequently alter and add to the contents of
the computer’s storage space. This happens automatically without the user neces-
sarily being aware that the data has been changed. In order to comply with the
principles of computer-based evidence a copy should be made of the entire target
device. Partial or selective file copying should not be readily considered as an alter-
native. The copy or copies should be made onto media that should be retained for
examination and subsequent Court use.

In a minority of cases it may not be possible to obtain an image using a recognized
imaging device. In these circumstances it may become necessary for the original
machine to be accessed to recover the evidence. With this in mind it is essential that
any such access is made by a witness who is competent to give evidence to a Court of
Law. It is essential to show objectively to a Court that the continuity and integrity of
the evidence has been preserved. It is necessary to demonstrate to the Court how
evidence has been recovered, showing each process through which the evidence was
obtained. Evidence should be preserved to an extent that a third party is able to
repeat the same process and arrive at the same result as that presented to a Court.

Search and Seizure

Forensic computing bears a certain similarity to that ancient recipe for jugged hare,
the initial line of which optimistically states “First go forth and capture a suitable
hare”. This chapter, which is primarily aimed at law enforcement personnel, outlines
the procedures to be followed for a search and seizure operation where one of the key
aims is to take possession of, or image, one or more suspect computers.

The primary objective for an operation of this kind is to secure all evidence in such
a manner that its integrity cannot later be challenged and that it is obtained under
circumstances which ensure its admissibility in Court.

Pre-Search Intelligence

Whilst it is accepted that there will be occasions when an urgent and immediate
search operation is thrust upon the team, most search and seizure tasks should be
thoroughly well pre-planned. It is during this stage that as much intelligence as
possible is gathered about the premises, the occupants, the users and the computer
systems that are located inside. It is vital that the number of computers, their types,
operating systems and connections are all known before entry. This will then permit
the search team to be prepared with the right equipment and the right expertise,
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including if necessary any outside experts, and will enable them to deal with the
systems correctly and efficiently once entry has been effected.

Some key decisions will have to be made prior to entry. If the premises contain a
large network it may well be that it is only possible to target certain specific machines
and image those within the time allowed. Such machines will need to be identified
prior to the search if at all possible. If seizure of machines is the objective then justifi-
cation must exist not only for the seizure itself but also for the effect on the suspects
once seizure has taken place. It will be rare for a business to continue to operate effec-
tively after its computers have been removed and there are likely to be adverse effects
as a result of any on-site imaging or copying.

Intelligence about the actual systems installed in the target premises may indicate
the need for an independent expert to be engaged to give advice at the scene. If
known individual targets have been identified, consideration could be given to using
expertise within the company to assist with advice and information on their systems.
Such persons should only be used if it is clear that they have no possible involvement
in the matter under investigation. These people are not bound to help and some may
even be obstructive because of the disturbance to their workplace.

Contingency planning is also important where information and intelligence is
sketchy, incomplete or inadequate. Search team leaders should be in a position to
obtain further assistance immediately, in terms of expertise or additional personnel,
should they come across unexpected systems at the scene.

The timing of the operation, if possible, should be set outside the normal
operating hours of the suspect systems. If an office environment is the target, going
in with the cleaner at 7 a.m. is a good idea, since then the premises and the machines
can be safely secured before the daily business gets under way.

Pre-Search Preparation

The team allocated to the task of seizing the machines should ensure that they have
the following items, in addition to the normal search and seizure equipment:

● An adequate toolkit
This should contain an array of flat and crosshead screwdrivers, a small pair of
pliers, wire cutters for cutting cable ties, and a clean 1/2 inch paintbrush for
cleaning away dust and dirt.

● A search kit
This should comprise an array of plastic, paper and ‘jiffy’ bags, adhesive and tie-
on labels, tape and elastic bands for securing leads, plastic crates and flat pack
boxes for removal of items, and blankets or foam sheets for padding during
carriage. Each item, or package of items, should be sealed on seizure, particularly
individual computer units containing data storage items. Coloured pens and
labels can be used to identify all connections. Plastic bags should not be used for
individual packaging of single electronic components as they may create a static
charge which could damage the component.

● Search forms and sketch plan sheets
A sketch plan identifying locations of items seized should always be made, and a
master property form with associated numbering should be used to list and
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identify items against the labels placed on them. All seal numbers must also be
listed.

● Still and video cameras
Screenshots of operating machines are useful to prove correct shutdown proce-
dures, and in situ pictures are a boon to proving later the proximity of items to
suspects and the general layout of the premises. Video is good for recording the
removal of complicated connections,although labels should still be used as well.

● Disk boxes
These are for the removal of floppy disks found on the premises. It is essential to
ensure that all floppy disks can be identified as to their exact location at seizure.

● Mobile telephone
This is useful to obtain further assistance or advice whilst on-site. It should not be
used near computer equipment

● Storage media
A number of clean, blank, floppy disks and USB drives should be prepared
beforehand and thoroughly erased to ensure that no previous data is present.
These may be used to save files, prior to switching off, on computers found
running. Floppy disks are preferable as they leave fewer traces on the home
machine. However, it is possible that a computer system being seized has an “on-
the-fly”encrypted secure container open at the time of seizure. If this is the case, it
would be prudent to copy as much relevant material as possible from the open
container to a clean external USB disk drive.Many modern operating systems will
permit an external USB drive to be connected whilst the system is still running.
However, the person carrying out this process must be equipped and competent
to carry out a live seizure, see section below Machines That Are Switched On (Live
Seizure)

● A torch
Very useful for searching those little unlit places where connecting leads tend to
be tucked away.

See also additional items mentioned below for Machines That Are Switched On (Live
Seizure).

The Search Briefing

An operational order for any pre-planned search should be prepared, allocating
tasks and giving details of the aims and objectives of the search. If computers are
involved the person in overall charge must be aware of the ACPO Good Practice
Guide (ACPO, 2003). All officers who may be involved in the operation should attend
the briefing. One possible exception to this may be the computer forensic analysts if
it is felt that they should retain a degree of independence from the case itself. Not
only should the briefing contain the intelligence information and the logistics of the
search, but it must also include a briefing to all officers on the likely presence of
computers and the methods of seizure, the staff available to do this, and how they
may be contacted. Distinct warnings should be given to discourage enthusiastic and
untrained amateurs from tampering with the equipment. Such tampering could lead
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to contamination of any evidence found and its exclusion from subsequent Court
proceedings. Use of samples or some visual representations of the equipment likely
to be found will assist in its identification by untrained personnel.

The briefing must include the provisions of any warrant or similar order under
which the search and seizure is authorized. It is particularly important that any
conditions attached are strictly adhered to.

At the Search Scene

The first priority at the search scene is to gain total control both of the premises and
of the occupants. Identification of the numbers and locations of computers present
will then permit control to be taken of the computers themselves and their
environment. Suspects should be kept clear of all machines and any connections to
them, including power, network and telephone. The method and order of seizure can
then be assessed and the imaging and copying workload identified if required.

It is not possible in these pages to cover all possible permutations of computers,
networks and connections. The advice that follows may need to be modified to allow
for the particular configuration faced by the search team. In general terms, where a
major network is involved, planning should be done well prior to the search. It is
likely that on-site imaging will offer the only reasonable solution to such configura-
tions. For small networks and standalone machines, subject to the issues of
disruption to the business already mentioned, seizure is probably the more conve-
nient option, allowing machines to be imaged later and in more controlled
circumstances.

To ensure the integrity of any item seized, particularly those items which contain
data, security seals should be used on all property containers and the serial numbers
entered onto the search log.

The Operating Dilemma

On all occasions where search teams find machines that are switched on and
operating they face a dilemma. By allowing the equipment to complete its current
task they may gain, or they may lose, evidence. A value judgement has therefore to be
undertaken.

As an example, consider a modem or network connection which is operating and
is clearly transferring data. It may be that the system is receiving a vital email which
contains damning evidence against the suspect. On the other hand it could be
receiving a similar email which completely exonerates the suspect from any wrong
doing. Added to these possibilities, the file being received might be routine and of no
evidential value, but is overwriting some other important evidence on the hard disk.
The question is whether to interrupt this transaction or not.Will evidence thereby be
gained or lost? That is the dilemma.

The search team need to make a decision immediately, and it should be based on
their knowledge of the enquiry and the likelihood of relevant evidence being gained
or lost, regardless of whether it benefits the prosecution or the defence. To assist in
their decision, they will need to examine the contents of any active computer screens
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to try to determine what is happening.Needless to say,whatever decision is taken, the
circumstances must be recorded in detail.

Machines That Are Switched Off

The following is a list of actions which should be taken, in order, when dealing with
machines that are already switched off when their seizure takes place:

1. One of the most important of all steps is to start logging all your actions.
2. Disconnect any external data communication lines, ensuring that such discon-

nection will not impinge upon the activities of other members of the search
team. This will isolate the machine from any external electronic access and help
prevent the loss or overwriting of data. If possible, physically trace where the
connection goes and note the details. (See also The Operating Dilemma section
above.)

3. Be satisfied that the computer is actually switched off.Check that it is not in sleep
mode or using a blank screen saver.LED indicators on the case of the machine or
the monitor may indicate that power is applied. DO NOT SWITCH ON. Be
warned that some laptops will power up when the lid is raised

4. Photograph or video the connections in situ. Label all cables and sockets so that
the machine can be reconstructed exactly as found at a later time. Remove the
cables.

5. Remove, package and seal all items, noting individual identification, serial
numbers and the like. Sealing an item in front of a suspect is always a good idea.
Record all seal and label numbers in the search log.

6. Check the area for sticky notes, diaries, notepads and the like which may have
passwords recorded on them.Consider asking the user if passwords are required
for the machine or any of the applications and what they are. Note any replies in
the log.

7. Consider the seizure of printers and paper samples, if relevant. Some printouts
can be associated with a particular printer using forensic techniques. Take
advice before the search on this matter.

8. If equipment is to be examined physically for fingerprints, ensure that alu-
minium powder is not used,as it is a conductor of electricity and can damage the
equipment. Any such examination should take place after imaging, and the
machine, including the power supply unit, should be thoroughly cleaned inter-
nally and externally afterwards. It should then be tested by a competent
engineer before it is reused or returned.

Machines That Are Switched On (Immediate Seizure)

The following is a list of actions which should be taken, in order, when dealing with
machines which are already switched on, or suspected to be so, when their seizure
takes place. This section deals with machines that are seized by personnel who are
not competent or equipped for the “Live seizure” process described below.
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1. As before, one of the most important steps of all is to start logging all your
actions. In particular, note all keystrokes made at the keyboards and all
responses that appear on the displays. The use of photographs or video is a
distinct advantage in these circumstances.

2. Disconnect any external data communication lines, ensuring that such discon-
nection will not impinge upon the activities of other members of the search
team. This will isolate the machine from any external electronic access and help
prevent the loss or overwriting of data. If possible, physically trace where the
connection goes and note the details. (See also The Operating Dilemma section
above.)

3. Check the monitor to confirm that it is actually switched on and powered.
4. If the screen is blank, note that it may be running a blank screen saver.
5. If the DOS prompt, or what appears to be a DOS prompt, is visible, check for the

mode of operation. Use the EXIT command to determine whether this is
Windows full-screen DOS mode. Record the screen state.

6. If programs are running, note and record screen states and save any open files to
floppy disk. DO NOT instigate a write to the hard disk. To avoid any latent
automatic actions at shut-down, such as a “wipe” or “clean-up”, DO NOT shut
down the operating system. Instead, power the machine down by detaching the
power connector from the rear of the machine.

7. Proceed as from the fourth item in the section Machines That Are Switched Off
above.

Machines That Are Switched On (Live Seizure)

If seizing personnel are equipped and competent to carry out a live seizure of data or
memory at the time of the operation it is most important that all actions are logged,
and if possible recorded on video.

If a machine is up and running, there is, as time progresses, the increasing possi-
bility that on-the-fly encryption will be operating. Should this be the case, if the
machine is switched off access to any encrypted files or volumes currently accessible
will be lost. There is also the possibility, with increasing amounts of memory being
present on modern machines, that sizeable amounts of data, including passwords
and the occasional “nugget of gold” may be held in volatile RAM.

There are various methods of extracting data from live machines. At the time of
writing there are a number of methods under development, one of which involves
the use of external USB disk drives with suitable operating systems, as mentioned
above. Whichever method is chosen, it is very highly recommended that the method
is fully tested by the operator who will use it before deployment. It will be this
operator who will be questioned in Court regarding the method of acquisition and
its effects upon all the data in the machine.

The accurate recording of all actions during this phase of acquisition of the data
will permit the later identification of processes and actions which have taken place
on the machine and which may have affected the data that has been captured and
seized.
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The changes to the machine state and the data stored upon it will depend largely
on the method of acquisition and the operating system in use. It is thus the case that
the method used and its effects upon the machine must be well known to the
operator for each operating system upon which it is to be used.

In order to carry out any seizure as referred to above additional equipment,
storage media, cabling and the like will be required and should be included within
the “Pre-Search Preparation” list above.

Once live data acquisition is complete the machine can be dealt with as for
Machines That Are Switched On (Immediate Seizure) above.

Shutdown Procedures for Servers

It will be very rare that the necessity arises to actually shut down a server, as there are
a number of approaches to obtain the required data which do not require the
network to be shut down. Such seizures are not within the scope of this book, but
include live network acquisitions and seizure of on-site and off-site backup tapes
and backup media.

Because servers may be so critical to a business, special procedures need to be
observed here.

1. As before, one of the most important steps of all is to start logging all your
actions. In particular, note all keystrokes made at the keyboards and all
responses that appear on the displays. The use of photographs or video is a
distinct advantage in these circumstances.

2. Ensure that the expertise is available for the particular operating system of the
server. Note that nearly all server operating systems (Unix, Linux, Windows NT
etc.) require to write system information back to the disk before power is turned
off. Failure to permit this may result in corrupted disks which could inhibit not
only the extraction of evidence but also the restoration of the system for subse-
quent use by the business.

3. Follow exactly the correct operating system procedure for shutting down the
server, then proceed as from the fourth item in the section Machines That Are
Switched Off above.

Seizure – What Should be Taken

When a system is seized and dismantled, it is essential that it be capable of identical
reconstruction. The following items should be taken:

● The main system unit.
● The keyboard and mouse.
● Any external expansion units or cards.
● All connecting leads.
● Any dongles. These are software security devices, often with connectors that are

plugged into the parallel port.
● Power supply units, particularly for laptops.
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In addition, the following peripheral items may be taken, if deemed relevant. Note
that some of these items will have internal batteries and some may not. Consider
examining all such items in situ.

● Monitors and flat screen panels.
● External media devices, external disk arrays, portable disk enclosures etc.
● Printers. It may be possible to associate output documents with particular

printers.
● Modems, network hubs, wireless hubs. Some of these can contain a memory of

telephone numbers.
● Scanners.
● Digital cameras and all media. The handbook is also useful.
● PCMCIA cards and leads.

All electronic media found should be taken for examination. In this case, the exhibit
bags should be labelled rather than the items themselves. Typical items are:

● Any hard disks not fitted within machines
● All floppy disks.
● Any CD-ROM and CD-RW disks.
● Backup tapes and cartridges of whatever format.
● Video tapes, if a video backup system is fitted.

Other items that may be considered for seizure are as follows.Note that some of these
items will have internal batteries and some may not. Consider examining all such
items in situ.

● Personal organizers, palmtops, PIMs and PDAs together with any connecting
cables, power units and cradles. Remember to consider battery replacement if
these are retained in storage.

● Mobile telephones. Most of these have a memory of numbers and other data.
● Land line telephones. Some of these have a memory of numbers.
● Answering machines. Some of these have memory.
● Fax machines. Some of these have memory, some retain a duplicate record.
● Dictating machines and tapes.
● Multi-purpose units. That is, combinations of some of the above.

Transport and Storage of IT Equipment

It is important to remember that most IT equipment is susceptible to magnetic
fields and therefore removal and storage methods should be such as to avoid
exposure to them. There are also considerations with regard to static electrical
charges on components which have been separately packaged as well as the effect
of condensation on items packaged in plastic bags. Hard disks in particular can be
damaged by dropping or other impact. Useful tips for storage as well as removal are
as follows:
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● Keep all items away from magnetic sources, such as loudspeakers, radios,
electrical motors and the like.

● Store at room temperature, not in a damp cellar or garage. Avoid damp and
protect from dust.

● Take care when stacking to ensure that fragile items are protected from damage.
● Avoid physical shocks.
● Generally, the use of tough, breathable, paper bags and sacks or aerated plastic

bags is the preferred option for most items.

Particular care should be taken with the following items:

● The main system unit. This should be handled with care and kept upright in a
secure place when transporting so that it cannot fall over or be subject to shocks.

● Monitors. These are best transported screen down on the back seat of a car and
secured by an elasticated strap or something similar.

● Hard disks. For individual components and circuit boards, use anti-static bags or
tough paper bags, or wrap in paper and use aerated plastic bags.

● Electronic media such as floppy disks, tape cartridges and so forth. These must
not be folded, bent or stored under heavy objects.Do not label the item itself; label
the bag in which it is stored.

● Personal organizers, palmtops, PIMs and PDAs. Protect any exposed keyboard
from inadvertent pressure. The use of a stiff cardboard sheet around the item can
prevent this. Place the organizer in a sealed envelope or something similar to
prevent operation through a sealed evidence bag. Consider the need to change
batteries regularly. If the organizer is powered by secondary batteries, consider
sealing it in its cradle with power cables brought out through the side of the bag so
that it can remain on charge.

Practical Notes

Evidence produced from a suspect’s computer often tends to be quite damning, and
thus it becomes the major target for the defence during the usual round of applica-
tions to get evidence excluded.The evidence itself cannot usually be argued with; it is
either present on the computer or it is not. The continuity of the evidence, however,
must be demonstrable and its integrity unblemished. The use of security seals and a
record of their breaking and replacement goes a long way to avoid allegations of the
planting of evidence on machines or into images before examination.

One point on warrants arose in the case of R v Du’Kett and others. Lengthy appli-
cations were made to exclude all the evidence found on Du’Kett’s machines. Du’Kett
was the main defendant in a network of software pirates and Cambridgeshire police
executed a warrant at his home and seized a number of machines and huge amounts
of software. The machines were examined and provided the majority of the evidence
and intelligence identifying the other members of the network. It was clear that if the
evidence from the first machines examined could be excluded, then all evidence
following the information found would also have to be excluded. The defence
decided to attack the issue, legality and execution of the warrant. The first target was
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the formal information document. Having obtained a copy of the police copy of this
document they made enquiries of the magistrates’ clerk. It was erroneously assumed
that the copy they obtained was a copy of the information after the warrant had been
issued. It was alleged that the application for the warrant was illegal because the
information had not been signed by a magistrate. The original could not be found
amongst the Court archives, but eventually the defence accepted that their appli-
cation was based upon a false assumption and withdrew. The second line of attack
followed the ruling of R v Reading Justices [and others], where it was shown that
although a warrant was issued to a constable it was effectively executed by others.
The constable was simply present whilst the search was carried out. In the Du’Kett
case it was alleged that the search was orchestrated by a member of FAST (Federation
Against Software Theft), who was present, and that the police officers were simply
assisting him. Therefore the execution was unlawful. This application was also
withdrawn after argument.

The lessons to be learned from the above are:

● Keep a copy of the original information and mark it as such.
● Provided that the Court agrees, obtain a copy of the information after it has been

marked up as the warrant is granted.
● Ensure that any parties, other than those to which the warrant is granted (usually

the police),are actually named on the warrant and the reason why they are present
is given. This would apply to any external assistants or experts.

● Keep a copy of the warrant itself.
● Keep a copy of the briefing document. This should include the role and reason

for the presence of any individual who is named on the warrant. Ensure that
during execution the persons to whom the warrant is issued are demonstrably
in charge of the search with others purely assisting or advising. The roles must
be clear.

Computer Examination – Initial Steps

Having dealt with the seizure of machines in the previous section, this section deals
with the reception of the machine at the place of examination, up to the point at
which data, which may be of evidential value, is actually examined and analysed.

In our trek from the search and seizure of the machines through the process of
their examination to the production of evidential material at Court, it is apparent
that we must bear a number of important matters in mind. Of these, the ACPO
principles, outlined above, give us the good practice that we must apply to the
process of examination. This results in the following:

● The integrity of the original data must be preserved; therefore we will have to use
non-intrusive examination techniques (Principle 1).

● If the original data has to be examined, for whatever reason, the analysts must be
competent to do so and to give evidence explaining their actions. Trained and
qualified staff must be used (Principle 2).

288 Forensic Computing



● An audit trail is required and an independent party must be able to reproduce the
same actions and get the same result. We must therefore keep a full log of all
actions (Principle 3)

The prime objective of the analyst is to recover and secure, from whatever medium
is examined, a true copy of the data stored on that medium. This should be done,
wherever possible, without any alteration to the original data as a whole. The process
for the recovery of evidence is a forensic exercise; thus only forensically sound
hardware, software and procedures should be used.

Full records of all actions taken must be kept. It is common that the brief given to
the analyst is not as full as it could be, or the suspect may change his explanation at a
later stage.Even the recording of a minor matter may play a pivotal part in proving or
disproving a claim made by one side or the other. Although not generally aimed at
persons who will give expert evidence, this book promotes the principle that a
forensic computer analyst will give unbiased evidence or, where required by the
Court, expert evidence based upon the facts, and will stand apart from any loyalty to
the prosecution or the defence, regardless of who may be the employer.

Reception of Machines and Media

All items should be received in sealed bags.Continuity from person to person should
be recorded by the exchange of signatures and a formal identification of the item,
particularly the seal number. Local procedures will need to be followed with regard
to the detail of the actual records kept, but the log of events of the item for exami-
nation should be started at this point and signed appropriately by the person deliv-
ering it.

From this stage the security of the item, and any information held upon it, is the
responsibility of the person receiving it. Precautions should be taken to ensure that
there is no accidental or deliberate tampering and work on, and storage of, these
items should be in a secure environment.

Electrical Safety

A brief word on electrical safety is appropriate here. Most organizations employ a
Safety at Work Officer, and there may be organizational guidelines in addition to the
mandatory regulations. If the analyst is not fully conversant with these, reference
should be made to the Safety at Work Officer. It should be noted that different officers
actually interpret the regulations in differing ways. Further advice is also available
from Local Authority Health and Safety Officers. The analyst might consider
obtaining certification in Portable Appliance Testing (IEE, undated) and obtaining a
copy of the Electricity at Work Regulations 1989 (HMSO, 1989; HSE Books, 1998; IEE,
1994).

Static Electricity

Many of the components within a computer are susceptible to damage by the
discharge of static electricity, particularly the integrated circuits or chips. The
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analyst should take steps to discharge any body-held static charge prior to any
physical examination of a machine simply by touching a known earth connection. In
addition, the use of anti-static straps and non-conducting tools will help to minimize
the risk of static discharge damage.

External Physical Examination

With the no-cost option of digital photography available, the taking of many photo-
graphs during the initial examination phase is of great use when rebuilding a
machine or to identify components that were or were not present at the time of
seizure.

First record the date and time of the breaking of the seal and then physically
examine the item. If there is external damage which may have an effect upon the
normal operation of the machine the only real alternative is to remove the medium
from the machine and deal with this separately, on a host machine.

The external examination should also include recording details of the machine
itself, such as make, model, serial number and any identifying marks, scratches,
stickers and the like.

Internal Physical Examination

Before embarking on an internal examination, it is important to bear in mind that
the objective is to ensure that the machine is safe for imaging. Any deconstruction or
detailed examination of parts should be left until the analyst is satisfied that a good
image or images have been obtained. If a component is on the verge of breaking
down it is more likely to do so if it is disturbed.

Once the external case has been removed it is a good idea to step back, place hands
in pockets and carry out a purely visual inspection first. The majority of PC cases are
designed so that most components and contents can be seen without removal of
internal items. At this point it should be obvious to the practised eye if there is
anything in the case which should not be there. It has been known for drug dealers to
record transactions on their computer and place their stock inside the actual
machine.

If there is anything in the case which warrants removal as an exhibit it is always
better to get a specialist to remove it or at the very least to seek advice from one. If
removal has to be done by the analyst then the use of protective rubber gloves is
recommended and immediate bagging and sealing of the exhibit should be carried
out. Photographs or video which record the item in situ and its subsequent removal
can be beneficial.

When the visual inspection and record is complete, and subject to the rider at the
beginning of this section, a closer inspection can take place, recording the expansion
cards and internal devices present. Records should include the details of all hard
disks fitted and their specifications, with particular regard to the disk drive param-
eters,where these are given on the disk.Any unconnected disks are best removed and
dealt with on a host machine. Where any internal serial numbers are stated these
should be recorded.
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Proper recording of the internals of a particular machine can be of importance in
demonstrating that the machine was capable of some particular operation, such as
being able to play sound files or to connect to the Internet.

Imaging and Copying

Physical Disks and Logical Drives

Before discussing imaging and copying it is important that the reader understands
fully the implications of Chapter 5, in particular the principles of CHS and LBA
addressing. We must be able to identify the areas on the disk which may hold data to
be copied or imaged. The “shape” and size of all hard disks are dictated by the
physical characteristics of the disk itself, as specified by the manufacturer. This
invariably takes the form of a CHS/LBA statement on the case of the disk and within
its own electronics to enable automatic detection by the computer on which it is to be
used. At Fig. 7.1 are two examples of labels affixed to hard disks.

Note that many hard disks of a size larger than the CHS limit (8.4 Gbyte) will bear
details in the CHS area of the label which refer only to the maximum CHS address.
Thus a calculation using these parameters will result in a reported size of 8.4 Gbyte,
which is actually true: the disk can only address up to that value in CHS mode. The
actual size of the disk, available with LBA addressing, may be far larger.

The CHS figures shown are the physical parameters of the disk. It is these figures
which will be recognized by the machine and recorded internally in the BIOS
variables, depending upon whether any translation is required or not. Physical disks
are usually referred to by number. For example, when moving between physical and
logical views of a disk in Norton Disk Editor, drives are referred to as Hard Disk 1,
Hard Disk 2 etc., in physical view, and Disk C, Disk D etc., in logical view.

The difference between the physical disk and the logical drive is a most important
concept. The physical disk can be held in your hand; a logical drive is a different
animal altogether and is created by partitioning.
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Partitioning is covered in detail Chapter 5. In short, a physical disk can be parti-
tioned into one or more logical drives. Partitioning, using MS-DOS FDISK or a
similar utility, permits users to choose the size of a logical drive or drives which they
wish to create on the physical hard disk. It is possible to partition a disk with areas
that do not fall within partitions, and so these areas would be unavailable to users.
Alternatively, using readily available software, one can move part of the physical disk
in and out of a partition at will and thus ‘hide’ the data contained therein. It thus
follows that the forensic computer analyst must be aware of this, and other, possible
scenarios and ensure that all the data on a disk is obtained and available for exami-
nation and analysis. Some imaging systems permit users to choose the type of image
to be taken. Choices involving physical disks and logical drives are available. Users
must be fully aware of the meanings of these terms and the implications of each type
of image in terms of the data actually captured.

In order to identify the areas of data which may be obtained by an image we will
consider the example of a partitioned MS-DOS disk as illustrated in Fig. 7.2.

The diagram is a schematic of what a partitioned DOS disk actually “looks” like.
The physical disk extends from the very first sector at CHS 0,0,1 to the end of the disk
as reported by the BIOS (see the next section Interpreting Partition Tables for an
explanation of this). The first logical drive always begins at CHS 0,1,1.

A physical image of this drive should capture all data within the area defined as
“Physical Disk”, including areas not within a logical drive. The image will thus
contain all data from all areas of the disk which are capable of having data stored
within them, whether defined for use or not. A logical image of a drive will contain
only the data within the area of the defined drive. For example, a logical image of the
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Fig. 7.2 Example partitioned disk.



primary partition in Fig. 7.2 above will only contain the data from the area shown as
that allocated to Drive C.

Interpreting Partition Tables

This topic is best illustrated by working through an example. Figure 7.3 is a
schematic of a typical (but relatively old) hard disk drive, a Seagate ST3851A with a
CHS marking on the case of cylinders 1651,heads 16 and sectors 63.It has been parti-
tioned using MS-DOS 6.22 FDISK to four partitions of 200 Mbyte, 250 Mbyte, 200
Mbyte and 160 Mbyte. The four partition tables are as shown using slightly revised
Norton Disk Editor partition table views. We need to remember that cylinders count
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Fig. 7.3 Interpreting partition tables.



from 0, heads from 0 and sectors from 1 in CHS addressing and that Norton Disk
Editor uses a different sequence in its tables of Side, Cylinder and Sector. We have re-
ordered them in Fig. 7.3 to the more traditional CHS form in an attempt to avoid
more confusion than is necessary.

We also need to recall that “Relative Sectors” (see Chapter 5) is the logical block
addressing (LBA) sector number from the beginning of the physical disk. For the
primary partition, this starts immediately after the Master Boot Record track2; all
tracks, in this example, being 63 sectors in length3. Note that the number is LBA 63
and not LBA 64 because LBA sector counting starts from 0. We should note also that
the first extended partition (the container marked EXTEND in partition table 1), by
default, extends to the end of that part of the physical disk that is accessible to the
BIOS. We will consider this issue further in a moment.

The second and subsequent extended partitions (marked EXTEND in partition
tables 2 and 3) are nested within the first extended partition and their “Relative
Sectors” declarations each refer to their LBA starting sector relative to the beginning
of the first extended partition. However, the three logical partitions (marked
BIGDOS in partition tables 2, 3 and 4) have “Relative Sectors” declarations which
refer to their starting sector relative to the beginning of their respective extended
partitions and not to the beginning of the first extended partition. This can be a
source of some considerable confusion. In each case, the logical partition starts
immediately after the extended partition table track and is at LBA 63 relative to the
start of the respective extended partition. Finally, we should note that the CHS
addresses of the various boundaries are always at cylinder perimeters.

In order fully to understand and analyse the partition tables we must first know
what the physical CHS parameters are. They have already been given as CHS 1651,16,
63, on the disk label, but we must also know what the BIOS “sees” when it detects the
disk.The test machine that was used to create these tables has an autodetecting BIOS,
and the disk was actually detected as CHS 825, 32, 63. Using the BIOS detect disk
utility gives us three choices, as shown at Table 7.1.

Choice 1 is recommended but it is important to note that the disk size changes
between the choices. We know the manufacturer’s parameters are given by choice 2
which results in a total disk size of 1651 × 16 × 63 = 1,664,208 sectors. On the other
hand, the default values obtained from auto-detection are 825 × 32 × 63 = 1,663,200
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Choice Size (Mbyte) Cylinders Heads Sectors Type

1 851 825 32 63 LBA

2 852 1651 16 63 NORMAL

3 851 825 32 63 LARGE

Table 7.1 BIOS disk detect options.

2 A track, you will recall, being one head position of a cylinder.

3 It should be noted that although 63 sectors per track is now the most likely value, some
early disks did not conform to this and disks with values from 16 through to 72 sectors
per track are known to exist.



sectors. We see, therefore, that there are 1008 sectors, representing some 500 kbytes,
which are not addressed by the BIOS.This is the so called ‘Lost’area referred to in Fig.
6.3. The differences, as we have seen before, are due to the need for translation of the
disk parameters (see Chapter 5). Any physical image that is using the autodetected
parameters will not see the “Lost”area. However, imaging a disk in its home machine
will usually ensure that the correct4 parameters are loaded by the BIOS. When
hosting a drive elsewhere it is very important to check, if possible, the BIOS and
CMOS settings of the home machine to ensure that the correct parameters are used.

Now we know that the disk, as seen by the BIOS, is of a total length of 1,663,200
sectors we can look at the partition tables to check exactly what areas are occupied by
logical disks and what areas, if any, fall outside the partitions.

Explanation and notes Areas accounted for

Partition Table 1, at LBA 0, CHS 0, 0, 1

1. This starts with the master boot record and
partition table 1 in the first sector. The
remainder (62 sectors) of the track is not used.

LBA 0 to 62
CHS 0, 0, 1 to 0, 0, 63

2. Drive C is defined as starting at LBA 63 and is
of 411201 sectors in size.

LBA 63 to 411263
CHS 0, 1, 1 to 203, 31, 63

3. The first extended partition is defined as
starting at LBA 411264 and is of 1251936 sectors
in size. It thus stretches to end at sector LBA
1663199. Recognizing that LBA counting starts at
0, we note that this therefore uses 1663200
sectors, which is the size that was auto-detected.
We therefore now know that the whole physical
disk is within partitions. We do not, however, yet
know to what extent the logical drives occupy
this area. The first logical drive occupying all or
part of this extended partition will be declared
in a partition table in the first sector of the
extended partition, at LBA 411264, CHS 204, 0, 1.

LBA 411264 to 1663199
CHS 204, 0, 1 to 824, 31, 63

Partition Table 2, at LBA 411264, CHS 204, 0, 1

1. This starts with partition table 2 in the first
sector. The remainder (62 sectors) of the track
is not used.

LBA 411264 to 411326
CHS 204, 0, 1 to 204, 0, 63

2. Drive D is defined as starting at sector 63
relative to the start of the partition, hence it
starts at 411264 + 63 = LBA 411327. It is of
512001 sectors in size.

LBA 411327 to 923327
CHS 204, 1, 1 to 457, 31, 63
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3. A second extended partition is defined as
starting at sector 512064 relative to the start of
the extended partition, hence it starts at 411264
+ 512064 = LBA 923328. It is of 411264 sectors
in size. The second logical drive occupying all
or part of this extended partition will be
declared in a partition table in the first sector
of this extended partition, at LBA 923328, CHS
458, 0, 1.

LBA 923328 to 1334591
CHS 458, 0, 1 to 661, 31, 63

Partition Table 3, at LBA 923328, CHS 458, 0, 1

1. This starts with partition table 3 in the first
sector. The remainder (62 sectors) of the track
is not used.

LBA 923328 to 923390
CHS 458, 0, 1 to 458, 0, 63

2. Drive E is defined as starting at sector 63
relative to the start of the partition, hence it
starts at 923328 + 63 = LBA 923391. It is of
411201 sectors in size.

LBA 923391 to 1334591
CHS 458, 1, 1 to 661, 31, 63

3. A third extended partition is defined as
starting at sector 923328 relative to the start of
the extended partition, hence it starts at 411264
+ 923328 = LBA 1334592. It is of 328608 sectors
in size. The third logical drive occupying all or
part of this extended partition will be declared
in a partition table in the first sector of this
extended partition, at LBA 1334592, CHS 662, 0,
1.

LBA 1334592 to 1663199
CHS 662, 0, 1 to 824, 31, 63

Partition Table 4, at LBA 1334592, CHS 662, 0, 1

1. This starts with partition table 4 in the first
sector. The remainder (62 sectors) of the track
is not used.

LBA 1334592 to 1334654
CHS 662, 0, 1 to 662, 0, 63

2. Drive F is defined as starting at sector 63
relative to the start of the partition, hence it
starts at 1334592 + 63 = LBA 1334655. It is of
328545 sectors in size.

LBA 1334655 to 1663199
CHS 662, 1, 1 to 824, 31, 63

We have now accounted for all 1,663,200 sectors (LBA 0 to LBA 1663199) and all
825 cylinders (from zero), 32 heads (from 0) and 63 sectors (from 1). The whole of
this disk is addressed within partitions apart from the master boot record and the
partition table tracks. Note also the 1008 lost sectors, which have not been addressed
by this BIOS. Do note, and be very wary of, the complex counting conventions that
have to be used.

Note that a relatively old CHS/LBA disk has been used in this example in order to
illustrate BOTH CHS and LBA counting conventions. It is acknowledged by the
authors that most hard disks encountered today will be addressed in LBA. However,
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CHS cannot be forgotten, as it is used by default together with FAT based file systems
on most flash memory devices. It is also worthy of note that many of the most
modern operating systems still use CHS to boot and then switch to LBA mode even
when using NTFS filing systems.

An Explanation of Imaging

Now that we fully understand the ‘shape’ and size of the suspect disk we can consider
what an image of it actually is. The principle of imaging itself is to obtain all the data
present on the disk, whether it be ‘live’ data or data in an unused area, in such a way
that it can be examined as if the original disk itself was being examined. To obtain an
image it is normal to use specialist software which reads the suspect disk from its
very beginning to its very end,and creates an image file that contains all the data read
in the same order. The image file, depending upon format and hardware used, can
then be laid down on a disk of similar or larger capacity. Alternatively, the image
file(s) can be mounted as a virtual volume on an examination machine. Data
appearing in a particular sector of the suspect disk will then appear in the same
sector on the target disk or volume.

To give an analogy, taking an image of a disk is similar to taking a copy of a video
tape by connecting two tape machines together, recording on one and playing back
on the other, and running both tapes from beginning to end. The copy tape (the
target) will contain not only the film that was perhaps taped last night but also the
adverts before it and, at the end, all the odds and ends of previous recordings, just as
on the original tape.

Generally, it is believed that an image of a hard disk drive when it is laid down on
another drive is a true ‘mirror’ image of the original. This is very definitely not the
case. Where this belief came from is not clear. Possibly it was from one of the
manufacturers of imaging hardware and software, where a salesperson’s oversim-
plified explanation of what the product actually did became the prevailing view. It is
understandable that such a simplified picture was, and to some extent still is, used to
enable non-technical staff to visualize the concepts.

The actual situation is very different. As a result of improved electronics and
modern advanced methods of manufacture, defects within the hard disk itself are
not seen by the normal user. Although there are minor defects on a vast proportion
of new disks, these defects do not detract from the actual storage area of the disk
itself.A number of differing methods are used (as we discussed in Chapter 5) to avoid
the defective areas by moving the data to another place on the disk. The map of the
disk presented to the user takes these areas into account, within the disk electronics,
when accessing the sectors and returning the data required. All of this takes place
within the disk itself and is totally invisible elsewhere. It therefore follows that
although images may be a complete bit-by-bit copy of the electronic patterns on the
original disk, it is not necessarily the case (indeed, it is very unlikely) that the data is
in exactly the same place on the surface of one of the platters on the image copy as it is
on the original disk. It is therefore not a mirror image. It should be emphasized that
these storage changes from original to image copy are invisible outside of the disk
itself, and so have no bearing on the imaging process or on any other operation

The Treatment of PCs 297



involving the disk, including forensic examination. However, from the point of view
of giving evidence, it is essential that the analyst understands the true nature of the
situation, and is thus able to deal with the most searching of technical questions.

There is one further point about knowing the physical size of the suspect disk, and
that is knowing the extent of it when the image is laid down on another disk. If the
examination software uses a physical address it will, of course, search the whole of
the target disk when executed. Such a search will include the area of any larger disk
between the end of the image and the end of the disk. Being able to identify the last
sector of the image, and thus being able to curtail searching at that point, may save
the analyst a lot of search time.

Copying

In some cases it is necessary to copy files from a suspect or target disk to another
storage medium. Use of the MS-DOS copy command or drag and drop in Windows5

is an acceptable practice as the utilities are tried and tested. For floppy disks
DISKCOPY is perfectly adequate. It is strongly recommended that any floppy disks or
hard drives that are used for temporary storage are completely erased/wiped before
use in order to avoid any possible claims of contamination.

A Brief Comparison of Imaging and Copying

In the early days of forensic computing, before imaging was widely available, most
recovered evidence was in the form of copied files or raw sectors. When imaging
became the norm, the use of copying decreased. Once disks became so large as to
cause time constraints on warrants, copying has been re-introduced as a method of
capturing data quickly. It is also used as a swift method of obtaining information or
intelligence on-site to assist in the identification of target machines and files and
permit a focused approach in a time-limited environment. Copying does have some
advantages over imaging, and, in this final section we will make a brief comparison
of the two.

Imaging Copying

Images usually need re-loading before
viewing can take place.

Copies can be viewed immediately.

Imaging can be a lengthy process. Copying can be used when convenient
or expedient, or, to recover evidence
from “unusual” machines or those
which are unsuitable for imaging.

Special equipment is required. Solutions
are offered which use software alone or
specialist hardware and software.

No special equipment or software
requirements.
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Imaging Copying

Can be expensive both in terms of
equipment and some media.

Carries no additional costs.

Training in the specific solution is
required often at a considerable cost.

Little training required.

Captures and preserves all data on a
disk, including deleted files, swap files,
slack space, FAT unallocated space and
FAT unaddressed space.

Applies to files only.

Reconstructed disk can be “run”.
Acknowledged as the better solution,
preserving date and time stamps and
enhancing continuity and integrity of
any evidence found.
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8. The Treatment of Electronic
Organizers

Introduction

In this chapter, our main concern is with the extraction of admissible evidence from
electronic organizers and Personal Digital Assistants (PDAs), although other
specialist electronic devices may be treated in a similar way. The topics that we will
cover are:

● Principles of operation
● Batteries and memories
● Password protection
● Switching on the organizer
● Application of the ACPO guideline principles
● Seizure of organizers
● Examination and what may be possible
● Dealing with the password
● Open heart surgery

We begin by outlining the principles associated with electronic organizers and
identifying their major characteristics. We then go on to consider the application of
the ACPO Good Practice Guide (ACPO, 2003) principles and to recommend some
guidelines for seizure of organizers. Finally, we discuss the examination of
organizers and look particularly at how admissible evidence might be obtained from
protected areas.

Electronic Organizers

Electronic organizers range from very small, very cheap devices that can hold no
more than a few tens or so of telephone entries, up to large, relatively expensive units
that are as powerful as desktop PCs and that can hold vast quantities of text, sound,
graphics and other types of computer files. Examples of some typical organizers and
PDAs can be seen in Fig. 8.1.
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Most of the smaller organizers have non-standard operating systems that are
often specific not only to the manufacturer but also to the model. For some of the
larger organizers and for most PDAs, a number of standard operating systems have
come to prominence in recent years.

Possibly the first of these standard operating systems was the Psion “SIBO”,said to
be named after “Sixteen Bit Organizer” or “Single Board Organizer”, and this was
used in the Psion 3 range. Psion then developed a new operating system for the Psion
5 which they called “EPOC”, a name said to stem from their belief that the world was
entering “a new epoch of personal convenience”. Subsequently Psion transformed
itself, in conjunction with Ericsson, Nokia and Motorola, into a new company called
Symbian, and the EPOC operating system has been re-developed and re-branded as
“Symbian OS”.This operating system is now clearly targeted at the mobile phone and
communicator market.

The second major standard operating system is “Palm OS” now produced by
PalmSource.This operating system was first developed for the Palm Pilot,a handheld
which was initially manufactured by US Robotics before the Palm Computing
department was transferred to 3Com. Many subsequent versions of the Palm
handheld have used versions of the Palm OS,as have several other handhelds,such as
the Sony Clié, the Handspring Visor and the IBM Workpad, to name but three.

Finally, the third major standard operating system is “Windows CE”, produced by
Microsoft,with the “CE”said to stand for “Compact Edition”.Other terms now in use
for variations of this series of operating systems include “Windows Mobile Pocket
PC”and “Windows Embedded”. These operating systems have the benefit of making
the organizer or PDA compatible with Windows-based PCs. Such systems often have
Windows CE versions of the Microsoft Office suite pre-loaded, with a view to
providing a user with mobile use of the Office programs together with facilities for
automatic updating and synchronization with their desktop PC system. An
organizer that uses the Windows CE system is shown at Fig. 8.2.
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Casio SF-7100SY Sony Clié Compaq iPAQ Sharp EL-6810

Fig.8.1 A selection of typical organizers (photograph:Tony Sammes and Brian Jenkinson).



Despite the presence of some standard operating systems,there is still an immense
variety in the types of electronic organizer and PDA that are available and in the
operating systems that they use. This means that the functionality, detailed methods
of operation, means of user access and so forth, are typically different for each
organizer and PDA. Furthermore, this variety appears still to be increasing rather
than converging towards any kind of standard product. This clearly poses a problem
for the forensic examiner. Unlike the PC, where a standardized approach to
treatment can be taken, most organizers are so different from one another that a
standardized approach to treatment is not feasible.A database of organizers,which is
known to be incomplete, records over 70 different manufacturers of electronic
organizers with more than 450 different models between them, and most of these
models are quite different in operation from one another.

Principles of Operation

Electronic organizers may be called Digital Diaries, Palmtops, Handhelds, Memo
Masters, Databank Calculators, PDAs and so forth. Although each may have different
functionality and may perform differently from one another in detail, all organizers
follow a similar basic design. They contain a small microcomputer (marked as CPU
in Fig. 8.3) with a miniature keyboard and a display, normally liquid crystal, together
with memory chips in which all the information is stored. In short, they are no
different, in principle, from the black box model of an information processing
system that we met at Fig.3.20.The amount of memory available for storage,particu-
larly when it is very small, is sometimes indicated in the name of the organizer. An
example is the “La Redoute 3KB” (see Fig. 8.1) where 3KB stands for 3 kbyte, and this
represents approximately enough storage room for three thousand or so characters
of text information. Most organizer memory is volatile and it is usually kept active by

The Treatment of Electronic Organizers 303

Fig. 8.2 A Windows CE organizer – the HP 320 LX (photograph: Tony Sammes and Brian Jenkinson).



batteries. If these fail, all information contained in the organizer could be lost.
However, some larger organizers contain a form of flash EEPROM memory which
requires no continuous power to retain its contents.

Sometimes there are two sets of batteries: a main set which is designed to run the
display, keyboard and microcomputer when the organizer is switched on; and a
backup battery which maintains information in the memory if and when the main
batteries become discharged. These two sets of batteries can be clearly seen in the
example at Fig. 8.4, together with the microcomputer, which in this case uses chip on
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Fig. 8.4 Inside a typical organizer – the Packard Bell DB 128 (photograph: Tony
Sammes and Brian Jenkinson).



board (COB) technology (see later section) and the memory chip, which here uses a
standard dual in line (DIL) package. This particular memory chip is volatile static
random access memory (SRAM) (hence the need for battery backup) and the
organizer can store 128 kbyte of information.

Rechargeable Batteries

Many PDAs are designed to be used in conjunction with a laptop or desktop PC. The
concept is one where the PDA has its own cradle, often connected to the USB port of
the PC. This cradle provides a connection to the PC that, given appropriate synchro-
nization software on the PC, will allow automatic backups and file transfers to take
place. In addition, the cradle may provide power to the PDA. This design envisages
that a user, having taken the PDA to work, would, on returning home fit it into the
cradle to allow synchronization and backup of any files changed that day. This has
led to many such PDAs being fitted with rechargeable batteries,which are charged up
every time the PDA is returned to its cradle. Rechargeable batteries have a life of only
a few days, compared with the several weeks of primary cells.

This raises two important points for the seizure of PDAs. The first is to ensure that
all associated cables, the cradle, if possible the CD with the PC synchronization and
backup software, and the desktop or laptop to which the PDA cradle is connected are
all seized together. The second is to check whether the batteries are primary cell or
rechargeable. If they are rechargeable, it is important to fit the PDA on its cradle
before sealing it in an evidence bag, and to cut a small hole in the bag through which
the power cable can be led out and kept connected to an appropriate supply, thus
maintaining sufficient charge in the rechargeable batteries.

Two Important Points about Primary Batteries

As mentioned above, most current organizers use SRAM for their internal memory
and thus require some form of electrical power to be present at all times if they are to
retain the information that they hold. This leads to two important points of which a
forensic analyst needs to be aware:

● Just because the display is not working when the organizer is switched on does not
mean that all the information is necessarily lost. It may be that the main set of
batteries have failed and hence the display cannot operate, but that a backup
battery is still active. In this case,on replacing the main batteries we should still be
able to recover all the information that is held.

● Removal of all the batteries will normally guarantee a loss of all the information
in the memory. We have used the word “normally” here because some systems
retain a small charge which will often keep the memory active for several minutes,
even with all the batteries removed1. However, switching the organizer on when
all the batteries are removed will usually dissipate this charge very quickly and
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cause all the information to be lost. It is thus particularly important not to return
the organizer to a suspect until forensic analysis has been completed. It is the
work of a moment to remove the batteries and thus possibly destroy any incrimi-
nating evidence2.

Memory Extensions

Many of the larger organizers and the PDAs have means by which the internal
memory capacity can be extended through the use of add on devices which are also
often used for backing up information. In older organizers, these may be proprietary
devices called by proprietary names such as “IC Cards”, “Solid State Disks” or
“Memory Disks” and they may be fitted into plug-in slots on the organizer which are
specially designed for this purpose. Such devices may either contain random access
memory (RAM) which extends the organizer’s capacity, or read-only memory
(ROM) programs which extend the organizer’s functionality.

These proprietary devices often contain significantly more memory than the
organizer itself and it is important that they are recognized and seized with the
organizer. The RAM devices may be made up either of standard SRAM memory
chips, similar to those in the organizer itself, and fitted with their own integral
lithium battery on the device, or they may be a form of early Flash EEPROM memory
chips that do not require a backup battery. The ROM devices may be one-time-
programmable ROM or masked ROM (Psion, 1992), and these also should be seized
since they might be needed to interpret user data that has been generated via the
extended functionality that they provide.

At Fig. 8.5 is shown a Sharp IQ 8000 organizer, which dates from 19913, on top of
which has been placed a Sharp IC card. The organizer is a 64 kbyte model and the IC
card may be pushed into a slot that is at the rear of the top casing. The IC card may
have a list of commands printed on one side that provides a customized touchpad for
the functions of the card. The standard touchpad is visible in Fig.8.5 on the top right-
hand side of the organizer. The IC card in this example is a combination card with 64
kbyte of EPROM and 32 kbyte of battery-backed SRAM.

At Fig. 8.6 we have shown a typical solid state disk (SSD), manufactured by Psion
PLC, resting on top of the rear casing of a Psion 3a organizer, which dates from 1993.
Clearly visible in the figure are the main and backup batteries, as well as the two SSD
drive slots, both of which have their doors slightly open. The SSD may be pushed into
either slot to give access; in this case to a further 128 kbyte of Flash EEPROM.

In memory terms, the Psion Series 3 range tended to be on the medium to large
size compared with other organizers of that period. The one shown in Fig. 8.6 has 2
Mbyte of internal memory and can thus hold close to two million characters of
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information. Although it uses a different operating system (SIBO; see above) from
MS-DOS it can be fairly described as a pocket-sized PC.

Most modern organizers and PDAs do not use proprietary memory extension
devices, but instead use some form of standard memory card, such as those shown at
Fig. 8.7. These are all based on flash memory chips and most appear to a PC, through
a suitable interface, as another hard disk drive. There are currently six main memory
card types: Compact Flash (CF),Memory Stick (MS),Secure Digital (SD),SmartMedia
(SM), Multimedia (MMC) and xD Picture card. A reduced size MMC card (RS-MMC)
has also been produced.
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Fig. 8.5 Sharp IC card – the Sharp IQ 8000 (photograph: Tony Sammes and Brian Jenkinson).
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Fig. 8.6 Solid state disks (SSDs) – the Psion 3a (photograph:Tony Sammes and Brian
Jenkinson).



Significance of Memory Type

In the context of organizers, we have now referred to several different kinds of
memory and it is important to understand the significance of each type from a
forensic computing viewpoint.

With static RAM (SRAM),the kind of RAM that is to be found in the main memory
of most organizers, we must maintain some form of electrical power connected if we
are to retain its contents. However, we also have the ability to read from and write to
such memory anywhere at will. We can reuse it over and over again for different
purposes.We might, through the operating system of the organizer,write a telephone
number into one part of the memory and, at some later time, when we no longer
require that number, overwrite that part of the memory with details of a memo to do
something. SRAM is very flexible and reusable, but it is volatile. If all electrical power
is lost, so is all the information that the memory contains.

With the older form of EPROM (erasable programmable read-only memory),such
as that referred to in the IC card shown at Fig. 8.5, the memory can be written to
(programmed) once using a relatively high voltage4 and thereafter can only be read
from. However, it will retain the programmed information for a very considerable
time without the need for any form of power. This class of memory is often known as
WORM (write once, read many) memory and the word “erasable” in the name refers
to the ability to bulk erase the whole of the memory by subjecting the chip to ultra-
violet light. Doing this then allows the EPROM to be reprogrammed with a different
set of information.The quartz window which is used to subject the chip to ultraviolet
radiation when erasing can just be seen as a small circle on the casing of the IC card
in Fig. 8.5. The programming and erasing of this kind of EPROM normally requires
specialist equipment and the analyst is unlikely to come across many such EPROMs
that have been programmed by a user.
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Fig. 8.7 Standard memory cards (photograph: Tony Sammes and Brian Jenkinson).

4 12.5 V compared with 5 V in the example given. This is normally done using a special
EPROM programmer.



However, a slightly more recent form of EPROM no longer requires the use of
specialist equipment to program or erase it. Although still a WORM memory, such
devices can appear to the user as though they are SRAM. It is an early version of this
form of memory which was used by Psion in their Flash SSDs. They were often used
for backup purposes and for databases, and Psion wrote file management software
which exploited the non-volatility of this early EPROM, without exposing the user to
the problems of WORM memory. The file management software achieves this by
having a validity bit associated with each record stored. When the record is first
written the validity bit is not programmed and the record is seen by the file
management system to be valid for all subsequent reads. When a change to that
record is required, however, a completely new copy of the revised record is written
elsewhere and the validity bit of the now outdated record is programmed to make it
invalid. In this way, the SSD appears through the file management system to be just
like SRAM; changes can be made to records as required. However, it is important to
recognize that the same memory locations are not being reused; instead, they are
being marked invalid and new memory locations are being used for each change that
is made to a record. Two important consequences of this approach result:

● The SSD fills up as records are changed and the actual used space becomes larger
than the apparent used space. Eventually, when the SSD is full, consideration has
to be given to erasing it. With this form of EPROM5, erasure of the whole memory
is done electrically by applying a high voltage as for writing. In the Psion file
management system, this process was known as formatting.

● Every change made to the file system is still recorded in the SSD although not
accessible through the Psion file management system. Specialist forensic software
can be used to access all these changes which may have considerable evidential
value.

More recent developments in so-called flash technology have led to EPROM chips
that can be erased a byte at a time or a block at a time (Micron, 1999a) rather than
having to erase the entire chip. We first saw such technology being used in the flash
memory of the BIOS on the motherboard of a PC,where infrequent updates from the
manufacturer could be easily made. Perhaps most important of all, however, has
been the development of the CompactFlash card (Micron, 1999b), which we
mentioned above. This consists of flash EPROM memory chips controlled by a
complete ATA (IDE) compatible disk controller on the card so that the entire unit
appears to be a tiny (at least in form factor) solid state IDE disk. As mentioned in
Chapter 4, the largest size of CF card in production at the time of writing (March
2007) is 64 Gbyte. A full and detailed specification (CompactFlash Association, 2004)
for such devices has been produced and they are in common use in applications such
as digital cameras and mobile phones, as well as electronic organizers. Psion used
CompactFlash devices, which they called Memory Disks, in the Psion Series 5 range
of organizers. However, it should be noted that these memory disks operate just like
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non-volatile SRAM, so there is no opportunity to access all previous record changes
as there was with SSDs.

Perhaps the most important point to come out of this section is a note for arresting
officers and search and seizure teams:

● An IC card, or an SSD or a CF memory disk, or an insignificant little MMC card
may contain several thousand times the amount of information that is held within
the organizer itself.

It should also be noted that some of these memory cards may contain programs
rather than provide additional memory.They will normally be marked as such,often
with some form of commercial label. They are frequently used for games, spread-
sheets, databases (for example, wine, food, route finding and so forth), finance
packages, dictionaries and the like.

User Features

The simplest organizer is likely to have a telephone area, a memo area, a schedule or
diary area, a calendar and a calculator together with some form of system password
protection. Next in complexity might be the inclusion of a clock and an alarm facility.
Then, possibly, there might be several telephone and memo areas as well as to do lists
and reminder lists with password protection provided for secret and non-secret areas.

More complex still, an organizer might have proprietary word processor, spread-
sheet and database applications and might permit additional applications to be
downloaded and installed. Finally, there are organizers that are the equivalent of
handheld PCs running a standard operating system such as Windows CE and
providing support for mini versions of Microsoft Office applications. All of these
features are typically accessed differently from model to model.

Password Protection

Most electronic organizers have one or more password-based security features that
are intended to protect against unauthorized access to the data held within them.
These security features may protect at the level of the system, the file, the
compartment or the record. From a forensic computing viewpoint, where passwords
are not known, it is necessary to defeat such security features if all the evidence is to
be accessed.Different approaches may need to be employed against the four different
categories of security feature.

At the system level, a password may be required before any significant system
function can be carried out. This may prevent the operation of an external commu-
nications link or deny access to information about the amount of memory in use, as
well as preventing any access to the user data held within the organizer.

At the file level, a password may be used to generate a key which is then used to
apply an encryption algorithm to the file. Usually, a separate one-way hash of the
password is also added to the encrypted file. Subsequent decryption occurs only
when the correct password is presented and this condition is met when the hash
generated using the presented password matches the hash held within the file. The
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decryption key that is also generated from the presented password is then applied to
decrypt the file.

At the compartment level two separate areas exist (at least conceptually), and both
may hold a number of different record categories, such as telephone, memo and
schedule.One area is unprotected and is accessible by default and the other is protected
by a password and is inaccessible by default. Presenting the correct password causes
the organizer to switch access from the records in the unprotected area to the records
in the protected area. Only one of the two areas is accessible at any time.

Finally, at the record level, any individual record, be it telephone, memo or
schedule, may be “marked”as “secret”or left unmarked. In the default situation, only
those records that are not marked as secret are accessible. Presenting the correct
password causes the organizer to make accessible all records, both secret and non-
secret, at the same time.

Switching On the Organizer

The significance of switching on the organizer varies across the entire range. It is
important to appreciate that pressing the ON button will always change the internal
memory state of the organizer and hence the evidence in some respect or another.
The value of each keystroke made on the keyboard is stored in the keyboard buffer of
the internal memory, so the act of pressing the ON button itself changes that
memory buffer. Although this change is unlikely, in itself, to affect any user data held,
what happens thereafter depends on the operating system of the organizer and what
other keystrokes are made. If it is a Windows CE operating system, changes to a
number of files can take place as the operating system becomes active, in a manner
very similar to that of a Windows-based system starting up on a PC. Some other
operating systems, which maintain date and time stamping of files, will also change
file attributes when those files are opened and closed, again resulting in some aspect
of the evidence being changed.

Application of the ACPO Good Practice Guide Principles

With a PC,the essential concern, as we saw in Chapter 7, is not to change the evidence
on the hard disk and to produce an image which represents its state exactly as it was
when seized. With an organizer, there is no hard disk and the concern has to be to
change the evidence in the main memory as little as possible, and then only in the
certain knowledge of what is happening internally. The possibility of producing an
image of the memory rarely exists.

This results in one major difference between the treatment of PCs and the
treatment of organizers. To access the organizer it will almost certainly have to be
switched on, which effectively means that Principle 16 cannot be complied with. It is
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therefore essential to ensure that Principle 27 is complied with because we can rarely
image the memory and we thus have to work on the original evidence. This means
that the competence of the analyst and Principle 38, the generation of a detailed audit
trail, are even more important than in the case of the PC.

Guidelines for Seizure

On seizure the organizer should not be switched on.It should be placed in some form
of sealed envelope before being put into a sealed evidence bag. This procedure
prevents the organizer from being opened and accessed whilst still sealed in the
evidence bag, a situation that can easily arise with some organizers.

At Fig. 8.8 we can see clearly how not to do it. This organizer could easily be
tampered with by anyone who handles the sealed evidence bag. There can thus be no
real guarantee about the continuity of this evidence. Note, however, the earlier
comments about fitting organizers with rechargeable batteries into their cradle
before sealing into an evidence bag, and passing the power cable out through a hole
in the bag.
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Fig. 8.8 How not to seal an organizer in an evidence bag (photograph: Tony Sammes and Brian Jenkinson).

7 Principle 2: In exceptional circumstances, where a person finds it necessary to access
original data held on a computer or on storage media, that person must be competent to
do so and be able to give evidence explaining the relevance and the implications of their
actions.

8 Principle 3: An audit trail or other record of all processes applied to computer-based
electronic evidence should be created and preserved. An independent third party should
be able to examine those processes and achieve the same result.



If switched on when found, consideration should be given to switching the
organizer off using the off switch in order to preserve battery life. A note of the time
and date of this process should be made and the organizer should then be packaged
and sealed as stated above.

A search should also be conducted for associated devices such as IC Cards, Solid
State Disks,and the whole range of memory cards as well as for organizer cradles and
for any power and PC connecting cables.

The organizer should never be returned to the accused at the scene or prior to the
evidence recovery procedures having been completed. Depressing the RESET button
or the removal of all the batteries can result in the complete loss of all information
held in the organizer.

A competent person should examine the organizer at an early stage, and should
replace the primary batteries as necessary to prevent any loss of evidence. This
process should be repeated at regular intervals of a month or so to preserve the
evidence until the case is complete. In the case of rechargeable batteries, the
organizer should be left on charge. Only a competent person who understands the
specific implications of the particular model should access the organizer. As recom-
mended in the Explanation of the Principles (see Chapter 7) it is essential that a
witness who is competent to give evidence to a Court of Law makes this access.

It is of paramount importance that anyone handling electronic organizers prior to
their examination treats them in such a manner that will give the best opportunity for
any recovered data to be admissible in evidence in any later proceedings.

Examination of Organizers and What may be Possible

Provided that either the main or backup batteries are still operational, and the
organizer is not faulty, it should be possible to obtain details of all the unprotected
information, through the display screen, by normal use of the organizer. This is the
recommended approach, since it may be easily audited and repeated by others. This
approach also applies to unprotected information in IC cards, SSDs and memory
cards, though it may be possible to obtain an image of some of these by treating them
as though they were ATA disks. The approach requires that the examiner be
thoroughly familiar with the particular organizer, is aware of any alterations to the
memory that are unavoidable and is careful to ensure that no inadvertent changes
are made. It is vital that a log of all the keystrokes together with any resulting displays
is maintained.

It may be possible to obtain some or all of the protected information in the
organizer. To achieve this, either the passwords will have to be obtained or the
security features of the particular organizer will have to be defeated. There are a
number of possible approaches to this problem and these are considered in outline
in a later section. Having obtained access to any protected area, the recommended
approach is again to access details through the display screen by normal use of the
organizer.

Where password-protected information is stored in an encrypted form and the
password cannot be obtained, it may be possible to break the encryption by
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exploiting known weaknesses in the encryption algorithm. This applies only when
weak encryption systems have been used.

In most organizers, information is stored in the memory in a very structured way.
In particular, it is normally held in the form of a record, and the first part of the
record may contain information about how long it is, what type of information it
contains, whether or not it is password-protected, and so forth. There may in
addition be a marker which indicates that a record has been deleted. When a user
deletes information from the organizer, the information itself is rarely removed from
memory. Rather, the marker associated with the record is simply set to indicate that
the information has been deleted. This is very similar in concept to the deletion of
files in FAT-based file systems. It does mean, however, that if we are able to access the
memory of the organizer directly, we may be able to restore some of the deleted
information. A similar problem to that of undeleting FAT-based files arises here also.
The memory space taken up by deleted records will be reused by the organizer when
new information is entered and deleted information will eventually be overwritten.
This technique also applies to flash SSDs, as we mentioned earlier, and here we can
possibly restore deleted files as well as deleted records.

The Trouble with Organizers

From all that has gone before we can now summarize the trouble with organizers so
far as the forensic analyst is concerned:

● There is a vast variety of different manufacturers and models.
● Connection to external devices is frequently via non-standard and proprietary

connectors and cradles which are often deliberately designed to be incompatible
even between models in the same range from the same manufacturer.

● User features are typically different from manufacturer to manufacturer and even
from model to model for the same manufacturer.

● Means to access the user features are typically different from manufacturer to
manufacturer and from model to model for the same manufacturer.

● Any access, including switching on, alters the memory contents.
● Security features are typically different from manufacturer to manufacturer and

from model to model for the same manufacturer.

The consequence of this is that we must obtain, for test purposes,an exact working
duplicate of the organizer, together with all its specific connectors and cradles and so
forth, for each model that we intend to examine. We need this in order to determine
precisely what the user features are; what keystrokes are required to access those user
features; what processes will safely (that is, without contaminating any of the
evidence) give us access to all the data; and how any security measures in operation
may safely be defeated.

In a perfect world, we would buy two samples of every organizer and PDA model
as it came off the production line and we would put them away in a big storeroom
until we had a case which involved that particular device. Few organizations can
afford to do this, and one of the first practical problems with any new organizer case
is often in trying to obtain a sample of the organizer for test purposes.
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A Set of Protocols

Because of this vast variety of different organizer models we have made no attempt
to outline the specific procedure that should be adopted to process any particular
model. The required procedures vary greatly from model to model and manufac-
turer to manufacturer, not only with regard to the keystrokes that need to be
entered and the displays that result, but also in the measures that might have to be
taken in order to defeat any security features and to access any password-protected
areas.

Building on the experience of a large number of past cases, we very early on
commenced construction of a database which contains sets of protocols for dealing
with specific models of organizer together with photographs of the organizers and
details of their characteristics. These sets of protocols utilize the best practice we
have so far discovered for each model and these are revised and updated in the light
of further experiences with that model.

When a new case comes in, we first need to identify the model, particularly if
identifying marks have been erased or there are none present, and this database is
our first point of call to see if we have previously worked on this model. We may
also compare the new organizer with the photographs in the database to see if it is a
re-badged version of a model that we have already dealt with. Finally, the database
will also tell us whether or not we have test sample of this organizer in our
storeroom.

A generic example of a protocol, in outline, is as follows:

● Identify the organizer and search the database for any prior examples. If found,
use latest set of protocols. Obtain test sample.

● Open a new log and note the date and time. Commence a detailed physical
external examination of the organizer. Log any noticeable damage and any
markings. Open doors to any IC card, SSD drive, memory disk, modem or other
card slots. Note the details, including serial numbers and locations, of any IC
cards,SSDs,memory disks,modems or other card devices that are found installed.
Note the serial number of the organizer, its type and size of RAM. Label the
organizer with a signed and dated case identification. Photograph the organizer
and associated devices.

● If appropriate, connect a mains adaptor or cradle (do not connect to a PC). Switch
on the organizer. Log all keystrokes, the display details and, in particular, the
displayed date and time.Also log the current date and time of this action.If appro-
priate, photograph the screen. Check for any low battery states and replace
primary batteries, as necessary, in accordance with the manufacturer’s instruc-
tions. These should be available from the test sample. Continue to log all
keystrokes made throughout. Note whether a system password has been set.

● If a system password is set, then first try any passwords that have been given by
the case officer. Log all attempts made and note all results. If this is not successful,
then use appropriate measures to attempt to defeat security features. If the
organizer has been previously dealt with successfully, details will be in the
protocols obtained from the database. If it has not, a series of trials will need to be
carried out using the test sample organizer.
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● When the system password has been dealt with, log all screen details. With the
larger organizers, determine whether the screen is displaying from within an
open file. Do not close any files at this stage.

● If appropriate, access the system directory and log all file and directory details
and in particular all file date and time stamps.

● Note all files that are open together with their displayed details. Try to save copies
of open files to a clean pre-prepared IC card, SSD or memory card. Close all open
files and log that this has been done. Re-examine the directory structure and note
all changes to date, time and size stamps for the closed files.

● Where a personal computer (PC) link to the organizer is available,run diagnostics
on the PC and produce a printed copy of the results. If the PC is working correctly,
connect to the organizer using the appropriate PC link system. Transfer copies of
all files in the organizer to the PC.

● Transfer copies of all files from the PC to the test organizer.
● Commence a detailed examination of each file in the test organizer and in the PC

and log all details found. This process is used in order to preserve, as far as
possible, the integrity of the evidence organizer. By examining the test organizer,
loaded with a copy of the evidence, there is no risk at this stage of inadvertent
keystrokes altering the evidence in the evidence organizer.

● Repeat the entire examination using the evidence organizer and compare the
results with those logged previously from the test organizer.

● Carry out a diagnostic test on the evidence organizer to establish that it is working
correctly. Log all details. If the organizer is not working correctly, try to establish
the nature of the failure and make an assessment of what effect, if any, this might
have on the information that has been obtained.

Dealing with the Password

There are a number of approaches that can be used to attempt to deal with an
unknown password. It is better, however, from an evidential point of view, if the
actual password itself can be determined, rather than having to subvert it, because
then access to the protected information can be more easily demonstrated to the
Court.

The first approach we have called second guessing. It is surprising just how often
someone who has set a password uses that same password elsewhere in their
organizer. As a matter of routine we will examine all the diary entries looking for the
pet name of a partner, say, which might turn out to be the key to the protected area. It
is useful to have some knowledge of the domestic affairs of the suspect. As well as pet
names, we find that nicknames, car numbers, telephone numbers, initials of children
in age order and so forth may be used. Many people cannot be bothered with more
than one password and they may use the same one for other systems as well. It is
therefore worth inquiring whether there are any other organizers involved, as well as
whether any PC or Internet account passwords have been determined.

With some organizers, so called back doors have been established. These are
undocumented key sequences that have probably been provided by the
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manufacturer in order to aid diagnostic testing and maintenance of the organizer. In
some cases they re-boot9 the organizer into an engineering or service mode. Where
we have found these additional facilities, we have sometimes been able to use the
manufacturer’s diagnostic mode to examine the internal memory, find the password
set by the user and then type in that password to unlock the protected area.This must
be done with great care. Selecting the wrong diagnostic menu item (and it is not
evident what is what since “hidden”menus are often used) might cause the organizer
to run, for example,a destructive memory test,causing a total loss of all information.

Many organizers have a copy or backup mode whereby some or all of the infor-
mation held in one organizer can be copied to a second identical or very similar
model. The manufacturer normally supplies a suitable connector for this purpose.
For those organizers that offer a complete backup, it is sometimes the case that the
password will also have been passed between the two organizers during the data
transfer. By physically tapping into the connector between the two organizers, it is
possible to monitor all signals between them and, using a suitably designed
hardware interface and PC program, reconstruct those signals into an image file of
all the characters that were passed between the two organizers. The image is often a
binary image of all or part of the main memory and will invariably include the
password. If we back up the evidence machine to a test machine in this way, we can
then simply scan the reconstructed image within the PC to find the password
sequence and enter that into the evidence machine. In some cases, where the
password is not held in the main organizer memory but instead is held in the on-chip
memory of the microcomputer, we do not obtain the password information.
However, the image file should contain all the protected as well as the unprotected
records and so access to all the evidence is still possible.

Where the organizer has a serial port or a PC link, it is possible that it may respond
to what we have called a magic bullet. For what we again believe are test and
diagnostic purposes, an undocumented character sequence, transmitted into the
serial port may cause some organizers to enter a service mode or, in some cases, to
send an entire image of its memory back across the link. As in the organizer to
organizer backup case, the image may or may not contain the details of the password,
depending upon whether it is held in main memory or in the on-chip memory of the
microcomputer. However, as before, the image should contain all the protected as
well as the unprotected records.

Some organizers which have memory extension slots may treat a fitted memory
card in a similar manner to that of a PC with a floppy disk in its A: drive. If this is the
case, it may then view the memory card as a “boot” disk. When an organizer is
switched on, it effectively performs a “boot” to its internal operating system. If it
considers the memory slot as a boot drive, it will first check, on switching on, any
memory card that is fitted for a boot loader. If none is found, it will default to the
internal operating system, but if a loader is present, it will load and execute the files
that are specified by the boot loader. We have had some success in developing boot
programs which are designed to access the password location in memory and either
display the password on the screen or turn off any “password set”flag before handing
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control back to the internal operating system. By placing such a program on a
memory card in the appropriate boot loader format, the card can be used to remove
or determine system passwords for the specific organizer model. In practice, each
model tends to be different and requires a different program to operate correctly, but
clearly a great deal needs to be known about the operating system in order to write
programs such as this.

On this point, it is worth noting that the standard operating systems all have
Software Development Kits (SDKs) available for download from the manufacturers’
web sites. These contain a wealth of information about the internals of the particular
operating system and are intended for use by developers who are producing appli-
cation software for the particular models of organizers and PDAs that the kits
support. In addition, these SDKs may also include emulators and debuggers.
Emulators are programs that run on a software development system, such as a PC,
and closely mimic the behaviour of a particular organizer or PDA. They permit a
designer to test application software in an environment within which all processes
can be observed and monitored. Debuggers are often used to test applications on the
actual hardware itself and normally work by downloading a small element of control
software into the organizer which then permits remote control and monitoring to
take place via the PC running the main debugger software. Usually it will be
necessary to switch the organizer into a “debug” mode before the download will be
permitted. These facilities can also be used to help defeat security on particular
organizers and PDAs.

The use of the Palm OS Debugger to obtain the system password from, for
example, the Palm V PDA, has been well documented (Kingpin and Mudge, 2001;
Grand, 2002). We demonstrate below an outline of the process that we have used,
which is based on the documented approach:

We first set the Palm V into its debug mode by entering the graffiti strokes:

● We then place the Palm V into its cradle, which we have connected to a PC, and
then we start the Palm debugger10 program on the PC.

● Into the Console window of the Palm debugger we enter the command: export 0
"Unsaved Preferences"

● If all goes well, this should result in the uploading of the Palm V file Unsaved
Preferences to a predefined folder on the PC. Given that this is successful, the
Console window should then look as we have shown in Fig. 8.9.

● We need next to examine the file Unsaved Preferences with a hexadecimal
editor in order to find the 32 byte hash of the system password. The hashing
process that has been used is weak and can be reversed quite easily (see Kingpin
and Mudge, 2001).If we can recognize the hash,we can copy it out and pass it to an
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analysis program which will carry out the reversal process for us. In most cases we
have found the hash towards the end of the file, but some trial and error might be
required. At Fig. 8.10 we show the 32 byte hash in the Unsaved Preferences file
highlighted in a WinHex window.

● The final step is to copy the 32 byte hash out from WinHex and then run, in a DOS
box, a program called palmcrypt.exe11 that has been produced by “@stake
Research Labs” for this purpose. The program is executed with a -d switch
followed by the 32 bytes of the hash in hexadecimal. Rather than typing all this in,
we normally copy the hash using “Copy Block as Hex Values” in WinHex and then
paste it into the DOS box after entering the -d switch. The result should look like
Fig. 8.11, where we have highlighted in a box the resultant password “13fcfc”.

Open Heart Surgery

Finally, if all the foregoing methods fail, we are left only with open heart surgery. In
this we try to open up the organizer while it is still fully operational and intervene
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Fig. 8.9 Successful uploading of “Unsaved Preferences”.

Fig. 8.10 32 byte hash from “Unsaved Preferences”.

11 Although this program was produced in September 2000 and the @stake website, from
which it was freely available, no longer seems to be accessible, a copy of the program
was found for free download in February 2007 at http://www.grandideastudio.com/
files/security/mobile/palmcrypt.zip.



directly in its internal workings. We have, in the past used two different forms of
intervention.

● In the first, we established from a very detailed analysis of a test organizer
precisely where in the memory of that organizer a flag indicating that the
password was set was actually located. Having found the exact place, we
connected a specially made piece of electronic hardware to the memory chip
which physically changed the password marker in the memory chip from on to
off.When the organizer was switched back on, it found that no password had been
set.

● The second approach we have used much more frequently. This entails trans-
ferring an image of the entire memory of the organizer directly into a PC.

Figure 8.12 demonstrates neatly one of the difficulties with this technique. Here is
shown the internal workings of a particular organizer with three battery holders on
the left of the diagram. Two of these are for the main batteries and one is for the

320 Forensic Computing

Fig. 8.11 Determination of password using palmcrypt.

Fig. 8.12 Accessing the memory chip (photograph: Tony Sammes and Brian
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backup battery and as soon as dismantling of the organizer starts, there is a high risk
that all the batteries will fall out. For the sake of clarity, we have not shown the details
in the figure, but it is essential to connect alternative power supplies to the organizer
if the information in the memory is to be retained. This we usually do by soldering
external power connections directly on to the printed circuit board as the disman-
tling process proceeds. As an alternative, we have used electronically controlled
machine tools to cut, very accurately, a hole in the rear casing so that we could access
the memory chip without having to remove the casing and thus without having to
disturb the spring loaded battery carriers.

As can be seen from Fig. 8.12, the memory chip is in a standard DIL package,
although the microcomputer itself has been attached to the board using chip on
board (COB) technology. It is thus possible to connect to the memory chip using a
spring-loaded SOIC connector, and this is shown in place in Fig. 8.13.

In this figure we can see how the SOIC connector sits cleanly over the memory chip
and makes contact with each of its legs.The connections,brought out at the top of the
clip, are then taken via ribbon cable to a specially designed interface board which in
turn is connected to a PC.Specially written programs in the PC are then used to drive
the interface board and through it the organizer memory,causing it to read out to the
PC all the information contained in the memory chip.What we have done, in effect, is
to make the organizer memory an extension of the PC and then simply copied an
image of the organizer memory directly to the hard disk of the PC. As in the case of
the backup and the magic bullet images, analysis of this image may result in the
password being obtained. In any event, both protected and unprotected records are
usually stored in the same memory, so access to all the evidence should now be
possible.

Problems arise with organizers that use chip on board technology throughout to
implement both the microcomputer and the memory,as we see in the example of Fig.
8.14. Making contact with this memory chip is much more difficult. There is no
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Fig. 8.13 Connecting to the memory chip (photograph: Tony Sammes and Brian Jenkinson).



standard form of chip packaging in use here, so we are not able to look up the signifi-
cance of any of the connections from standard tables; nor are we able to use the very
convenient legs of a package to give us relatively easy access to those connections.

The only realistic approach is to try to use a jig, as we have shown in Fig. 8.15. The
organizer has been locked into place with a specially drilled sheet of plastic above it
and spring-loaded pins have been pushed through the plastic to make contact with
specific plated through holes on the printed circuit board. Pins have been positioned
to make contact with all the data and address bus lines and these in turn have been
connected via ribbon cable to the PC interface. However, a great deal of time and
experimentation was required in order to determine which bus line is which so that
the spring-loaded pins could be connected to the correct points on the PC interface.

This approach can only be used where the microcomputer and the memory are in
separate chips since it is only then that the address and data bus lines have to be
implemented as connections on the printed circuit board. Where the memory is on
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Fig. 8.14 Chip on board technology (photograph: Tony Sammes and Brian
Jenkinson).

Fig. 8.15 Using a jig.



the same chip as the microcomputer, as is the case in Fig. 8.16, there is no longer any
point in trying to access connections on the printed circuit board, since the required
buses are all internal to the chip.

This kind of technology continues to pose a problem for the forensic computing
analyst, though a number of different approaches are being followed up. One such,
for example, involves the removal of the resin from the surface of the chip so that it
can be examined under an electron microscope. Using this technique, it may be
possible to “see” the charges in the memory and interpret the memory contents
directly. It may also be possible to make contact with the internal buses using optical
fibres so that appropriate signals, such as “turn off the password bit” could be
injected into the chip. A second approach that is under consideration examines the
radiated waveforms from the microcomputer under various conditions of operation.
An organizer is typically very “noisy” electronically and by converting the noise to
sound waves using the superhet principle (an ordinary medium wave or short wave
radio receiver provides this capability for most of us) it is possible that different
sound patterns could be detected when the microcomputer is carrying out different
processes. Perhaps each character of a password, as it is typed in, causes a different
noise pattern to occur, depending upon whether it is a correct or incorrect value. The
waveforms could also be examined on an oscilloscope to detect useful patterns.

Yet a third approach looks at the performance of the chips when operating outside
their designed limits with very high or very low power supply values. Security
features have to be designed on the assumption that the device is operating correctly
and it is interesting to investigate what happens in various failure modes. We can
most easily instigate a failure mode by adjusting the power supply to be outside the
working limits of the device.For example,we might find that the minimum voltage at
which the microcomputer continues to operate correctly is, say, 1.01 V, whereas the
SRAM memory will continue to retain information down to 0.94 V.If we now take the
power supply of the organizer down, in steps of 0.01 V say, to 0.98 V, we should have a
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Fig. 8.16 Microcomputer and memory on same chip (photograph: Tony Sammes
and Brian Jenkinson).



situation where the memory is still active but the microcomputer has faulted. If we
now increase the power supply in steps of 0.01 V there will come a point at which the
microcomputer may restart. If, say, the password set bit was remembered by the
microcomputer, this process would probably have cleared it and we might find that
the system password had been turned off!

Clearly this kind of analysis is very time-consuming, and hence very expensive.
Few cases can afford to fund such research. Again, we face that “trouble with
organizers”: the vast variety with little or no standardization means that every model
effectively requires its own mini research project.

JTAG Boundary Scan

As the problems of dealing with chips such as these became more difficult for the
forensic analyst, so they were also making life very difficult for the manufacturer in
respect of development, testing and diagnosis. With that in mind, a group of
companies formed the Joint Test Access Group (JTAG) with the purpose of agreeing a
set of standards for test hardware that would be embedded in future chips.The idea is
that a set of boundary cells is implemented between the internal elements of the chip
and its input and output connections. The cells, when in the normal mode, are
inactive and simply permit all input and output signals to pass through. However,
when in the test mode, all input signals are captured for analysis and all output
signals are preset as appropriate. This is all controlled by software using another
microprocessor called the Test Access Port (TAP) Controller. The TAP Controller can
itself be given instructions by an external TAP Control device which is connected via
a standard five-pin interface on the printed circuit board. The “Standard Test Access
Port and Boundary Scan Architecture” IEEE standard was produced in 1990 and this
is generally known as “JTAG boundary scan” or “IEEE 1149”.

The significance of all of this is that many modern PDAs, for example, are JTAG
compliant which means that their chips contain boundary cells and TAP controllers
and that their PCBs have the five-pin JTAG interface. The IEEE 1149 standard
specifies that there are two kinds of instruction – public and private – and that there
is a mandatory set of public instructions that must be available on all JTAG-
compliant systems. The public instructions are all documented by the chip manufac-
turers, whereas the private ones are not.

Given that information could be obtained about some of the private instructions,
it is possible that security features could be disarmed or defeated using the JTAG
interface.For an excellent paper on this subject see Breeuwsma (2006).This is an area
for much further work.

A Few Final Words about Electronic Organizers

The electronic organizer can hold very large amounts of information which may
have considerable significance from an evidential point of view. To maintain the
integrity of this potential evidence, it is essential that the organizer is only accessed
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by a competent person as explained in Principle 2 of the ACPO Guidelines. The
recommendation, following seizure of an electronic organizer, is therefore not to
tamper with it in any way but to place it immediately into a sealed envelope and then
into a sealed evidence bag (keeping in mind the needs of rechargeable batteries), so
that it can be examined by a competent person. However, occasions may arise where
the demands of the case require immediate access to the information that may be
held in a seized electronic organizer. This has to be an operational decision, where
the risk of possible contamination of the evidence is weighed against the importance
of immediate intelligence. In order to preserve the evidence, as far as possible, a
formal approach should be adopted. All actions taken and the reasons for them
should be logged, together with all the keystrokes that were made and all the displays
that were obtained. A competent officer might subsequently be able to affirm that no,
or limited, contamination had taken place.
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9. Looking Ahead (Just a Little
Bit More)

Introduction

In the first edition of this book, we opened this chapter with these words:

We have attempted, in this book, to offer a basic foundation for the professional practice
of forensic computing. Our aim has been to put in place sufficient theory and good
practice as to enable professionals to continue their development from a sound and
confident starting point.

None of this has changed for our second edition. Once again, we have had to limit
the scope of what we have talked about and there is therefore much that we have not
been able to cover in the time and space available. We would like to have included,
for example, comprehensive details of CDs and DVDs, their various formats and
how to extract forensic information from them. Rather than just an additional
chapter, however, we think that this could well be a book in itself. We would like to
have included a comprehensive analysis of OLE 2 containers and of Microsoft
Office documents, for which we have carried out much research. We have been
running courses on these topics, for the past three years, but again we felt that the
material would be just too much for a foundation book such as this. Other areas of
great interest to us include, for example, details of the various Windows registries
and how to deal with fragmented and deleted portions of them; analysis of the
recently introduced AOL Topspeed cache; and, the evidence that can be deduced
from USB artefacts. However, we had to know where to stop, and we think we have
now fitted as much as we safely can into this foundation book, particularly when
the radically revised disk chapter and the new work on NTFS are taken into
account.

We have started the book with the concepts of information and information
storage and we have continued with the fundamental principles that underlie all
digital computers. From here on, as in our previous edition, we have tended to
concentrate on the personal computer (PC) and, in particular, on the PC running
either MS-DOS or one of the Microsoft Windows operating systems. That is not to
say that there are no other architectures or operating systems that need to be
considered; just that the PC with Microsoft Windows software is still the configu-
ration that the practising forensic computing analyst is most likely to come across
today. Cases involving the Apple Macintosh are sometimes met with, as are cases
involving PCs which use other operating systems, such as Linux. However, we have to
note that the major high street retailers of personal computers are still selling, to an
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apparently insatiable domestic computer market, large numbers of ever higher and
higher performance PCs which are invariably bundled with Microsoft Windows
software. It may reasonably be foreseen that most forensic computing analysts will,at
some time or another, be coming across some of these PCs in a professional capacity.
Although sales of PCs are said to be cooling, the world market for 2007 is predicted1

to be 254 million units and this represents a 10.5% growth over 2006. It is this
continuing trend, we would claim, that justifies the approach we have taken in the
book to concentrate upon the PC as the example system.

However, other systems, although possibly different in detail, do not in any way
detract from the principles that we have established for the PC and so the theoretical
and procedural groundings of the early chapters are all still applicable.

What this chapter is about, however, are issues that may change the ways in which
we currently deal with PCs (and other electronic devices) because of overriding
technical or legal issues. The “looking ahead” is very deliberately “just a little bit
more” because the status and application of this technology beyond a few months or
so is notoriously difficult to predict. Well-known authoritative statements from the
past, explaining, for example, that computers may weigh no more than 1.5 tons2, that
there is a world market for maybe five computers3,and that there is no reason anyone
would want a computer in their home4, only serve to illustrate this point. We have
tried here to be fair and make comment, in passing, on some of our own earlier views
from the first edition version of this chapter.

Bigger and Bigger Disks

In this very spirit of fairness, we felt that we had to repeat the original opening
sentence of this section from the first edition and follow that up with a compa-
rable statement from the marketplace of today. Our statement back in January
2000 was:

At the time of writing [January 2000], an advertisement5 in a national newspaper
offers a 600 MHz PC with 128 Mbyte of RAM and a 27 Gbyte hard disk for just over
£1500.

328 Forensic Computing

1 See http://www.channelregister.co.uk/2006/03/28/idc_pc_shipments/.

2 “Computers in the future may weigh no more than 1.5 tons” Popular Mechanics,
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3 “I think there is a world market for maybe five computers”; Thomas Watson, chairman
of IBM, 1943.

4 “There is no reason anyone would want a computer in their home”; Ken Olson,
president, chairman and founder of Digital Equipment Corp., 1977.

5 Time Computers Ltd, The Express, Tuesday 4 January 2000, p. 49.



We should compare this with an advertisement6 noted, in April 2006, for a 3.20
GHz Pentium 4 system with 1024 Mbyte of RAM and a 250 Gbyte serial ATA hard
disk for under £1000. This is over 5 times the speed, 8 times the RAM size and nearly
10 times the hard disk capacity for two thirds of the price.Clearly the trend of putting
high-performance PCs within the financial reach of most ordinary people is not just
continuing, but accelerating. However, it is still the size of the hard disk that poses
one of the greatest potential problems for the forensic computing analyst.

Although we were aware of many apocryphal stories about the quantity of paper
such disk sizes can represent, we felt, for the first edition of the book, that we should
provide an authenticated version. We started with a 500 sheet pack of 80 g A4 paper
and found this to be 2.25 inches thick. A typical page, with 1 inch margins all round,
was filled with 12 point characters and this was found to contain 3,600 of them. We
were thus able to determine that 2.25 inches of paper, or 500 sheets, assuming that we
print on one side only,represents 500 × 3,600 = 1,800,000 characters,or, in computing
terms, 1,800,000 bytes. From this, we could establish that 1,000,000 bytes represents
2.25/1.8 = 1.25 inches.

We can therefore state that 250 Gbyte, which is 250 × 1024 × 1024 × 1024 and is
equal to 268,435,456,000 bytes, represents 268,435.456 × 1.25 inches of paper. This is
335,544.32 inches or 33,5544.32/12 = 27,962 feet of paper. In other words, 250 Gbyte
of information represents a column of A4 paper nearly 28,000 feet high.

To put this height into context, Nelson’s Column, in Trafalgar Square, London is a
mere 170 feet high and equates to only 1.5 Gbyte; Big Ben at 320 feet equates to about
2.8 Gbyte and the Eiffel Tower at 1050 feet equates to about 9.4 Gbyte (see Fig. 9.1).
There are no buildings or monuments that are anything like as high as 250 Gbyte, the
nearest object of comparable height being Mount Everest at 29,028 feet, which is
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6 See http://www1.euro.dell.com/content/products/features.aspx/dimen_xps600



equivalent to about 260 Gbyte. A useful rule of thumb to remember for this height
analogy is that “1 Gbyte represents a column of A4 paper about 110 feet high”.

Although this rule of thumb is helpful in giving us some meaningful capacity
metric for disks of a few Gbyte in size,once we exceed about a thousand feet in height
the analogy tends to lose its significance. We felt that another analogy might be more
appropriate for the much larger disks of today.Here we conceive of laying the column
of A4 paper down along a road and converting distances from feet to miles.The value
250 Gbyte then equates to 27,962 feet = 27,962/5,280 = 5.3 miles, and the associated
rule of thumb can be simply expressed as “approximately 50 Gbyte to the mile”. The
1.6 TByte hard disk that is now available off the shelf can therefore be equated with a
horizontal column of paper approximately 32 miles long.

Another useful metric is related to the time needed to read what is contained in
such enormous repositories. If we consider the 250 Gbyte hard disk again we note
from above that it is 268,435,456,000 bytes in size, and, since there are 3,600
characters to a page (also from above) this represents 74,565,404 pages of A4 text
(from 268,435,456,000/3,600). Given that we can possibly read a page of A4 text in a
minute and that we are prepared to work 8 hours a day, 300 days a year doing nothing
but this, then it would take us 74,565,404/(60 × 8 × 300) = over 517 years to read it all.

The days when the investigating officer could say “...just print out all that’s on the
disk and I will decide what is relevant”have long gone. It is today quite impractical to
consider printing out anything but a very tiny fraction of the information that might
be held on the hard disk.Quite apart from the impossible problems of producing and
handling columns of paper that may be several miles in length, investigating officers
would be faced with the prospect of possibly hundreds of person-years of effort in
just trying to read it all! Indulging further in this fantasy world, it is not difficult to
imagine a Computer Crime Unit conversation along the following lines: “George, go
and fetch me the top sheet of the printout, will you?”; “OK Guv, but you do realize
that’s a round trip of twenty miles – do I get expenses?”.

We suggested in the first edition that this unprecedented and seemingly endless
increase in the size of hard disks would cause us problems, and this has proved to be
the case. Unfortunately, seven years on we still have no easy answers. The role of the
forensic computing analyst has had to change quite radically, largely because of the
disk size problem. In the very beginning, the role was simply that of a technician who
arranged for all of the data to be produced to the investigating officer in an accessible
form.Now the role has had to become that of an experienced examiner who must assist
the investigating officer in finding, identifying and extracting from the disk (or,
preferably, an image of the disk – but see later) all the evidence that is pertinent to the
investigation. The ability to search acres of haystacks and chance upon, in a sensible
time frame, the few needles that are present would appear to be a major asset. Often,
also,the analyst of today will be required to try to establish the provenance of a piece of
evidence that is to be relied upon, and this will entail attempting to determine all the
different processes that may have taken place to cause that piece of evidence to arise.

These examination processes require specialist tools as well as a clear under-
standing of the fundamentals in order to use them effectively. Some tools and
techniques are available that can help to reduce the search space that has to be
examined. For example, databases containing hash signatures of all known standard
software files can be run against the disk image and all successful hits can be ruled
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out of any further searches.Similarly,databases containing hash signatures of known
unlawful files can be run against the disk image and successful hits ruled in for
further examination. This is common practice and can be made part of standard
operating procedures. Much more difficult is looking for something on a very large
disk for which you have no clear search clue; a passphrase perhaps, or a incrimi-
nating shortcut that has been deleted from the desktop. There is no point in carrying
out generic, broad-based searches across 250 Gbyte of hard disk if all you have is the
vain hope that you might find something amongst all those useless hits that it is
going to take you several hours to acquire. What has happened in practice is that
many of the most effective analysts seem to have acquired a “nose” from their
experience of working on many cases, and this gives them an edge in knowing what
to look for and where to look for it. Perhaps this is the only practical solution to the
big disk problem.

Many analysts write their own tools to solve specific problems, and these are
increasingly being shared around the community.However, this too poses a problem,
which is only just beginning to be addressed. Should not all such tools, including
mainstream commercial products, be accredited, by some recognized body, so that
the integrity of evidence obtained using them can be demonstrated in Court? Much
good work along these lines is taking place in the USA with the Computer Forensics
Tool Testing (CFTT) Project7 of the National Institute of Standards and Technology
but we are not aware of any similar work in the UK.

To Image or not to Image?

There are other legal traps here for the unwary. Simply looking on the hard disk for
information that could support a prosecution by the investigating officer is seen by
some as unacceptable. There may reside on the hard disk evidence that could equally
well demonstrate the innocence of the accused,and the view is that this too should be
looked for and retrieved. Where the size of the hard disk is small enough, or the
quantity of information held is very limited, printouts of all the evidence can be
produced, with copies going to both the prosecution and the defence. Here the
problem does not arise as both parties have access to everything. Some now argue
that, in the case of much larger disks, containing much greater quantities of infor-
mation, it is sufficient for both parties to receive a certified image8 of the disk and for
each then to access from their image whatever they require. However, this too may
not be possible or practical in the future. The standard CD-ROM, which has been the
most frequently used medium for certified images in the past, can only store some
700 Mbyte, so, for a 27 Gbyte hard disk,we require some 40 CD-ROMs for each image.
DVDs are now cheap enough to provide a more practical alternative, though, even at
4.7 Gbyte each, we might require 40 or more9 for our 250 Gbyte hard disk. More
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significant, however, is the view held by some authorities that imaging is no longer
the appropriate approach.

This view is held not just because of the practical problems of imaging very large
disks,but also because of the legal and ethical issues of seizing such vast quantities of
information, much of which is unlikely to be relevant to the case. This issue is partic-
ularly pertinent where legal privilege is involved and where it is essential that only
relevant evidence is accessed.

What might replace imaging is difficult to see. Imaging has a number of very real
advantages. By taking identical and unmodifiable certified images of the disk at the
time of seizure and passing a copy to prosecution and a copy to defence we can be
certain of the integrity of the evidence, given that the imaging tool is accredited.
Analysts can examine the image without fear of corrupting the evidence and can
also, if required, generate additional hard disk “clone” versions from their image for
examining files and executing software packages on a test machine. Perhaps equally
important, where a business is involved, the PC with its hard disk can be returned to
the user so that work may continue as soon as the imaging is complete. If a non-
imaging approach were to be adopted, the PC could not be returned to the user until
analysis was complete, which for a large hard disk might take many weeks.

Perhaps the most effective solution, particularly where legal privilege is involved,
is for a Court to authorize and oversee the imaging of the hard disks, so that the
evidence is captured and retained with a high degree of integrity, and then for the
Court to decide what parts of the image are to be made available to the various
parties.

Live System Analysis

In addition to this imaging issue, many now believe that some form of “live analysis”
may be appropriate on some systems at the time of seizure. Previous thinking had
invariably recommended an immediate shutdown or a “pulling of the plug” on
systems that were found to be active at the time of seizure. Whilst many accepted that
it was appropriate to “move the mouse” or “touch the keyboard” to test whether a
blank screen was a result of a screen saver before shutting down, having recorded or
photographed the screen details that resulted, the next action would normally be to
switch the system off. This was done in order to change the evidence as little as
possible before imaging took place.

That thinking has now changed,particularly in respect of secure containers.These
are files that appear as virtual disks on the system. They are often very large in size,
and they use strong encryption to secure all the data in the file. Without access to the
passphrase or key, the likelihood of being able to access the plaintext data is
vanishingly small, so if it can be established that a container such as this is currently
open on the live system, an opportunity to access the data is afforded that is unlikely
ever again to be repeated.The advent of “hot swap”USB external hard disk drives has
meant that an examiner can connect one of these to a live system and copy out signif-
icant amounts of data from the live system without having to reboot. It is important
to log all the actions taken because this will cause changes to many of the system files,
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but it may be argued that the value of the data accessed could well offset the loss of
integrity.

Others believe that this process could be taken further. The entire RAM could be
examined or copied out, and this might contain evidential artefacts that would be
lost on switch-off. Network connectivity, including mounted network file systems,
could also be examined on a live system. This is an area of current research, and we
may expect to see much more on live analysis in the future.

Networked Systems Add to the Problems

A 250 Gbyte hard disk on a standalone computer may seem problematic enough, but
this can be magnified many times over where a network of computers is involved.
Here we may have very many hard disk servers, each of which has far more capacity
than the standalone disk, and each of which is accessible from any point in the
network. To confound the problem, some or all of these servers may be in the juris-
dictions of other nations, geographically separate from the systems that are being
seized and subject to quite different legal systems.

In such cases, imaging of anything other than the local disks is unlikely to be
feasible, and making accesses beyond the local system may not even be legal.Current
thinking tends to favour the seeking of guidance from the local systems adminis-
tration staff, where they are not involved in the case, and selectively accessing only
material which is relevant to the case, thereby occasioning minimum disruption to
the network and the business. Live access of relevant data can often be carried out
with such assistance, obtaining across the network partial file backup sets from the
appropriate servers. An explanation of a such method is given in Birch (2006).
Backup tapes made by the organization are another important potential source of
evidence.

Where this cannot be done, perhaps because the local systems administration
staff are themselves involved, then disconnecting the external network, closing the
local systems down and imaging the hard disks that are accessible seems to be the
only fallback position.

Encryption

The final issue we consider in this brief look ahead is the problem of encryption.
Although the capability has been around for a long time,we are now beginning to see
more and more cases where strong encryption has been used. There is now a wide
variety of user-friendly programs available that enable strong encryption to be
applied securely to files, to email messages,and to entire virtual disks with little or no
knowledge or effort required by the user.

We will mention first weak encryption. For some time, several word processor,
spreadsheet and other similar office application programs incorporated a form of
built-in encryption which was activated by means of a password. As we described in
Chapter 8, when a file is password-protected it is saved in an encrypted form and a
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secure hash of the password is saved with it. Subsequent decryption occurs only
when the correct password is presented and this condition is met when the hash
generated using the presented password matches the hash held within the file. The
decryption key that is also generated from the presented password is then applied to
decrypt the file. Two possible weaknesses are present in these early systems. Firstly,
the application programs tended to use encryption algorithms that are often unpub-
lished and cryptographically weak; that is, they contain flaws that permit
cryptanalysts to perform decryption without a knowledge of the password. The
limited protection offered by such algorithms often relies upon the fact that the
algorithm is unknown, even though this can always be established by reverse
engineering the code. Secondly, it is possible to generate a table10 of all possible
passwords and their hashes (so-called Rainbow Tables) and use these to look up the
particular password from its hash. A number of companies still sell software
products which can be used to break these weak algorithms quite quickly or, alterna-
tively, retrieve the original password from its hash in the file.

In the case of strong encryption, the algorithm is published and is well known and
does not rely upon any obfuscation for protection. Indeed, the view of the crypto-
graphic community is that publication of the algorithm permits peer review to take
place and allows any possible weaknesses to be thoroughly explored.Algorithms that
have continued to remain unbroken in such a spotlight can therefore justifiably
claim the title “strong”. In addition, the Rainbow Tables approach can be defeated
quite easily by adding a salt to the password, which then makes the generation of the
tables impractical since a separate set of tables would be required for each salt value.

Despite concerns by some nations about the misuse of cryptography, software
products incorporating strong encryption are now widely available throughout the
world. Indeed, almost all the encryption algorithms are available as source code
computer programs on the Internet. Forensic computing analysts are particularly
likely to encounter the effects of these algorithms in three main areas: email
messages, encrypted files on a hard disk and encrypted volumes on a hard disk. In
what follows we mention a variety of specific software products. In doing so, we are
not in any way endorsing a particular product, rather simply using it as an exemplar
with which we are familiar for the particular kind of functionality that it exhibits.

Encryption of Email

Perhaps the best known of the email encryption systems is Pretty Good Privacy or
PGP (Garfinkel,1995).At Fig.9.2 we have shown a block diagram view of a PGP email
message being passed from Ted (on the left-hand side of the figure) to Alice (on the
right-hand side of the figure). PGP is not a cryptographic algorithm; rather, it is a
system for managing cryptographic keys and messages.
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PGP uses two forms of encryption: private key (also known as symmetric)
encryption and public key (also known as asymmetric) encryption.With private key
encryption, the same secret key is used both to encrypt the plain text message to
ciphertext and to decrypt the ciphertext back to the original plain text. The problem
with this, however, is how do you securely distribute your secret key to your distant
correspondent so that they can decrypt your messages? With public key encryption,
a pair of different (but mathematically related) keys are generated. One (the public
key) is used to encrypt the plain text message to ciphertext and the other (the secret
key) is used to decrypt the ciphertext back to the original plain text. Key distribution
is solved here by a user, having generated a key pair, quite openly distributing the
public key of the pair to all potential correspondents, whilst retaining the secret key
safely locked away. Only this secret key will decrypt messages that have been
encrypted with the public key and so only the user, with access to the secret key, will
be able to decrypt them. The problem here, however, is that the mathematical
computations that are involved in public key encryption and decryption are several
thousand times slower than the equivalent computations for private key encryption.
Even relatively short messages therefore take an unacceptably long period of time to
encrypt and decrypt using public key cryptography.

PGP overcomes both the problems of key distribution and performance by using
the two methods together.At Fig.9.2 we note,on the left-hand side, that Ted wishes to
send the message “MEET YOU TOMORROW”to Alice.We first assume that Alice has
used her PGP system to generate a public key encryption key pair, and has
distributed her public key to,among others,Ted.She will,of course,have retained her
secret key safely locked away where only she can access it. In order to send the
message from Ted, his PGP system will automatically generate a random “session
key” of, say, 128 bits and then use (for example) the Twofish11 private key encryption
algorithm with this session key to encrypt the message “MEET YOU TOMORROW”
to ciphertext. In parallel, PGP also takes the random session key and encrypts that
using (for example) the RSA12 public key encryption system and Alice’s public key to
produce a ciphertext version of the session key. If Bob wishes to sign his message, the
PGP system will also form an MD5 signature of the original plain text message and
then encrypt the resulting 128 bit MD5 value using RSA public key encryption and
his own secret key, which he must specifically authorise.

The three pieces of ciphertext, one being the private key encryption of the
message “MEET YOU TOMORROW”, one being the public key encryption, using
Alice’s public key, of the random session key, and one being the public key
encryption, using Bob’s secret key, of the MD5 signature are now merged and trans-
mitted as one out onto the open network.

On receipt by Alice, her PGP system demerges the three parts and uses her secret
key, which she must specifically authorize, together with the RSA public key
decryption algorithm to convert the enciphered session key back to its original
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value. The PGP system then uses this decrypted session key together with the
Twofish private key decryption algorithm to convert the ciphertext of the message
back to the original plain text as shown. An MD5 signature is then generated from
this resulting plain text. Finally, the PGP system uses Bob’s public key and the RSA
public key decryption algorithm to decrypt the enciphered MD5 signature and the
system compares the two MD5 signatures for compliance. If they are identical, Alice
knows (with one proviso) that the message could only have come from Bob. That is
because only Bob holds the secret key which matches his public key and so only he
could have encrypted the MD5 signature. The proviso, of course, is that Alice can
trust that the public key she has really did come from Bob. If she received it from him
personally then that is probably the most effective basis for trust.

From the viewpoint of the practical forensic computing analyst, there is very little
that can be done about breaking the encryption of either of these algorithms.
However, given access to Alice’s computer, the most profitable approach would be to
try to establish the passphrase that protects Alice’s secret key ring: that is, the place
where PGP keeps her secret keys. This is normally in a .skr file, which itself is
encrypted using a strong encryption algorithm. Given successful access to the
keyring, PGP could then be used to decrypt all messages sent to Alice that have been
encrypted using her public key.

It used to be the case that Windows “front ends”, produced by third parties, would
be used with the then somewhat complex DOS-based version of PGP. Often such
front ends had poor security features and passwords and passphrases entered
through them could be found, for example, in the swap file or in unallocated space.
Regrettably for the forensic analyst that has now all changed, and modern Windows-
based versions of PGP do not make these kinds of fundamental security mistakes.
Without knowledge of the passphrase, a well-managed PGP system has become
effectively impossible to access, and the best hope is that the user has done
something foolish that compromises his password or his system.

Hiding Folders and Encrypting Files

There is now a wide variety of user-friendly programs which users might employ to
make access by others to their files more difficult. Some allow individual files or
complete folders of files to be hidden on the hard disk,whilst others encrypt files and
folders. The first of these is exemplified by Magic Folders13, a program which makes
selected folders on the hard disk and all the files within those folders invisible to all
applications. Folders and files cannot be deleted, viewed, modified or executed, and
to all intents and purposes they do not exist.Through the use of a password,however,
normal and complete access can be restored. From a forensic computing viewpoint,
however, there should be no real problem with accessing the hidden files or folders.
The file data remains on the hard disk in its original form; only the operating system
(and thus all applications that use the operating system for file access) are convinced
that the files do not exist. Programs that access the disk directly and, in particular,
disk editing tools will readily find the hidden files.
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Presumably, for this reason, the same company produces an enhanced product
called Encrypted Magic Folders, which, in addition to the hiding of files and folders,
also encrypts and decrypts the files as they are accessed. This means that the files
always remain on the hard disk in an encrypted form. This is quite different from
other systems whereby a file is either all completely in an encrypted form or all
completely in a plain text form. PC-Magic have developed their own encryption
algorithms which operate at the byte level and ensure that only the sequence of bytes
that has currently been requested by the access is decrypted and passed to the file
system. Since these are not published algorithms it is not known how difficult or
otherwise it may be to break this encryption. However, attempting to obtain the
password is still probably the most effective policy.

An alternative approach is exemplified by programs such as Cryptext, which,
although now dated, can still be found for free download14 from the Internet. This
uses a strong cryptographic algorithm, RC415 to encrypt a specified file and
overwrite the plain text version on the hard disk. Again, a password is used to control
access to the process and a hashed version of this password is stored with the file,
using the SHA-116 algorithm. Decryption occurs when the correct password is given
and the encrypted version is then converted to plain text and this plain text is used to
overwrite the encrypted version on the hard disk. These facilities are made readily
accessible to the user by means of a right mouse button click on a file that displays a
menu providing “encrypt” and “decrypt” options. Again, the most effective policy is
probably to attempt to obtain the password. However, where plain text is overwritten
by ciphertext, the work of Peter Gutmann (1996) may be of interest. In his paper he
describes how it may be possible to access information from a hard disk after it has
been overwritten with new information. This would be of particular value where a
plain text version of a file is overwritten by the encrypted version.

Hard Disk Encryption on the Fly

The final technique that we will mention here concerns encrypting a hard disk or a
hard disk partition “on the fly”. This technique works by producing an encrypted
container file which,using special software drivers,can then be mounted to appear to
the operating system as a virtual drive with its own drive letter. The drive is made
accessible by means of a password and then all accesses typically pass through the
driver,which encrypts on writing to the disk and decrypts on reading from it.That is,
plain text is converted to cipher text on being written to the disk and cipher text is
converted to plain text on being read from the disk. This is precisely what PGPdisk
does. In the case of the BestCrypt17 product this driver uses the Rijndael encryption
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16 Secure Hash Algorithm. For details, see Schneier (1996), pp. 442–5.
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algorithm18, which has been selected by NIST as an Advanced Encryption Standard
(AES), and E4M (Encryption for the Masses) is a similar On The Fly Encryption
(OTFE) product, as is Scramdisk, which apparently consumed it19.

Since the first edition this area has become ever more difficult, and our concerns
are that it will get even worse in the future. Windows Vista20, the latest generation of
operating system from Microsoft, just released in January 2007, has built-in OTFE
which could ensure that the entire disk remains encrypted with a strong encryption
algorithm at all times. The word currently about is that this feature will be turned off
by default for non-corporate versions but that it would not be difficult for any user to
turn it on. However, we may hope that some users will perceive the risk to their
valuable data as too great. Forgetting a password, a minor failure of the hard disk, a
sudden power outage; these could all possibly result in users never seeing their data
again. Before OTFE, one could hope for some data recovery from hard disk failures;
with OTFE it would seem to be a near impossible task.

A Final Word

The technology in this field is still advancing at an unprecedented rate and we can
see clearly that the task of the forensic computing analyst is going to become ever
more challenging. We believe that a good grasp of the theoretical and practical
principles along the lines that we have presented in this book is an essential prereq-
uisite for the professional analyst. However, we also believe that what we have talked
about here is only the beginning, and that there is much, much more to do. We hope
that our readers will find, as we most certainly do, that they have entered one of the
most stimulating, exciting and rewarding disciplines that there is today. We look
forward to working with you in tackling some of those very difficult problems that
the discipline is about to face.
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Appendix 1. Common Character
Codes

American Standard Code for Information Interchange (ASCII)

This is by far the most common of the character codes. It was originally defined as a 7
bit code (hexadecimal 00 to 7F) and includes a number of control characters (00h to
1Fh) that were used with teleprinter and communications terminals. It is listed below
in decimal, hexadecimal and octal.
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Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char

0 00 000 NUL 32 20 040 SP 64 40 100 @ 96 60 140 `
1 01 001 SOH 33 21 041 ! 65 41 101 A 97 61 141 a
2 02 002 STX 34 22 042 " 66 42 102 B 98 62 142 b
3 03 003 ETX 35 23 043 # 67 43 103 C 99 63 143 c
4 04 004 EOT 36 24 044 $ 68 44 104 D 100 64 144 d
5 05 005 ENQ 37 25 045 % 69 45 105 E 101 65 145 e
6 06 006 ACK 38 26 046 & 70 46 106 F 102 66 146 f
7 07 007 BEL 39 27 047 ' 71 47 107 G 103 67 147 g
8 08 010 BS 40 28 050 ( 72 48 110 H 104 68 150 h
9 09 011 TAB 41 29 051 ) 73 49 111 I 105 69 151 i
10 0A 012 LF 42 2A 052 * 74 4A 112 J 106 6A 152 j
11 0B 013 VT 43 2B 053 + 75 4B 113 K 107 6B 153 k
12 0C 014 FF 44 2C 054 , 76 4C 114 L 108 6C 154 l
13 0D 015 CR 45 2D 055 - 77 4D 115 M 109 6D 155 m
14 0E 016 SO 46 2E 056 . 78 4E 116 N 110 6E 156 n
15 0F 017 SI 47 2F 057 / 79 4F 117 O 111 6F 157 o
16 10 020 DLE 48 30 060 0 80 50 120 P 112 70 160 p
17 11 021 DC1 49 31 061 1 81 51 121 Q 113 71 161 q
18 12 022 DC2 50 32 062 2 82 52 122 R 114 72 162 r
19 13 023 DC3 51 33 063 3 83 53 123 S 115 73 163 s
20 14 024 DC4 52 34 064 4 84 54 124 T 116 74 164 t
21 15 025 NAK 53 35 065 5 85 55 125 U 117 75 165 u
22 16 026 SYN 54 36 066 6 86 56 126 V 118 76 166 v
23 17 027 ETB 55 37 067 7 87 57 127 W 119 77 167 w
24 18 030 CAN 56 38 070 8 88 58 130 X 120 78 170 x
25 19 031 EM 57 39 071 9 89 59 131 Y 121 79 171 y
26 1A 032 SUB 58 3A 072 : 90 5A 132 Z 122 7A 172 z
27 1B 033 ESC 59 3B 073 ; 91 5B 133 [ 123 7B 173 {
28 1C 034 FS 60 3C 074 < 92 5C 134 \ 124 7C 174 |
29 1D 035 GS 61 3D 075 = 93 5D 135 ] 125 7D 175 }
30 1E 036 RS 62 3E 076 > 94 5E 136 ^ 126 7E 176 ~
31 1F 037 US 63 3F 077 ? 95 5F 137 _ 127 7F 177 DEL



Windows ANSI Character Set

A number of different extensions have been made to the original ASCII character set
to utilize the codes from 80h to FFh. One that is often met with is the Windows ANSI
character set. The range from 00h to 7Fh is as for the ASCII character set. The
extended portion of the set is shown below with blanks for codes that do not display.
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Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char

128 80 200 160 A0 240 192 C0 300 À 224 E0 340 à
129 81 201 161 A1 241 ¡ 193 C1 301 Á 225 E1 341 á
130 82 202 ‚ 162 A2 242 ¢ 194 C2 302 Â 226 E2 342 â
131 83 203 ƒ 163 A3 243 ^ 195 C3 303 Ã 227 E3 343 ã
132 84 204 „ 164 A4 244 ¤ 196 C4 304 Ä 228 E4 344 ä
133 85 205 … 165 A5 245 ¥ 197 C5 305 Å 229 E5 345 å
134 86 206 † 166 A6 246 � 198 C6 306 Æ 230 E6 346 æ
135 87 207 ‡ 167 A7 247 § 199 C7 307 Ç 231 E7 347 ç
136 88 210 �ˆ 168 A8 250 ¨ 200 C8 310 È 232 E8 350 è
137 89 211 ‰ 169 A9 251 © 201 C9 311 É 233 E9 351 é
138 8A 212 Š 170 AA 252 ª 202 CA 312 Ê 234 EA 352 ê
139 8B 213 ‹ 171 AB 253 « 203 CB 313 Ë 235 EB 353 ë
140 8C 214 Œ 172 AC 254 ’ 204 CC 314 Ì 236 EC 354 ì
141 8D 215 173 AD 255 205 CD 315 Í 237 ED 355 í
142 8E 216 174 AE 256 ® 206 CE 316 Î 238 EE 356 î
143 8F 217 175 AF 257 ¯ 207 CF 317 Ï 239 EF 357 ï
144 90 220 176 B0 260 º 208 D0 320 Ð 240 F0 360 ð
145 91 221 ‘ 177 B1 261 ± 209 D1 321 Ñ 241 F1 361 ñ
146 92 222 ’ 178 B2 262 ² 210 D2 322 Ò 242 F2 362 ò
147 93 223 “ 179 B3 263 ³ 211 D3 323 Ó 243 F3 363 ó
148 94 224 ” 180 B4 264 ´ 212 D4 324 Ô 244 F4 364 ô
149 95 225 • 181 B5 265 µ 213 D5 325 Õ 245 F5 365 õ
150 96 226 – 182 B6 266 ¶ 214 D6 326 Ö 246 F6 366 ö
151 97 227 — 183 B7 267 · 215 D7 327 � 247 F7 367 ÷
152 98 230 ˜ 184 B8 270 ¸ 216 D8 330 Ø 248 F8 370 ø
153 99 231 ™ 185 B9 271 ¹ 217 D9 331 Ù 249 F9 371 ù
154 9A 232 š 186 BA 272 º 218 DA 332 Ú 250 FA 372 ú
155 9B 233 › 187 BB 273 » 219 DB 333 Û 251 FB 373 û
156 9C 234 œ 188 BC 274 ¼ 220 DC 334 Ü 252 FC 374 ü
157 9D 235 189 BD 275 ½ 221 DD 335 Ý 253 FD 375 ý
158 9E 236 190 BE 276 ¾ 222 DE 336 Þ 254 FE 376 þ
159 9F 237 Ÿ 191 BF 277 ¿ 223 DF 337 � 255 FF 377 ÿ



IBM Extended ASCII Character Set

Another extension that is often met with is the IBM Extended ASCII Character set.
This extended set includes the familiar line drawing characters and is shown below.

In addition to the codes from 80h to FFh, the IBM Extended Character set, also
defines printable codes for the control characters from 00h to 1Fh. These are shown
in this next table:
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Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char

128 80 200 Ç 160 A0 240 á 192 C0 300 . 224 E0 340 �

129 81 201 ü 161 A1 241 í 193 C1 301 2 225 E1 341 �

130 82 202 é 162 A2 242 ó 194 C2 302 0 226 E2 342 �

131 83 203 â 163 A3 243 ú 195 C3 303 / 227 E3 343 �

132 84 204 ä 164 A4 244 ñ 196 C4 304 ) 228 E4 344 �

133 85 205 à 165 A5 245 Ñ 197 C5 305 3 229 E5 345 �

134 86 206 å 166 A6 246 ª 198 C6 306 G 230 E6 346 µ
135 87 207 ç 167 A7 247 º 199 C7 307 K 231 E7 347 �

136 88 210 ê 168 A8 250 ¿ 200 C8 310 9 232 E8 350 �

137 89 211 ë 169 A9 251 � 201 C9 311 6 233 E9 351 	

138 8A 212 è 170 AA 252 ¬ 202 CA 312 = 234 EA 352 


139 8B 213 ï 171 AB 253 ½ 203 CB 313 ; 235 EB 353 �

140 8C 214 î 172 AC 254 ¼ 204 CC 314 : 236 EC 354 �
141 8D 215 ì 173 AD 255 ¡ 205 CD 315 4 237 ED 355 �

142 8E 216 Ä 174 AE 256 « 206 CE 316 > 238 EE 356 

143 8F 217 Å 175 AF 257 » 207 CF 317 N 239 EF 357 �
144 90 220 É 176 B0 260 ! 208 D0 320 J 240 F0 360 �
145 91 221 æ 177 B1 261 " 209 D1 321 L 241 F1 361 ±
146 92 222 Æ 178 B2 262 # 210 D2 322 H 242 F2 362 �
147 93 223 ô 179 B3 263 * 211 D3 323 F 243 F3 363 �
148 94 224 ö 180 B4 264 1 212 D4 324 B 244 F4 364 �
149 95 225 ò 181 B5 265 I 213 D5 325 ? 245 F5 365 �
150 96 226 û 182 B6 266 M 214 D6 326 C 246 F6 366 ÷
151 97 227 ù 183 B7 267 D 215 D7 327 O 247 F7 367 �
152 98 230 ÿ 184 B8 270 @ 216 D8 330 P 248 F8 370 �
153 99 231 Ö 185 B9 271 < 217 D9 331 - 249 F9 371 	
154 9A 232 Ü 186 BA 272 5 218 DA 332 + 250 FA 372 

155 9B 233 ¢ 187 BB 273 7 219 DB 333 $ 251 FB 373 �
156 9C 234 £ 188 BC 274 8 220 DC 334 ( 252 FC 374 6

157 9D 235 ¥ 189 BD 275 E 221 DD 335 % 253 FD 375 ²
158 9E 236 . 190 BE 276 A 222 DE 336 ' 254 FE 376 O

159 9F 237 ƒ 191 BF 277 , 223 DF 337 & 255 FF 377 G

Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char Dec Hex Oct Char

0 00 000 1 01 001 � 2 02 002 � 3 03 003 �

4 04 004 � 5 05 005 � 6 06 006 � 7 07 007 !

8 08 010 	 9 09 011 " 10 0A 012 
 11 0B 013 �

12 0C 014 � 13 0D 015  14 0E 016 � 15 0F 017 �

16 10 020 � 17 11 021 � 18 12 022  19 13 023 �

20 14 024 ¶ 21 15 025 § 22 16 026 — 23 17 027 �

24 18 030 � 25 19 031 � 26 1A 032 � 27 1B 033 �
28 1C 034 � 29 1D 035 � 30 1E 036 � 31 1F 037 �



Windows Unicode

As the development of the Universal Character Set (UCS) and Unicode progressed,
Microsoft selected UCS-2 to be the Windows version of Unicode. This is essentially a
16 bit, two byte character code, and, for English language use, it is simply the equiv-
alent ASCII code byte with a leading 00H byte. For PC systems, of course, the two
bytes will be held little endian, so the 00H byte will be seen to be stored in the higher
address of the pair.

It should be noted that UCS-2 is not quite the same as UTF-16 (Unicode Transfor-
mation Format – 16 ), though for our practical purposes it would mostly appear to be
so. UTF-16, however, permits what are known as surrogate pairs which are particular
16 bit codes that signal that there are more than two bytes associated with the
character.This produces what is in effect a 21 bit Unicode.Surrogate pairs are specifi-
cally prohibited by UCS-2, which is strictly a 16 bit Unicode.
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Appendix 2. Some Common File
Format Signatures

Hex signature File Type Description

xx1 xx xx xx AF 11 FLI Graphics – Autodesk Animator
xx xx xx xx AF 12 FLC Graphics – Autodesk 3D Studio
xx xx 2D 6C 68 35 2D LZH Archive – LHA archive file

-  l  h  5  -
00 PIF Windows – Program Information

File
00 00 00 02 MAC Graphics – MAC Picture format
00 00 01 00 ICO Graphics – Windows icon format
00 00 01 Bx MPG MPEG Video File
00 00 02 00 CUR Graphics – Windows cursor file
00 00 02 00 04 04 WKS Spreadsheet – Lotus 1-2-3
00 00 02 00 05 04 WRK Spreadsheet – Symphony
00 00 02 00 06 04 WK1 Spreadsheet – Lotus 1-2-3
00 00 02 00 06 04 WR1 Spreadsheet – Symphony
00 00 1A 00 00 10 WK3 Spreadsheet – LOTUS 1-2-3
00 00 1A 00 02 10 WK4 Spreadsheet – LOTUS 1-2-3
00 01 00 00 53 74 61 72 MDB Database – Microsoft Access File

S  t  a  n
64 61 72 64 20 4A 65 74
d  a  r  d     J  e  t
20 44 42

D  B
00 01 00 08 IMG Graphics – GEM Image format
00 06 15 61 00 00 00 02 DB Database – Netscape Navigator

(v4)
00 00 04 D2 00 00 10 00
01 00 00 00 PIC Spreadsheet graph – Lotus 1-2-3
01 00 00 00 EMF Enhanced Windows Meta File

(print spooler)
02 DBF Database – dBASE II
03 DBF Database – dBASE III
03 DBF Database – dBASE IV
03 DBF Database – FoxPro
09 00 04 00 07 00 01 00 Spreadsheet – Excel BIFF22

09 02 06 00 00 00 01 00 Spreadsheet – Excel BIFF3
09 04 06 00 00 04 00 01 XLW Spreadsheet – Excel BIFF4
0A PCX Graphics – ZSOFT Paintbrush
11 00 00 00 53 43 43 41 PF Windows Prefetch File

S  C  C  A
1F 8B 08 GZ Archive – GZIP archive file
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Hex signature File Type Description

1F 9D 90 TAR.Z Archive – Compressed tape
archive file

21 42 44 4E PST Microsoft Outlook file
!  B  D  N
25 50 44 46
%  P  D  F

PDF Adobe Portable Document
Format file

2E 73 6E 64 Sound – NeXt/Sun audio format
.  s  n  d
2E 52 4D 46 RM Real Media file
.  R  M  F
30 00 00 00 4C 66 4C 65 EVT Windows Event Viewer file
0           L  f  L  e
31 BE 00 00 00 AB DOC Word processor – MS Word 4
31 BE 00 00 00 AB WRI Word processor – MS Write
32 BE 00 00 00 AB WRI Word processor – MS Write
34 12 PIC Graphics – PC Paint
38 42 50 53 PSD Graphics – Adobe Photoshop
8  B  P  S
3A DE 68 B1 DCX Graphics – CAS fax format
3F 5F 03 00 HLP Windows Help file
?  _
41 48 PAL, PIC Graphics – Dr Halo format
A  H
42 4D BMP Graphics – Windows bitmap
B  M
43 52 45 47 DAT Windows 9x Registry files
C  R  E  G
43 54 4D 46 CMF Sound – Creative music format
C  T  M  F
43 57 53 SWF Shockwave Flash file
C  W  S
43 72 65 61 74 69 76 65 VOC Sound – Creative voice format
C  r  e  a  t  i  v  e
20 56 6f 69 63 65 20 46

V  o  i  c  e     F
69 6c 65 1A
i  l  e
44 61 6E 4D MSP Graphics – Windows Paint
D  a  n  M
45 59 45 53 CE1, CE2 Graphics – ComputerEyes format
E  Y  E  S
46 4F 52 4D
F  O  R  M

LBM Graphics – Interchange file
format

46 57 53 SWF Shockwave Flash file
F  W  S
47 49 46 38 37 61
G  I  F  8  7  a

GIF Graphics – graphics interchange
format

47 49 46 38 39 61
G  I  F  8  9  a

GIF Graphics – graphics interchange
format

49 42 4B 1A
I  B  K

IBK Sound – Soundblaster
instrument bank

49 49 2A 00 TIF Graphics – tag image file format
I  I Intel (little endian)
49 4d 44 43
I  M  D  C

IC1, IC2, IC3 Graphics – Atari Imagic film
format
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Hex signature File Type Description

4C 00 00 00 LNK Microsoft Windows Shortcut file
L
4C 69 6E 53 MSP Graphics – Windows 3.x Paint
L  i  n  S
4D 47 43 CRD Database – Windows 3.x Cardfile
M  G  C
4D 4D TIF Graphics – tag image file format
M  M Motorola (big endian)
4D 53 43 46 CAB Microsoft Cabinet file
M  S  C  F
4D 53 43 46
M  S  C  F

PPZ Microsoft Powerpoint Packaged
file

4D 54 68 64 MID Sound – standard MIDI format
M  T  h  d
4d 5A
M  Z

EXE, DLL,
DVR, COM,
SYS

Executable files

50 4B ZIP Archive – Pkzip archive file
P  K
50 4D 43 43 GRP General – Windows group file
P  M  C  C
50 C3 CLP Graphics – Windows 3.x

clipboard
52 45 47 45 44 49 64
R  E  G  E  D  I  T

REG Windows Registry Editor files
(text)

52 49 46 46 xx xx xx xx
R  I  F  F

AVI Graphics – Resource interchange
file format (RIFF) wrapping

41 56 49 20 4C 49 53 54 Audio/video interleaved file
A  V  I     L  I  S  T
52 49 46 46 xx xx xx xx
R  I  F  F

RMI Sound – Resource interchange
file

52 4d 49 44 64 61 74 61 Windows MIDI file
R  M  I  D  d  a  t  a
52 49 46 46 xx xx xx xx
R  I  F  F

WAV Sound – Resource interchange
file format (RIFF) wrapping

57 41 56 45 66 6D 74 20 Windows WAVE file
W  A  V  E  f  m  t
53 42 49 1A
S  B  I

SBI Sound – Soundblaster
instrument format

56 44 56 49
V  D  V  I

AVS Graphics – Intel digital video
interface

59 A6 6A 95 RAS Graphics – SUN raster format
5A 4F 4F 20 ZOO Archive – Zoo archive file
Z  O  O
5F 43 41 53 45 5F CAS, CBK EnCase v 3 Case file.
_  C  A  S  E  _ EnCase v 4 and 5 use OLE 2

Container file (see below)
xx xx xx xx 6D 6F 6F 76

m  o  o  v
MOV Graphics – Apple QuickTime

movie file
72 65 67 66 <none> Windows Registry Hive file
r  e  g  f
7B DBF Database – dBASE 1V
7B 5C 72 74 66 31
{  \  r  t  f  1

RTF Word processor – rich text
format

83 DBF Database – dBASE III
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Hex signature File Type Description

83 DBF Database – dBASE IV
83 DBF Database – FoxPro
8B DBF Database – FoxPro
89 50 4E 47 0D 0A

P  N  G
PNG Graphics – Portable Network

Graphics file
95 01 SKR PGP Secret Key Ring
99 00 PKR PGP Public Key Ring
99 01 PKR PGP Public Key Ring
9 B A5 DOC Word processor – Winword 1.0
B5 A2 B0 B3 B3 B0 CAL Calendar – Windows 3.x calendar
A2 B5
BA BE EB EA ANI Graphics – NEOchrome

animation
CF AD 12 FE DBX Microsoft Outlook Express
D0 CF 11 E0 A1 B1 1A E1 OLE 2 Container file (structured

storage) used by a variety of
applications – in particular most
Microsoft Office documents

D7 CD C6 9A WMF Graphics – Windows metafile
format

DB A5 DOC Word processor – Winword 2.0
E3 82 85 96 PWL Windows Password file
F5 DBF Database – FoxPro
FE DB SEQ Graphics – Cyber paint
FE DC SEQ Graphics – Cyber paint
FF 57 50 43 WPD Word processor – WordPerfect
-1  W  P  C
FF 57 50 43 WPG Graphics – WordPerfect Graphic
-1  W  P  C
FF D8 FF E0 xx xx JPG Graphics – JPEG/JFIF format
4A 46 49 46
J  F  I  F
FF D8 FF E1 xx xx JPG Graphics – JPEG/Exif format –

digital camera
45 78 69 66
E  x  i  f
FF FF GEM Graphics – GEM Metafile format
FF FF FF FF SYS Executable system file

1 “xx” is used to indicate “don't care”. In other words, we have for this case four leading
bytes whose values can be anything (don’t care) followed by af 11.

2 Excel binary interchange format

Note: Some of the updates to this Appendix have been obtained, with thanks, from the
web page of Gary C. Kessler at http://www.garykessler.net/library/
file_sigs.html dated 25 January 2007.
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Appendix 3. A Typical1 Set of
POST Codes
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Hex code Description of POST operation

02h Verify real mode
03h Disable non-maskable interrupt (NMI)
04h Get processor type
06h Initialize system hardware
08h Initialize chipset with initial POST values
09h Set IN POST flag
0Ah Initialize CPU registers
0Bh Enable CPU cache
0Ch Initialize caches to initial POST values
0Eh Initialize I/O component
0Fh Initialize the local bus IDE
10h Initialize power management
1lh Load alternate registers with initial POST values
12h Restore CPU control word during warm boot
13h Initialize PCI bus mastering devices
14h Initialize keyboard controller
16h BIOS ROM checksum
17h Initialize cache betore memory autosize
18h 8254 timer initialization
1Ah 8237 DMA controller initialization
lCh Reset programmable interrupt controller
20h Test DRAM refresh
22h Test keyboard controller
24h Set ES segment register to 4 GB
26h Enable A20 line
28h Autosize DRAM
29h Initialize POST memory manager
2Ah Clear 512 KB base RAM
2Ch RAM failure on address line xxxx
2Eh RAM failure on data bits xxxx of low byte of memory bus
2Fh Enable cache before system BIOS shadow
30h RAM failure on data bits xxxx of high byte of memory bus
32h Test CPU bus-clock frequency
33h Initialize POST dispatch manager
34h Test CMOS RAM
35h Initialize alternate chipset registers
36h Warm start shut down
37h Reinitialize the chipset (motherboard only)
38h Shadow system BIOS ROM
39h Reinitialize the cache (motherboard only)
3Ah Autosize cache
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Hex code Description of POST operation

3Ch Configure advanced chipset registers
3Dh Load alternate registers with CMOS values
40h Set Initial CPU speed
42h Initialize interrupt vectors
44h Initialize BIOS interrupts
45h POST device initialization
46h Check ROM copyright notice
47h Initialize manager for PCI option ROMs
48h Check video configuration against CMOS RAM data
49h Initialize PCI bus and devices
4Ah Initialize all video adapters in system
4Bh Display QuietBoot screen
4Ch Shadow video BIOS ROM
4Eh Display BIOS copyright notice
50h Display CPU type and speed
51h Initialize EISA motherboard
52h Test keyboard
54h Set key click if enabled
56h Enable keyboard
58h Test for unexpected interrupts
59h Initialize POST display service
5Ah Display prompt “Press F2 to enter SETUP”
5Bh Disable CPU cache
5Ch Test RAM between 512 and 640 KB
60h Test extended memory
62h Test extended memory address lines
64h Jump to UserPatchl
66h Configure advanced cache registers
67h Initialize multiprocessor APIC
68h Enable external and processor caches
69h Setup System Management Mode (SMM) area
6Ah Display external L2 cache size
6Ch Display shadow-area message
6Eh Display possible high address for UMB recovery
70h Display error messages
72h Check for configuration errors
74h Test real-time clock
76h Check for keyboard errors
7Ah Test for key lock on
7Ch Set up hardware interrupt vectors
7Eh Initialize coprocessor if present
80h Disable onboard Super I/O ports and IRQs
8lh Late POST device initialization
82h Detect and install external RS232 ports
83h Configure non-MCD IDE controllers
84h Detect and install external parallel ports
85h initialize PC-compatibie PnP ISA devices
86h Re-initialize onboard I/O ports
87h Configure motherboard configurable devices
88h Initialize BIOS Data Area
89h Enable Non-Maskable Interrupts (NMls)
8Ah Initialize extended BIOS data area
8Bh Test and initialize PS/2 mouse
8Ch Initialize diskette controller
8Fh Determine number of ATA drives



1. These codes are taken from the SE440BX Motherboard Technical Product Specification, by
permission of Intel Corporation.
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Hex code Description of POST operation

90h Initialize hard-disk controllers
9lh Initialize local-bus hard-disk controllers
92h Jump to UserPatch2
93h Build MPTABLE for multiprocessor boards
94h Disable A20 address line (ReI. 5.1 and earlier)
95h install CD-ROM for boot
96h Clear huge ES segment register
97h Fix up multiprocessor table
98h Search for option ROMs
99h Check for SMART Drive
9Ah Shadow option ROMs
9Ch Set up power management
9Eh Enable hardware interrupts
9Fh Determine number of ATA and SCSI drives
A0h Set time of day
A2h Check key lock
A4h Initialize typematic rate
A8h Erase F2 prompt
AAh Scan for F2 key stroke
ACh Enter SETUP
AEh Clear IN POST flag
B0h Check for errors
B2h POST done - prepare to boot operating system
B4h One short beep before boot
B5h Terminate QuietBoot
B6h Check password (optional)
B8h Clear global descriptor table
B9h Clean up all graphics
BAh Initialize DMI parameters
BBh Initialize PnP Option ROMs
BCh Clear parity checkers
BDh Display MultiBoot menu
BEh Clear screen (optional)
BFh Check virus and backup reminders
C0h Try to boot with INT 19h
Clh Initialize POST Error Manager (PEM)
C2h Initialize error logging
C3h Initialize error display function
C4h Initialize system error handler



Appendix 4. Typical BIOS Beep
Codes and Error
Messages

Intel1 SE440BX Motherboard

One long beep followed by several short beeps indicates a video problem.
One short beep indicates that POST completed normally.
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Beep code POST code Explanation

1-2-2-3 16h BIOS ROM checksum
1-3-1-1 20h Test DRAM refresh
1-3-1-3 22h Test Keyboard Controller
1-3-3-1 28h Autosize DRAM
1-3-3-2 29h Initialize POST Memory Manager
1-3-3-3 2Ah Clear 512 KB base RAM
1-3-4-1 2Ch RAM failure on address line xxxx
1-3-4-3 2Eh RAM failure on data bits xxxx of low byte of memory bus
1-4-1-1 30h RAM failure on data bits xxxx of high byte of memory bus
2-1-2-2 45h POST device initialization
2-1-2-3 46h Check ROM copyright notice
2-2-3-1 58h Test for unexpected interrupts
2-2-4-1 5Ch Test RAM between 512 and 640 KB
1-2 98h Search for option ROMs. One long, two short beeps on

checksum failure

Error message Explanation

Diskette drive A error Drive A is present but fails the POST diskette tests. Check that
the drive is defined with the proper diskette type in Setup and
that the diskette drive is installed correctly.

Extended RAM Failed
at offset :nnnn

Extended memory not working or not configured properly at
offset nnnn.

Failing Bits: nnnn The hexadecimal number nnnn is a map of the bits at the RAM
address (System, Extended, or Shadow memory) that failed the
memory test. Each 1 in the map indicates a failed bit.

Fixed Disk 0 Failure or
Fixed Disk 1 Failure or
Fixed Disk Controller
Failure

Fixed disk is not working or not configured properly. Check to
see if fixed disk installed properly. Run Setup to be sure the
fixed-disk type is correctly identified.
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Error message Explanation

Incorrect Drive A type
– run SETUP

Type of diskette drive for drive A not correctly identified in
Setup.

Invalid NVRAM
media type

Problem with NVRAM (CMOS) access.

Keyboard controller
error

The keyboard controller failed test. Try replacing the keyboard.

Keyboard error Keyboard not working.
Keyboard error nn BIOS discovered a stuck key and displayed the scan code nn for

the stuck key.
Keyboard locked –
Unlock key switch

Unlock the system to proceed.

Monitor type does not
match CMOS – Run
SETUP

Monitor type not correctly identified in Setup.

Operating system not
found

Operating system cannot be located on either drive A or drive
C. Enter Setup and see if fixed disk and drive A are properly
identified.

Parity Check 1 Parity error found in the system bus. BIOS attempts to locate
the address and display it on the screen. If it cannot locate the
address, it displays ????.

Parity Check 2 Parity error found in the I/O bus. BIOS attempts to locate the
address and display it on the screen. If it cannot locate the
address, it displays ????.

Press <F1> to resume,
<F2> to Setup

Displayed after any recoverable error message. Press <F1> to
start the boot process or <F2> to enter Setup and change any
settings.

Real-time clock error Real-time clock fails BIOS test. May require motherboard
repair.

Shadow RAM Failed at
offset: nnnn

Shadow RAM failed at offset nnnn of the 64 KB block at which
the error was detected.

System battery is dead
– Replace and run
SETUP

The CMOS clock battery indicator shows the battery is dead.
Replace the battery and run Setup to reconfigure the system.

System cache error –
Cache disabled

RAM cache failed the BIOS test. BIOS disabled the cache.

System CMOS
checksum bad – run
SETUP

System CMOS RAM has been corrupted or modified incorrectly,
perhaps by an application program that changes data stored in
CMOS. Run Setup and reconfigure the system either by getting
the default values and/or making your own selections.

System RAM Failed at
offset: nnnn

System RAM failed at offset nnnn of the 64 KB block at which
the error was detected.

System timer error The timer test failed. Requires repair of system motherboard.
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Beeps Error message Description

1 beep Refresh Failure. The memory refresh circuitry on the
motherboard is faulty.

2 beeps Parity Error. Parity error in the first 64KB of memory.
3 beeps Base 64KB Memory Failure. Memory failure in the first 64KB of memory.
4 beeps Timer Not operational. Memory failure in the first 64KB of memory,

or Timer 1 on the motherboard is not
functioning.

5 beeps Processor Error. The CPU on the board generated an error.
6 beeps 8042 Gate A20 Failure. The keyboard controller may be bad. The

BIOS cannot switch to protected mode.
7 beeps Processor Exception

Interrupt Error.
The CPU generated an exception interrupt

8 beeps Display Memory Read/Write
Error.

The system video adapter is either missing or
its memory is faulty. This is not a fatal error.

9 beeps ROM Checksum Error. The ROM checksum value does not match
the value encoded in the BIOS.

10 beeps CMOS Shutdown Register
Read/Write Error.

The shutdown register for CMOS RAM failed.

11 beeps Cache Error/External Cache
Bad.

The external cache is faulty.

Error message Explanation

8042 Gate – A20 Error Gate A20 on the keyboard controller (8042) is not working.
Address Line Short! Error in the address decoding circuitry on the motherboard.
Cache Memory Bad,
Do Not Enable Cache!

Cache memory is defective.

CH-2 Timer Error Most systems include two timers. There is an error in timer 2.
CMOS Battery State
Low

CMOS RAM is powered by a battery. The battery power is low.

CMOS Checksum
Failure

After CMOS RAM values are saved, a checksum value is
generated for error checking. The previous value is different
from the current value. Run Setup.

CMOS System Options
Not Set

The values stored in CMOS RAM are either corrupt or
nonexistent. Run Setup.

CMOS Display Type
Mismatch

The video type in CMOS RAM does not match the one detected
by the BIOS. Run Setup.

CMOS Memory Size
Mismatch

The amount of memory on the motherboard is different than
the amount in CMOS RAM. Run Setup.

CMOS Time and Date
Not Set

Run Setup to set the date and time in CMOS RAM.

Diskette Boot Failure The boot disk in floppy drive A: is corrupt. It cannot be used to
boot the system. Use another boot disk and follow the screen
instructions.



1. These beep codes and error messages are taken from the SE440BX Motherboard Product Guide, by
permission of Intel Corporation.
2. These beep codes and error messages are taken from the MT-500/I Series Configuration Guide, by
kind permission of Elonex plc.
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Error message Explanation

Display Switch Not
Proper

Some systems require that a video switch on the motherboard
be set to either colour or monochrome. Turn the system off, set
the switch, then power on.

DMA Error Error in the DMA (Direct Memory Access) controller.
DMA #1 Error Error in the master DMA channel.
DMA #2 Error Error in the slave DMA channel.
FDD Controller
Failure

The BIOS cannot communicate with the floppy disk drive
controller.

HDD Controller
Failure

The BIOS cannot communicate with the hard disk drive
controller.

INTR #1 Error Interrupt channel 1 failed POST.
INTR #2 Error Interrupt channel 2 failed POST.
Invalid Boot Diskette The BIOS can read in floppy drive A: but cannot boot the

system.
Keyboard is locked...
Unlock It

The keyboard lock on the system is engaged. The system must
be unlocked to continue.

Keyboard Error There is a timing problem with the keyboard.
KB/Interface Error There is an error in the keyboard connector.
Off Board Parity Error Parity error in memory installed in an expansion slot. The

format is: OFF BOARD PARITY ERROR ADDR (HEX) =
(XXXX). XXXX is the hex address where the error occurred.

On Board Parity Error Parity error in motherboard memory. The format is: ON
BOARD PARITY ERROR ADDR (HEX) = (XXXX). XXXX is the
hex address where the error occurred.

Parity Error ???? Parity error in system memory at an unknown address.



Appendix 5. Disk Partition
Table Types

Type Use

00 Unused partition table entry
01 DOS, Primary Partition (FAT12, <16MB)
02 XENIX root file system
03 XENIX /usr file system
04 DOS 3.0+, Primary Partition (FAT16, >=16MB and <32MB)
05 DOS 3.3+, Extended Partition using standard INT 13h
06 DOS 3.31, Primary Partition (FAT16, >32MB) using standard INT 13h
07 OS/2 IFS (HPFS), Windows NT NTFS, QNX.x pre-1988, Advanced UNIX
08 OS/2 (v1.0-1.3 only), AIX boot partition, SplitDrive, Commodore DOS, DELL

partition spanning multiple drives, QNX 1.x and 2.x (“qny”)
09 AIX – data partition, Coherent file system, QNX 1.x and 2.x (“qnz”)
0A OS/2 Boot Manager, OPUS (Open Parallel Unisys Server), Coherent swap

partition
0B Windows 95 OSR2 FAT32 partition
0C Windows 95 OSR2 FAT32 partition LBA-mapped using INT 13h extensions
0D Possibly a type 07 LBA
0E Windows 95 DOS FAT16 partition LBA-mapped using INT 13h extensions – else

same as 06
0F Windows 95 Extended partition LBA-mapped using INT 13h Extensions – else

same as 05
10 OPUS
11 Hidden DOS FAT12, OS/2 Boot Manager: Inactive type 011, Leading Edge DOS

3.x logically sectored FAT2

12 Compaq configuration/diagnostics partition
13 Reliable Systems FTFS
14 Hidden DOS FAT16 < 32MB, OS/2 Boot Manager: Inactive type 04, Novell DOS

7.0 FDISK, AST DOS with logically sectored FAT
15 –
16 Hidden DOS FAT16, partition >= 32 MB, OS/2 Boot Manager: Inactive type 06
17 Hidden Windows NT NTFS, OS/2 Boot Manager: Inactive type 07
18 AST SmartSleep partition or AST Windows swap file, Compaq system

diagnostics
19 Unused – claimed for Willowtech Photon coS (completely optimized system)
1A –
1B Hidden Windows 95 OSR2 FAT32
1C Hidden Windows 95 OSR2 FAT32 LBA-mapped
1E Hidden Windows 95 FAT16 LBA-mapped
1F Hidden LBA DOS Extended partition
20 Unused – claimed for Willowsoft Overture File System (OFS1)
21 Officially listed as reserved (HP Volume Expansion, SpeedStor variant), Claimed

for Oxygen FSo2

367



Type Use

22 Oxygen Extended
23 Reserved
24 NEC DOS 3.x
25 –
26 Reserved
27 –
28 –
29 –
2A AtheOS File System (AFS)
2B SyllableSecure (SylStor)
2C –
to –
30 –
31 Reserved
32 NOS
33 Reserved
34 Reserved
35 JFS on OS/2 or eCS
36 Reserved
37 –
38 THEOS ver 3.2 2GB partition
39 Plan 9 partition, THEOS ver 4 spanned partition
3A THEOS ver 4 4GB partition
3B THEOS ver 4 extended partition
3C PowerQuest PartitionMagic recovery partition
3D Hidden NetWare
3E –
3F –
40 VENIX 80286
41 Personal RISC Boot, PowerPC boot, PTS-DOS 6.70 & BootWizard: Alternative

Linux, Minix, and DR-DOS
42 Secure File System (Peter Gutmann), Windows 2000 (NT 5): Dynamic extended

partition, PTS-DOS 6.70 & BootWizard: Alternative Linux swap and DR-DOS
43 PTS-DOS 6.70 & BootWizard: DR-DOS, Alternative Linux native file system

(EXT2fs)
44 GoBack partition
45 Priam, EUMEL/Elan, Boot-US boot manager
46 EUMEL/Elan
47 EUMEL/Elan
48 EUMEL/Elan
49 –
4A ALFS/THIN lightweight filesystem for DOS, AdaOS Aquila (withdrawn)
4B –
4C Oberon partition
4D QNX 4.x
4E QNX 4.x 2nd part
4F QNX 4.x 3rd part, Oberon partition
50 OnTrack Disk Manager read-only DOS partition, Lynx RTOS, Native Oberon

(alt)
51 OnTrack Disk Manager read/write DOS partition, Novell
52 CP/M, Microport System V/386
53 OnTrack Disk Manager write-only partition
54 OnTrack Disk Manager non-DOS partition (DDO)
55 Micro House EZ-Drive non-DOS partition
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56 Golden Bow VFeature partition, DM converted to EZ-BIOS, AT&T MS-DOS 3.x
logically sectored FAT

57 DrivePro, VNDI partition
58 –
59 –
5A –
5B –
5C Priam EDISK
5D –
5E –
5F –
60 –
61 Storage Dimensions SpeedStor partition
62 –
63 UNIX System V/386, Mach, MtXinu BSD 4.3 on Mach, GNU HURD
64 SpeedStor, Novell Netware 286, 2.xx, PC-ARMOUR protected partition
65 Novell Netware 386, 3.xx or 4.xx
66 Novell Netware SMS partition
67 Novell Netware
68 Novell Netware
69 Novell Netware 5+, Novell Storage Systems (NSS)
6A –
to –
6F –
70 DiskSecure Multi-Boot
71 Reserved
72 –
73 Reserved
74 Reserved, Scramdisk partition
75 PC/IX IBM
76 Reserved
77 M2FS/M2CS partition, VNDI partition
78 XOSL FS
79 –
7A –
7B –
7C –
7D –
7E Unused
7F Unused
80 Minix (ver. 1.4a and earlier)
81 Minix (ver. 1.4b and later), Mitac Advanced Disk Manager, Linux
82 Prime, Linux swap, Solaris UNIX
83 Linux native
84 OS/2 hiding a type 04 partition, APM hibernation, can be used by Win98
85 Linux Extended
86 FAT16 volume/stripe set3, Old Linux RAID partition
87 NTFS volume/stripe set, HPFS FT mirrored partition (see 86)
88 Linux plaintext partition table
89 –
8A Linux kernel partition
8B FAT32 volume/stripe set (see 86)
8C FAT32 volume/stripe set using INT 13h extensions (see 86)
8D Free FDISK hidden primary DOS FAT12 partition4

8E Linux Logical Volume Manager partition
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8F –
90 Free FDISK hidden primary DOS FAT16 partition (see 8D)
91 Free FDISK hidden DOS extended partition (see 8D)
92 Free FDISK hidden primary DOS large FAT16 partition (see 8D)
93 Amoeba file system, Hidden Linux native partition
94 Amoeba bad block table
95 MIT EXOPC native partition
96 –
97 Free FDISK hidden primary DOS FAT32 partition (see 8D)
98 Free FDISK hidden primary DOS FAT32 partition (LBA) (see 8D), Datalight

ROM-DOS Super-Boot partition
99 DCE376 logical drive Mylex EISA SCSI
9A Free FDISK hidden primary DOS FAT16 partition (LBA) (see 8D)
9B Free FDISK hidden DOS extended partition (see 8D)
9C –
9D –
9E –
9F BSD/OS
A0 Laptop hibernation partition, IBM Thinkpad, Phoenix NoteBios, Toshiba and

Sony VAIO
A1 Laptop hibernation partition, NEC 6000H notebook, HP Volume Expansion

(SpeedStor variant)
A2 –
A3 HP Volume Expansion (SpeedStor variant)
A4 HP Volume Expansion (SpeedStor variant)
A5 BSD/386, 386BSD, NetBSD, FreeBSD
A6 OpenBSD, HP Volume Expansion (SpeedStor variant)
A7 NeXTStep partition
A8 Mac OS-X
A9 NetBSD
AA Olivetti DOS with FAT12
AB Mac OS-X boot partition, GO! partition
AC –
AD –
AE ShagOS file syatem
AF ShagOS swap partition
B0 BootStar Dummy (part of DriveStar disk image by Star-Tools GmbH)
B1 HP Volume Expansion (SpeedStor variant)
B2 –
B3 HP Volume Expansion (SpeedStor variant)
B4 HP Volume Expansion (SpeedStor variant)
B5 –
B6 HP Volume Expansion (SpeedStor variant), Corrupted Windows NT mirror set

(master), FAT16
B7 BSDI BSD/386 file system or secondary swap, Corrupted Windows NT mirror

set (master), NTFS
B8 BSDI BSD/386 swap or secondary file system
B9 –
BA –
BB PTS BootWizard hidden
BC –
BD –
BE Solaris 8 boot partition
BF New Solaris x86 partition
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C0 CTOS, REAL/32 secure small partition, NTFT partition, Novell DOS/OpenDOS/
DR-OpenDOS/DR-DOS secured partition

C1 DR-DOS LOGIN.EXE-secured FAT12
C2 Unused – Reserved for DR-DOS 7+, Hidden Linux
C3 Reserved for DR-DOS 7+, Hidden Linux swap
C4 DR-DOS LOGIN.EXE-secured FAT16, < 32 M
C5 DR-DOS LOGIN.EXE-secured extended
C6 DR-DOS LOGIN.EXE-secured FAT16 >= 32M, Windows NT corrupted FAT16

volume/stripe (V/S) set
C7 HPFS FT disabled mirrored partition, Cyrnix Boot, Windows NT corrupted

NTFS volume/stripe (V/S) set
C8 Reserved for DR-DOS 7+
C9 Reserved for DR-DOS 7+
CA Reserved for DR-DOS 7+
CB DR-DOS 7.04+ secured FAT32 (CHS)
CC DR-DOS 7.04+ secured FAT32X (LBA)
CD Reserved for DR-DOS 7+, CTOS Memdump
CE DR-DOS 7.04+ secured FAT16X (LBA)
CF DR-DOS 7.04+ secured extended partition (LBA)
D0 Multiuser DOS secured partition, REAL/32 secure big partition
D1 Old Multiuser DOS secured FAT12
D2 –
D3 –
D4 Old Multiuser DOS secured FAT16 (<32M)
D5 Old Multiuser DOS secured extended partition
D6 Old Multiuser DOS secured FAT16 (BIGDOS >= 32 M)
D7 –
D8 CP/M 86
D9 –
DA Non-FS Data
DB CP/M, Concurrent CP/M, Concurrent DOS, CTOS (Convergent Technologies

OS), KDG Telemer=try SCPU boot
DC –
DD Hidden CTOS Memdump
DE Dell PowerEdge Server utilities partition
DF BootIt EMBRM, DG/UX virtual disk manager partition
E0 Reserved for ST AVFS
E1 DOS access or SpeedStor FAT12 extended partition
E2 DOS read-only (Florian Painke’s XFDISK 1.0.4)
E3 Storage Dimensions, DOS read-only
E4 SpeedStor FAT16 extended partition
E5 Tandy DOS with logically sectored FAT
E6 Storage Dimensions SpeedStor
E7 –
to –
EA –
EB BeOS file system
EC SkyOS SkyFS
ED Reserved for Matthias Paul’s Sprytix
EE Indication that this legacy MBR is followed by an Extensible Firmware Interface

(EFI) header.
EF Partition that contains an EFI file system
F0 Linux/PA-RISC boot loader
F1 SpeedStor Storage Dimensions
F2 DOS 3.3+ secondary partition, Unisys DOS with logical sectored FAT
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F3 SpeedStor Storage Dimensions
F4 SpeedStor Storage Dimensions large partition, Prologue single volume partition
F5 Prologue multi-volume partition
F6 Storage Dimensions SpeedStor
F7 Unused – planned for O.S.G. EFAT
F8 –
F9 pCache
FA Bochs
FB VMware file system partition
FC VMware swap partition
FD Reserved for FreeDOS (http://www.freedos.org/), Linux RAID partition
FE LANstep, IBM PS/2 IML (Initial Microcode Load) partition, Storage Dimensions

SpeedStor (>1024 cylinder), Windows NT Disk Administrator hidden partition,
Linux Logical Volume Manager partition (old)

FF Xenix bad-block table

1 When OS/2 boot manager boots a DOS partition it hides all other primary DOS
partitions except for the one that is booted. It does this by adding 10h to the other
partition types; hence 01, 04, 06 and 07 become 11, 14, 16 and 17.

2 A logically sectored FAT is a FAT12 or FAT16 partition where the sector size is larger
than the usual 512 bytes, up to a maximum of 8192 bytes.

3 Windows NT4 adds 80 to the partition type for partitions that are part of a fault tolerant
set giving 86, 87, 8B and 8C.

4 Free FDISK hides types 01, 04, 05, 06, 0B, 0C, 0E and 0F by adding 8C.

This information has been obtained from the following sources:

1. Landis, H. (2002) How It Works: Partition Tables, 18 December, URL: http://www.ata-
atapi.com/hiwtab.htm.

2. Seagate (1995) NFDisc v1.20, Partition Record display and maintenance. URL: http://
www.seagate-asia.com/sgt/korea/discutil.jsp.

3. van Staten, E. (1997) Harddrive Related Terms and Tricks, 16 April. URL: http://
www.computercraft.com/docs/evsterms.html.

4. Wirzenius, L. (1997) Partition Types (from Linux FDISK), 4 May, http://ceu.fi.udc.es/
docs/sag-0.4/node38.html.

5. http://www.mossywell.com/boot-sequence/
6. Brouwer, A. E. (2005) Partition Types: List of Partition Identifiers for PCs. URL: http://

www.win.tue.nl/~aeb/linux/partitions/partition_types-1.htm.
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Appendix 6. Extended
Partitions

Introduction

There appear to be two views commonly held in the literature about how extended
partitions are constructed, although we were not able to find any definitive specifica-
tions. One view holds that extended partitions are constructed as “nested boxes”, as
we have shown in the upper section of Fig. A6.1. In this view, each extended partition
(shown in light grey) is a box that contains all subordinate extended partitions as
well as the logical partitions (shown in dark grey) nested one inside the other. The
reader will note that, for clarity in the figure, we have shown the boxes one beneath
the other rather than one inside the other as they should be.

The other view holds that extended partitions are constructed as “chained boxes”
where each extended partition, except for the outer one, just contains the next logical
partition. We have shown this view in the lower section of Fig. A6.1.
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Nested boxes

Chained boxes

Fig. A6.1 Nested and chained boxes.



In order to determine what approach is in use in the systems which we come
across, we carried out experiments to determine the actual structures that result
when FDISK and PartitionMagic are used successively to partition the same hard
disk. The disk we used was a Quantum Pioneer SG 1.0A which had a manufacturer’s
label marked “C/H/S 1.0GB 2097/16/63”.This indicates a maximum possible capacity
of:

2097 16 63 2 113 776

2 113 776 512 1 082 25

× × =

× =

, ,

, , , ,

sectors

3 312

1 082 253 312 1024 1024 103212

,

, , , / ( ) .

bytes

Mbyte× =

The disk was partitioned, on each occasion, with a primary DOS partition of 504.0
Mbyte and an extended DOS partition of the remaining space which was reported as
525.7 Mbyte. The extended partition was then further partitioned into three logical
partitions of 246.1 Mbyte, 246.1 Mbyte and 33.4 Mbyte respectively. It is this disk
which was used as the example for Fig. 5.29 repeated here as Fig. A6.2 for
convenience.

The partitioning process was carried out using, in the first instance,
PQMAGICT.EXE (PartitionMagic by Powerquest Version 3.03.256) and then, after
deleting all partitions, using FDISK.EXE (MS-DOS Version 6). The results obtained
from both partitioning processes were found to be identical in terms of the partition
tables that were produced. Norton Disk Editor was used to analyse these partition
tables and both hexadecimal and partition table views were obtained.

It may be noted that this hard disk has not been partitioned right to the very end of
all the available physical sectors,although the maximum number of sectors that were
accessible to the partitioning programs was used.The last partitioned CHS address is

374 Forensic Computing

0,0,1 0,1,1 255,63,63
mbr | primary |

256,0,1 522,63,63
| first extended partition (container) |

256,1,1 380,63,63
ept1 | logical |

381,0,1 505,63,63
| extended |

381,1,1 505,63,63

ept2 | logical |

506,0,1 522,63,63
| extended |

506,1,1 522,63,63
ept3 | logical |

Fig. A6.2 Extended and logical partitions.



seen to be 522, 63, 63, which gives the number of available sectors as 523 × 64 × 63 =
2,108,7361. This may be confirmed from the Master Boot Record partition table, Fig.
A6.3, where the number of sectors on the disk can be calculated as 63 + 1,032,129
(BIGDOS) + 1,076,544 (EXTEND) = 2,108,736. This compares with the 2,113,776
sectors calculated from the physical number of cylinders, heads and sectors as given
on the manufacturer’s label. The difference of 5040 sectors arises for two reasons:
firstly, because the CHS translation algorithm uses bit shifting and divides cylinders
by 4 and multiplies heads by 4. This results in the loss of one cylinder (1008 sectors)
in translation because 2097 is not exactly divisible by 4 but gives 524 with a
remainder of 1. The last translated CHS address is therefore 523, 63, 63. This leads to
the second reason for the loss: FDISK and PartitionMagic have not utilized the
whole of the translated disk but have partitioned only to CHS 522, 63, 63. This is
equivalent to the loss of four real cylinders (4032 sectors), which, together with 1008
sectors makes up the missing total of 5040 sectors.

Results

When we examined the partition tables, we noted that both PartitionMagic and
FDISK gave exactly the same results, as shown in Figs. A6.4–A6.10.
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Physical Sector: Cyl 0, Side 0, Sector 1
+------+----+--------------------+--------------------+-----------+-----------+
| | | Starting Location | Ending Location | Relative | Number of |
|System|Boot|Side Cylinder Sector|Side Cylinder Sector| Sectors | Sectors |
+------+----+--------------------+--------------------+-----------+-----------+
|BIGDOS| Yes| 1 0 1 | 63 255 63 | 63 | 1032129 |
|EXTEND| No | 0 256 1 | 63 522 63 | 1032192 | 1076544 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
+------+----+--------------------+--------------------+-----------+-----------+

Fig. A6.3 Partition table for master boot record.

Fig. A6.4 Partition table for master boot record – hexadecimal.

1 The reader will recall that cylinders and heads in CHS addresses are counted from 0 and
not 1.



From these experiments it is evident that the system in use here is the “chained
boxes” construction. In all the hard disk analysis case work that the authors have
carried out over the past decade, neither has come across anything other than the
“chained boxes” construction approach for extended partitions.
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Physical Sector: Cyl 256, Side 0, Sector 1
+------+----+--------------------+--------------------+-----------+-----------+
| | | Starting Location | Ending Location | Relative | Number of |
|System|Boot|Side Cylinder Sector|Side Cylinder Sector| Sectors | Sectors |
+------+----+--------------------+--------------------+-----------+-----------+
|BIGDOS| No | 1 256 1 | 63 380 63 | 63 | 503937 |
|EXTEND| No | 0 381 1 | 63 505 63 | 504000 | 504000 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
+------+----+--------------------+--------------------+-----------+-----------+

Fig. A6.5 Partition table for the first extended partition.

Fig. A6.6 Partition table for the first extended partition – hexadecimal.

Physical Sector: Cyl 381, Side 0, Sector 1
+------+----+--------------------+--------------------+-----------+-----------+
| | | Starting Location | Ending Location | Relative | Number of |
|System|Boot|Side Cylinder Sector|Side Cylinder Sector| Sectors | Sectors |
+------+----+--------------------+--------------------+-----------+-----------+
|BIGDOS| No | 1 381 1 | 63 505 63 | 63 | 503937 |
|EXTEND| No | 0 506 1 | 63 522 63 | 1008000 | 68544 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
+------+----+--------------------+--------------------+-----------+-----------+

Fig. A6.7 Partition table for the second extended partition.
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Fig. A6.8 Partition table for the second extended partition – hexadecimal.

Physical Sector: Cyl 506, Side 0, Sector 1
+------+----+--------------------+--------------------+-----------+-----------+
| | | Starting Location | Ending Location | Relative | Number of |
|System|Boot|Side Cylinder Sector|Side Cylinder Sector| Sectors | Sectors |
+------+----+--------------------+--------------------+-----------+-----------+
|BIGDOS| No | 1 506 1 | 63 522 63 | 63 | 68481 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
|unused| No | 0 0 0 | 0 0 0 | 0 | 0 |
+------+----+--------------------+--------------------+-----------+-----------+

Fig. A6.9 Partition table for the third extended partition.

Fig. A6.10 Partition table for the third extended partition – hexadecimal.



Appendix 7. Registers and Order
Code for the Intel
8086

Intel 8086 Registers

The Intel 8086 has eight general purpose registers which are 16 bits (two bytes or one
word) in size. They are known as: AX, BX, CX, DX, SI, DI, BP, and SP (stack pointer).
The first four, AX, BX, CX and DX may also be addressed as eight general purpose 8
bit (one byte) registers AH,AL,BH,BL,CH,CL,DH,and DL. There are also 4 segment
registers which are 16 bits (two bytes or one word) in size. These are known as: CS
(code segment), DS (data segment), ES (extra segment), and SS (stack segment).
Additional instruction code details for the P5 processor have been added to this list,
see Intel (1997).

Intel 8086 Hexadecimal Order Code
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Hex Instruction Description

00 ADD Add byte register into byte
01 ADD Add word register into word
02 ADD Add byte into byte register
03 ADD Add word into word register
04 ADD Add immediate byte into AL
05 ADD Add immediate word into AX
06 PUSH ES Push ES onto stack
07 POP ES Pop ES from stack
08 OR Logical OR byte register into byte
09 OR Logical OR word register into word
0A OR Logical OR byte into byte register
0B OR Logical OR word into word register
0C OR Logical OR immediate byte into AL
0D OR Logical OR immediate word into AX
0E PUSH CS Push CS onto stack
0F BSF Bit Scan Forward

BSR Bit Scan Reverse
BSWAP Byte Swap
BT Bit Test
BTC Bit Test and Complement
BTR Bit Test and Reset
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Hex Instruction Description

BTS Bit Test and Set
10 ADC Add with carry byte register into byte
11 ADC Add with carry word register into word
12 ADC Add with carry byte into byte register
13 ADC Add with carry word into word register
14 ADC Add with carry immediate byte into AL
15 ADC Add with carry immediate word into AX
16 PUSH SS Push SS onto stack
17 POP SS Pop SS from stack
18 SBB Subtract with borrow
19 SBB Subtract with borrow word register from word
1A SBB Subtract with borrow byte from byte register
1B SBB Subtract with borrow word from word register
1C SBB Subtract with borrow immediate byte from AL
1D SBB Subtract with borrow immediate word from AX
1E PUSH DS Push DS onto stack
1F POP DS Pop DS from stack
20 AND Logical AND byte register into byte
21 AND Logical AND word register into word
22 AND Logical AND byte into byte register
23 AND Logical AND word into word register
24 AND Logical AND immediate byte into AL
25 AND Logical AND immediate word into AX
26 ES segment override
27 DAA Decimal adjust AL after addition
28 SUB Subtract byte register from byte
29 SUB Subtract word register from word
2A SUB Subtract byte from byte register
2B SUB Subtract word from word register
2C SUB Subtract immediate byte from AL
2D SUB Subtract immediate word from AX
2E CS segment override
2F DAS Decimal adjust AL after subtraction
30 XOR Exclusive OR byte register into byte
31 XOR Exclusive OR word register into word
32 XOR Exclusive OR byte into byte register
33 XOR Exclusive OR word into word register
34 XOR Exclusive OR immediate byte into AL
35 XOR Exclusive OR immediate word into AX
36 SS segment override
37 AAA ASCII adjust AL after addition
38 CMP Subtract byte register from byte for compare
39 CMP Subtract word register from word for compare
3A CMP Subtract byte from byte register for compare
3B CMP Subtract word from word register for compare
3C CMP Subtract immediate byte from AL for compare
3D CMP Subtract immediate word from AX for compare
3E DS segment override
3F AAS ASCII adjust AL after subtraction
40 INC Increment word register 0 by 1
41 INC Increment word register 1 by 1
42 INC Increment word register 2 by 1
43 INC Increment word register 3 by 1
44 INC Increment word register 4 by 1
45 INC Increment word register 5 by 1
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Hex Instruction Description

46 INC Increment word register 6 by 1
47 INC Increment word register 7 by 1
48 DEC Decrement word register 0 by 1
49 DEC Decrement word register 1 by 1
4A DEC Decrement word register 2 by 1
4B DEC Decrement word register 3 by 1
4C DEC Decrement word register 4 by 1
4D DEC Decrement word register 5 by 1
4E DEC Decrement word register 6 by 1
4F DEC Decrement word register 7 by 1
50 PUSH Push word register 0 onto stack
51 PUSH Push word register 1 onto stack
52 PUSH Push word register 2 onto stack
53 PUSH Push word register 3 onto stack
54 PUSH Push word register 4 onto stack
55 PUSH Push word register 5 onto stack
56 PUSH Push word register 6 onto stack
57 PUSH Push word register 7 onto stack
58 POP Pop word register 0 from stack
59 POP Pop word register 1 from stack
5A POP Pop word register 2 from stack
5B POP Pop word register 3 from stack
5C POP Pop word register 4 from stack
5D POP Pop word register 5 from stack
5E POP Pop word register 6 from stack
5F POP Pop word register 7 from stack
60 PUSHA/PUSHAD Push All General Registers
61 POPA/POPAD Pop All General Registers
62 BOUND Check Array Against Bounds
63 ARPL Adjust RPL Field of Selector
64 FS segment override
65 GS segment override
66 operand size
67 address size
68 PUSH Push imm16/32
69 IMUL Signed Multiply
6A PUSH Push imm8
6B IMUL Signed Multiply
6C INS Input Byte from Port
6D INS Input Word from Port
6E OUTS Output Byte to Port
6F OUTS Output Word to Port
70 JO Jump short if overflow
71 JNO Jump short if not overflow
72 JB Jump short if below

JC Jump short if carry
JNAE Jump short if not above or equal

73 JAE Jump short if above or equal
JNB Jump short if not below
JNC Jump short if not carry

74 JE Jump short if equal
JZ Jump short if zero

75 JNE Jump short if not equal
JNZ Jump short if not zero

76 JBE Jump short if below or equal
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Hex Instruction Description

JNA Jump short if not above
77 JA Jump short if above

JNBE Jump short if not below or equal
78 JS Jump short if sign
79 JNS Jump short if not sign
7A JP Jump short if parity

JPE Jump short if parity even
7B JPO Jump short if parity odd

JNP Jump short if not parity
7C JL Jump short if less

JNGE Jump short if not greater or equal
7D JGE Jump short if greater or equal

JNL Jump short if not less
7E JLE Jump short if less or equal

JNG Jump short if not greater
7F JG Jump short if greater

JNLE Jump short if not less or equal
80 /0 ADD Add immediate byte into byte
80 /1 OR Logical OR immediate byte into byte
80 /2 ADC Add with carry immediate byte into byte
80 /3 SBB Subtract with borrow immediate byte from byte
80 /4 AND Logical AND immediate byte into byte
80 /5 UB Subtract immediate byte from byte
80 /6 XOR Exclusive OR immediate byte into byte
80 /7 CMP Subtract immediate byte from byte for compare
81 /0 ADD Add immediate word into word
81 /1 OR Logical OR immediate word into word
81 /2 ADC Add with carry immediate word into word
81 /3 SBB Subtract with borrow immediate word from word
81 /4 AND Logical AND immediate word into word
81 /5 SUB Subtract immediate word from word
81 /6 XOR Exclusive OR immediate word into word
81 /7 CMP Subtract immediate word from word for compare
82
83 /0 ADD Add immediate byte into word
83 /1 OR Logical OR immediate byte into word
83 /2 ADC Add with carry immediate byte into word
83 /3 SBB Subtract with borrow immediate byte from word
83 /4 AND Logical AND immediate byte into word
83 /5 SUB Subtract immediate byte from word
83 /6 XOR Exclusive OR immediate byte into word
83 /7 CMP Subtract immediate byte from word for compare
84 TEST AND byte register with byte for flags
85 TEST AND word register with word for flags
86 XCHG Exchange byte register with byte
87 XCHG Exchange word register with word
88 MOV Move byte register into byte
89 MOV Move word register into word
8A MOV Move byte into byte register
8B MOV Move word into word register
8C /0 MOV Move ES into word
8C /1 MOV Move CS into word
8C /2 MOV Move SS into word
8C /3 MOV Move DS into word
8D LEA Calculate offset and place in word register
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Hex Instruction Description

8E /0 MOV Move memory word into ES
MOV Move word register into ES

8E /2 MOV Move memory word into SS
MOV Move word register into SS

8E /3 MOV Move memory word into DS
MOV Move word register into DS

8F POP Pop memory word from stack
90 NOP No Operation
91
92
93
94
95
96
97
98 CBW Convert byte into word
99 CWD Convert word to doubleword
9A CALL Call far segment, immediate 4 byte address
9B WAIT Wait until BUSY inactive
9C PUSHF Push flags onto stack
9D POPF Pop flags from stack
9E SAHF Store AH into flags
9F LAHF Load AH with flags
A0 MOV Move byte, offset immediated word, into AL
A1 MOV Move word, offset immediate word, into AX
A2 MOV Move AL into byte,offset immediate word
A3 MOV Move AX into word,offset immediate word
A4 MOVS Move byte [SI] to ES:[DI]

MOVSB Move byte DS:[SI] to ES:[DI]
A5 MOVS Move word [SI] to ES:[DI]

MOVSW Move word DS:[SI] to ES:[DI]
A6 CMPS Compare bytes ES:[DI] from [SI]

CMPSB Compare bytes ES:[DI] from DS:[SI]
A7 CMPS Compare words ES:[DI] from [SI]

CMPSW Compare words ES:[DI] from DS:[SI]
A8 TEST AND immediate byte into AL for flags
A9 TEST AND immediate word into AX for flags
AA STOS Store AL to byte [DI], advance DI

STOSB Store AL to byte ES:[DI], advance DI
AB STOS Store AX to word [DI], advance DI

STOSW Store AX to word ES:[DI], advance DI
AC LODS Load byte [SI] into AL, advance SI

LODSB Load byte [SI] into AL, advance SI
AD LODS Load word [SI] into AX, advance SI

LODSW Load word [SI] into AX, advance SI
AE SCAS Compare bytes AL ES:[DI], advance DI

SCASB Compare bytes AX ES:[DI], advance DI
AF SCAS Compare words AL ES:[DI], advance DI

SCASW Compare words AX ES:[DI], advance DI
B0 MOV Move immediate byte into byte register 0
B1 MOV Move immediate byte into byte register 1
B2 MOV Move immediate byte into byte register 2
B3 MOV Move immediate byte into byte register 3
B4 MOV Move immediate byte into byte register 4
B5 MOV Move immediate byte into byte register 5
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Hex Instruction Description

B6 MOV Move immediate byte into byte register 6
B7 MOV Move immediate byte into byte register 7
B8 MOV Move immediate word into word register 0
B9 MOV Move immediate word into word register 1
BA MOV Move immediate word into word register 2
BB MOV Move immediate word into word register 3
BC MOV Move immediate word into word register 4
BD MOV Move immediate word into word register 5
BE MOV Move immediate word into word register 6
BF MOV Move immediate word into word register 7
C0 Rxy Rotate various left or right
C1 Rxy Rotate various left or right
C2 RET Return near
C3 RET Return near
C3 RET Return near
C4 LES Load doubleword into ES and word register
C5 LDS Load doubleword into DS and word register
C6 MOV Move immediate byte into byte
C7 MOV Move immediate word into word
C8 ENTER Create a stack frame for a procedure
C9 LEAVE Set SP to BP, then pop BP
CA RETF Return far
CB RETF Return far
CC INT 3 Interrupt 3
CD INT Interrupt number immediate byte
CE INTO Interrupt 4 if overflow is set
CF IRET Interrupt return
D0 /0 ROL Rotate 8 bit byte left once
D0 /1 ROR Rotate 8 bit byte right once
D0 /2 RCL Rotate 9 bit quantity left once
D0 /3 RCR Rotate 9 bit quantity right once
D0 /4 SAL Multiply byte by 2, once

SHL Multiply byte by 2, once
D0 /5 SHR Unsigned divide byte by 2, once
D0 /7 SAR Signed divide byte by 2, once
D1 /0 ROL Rotate 16 bit word left once
D1 /1 ROR Rotate 16 bit word right once
D1 /2 RCL Rotate 17 bit quantity left once
D1 /3 RCR Rotate 17 bit quantity right once
D1 /4 SAL Multiply word by 2, once

SHL Multiply word by 2, once
D1 /5 SHR Unsigned divide word by 2, once
D1 /7 SAR Signed divide word by 2, once
D2 /0 ROL Rotate 8 bit byte left CL times
D2 /1 ROR Rotate 8 bit byte right CL times
D2 /2 RCL Rotate 9 bit quantity left CL times
D2 /3 RCR Rotate 9 bit quantity right CL times
D2 /4 SAL Multiply byte by 2, CL times

SHL Multiply byte by 2, CL times
D2 /5 SHR Unsigned divide byte by 2, CL times
D2 /7 SAR Signed divide byte by 2, CL times
D3 /0 ROL Rotate 16 bit word left CL times
D3 /1 ROR Rotate 16 bit word right CL times
D3 /2 RCL Rotate 17 bit quantity left CL times
D3 /3 RCR Rotate 17 bit quantity right CL times
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Hex Instruction Description

D3 /4 SAL Multiply word by 2, CL times
SHL Multiply word by 2, CL times

D3 /5 SHR Unsigned divide word by 2, CL times
D3 /7 SAR Signed divide word by 2, CL times
D4 AAM ASCII adjust after multiply
D5 AAD ASCII adjust before division
D6 SALC Set AL on Carry
D7 XLAT Set AL to memory byte [BX + unsigned AL]
D7 XLATB Set AL to memory byte DS:[BX + unsigned AL]
D8 Floating Point Escape opcode
D9 Floating Point Escape opcode
DA Floating Point Escape opcode
DB Floating Point Escape opcode
DC Floating Point Escape opcode
DD Floating Point Escape opcode
DE Floating Point Escape opcode
DF Floating Point Escape opcode
E0 LOOPNE jump short if CX/=0 and not equal

LOOPNZ jump short if CX/=0 and ZF=0
E1 LOOPE jump short if CX/=0 and equal

LOOPZ jump short if CX/=0 and zero
E2 LOOP jump short if CX/=0
E3 JCXZ Jump short if CX register is zero
E4 IN Input byte from immediate port into AL
E5 IN Input word from immediate port into AX
E6 OUT Output byte AL to immediate port
E7 OUT Output word AX to immediate port
E8 CALL Call near
E9 JMP Jump near
EA JMP Jump far
EB JMP Jump short
EC IN Input byte from port DX into AL
ED IN Input word from port DX into AX
EE OUT Output byte AL to port number DX
EF OUT Output word AX to port number DX
F0 LOCK Assert BUSLOCK signal
F1 ICEBP In-Circuit-Emulator Breakpoint
F2 REPNE Repeat following CX times or until ZF=1

REPNZ Repeat following CX times or until ZF=1
F3 REP Repeat following CX times

REPE Repeat following CX times or until ZF=0
REPZ Repeat following CX times or until ZF=0

F4 HLT Halt
F5 CMC Complement carry flag
F6 /0 TEST AND immediate byte with byte for flags
F6 /2 NOT Reverse each bit of byte
F6 /3 NEG Two’s complement negate byte
F6 /4 MUL Unsigned multiply (AX = AL * byte)
F6 /5 IMUL Signed multiply (AX = AL * byte)
F6 /6 DIV Unsigned divide AX by byte
F6 /7 IDIV Signed divide AX by byte
F7 /0 TEST AND immediate word with word for flags
F7 /2 NOT Reverse each bit of word
F7 /3 NEG Two’s complement negate word
F7 /4 MUL Unsigned multiply (DXAX = AX * word)
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Hex Instruction Description

F7 /5 IMUL Signed multiply (DXAX = AX * word)
F7 /6 DIV Unsigned divide DXAX by word
F7 /7 IDIV Signed divide DXAX by word
F8 CLC Clear carry flag
F9 STC Set carry flag
FA CLI Clear interrupt enable flag
FB STI Set interrupt enable flag
FC CLD Clear direction flag
FD STD Set direction flag
FE /0 INC Increment byte by 1
FE /1 DEC Decrement byte by 1
FF /0 INC Increment word by 1
FF /1 DEC Decrement word by 1
FF /2 CALL Call near, offset absolute at word
FF /3 CALL Call far segment, address at doubleword
FF /4 JMP Jump near to word (absolute offset)
FF /5 JMP Jump far
FF /6 PUSH Set [SP 2] to memory word



Appendix 8. NTFS Boot Sector
and BIOS
Parameter Block

This appendix contains details of the boot sector and the BIOS parameter block for
NTFS volumes. Boot sectors and BIOS parameter blocks have been considered in
some detail in Chapter 5, but these are for FAT file systems. The details given here are
specific to NTFS volumes and should be related to the analysis carried out in Chapter
6.

Layout of Boot Sector on NTFS Volumes

At Table A8.1 is shown the outline layout of the 512 byte NTFS boot sector.
Highlighted in italic text are the two main areas that are expanded in Table A8.2
below: namely, the BIOS parameter block and the Extended BIOS parameter block.

Layout of BIOS Parameter Block and Extended BIOS

Parameter Block

The two values marked with an asterisk (*) in Table A8.2 are signed 8 bit numbers
which may be used in two different ways. If the numbers in these fields are positive
(between 00–7Fh) they define how many clusters there are for each MFT record or
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Byte offset (decimal) Byte offset (hex) Length in bytes Use

0–2 00–02 3 Jump instruction to bootstrap
code

3–10 03–0A 8 OEM ID

11–35 0B–23 25 BIOS parameter block

36–83 24–53 48 Extended BIOS parameter block

84–509 54–01FD 426 Bootstrap code

510–511 01FE–01FF 2 End of sector signature

Table A8.1 NTFS boot sector layout.



INDX file. If the numbers are negative (80–FFh) they define how many bytes there are
for each MFT record or INDX file.

The actual value is calculated by raising 2 to the power of the absolute value of this
number. Thus, if offset byte 64 contains, as it does in the sample BPB, the value F6h,
then the 8 bit signed value of the number, F6, is –10 and its absolute value is 10. Thus
the number of bytes (because it is negative) in each MFT record entry is 210 = 1024
bytes. This conforms with current experience that all systems seen to date have a
1024 byte record size.

The detail in this appendix has been obtained from: http://www.
microsoft.com/resources/documentation/Windows/XP/all/reskit/en-us/
Default.asp?url=/resources/documentation/Windows/XP/all/reskit/en-
us/prkd_tro_ilxl.asp.
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Byte offset
(decimal)

Byte offset
(hex)

Length in bytes Use

11–12 0B–0C 2 Number of bytes per sector, usually 512

13 0D 1 Number of sectors per cluster

14–15 0E–0F 2 Number of reserved sectors, usually 0.

16–20 10–14 5 Use not specified but must be 0.

21 15 1 Media descriptor

22–23 16–17 2 Use not specified but must be 0.

24–31 18–1F 8 Not used

32–35 20–23 4 Use not specified but must be 0.

36–39 24–27 4 Not used

40–47 28–2F 8 Total number of sectors on volume

48–55 30–37 8 Logical cluster number for start of $MFT

56–63 38–3F 8 Logical cluster number for start of
$MFTMirr

64 40 1 Size of MFT record in clusters, usually 1024*

65–67 41–43 3 Not used

68 44 1 Size of index buffer, “INDX file” in clusters*

69–71 45–47 3 Not used

72–79 48–4F 8 Volume serial number

80–83 50–53 4 Not used

Table A8.2 BIOS Parameter block and extended BIOS parameter block.



Appendix 9. MFT Header and
Attribute Maps

This appendix contains details of the MFT Header and the Attributes for NTFS
volumes.

MFT Attribute Identifiers

The values for the MFT Attribute Identifiers are as listed in Table A9.1.

Table A9.1 MFT Attribute Identifiers.

Standard_Information ID 10 00 00 00
Attribute_List ID 20 00 00 00
File_Name ID 30 00 00 00
Object_ID ID 40 00 00 00
Security_Descriptor ID 50 00 00 00
Volume_Name ID 60 00 00 00
Volume_Information ID 70 00 00 00
Data ID 80 00 00 00
Index_Root ID 90 00 00 00
Index_Allocation ID A0 00 00 00
Bitmap ID B0 00 00 00
Reparse_Point ID C0 00 00 00
EA_Information ID D0 00 00 00
EA ID E0 00 00 00
Logged_Utility_Stream ID 00 00 00 00

MFT Record Structure

All MFT records in the sample MFT have the structure shown in Table A9.2.

Table A9.2 MFT record structure.

File Record Header
Standard Attribute Header
Attribute Proper
Standard Attribute Header
Attribute Proper
And so on
End of Record marker (FF FF FF FFh)
Error Check Sequence (4 bytes)
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The FILE Record Header

It should be noted that the Windows XP version of this Header is 8 bytes longer than
the Windows 2000 version. The reason for this is that in Windows XP a new field has
been added to contain the MFT Record Number. The details of the Windows 2000
version are given in Table A9.3 and the changes for the Windows XP version are given
in Table A9.4 below.

Table A9.3 FILE Record Header – Windows 2000.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes (where value is mentioned bytes are in
little endian format)

0–3 00–03 4 Identification String
“FILE”

Appears at the head of all MFT record
entries.

4–5 04–05 2 Offset to the Update
Sequence Array in
bytes

The value of these two bytes is the
number of bytes from the beginning of
the header to the first byte of the
update sequence array. The offset is
calculated by adding this value to the
offset of the first byte of the header.

6–7 06–07 2 Length of Update
Sequence

The Update Sequence Array is 6 bytes
in length for 1024 byte record MFT.
This value always appears to be 3 in
such an MFT. Possibly a count of
length in words.

8–15 08–0F 8 Reportedly the
$Logfile sequence
number (not
confirmed)

Use is not defined, probably used to
index changes to the record in $Logfile

16–17 10–11 2 Record Use Sequence
Number

Starts at 1 on first use and incremented
when the record is marked as deleted.

18–19 12–13 2 Hard Link Count (not
confirmed)

Count of hard links associated with the
entry.

20–21 14–15 2 Offset to First
Attribute in bytes

The value of these two bytes is the
number of bytes from the beginning of
the header to the first byte of the
Attribute following it. The offset is
calculated by adding this value to the
offset of the first byte of the header.

22–23 16–17 2 Record Status Flags Records the status of the record:
00 00 = deleted file record
01 00 = file record in use
02 00 = deleted directory record
03 00 = directory record in use

24–27 18–1B 4 “Logical” size of the
record in bytes

The value of these four bytes is the
count, in bytes, of the record from the
first byte of this header to the last byte
of the error check sequence. The error
check sequence of 4 bytes follows the
End of Record marker of FF FF FF FFh.

390 Forensic Computing



Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes (where value is mentioned bytes are in
little endian format)

28–31 1C–1F 4 “Physical” size of the
record in bytes

The value of these bytes is the actual
size, in bytes, of the allocated size of
the record. This is known as the
“Physical” Size. It is fixed in the BIOS
Parameter Block of the Boot Record. In
most cases it is 1024 bytes.

32–39 20–27 8 1. Base File Reference
2. Unknown – possibly
an ID sequence
number

This field is used to store a Base File
Reference Number probably in the first
six (least significant) bytes. It is used
for records where there are more
Attributes than can fit into a single
record. In the second or subsequent
records these bytes contain a value
which is the number of the MFT record
in which the “parent” record resides.
The use of an ID sequence number in
the remaining bytes is uncertain but
there is a consistent use of low two-
byte values in the most significant pair.
This two-byte value is the same in all
records referring to the same “parent”
record.

40–41 28–29 2 Next Attribute ID
number

The value of these two bytes is the
number to be allocated to the next
Attribute to be added to this record. It
is not a value that equates to the
number of Attributes already present
in the record plus one. It appears to be
incremented as each Attribute is added,
but not decremented when one is
removed.

42–43
(see
notes
below)

2A–2B 2 The Update Sequence
Array Part 1 – The
Update Sequence
Number

The number occupying these two bytes
is used as a test value for the reading of
the record. It appears here, and is
seeded into the final two bytes of each
SECTOR of the record. In a 1024 byte
record this is at bytes offset 510, 511,
1022 and 1023. The data which should
occupy these bytes is placed in the
Update Sequence Array Part 2 in that
order. When a record is read into
memory the value of the Update
Sequence Number is compared against
the four bytes at 510, 511, 1022 and
1023. If a match is made the read is
successful and the four bytes in
memory are replaced by the four bytes
from the Update Sequence Array Part
2, thus replacing the seeded values with
the correct ones for the data set
required.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes (where value is mentioned bytes are in
little endian format)

44–47 2C–2F 4 The Update Sequence
Array Part 2 – The
Array

These four bytes are the bytes from
offsets 510, 511, 1022 and 1023 of the
record which have been replaced by the
Update Sequence Number for integrity
testing.

It should be noted that the use of the words “sequence number” only implies the
use of a number which is incremented; it is not a definitive title.The location of Part 1
of the Update Sequence Array is pointed to by the value of the bytes at offsets 4 and 5
of this header. Table A9.3 refers to a Windows 2000 installation. In the case of a
Windows XP installation the location pointed to by these bytes is 6 bytes further on
due to inclusion of a field for the MFT Record Number. The final section of the
Windows XP header is as shown at Table A9.4.

Table A9.4 FILE Record Header – final section for Windows XP.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

42–43 2A–2B Unused

44–47 2C–2F 4 MFT Record Number
(XP)

These four bytes store the MFT Record
Number for THIS record. The Record
Number can be calculated by
identifying the offset value in bytes of
the start of the record from the start of
the MFT and dividing by the record
size (usually 1024).

48–49 30–31 2 The Update Sequence
Array Part 1 – The
Update Sequence
Number

The number occupying these two
bytes is used as a test value for the
reading of the record. It appears here,
and is seeded into the final two bytes
of each SECTOR of the record. In a
1024 byte record this is at bytes offset
510, 511, 1022 and 1023. The data
which should occupy these bytes is
placed in the Update Sequence Array
Part 2 in that order. When a record is
read into memory the value of the
Update Sequence Number is compared
against the four bytes at 510, 511, 1022
and 1023. If a match is made the read
is successful and the four bytes in
memory are replaced by the four bytes
from the Update Sequence Array Part
2, thus replacing the seeded values
with the correct ones for the data set
required.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

50–53 32–35 4 The Update Sequence
Array Part 2 – The
Array

These four bytes are the bytes from
offsets 510, 511, 1022 and 1023 of the
record which have been replaced by
the Update Sequence Number for
integrity testing.

54–55 36–37 2 Padding to 8 byte
boundary

The Attribute Header

There are four types of Attribute Header: Type 1 is Resident, Un-Named; Type 2 is
Non-Resident, Un-Named; Type 3 is Resident, Named; and Type 4 is Non-Resident,
Named. Each of these headers differs from one another and so full details of each are
given in the four tables below.

Attribute Header – Type 1

This Attribute Header is Resident (given by byte offset 8 = 00h) and Un-Named
(given by byte offset 9 = 00h).

Table A9.5 Attribute Header – Type 1 – Resident, Un-Named.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Attribute Identifier A four-byte Identification number,
this is the ID as defined in $AttrDef
for each Attribute type. This value
identifies the layout of the Attribute
following this header.

4–7 04–07 4 Length of Current
Attribute in bytes

The value of these two bytes is the
number of bytes making up the
length of this Attribute, including this
header. It can also be used to calculate
the location of the first byte of the
next Attribute, or End of Record
Marker, by adding this value to the
offset of the first byte of the header.

8 8 1 Non-Resident Flag Value 00 = Resident Attribute
Value 01 = Non-Resident Attribute
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 00h.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

9 9 1 Length of Attribute
Name in Characters

Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 00h.

10–11 0A–0B 2 Offset to Start of
Attribute Proper in
bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute proper following it. The
offset is calculated by adding this
value to the offset of the first byte of
the header.
(NOT ALWAYS USED)

12–13 0C–0D 2 Data Status Flags Value 01 00h = Compressed
Value 40 00h = Encrypted
Value 80 00h = Sparse
(Used in Data Attribute)

14–15 0E–0F 2 Reportedly an
Attribute ID number
(not confirmed)

May be used for a number of
purposes not yet identified, in
particular as a flag for virus infected/
cleaned files

16–19 10–13 4 Length of the
Attribute Proper in
bytes

The value of these four bytes is the
number of bytes making up the
length of the Attribute Proper. Added
to the length of the header it gives the
total length of the Attribute as
defined at offsets 4–7.

20–21 14–15 2 Offset to Start of
Attribute Proper in
bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute proper following it. The
offset is calculated by adding this
value to the offset of the first byte of
the header.

22 16 1 Indexed flag (not
confirmed)

23 17 1 Padding to 8 byte
boundary

Unused.

Attribute Header – Type 2

This Attribute Header is Non-Resident (given by byte offset 8 = 01h) and Un-Named
(given by byte offset 9 = 00h).

394 Forensic Computing



Table A9.6 Attribute Header – Type 2 – Non-Resident, Un-Named.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Attribute Identifier A four-byte Identification number,
this is the ID as defined in $AttrDef
for each Attribute type. This value
identifies the layout of the Attribute
following this header.

4–7 04–07 4 Length of Current
Attribute in bytes

The value of these two bytes is the
number of bytes making up the
length of this Attribute, including this
header. It can also be used to calculate
the location of the first byte of the
next Attribute, or End of Record
Marker, by adding this value to the
offset of the first byte of the header.

8 8 1 Non-Resident Flag Value 00 = Resident Attribute
Value 01 = Non-Resident Attribute
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 01h.

9 9 1 Length of Name in
Characters

Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 00h.

10–11 0A–0B 2 Offset to Start of the
Name of the Attribute,
in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute’s Name. That location is
calculated by adding this value to the
offset of the first byte of the header.
(Should be zero – un-named)

12–13 0C–0D 2 Data Status Flags Value 01 00h = Compressed
Value 40 00h = Encrypted
Value 80 00h = Sparse
(Used in Data Attribute)

14–15 0E–0F 2 Reportedly an
Attribute ID number
(not confirmed)

May be used for a number of
purposes not yet identified, in
particular as a flag for virus infected/
cleaned files.

16–23 10–17 8 Starting Virtual
Cluster Number

NTFS uses mapping of Real Clusters
to Virtual Clusters, the value of the
Starting Virtual Cluster should
normally be 00h.

24–31 18–1F 8 Ending Virtual
Cluster Number

Virtual Clusters are the same size as
clusters on the disk.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

32–33 20–22 2 Offset to the start of
the Data Run
Sequence(s), in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Data Run Sequence(s). The offset is
calculated by adding this value to the
offset of the first byte of the header.

34–35 22–23 2 Compression Unit
Size

Use of this field to identify
compression is confirmed but the
method has not been explored.

36–39 24–27 4 Padding to 8 byte
boundary

40–47 28–2F 8 The “Physical” size of
the Attribute, in bytes

Physical size in the case of non-
resident data means the size in bytes
of the storage block(s) allocated for
the storage of the data.

48–55 30–37 8 The “Logical” size of
the Attribute, in bytes

Logical size in the case of non-
resident data means the actual size in
bytes of the data itself.

56–63 38–3F 8 The initialized data
size of the stream, in
bytes

In most cases this is the same size as
the Logical size of the data, its use is
uncertain.

64 on 40 on Varies The Data Run
Sequence (This is the
Data Attribute Proper
but is included here
for simplicity)

There can be almost any number of
data runs for a fragmented file. Their
make up and size are governed by the
first byte in the sequence. See “Data
Runs – an Example” below.
Remember, any successive data runs
are addressed as an offset from the
start of the previous one.

Data Runs – an Example

For Non-Resident Attributes, a Data Run Sequence is required (see byte offset 64 in
Table A9.6). An example of such a sequence is given in Fig. A9.1.
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The second nibble of the first byte denotes the number
of bytes IMMEDIATELY FOLLOWING which contain the
value specifying the run length, in clusters – in this case,
one byte with a value of 3.

The first nibble of the first byte denotes the number
of bytes used to store the starting cluster number of
the data stream. In this case, three bytes are used to
store the value in little endian format.

31 03 46 E9 05

Fig. A9.1 Data runs – an example.



Evaluating a data run such as: 31 01 DA 85 02 11 18 50 11 01 30

gives us the following:
a run length of 01 clusters from 0285DA h = 165,388
a run length of 18h = 24 clusters from 0285DAh + 50h = 165,418
a run length of 01 clusters from 0285DAh + 50h + 30h = 165,466

Attribute Header – Type 3

This Attribute Header is Resident (given by byte offset 8 = 00h) and Named (given by
byte offset 9 > 00h).

Table A9.7 Attribute Header – Type 3 – Resident, Named.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Attribute Identifier A four-byte Identification number,
this is the ID as defined in $AttrDef
for each Attribute type. This value
identifies the layout of the Attribute
following this header.

4–7 04–07 4 Length of Current
Attribute in bytes

The value of these two bytes is the
number of bytes making up the
length of this Attribute, including this
header. It can also be used to calculate
the location of the first byte of the
next Attribute, or End of Record
Marker, by adding this value to the
offset of the first byte of the header.

8 8 1 Non-Resident Flag Value 00 = Resident Attribute
Value 01 = Non-Resident Attribute
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 00h.

9 9 1 Length of Name in
Characters (N =
number of bytes
occupied)

Note that in Unicode two bytes are
used to store each character value;
thus a name length of 4 will occupy 8
bytes.
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING A VALUE
GREATER THAN 00h.

10–11 0A–0B 2 Offset to Start of the
Name of the Attribute,
in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute’s Name. That location is
calculated by adding this value to the
offset of the first byte of the header.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

12–13 0C–0D 2 Data Status Flags Value 01 00h = Compressed
Value 40 00h = Encrypted
Value 80 00h = Sparse
(Used in Data Attribute)

14–15 0E–0F 2 Reportedly an
Attribute ID number
(not confirmed)

May be used for a number of
purposes not yet identified, in
particular as a flag for virus infected/
cleaned files

16–19 10–13 4 Length of the
Attribute Proper in
bytes

The value of these four bytes is the
number of bytes making up the
length of the Attribute Proper. Added
to the length of the header it gives the
total length of the Attribute as
defined at offsets 4–7.

20–21 14–15 2 Offset to Start of
Attribute Proper in
bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute proper following it. The
offset is calculated by adding this
value to the offset of the first byte of
the header.

22 16 1 Indexed flag (not
confirmed)

23 17 1 Padding to 8 byte
boundary

24 on 18 on N Name of Attribute in
Unicode (padded to 8
byte boundary}

Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.

Attribute Header – Type 4

This Attribute Header is Non-Resident (given by byte offset 8 = 01h) and Named
(given by byte offset 9 > 00h).

Table A9.8 Attribute Header – Type 4 – Non-Resident, Named.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Attribute Identifier A four-byte Identification number,
this is the ID as defined in $AttrDef
for each Attribute type. This value
identifies the layout of the Attribute
following this header.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

4–7 04–07 4 Length of Current
Attribute in bytes

The value of these two bytes is the
number of bytes making up the
length of this Attribute, including this
header. It can also be used to calculate
the location of the first byte of the
next Attribute, or End of Record
Marker, by adding this value to the
offset of the first byte of the header.

8 8 1 Non-Resident Flag Value 00 = Resident Attribute
Value 01 = Non-Resident Attribute
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING THE
VALUE 01h.

9 9 1 Length of Name in
Characters (N =
number of bytes
occupied)

Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.
TO APPLY THIS TEMPLATE THIS
BYTE MUST BE STORING A VALUE
GREATER THAN 00h.

10–11 0A–0B 2 Offset to Start of the
Name of the Attribute,
in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute Name. That location is
calculated by adding this value to the
offset of the first byte of the header.

12–13 0C–0D 2 Data Status Flags Value 01 00h = Compressed
Value 40 00h = Encrypted
Value 80 00h = Sparse
(Used in Data Attribute)

14–15 0E–0F 2 Reportedly an
Attribute ID number
(not confirmed)

May be used for a number of
purposes not yet identified, in
particular as a flag for virus infected/
cleaned files.

16–23 10–17 8 Starting Virtual
Cluster Number

NTFS uses mapping of Real Clusters
to Virtual Clusters, the value of the
Starting Virtual Cluster should
normally be 00h.

24–31 18–1F 8 Ending Virtual
Cluster Number

Virtual Clusters are the same size as
clusters on the disk.

32–33 20–22 2 Offset to the start of
the Data Run
Sequence(s), in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Data Run Sequence(s). The offset is
calculated by adding this value to the
offset of the first byte of the header.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

34–35 22–23 2 Compression Unit
Size

Use of this field to identify
compression is confirmed but the
method has not been explored.

36–39 24–27 4 Padding to 8 byte
boundary

40–47 28–2F 8 The “Physical” size of
the Attribute, in bytes

Physical size in the case of non-
resident data means the size in bytes
of the storage block(s) allocated for
the storage of the data.

48–55 30–37 8 The “Logical” size of
the Attribute, in bytes

Logical size in the case of non-
resident data means the actual size in
bytes of the data itself.

56–63 38–3F 8 The initialized data
size of the stream, in
bytes

In most cases this is the same size as
the Logical size of the data, its use is
uncertain.

64 on 40 on N Name of Attribute in
Unicode (padded to 8
byte boundary}

Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.

64+N
on

40+N
on

Varies The Data Run
Sequence (This is the
Data Attribute Proper
but is included here
for simplicity)

There can be almost any number of
data runs for a fragmented file. Their
make up and size are governed by the
first byte in the sequence. See
Example.

The Standard Information Attribute (ID = 10 00 00 00h)

The Attribute Proper is preceded by one of the Attribute Headers of Types 1 to 4
above.

Table A9.9 The Standard Information Attribute.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–7 0–7 8 Created Time/Date in
“FileTime” format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. It is the most reliable, being
the first one to be updated with any
change, other dates and times receive
copies of this entry to update them.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

8–15 8–0F 8 Last Modified Time/
Date in “FileTime”
format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. It is the most reliable, being
the first one to be updated with any
change, other dates and times receive
copies of this entry to update them.

16–23 10–17 8 Last MFT Record
Update Time/Date in
“FileTime” format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. It is the most reliable of its
type, being the first one to be updated
with any change, other dates and
times receive copies of this entry to
update them. THE UPDATE OF THIS
ENTRY HAS BEEN SHOWN TO BE
UNRELIABLE: changes can be made
to the MFT entry without this field
being updated.

24–31 18–1F 8 Last Access Time/
Date in “FileTime”
format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. It is the most reliable, being
the first one to be updated with any
change, other dates and times receive
copies of this entry to update them.

32–35 20–23 4 DOS File Permissions
Binary Flags (Old
Style DOS Attributes)

01 00 00 00 = Read Only
02 00 00 00 = Hidden
04 00 00 00 = System
20 00 00 00 = Archive
40 00 00 00 = Device*
80 00 00 00 = Normal*
00 01 00 00 = Sparse File*
00 04 00 00 = Reparse Point
00 08 00 00 = Compressed
00 10 00 00 = Offline*
00 20 00 00 = Not Content Indexed*
00 40 00 00 = Encrypted
* = not tested

36–39 24–27 4 Reportedly a value for
the Maximum
Number of Versions
(not confirmed)

Probably used for version control of
multiple copies of files used by
multiple users on a network.

40–47 28–2F 8 Reportedly Version
Number and Class ID
(not confirmed)

Probably used for version control of
multiple copies of files used by
multiple users on a network.

48–51 30–33 4 Reportedly an Owner
ID field (not
confirmed)

Probably used for access control of
multiple users on a network.

52–55 34–37 4 Reportedly a Security
ID (not confirmed)

Probably used for access control of
multiple users on a network.

MFT Header and Attribute Maps 401



Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

56–63 38–3F 8 Reportedly Quota
Charged Value (not
confirmed)

Probably used on networked systems
to control storage space allocated to
users.

64–72 40–47 8 Reportedly a
$USNJRNL update
sequence number

Claimed to be the Update Sequence
Number for the file $USNJRNL. When
of zero value it is likely that the
$USNJRNL function has not been
activated.

The File Name Attribute (ID = 30 00 00 00h)

The Attribute Proper is preceded by one of the Attribute Headers of Types 1 to 4
above.

Table A9.10 The File Name Attribute.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–7 0–7 8 1. Base File Reference
2. Unknown –
possibly an ID
sequence number

This field is used to store a Base File
Reference Number probably in the
first six (least significant) bytes. It is
used to indicate the MFT record
number of the “parent” directory. If
the file resides in the ROOT directory
this value will usually be 05h. The use
of an ID sequence number in the
remaining bytes is uncertain but
there is a consistent use of low two-
byte values in the most significant
pair. This two-byte value is the same
in all records referring to the same
“parent” directory record. It is
suggested that this value is the
current value present in the Record
Use Sequence Number of the “parent”
directory MFT record at the time of
the creation of THIS record and can
thus identify THIS record to a
particular incarnation of the MFT
record to which it points.

8–15 8–0F 8 Created Time/Date in
“FileTime” format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. Located in this Attribute it
is NOT the most reliable. Experiments
have shown that this entry is not
updated even when the filename is
changed.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

16–23 10–17 8 Last Modified Time/
Date in “FileTime”
format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. Located in this Attribute it
is NOT the most reliable. Experiments
have shown that this entry is not
updated even when the filename is
changed.

24–31 18–1F 8 Last MFT Record
Update Time/Date in
‘FileTime’ format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. Located in this Attribute it
is NOT the most reliable. Experiments
have shown that this entry is not
updated even when the filename is
changed.

32–39 20–27 8 Last Access Time/
Date in ‘FileTime’
format

This entry refers to the item subject
of the record as a whole, be it a file or
directory. Located in this Attribute it
is NOT the most reliable. Experiments
have shown that this entry is not
updated even when the filename is
changed.

40–47 28–2F 8 The ‘Physical’ size of
the file, in bytes

Physical size means the size in bytes
of the storage block(s) allocated for
the storage of the data.

48–55 30–37 8 The ‘Logical’ size of
the file, in bytes

Logical size means the actual size in
bytes of the data itself.

56–59 38–3B 4 DOS File Permissions
Binary Flags (Old
Style DOS Attributes)

01 00 00 00 = Read Only
02 00 00 00 = Hidden
04 00 00 00 = System
20 00 00 00 = Archive
40 00 00 00 = Device*
80 00 00 00 = Normal*
00 01 00 00 = Sparse File*
00 04 00 00 = Reparse Point
00 08 00 00 = Compressed
00 10 00 00 = Offline*
00 20 00 00 = Not Content Indexed*
00 40 00 00 = Encrypted
* = not tested

60–63 3C–3F 4 Reportedly used by
Extended Attributes
and Reparse Points
(not confirmed)

64 40 1 Length of File Name
in Characters (N =
number of bytes
occupied)

File names can be stored in DOS
format and Unicode format.
Note that in Unicode two bytes are
used to store each character value,
thus a name length of 4 will occupy 8
bytes.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

65 41 1 Type of Filename, in
binary flag format.

00 = Posix Type
01 = Win32 Type Long File Name
(Unicode)
02 = DOS Type Short File Name (8:3)
03 = Win32 & DOS; both names are
identical, only the DOS-compliant
short name is used.

66 on 42 on N File Name in text
format

File name length is not fixed, one byte
for the length restricts long file names
to 256 bytes of storage (in Unicode
128 characters). This field is usually
padded to the next 8-byte boundary.

The Data Attribute (ID = 80 00 00 00h)

The Attribute Proper is preceded by one of the Attribute Headers of Types 1 to 4
above.

Table A9.11 The Data Attribute.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0 on 0 on N Data to length N bytes The data simply follows the Standard
Attribute Header. The length of the
data is defined within the header.

The Index Root Attribute (ID = 90 00 00 00h)

The Attribute Proper is preceded by one of the Attribute Headers of Types 1 to 4
above. This is followed by the Index Root Attribute proper which defines the size and
shape of the Directory Entries. This is followed by an Index Header and one or more
Index Entry Header/Index Entry Data pairs, all of which are part of the Index Root
Attribute. The overall construction is as shown at Table A9.12.

Table A9.12 The Index Root Attribute.

Attribute Header
Index Root Attribute Proper
Index Header
Index Entry Header
Index Entry Data
Index Entry Header
Index Entry Data
etc.
Index Entry Header (with final entry flag set)
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Construction of the Index Root Attribute Proper

Table A9.13 The Index Root Attribute Proper.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 0–3 4 Type Declaration The type of Index Root is declared
here using the values specified in the
$AttrDef file. For Directories this
entry will usually define a File Name
type and the entries in the index will
follow the structure of a File Name
Attribute.

4–7 4–7 4 Collation Rule The number stored here will define
the method used to sort the entries. If
of File Name Type, the rule will be
Collation_Filename.

8–11 8–0B 4 Size of Allocated
Space for the
Attribute, in bytes

Appears to default to 4096 bytes even
when the data is resident. 4096 bytes
is the block size for external “INDX”
files when the data becomes too big to
retain within the MFT.

12 0C 1 Number of clusters
per Index Record

Appears to default to the number of
clusters in a 4096 byte block even
when the data is resident. 4096 bytes
is the block size for external “INDX”
files when the data becomes too big to
retain within the MFT. Sectors per
cluster is available for all disks in the
BIOS Parameter Block at offset 0Bh.

Construction of the Index Header

Table A9.14 The Index Header.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 0–3 4 Offset to first Index
Entry, in bytes

The value of these four bytes is the
number of bytes from the beginning
of this header to the first byte of the
first Index Entry Header. That
location is calculated by adding this
value to the offset of the first byte of
this header.

4–7 4–7 4 Total size of Index
Entries, in bytes

The value of these four bytes is the
number of bytes from the beginning
of this header to the last byte of the
FINAL Index Entry.
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

8–11 8–0B 4 The Allocated size of
the Index Entries in
bytes

The amount of space in bytes
allocated for the storage of the Index
Entries

12 0C 1 Listing Flag See table below for values

Listing Flags in the Index Header and the Index Entry Header

Table A9.15 Listing flags in the Index Header and the Index Entry Header.

Index Header
Byte Offset 12

Index Entry Header
Byte Offset 12

00h 00h Resident listing only

00h 02h Final null entry in listing (includes empty listing)

01h 01h Resident and external listing exists

01h 03h No resident listing, external listing only exists

Construction of the Index Entry Header

Note that the final entry in the Index Root Attribute is usually a null entry, consisting
of this header (see Table A9.16) only with byte offset 12 set to indicate its status as the
last entry (see flags of Table A9.15). No data is attached to the listing.

Table A9.16 The Index Entry Header.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–7 0–7 8 1. Base File Reference
2. Unknown –
possibly an ID
sequence number

This field is used to store a Base File
Reference Number probably in the
first four (least significant bytes).
These bytes contain a value which is
the number of the MFT record in
which the “parent” record resides.
The use of an ID sequence number in
the remaining bytes is uncertain but
there is a consistent use of low two-
byte values in the most significant
pair. This two-byte value is the same
in all records referring to the same
“parent” record.

8–9 8–9 2 Size of the Index
Entry, in bytes

The value of these two bytes is the
number of bytes from the beginning
of this header to the last byte of this
Index Entry, includes the Entry and
this header.
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10–11 0A–0B 2 Size of the Index
Entry stream, in bytes

The value of these two bytes is the
number of bytes from the beginning of
the Index Entry attached to this header,
to the last byte of the Index Entry.

12 0C 1 Listing Flag See Table A9.15 for values

Construction – Index Entry Data – Index Entry Header Listing Flag = 01h

Table A9.17 Index Entry Data – Listing Flag = 01h.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0 on 0 on 8 Index VCN Virtual Cluster Number in Index for
the Entry data

Construction – Index Entry Data – Index Entry Header Listing Flag <> 01h

Table A9.18 Index Entry Data – Listing Flag <> 01h.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0 on 0 on Varies As Declared Attribute
Type in the Index
Root Attribute proper,
offsets 0–3.

In most cases, for Directories, this will
be an identical layout to a File Name
Attribute Proper as laid out above.

The Index Allocation Attribute (ID = A0 00 00 00h)

As with all Attributes the Index Allocation Attribute proper is preceded by one of the
Attribute Headers of Types 1 to 4 above. This is followed by the Index Allocation
Proper which contains only a series of one or more Data Run Sequences as described
above at Table A9.6 and Fig. A9.1.

Construction of the Index Allocation Proper

Table A9.19 The Index Allocation Attribute Proper.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0 on 0 on Varies Data Run Sequence(s) See Data Run Example at Fig. A9.1
above
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The Bitmap Attribute (ID = B0 00 00 00h)

The Attribute Proper is preceded by one of the Attribute Headers of Types 1 to 4
above.

Table A9.20 The Bitmap Attribute Proper.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0 on 0 on Varies Binary Fields Binary Map of Attribute Space

The Attribute List (ID = 20 00 00 00h)

As with all Attributes, an Attribute List always starts with Standard Header.
Following the header the construction of fields is as follows.

Table A9.21 The Attribute List.

Byte
offset
(dec)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Attribute Identifier A four-byte Identification number,
this is the ID as defined in $AttrDef
for each Attribute type. This value
identifies the layout of the Attribute
following this header.

4–5 04–05 2 Length of Current
Attribute in bytes

The value of these two bytes is the
number of bytes making up the
length of this Attribute, including this
header. It can also be used to calculate
the location of the first byte of the
next Attribute, or End of Record
Marker, by adding this value to the
offset of the first byte of the header.

6 06 1 Length of Name in
Characters
(N = number of bytes
occupied)

Note that in Unicode two bytes are
used to store each character value;
thus a name length of 4 will occupy 8
bytes.

7 07 1 Offset to Start of the
Name of the Attribute,
in bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
Attribute Proper following it. The
offset is calculated by adding this
value to the offset of the first byte of
the header.

8–15 08–0F 8 Starting Virtual
Cluster Number

NTFS uses mapping of Real Clusters
to Virtual Clusters, the value of the
Starting Virtual Cluster should
normally be 00h.
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Byte
offset
(dec)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

16–23 10–17 8 1. Base File Reference
2. Unknown –
possibly an ID
sequence number

This field is used to store a Base File
Reference Number probably in the
first four or six (least significant)
bytes. In this location the number
appears to be a pointer to the record
number which contains the Attribute
being declared in the list. The actual
use of the additional two bytes is
unclear but they do appear to be
identical to the Record Use Sequence
Number of the “parent” record.

24–25 18–19 2 Reportedly an
Attribute ID number
(not confirmed)

May be used for a number of
purposes not yet identified, in
particular as a flag for virus infected/
cleaned files.

26 on 1A on N Name of Attribute in
Unicode (padded to 8
byte boundary)

Note that in Unicode two bytes are
used to store each character value;
thus a name length of 4 will occupy 8
bytes.

INDX Files

This is the construction of the INDX Record Header. It appears at the front of each
“INDX” file. This is followed by one or more Index Entry Header/Index Entry Data
pairs, similar to the latter part of the Index Root Attribute seen above (see Table
A9.12).

Table A9.22 INDX files.

Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

0–3 00–03 4 Identification String
“INDX”

Appears at the head of all INDX
record files.

4–5 04–05 2 Offset to the Update
Sequence Array in
bytes

The value of these two bytes is the
number of bytes from the beginning
of the header to the first byte of the
update sequence array. The offset is
calculated by adding this value to the
offset of the first byte of the header.

6–7 06–07 2 Length of Update
Sequence

The Update Sequence Array is 18
bytes in length for 4096 byte INDX
file.

8–15 08–0F 8 Reportedly the
$Logfile sequence
number (not
confirmed)

Use is not defined, probably used to
index changes in $Logfile
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Byte
offset
(decimal)

Byte
offset
(hex)

Length in
bytes

Use Notes
(where value is mentioned bytes are in little
endian format)

16–23 10–17 8 Virtual Cluster
Number of this
Allocation

The Virtual Cluster Number of this
INDX file in the whole Allocation

24–27 18–1B 4 Offset to first Index
Entry, in bytes

The value of these four bytes is the
number of bytes from the beginning
of this header to the first byte of the
first Index Entry Header. That
location is calculated by adding this
value to the offset of the first byte of
this header.

28–31 1C–1F 4 Total size of Index
Entries, in bytes

The value of these four bytes is the
number of bytes from the beginning
of this header to the last byte of the
FINAL Index Entry.

32–35 20–23 4 The Allocated size of
the Index Entries in
bytes

The amount of space in bytes
allocated for the storage of the Index
Entries

36 24 1 Listing Flag As in Index Header – see Table A9.14

37–39 25–27 3 Padding to 8-byte
Boundary

40–41 28–29 2 The Update Sequence
Array Part 1
The Update Sequence
Number

The number occupying these two
bytes is used as a test value for the
reading of the file. It appears here,
and is seeded into the final two bytes
of each SECTOR of the 4096 byte file.
The data which should occupy these
bytes is placed in the Update
Sequence Array Part 2 in that order.
When a record is read into memory
the value of the Update Sequence
Number is compared against the final
2 bytes of each sector of the file. If a
match is made the read is successful
and the tested bytes in memory are
replaced by the bytes from the Update
Sequence Array Part 2, thus replacing
the seeded values with the correct
ones for the data set required.

42–59 2A–3B 18 The Update Sequence
Array Part 2 – The
Array

These 18 bytes are the bytes from the
final two bytes of each sector of the
file which have been replaced by the
Update Sequence Number for
integrity testing.

60–63 3C–3F 4 Padding to 8-byte
Boundary
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Appendix 10. The Relationship
Between CHS and
LBA Addressing

As we explained in Chapter 5, the ATA-6 (McLean, 2001, p. 21) specification states that
CHS translation is now obsolete, in the following words: “All devices shall support LBA
translation. In standards ATA/ATAPI-5 and earlier, a CHS translation was defined. This
translation is obsolete but may be implemented as defined in ATA/ATAPI-5”.

We list in Chapter 5 a number of reasons why it is essential for forensic computing
analysts to continue to have a good knowledge of both CHS and LBA addressing and
an understanding of the relationship between them. Referring back to the relevant
sections of the ATA-5 (McLean, 1999, pp. 19 and 20) specification we may note the
following statements:

“Logical sectors on the device shall be linearly mapped with the first LBA addressed
sector (sector 0) being the same sector as the first logical CHS addressed sector (cylinder 0,
head 0, sector 1).”

“The following is always true for LBA numbers less than or equal to 16,514,064 for devices
supporting the current CHS translation: LBA = (((cylinder_number * heads_per_
cylinder) + head_number) * sectors_per_track) + sector_number – 1.”

An Illustrative Example

At Fig. A10.1 we show diagrammatically a simplified disk of two platters and hence
four heads (which are labelled 0 to 3) and of two cylinders (which are labelled 0 and
1) that has been divided up into 8 sectors per track (which are labelled 1 to 8). Given
this configuration, the formula for LBA, specified above, may be rewritten as:

LBA = Cylinder [C] × Number of Heads [4] × Number of Sectors per Track [8]
+ Head [H] × Number of Sectors per Track [8]
+ Sector [S] – 1

Using this formula we note that a CHS address of (1, 0, 5) becomes:

LBA = 1 × 4 × 8 = 32
+ 0 × 8 = 0
+ 5 – 1 = 4

= 36
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If we examine the diagram we can see that this is the case. Starting from CHS (0, 0,
1), we know that this is defined as LBA 0. On the diagram we can see that for the
dotted oval C = 0, on the upper surface of the upper platter (head 0) within the arc for
sector 1 there is the number 0, symbolizing LBA 0. As we progress round this oval
(track) in a clockwise direction, we note that within each new sector arc the number
increments by 1 resulting in LBA 1, 2, 3 etc., up to LBA 7. On reaching LBA 7, we have
completed all the sectors on this first, uppermost track and the next step is to switch
to the next head (head 1) which causes us to access the track on the underside of the
upper platter. Continuing in a clockwise direction, we note that for CHS (0, 1, 1) we
are at LBA 8 (the number immediately underneath the 0 of LBA 0).Once again we can
see how continuing round the track, incrementing by 1 through each sector arc, we
access LBA 9, 10, 11 etc., up to LBA 15.

At LBA 15,we have once again completed all the sectors on this second underneath
track and the next step is to switch to the next head (head 2) which causes us to access
the track on the upperside of the lower platter. The first sector of this track is LBA 16
and, as we continue round clockwise, we note that we access in turn LBA 17, 18, 19
etc., up to LBA 23. At LBA 23 we have again accessed all the sectors on this track and
so the next step is to switch to the next and last head (head 3).This causes us to access
the track on the underside of the lower platter and we can see that the first sector
CHS (0, 3, 1) is LBA 24. Now we continue round, accessing in turn, LBA 25, 26, 27 etc.,
up to LBA 31.

By LBA 31 we have utilized all four heads and have thus completed a cylinder. The
next step must be to move the head assembly to the next cylinder position (C = 1)
and start again with the first head (head 0). This is what we see as the second dotted
oval on the uppermost surface of the upper platter.The CHS address (1,0,1) is clearly
LBA 32 and, as we move round clockwise we access LBA 33, 34, 35 etc. Marked with a
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Fig. A10.1 Two disk platters showing the relationship between CHS and LBA addressing.



double arrow line is LBA 36 and it is clear from the diagram that this is CHS (1,0,5) as
we calculated above.
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Appendix 11. Alternate Data
Streams – a Brief
Explanation

Historical Note

During the development of OS/2 in the late 1980s, IBM and Microsoft included
within their new High Performance File System (HPFS) an implementation of forks as
part of the file storage mechanism. These forks were known as extended attributes.
When, in 1993 Microsoft released Windows NT, with the new NTFS filing system, the
use of forks within the file storage system was retained and the facility was renamed
Alternate Data Streams. These streams were designed mainly to allow for metadata,
comprising information about the file, to be added to a file record so that the file
information could also be made available when the file itself is accessed. We will see
how this works in the examples that follow.

Alternate Data Stream in Place of Thumbs.db

In the particular case of Windows 2000, Alternate Data Streams are generated in
place of Thumbs.db files when the “View|Thumbnails” menu item is selected in
Explorer and the file system is NTFS. To demonstrate this, we have taken a sample
from a Windows 2000 NTFS system, and considered a normal .jpg file,
NuggetofGold.jpg, which has not yet been looked at using “View|Thumbnails” in
Explorer. Some of the details reported by Encase are shown at Fig. A11.1.

From the Encase entry, we note that the MFT record number for
NuggetofGold.jpg is 16086 (not shown in Fig. A11.1) and we list at Table A11.1 the
details of that MFT record.
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Table A11.1 Details of MFT record for NuggetofGold.jpg – 16086.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  9C B5 07 DF 00 00 00 00  FILE*...oµ.ß....
00000016   05 00 02 00 30 00 01 00  E0 01 00 00 00 04 00 00  ....0...à.......
00000032   00 00 00 00 00 00 00 00  0B 00 05 00 00 00 00 00  ................
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00  ....`...........
00000064   48 00 00 00 18 00 00 00  00 32 F6 5F 75 43 C2 01  H........2ö_uCÂ.
00000080   00 32 F6 5F 75 43 C2 01  70 A0 06 1C 97 61 C6 01  .2ö_uCÂ.p ..-aÆ.
00000096   70 A0 06 1C 97 61 C6 01  20 00 00 00 00 00 00 00  p ..-aÆ. .......
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0F 01 00 00  ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000144   30 00 00 00 78 00 00 00  00 00 00 00 00 00 0A 00  0...x...........
00000160   5A 00 00 00 18 00 01 00  41 08 00 00 00 00 10 00  Z.......A.......
00000176   00 32 F6 5F 75 43 C2 01  00 32 F6 5F 75 43 C2 01  .2ö_uCÂ..2ö_uCÂ.
00000192   C0 08 BB 1A 97 61 C6 01  C0 08 BB 1A 97 61 C6 01  À.».-aÆ.À.».-aÆ.
00000208   00 A0 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  . ......ÎY......
00000224   20 00 00 00 00 00 00 00  0C 02 4E 00 55 00 47 00   .........N.U.G.
00000240   47 00 45 00 54 00 7E 00  31 00 2E 00 4A 00 50 00  G.E.T.~.1...J.P.
00000256   47 00 2E 00 6A 00 70 00  30 00 00 00 80 00 00 00  G...j.p.0... ...
00000272   00 00 00 00 00 00 09 00  62 00 00 00 18 00 01 00  ........b.......
00000288   41 08 00 00 00 00 10 00  00 32 F6 5F 75 43 C2 01  A........2ö_uCÂ.
00000304   00 32 F6 5F 75 43 C2 01  C0 08 BB 1A 97 61 C6 01  .2ö_uCÂ.À.».-aÆ.
00000320   C0 08 BB 1A 97 61 C6 01  00 A0 02 00 00 00 00 00  À.».-aÆ.. ......
00000336   CE 9F 02 00 00 00 00 00  20 00 00 00 00 00 00 00  ÎY...... .......
00000352   10 01 4E 00 75 00 67 00  67 00 65 00 74 00 6F 00  ..N.u.g.g.e.t.o.
00000368   66 00 47 00 6F 00 6C 00  64 00 2E 00 6A 00 70 00  f.G.o.l.d...j.p.
00000384   67 00 00 00 50 00 00 00  80 00 00 00 50 00 00 00  g...P... ...P...
00000400   01 00 00 00 00 00 04 00  00 00 00 00 00 00 00 00  ................
00000416   29 00 00 00 00 00 00 00  40 00 00 00 00 00 00 00  ).......@.......
00000432   00 A0 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  . ......ÎY......
00000448   CE 9F 02 00 00 00 00 00  31 10 A6 6F 2C 31 10 C5  ÎY......1.¦o,1.Å
00000464   DE 07 31 0A 54 EE F5 00  FF FF FF FF 82 79 47 11  Þ.1.Tîõ.ÿÿÿÿ’yG.

A top-level analysis of the MFT record at Table A11.1 is given below at Table A11.2.
We note that the padding after the file name contains ‘slack’ remnants.

Table A11.2 Top level analysis for NuggetofGold.jpg – 16086.
File Record Header bytes 0 to 47
Standard Information Attribute (Attribute Header) bytes 48 to 71
Standard Information Attribute Proper bytes 72 to 143
File Name Attribute (Attribute Header) bytes 144 to 167
File Name Attribute Proper bytes 168 to 263 (includes

padding at bytes 260–263)
File Name Attribute (Attribute Header) bytes 264 to 287
File Name Attribute Proper bytes 288 to 391 (includes

padding at bytes 386–391)
Data Attribute (Attribute Header) bytes 392 to 455
Data Attribute Proper (data run) bytes 456 to 471 (3 runs of 5

bytes) (includes padding at byte
471)

End of Record Marker bytes 472 on

As can be seen by using the MFT maps provided elsewhere in this book (see
Appendix 9) this record is as expected for a “normal” JPEG image file. As mentioned
above, although the file has been viewed, Explorer has only, so far, been set to the
menu item “View|Details”. If we now change that view by selecting the menu item
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“View|Thumbnails” and using that, access the file NuggetofGold.jpg, the MFT
record automatically gains two ADS streams. We see this from the Encase record,
which now shows two additional streams (see Fig. A11.2).

Examination shows that there is no Thumbs.db file in this folder, and that this has
been replaced by the use of two Alternate Data Streams for each file. The stream at
item 2 above is an identifier; it has no further data associated with it. Experiments
have demonstrated that this identifier does not change between directories or
machines. A thumbnail version of the JPEG file is now specified by the stream
identified by the string “Joudres” within its name. This thumbnail data is non-
resident and is stored elsewhere on the disk. All three entries are seen to bear the
same MFT file identification number. If we now look at the MFT record again, we
note the detail shown at Table A11.3 below.

Table A11.3 Details of MFT record with Alternate Data Streams – 16086.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  45 52 09 DF 00 00 00 00  FILE*...ER.ß....
00000016   05 00 02 00 30 00 01 00  D0 02 00 00 00 04 00 00  ....0...Ð.......
00000032   00 00 00 00 00 00 00 00  12 00 06 00 00 00 00 00  ................
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00  ....`...........
00000064   48 00 00 00 18 00 00 00  00 32 F6 5F 75 43 C2 01  H........2ö_uCÂ.
00000080   00 32 F6 5F 75 43 C2 01  F0 7C BD F9 97 61 C6 01  .2ö_uCÂ.ð|½ù-aÆ.
00000096   F0 7C BD F9 97 61 C6 01  20 00 00 00 00 00 00 00  ð|½ù-aÆ. .......
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0F 01 00 00  ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000144   30 00 00 00 78 00 00 00  00 00 00 00 00 00 0A 00  0...x...........
00000160   5A 00 00 00 18 00 01 00  41 08 00 00 00 00 10 00  Z.......A.......
00000176   00 32 F6 5F 75 43 C2 01  00 32 F6 5F 75 43 C2 01  .2ö_uCÂ..2ö_uCÂ.
00000192   C0 08 BB 1A 97 61 C6 01  C0 08 BB 1A 97 61 C6 01  À.».-aÆ.À.».-aÆ.
00000208   00 A0 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  . ......ÎY......
00000224   20 00 00 00 00 00 00 00  0C 02 4E 00 55 00 47 00   .........N.U.G.
00000240   47 00 45 00 54 00 7E 00  31 00 2E 00 4A 00 50 00  G.E.T.~.1...J.P.
00000256   47 00 2E 00 6A 00 70 00  30 00 00 00 80 00 00 00  G...j.p.0... ...
00000272   00 00 00 00 00 00 09 00  62 00 00 00 18 00 01 00  ........b.......
00000288   41 08 00 00 00 00 10 00  00 32 F6 5F 75 43 C2 01  A........2ö_uCÂ.
00000304   00 32 F6 5F 75 43 C2 01  C0 08 BB 1A 97 61 C6 01  .2ö_uCÂ.À.».-aÆ.
00000320   C0 08 BB 1A 97 61 C6 01  00 A0 02 00 00 00 00 00  À.».-aÆ.. ......
00000336   CE 9F 02 00 00 00 00 00  20 00 00 00 00 00 00 00  ÎY...... .......
00000352   10 01 4E 00 75 00 67 00  67 00 65 00 74 00 6F 00  ..N.u.g.g.e.t.o.
00000368   66 00 47 00 6F 00 6C 00  64 00 2E 00 6A 00 70 00  f.G.o.l.d...j.p.
00000384   67 00 00 00 50 00 00 00  80 00 00 00 50 00 00 00  g...P... ...P...
00000400   01 00 00 00 00 00 04 00  00 00 00 00 00 00 00 00  ................
00000416   29 00 00 00 00 00 00 00  40 00 00 00 00 00 00 00  ).......@.......
00000432   00 A0 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  . ......ÎY......
00000448   CE 9F 02 00 00 00 00 00  31 10 A6 6F 2C 31 10 C5  ÎY......1.¦o,1.Å
00000464   DE 07 31 0A 54 EE F5 00  80 00 00 00 88 00 00 00  Þ.1.Tîõ. ...^...
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00000480   01 1B 40 00 00 00 0F 00  00 00 00 00 00 00 00 00  ..@.............
00000496   01 00 00 00 00 00 00 00  78 00 00 00 00 00 06 00  ........x.......
00000512   00 20 00 00 00 00 00 00  28 1A 00 00 00 00 00 00  . ......(.......
00000528   28 1A 00 00 00 00 00 00  05 00 51 00 33 00 30 00  (.........Q.3.0.
00000544   6C 00 73 00 6C 00 64 00  78 00 4A 00 6F 00 75 00  l.s.l.d.x.J.o.u.
00000560   64 00 72 00 65 00 73 00  78 00 41 00 61 00 61 00  d.r.e.s.x.A.a.a.
00000576   71 00 70 00 63 00 61 00  77 00 58 00 63 00 63 00  q.p.c.a.w.X.c.c.
00000592   31 01 EF 74 33 21 01 11  0B 00 00 00 FF FF FF FF  1.ït3!......ÿÿÿÿ
00000608   80 00 00 00 68 00 00 00  00 26 18 00 00 00 0B 00  ...h....&......
00000624   00 00 00 00 68 00 00 00  7B 00 34 00 63 00 38 00  ....h...{.4.c.8.
00000640   63 00 63 00 31 00 35 00  35 00 2D 00 36 00 63 00  c.c.1.5.5.-.6.c.
00000656   31 00 65 00 2D 00 31 00  31 00 64 00 31 00 2D 00  1.e.-.1.1.d.1.-.
00000672   38 00 65 00 34 00 31 00  2D 00 30 00 30 00 63 00  8.e.4.1.-.0.0.c.
00000688   30 00 34 00 66 00 62 00  39 00 33 00 38 00 36 00  0.4.f.b.9.3.8.6.
00000704   64 00 7D 00 00 00 00 00  FF FF FF FF 82 79 47 11  d.}.....ÿÿÿÿ’yG.

A top level analysis of the MFT record at Table A11.3 is given below at Table A11.4.

Table A11.4 Top level analysis for NuggetofGold.jpg with Alternate Data Streams – 16086.
File Record Header bytes 0 to 47
Standard Information Attribute (Attribute Header) bytes 48 to 71
Standard Information Attribute Proper bytes 72 to 143
File Name Attribute (Attribute Header) bytes 144 to 167
File Name Attribute Proper bytes 168 to 263 (includes

padding at bytes 260–263)
File Name Attribute (Attribute Header) bytes 264 to 287
File Name Attribute Proper bytes 288 to 391 (includes

padding at bytes 386–391)
Data Attribute (Attribute Header) bytes 392 to 455
Data Attribute Proper (data run) bytes 456 to 471 (3 runs of 5

bytes) (includes padding at byte
471)

Data Attribute (Attribute Header) bytes 472 to 591 (includes
padding at bytes 589–590)

Data Attribute Proper (data run) bytes 592 to 607 (includes
padding at bytes 601 to 607)

Data Attribute (Attribute Header) bytes 608 to 707 (Resident, no
data!)

Padding bytes 708 to 711
End of Record Marker bytes 712 on

We note that the record is identical to the point where the original record data ends.
Two new data attributes have been added, the first of which includes the data run for
the thumbnail. The second is only a header as no data exists to append to it.

Further Use of Alternate Data Streams

If we access the file in Explorer and right-click on it to obtain the Properties window
we see the display shown at Fig. A11.3.

We note that some details are extracted by Explorer from the directory entry,some
details in the Properties window are extracted from the file itself and some brief
details are shown in the bottom bar.
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If we now use the Properties window to add some further detail as shown at Fig.
A11.4 and we then view the results in Explorer,we see the display shown at Fig.A11.5.

We can see in Fig. A11.5 that the new detail entered now appears in the bottom bar.
This material has not been added to the file itself; rather, two further Alternate Data
Streams have been generated.We see this in the Encase view of the file at Fig.A11.6.

Examination of the streams shows that “SummaryInformation” contains the
details, in text form, from the fields Title, Subject, Author, Keywords and Comments,
and that “DocumentSummaryInformation”contains details from the Category field.

Hiding a Picture (or Other Item)

It is quite simple for users to add their own Alternate Data Streams without using the
Properties window. In order to add a “hidden” picture image to this record, which is
accessible via the original “Nugget of Gold”picture, a new Alternate Data Stream can
be readily inserted. Given that a file hiddenpic1.jpg has been created, its contents
are simply added by using a command line as follows:

notepad [Path]hiddenpic1.jpg>[Path]nuggetofgold.jpg:hiddenpic1.jpg
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Note that there is one space only in this command line, immediately after the word
notepad and that [Path] is the full pathname to the files. We can see in Encase that
another ADS,NuggetofGold.jpg^ hiddenpic1.jpg, has been added to the list (see
Fig. A11.7).

We now look at what has happened in the MFT record as a result of these changes
(see Table A11.5).
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Figure A11.4 Adding file properties.

Fig. A11.5 Effect of added properties.

Fig. A11.6 Encase view of added properties.



Table A11.5 Details of MFT record as a result of changes – 16086.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  D2 99 12 DF 00 00 00 00  FILE*...ÒT.ß....
00000016   05 00 02 00 30 00 01 00  60 03 00 00 00 04 00 00  ....0...`.......
00000032   00 00 00 00 00 00 00 00  27 00 08 00 61 00 00 00  ........’...a...
00000048   10 00 00 00 60 00 00 00  00 00 00 00 00 00 00 00  ....`...........
00000064   48 00 00 00 18 00 00 00  00 32 F6 5F 75 43 C2 01  H........2ö_uCÂ.
00000080   D0 3D 23 1D 9A 61 C6 01  A0 1B 3C 96 A0 61 C6 01  Ð=#.saÆ. .<- aÆ.
00000096   30 32 17 3A A0 61 C6 01  20 00 00 00 00 00 00 00  02.: aÆ. .......
00000112   00 00 00 00 00 00 00 00  00 00 00 00 0F 01 00 00  ................
00000128   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000144   20 00 00 00 18 02 00 00  00 00 00 00 00 00 1A 00   ...............
00000160   00 02 00 00 18 00 00 00  10 00 00 00 20 00 00 1A  ............ ...
00000176   00 00 00 00 00 00 00 00  D6 3E 00 00 00 00 05 00  ........Ö>......
00000192   00 00 02 0E 47 73 74 68  30 00 00 00 20 00 00 1A  ....Gsth0... ...
00000208   00 00 00 00 00 00 00 00  D6 3E 00 00 00 00 05 00  ........Ö>......
00000224   0A 00 02 0D 47 6C 61 35  30 00 00 00 20 00 00 1A  ....Gla50... ...
00000240   00 00 00 00 00 00 00 00  04 3F 00 00 00 00 05 00  .........?......
00000256   00 00 00 00 A8 22 6B E2  80 00 00 00 20 00 00 1A  ....@”kâ ... ...
00000272   00 00 00 00 00 00 00 00  04 3F 00 00 00 00 05 00  .........?......
00000288   01 00 01 00 01 00 00 00  80 00 00 00 50 00 1B 1A  ........ ...P...
00000304   00 00 00 00 00 00 00 00  04 3F 00 00 00 00 05 00  .........?......
00000320   06 00 05 00 44 00 6F 00  63 00 75 00 6D 00 65 00  ....D.o.c.u.m.e.
00000336   6E 00 74 00 53 00 75 00  6D 00 6D 00 61 00 72 00  n.t.S.u.m.m.a.r.
00000352   79 00 49 00 6E 00 66 00  6F 00 72 00 6D 00 61 00  y.I.n.f.o.r.m.a.
00000368   74 00 69 00 6F 00 6E 00  80 00 00 00 50 00 1B 1A  t.i.o.n. ...P...
00000384   00 00 00 00 00 00 00 00  04 3F 00 00 00 00 05 00  .........?......
00000400   03 00 05 00 51 00 33 00  30 00 6C 00 73 00 6C 00  ....Q.3.0.l.s.l.
00000416   64 00 78 00 4A 00 6F 00  75 00 64 00 72 00 65 00  d.x.J.o.u.d.r.e.
00000432   73 00 78 00 41 00 61 00  61 00 71 00 70 00 63 00  s.x.A.a.a.q.p.c.
00000448   61 00 77 00 58 00 63 00  80 00 00 00 40 00 13 1A  a.w.X.c. ...@...
00000464   00 00 00 00 00 00 00 00  04 3F 00 00 00 00 05 00  .........?......
00000480   04 00 05 00 53 00 75 00  6D 00 6D 00 61 00 72 00  ....S.u.m.m.a.r.
00000496   79 00 49 00 6E 00 66 00  6F 00 72 00 6D 00 08 00  y.I.n.f.o.r.m...
00000512   74 00 69 00 6F 00 6E 00  80 00 00 00 38 00 0E 1A  t.i.o.n. ...8...
00000528   00 00 00 00 00 00 00 00  D6 3E 00 00 00 00 05 00  ........Ö>......
00000544   26 00 68 00 69 00 64 00  64 00 65 00 6E 00 70 00  &.h.i.d.d.e.n.p.
00000560   69 00 63 00 31 00 2E 00  6A 00 70 00 67 00 00 00  i.c.1...j.p.g...
00000576   80 00 00 00 68 00 26 1A  00 00 00 00 00 00 00 00  ...h.&.........
00000592   04 3F 00 00 00 00 05 00  05 00 7B 00 34 00 63 00  .?........{.4.c.
00000608   38 00 63 00 63 00 31 00  35 00 35 00 2D 00 36 00  8.c.c.1.5.5.-.6.
00000624   63 00 31 00 65 00 2D 00  31 00 31 00 64 00 31 00  c.1.e.-.1.1.d.1.
00000640   2D 00 38 00 65 00 34 00  31 00 2D 00 30 00 30 00  -.8.e.4.1.-.0.0.
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Fig. A11.7 Encase view of another ADS.



00000656   63 00 30 00 34 00 66 00  62 00 39 00 33 00 38 00  c.0.4.f.b.9.3.8.
00000672   36 00 64 00 7D 00 B2 E2 30  00 00 00 78 00 00 00  6.d.}.²â0...x...
00000688   00 00 00 00 00 00 0A 00 5A  00 00 00 18 00 01 00  ........Z.......
00000704   41 08 00 00 00 00 10 00 00  32 F6 5F 75 43 C2 01  A........2ö_uCÂ.
00000720   00 32 F6 5F 75 43 C2 01 C0  08 BB 1A 97 61 C6 01  .2ö_uCÂ.À.».-aÆ.
00000736   C0 08 BB 1A 97 61 C6 01 00  A0 02 00 00 00 00 00  À.».-aÆ.. ......
00000752   CE 9F 02 00 00 00 00 00 20  00 00 00 00 00 00 00  ÎY...... .......
00000768   0C 02 4E 00 55 00 47 00 47  00 45 00 54 00 7E 00  ..N.U.G.G.E.T.~.
00000784   31 00 2E 00 4A 00 50 00 47  00 2E 00 6A 00 70 00  1...J.P.G...j.p.
00000800   80 00 00 00 38 00 00 00 00  0E 18 00 00 00 26 00  ...8.........&.
00000816   00 00 00 00 38 00 00 00 68  00 69 00 64 00 64 00  ....8...h.i.d.d.
00000832   65 00 6E 00 70 00 69 00 63  00 31 00 2E 00 6A 00  e.n.p.i.c.1...j.
00000848   70 00 67 00 00 00 00 00 FF  FF FF FF 80 00 00 00  p.g.....ÿÿÿÿ ...

A top-level analysis of the MFT record at Table A11.5 is given at Table A11.6.

Table A11.6 Top level analysis for NuggetofGold.jpg as a result of changes – 16086.
File Record Header bytes 0 to 47
Standard Information Attribute (Attribute Header) bytes 48 to 71
Standard Information Attribute Proper bytes 72 to 143
Attribute List (Attribute Header) bytes 144 to 167
Attribute List Proper bytes 168 to 679
Includes: SIA bytes 168 to 199 [D6 3E=16086]
File Name bytes 200 to 231 [D6 3E=16086]
File Name bytes 232 to 263 [04 3F = 16132]
Data bytes 264 to 295 [04 3F = 16132]
Data bytes 296 to 375 [04 3F = 16132]
Data bytes 376 to 455 [04 3F = 16132]
Data bytes 456 to 519 [04 3F = 16132]
Data bytes 520 to 575 [D6 3E=16086]
Data bytes 576 to 679 [04 3F = 16132]
File Name Attribute (Attribute Header) bytes 680 to 703
File Name Attribute Proper bytes 704 to 799 (includes

padding at bytes 794–799)
Data Attribute (Attribute Header) bytes 800 to 855 (no data!)

(includes padding at bytes 852 to
855)

End of Record Marker bytes 856 on

In this instance, we have added to Table A11.6 the record pointers from within the
Attribute List and these are 16086 (this MFT record) and 16132. Things have now got
a little bit complicated. The original MFT record (16086) can no longer hold all of the
attributes for this file, so a further MFT record has had to be created as record
number 16132. The pointers indicate that now one File Name Attribute and one Data
Attribute are in record 16086 and that one File Name Attribute and five Data
Attributes are in record 16132. Our detailed analysis shows that this is correct.

Having examined MFT record 16086 at Table A11.5 above, we now look at MFT
record 16132 at Table A11.7:

Table A11.7 Details of new MFT record as a result of changes – 16132.
Offset      0  1  2  3  4  5  6  7   8  9 10 11 12 13 14 15
00000000   46 49 4C 45 2A 00 03 00  60 21 1E DF 00 00 00 00  FILE*...`!.ß....
00000016   05 00 00 00 30 00 01 00  E0 02 00 00 00 04 00 00  ....0...à.......
00000032   D6 3E 00 00 00 00 05 00  07 00 0A 00 04 00 00 00  Ö>..............
00000048   30 00 00 00 80 00 00 00  00 00 00 00 00 00 00 00  0... ...........
00000064   62 00 00 00 18 00 01 00  41 08 00 00 00 00 10 00  b.......A.......
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00000080   00 32 F6 5F 75 43 C2 01  00 32 F6 5F 75 43 C2 01  .2ö_uCÂ..2ö_uCÂ.
00000096   C0 08 BB 1A 97 61 C6 01  C0 08 BB 1A 97 61 C6 01  À.».-aÆ.À.».-aÆ.
00000112   00 A0 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  . ......ÎY......
00000128   20 00 00 00 00 00 00 00  10 01 4E 00 75 00 67 00   .........N.u.g.
00000144   67 00 65 00 74 00 6F 00  66 00 47 00 6F 00 6C 00  g.e.t.o.f.G.o.l.
00000160   64 00 2E 00 6A 00 70 00  67 00 00 00 50 00 00 00  d...j.p.g...P...
00000176   80 00 00 00 50 00 00 00  01 00 00 00 00 00 01 00  ...P...........
00000192   00 00 00 00 00 00 00 00  29 00 00 00 00 00 00 00  ........).......
00000208   40 00 00 00 00 00 00 00  00 A0 02 00 00 00 00 00  @........ ......
00000224   CE 9F 02 00 00 00 00 00  CE 9F 02 00 00 00 00 00  ÎY......ÎY......
00000240   31 10 A6 6F 2C 31 10 C5  DE 07 31 0A 54 EE F5 00  1.¦o,1.ÅÞ.1.Tîõ.
00000256   80 00 00 00 80 00 00 00  01 1B 40 00 00 00 06 00  ... .....@.....
00000272   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000288   78 00 00 00 00 00 00 00  00 10 00 00 00 00 00 00  x...............
00000304   7C 00 00 00 00 00 00 00  7C 00 00 00 00 00 00 00  |.......|.......
00000320   05 00 44 00 6F 00 63 00  75 00 6D 00 65 00 6E 00  ..D.o.c.u.m.e.n.
00000336   74 00 53 00 75 00 6D 00  6D 00 61 00 72 00 79 00  t.S.u.m.m.a.r.y.
00000352   49 00 6E 00 66 00 6F 00  72 00 6D 00 61 00 74 00  I.n.f.o.r.m.a.t.
00000368   69 00 6F 00 6E 00 63 00  31 01 2C 6F 28 00 00 00  i.o.n.c.1.,o(...
00000384   80 00 00 00 80 00 00 00  01 1B 40 00 00 00 03 00  ... .....@.....
00000400   00 00 00 00 00 00 00 00  01 00 00 00 00 00 00 00  ................
00000416   78 00 00 00 00 00 00 00  00 20 00 00 00 00 00 00  x........ ......
00000432   28 1A 00 00 00 00 00 00  28 1A 00 00 00 00 00 00  (.......(.......
00000448   05 00 51 00 33 00 30 00  6C 00 73 00 6C 00 64 00  ..Q.3.0.l.s.l.d.
00000464   78 00 4A 00 6F 00 75 00  64 00 72 00 65 00 73 00  x.J.o.u.d.r.e.s.
00000480   78 00 41 00 61 00 61 00  71 00 70 00 63 00 61 00  x.A.a.a.q.p.c.a.
00000496   77 00 58 00 63 00 63 00  31 02 BE 68 2E 00 0A 00  w.X.c.c.1.#h....
00000512   80 00 00 00 70 00 00 00  01 13 40 00 00 00 04 00  ...p.....@.....
00000528   00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000544   68 00 00 00 00 00 00 00  00 10 00 00 00 00 00 00  h...............
00000560   1C 01 00 00 00 00 00 00  1C 01 00 00 00 00 00 00  ................
00000576   05 00 53 00 75 00 6D 00  6D 00 61 00 72 00 79 00  ..S.u.m.m.a.r.y.
00000592   49 00 6E 00 66 00 6F 00  72 00 6D 00 61 00 74 00  I.n.f.o.r.m.a.t.
00000608   69 00 6F 00 6E 00 61 00  31 01 A9 67 28 00 00 00  i.o.n.a.1.©g(...
00000624   80 00 00 00 68 00 00 00  00 26 18 00 00 00 05 00  ...h....&......
00000640   00 00 00 00 68 00 00 00  7B 00 34 00 63 00 38 00  ....h...{.4.c.8.
00000656   63 00 63 00 31 00 35 00  35 00 2D 00 36 00 63 00  c.c.1.5.5.-.6.c.
00000672   31 00 65 00 2D 00 31 00  31 00 64 00 31 00 2D 00  1.e.-.1.1.d.1.-.
00000688   38 00 65 00 34 00 31 00  2D 00 30 00 30 00 63 00  8.e.4.1.-.0.0.c.
00000704   30 00 34 00 66 00 62 00  39 00 33 00 38 00 36 00  0.4.f.b.9.3.8.6.
00000720   64 00 7D 00 00 00 00 00  FF FF FF FF 82 79 47 11  d.}.....ÿÿÿÿ’yG.

A top level analysis of the MFT record at Table A11.7 is given below at Table A11.8.

Table A11.8 Top level analysis for NuggetofGold.jpg as a result of changes – 16132.
File Record Header bytes 0 to 47
File Name Attribute (Attribute Header) bytes 48 to 71
File Name Attribute Proper bytes 72 to 175 (includes padding at bytes

170–175)
Data Attribute (Attribute Header) bytes 176 to 239
Data Attribute Proper (data run) bytes 240 to 255 (3 runs of 5 bytes)

(includes padding at byte 255)
Data Attribute (Attribute Header) bytes 256 to 375 (includes padding at byte

374–375)
Data Attribute Proper (data run) bytes 376 to 383 (1 runs of 5 bytes)

(includes padding at byte 381–383)
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Data Attribute (Attribute Header) bytes 384 to 503 (includes padding at byte
501–502)

Data Attribute Proper (data run) bytes 504 to 511 (1 runs of 5 bytes)
(includes padding at byte 509–511)

Data Attribute (Attribute Header) bytes 512 to 615 (includes padding at byte
614–615)

Data Attribute Proper (data run) bytes 616 to 623 (1 runs of 5 bytes)
(includes padding at byte 621–623)

Data Attribute (Attribute Header) bytes 624 to 727 (no data!) (includes
padding at byte 724–727)

End of Record Marker bytes 728 on

Note that even though entries are made in the second MFT record all references to
the items are directed to the “parent” record, number 16086. It is this number that
appears in Encase against each reference.
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Answers to Exercises

Chapter 2

2.1 (a) 01010111 01110110
(1) 30295
(2) +30295
(3) 22390
(4) +22390
(5) +87 and +118
(6) 87.4609375
(7) 5776
(8) 5776
(9) W v

(b) 10000000 01111111
(1) 32640
(2) +32640
(3) 32895
(4) –32641
(5) –128 and +127
(6) 128.49609375
(7) 807?
(8) 807F
(9) ? ?

(c) 01000110 01011001
(1) 22854
(2) +22854
(3) 18009
(4) +18009
(5) +70 and +89
(6) 70.34765625
(7) 4659
(8) 4659
(9) F Y

(d) 0000101 10001000
(1) 34821
(2) –30715
(3) 1416
(4) +1416
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(5) +5 and –120
(6) 5.53125
(7) 0588
(8) 0588
(9) ? ?

(e) 00110111 10011001
(1) 39223
(2) –26313
(3) 14233
(4) +14233
(5) +55 and –103
(6) 55.59765625
(7) 3799
(8) 3799
(9) 7 ?

(f) 01110010 00111111
(1) 16242
(2) +16242
(3) 29247
(4) +29247
(5) +114 and +63
(6) 114.24609375
(7) 723?
(8) 723F
(9) r ?

(g) 10010001 01000010
(1) 17041
(2) +17041
(3) 37186
(4) –28350
(5) –111 and +66
(6) 145.2578125
(7) 9142
(8) 9142
(9) ? B

(h) 01010101 01100001
(1) 24917
(2) +24917
(3) 21857
(4) +21857
(5) +85 and +97
(6) 85.37890625
(7) 5561
(8) 5561
(9) U a

2.2 (a) 01000011 01111111
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(b) 00011000 10101011
(c) 01000010 01111010
(d) 00011001 00000100
(e) 01001010 00001100
(f) 11011111 11001000
(g) 11111100 11000100
(h) 01100111 11000000

2.3 (a) 01000001 01000000 00000000 00000000
(b) 01000001 10000000 00000000 00000000
(c) 01000010 11111110 00000000 00000000
(d) 11000010 11111110 00000000 00000000

2.4 (a) +24.75
(b) –24.75
(c) +1986.0
(d) –5025.0

2.5 (a) This is confirmed as a graphics file of GIF format by the file signature
“GIF89a” at address 00H to 05H.
(b) The image width is at address 06H of value 80 02 which in little endian
becomes 0280H and is equal to 640 in decimal. Similarly, the image height is at
address 08H of value e0 01 which in little endian becomes 01e0H and is equal to
480 in decimal.
(c) This is a colour image. The global colour table starts at address 0dH and
although the first triple is 00 00 00, the second is 80 00 00 which, because all
values are not the same, is not a grey-scale value.

Chapter 3

3.1 Table 3A.1 is the finger check table for Question 1.The counter register starts at
31, referring to the instruction “load 07”and the execution of this results in the
gp register being set to 03H. Meanwhile, the counter register has been stepped
to 33. The next instruction, at 33, is “add 07” and the result of this execution is
that 03H is added to 03H in the gp register giving 06H. Again, the counter
register has been stepped, now to 35, and so the instruction “add 07” is
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Counter register Doing Using code gp Address

Code Action 07 08

31 01 load 07 03 03 01

33 04 add 07 06 03 01

35 04 add 07 09 03 01

37 02 store 08 09 03 09

39

Table 3A.1 Finger check of Exercise 3.1.



executed, resulting once again in 03H being added to the gp register now to
give 09H. Again, the counter register has been stepped, now to 37, and so the
instruction “store 08” is executed. This results in the value in the gp register,
09H, being put into memory address 8. The counter register is now at 39, where
we leave the example.The overall effect of this sequence is to multiply the value
in address 07 by 3 (using successive addition) and to place the result in address
08.

3.2 Below is listed the complete finger check table for this code and data sequence:
As can be seen, the final value of memory address 09 is 08. The sequence in
memory address 09 is seen to be: 2, 3, 5, 8 ... which is the Fibonacci number
sequence.
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Counter register Doing Using code gp Address

Code Action 05 06 07 08 09 0a

31 01 load 05 04 04 00 01 01 00 01
33 02 store 06 04 04 04 01 01 00 01
35 01 load 07 01 04 04 01 01 00 01
37 04 add 08 02 04 04 01 01 00 01
39 02 store 09 02 04 04 01 01 02 01
3b 01 load 08 01 04 04 01 01 02 01
3d 02 store 07 01 04 04 01 01 02 01
3f 01 load 09 02 04 04 01 01 02 01
41 02 store 08 02 04 04 01 02 02 01
43 01 load 06 04 04 04 01 02 02 01
45 05 subtract 0a 03 04 04 01 02 02 01
47 02 store 06 03 04 03 01 02 02 01
49 08 jbnz 16 03 04 03 01 02 02 01
4b–16=35 01 load 07 01 04 03 01 02 02 01
37 04 add 08 03 04 03 01 02 02 01
39 02 store 09 03 04 03 01 02 03 01
3b 01 load 08 02 04 03 01 02 03 01
3d 02 store 07 02 04 03 02 02 03 01
3f 01 load 09 03 04 03 02 02 03 01
41 02 store 08 03 04 03 02 03 03 01
43 01 load 06 03 04 03 02 03 03 01
45 05 subtract 0a 02 04 03 02 03 03 01
47 02 store 06 02 04 02 02 03 03 01
49 08 jbnz 16 02 04 02 02 03 03 01
4b–16=35 01 load 07 02 04 02 02 03 03 01
37 04 add 08 05 04 02 02 03 03 01
39 02 store 09 05 04 02 02 03 05 01
3b 01 load 08 03 04 02 02 03 05 01
3d 02 store 07 03 04 02 03 03 05 01
3f 01 load 09 05 04 02 03 03 05 01
41 02 store 08 05 04 02 03 05 05 01
43 01 load 06 02 04 02 03 05 05 01
45 05 subtract 0a 01 04 02 03 05 05 01
47 02 store 06 01 04 01 03 05 05 01
49 08 jbnz 16 01 04 01 03 05 05 01
4b–16=35 01 load 07 03 04 01 03 05 05 01
37 04 add 08 08 04 01 03 05 05 01
39 02 store 09 08 04 01 03 05 08 01



3.3 The program code and data segments for Exercise 3.3 are as shown in Fig.3A.1.

For completeness, the finger check table for the above example is also shown as
follows:
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Counter register Doing Using code gp Address

Code Action 05 06 07 08 09 0a

31 01 load 05 03 03 07 00 00 01 00
33 02 store 08 03 03 07 00 03 01 00
35 01 load 0a 00 03 07 00 03 01 00
37 02 store 07 00 03 07 00 03 01 00
39 01 load 07 00 03 07 00 03 01 00
3b 04 add 06 07 03 07 00 03 01 00
3d 02 store 07 07 03 07 07 03 01 00
3f 01 load 08 03 03 07 07 03 01 00
41 05 subtract 09 02 03 07 07 03 01 00
43 02 store 08 02 03 07 07 02 01 00
45 08 jbnz 0e 02 03 07 07 02 01 00
47–0e=39 01 load 07 07 03 07 07 02 01 00
3b 04 add 06 0e 03 07 07 02 01 00
3d 02 store 07 0e 03 07 0e 02 01 00

3b 01 load 08 05 04 01 03 05 08 01
3d 02 store 07 05 04 01 05 05 08 01
3f 01 load 09 08 04 01 05 05 08 01
41 02 store 08 08 04 01 05 08 08 01
43 01 load 06 01 04 01 05 08 08 01
45 05 subtract 0a 00 04 01 05 08 08 01
47 02 store 06 00 04 00 05 08 08 01
49 08 jbnz 16 00 04 00 05 08 08 01
4b

Memory
address

Memory
address

ValueDoing
code

Using
code

31 01 05
33 02 08
35 01 0a
37 02 07
39 01 07
3b 04 06
3d 02 07
3f 01 08
41 05 09
43 02 08
45 08 0e
47

05 03
06 07
07 00
08 00
09 01
0a 00

program data

Fig. 3A.1 Program and data for Exercise 3.3.



As can be seen, the value in memory address 07 is 15H,which is 21 decimal,and
this is the result of multiplying 7 by 3.

Chapter 5

5.1 From Fig. 5A.1 it can be seen that the RLL encoded signal forms the three RLL
chunks 0010, 11, and 0010 resulting in the binary code 0 0101 1001 0. This is the
hexadecimal value 59h with leading and trailing zeros, as was used in the
example of Fig. 5.6. 59h is the ASCII code for the character “Y”. Also shown in
the diagram is the equivalent MFM encoding.

5.2 The three byte capacities of Fig. 5A.2 are calculated as follows: for “Hardware”
2097 × 16 × 63 × 512 = 1 082 253 312; for “DOS” 524 × 64 × 63 × 512 =
1 081 737 216; and for “Current”, the same as “Hardware”. The LBA mode
number of sectors is calculated from 2097 × 16 × 63 = 2 113 776.The translated
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Counter register Doing Using code gp Address

Code Action 05 06 07 08 09 0a

3f 01 load 08 02 03 07 0e 02 01 00
41 05 subtract 09 01 03 07 0e 02 01 00
43 02 store 08 01 03 07 0e 01 01 00
45 08 jbnz 0e 01 03 07 0e 01 01 00
47–0e=39 01 load 07 0e 03 07 0e 01 01 00
3b 04 add 06 15 03 07 0e 01 01 00
3d 02 store 07 15 03 07 15 01 01 00
3f 01 load 08 01 03 07 15 01 01 00
41 05 subtract 09 00 03 07 15 01 01 00
43 02 store 08 00 03 07 15 00 01 00
45 08 jbnz 0e 00 03 07 15 01 01 00
47

Flux density

MFM encoding

Flux density

RLL encoding

Chunk 0010 Chunk 11 Chunk 0010

0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Clock bits
Data bits

Fig. 5A.1 Results for Exercise 5.1.



number of sectors accessible is 524 × 64 × 63 = 2 112 768 resulting in a loss of
1008 sectors.

5.3 Given a Logical Block Address of 1,045,721 for a disk which has 16 heads and 63
sectors per track, the values of the equivalent CHS address are calculated as
follows:

C = 1,045,721/(16 × 63) = 1037

H = (1,045,721 mod (16 × 63))/63 = 425/63 = 6

S = ((1,045,721 mod (16 × 63)) mod 63) + 1 = (425 mod 63) +1 = 47 + 1 = 48

The LBA address is calculated from the CHS address as follows:

LBA = (1037 × 16 × 63) + 6 × 63 + 48 – 1 = 1,045,296 + 378 + 47 = 1,045,721

5.4 The Seagate ST38410A hard disk drive is marked C 8391, H 16, S 63 and
therefore has a total number of sectors of 8391 × 16 × 83 = 8,458,128.
(a) Standard bit shifting requires the smallest power of two divided into the C

value that gives C < 1024. In this case that is 16, resulting in translated
values of C = 8391/16 = 524, H = 16 × 16 = 256, and S = 63. The total
number of translated sectors is 524 × 256 × 63 = 8,451,072.

(b) Revised ECHS is used when there are problems with H values of 256 (as in
this case).Cylinders are first multiplied by 16/15 to give C = 8391 × 16/15 =
8950 and heads are set H = 15. The revised cylinder values are then
divided, as before, by the smallest power of two that gives C < 1024. Again
this is 16, resulting in translated values of C = 8950/16 = 559, H = 15 × 16 =
240, and S = 63. The total number of translated sectors is 559 × 240 × 63 =
8,452,080.

(c) Revised LBA Assisted requires the total disk capacity to be determined as
8391 × 16 × 63 × 512 = 4,330,561,536,and this when divided by 1024 × 1024
= 4129.95 Mbyte.This value is then looked up in Table 5.12,where it is seen
to fall within the entry 4032 < cap < 8032.5 Mbyte. As a result, C =
4,330,561,536/(63 × 255 × 512) = 526,H = 255,and S =63.The total number
of translated sectors is 526 × 255 × 63 = 8,450,190.

5.5 The meaning of the second entry in the partition table at Fig. 5.26 is as follows.
At 1ceh the value 00h identifies this as a non active partition. The following
three bytes, at 1cfh to 1d1h, describe the starting CHS address of this active
partition as cylinders 256, heads 0, sectors 1, in the following way:
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Drive: QUANTUM Pioneer SG 1.0A Port: Primary (01F0h)
Hardware DOS Current Max ECC: 4 bytes

Cylinders: 2097 524 2097
Heads: 16 64 16

Sectors: 63 63 63
Capacity: 1,082,253,312 1,081,737,216 1,082,253,312

LBA Mode: Yes 2113776

Fig. 5A.2 Results for Exercise 5.2.



Address Value Interpretation Result

1cfh 00h = 00000000 = heads = 0 H
1d0h 41h = 00000001 = sectors = 1 S

= 0001 = cylinders
1d1h 00h = 0000000000 = cylinders = 256 C

At 1d2h we note that the partition type is 05h, which is an extended DOS
partition. Then the three bytes at 1d3h to 1d5h describe the CHS address of the
end of the partition as cylinders 522, heads 63 and sectors 63 in the following
way:

Address Value Interpretation Result

1d3h 3fh = 00111111 = heads = 63 H
1d4h bfh = 00111111 = sectors = 63 S

= 0010 = cylinders
1d5h 0ah = 0000001010 = cylinder = 522 C

Starting at 1d6h we have the four bytes of the LBA address as 00 c0 0f 00.
Recalling that this number is held in little endian format,we reorder these to be
00 0f c0 00 and calculate the number as fc000h = LBA 1 032 192. Similarly, at
1dah we have the four bytes of the partition size as 40 6d 10 00 and again,
reordering these results in 00 10 6d 40 which is 106d40h = 1 076 544 sectors.
With a sector size of 512 bytes this gives us 1 076 544 × 512/(1024 × 1024) =
525.65 Mbyte. These results are confirmed by the EXTEND entry in Fig. 5.27.

5.6 At offsets a0–a7h of Fig. 5.38 is the directory filename SUB1 padded out with
spaces and at offsets a8–aah are a further three spaces for the directory
extension. At offset abh is the file attributes byte of value 10h and this repre-
sents a subdirectory entry. Offsets ac–b1h are not used and are set to 00h.
However, at offsets b2–b3h is the last access date of 270fh in little endian. In
binary this is 0010 0111 0000 1111 and when divided up as in Fig. 5.37 this is
equivalent to 0010011 years from 1980, 1000 number of month, and 01111 day
of month,giving us 1999/8/15.At offsets b6–b7h is the time of the last update as
5020h. In binary this is 0101 0000 0010 0000 and when divided up as in figure
5.36, this is equivalent to 01010 hours, 000001 minutes, and 00000 × 2 seconds
giving us 10:01:00. Similarly, the date of the last update is at offsets b8–b9h and
is again 270fh in little endian, resulting in a date of 1999/8/15. At offsets
1ba–bbh is the first cluster number in little endian, that is 001b, which is 27 in
decimal, and finally, at offsets bc–bfh is the file size of 0.

5.7 Name: THISIS~1TXT

1st char T 01010100
rotate 00101010
char H 01001000
sum 01110010

-------------------------
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rotate 00111001
char I 01001001
sum 10000010

-------------------------
rotate 01000001
char S 01010011
sum 10010100

-------------------------
rotate 01001010
char I 01001001
sum 10010011

-------------------------
rotate 11001001
char S 01010011
sum 00011100

-------------------------
rotate 00001110
char ~ 01111110
sum 10001100

-------------------------
rotate 01000110
char 1 00110001
sum 01110111

-------------------------
rotate 10111011
char T 01010100
sum 00001111

-------------------------
rotate 10000111
char X 01011000
sum 11011111

-------------------------
rotate 11101111
char T 01010100
sum 01000011 = 43h

-------------------------

5.8 The additional time and date fields start at offset cch with the reserved byte
00h. At offset cdh is the 10 millisecond units past creation time of 5ch which is
equivalent to decimal 92, giving 920 milliseconds. At offsets ce–cfh is the file
creation time of 5297h in little endian. In binary this is 0101 0010 1001 0111 and
when divided up as in Fig. 5.37 this is equivalent to 01010 hours, 010100
minutes, and 10111 × 2 seconds, giving us 10:20:46. Similarly the creation date
is at offsets d0–d1h and is 270fh in little endian. In binary this is 0010 0111 0000
1111, and when divided up as in Fig. 5.37 this is equivalent to 0010011 years
from 1980, 1000 number of month, and 01111 day of month, giving us 1999/8/
15.The last access date is at offsets d2–d3h and is again 270fh,resulting in 1999/
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8/15. Finally, at offsets d4–d5h is the high word of the start cluster number for
FAT32 systems that is 0000h here.
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Glossary

2’s complement
See two’s complement.

A20
Address line 20. The segment:offset memory addressing architecture permits
physical addresses up to 1 megabyte plus 64 kilobytes less 16 bytes. In the original
8088 processor, physical memory addresses could only extend to 1 byte below the
1 megabyte mark and any addresses above that value “wrapped around” to the
beginning of memory again. Some early programs were written to take advantage
of this feature. The 80286 and higher Intel processors, however, give access to
physical addresses in real mode up to the limit of the segment:offset memory
addressing architecture,and programs which expect wraparound are thus incom-
patible. To provide full compatibility with the 8088, circuitry is included in many
systems which permits the twenty-first address line (A20) to be disabled, thus
causing wraparound. See also HMA; Real mode.

ACPO
Association of Chief Police Officers.

AGP
Accelerated Graphics Port. A local video bus, and its connector, that provides
improved graphics performance over a normal PCI connection. AGP is now being
replaced by PCI Express x16. See PCI; PCI Express.

Allocation unit
An MS-DOS file system memory unit consisting of a number of disk sectors. Also
known as a cluster.

ANSI
American National Standards Institute.

ARLL
Advanced Run Length Limited. An encoding method used to store information
magnetically on the surface of a disk.

ASCII
American Standard Code for Information Interchange. Character code in
common use.

ASCIIZ
An ASCII string of characters which is terminated by an all zeros byte.
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ATA
AT Attachment. ATA defines a standard specification for connecting hard disk
drives to the PC.Further updates to the standard include ATA-2 through to ATA-7.

ATAPI
ATA Packet Interface. A standard that permits CD-ROM and tape drives to be
connected to the IDE (ATA) interface.

Back door
A feature left in a system for the convenience of designers and testers which may
be used to defeat the security system.

BCD
Binary Coded Decimal. A format used for representing decimal numbers.

BCAI
Byte Count After Index. A code used in hard disks to identify the position in bytes
on the disk relative to an index mark. See BFI.

Beep code
A specific set of beeps sent to the PC loudspeaker when a POST diagnostic fails.

BFI
Bytes From Index. A code used in hard disks to identify the position in bytes on
the disk relative to an index mark. See BCAI.

Big endian
A method of forming a number from two or more bytes taken together. The
highest valued bits are taken as being in the lowest valued address.

BIOS
Basic Input–Output System. The name given to the system programs which
provide basic input and output functions for the PC. Usually held in ROM or flash
EPROM.

Bit
Binary digit. The elementary unit of information storage.

Boot
To “boot” is to execute the “bootstrap” code. The bootstrap is that sequence of
code which is initiated at the instant of switching on the PC and which causes it to
load its working programs.The word stems from the phrase: “to pull oneself up by
one’s bootstraps”.

Boot record
See boot sector

Boot sector
The first sector in a partition or on a floppy disk that contains the bootstrap
loader code for the particular operating system. Also known as the boot record.

Boundary cells
See JTAG.
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BPB
BIOS Parameter Block. Located within the boot record, this contains essential
data about the volume.

Bus
A set of parallel wires (or tracks on a printed circuit board) which connects one
part of the PC to another.

Bus mastering
A mechanism whereby the memory and input–output devices, as well as the
processor, can take control of the buses. See also DMA.

Byte
A group of 8 bits taken together. The fundamental unit of memory addressing.

Cache
Caching is a method of increasing performance by keeping frequently used data
in more rapidly accessible and faster storage.

CCITT
International Telegraph and Telephone Consultative Committee.

CD-R
See CD-ROM.

CD-ROM
Compact Disc Read-Only Memory. A means of storing up to 700 Mbyte of data on
a disk which is very similar in appearance and method of working to an audio CD.
Originally this was a read-only system (hence CD-ROM), but there are now
writable (write-once) CDs (CD-R) and re-writable CDs (CD-RW).

CD-RW
See CD-ROM.

CF card
Compact Flash card. A standard form of flash EPROM memory system,
configured to function like an ATA disk drive. Used in some PDAs and cameras.

Chipset
Often used to refer specifically to the set of controller chips on the motherboard
of a PC. See also Northbridge and Southbridge.

CHS
Cylinder Head Sector.The original form for addressing sectors on a disk.See also LBA.

CISC
Complex Instruction Set Computer. Microprocessors which have a large and
complex set of instruction codes. See also RISC.

Clean boot
A boot that carries out all the POST/boot activities from the very beginning of the
sequence using a floppy disk that has been constructed to ensure that none of the
hard disks is written to. See also Boot.
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Cluster
A file system allocation unit. It consists of a number of disk sectors.

CMOS
Complementary Metal-Oxide Semiconductor. A type of integrated circuit design
and fabrication known for its low power consumption.

CMOS RAM
A small amount of memory in the real-time clock chip that is preserved by the
clock battery and is used for storing system configuration information.

COB
Chip On Board.A form of technology where the chip (or die) is connected directly
to the printed circuit board without being packaged. A blob of resin is then placed
over the die to protect it. Also known as Direct Chip Attach (DCA).

Cold boot
A boot that carries out all the POST/boot activities from the very beginning of the
sequence. The system is starting from cold. See also Boot.

CP/M
Control Program for Microcomputers. An operating system developed for the 8
bit Intel 8080 processor.

CRC
Cyclic Redundancy Check. A form of checksum used to detect certain kinds of
error.

Cylinder
The narrow cylinder strip swept out at a particular head assembly position on all
surfaces of all platters during one rotation of the disk. See Head; Sector; Track.

DAM
Data Address Mark. A low-level format marker on a disk surface.

Daughterboard
A subordinate printed circuit board (PCB) that connects, often at right angles, to
the motherboard in a PC. Sometimes known as a riser board.

DCA
Direct Chip Attach. A form of technology where the chip (or die) is connected
directly to the printed circuit board without being packaged. A blob of resin is
then placed over the die to protect it. Also known as Chip On Board (COB).

DCO
Device Configuration Overlay. An overlay that can be set on a hard disk drive to
alter its working modes and features, including changing its apparent capacity.

DDO
Dynamic Drive Overlay.Software that is resident on a hard disk and automatically
loaded during the bootstrap sequence to provide CHS translation.
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DDR
Double Data Rate. A method of doubling the performance of SDRAM by using
both the rising and falling edges of a clock pulse to transfer data.DDR2 and DDR3
technologies have also been announced. See SDRAM.

Defect Lists
Lists that are internal to a hard disk drive and that identify bad sectors. The P-List
is the primary list generated during manufacture of the disk, and the G-List is the
grown defect list generated whilst the disk is in use.

Defrag
Defragment. The process of reordering data on a disk in order to improve the
efficiency of access.

DEG
The UK Digital Evidence Group

DIL
Dual In-Line. A form of PC chip packaging and the socket for it.

DIMM
Dual In-line Memory Module.A small printed circuit board mounted with several
memory chips which may be locked into a socket on the motherboard of a PC. See
also SIMM; SODIMM.

DIP
Dual In-line Package. See DIL.

Disk ID
A four-byte value written to the master boot record of a hard disk to act as an ID.
Also known as the NT Serial Number.

DMA
Direct Memory Access. A means by which input–output devices and the internal
memory unit can perform data transfer operations independently of the
processor. The logic circuitry which provides this capability.

DOS
This strictly refers to any Disk Operating System,but it is often used as a synonym
for MS-DOS. See MS-DOS.

DRAM
Dynamic Random Access Memory. A form of RAM that requires continuous
refreshing, hence the word “dynamic”. See SRAM.

DVD
Digital Versatile Disc or Digital Video Disc. A successor to the CD-ROM, and
generally backwards compatible with it. This technology currently has a storage
capacity of up to 17 Gbyte.

EBCDIC
Extended Binary Coded Decimal Interchange Code. A less commonly used
character code from IBM.
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ECC
Error-Correcting Code. A set of check bytes used to detect and correct certain
kinds of errors.

ECHS
Extended CHS. The facility offered by a BIOS which incorporates CHS translation
software.

EDO
Extended Data Out (sometimes called Hyper Page Mode). An architecture for
DRAMs.

EEPROM
Electrically Erasable PROM. Read-only memory that can be repeatedly
programmed, completely erased electrically and reprogrammed.

EIDE
Enhanced IDE. A standard originally used by Western Digital to refer to systems
with ATA-2,ATAPI and dual IDE/ATA host adaptor facilities.Now in common use.

EISA
Extended Industry Standard Architecture. An improved version of the ISA
standard PC bus architecture.

Enhanced BIOS
A BIOS that incorporates the INT 13h extensions.

EMM
Expanded Memory Manager. See Expanded memory.

EMS
Expanded Memory System. See Expanded memory.

EPROM
Erasable PROM. Read-only memory that can be repeatedly programmed,
completely erased and reprogrammed.

ESDI
Enhanced Small Device Interface. A disk standard that was designed to improve
on the ST412/506 interface. Now effectively obsolete.

Exif
Exchangeable Image File Format. This is a picture format that has been designed
to allow camera and image metadata to be embedded in JPEG files. See JPEG.

Expanded memory
A design developed by Lotus, Intel and Microsoft for accessing more than one
megabyte of memory by bank-switching additional memory into the one
megabyte real mode address space. LIM EMS stands for Lotus–Intel–Microsoft
Expanded Memory System.
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Expansion slots
The slots on a PC where expansion cards can be fitted to provide additional
functionality.

Exponent
Part of a floating point number.

Extended memory
Memory above the one megabyte address.Apart from the High Memory Area (see
HMA), extended memory is only accessible when the processor is in protected
mode.

Extended partition
A construct on a hard disk designed to contain one or more logical partitions.

FAT
File Allocation Table. A disk resource allocation mechanism first used by the MS-
DOS file system. The file system itself. See also NTFS; FAT12, FAT16, FAT32.

FAT12, FAT16, FAT32
Types of FAT-based file systems using 12,16 and 32 bit entries in the file allocation
tables, respectively. See also NTFS; FAT.

FCFC
Forensic Computing Foundation Course. Postgraduate level course run by
Cranfield University in conjunction with the UK Digital Evidence Group.

FCG
The UK Joint Agency Forensic Computer Group.Now named the Digital Evidence
Group.

FDC
Floppy Disk Controller.

File signature
Unique character sequence embedded at the beginning of a file which may be
used to identify the type of file. Sometimes called the magic number.

Firewire
A serial bus technology designed primarily for high-performance audio and
video multimedia applications. Sometimes known as i.Link and IEEE-1394.

Flash EPROM
EEPROM chips that permit erasure and reprogramming at the level of the block
or the byte rather than having to erase the entire chip first.

Floating point
A binary representation of numbers held in scientific notation form.

FM
Frequency Modulation. An encoding method used to store information magneti-
cally on the surface of a disk.
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Form factor
The physical shape and size of a packaged chip or a disk.

FPM
Fast Page Mode. An architecture for DRAMs.

FSB
Front Side Bus. The high-performance bus that connects the Northbridge chip to
the processor. See Northbridge.

GIF
Graphic Interchange Format. A commonly used graphics file format. Picture files
of that type.

Gigabyte
A unit of memory of value 230 or 1,073,741,824 bytes.

GUI
Graphical User Interface.A user interface which provides graphical elements such
as windows, icons, menus and pointers (WIMP) to control PC applications.

GUID
Globally Unique Identifier. An identifier that is unique across both space and
time.

Gzip
A commonly used free archive file format.

Head
The magnetic read–write heads of a disk drive. The particular head number
currently active. See Cylinder; Sector; Track.

Head assembly
Mechanical assembly to which the heads of a hard disk unit are connected.

Hex
Abbreviation for numbers shown in the hexadecimal number system.

High-level format
The process of establishing a file system on a disk. See low-level format.

HMA
High Memory Area. The area of memory (64 kilobyte less 16 bytes in size) that is
located in the PC memory map immediately above the 1 megabyte address. See
also A20.

HOL
High-Order Language. A high-level programming language.

HPA
Host Protected Area. An area that can be reserved on a hard disk drive by
instructing the controller to reduce the value of the maximum addressable sector.
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HPM
Hyper Page Mode (sometimes called Extended Data Out). An architecture for
DRAMs.

IAM
Index Address Mark. A low-level format marker on a disk surface.

IC Card
Proprietary name for an organizer memory card.

IDAM
ID Address Mark. A low-level format marker on a disk surface.

IDE
Integrated Drive Electronics, Intelligent Disk Electronics and similar interpreta-
tions. A hard drive interface standard. More usually now referred to as AT
Attachment or ATA.

IDE
Integrated Development Environment. A set of integrated programming tools for
use by a programmer.

IEEE 1394
See Firewire.

IEEE 754
Definition of standard floating point number formats.

i.Link
See Firewire.

INT
Software interrupt instruction code.

Interrupt vector
A four-byte segment:offset address pointer to interrupt handling code.

I/O port address
The physical address (or range of addresses) that are assigned to a hardware
device and which permit control instructions and data to be exchanged with that
device.

IRQ
Interrupt request channel. The physical channel number assigned to a hardware
device which permits interrupts to be passed from that device.

ISA
Industry Standard Architecture. A defined standard PC bus architecture which
formalized and updated the PC-AT architecture.

ISO
International Organization for Standardization.
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JFIF
JPEG File Interchange Format. A graphics file format. A picture file that conforms
to the JFIF specifications. See JPEG.

JTAG
Joint Test Access Group. A group set up to agree standards for the embedding of
test facilities into electronic chips. These take the form of boundary cells which
are controlled by a Test Access Port and this permits test and diagnostic
commands to be sent to the chip and data to be received from it.

JPEG
Joint Photographic Experts Group.A graphics standards committee. A picture file
that conforms to the JPEG specifications.

Kilobyte
A unit of memory of value 210 or 1024 bytes.

LBA
Logical Block Addressing. An alternative system for addressing sectors on a disk.
See CHS.

L-CHS
Logical CHS address.The translated CHS address at the INT 13 interface.See CHS.

LCD Panel
Liquid Crystal Display Panel. A flat screen technology used for modern display
devices.

LFN
Long File Name. A file name that can be up to 255 characters in length. See also
SFN.

Little endian
A method of forming a number from two or more bytes taken together.The lowest
valued bits are taken as being in the lowest valued address.

Local bus
Internal connection made between the processor bus and some expansion slots to
improve graphics and disk performance. See VL-Bus; AGP

Logical partition
A partition or volume on a hard disk that is contained within an extended
partition.

Low-level format
The process of placing address and structure markers on a disk. See high-level
format.

LSN
Logical Sector Number. Sector numbers counting from 0 from the beginning of a
volume.

444 Forensic Computing



LZW
Lempel–Ziv–Welch. A file compression system named after its designers.

Magic number
A synonym for “file signature”. Unique character sequence embedded at the
beginning of a file which may be used to identify the type of file.

Mantissa
Part of a floating point number.

Master boot record
The first sector on a hard disk containing the partition table and the code which is
used to analyse it.

MCA
Micro Channel Architecture. A proprietary IBM PC bus architecture.

Megabyte
A unit of memory of value 220 or 1,048,576 bytes.

Memory disk
Proprietary name for an organizer flash memory card.

Memory stick
A proprietary form of flash EPROM memory system, normally configured to
function like an ATA disk drive.

MFM
Modified Frequency Modulation. An encoding method used to store information
magnetically on the surface of a disk.

MFT
Master File Table. Database that contains details of all the files on an NTFS file
system. See NTFS.

MIPs
Millions of Instructions Per Second. Sometimes used as a measure of processor
performance.

MMC
Multi Media Card. A standard form of flash EPROM memory system, configured
to function like an ATA disk drive. Used in some PDAs and cameras.

MMIO
Memory Mapped Input Output. A technique where I/O port addresses are
allocated space in the normal main memory map.

MMX
Multimedia extensions. An additional set of instructions designed for multi-
media use and built into the later Intel Pentium processors.

Motherboard
The main printed circuit board of a PC to which all other elements are connected.
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MS-DOS
The Microsoft Disk Operating System. An early command line-based operating
system found in most PCs.

MZR
Multiple Zone Recording. This is a system where different tracks on the surface of
a disk have different numbers of sectors per track. See also ZBR; ZCAV.

Nibble
4 bits taken together. Half a byte.

Northbridge
One of the two standard controller chips on the motherboard of a PC. The higher
performance bridge that links processor, caches and main memory. See also
Chipset; Southbridge.

NTFS
New Technology File System. Type of file system intended to be an improvement
over the FAT based file systems. See also FAT12, FAT16, FAT32; FAT.

NT Serial Number
A four-byte value written to the master boot record of a hard disk to act as an ID.
Also known as the Disk ID.

Object code
The code executed by the target machine. Typically this will have been generated
by a compiling system from source code written by a programmer.

Partition
A logical volume established on a hard disk.

PATA
Parallel ATA. The original ATA standard that uses a parallel IDE cable to connect
disk drives to the motherboard. Now qualified by the word “parallel” to distin-
guish it from the newer serial ATA standard. See also ATA; SATA.

PC
Personal Computer.

PC-AT
Personal Computer – Advanced Technology. The later architecture of the PC on
which most modern PC systems are based.

PCB
Printed Circuit Board.

P-CHS
Physical CHS address. The CHS address at the physical disk. See CHS.

PCI
Peripheral Component Interconnect. A standard PC parallel bus architecture
designed by Intel for the Pentium range of processors.
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PCI Express
Peripheral Component Interconnect Express. A more recent PC serial bus archi-
tecture that operates over one or more serial lanes.

PC-XT
Personal Computer – Extended Technology. The earlier architecture of the PC.

PDA
Personal Digital Assistant. A form of personal electronic organizer.

Petabyte
A unit of memory of value 250 or 1,125,899,906,842,624 bytes

PGA
Pin Grid Array. A type of PC chip packaging and the socket for it.

PGP
Pretty Good Privacy. A personal encryption system.

PIO
Programmed Input–Output. A means of data transfer that is carried out directly
by the central processor. See DMA.

Platter
A thin disk coated with magnetic material which forms two surfaces of a hard disk
unit.

PLCC
Plastic Leaded Chip Carrier. A form of PC chip packaging and the socket for it.

PGA
Pin Grid Array. A form of processor chip packaging and the socket for it.

PNG
Portable Network Graphic. A relatively new graphics file format.

PnP
Plug and Play. Automatic detection and allocation of those resources (IRQs, I/O
Addresses, DMA channels) that are required by a hardware device.

POST
Power-On Self Test. The sequence of tests that are executed when power is first
switched on to the PC.

POST code
A specific code that is sent to an I/O port when a POST diagnostic fails.

PROM
Programmable ROM. Read-only memory that can be programmed after
manufacture.

Protected Mode
One of the operating modes of the 80286 and higher Intel processors, in which a
more complex addressing architecture than the segment:offset system of real
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mode is used and the CPU enforces protection mechanisms designed to prevent
one program from disrupting another. See also Real mode; Virtual-86 mode.

PS/2
A standard connector and socket used, typically, for the mouse and the keyboard.

RAID
Redundant Array of Inexpensive (or Independent) Disks. A set of disk drives that
are used together to provide improved performance and reliability.

RAM
Random Access Memory. The main (volatile) memory of the PC.

Real number
Synonym for floating point number.

Real mode
One of the operating modes of the 80286 and higher Intel processors,and the only
operating mode of the 8088, 8086, 80186 and 80188 processors. In this mode, used
by MS-DOS, all addresses specified by programs must correspond directly to real
physical addresses in the first 1 Mbyte of memory (thus the name Real Address
Mode) and utilize the segment:offset addressing architecture. See also Protected
Mode; Virtual-86 Mode.

Resident data
File data in an NTFS system that is held within the body of the MFT record. See
NTFS; MFT.

RISC
Reduced Instruction Set Computer. Microprocessors which have a small reduced
set of instruction codes. See also CISC.

Riser board
A subordinate printed circuit board that connects, often at right angles, to the
motherboard in a PC. Sometimes known as a daughterboard.

RLL
Run Length Limited. An encoding method used to store information magneti-
cally on the surface of a disk.

ROM
Read-Only Memory. Non-volatile memory that cannot (normally) be changed.
Used to contain, for example, the BIOS in a PC.

RSA
Rivest (Ron), Shamir (Adi), Adelman (Leonard). Inventors of the RSA security
algorithm.

RS-MMC
Reduced Size Multi Media Card. A standard form of flash EPROM memory
system, configured to function like an ATA disk drive. Used in some PDAs and
cameras.
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RTF
Rich Text Format. A standard word processor file format.

SATA
Serial ATA. The original ATA standard uses a parallel IDE cable to connect disk
drives to the motherboard. This newer standard uses serial cables. See also ATA;
PATA.

SCSI
Small Computer Systems Interface. A standard expansion bus typically used to
connect a number of devices, such as hard disks, tape drives and CD-ROMs, to a
computer.

SDC
Secure Digital. A standard form of flash EPROM memory system, configured to
function like an ATA disk drive. Used in some PDAs and cameras. Has built-in
security features.

SDRAM
Synchronous DRAM. DRAM that operates synchronously with the processor
clock.

SEC
Single Edge Connector.A form of processor chip packaging and the socket for it.

Sector
For the purposes of addressing, a disk track is divided into a number of equal
sized sectors. See Cylinder; Head; Track.

Service Area
Area on a hard disk drive that contains service data such as defect lists and the
controller firmware.

SETUP
A program within BIOS that can be accessed during the boot sequence by
pressing a specific set of keys and which enables CMOS settings to be changed.See
CMOS RAM.

SFN
Short File Name. A file name that conforms to the original DOS standard of a
maximum of 8 characters for the file name and a maximum of 3 characters for the
file type. See also LFN.

SGRAM
Synchronous Graphics RAM. DRAM designed for graphics use with a high-speed
serial port and which operates synchronously with the processor clock.

Shadow RAM
RAM used to hold copies of some or all of the BIOS code in order to achieve
performance improvements.

Side
Term used by Norton to refer to a head. See Head.
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SIMM
Single In-line Memory Module. A small printed circuit board mounted with
several memory chips which may be locked into a socket on the motherboard of a
PC. See DIMM.

Slack space
The space from the end of a file to the end of the last cluster containing the file.

SLI
Scalable Link Interface.A technology that permits more than one graphics card to
be used in parallel to improve overall graphics performance.

Slots 1 and 2 and A and B
The SEC form factors of some Intel Pentium II and III microprocessors (Slots 1
and 2) and their equivalents from other manufacturers (Slots A and B).See SEC.

SMART
Self-Monitoring and Reporting Technology. A self-monitoring and reporting
system found on modern hard drives.

SmartMedia
A standard form of flash EPROM memory system. Used in some PDAs and
cameras.

Sockets 1 to 8
The form factors of many microprocessors from the 80486 to the Pentium Pro.

SODIMM
Small Outline Dual In-line Memory Module. A small printed circuit board
mounted with several memory chips which may be locked into a socket on the
motherboard of a PC. See also SIMM; DIMM.

SOIC
Small Outline Integrated Circuit. A form of PC chip packaging and the socket for
it.

Source code
The original code written by the programmer. See Object code.

Southbridge
One of the two standard controller chips on the motherboard of a PC. The lower
performance bridge that links the expansion buses and the I/O devices. See also
Chipset; Northbridge.

SPGA
Staggered Pin Grid Array. A form of processor chip packaging and the socket for
it.

SRAM
Static Random Access Memory. A form of RAM that does not require refreshing,
hence the word “static”. See DRAM.
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SSD
Solid State Disk. Proprietary name for an organizer memory card.

ST412/506
Early de facto standard for connecting hard disk drives to their controllers.

TAP
Test Access Port. See JTAG.

Terabyte
A unit of memory of value 240 or 1,099,511,627,776 bytes

Thumb drive
A solid state memory device, usually of Flash EPROM, that is configured to
function like an ATA disk drive and is connected via a USB port.

TIFF
Tagged Image File Format. A graphics file format. Picture files of that type.

TQFP
Thin Quad Flat Plastic. A form of PC chip packaging and the socket for it.

Track
The narrow circular strip swept out at a particular head assembly position on one
surface of a platter during one rotation of the disk. See Cylinder; Head; Sector.

Trash blocks
Unused areas within a document that may contain information unrelated to the
document but of forensic significance.

two’s complement
A format used for representing binary numbers with negative values.

UCS-2
Universal Character Set 2. A 16 bit two-byte character code which is the Microsoft
Windows version of Unicode. See Unicode.

UDMA
Ultra Direct Memory Access. See Ultra-DMA

Ultra-ATA
Ultra-AT Attachment. See Ultra-DMA.

Ultra-DMA
An ATA standard that permits high-performance transfer rates and disk sizes that
are greater than the 8.4 Gbyte limit. Also known as Ultra-ATA, Ultra33, Ultra66,
UDMA etc.

UMB
Upper Memory Block. Blocks of memory above the 640 kbyte address in the 1
Mbyte main memory map.
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Unicode
A range of multibyte character codes of which the Windows version of Unicode is
probably the best known. This is a 16 bit two-byte version. See UCS-2.

USB
Universal Serial Bus. A bus architecture that permits up to 127 peripheral devices
to be daisy-chained on to a high-speed serial bus.

UTF-16
Unicode Transformation Format 16. A multibyte character code that is mainly 16
bit two-byte, but permits surrogate pairs which signal sequences of more than
two bytes. This produces what is in effect a 21 bit Unicode. See also Unicode; UCS-
2.

VDU
Visual Display Unit.The once standard display unit of a PC.Now often replaced by
a flat screen LCD panel.

VESA
Video Electronics Standards Association. The organization which designed the
VESA Local Bus to improve disk and graphics performance on systems that,at the
time, were ISA or EISA bus-based. See VL-bus; ISA; EISA.

Virtual-86 mode
One of the operating modes of the 80386 and higher Intel processors in which
user programs run as if the CPU were in real mode,while providing the protection
and the address capabilities of protected mode to a supervisor program which
oversees each of the 8086 virtual environments in which the user programs are
running. See also Protected mode; Real mode.

VL-Bus
VESA Local Bus. An interim PC bus architecture designed by VESA for better
graphics and disk performance. Used the local bus concept and was superseded
by the PCI bus.

von Neumann, John
Famous mathematician credited (though some dispute this) with the invention of
the stored program concept. A machine architecture which implements this
concept.

VRAM
Video RAM. DRAM designed for graphics use with a high-speed serial port.

Warm boot
A boot that carries out the boot activities from part way though the sequence,
often bypassing all of the POST.The system is starting from warm.See also Boot.

WIMP
Windows, Icons, Menus, Pointers. A Graphical User Interface (GUI) which
provides graphic elements such as windows, icons menus and pointers to control
PC applications.
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Winchester Drive
A term that is said to have originated from an early IBM drive that had 30
megabytes of removable media and 30 megabytes of fixed media. This gave rise to
the name “30–30”, which is the calibre of the famous rifle made by the Winchester
gun factory. The term “Winchester” then became synonymous with a PC hard
drive.

Word
16 bits taken together. Two bytes. See Big endian; Little endian.

WORM
Write Once, Read Many times memory. Used to be applied to optical and early
CD-ROM devices that could not be changed once written.

xD Picture Card
A standard form of flash EPROM memory system, designed for use in cameras.

ZBR
Zoned Bit Recording. This is a system where different tracks on the surface of a
disk have different numbers of sectors per track. See also MZR and ZCAV.

ZCAV
Zoned Constant Angular Velocity. This is a system where different tracks on the
surface of a disk have different numbers of sectors per track. See also ZBR and
MZR.

ZIF
Zero Insertion Force. Refers to a PC chip socket which has a locking and
unlocking device and for which zero force is needed to insert or remove a chip.

Zip
A commonly used proprietary archive file format.

ZIP disk
A proprietary form of large (100–250 Mbyte) floppy-type disk.
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slack space 206, 207
CMOS 76, 85, 134, 151, 152, 160, 167–9, 188,
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cold boot 165, 168, 438
collation rule 256, 265, 405
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run descriptor 246, 267
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DCO 141, 438
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DDO 147, 184
DDR 85, 94, 95, 439
DDR2 95, 439
DDR3 95, 439
DEBUG 129, 318
debuggers 318
defect

label 118
lists 118, 121, 439, 449

deflate 40
defrag programs 190
deleted file 32, 198, 199, 228, 390
DEVICEHIGH 164
Device Configuration Overlay see DCO
DEVICE CONFIGURATION SET 141
diagnostic

mode 317
test 316

Digital Evidence Group 2, 439, 441
digital diaries 303
digital evidence 1, 2, 439, 441
DIL 79, 86, 94, 305, 321, 439
DIMM 85, 94, 439, 450
DIP 79, 89, 168, 439
direct chip attach see DCA
direct memory access see DMA
dirty

flag 218
volume flags 191

disk
geometry 4, 103, 120–2, 146, 168, 169,

205, 206, 291, 292
ID 4, 181, 182, 187, 439, 446

management 181, 219
manager 147, 152, 154, 211, 213, 344, 348,

368, 369, 371
mapping 182

DISKCOPY 298
display controller 88
Distributed COM see DCOM
DLL 357
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167, 345, 359, 366, 437, 439, 447, 451
doing code 51, 52, 56, 65, 67–9
double data rate 85, 95, 439
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439, 449, 450, 452
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drive letter assignment 180, 181
Dual In-line Memory Module see DIMM
dual port 95
duplexing 208
DVD 71, 96, 439
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disk 173
drive overlays see DDO
link library see DLL

E4M 339
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ECC 116, 117, 122, 440
ECHS 144, 147, 151, 152, 155, 169, 210, 431,

440
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EEPROMs 95
EFI 172, 371
EIDE 139, 211, 344, 345, 349, 440
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EISA 82, 83, 135, 360, 370, 440, 452
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Exif 41, 42, 48, 342, 358, 440
expanded memory 164, 211, 343, 440
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