
18

BASICS

HAKIN9 2/2009

Malware is sof tware designed to
infiltrate or damage a computer
system without the owner's informed

consent. The expression is a general term
meaning a variety of forms of hostile, intrusive,
or annoying software or program code.

Simply put, Malware is software designed
to make a computer do something an attacker
wants it to do. It is not always designed to destroy
a computer. It may, for example, just sit on a
computer, using processor cycles to crack the
encryption of a certain file.

Nowadays, Malware has become so
prevalent in our computer systems that most
people do not take it seriously. Malware infects
the average user at least once, yet we continue
to operate the recently infected machine to
perform personal confidential transactions, such
as online banking or shopping.

Malware poses a serious threat to an
enterprise and can do anything the attacker
can envision. It can use system resources
such as CPU cycles or bandwidth, or it can
send of ficial and confidential corporate data
of fsite to the attacker. Most corporations have
antivirus systems in place, and some even have
antispyware capabilities.

However, most of the time corporations use
these systems to prevent or clean up infections
after their machines are compromised. Most
organizations do not take the time to recognize
and understand the extent in which malware

JASON CARPENTER

WHAT YOU WILL
LEARN...
Why analyzing malware is
important

How you should get started

WHAT YOU SHOULD
KNOW...
The Basics of X86 assembly
language, logical thinking and
a clear understanding of how
software works

has inflicted their systems before attempting to
eliminate it. Unfortunately, being infected with
malware is usually much easier than getting
rid of it , and once you have malware on your
computer it tends to multiply.

Determining how a malware is constructed
and operates in order to study its potential to
inflict damage is called analyzing malware.

Analyzing malware is beneficial to the
enterprise. Most malware detection systems,
such as an antivirus protection system, require
signature files that match the malware in
order to enable them to detect and block the
malware from penetrating your machine. When
a new malware hits the net, you are vir tually
unprotected since your antivirus or antispyware
software does not contain the identifying
signature of the new malware.

For a new malware to be detected there
is often a time delay until the new signature is
distributed, since anti-malware companies need
to identify it , analyze it , find a signature, test the
signature and deploy the new updates.

If you have already been infected, the time
involved is unacceptable, especially if you have
no idea that you are infected and/or the extent
of damage.

An example of this would be an online
shopping site. If a new malware hits the net, and
it takes two weeks for your antivirus vendor to
deploy a signature file, your site is exposed and
entirely susceptible to the infection.

Difficulty

Analyzing
Malware
This article is an introduction to analyzing malware. I will take
you through the basic steps you need to perform in order to
understand what malware is doing to your systems.

19

ANALYZING MALWARE

HAKIN9 2/2009

Another example of the benefit to
reversing malware is if your anti-malware
system succeeds in detecting the
malware as an infection, but in reality, it
has only detected the malware’s clone.

This clone may appear to be the
same malware that the anti-malware
suite thinks it is, but part of it has been
programmed to do something dif ferent

and new. For example, without analyzing
the malware, you would have no idea that
in addition to spreading via file sharing, it
will also spread via email.

Tools
There are many dif ferent tools available
that will help you analyze malware. Some of
these tools were designed specifically for

debugging, and analyzing software, others
are designed to better understand your
system. There are more tools available
than there is time to learn them all. I have
a core set of tools I always use, and other
tools I use only if necessary.

I highly recommend you to try as many
dif ferent tools as possible until you find the
tools that suite your methods best.

I like to split tools into two groups,
system orientated and software analyzing
tools.

System Orientated
System orientated tools are tools designed
to help you better understand your
operating environment. Malware alters the
system environment adding registry keys,
files and network traffic.

It 's dif ficult to recognize everything
malware has done if you do not
have a baseline with respect to your
environment. These tools are most
ef fective if you use them before and af ter
an infection.

Microsoft Sysinternals
Microsoft ’s Sysinternals suite is one of
the best tools out there to understand
your Windows environment. It includes
tools such as TCPView, Process explorer,
and Autoruns.

This suite includes tools that let you see
what processes are running, what ports
are open, what files are set to run at startup
amongst other things.

This really is a suite of tools that
everyone should check out. I am not going
to explain all these tools, as the best
way to learn them is to use them on your
system.

Regshot
One of the more challenging aspects of
Microsoft Windows is the registry. New
software often drops keys all over the
place in the registry, but is too lazy to
remove them upon uninstallation of the
software. This makes the registry quite a
mess.

This software is useful to help remove
all the added keys a software installs.
Just run it, install the software, run it again
and it will show you the keys added or
changed. Then when you remove the
software you can verify it cleaned all the

Figure 1. Process Explorer showing processes running on the System

Figure 2. Result of Regshot. This is comparing the registry before and after infection

20 HAKIN9 2/2009

keys out. This is also good in helping you
determine what keys malware may have
installed.

Snort
Snort is an open source intrusion
detection system. It ’s a very useful
software in any organization. It allows
you to see actual traf fic and analyze it
to determine an attack on the network,
unauthorized traf fic, or who is hogging the
bandwidth. It ’s really ef fective for looking at
malware because it can log to a file that
can be searched using grep and regular
expressions.

NetCat
Netcat is a powerful open source TCP/IP
tool. It can run a server, setup a tunnel, or
a hexdump. Similar to the Unix command
grep, it can take a while to fully understand
all the uses of the tool, but once you get
the hang of it, you will use it every chance
you get. For malware, this tool is useful
because it can help you see what happens
when the malware makes a network
connection.

Software Analyzing
While system orientated tools help you
understand the environment, software
analyzing tools are designed to help you
understand the software itself. Software
analyzing tools require a bit more in
depth understanding of code then system
orientated tools.

They require you understand
programming methods, and low-level
languages such as X86 Assembly. I will
include some further resources on X86
Assembly in the reference section. The
main type of software analyzing tools you
will use is a debugger.

Debuggers
These tools are used to analyze binaries.
Often used by software developers to
find bugs in their code, these tools are
the main tool used to analyze malware.
Binaries are compiled code, designed
to run on a system. Reversing binaries
back to code is dif ficult as when they
are compiled, they are stripped of non-
essential information and optimized for
processing.

Therefore when you use a debugger,
the software usually can only report back
instructions in a low-level format.

Some debuggers attempt to estimate
what the original code may have
looked like based on probability, these
attempts are of ten fraught with mistakes.
If you want to analyze malware I highly
recommend you leave the code in low-
level format.

IDA Pro
IDA Pro is one of the most used debuggers
in the world. It has so many features that
there are classes on the software, as well
as books on how to use it. If you can swing
the $515 to get the standard license or

$985 for the advanced license, I highly
recommend it. It will take time to learn
thoroughly.

OllyDbg
If you like open-source and free, then
OllyDbg is the way to go. It lacks some of
the niceties of IDA pro, but it is efficient and
has many plugins available to extend its
usefulness.

Setting up the Environment
In order to reverse a malware you first
need to setup a lab. I usually set it up
using virtual machines. There are some
malware however, that recognizes the VM
and refuses to run. Therefore it helps to
have some physical machines available as
well, or alternatively a VM software that the
malware will not recognize.

Virtual Machines provide us with the
ability to roll back a host to a snapshot of
an earlier time. This allows you to infect a
machine, see how it works, and roll it back
to a pristine state without having to rebuild
the machine.

Whatever you decide to use, make
sure that the lab environment is not
connected to any other network. The last
thing you want to do is allow the infection
to spread to your own network, or to the
Internet.

I find that in a lab, it helps to have
more than one type of machine. The
malware may infect more than one type of
machine, and it may do that in a dif ferent
way. For example, depending on the
operating system, the malicious software
could drop a file in either c:\windows or c:
\winnt.

This is a simple example but you
can see how malware can adapt based
on the operating system. I also like to
include dif ferent operating systems such
as Linux along with Microsoft Windows
because it allows me to have a wider
array of tools at my disposal. I can create
website in apache, or IIS, as well as use
open source tools that are available only
in Linux.

Malware Reversing Example
There are dif ferent ways to analyze
malware. The two most common ways are
behavioral analysis and code analysis. I
prefer to do both, as it is more thorough.Figure 3. A packet on the wire seen by snort. Notice the IRC server

BASICS

20 HAKIN9 2/2009

I will start with a behavioral analysis
first. Essentially, I will watch the malware
in action to see what it does. After that,
I will do a code analysis to confirm my
observations and findings, and look for any
other actions the malware may perform
that I did not recognize during the two
analyses.

Behavioral Analysis
Let’s go through an analysis together.
First, we will setup a lab environment
using vir tual machines. These machines
will include a windows XP machine that is
the victim machine, and a Linux machine
that we will use to check network traf fic,
act as a remote server, or act as another
device on the network.

After I setup the lab, I need to
determine what the generic Windows XP
machine looks like before the infection.
In order to do this, I will run parts of the
Sysinternals suite provided by Microsoft. I
will run the Process Monitor and Process
Explorer tools. This will let me gain an
insight regarding what is currently running
on the system.

I will also use a tool called Regshot
to take a baseline image of the registry.
In order to determine what the malware
attempts to do across the network I will use
TCPView.

This tool shows me what connections
are being established to and from
my computer. Once I have a good
understanding of the machine, I will infect
a virtual machine and watch Process
Monitor, Process Explorer, and TCPView to
determine its effects.

I will also take another image using
Regshot to determine what keys the
malware has changed.

Running these tools I am able to
determine a few things. First, using Process
Explorer, I discover the malware started a
process called tnnbtib.exe (See Figure 1).

Then, using Regshot , I was able to
determine it also created a new file under
c:\windows (a copy of itself) as well as new
registry keys that pointed to that file in order
to start it at runtime (Figure 2).

Using TCPView, I could also see it
attempted to do a DNS resolution to an
IRC channel and a web server. This is
a good start, but it leads me to further
questions such as what does it do at the
IRC channel , or why would it attempt to
connect to a web server? To investigate
my questions and find further information,
I decided to run Snort on the Linux virtual
machine we setup earlier.

We set up this Linux vir tual machine
because it is always nice to have a
box where you can run administrative
commands and servers. This will let you
determine what the malware will do if
it tries to communicate with a remote
server.

You do not have to use Linux, however
I find that it is less expensive to run open
source tools, and Linux has more tools
available.

I run Snort first on my Linux virtual
machine to monitor the network traffic
generated by the malware. To run Snort I
will use the command:

snort –vd | tee /tmp/sniffit.log

Figure 4. BinText ran against the infection. You can see it was packed because the text is
garbled. Also if you notice the type of packer is not garbled..UPX

22

BASICS

HAKIN9 2/2009

Figure 5. Ollydbg analysis of the file

Then I will run the malware and watch the
traffic. I can now see the DNS attempts to
an IRC Channel and a web server (Figure 3).

My next step will be to configure
the Windows machine to resolve those
DNS entries to the Linux box. I do this by
configuring the host file on Windows to
resolve to the Linux box.

Then I setup an IRC server on the Linux
box running on port 6666. This allows
the malware to join its own channel. The
malware does this by connecting with a
random nickname.

After joining the IRC channel, the
malware attempts to connect to a website.
Curious as to what it is doing there, I
setup Netcat to listen to port 80 with the
command:

nc –p 80 –l -n

Netcat is a great tool to observe what
traf fic comes into a port; it is faster than
setting up a web server and can be used
for any port such as telnet or https as
well. It is limited in that it will accept the
packets, but since it is not a web server,
it does not know how to respond and will
dump them.

I was able to determine that it started
a directory transversal as soon as it
connected to that port. At this point, I felt I
had a good idea about what this malware
does, but I wanted to move into the next
step, the code analysis.

So far we have determined that the
malware created a file called bnntib.exe
under the windows directory. It generated
registry keys to start this file at boot.

Then it attempts to find an IRC channel.
After connecting to the IRC channel

with a random nickame it attempts to
access a website and perform a directory
transversal.

Our next step is to delve into the code
and get a deeper understanding of the
malware.

Code Analysis
In order to do a code analysis of the
malware, we first need to understand the
dif ference between static and dynamic
code analysis.

In static code analysis, the code is
displayed but the file is not executed. IDA
Pro is a good tool for performing this. It is
useful because the code is not running
and you can hop around the code as is,
without taking up resources or running the
malware. While performing static code
analysis we must bear in mind a drawback.
Since the code is not running, some of the
calls to outside libraries are unavailable,
together with the virtual memory address it
would call.

Dynamic analysis tools, such as
OllyDbg , actually step through the running
code. This allows you to see everything it
calls such as dynamic link libraries. I prefer
to use dynamic analysis tools whenever
possible because often malware uses
packers and polymorphic code to conceal
its code.

The Malware must unpack the code
into memory first in order to execute it.
Dynamic analysis tools are better at
dealing with code that is dynamically
loaded into memory.

“It helps to understand dif ferent methods
malware authors use to defend against
their malware being reversed.

These include packers and
polymorphic code. Packers compress the
file to a smaller size, a useful side effect of
this is it makes the code difficult to read.

An example of this is UPX; in fact, UPX is
very common amongst malware authors.
Polymorphic code is code that changes
while it runs.

This can make things difficult for static
reversing as the code you are looking at
in a static analyzer is not necessarily what
the code will look like when it is actually
running.

We will discuss more in depth parts of
malware reversing, including PE tools, and

On the ‘Net
Good assembly references

• An overview – http://en.wikibooks.org/wiki/X86_Assembly.
• Tutorials – http://www.skynet.ie/~darkstar/assembler/.
• This page discusses different assemblers and where to start – http://webster.cs.ucr.edu/

AsmTools/WhichAsm.html .

Where to get tools

• Microsoft SysInternals – http://technet.microsoft.com/en-us/sysinternals/default.aspx.
• RegShot – http://sourceforge.net/projects/regshot .
• Snort – http://www.snort.org/.
• NetCat – http://netcat.sourceforge.net/.
• IDA Pro – http://www.hex-rays.com/idapro/.
• http://www.ollydbg.de/.
• BinText – http://www.foundstone.com/us/resources/proddesc/bintext.htm .

ANALYZING MALWARE

23 HAKIN9 2/2009

require authentication.
More than likely the author designed it

to be part of a botnet , as it would allow a
remote user to run commands over IRC.

Through the website traversal, it
probably was going to pull down a file,
perhaps something the attacker wants to
crack by employing local resources.

The last thing a company ever wants
is an attacker that controls their machines.
This malware adds the machine to a
botnet and allows the attacker to pull files
from a website.

If this malware had a propagation
method similar to a worm, we could have
determined the need to inspect other
machines.

This is a good example of why security
teams should do more than just count
on their anti-malware suites to clean the
infection.

They need to understand the impact
of malware on their organization. In part 2
of this article we will go further in depth on
PE headers, and anti-reversing techniques
such as anti-debuggers and polymorphic
code.

anti-debugging methods such as packing,
or morphing code in part two of this article.”

To continue our analysis, the first thing we
are going to do is run Bintext and search
for strings that will help us recognize the
program. Examples would be open, close,
connect etc...

Step 1. Bintext
However, in our example, most of the
strings are illegible. We do see the words
UPX. UPX is a common type of packer.
This software extracts packed code into
memory and runs it as if it was never
packed. If you can determine the packer
(UPX) you can often get the software and
try to unpack it. This does not often work
with malware.

There are several other ways to look
at the code. You can run PeID to see if it
recognizes it or use a dynamic debugger.
Here in OllyDbg , I have located the instruction
where the executable is already unpacked
into memory (See Figure 4 and Figure 5).

By setting a break point here, we can
run the program up to the breakpoint, step
into the code and dump the debugged
program from memory to disk. OllyDbg
gives us the option to edit the headers or
take the defaults OllyDbg figured out. With
some of the packers we need to rewrite

the headers. With this one I was able to
take OllyDbg’s defaults. After I saved it
locally, I opened the unpacked code.

Digging deeper into the code we can
recognize certain strings such as pass_
accepted, telling us there is an authentication
system, and commands such as !@upgrade
or !@login. By going back to our IRC server
on Linux we can interact with the program
by sending these commands such as
!@login and the password karma. I found the
password by supplying a bad one, setting up
the strcmp call with a break point and when
the bad password was compared against
the good one, I could see both passwords
on the stack.

Conclusion
After looking at this malware, I did not
find any way for it to self propagate like a
worm, or contain any useful program such
as a Trojan.

Therefore, I determined it was
probably a virus since it needed the user’s
intervention to run in order for the infection
to spread. When this malware infects a
computer, it drops a file into c:\windows,
adds a key to the registry to run a process
at boot time.

This virus was compressed using UPX.
It connects to IRC and attempts to connect
to a web server. It accepts commands that

Jason Carpenter
I have been in IT for 10 years now, doing everything
from programming to administering networks. I am
currently completing my master’s degree in Information
Assurance.

A D V E R T I S E M E N T

