
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Utilizing "AutoRuns" To Catch Malware
Malware likes to survive- detect its survival attempts today! How do you know what is scheduled to start
automatically on your Windows systems? Learn how to utilize freely available utilities to monitor the areas
of a Windows system that malware may use to survive the boot sequence. In this paper, we will discuss how to
monitor areas on a Windows system that are used to start processes at boot up and logon. We will look at
scripting to automate the use of these utilities to monitor what is set to run automatically ...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware

What wants to auto-run on your Windows system today?

Author:	 Jim	 McMillan,	 jimm.sans@bis.midco.net	
Advisor:	 Pedro	 Bueno	

Accepted:	 <DATE>	

Abstract	

Malware likes to survive- detect its survival attempts today! How do you know what is

scheduled to start automatically on your Windows systems? Learn how to utilize freely

available utilities to monitor the areas of a Windows system that malware may use to

survive the boot sequence. In this paper, we will discuss how to monitor areas on a

Windows system that are used to start processes at boot up and logon. We will look at

scripting to automate the use of these utilities to monitor what is set to run automatically

on Windows systems. Anti-virus and spyware software only detects what it knows about.

With the tools and methods we discuss in this paper, you will be able to monitor what is

set to start and be alerted to any changes. This information will provide you a better and

faster approach to really determine what is happening when Windows systems start up.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
	

Author	 Name,	 email@address	 	 	

1. Introduction
 “Malware is a set of instructions that run on your computer and make your

system do something that an attacker wants it to do”. (Skoudis, 2004) It can perform a

number of undesirable tasks on your computer. Malware is often referred to as malicious

code because its programming intent is usually for something malicious. In his book,

“Malware: Fighting Malicious Code”, Ed Skoudis writes, “The malicious code doesn’t

have your best interests in mind.” (Skoudis, 2004).

With many people and companies analyzing malware over the years, we have

observed this fact about malware. It has been used to satisfy the agendas of criminals at

the expense of many law abiding citizens and businesses. From the number of anti-virus

and anti-spyware products available, we can safely say there is a high demand from

consumers to protect themselves from malware. Many people and businesses just plainly

do not want to have malware on their computers.

Motivation for the malware creator is primarily for financial gain. In a 2005

article, Information Week reported “more than 70 percent of virus writers are now

writing spyware under contract, one more piece of evidence that hacking has evolved

from mischievous hobby to money-making criminal venture”. (Keizer, 2005) Malware

authors have been financially motivated for many years.

The indication of financial motivation continues on into the decade. In an article

from the 13th IEEE International Symposium on Pacific Rim Dependable Computing it is

stated, “All these recent financial-motivated malware programs, after successfully

infiltrating a machine, need to stay running on the infected machine for a long time and

therefore must survive a system rebooted. This can be achieved by one of the following

two ways: 1. by registering as an OS auto-start extension such as an NT service, a tray

icon in Windows, or a Unix daemon/cron job; or 2. as an extension to an existing

application that is either automatically run (such as the shell in Windows), or popular and

commonly run by users (such as a Web browser).” (Dai, & Kuo, 2008)

While in September 2009, a more recent article on the TechNewsWorld website

stated “While in the past malware authors have been driven by things like spite and the

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
	

Author	 Name,	 email@address	 	 	

possibility of fame, in today's climate their motivation is almost always financial.”

(Debrosse, 2009) This is an indication that more malware authors are realizing the

potential of their code to make money, which many people consider more important than

the fame.

On the VirusList.com website, it is claimed that “Malware appears in any given

environment when the following criteria are met: 1) The operating system is widely used,

2) reasonably high-quality documentation is available and 3) the targeted system is

insecure or has a number of documented vulnerabilities.” (Kaspersky Lab) For this

reason, we are going to look at malware as it pertains to Microsoft Windows operating

systems and applications that run on Windows.

As you can see, malware is a serious business. And as in any business, survival

techniques are employed to keep the business in business. In this paper, we will discuss

some of malware’s survival techniques and how to detect them. We will look at some of

the auto-run areas of a Windows system where third party code can be configured to run

automatically. Then we will look at how malware can take advantage of these areas to

survive a system reboot. We will discuss creating a basic process, and script, to monitor

for changes in these areas. Finally, we will cover examples of things we may find with

our process and how to utilize the process in our defense-in-depth strategy.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
	

Author	 Name,	 email@address	 	 	

2. Detect malware initialized by auto-run techniques
2.1. Windows system startup

The Windows system startup is a complicated process that is difficult to explain

in detail. The intent of this section is to familiarize ourselves with some portions of the

startup process, not to learn the entire process in detail. If we use Google to search the

Internet for information on the Windows system startup, we will find very little detail on

the process from start to finish. In fact, even a search of Microsoft’s site will turn up very

little conclusive results.

In the book “Windows Internals, Fifth Edition” there are 28 pages that discuss the

steps of the Windows startup. In those 28 pages, there about as many references back to

process in chapters 3-7 and many references to various registry entries involved in the

boot process. Toward the end of the authors’ discussion, they state “In addition to the

Userinit and Shell registry values in Winlogon’s key, there are many other registry

locations and directories that default system components check and process for automatic

process startup during the boot and logon processes.” (Russinovich, & Solomon, 2009)

If asked what we think the system is doing when it starts up, we would probably

answer with a few common items. We would probably agree on things like the loading

of hardware device drivers. Drivers for things we use to interface with the operating

system to accomplish tasks, things like the mouse, keyboard, display and printers. Which

is exactly right, all of these devices load drivers as part of the Windows system startup.

For example, on the root level of a Windows XP system partition there is a hidden

file called boot.ini. This file is used to provide a boot menu at system startup and can be

configured with certain boot options to tell the system how to boot. If we consider

adding the /BOOTLOG option as described at http://technet.microsoft.com/en-

us/sysinternals/bb963892.aspx, we can tell the system to write a log file to the filesystem

location %SystemRoot%\Ntbtlog.txt. Analyzing this file we will see some of device

drivers that are loaded during startup. If we review the registry keys under

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
	

Author	 Name,	 email@address	 	 	

HKLM\System\CurrentControlSet\ Services, we will find entries that contain the

parameters for these drivers, as well as other drivers and services.

On The Microsoft TechNet website there is an article titled “System and Startup”

by Paul Sanna. The article discusses some key registry locations, in addition to the

Services registry keys. The article is on an older version of Windows, however, these

registry locations still apply on today’s versions of Windows. Sanna writes, “When

Windows 2000 starts, a number of programs launch in the protected system context. To

see the applications that launch for the operating system, open the Registry and inspect

this entry.

Root Key: HKEY_LOCAL_MACHINE
Key: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

A handful of Registry entries control the applications and services that run at

startup. It's useful to know where to find this list should you need to debug some problem

at startup. The following list of keys show you where the run information is stored:

HKLM \SOFTWARE \Microsoft \Windows \CurrentVersion \Run
HKLM \SOFTWARE \Microsoft \Windows \CurrentVersion \RunOnce
HKCU \Software \Microsoft \Windows \CurrentVersion \Run
HKCU \Software \Microsoft \Windows \CurrentVersion \Runonce” (Sanna, 2001)

If we run the System Configuration Utility, Msconfig.exe, built into most

Windows Operating Systems, we can view and edit some of these services and

applications that run at system startup. However, due to many discussions that refer to

the Autoruns Utility instead of the System Configuration Utility, we will not be

discussing the System Configuration Utility in detail. It is only mentioned because it is

built into Windows operating systems and readily available for limited use. If you would

like more information on the System Configuration Utility, please visit URL

http://support.microsoft.com/kb/310560.

According to the “Windows Internals” book, “The Autoruns tool examines more

locations than Msconfig and displays more information about the images configured to

automatically run.” (Russinovich, & Solomon, 2009). This fact is the reason we are

discussing the Autoruns Utility for our monitoring and detection process.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 6
	

Author	 Name,	 email@address	 	 	

As we venture into malware survival techniques and then on to a look at the

Autoruns Utility, you will soon see that malware has a lot of opportunity to hide in the

Windows startup process.

2.2. Malware survival techniques
2.2.1. How does malware survive the Windows boot process?

Since today’s malware has financial motives driving its existence, it naturally

makes sense that malware wants to live and thrive. Whether it is some sort of fake

security software pestering us to make a purchase, some ransom demanding software or

an elusive botnet agent awaiting commands, they all need a way to survive a power cycle.

What better way to ensure survival than utilizing features of the OS that will assure

automatic execution during the startup process?

In his book, “The Art of Computer Virus Research and Defense”, Peter Szor

discusses this point in a section on Viruses in Kernel Mode referring to the Windows NT

Infis virus. He states, “The virus installs the proper Registry key to allow itself to load on

next system startup: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\inf”. (Szor, 2005) An example of how an older virus uses the registry to ensure

its survival.

Yet today, if you browse through malware characteristics on any anti-virus

vendor’s web site, you will find that much of the Windows related malware uses

Windows startup processes to survive. To affirm this point, let’s look at a few pieces of

malware via the McAfee Avert Labs Threat Library (http://vil.nai.com/vil/default.aspx).

The three pieces we will look at are: W32/Koobface.worm, W32/Conficker.worm, and

Generic Rootkit.dt.dr.

Name: W32/Koobface.worm (http://vil.nai.com/vil/content/v_148955.htm)
Type: Virus
SubType: Win32
Discovery Date: 08/03/2008
Related autorun characteristics:
The following registry keys are added:
•HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active Setup\Installed
Components\Intelli Mouse Pro Version 2.0B\StubPath: "%WinDir%
\System32\splm\ncsjapi32.exe"

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 7
	

Author	 Name,	 email@address	 	 	

•HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
RunOnce*Intelli Mouse Pro Version 2.0B*: "%WinDir% \System32\splm\
ncsjapi32.exe"
•HKEY_USERS\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\
Hidden: "2"
•HKEY_USERS\Software\Microsoft\Windows\CurrentVersion\Run\Intelli Mouse Pro
Version 2.0B: "%WinDir% \System32\splm\ncsjapi32.exe"
•HKEY_USERS\Software\Microsoft\Windows\CurrentVersion\RunOnce*Intelli Mouse
Pro Version 2.0B*: "%WinDir% \System32\splm\ncsjapi32.exe"

Name: W32/Conficker.worm (http://vil.nai.com/vil/content/v_153464.htm)
Type: Virus
SubType: Worm
Discovery Date: 11/24/2008
Related autorun characteristics:
When executed, the worm copies itself using a random name to the %Sysdir% folder.
(Where %Sysdir% is the Windows system folder; e.g. C:\Windows\System32)
It modifies the following registry key to create a randomly-named service on the affected
system:
•HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\{random}\Paramete
rs\"ServiceDll" = "Path to worm"
•HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\{random}\"ImageP
ath" = %SystemRoot%\system32\svchost.exe -k netsvcs

Name: Generic Rootkit.dt.dr (http://vil.nai.com/vil/content/v_241386.htm)
Type: Trojan
SubType: Dropper
Discovery Date: 11/10/2009
Related autorun characteristics:
The malware then creates the following registry entries to ensure its execution as a
Windows service when the infected machine reboots:
•HKEY_Local_Machine\System\CurrentControlSet\Services\zacypxeepnjv7
ImagePath = "%System%\Drivers\[Random file name].sys"
DisplayName = "[Random filename]"

As you can see, these pieces of malware utilize auto-run areas of the Windows

system to survive. Each one relates to at least one registry entry of our Windows system

startup discussion. Obviously malware has some common use areas, but what other areas

are available in the Windows system startup? Let’s take a look at the Autoruns Utility to

get an idea of those areas and how we can monitor them.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 8
	

Author	 Name,	 email@address	 	 	

2.3. The Autoruns Utility
Autoruns is one of the many great Windows utilities created by Mark Russinovich

and Bryce Cogswell of Windows Sysinternals. “This utility, which has the most

comprehensive knowledge of auto-starting locations of any startup monitor, shows you

what programs are configured to run during system bootup or login, and shows you the

entries in the order Windows processes them. These programs include ones in your

startup folder, Run, RunOnce, and other Registry keys.” (Russinovich, & Cogswell,

2009)

Autoruns can be very beneficial in hunting down the malware that uses Windows

startup areas to initialize. The information produced by Autoruns can be somewhat

overwhelming at first, especially the first time you see it run. There are a surprisingly

large number of processes that start during the Windows initialization process.

The Autoruns utility download includes a set of programs we will discuss, a GUI

version (autoruns.exe) and a command line version (autorunsc.exe). We will take a look

at both applications, but will quickly realize the benefits of the command line version as

we get into our monitoring process. You can download the Autoruns Utility from

Microsoft at http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx. Step-by-

step instructions for installation and configuration of the process we are going to build,

including Autoruns, can be found in the Appendix (Section 4).

2.3.1. The Autoruns GUI interface

The Autoruns GUI interface, as seen in Figure 1, provides a nice view into all of

the areas that are processed when a Windows systems starts.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 9
	

Author	 Name,	 email@address	 	 	

Figure 1

It gives several tabs to view results for each auto-run area, including one tab to

see everything. In Figure 1, the Logon tab is selected and shows all auto-run entries that

get processed when a user logs on. As you can see, Autoruns.exe shows us a lot of

information about the processes that are configured to run when Windows starts.

By default Autoruns.exe scans the auto-run areas for the computer and the user

that is logged on to the computer. Autoruns displays the entry location/entry name

(Autorun Entry), the description obtained from the file properties (Description), the

signing publisher obtained from the file properties (Publisher) and the path to the file

(Image Path). There is also a check box that gives us the ability to directly enable or

disable entries from within Autoruns.exe.

By selecting an item in the list, we can obtain further information about that item.

The additional information is displayed in the information pane at the bottom of the

Autoruns window. In Figure 1, we can see the additional information available about the

VMware Tools entry that is selected. This information includes some of the file

properties such as file size, last modified date and version.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
0 	

Author	 Name,	 email@address	 	 	

Through the menu bar or a right-click context menu, we can perform certain

actions on the selected entry or apply different options to simplify the view. Some

actions that can be performed include:

• Delete – will delete the entry location. The entry in the registry will be
deleted, not the file on disk where the entry pointed. If the entry location
is a file path, whatever the path points to will be deleted.

• Copy – will copy the information of the selected entry to the clipboard in
tab delimited format.

• Jump to – will open Regedit to the location of the selected entry.

• Search Online – will open a web browser and perform a web search for the
process selected with the default browser.

• Process Explorer – will open Sysinternals Process Explorer to the process
of the selected entry. The Process Explorer application needs to be
running or in the environment path. More information on Process
Explorer can be obtained at http://technet.microsoft.com/en-
us/sysinternals/bb896653.aspx.

• Properties – will open the properties page for the file in the Image Path.

As we mentioned, there are also some options available to refine the view. Those

options include:

• Include Empty Locations – Autoruns will not show entries for the
locations that do not contain any information. If you would like to see
these entries, enable this option.

• Hide Microsoft and Windows Entries – will hide entries that are
associated with Microsoft products. This should be combined with the
Verify Code Signatures option to prevent hiding files with invalid
signatures.

• Hide Windows Entries – will hide the entries that are associated with the
Windows OS. This should be combined with the Verify Code Signatures
option to prevent hiding files with invalid signatures.

• Verify Code Signatures – will attempt to verify the publishers signature (if
available) to make sure it is signed with a valid signing certificate. This
option has been turned on in Figure 1.

As you can see, the Autoruns GUI provides us with a lot of information with a lot

of different options. The Autoruns GUI, by itself, is a good utility to manually look into

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
1 	

Author	 Name,	 email@address	 	 	

a system that may be infected with malware and determine if anything looks amiss. But

wait there is more; Autoruns has a command line version.

2.3.2. The AUTORUNSC command line interface

The Autoruns command line program, Autorunsc.exe, is capable of providing the

same information as the GUI program. This gives us an ideal situation to expand the

GUI’s functionality and usefulness by providing us a means to automate and control

desired output. Like when you need to analyze the auto-run output from a remote

computer, a capability not found in the GUI version.

Autorunsc.exe gives us several options to control the information it can retrieve.

Figure 2 shows the options that are available to us.

Figure 2

If you look at the tabs in the GUI version, you will see a command line option to

produce the results of each tab. However, there are a few instances where we get a

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
2 	

Author	 Name,	 email@address	 	 	

couple of tabs combined into one option. The Services and Drivers tabs get combined

under the “-s” option, whereas the Winsock Providers and Network Providers tabs get

combined under the “-n” option. You will also notice a few options to control format of

the output and the amount of output.

The “-m” option allows you to reduce the output to non-Microsoft entries, leaving

you with all of the third party entries. The “-v” option allows you to verify the

publisher’s signatures for applications that are digitally signed. Remember to use the “-

v” option anytime you use the “-m” option. This will protect against programs

masquerading as Microsoft programs.

The formatting options provide some convenient functionality as well. The “-c”

option allows us to save output in comma separated format. This is a very useful option,

especially when you are dealing with a remote computer. You can redirect output to a

file and then load the output file into a spreadsheet. This will allow you to utilize sorting

and searching features for faster analysis. It also proves to be nice when trying to detect

changes, which we will discuss later.

Figure 3 shows us an example of the output from the Autorunsc.exe command,

running against the same computer as we saw in Figure 1. The command is given

options so it will provide Login Startups (“l” is the default, so “-l” not needed in our

command), Verify Digital Signatures (“-v”) and output as CSV (“-c”).

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
3 	

Author	 Name,	 email@address	 	 	

Figure 3

Output from Autorunsc.exe provides all the information we have seen in the GUI

output, plus some. In Figure 3, we see four additional fields: Launch String, MD5, SHA-

1 and SHA-256. The Launch String field shows the actual command that is issued to

launch the process. This may often be the same as the Image Path field, but may contain

additional command arguments from time to time. The other fields, as their name

indicates, are MD5, SHA-1 and SHA-256 hashes, respectively, of the file located in the

Image Path. These hashes will be very important to us as we will see later.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
4 	

Author	 Name,	 email@address	 	 	

2.4. Using Autorunsc Output to detect malware
2.4.1. Theory behind the process

The idea behind detecting malware with Autoruns is to detect changes in the auto-

run areas of a Windows system over time. Change detection is accomplished by

comparing a current snapshot image to a previous snapshot image and then analyzing the

differences. The changes will hopefully be minimal and will allow for quick detection of

something that looks out of place.

The process involves coming up with a schedule as to when to make snapshots,

compare snapshots and rotate the snapshot images. At the scheduled time, the process

will run and take a new snapshot of the auto-run areas. Once the new snapshot is made it

will compare it to an older snapshot, probably the previous one. If you run a very tight

change control process, you may compare to a baseline image. In the process we discuss

later, we will be rotating the snapshots.

As far as the frequency of the process, the time period between snapshot

comparisons can vary from system to system due to varying threat levels. You really

have to determine what time period is best for you. Comparing snapshots once a day for

the light computer user may be enough. For heavy Internet and e-mail usage, you may

want to schedule a task to run more than once a day. The frequency all depends on your

exposure to threats, other defenses/mitigations in place and your overall paranoia level.

2.4.2. Creating a snapshot of the auto-run areas

To create a snapshot of the auto-run areas we will be using the command line

utility and redirect the output to a file. The GUI version has a compare function built in

to it. However, for our automation techniques later on, we are going to stick with the

command line application, Autorunsc.exe, for now.

Referring back to the options we have available for our command, let’s build a

command that will dump everything, verify signatures and format the output in CSV

format. To do this we will use the “-a” option to show everything. The “-v” option to

verify digital signatures of the publishers. And finally, the “-c” option to format the

output in a comma separated format with one entry per line. We could add the “-m”

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
5 	

Author	 Name,	 email@address	 	 	

option if we would like to minimize the output included in the snapshot, but we will leave

it out so we can identify any changes to Microsoft entries.

We want our output to be in CSV format for a couple of good reasons. First, all

the information about a single entry is on a single line of output. This will make the job

of comparing the same entries in one snapshot to another snapshot easy. Since the output

for an entry will remain the same as long as nothing changes, we will not be alerted to the

entry. We will cover snapshot comparison in detail in the next section. Secondly, this

format will make it convenient to import the data into a spreadsheet or database for

analysis or other tasks.

When deciding what we want to see, we will want everything that our Windows

system will attempt to start when it boots. By analyzing everything, we will be alerted to

changes in any files that get modified. This includes system files that may have been

modified by the installation of a service pack or, in worst case, by infection of malicious

code.

Remember that we have hashes of the files in our output, so we can detect when

an existing entry gets changed. When software updates are applied, it is often that a

filename, path and registry entry gets reused. If the entry location, entry, description,

image path, publisher and launch string doesn’t change, how will we be alerted? Easy- if

a file’s content changes, so does the hash of the file. If a hash changes, so will the entry

in our output. Bottom line, if a file’s content is modified, we will be alerted.

In our command, we are adding the option to verify digital signatures of the

publishers to help prioritize our analysis of changes. If the digital signature of a file is

verified successfully, chances are pretty high that it is valid. This gives us the

opportunity to focus on the other changes that have no digital signatures or unverifiable

ones.

The command, with the options we discussed, will be “autorunsc.exe -avc”. This

will give us the output we desire and provide for the greatest chance of malware activity

detection. To get the output to a snapshot file for comparison, we will add a redirect to

the command, such as “autorunsc.exe –avc >{unique filename}”. If you are unfamiliar

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
6 	

Author	 Name,	 email@address	 	 	

with command line redirection operators, you can find more information on them on

Microsoft’s web site at URL: http://technet.microsoft.com/en-us/library/bb490982.aspx.

2.4.3. Comparing two snapshots

Comparing snapshots and analyzing the differences, or changes, between two

snapshots over a period of time will be what helps us catch malware activity. However,

before we can compare two snapshots, we need to have two snapshots. To discuss

snapshot comparison, it would be most beneficial to discuss an example where the

snapshots have some differences.

For our example, we will install the Google Toolbar between running our

snapshots. Snapshot files contain a lot of information, everything that starts

automatically, so we will not be looking at the contents of these files directly. We have

already looked at a subset of what the files contain when we were discussing the

Autoruns utility. At this time, we will be interested in looking at the differences between

the two snapshot files.

First, we will issue our command and redirect it to a file to use as a previous, or

baseline, snapshot. To do this, let’s make a temporary directory in the root of C:\ called

ARTemp and change directories so we are in that directory. Then issue our command as

seen in Figure 4, directing the output to a file (first.txt in this case). After issuing the

autorunsc.exe command, we will have a comma delimited file for our previous snapshot.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
7 	

Author	 Name,	 email@address	 	 	

Figure 4

Next, we will install the Google Toolbar. We are not going to discuss the install

in detail. That is outside the scope of this paper. We will just go to Google’s site,

navigate to the download page, download the installer and install it. Of course we will

virus scan the downloaded installer prior to executing it.

After the install is complete, we will issue our command to create another

snapshot file to compare to our previous snapshot. To do this, let’s issue our command

again as seen in Figure 5. This time we created another file called second.txt. You will

notice the second.txt file is slightly larger than the first.txt file. What has changed?

Figure 5

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
8 	

Author	 Name,	 email@address	 	 	

To find out, we need to do a comparison of the snapshot files, first.txt and

second.txt. How do we do this without manually comparing line by line?

One option would be to use the Windows built-in file comparison utility, fc.exe.

However, using this utility presents us with a couple of challenges. First, the utility’s

output is not ideal to use within a script for parsing of the results, as we will do later.

Secondly, we are trying to monitor for malware attempting to hide on our system. If the

malware cloaks itself from the built-in Windows commands, how can we detect it?

To overcome these challenges, we will discuss using the diff.exe command from

DiffUtils for Windows. Diff will give us output of the differences in our two files that is

easy to parse. It will also provide us with programs and libraries that are separate from

the Windows operating system. However, before we get into the actual file comparison,

let’s take a quick look at what Diff is and how to get it.

Diff started out as a GNU utility for Linux. According to GNU.org, “Computer

users often find occasion to ask how two files differ. Perhaps one file is a newer version

of the other file. Or maybe the two files started out as identical copies but were changed

by different people. You can use the diff command to show differences between two

files, or each corresponding file in two directories. diff outputs differences between files

line by line in any of several formats, selectable by command line options. This set of

differences is often called a ‘diff’ or ‘patch’. For files that are identical, diff normally

produces no output; for binary (non-text) files, diff normally reports only that they are

different.” (Free Software Foundation, 2008)

To run diff.exe on Windows we need to get the DiffUtils for Windows package

and the Dependency files from SourceForge. Download these files and extract them

according to the instructions in the Appendix, section 4.3. While we are downloading the

files, we will grab the documentation file to have for future reference.

Now we are ready to perform our comparison, we run the diff.exe program and

give it our two snapshot files. The diff.exe command has many options but for our needs

we just need to give it the two files we wish to compare. Figure 6 shows the output from

the diff.exe command, “diff.exe first.txt second.txt”, we use to compare the previous file

(first.txt) to our current snapshot file (second.txt).

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 1
9 	

Author	 Name,	 email@address	 	 	

Figure 6

Our output shows us that the Google Toolbar adds six entries to our auto-run

areas. We know this because of the six entries that diff.exe found in second.txt file that

were not in first.txt file. Notice each additional entry is prefixed by a “>” symbol. If we

think about the order of the input files on the command line, the “>” symbol can be

considered a pointer to the file where the entry appears. Thus, second.txt would have

these entries in comparison to first.txt. The rest of the files entries are the same, hence no

display of the entries. If there had been an entry in first.txt that was not in second.txt, the

“<” symbol would have appeared before the entry.

The line previous to the entries indicates our deductions are correct. For example,

prior to our first entry we see 22a23. The 22a23 means the entry following this line was

found after a match of line 22 in first.txt and appears as an additional line, line 23, in

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
0 	

Author	 Name,	 email@address	 	 	

second.txt. The concept behind the “<” and “>” symbols is all we need to understand. If

you would like more information on diff.exe output, please refer to the documentation

file we downloaded from SourceForge.

To see an example of what it looks like when diff.exe shows removed items, let’s

uninstall the Google Toolbar. After we go through add/remove programs to perform the

uninstall, we run our autoruns.exe command for another snapshot as seen in Figure 7.

Figure 7

As you can see, we redirect the output to a file called third.txt. If we look at the

file size in the directory listing, the size of third.txt is now the same as first.txt. This

would possibly indicate that the uninstall process removed the six entries it added during

the install.

But we can’t say for sure what happened until we look at the difference between

our last snapshot and our current snapshot. If we run diff.exe and compare our previous

snapshot file (second.txt) to our current snapshot file (third.txt), we see the output from

our command as shown in Figure 8.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
1 	

Author	 Name,	 email@address	 	 	

Figure 8

Our output indicates the six items listed were removed from third.txt. The “<”

symbol indicates they were in the second.txt file and no longer in the third.txt file. If we

compare the items from this output to the output after our install, we can see the same

items that were added (“>”) after the install were deleted (“<”) after the uninstall.

As we progress from here, we should keep our file order in our diff.exe command

constant, such as “diff.exe {previous snapshot} {current snapshot}”. By doing so we can

consider lines starting with “>” as additions and lines starting with “<” as deletions.

We can see that by using Autoruns to make frequent snapshots and Diff to

compare them, we can detect changes in the auto-run areas on our Windows systems.

Now, let’s talk about how we can automate this process.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
2 	

Author	 Name,	 email@address	 	 	

2.5. Bringing it all together with scripting techniques
2.5.1. Scripting Autorunsc and Diff

Now that we have covered the basic concept of making and comparing snapshots

of Windows auto-run areas, let’s talk a little about automating the process. Continuing to

do this as a manual process would be too inefficient and tedious, especially on a system

where not many changes are expected. If we have empty reports day after day, we may

become complacent and stop running the process on a regular basis. What we need to do

now is put these commands to work in a script.

We have created and used two commands from the command prompt, one to

dump all auto-run information and another to compare snapshots of this information. We

need to consider how we would go through the whole process of running our commands

while maintaining a current snapshot and the previous snapshot we need for a historical

comparison. To start building our automated process, let’s put the process together in the

logic we would process our tasks.

When working out our automation logic we should be thinking along the lines of

having the following tasks:

• Initialize constants and variables – this will be the first part of our script that

will initialize any variables and constants we want to use. This will include

working paths, filenames, etc.

• Make current snapshot – this is where we will issue the Autorunsc.exe

command to make our current snapshot. We will redirect the output to a

snapshot file so we can compare it to an older snapshot file.

• Compare snapshots – in this section we will issue the diff.exe command to

compare our snapshots. At this point, you may be wondering “where is this

older snapshot we are comparing to our current snapshot?” We will cover file

handling coming up shortly.

• Build report – here is where we will parse the results of our diff.exe command

and add the information we want to our report.

• Display report – finally we will want to output the report in some manner.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
3 	

Author	 Name,	 email@address	 	 	

Before we start discussing a script to accomplish these tasks, there are a few other

considerations that we need to think about. As mentioned earlier, what about file

handling? How do we manage the files we are creating so we have that previous

snapshot? We also need to think a little about report logic. What exactly do we want to

see in the report? What about error handling? What types of errors can we account for

and capture in our script to make future troubleshooting easier.

File Handling: In our script, we are relying on two snapshots to help us detect

malware infections. One of the current auto-run state and one from a previous state at

some point in time. To have a previous snapshot, what better to use than the last

snapshot we made for our current snapshot? Which brings us to a file management

decision- do we want to manage files before the current snapshot is made or afterwards?

To make this decision, let’s look at a snapshot rotation method where the current

snapshot becomes the previous snapshot. We already know we need two snapshots to do

a comparison. Let’s call the files snap.curr (current snapshot) and snap.last (previous

snapshot). If we want to set up our files for the next run, we will want to replace the

previous snapshot with the current snapshot. We will also want to delete the current

snapshot file to prepare for our new snapshot file. To accomplish this we can delete the

snap.last file and then rename snap.curr to snap.last.

We have two options for the timing of this file preparation step. We can perform

it either at the start or the end of our script. One thing to consider in the decision of

where to make the rotation is snapshot retention. If we rotate the two files at the end of

the script, we lose our previous snapshot right away and are only left with the current one

(now named as the previous). If we rotate them at the start of the script, we retain our

two snapshots until the next time the script executes. Retaining the snapshots for as long

as possible will be beneficial if any investigation of the snapshots is required due to a

report entry. For this reason, we will be rotating the files at the start of our script.

One last thing to consider for file handling is what happens the first time the script

runs or the previous snapshot file is missing. At first run, there will not be a previous

snapshot in which to compare the current snapshot and we must account for this. The

first part of the file rotation task should check for an existing snapshot file (snap.curr). If

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
4 	

Author	 Name,	 email@address	 	 	

it is missing we should create one so our diff command will have two files to work with.

By making this check we will cover both situations, a first run and a run where the file is

missing.

This is the most basic file handling that needs to be accomplished. You can

become as elaborate as you need with snapshot history. It’s just a matter of translating

your desires into the script.

Report Logic: While building the report from your difference file you need to

consider what is important for you to see. Our script will report any addition or deletion

entry. However, this may be too much information in some environments. Once again,

you can make the report as elaborate or as simple as needed for your environment. There

may be times when there are no changes between snapshots, so you may not want to

display a report at all. The “what” and “when” is completely up to you. We will be

discussing report examples later in an effort to make the decisions easier. Refining the

process over time will be a common task.

Error handling: Our script in this paper has some basic error handling built in to

it. The error handling in our script is for assuring the necessary folder structure is in

place. You should consider what other errors may arise in your environment and

add/remove whatever error handling you desire.

Environments vary from place to place, so should the script included in this paper.

You should take the script and customize it to your needs. However, if you feel this is

beyond your ability, the script can be implemented as-is.

There are a wide variety of scripting languages and programming styles. This

script is basic and can be rewritten in your preferred language and style. However, in our

analysis we will be looking at a VBScript implementation.

2.5.2. Complete working VBScript

In the appendix, section 4, we have the complete steps to implement our process

on a stand-alone computer. For the script to function properly, we need to create the file

system structure as documented in the Appendix, section 4.1. Next we need to download

the supporting files (Autoruns and Diff) in accordance with the directions in the

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
5 	

Author	 Name,	 email@address	 	 	

Appendix, sections 4.2 and 4.3. Finally we will need to copy the VBScript, in Appendix

section 4.4, into a file called ARCheck-SA.vbs or whatever you wish to call it.

We should probably use a name that has some meaning when we see it.

ARCheck-SA means “Auto-Run Checker-Stand-Alone”. The “.vbs” file extension will

associate the file with the Windows Scripting Host, which is important. You should not

deviate from this unless you are an advanced user and know what you are doing.

When we discussed our automation logic we defined several tasks that were

needed to accomplish the process we are creating. We touched on five main tasks: define

variables, make snapshot, compare snapshots, build report and display report. Then we

discussed tasks for file and error handling. If you look at our script in the appendix, you

can pull out the following six tasks we will discuss while explaining the script.

1. Variables – look for comment “Set up variables and constants”

At the start of our script we define several variables and constants. We assign

default, or starting, values to these variables. Throughout our script you will see naming

conventions used for our variables and constants. These naming conventions are used so

we can help identify what type of data may be stored in the variable. The following list

of three character variable prefixes describes the value types stored in our variables:

• boo – Boolean variable for TRUE or FALSE values.

• int – Integer variable to hold numeric values.

• str – String variable to hold string data.

• obj – Object variable to hold a reference to a system object. Examples of

objects used are: System information objects to pull host and user names; File

System objects to access files on a file system; and Shell objects to run our

commands.

The constants and variables in the script are explained in the Appendix, section

4.5.

2. File and error handling – look for comment “Verify file system is in order”

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
6 	

Author	 Name,	 email@address	 	 	

After we get our variables and constants configured, we can start with our file

management portion of the script. While performing file management, the script starts

performing some error checking on the folder structure it requires. Our script relies on a

certain folder structure to be in place to write temp files, manage our snapshot files and

save our report files.

The first thing our script does in the file handling section is to check to see if the

strOutputPath exists. If it doesn’t exist, the script will attempt to create the folder. At

this point, our error handling kicks in and checks to see if the folder creation was

successful. If it was not successful, we call the ErrHandler procedure passing it the error

number, a description of “Output Path” and the strOutputPath variable. The procedure

will display an error and the script will exit.

Once we make sure the strOutputPath is establish, we do the same check on the

strReportPath. If it doesn’t exist, we attempt to create the path and check for creation

errors. If there was an error, we once again call the ErrHandler procedure passing it the

error number, a description of “Report Path” and the strReportPath variable. The

procedure will display an error and the script will exit.

Once we know our folder structure is in place, we prepare the snapshot files by

performing the file rotation as we discussed in the file handling logic. We delete the

previous snapshot file (strPreviousFile). Then we move the old current snapshot file

(strCurrentFile) to make it the previous snapshot (strPreviousFile). Or if the file is

missing, we create an empty previous snapshot file to compare with the current snapshot

we are about to make.

3. Make snapshot – look for comment “Make snapshot”

Once we know the folder structure requirements are in order and the snapshot

rotation has completed, we can run our Autorunsc.exe command to create our current

snapshot file. We set the strCommand variable with the Autorunsc.exe command we

created. We the call the RunCommand procedure passing it the strCommand variable,

the window style of 0 (zero) to run as a hidden window and the booWait variable to have

the script wait for the program to complete before continuing.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
7 	

Author	 Name,	 email@address	 	 	

One caveat we in the script, that we haven’t discussed yet, is the added (and

undocumented) command line parameter “/accepteula”. This parameter will prevent a

first time use license agreement from being display and waiting for the user to accept the

agreement. If we do not use this command line option, it may prevent our script from

running and ultimately detecting malware.

4. Compare snapshots – look for comment “Compare snapshots”

Now that we have made a new snapshot, we are ready to compare the snapshots

and make a difference file for our report building task. We once again set the

strCommand variable with the diff.exe command we created. The RunCommand

procedure is called and passed the strCommand variable, the window style of 0 (zero) to

run as a hidden window and the booWait variable to have the script wait for the program

to complete before continuing.

5. Build report – look for comment “Build Report”

The report building task can now process our difference file and we can build a

list of entries to report. In this task we build the report header, parse the difference file

creating the report body and then write the report body to the report file.

The first part of this task opens an object to the report file for writing the report of

our findings. Once the file is open a header is written to the file based on the information

we have collected from the system. This information includes hostname, username,

version number, a notice if there is no previous history, the time the report ran and the

report filename.

After we build the header, we open an object to read the difference file. We parse

the difference file line by line, or entry by entry, storing the entry in the strOutput

variable. We use the start of each entry to determine what part of the report the entry will

be written, if it is written at all. The script adds entries starting with a “>” symbol to the

strAdditions variable and entries starting with a “<” symbol to the strDeletions variable.

Other entries are ignored and not reported in any output.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
8 	

Author	 Name,	 email@address	 	 	

Finally the script writes the strAdditions variable to our report file. Unless there

are no entries to report, in which it will write an entry saying there are “No deletions to

report.” This is followed by a similar process for the strDeletions variable.

6. Display report – look for comment “Display Report”

During the report building process we used a boolean variable called booChanges

to track if changes were discovered. If there were any additions or deletions detected in

the difference file this variable was set to TRUE. If no additions or deletions were

detected then this variable was set to FALSE.

The strCommand variable is set to run notepad.exe with our report file as input.

If the booChanges variable is set to TRUE then the script calls the RunCommand

procedure. The procedure is passed the strCommand variable, a 7 for window style

(normal window in the background) and the booNoWait variable. The 7 to open

notepad.exe in the background is to prevent interruption of anything the user may be

working on. The booNoWait variable is to have the script continue and complete without

waiting on the user to close the notepad program.

Just a few more small tasks to clean up our system resources

After the report is built and displayed, there are a couple more items the script

does before exiting. The script cleans up the difference file that we do not need to keep

by deleting the file located in the variable strDiffFile. It closes the system objects it had

open and then calls the ExitScript procedure to end the processing.

Extra Code found at the end of the script: Procedures

At the end of the script you will find the scripting for the procedures used by the

script. There are three of them; ErrHandler, ExitScript and RunCommand.

The ErrHandler procedure is used when the script catches an error that it is

programmed to handle. The script is programmed to handle file errors when we are

checking our required file system structure. If a file error is encounter the script calls this

procedure and passes three variables; iErrNum – the built-in Err number as reported by

WSH, strErrDesc – a programmer description of the error and strErrFile – the path that

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 2
9 	

Author	 Name,	 email@address	 	 	

was being used when the error occurred. The procedure uses this information to display

an error message and then it calls the ExitScript procedure.

The ExitScript procedure does just what its name indicates. It causes the script to

terminate. It first frees the open file system object (objFSO), then it calls the WSH quit

command to terminate the script gracefully.

The RunCommand procedure also does just what its name indicates. It runs a

command, stored in the strCmd variable, which is passed to the procedure when called.

In addition to the command, the procedure is passed two other variables; intWinStyle and

booWaitDone. The intWinStyle variable defines the style of the window to run the

command. Our script uses two styles; 0 - hidden and 7 - normal window in background.

The booWaitDone variable is a boolean variable that determines if script processing waits

for the command to finish or not.

2.6. Change detection
2.6.1. Detecting a change

After running this script regularly over a period of time we will start seeing

various reports being generated. Obviously, the reports that tell us “No changes were

detected…” are the reports we like to see. However, this will not always be the case. We

will see reports that have changes that are normal due to software installations, updates or

uninstallations. We will see reports alerting us of changes because items a user may

modify, such as their Startup folder or Scheduled Tasks. Unfortunately, we may also see

reports that are due to malware activity.

As time goes by, hopefully we all will get better at understanding what is causing

the reports to be generated. For now, let’s discuss some of the items we may see in our

reports. Then we will move into some of the things that can be done to help determine

what is going on.

As we get into the examples, let’s remember an important part of creating our diff

command. If we keep the input files in the same order, previous snapshot file then

current snapshot file, we can quickly determine if the entry is an addition or deletion.

Using this order, any line starting with a “>” symbol will be an addition and any line

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
0 	

Author	 Name,	 email@address	 	 	

starting with a “<” symbol will be a deletion. The report is designed to keep additions

grouped together in one section and deletions in another.

Install/Uninstall Example:

For the first example, we will revisit our Google Toolbar install and uninstall that

we discussed earlier. If you look back at the output from the diff command we used in

Figure 6, which we used to compare snapshots around our Google Toolbar install, you

will see the second entry of output is the same as you see in Figure 9.

Figure 9

Our general analysis by reading the entry in Figure 9, as ordered, tells us:

• The entry is an additional auto-run entry as the “>” symbol indicates

• The Entry Location is "HKLM\SOFTWARE\Microsoft\Windows\Current
Version\Run"

• The Entry is called "Google Quick Search Box"
• The entry’s status is “enabled”

• It has a Description of "Google Quick Search Box"
• The Publisher is “Google Inc.” and the digital signature was “(Not Verified)”

• The application location, or Image Path, is:
 “c:\program files\google\quick search box\googlequicksearchbox.exe".

• The application, or Launch String, that gets executed is:
"C:\Program Files\Google\Quick Search Box\GoogleQuickSearchBox.exe /autorun"

• Finally, Autoruns gives us the three hashs (MD5,SHA-1,SHA-256) for the
application “googlequicksearchbox.exe”:

“5d24868cac87dcd70c5b71101d39b0de”
“f5a95f9ec0bf4e3cff92579f65e9bbe512fc3a20”

“6a58ccd257ec133dcc72b245913dc96aaa8ff03269a51e68bc16de1e7451eb13”

As we recall, the uninstallation of the Google Toolbar produced very similar

results as compared to the installation results. As you see in Figure 10, the only

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
1 	

Author	 Name,	 email@address	 	 	

difference in the uninstall output is at the start of the entry. In the uninstall results, we

see the “<” symbol which tells us that the entry was a deletion.

Figure 10

Upgrade Example:

Considering how the reports look for installing and uninstalling software, how do

you think the reports for updating software will look? If you are thinking there will be an

addition entry and a deletion entry, you are correct. When software gets updated, you

will often see coinciding entries as in Figure 11. There will be one entry that removes the

old program information and another entry that adds the new program information.

Figure 11

In the report output, we see two entries that look very similar to one another. This

output comes from a comparison of snapshots made before and after an update to the

Adobe Reader Software. After analyzing the output of these two entries, we can deduce

the following:

• The starting symbols (“>” and “<”) indicate one is an addition and one is a deletion.

• The location, entry, status, description, publisher, image path and launch path are
identical for both entries.

• The application’s hash values (MD5, SHA-1 and SHA-256) are different from one
entry to the other. This tells us that the application file has been modified.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
2 	

Author	 Name,	 email@address	 	 	

In this software update example, the path to the application remained the same.

Some applications may show a different path for the updated install, especially if the

version of the application is used in the path. The path may change for other reasons as

well, such as a user defined installation location.

Be careful not to just dismiss these types of entries as upgrades. Due to the nature

of parasitic viruses, the hash may change because malware modified the file. If an

unexpected entry appears, be sure you scrutinize it thoroughly using the methods we talk

about a little later.

Start Folder Example:

In Figure 12, we see how a report entry will look if a user creates an entry in their

Startup folder. You will see in this example that user Jim created a URL shortcut in his

User Profile startup folder.

Figure 12

From the output we can determine:

• The starting symbol (“>”) indicates this is an addition.

• The location “C:\Users\jim\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup” tells us this is the start menu for a user profile on a
Windows Vista or 7 system. On an XP system the folder would be “C:\Documents
and Settings\jim\Start Menu\Programs\Startup”.

• The entry is named “SANS Internet Storm Center.url”.
• The image path and launch string is “C:\Users\jim\AppData\Roaming\Microsoft

\Windows\Start Menu\Programs\Startup\SANS Internet Storm Center.url” which
could tell us this entry is a URL shortcut.

We could assume this entry is a shortcut to the SANS Internet Storm Center

website, but we are basing that on the name of the shortcut we see in our output, which is

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
3 	

Author	 Name,	 email@address	 	 	

a bad approach! To determine what this shortcut does, we would have to investigate the

shortcut itself.

Scheduled Task Example:

In Figure 13, we see an example of what you will see in a report when a new

Scheduled Task is created. In this example, a task called “ARCheck” was created to run

“c:\ARCheck\ARCheck-SA.vbs”. From this point we could go investigate the Scheduled

Tasks on the system to see what the VBScript will do when it runs.

Figure 13
Malware Infection Example:

In this example, figure 14, we see what an entry in our report would resemble if it

detects malware. With malware entries there is not very much commonality from one

report to another. Often with the entry you will see something that stands out, but not

always.

Figure 14

Some malware writers try very hard to make their malicious code look like it is

suppose to be there. They use official looking names, like “Security Tool” or “AntiVirus

2009”. This is where our investigation process is important, especially for entries we do

not know. We will discuss investigation and research after we discuss one more report

item.

Unsigned Microsoft DLL Example:

From time to time, you may run across entries that have Microsoft Corporation as

the Publisher but the signature is “Not Verified”. In figure 15, we see an example of a

Windows XP Parallel Port driver that is not digitally signed.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
4 	

Author	 Name,	 email@address	 	 	

Figure 15

Sometimes we will run across files from Microsoft, or other vendors, that are not

signed. This may occur when the files are from an older software implementation. The

more current the software is, the more likely it will have files that are signed.

However, we will need to research these entries (covered in the next section). At

this point we do not know why the entry is “Not Verified”. It could be that Microsoft

didn’t sign the file, the file is signed with a fake certificate or the file has been modified

by malware.

Other examples:

There are also times we will see “orphaned” entries in our reports. What do we

mean by “orphaned” entries? Well, from time to time we will see entries that have an

image path that is reporting “File not found: {file system path}”. There are a few

situations where this can occur.

One situation where this can happen is when the user account running the script

does not have permissions to the location of the image path. At times you will need to

check the image path with an account that has appropriate permissions to see if the file

actually exists. Sometimes the file may no longer exist because it was deleted, by a user

or an application.

When an application gets uninstalled, not all of the uninstall programs remove all

of the registry entries, causing registry rot. At times you may find these entries in your

report after an application uninstall. If you do, you may have to manually delete the

registry entry. However, be very cautious when doing so. Manually editing the registry

can cause many problems for a Windows system. If you decide to edit the registry,

always consider backing it up first.

There is one scary situation to think about in a report. When our system is

infected with a trojan or rootkit, the malware may hide files from the Windows APIs

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
5 	

Author	 Name,	 email@address	 	 	

(application program interfaces). Some really evil pieces of malware put hooks into the

Windows processes that retrieve file, registry and process information. These hooks are

used to sanitize the information that Windows is reporting back to the requesting

program. So when Autoruns requests file information about an entry, the Windows

processes, influenced by the malware, may report that a file doesn’t exist even when it

does. At that point Autoruns doesn’t think the file exists and tells us “file not found”.

The last situation we are going to discuss is when anti-virus software detects and

removes a piece of malware. When anti-virus software detects a piece of malware it can

often remove the executables the malware has planted on the system. Unfortunately,

anti-virus software often leaves registry entries that were created by the malware

infection. In Figure 16, we can see entries from a computer that was infected with

malware and then caught and removed by anti-virus software.

Figure 16

These entries appeared in an initial report from the previously infected computer.

If this hadn’t been the initial report, our process would have caught the virus shortly after

the infection had occurred. The investigation into these files proved the files no longer

existed and the “File not found” message was not due to permissions or malware trickery.

How do we know these files were part of a previous malware infection? Other

than knowing from experience, we can research these entries using trusted Internet

resources.

2.6.2. How can I research items found in my reports?

Often we will see things in our reports that will look suspicious. Fortunately,

there are some good research sites available for us to utilize in our investigation efforts.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
6 	

Author	 Name,	 email@address	 	 	

We will discuss two decent options for malware research: ThreatExpert.com and

VirusTotal.

“ThreatExpert is an advanced automated threat analysis system designed to

analyze and report the behavior of computer viruses, worms, trojans, adware, spyware,

and other security-related risks in a fully automated mode.

In only a few minutes ThreatExpert can process a sample and generate a highly

detailed threat report with the level of technical detail that matches or exceeds antivirus

industry standards such as those normally found in online virus encyclopedias.”

(ThreatExpert Ltd, 2009)

A search at the ThreatExpert web site for the files in Figure 16, seres.exe and

svcst.exe, indicates the files are mostly identified as a threat. This is handy information

to know in our investigation. It may prompt us to research further on the malware in

which ThreatExpert indicates these files are associated. Researching your anti-virus

software’s website and working with the vendor may be a good idea.

Unfortunately in the example in Figure 16, the files were really gone and not

available for further investigation. But be aware that some malware files mask their

existence from being detected. Just because the report tells you “File not found” doesn’t

mean the file doesn’t exist.

Let’s look at a more recent report and see why we cannot rely on just one Internet

resource for our investigation. Figure 17 shows us some interesting files as additions to

the auto-run area of our Windows system.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
7 	

Author	 Name,	 email@address	 	 	

Figure 17

Here we see two new entries under the Run registry entry. One called

“06529123” and the other called “75139732”, both being enabled. Neither of them have

a publisher, so they are not digitally signed. The executables for each are found in the

All Users profile. These files should have our curiosity running wild. Programmers

usually give their programs descriptive names and signing executable files is becoming

very standard these days (unfortunately not standard enough). But still, the naming

convention is not very descriptive which stands out. It almost seems like random

naming, which is common in malware detection avoidance techniques. A search for the

file names on ThreatExpert.com returns nothing, as seen in Figure 18.

Figure 18

With ThreatExpert not giving us any information on these files, let’s take a look

at VirusTotal.com as a resource. “VirusTotal is a service that analyzes suspicious files

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
8 	

Author	 Name,	 email@address	 	 	

and facilitates the quick detection of viruses, worms, trojans, and all kinds of malware

detected by antivirus engines.“ (VirusTotal)

VirusTotal utilizes antivirus engines from about 40 different companies. Queries

can be performed via a web interface in two manners: 1) by submitting a file directly, or

2) via a hash search. The hash search queries a database of hashes created from other

files submitted to VirusTotal. If you submit a file to VirusTotal, the file properties,

including hashes, will be stored in VirusTotal’s database. The file, if not already in the

database, will then be scanned by over 40 different malware products (commercial and

open source). If the file is in the database, you can view the previous results or have it

rescanned.

Remember, hashes are used to verify that no changes have been made to a file.

Hashes are based on file content. If you change the contents of a file, the hash of the file

will change as well. If a hash of one file matches the hash of another file (regardless of

filename), there is a very high probability that the files are identical.

In our output in Figure 17, we have hash values for our files. If we go to the

VirusTotal website and submit our hashes, we can see if VirusTotal is aware of our files.

In Figure 19, we can see what it looks like when VirusTotal is not familiar with a hash.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 3
9 	

Author	 Name,	 email@address	 	 	

Figure 19

Since we did not get a hit on the hash value of our files, we can submit the actual

files to VirusTotal. If we get the executable file and submit it through the VirusTotal

website, we will basically run it against 40 anti-virus tools to see if anyone detects it as

malware. Figure 20 shows partial results from VirusTotal on the file 75139732.exe, the

same as the hash from Figure 19.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
0 	

Author	 Name,	 email@address	 	 	

Figure 20

The output in Figure 20 has been cut off, but we can see that only 7 out of 40

utilities flag this file as possibly being malware. The next step would be to submit these

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
1 	

Author	 Name,	 email@address	 	 	

programs to your anti-virus vendors and/or other security sites such as TheatExpert and

SANS Internet Storm Center (http://isc.sans.org).

VirusTotal offers a couple other options for submitting files that may be of

interest. They have a small piece of software called VirusTotal Uploader that you can

install on a computer. Then there is an option to make submissions via e-mail.

The Uploader program adds functionality to the “Send To” feature. After it is

installed you can right click on a file, choose “Send To” and there will be a new option

called VirusTotal, as seen in Figure 21. After selecting VirusTotal, the program will

check the hash and either: 1) Open a browser to the hash results page or 2) Send the file

and open the browser to the submission results page.

Figure 21

The option to submit via e-mail allows you to send a file and receive an e-mail

response of the results. All you need to do is send an e-mail to scan@virustotal.com with

a subject of SCAN and the file to scan as an attachment. Once the file is scanned, the

results will be e-mail back to you. Information on these options can be found at

http://www.virustotal.com/metodos.html.

If you suspect your computer has been infected, to protect yourself and the data

on the computer, you would probably want to remove the computer from the network or

Internet until you can properly clean it. Otherwise, you are running the risk of identity

theft, participating in botnets or other unwanted activities.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
2 	

Author	 Name,	 email@address	 	 	

2.7. Advanced deployment considerations
2.7.1. Running in a small environment

When running this process in a SOHO type network environment, you may want

to take further considerations into account. The environment may get to large to manage

this process and analysis on a computer to computer basis. Some of the things you may

want to consider include running from a central location, storing reports in a central

location and adding some other mechanism for delivering the report.

If you have a computer or server that is accessible by other computers that run

this process, consider setting up a shared location to use. By creating a network share,

you can have computers run this process from a centralized location. When you need to

update the process, you would only need to do so in one location. Not to mention that a

central location would guarantee all of your computers are running the same process.

You could also use this shared location to save the report data. Our script

includes the host name and date/time stamp in the report name. By modifying the script

slightly, you could add additional functionality to write reports to a central location. This

would make it easier for you to review the reports, or perform other tasks such as

searching all of the reports for a particular thing (such as a hash of a know piece of

malware).

When running this process on several computers, using the Notepad application

may not be the best way to deliver the report. You may just want to rely on someone to

look at the reports on a regular basis. Or maybe you want to code in some logic to

deliver reports by e-mail. You could even do both, count on someone to review reports

regularly and e-mail certain reports based on some predefined content.

2.7.2. Running in a medium to large environment

As the environment increases to a medium to large size, so does the complexity of

this process. As we get into environments that have many computers spread across

geographical locations, we need to start considering a more distributed and automated

environment. We need to start considering “site” processing, possible white-listing of

known good programs, additional scripts to automate tasks further and deployment

automation.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
3 	

Author	 Name,	 email@address	 	 	

When we start dealing with computers at various geographical locations, we

should consider processing boundaries by geographical site. Creating multiple

centralized areas, one per site, for our script to run and process can help reduce the

failures that may occur when using a remote server. By creating a centralized point at

each site, you can also customize the script for the particular location.

In larger environments we may run into a broader mix of applications, each

having various update processes. Incorporating this process into your change

management program could allow you to utilize a white-listing approach to minimize the

number of entries on a report. If you make a list of known MD5, SHA-1 or SHA-256

hashes, you can compare the hash to an entry prior to writing it to the report. If you have

matching hashes you know the change is authorized by your change management

program, so you don’t really need to see these entries in a report.

Another thing you could do is add other scripts into the mix to improve the

overall process. You could possibly write a script that would traverse the reports looking

for a certain item to see if any reports have it. For instance you could search for the hash

of a newly discovered piece of malware. Or maybe you want to see how many users

have registry entries (HKCU) with executables (.EXE) that auto-start. You can write

scripts to archive older reports to keep the file system cleaned up. There are many things

that can be scripted to make our jobs easier.

One other thing that can be scripted is deployment of the script. You can use

many different tools that are common in a corporate environment. Things such as group

policy, login scripts and software deployment tools are some options.

There is no end to the possibilities of functionality you could add to the process.

Environments vary tremendously and this process can be customized for each of those

environments. So take this script as a start and add to it as you see fit.

2.7.3. Run after malware alerts

There are a few considerations you should consider no matter of the size of your

environment. First we should give consideration to force a run of our script after

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
4 	

Author	 Name,	 email@address	 	 	

receiving a malware detection alert. After all, we cannot say for sure what the malware

has done to our system and how our anti-virus software handled the infection attempt.

After the alert and prior to rebooting, manually execute the script and view the

report. We should heavily scrutinize any entries in the report that is generated. It is

possible that the attempt to infect our system could have been only partially prevented.

Multiple items could have been attempted with only some of them being detected. For

example, the SDBot worm (http://vil.nai.com/vil/content/v_140978.htm) attacked

multiple vulnerabilities. What if some of the vulnerabilities were not widely known yet?

The important thing here is to make sure our security software did the job we

thought it should do. By checking for additional entries we are protecting ourselves from

other malware that may have been hidden in our auto-run areas to infect our systems on

reboot. If you find something suspicious, you can investigate it as we did earlier.

At this point, you will have to make a decision based on your findings. You can

accept the entries as legitimate, delete the entries or report findings to your anti-virus

vendor. If unsure, you also have the option to seek expert advice from a local computer

company.

2.7.4. Updating AUTORUNS program

As with any software, Autoruns is updated on a regular basis to improve

functionality or fix bugs. You should regularly monitor the Sysinternals page on

Microsoft’s website for updates to Autoruns.

The updates are not complex to perform. They consist of a file download and

extraction to the install location. You can utilize the same instructions in the Appendix

that we covered for the initial download and setup.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
5 	

Author	 Name,	 email@address	 	 	

3. Conclusion
For	 many	 years,	 malware	 has	 been	 growing	 more	 and	 more	 into	 a	 business	

for	 cyber	 criminals.	 	 There	 are	 numerous	 pieces	 of	 malware	 appearing	 daily	 to	 be	

used	 for	 financial	 gain	 by	 malware	 authors.	 	 According	 to	 a	 Blog	 article	 by	 David	

Marcus	 posted	 on	 McAfee’s	 AvertLabs	 website,	 malware	 growth	 has	 grown	

exponentially.	 	 While	 there	 is	 no	 silver	 bullet,	 or	 one	 product/process,	 to	 defend	

ourselves	 from	 malware,	 we	 can	 deploy	 a	 layered	 defense	 system	 to	 protect	

ourselves.	

	
(Marcus,	 2009)	

In	 this	 paper,	 we	 discussed	 the	 basics	 of	 Windows	 auto-‐run	 areas	 and	 how	

malware	 uses	 these	 areas	 to	 survive.	 	 By	 hiding	 deep	 in	 these	 areas	 and	

automatically	 running	 at	 system	 startup,	 malware	 can	 do	 its	 bidding	 without	 our	

knowledge.	 	 	 Let’s	 add	 to	 our	 defense-‐in-‐depth	 strategy	 and	 put	 another	 layer	 of	

malware	 detection	 in	 place.	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
6 	

Author	 Name,	 email@address	 	 	

By	 utilizing	 the	 freely	 available	 autorunsc.exe	 and	 diff.exe	 programs,	 we	 can	

build	 a	 process	 to	 monitor	 the	 Windows	 auto-‐run	 areas	 for	 changes.	 	 Using	 the	

script	 we	 discussed	 to	 automate	 this	 process	 makes	 it	 easy	 to	 find	 any	 changes	

(good	 or	 bad)	 to	 the	 auto-‐run	 areas	 on	 a	 Windows	 system.	 	 In	 return,	 we	 have	

another	 method	 to	 detect	 malware	 activity,	 even	 the	 activity	 of	 new	 and	 unknown	

malware.	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
7 	

Author	 Name,	 email@address	 	 	

References
Skoudis, E. (2004). Malware fighting malicious code. Upper Saddle River, NJ: Prentice

Hall.

Keizer, G. (2005, April 04). Hackers write spyware for cash, not fame. Retrieved from

http://www.informationweek.com/news/security/vulnerabilities/showArticle.jhtml

?articleID=160403715

Dai, S, & Kuo, S. (2008). Mapmon: a host-based malware detection tool. 13th IEEE

International Symposium on Pacific Rim Dependable Computing, 350-356.

Debrosse, J. (2009, September 16). Navigating the new cybercrime threatscape, part 2.

Retrieved from

http://www.technewsworld.com/story/68128.html?wlc=1255138964&wlc=12589

05198&wlc=1263757986

Kaspersky Lab. (n.d.). Three criteria for malware existence. Retrieved from

http://www.viruslist.com/en/viruses/encyclopedia?chapter=153279591

Russinovich, M, & Solomon, D. (2009). Windows internals fifth edition. Redmond, WA:

Microsoft Press.

Sanna, P. (2001, June 18). System and startup settings. Retrieved from

http://technet.microsoft.com/en-us/library/bb742541.aspx

Szor, P. (2005). The Art of computer virus research and defense. Upper Saddle River, NJ:

Addison Wesley.

Russinovich, M, & Cogswell, B. (2009, December 1). Autoruns for windows v9.57.

Retrieved from http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

Free Software Foundation. (2008, October 22). Diffutils. Retrieved from

http://www.gnu.org/software/diffutils/diffutils.html

ThreatExpert Ltd, Initials. (2009). Welcome to threatexpert. Retrieved from

http://www.threatexpert.com

VirusTotal, . (n.d.). Virustotal. Retrieved from http://www.virustotal.com/

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
8 	

Author	 Name,	 email@address	 	 	

Marcus, D. (2009, July 22). Malware is their business…and business is good!. Retrieved

from http://www.avertlabs.com/research/blog/index.php/2009/07/22/malware-is-

their-businessand-business-is-good/

4. Appendix
4.1. File System Configuration

This	 section	 describes	 the	 file	 system	 structure	 for	 the	 script	 we	 discuss.	 	

Create	 the	 following	 directories	 on	 your	 system.	 	 The	 description	 is	 for	 information	

purposes	 and	 is	 provided	 to	 explain	 the	 purpose	 of	 the	 folders.	 	

Folder	 	 	 	 Description	

C:\ARCheck\	 	 	 Base	 folder	 for	 process.	 	 Holds	 the	 script	 and	
	 	 	 	 other	 programs/libraries.	
C:\ARCheck\Process	 	 Folder	 to	 retain	 snapshot	 history	 and	 working	 	
	 	 	 	 files.	
C:\ARCheck\Reports	 	 Folder	 to	 store	 the	 reports	 that	 get	 generated.	
You	 can	 modify	 this	 folder	 structure	 to	 fit	 your	 needs	 and	 your	 environment.	 	

There	 are	 three	 variables	 defined	 for	 these	 folders	 toward	 the	 start	 of	 the	 script.	 	

Listed	 below	 are	 the	 three	 variables	 and	 associated	 folder:	

strPath	 variable	 –	 points	 to	 the	 base	 folder	 C:\ARCheck	

strOutputPath	 variable	 –	 points	 to	 the	 working	 folder	 	 	 C:\ARCheck\Process	

strReportPath	 variable	 –	 points	 to	 the	 report	 folder	 C:\ARCheck\Reports	

If	 you	 change	 the	 folder	 structure,	 you	 will	 need	 to	 modify	 the	 script	

variables	 to	 match.	 	 The	 script	 included	 in	 this	 paper	 will	 verify	 the	 subfolders	 under	

C:\ARCheck	 exist.	 	 If	 they	 do	 not,	 the	 script	 will	 attempt	 to	 create	 them.	 	 As	 long	 as	

the	 strPath	 variable	 points	 to	 a	 valid	 location	 with	 appropriate	 permissions,	 all	 else	

should	 be	 ok.	 	 After	 we	 complete	 our	 directory	 structure	 and	 the	 remaining	 steps	 in	

this	 appendix,	 we	 will	 have	 a	 folder	 structure	 that	 looks	 like	 the	 following:	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 4
9 	

Author	 Name,	 email@address	 	 	

	

We	 are	 now	 ready	 to	 download/create	 and	 configure	 the	 files	 we	 need	 for	

our	 process.	 	 These	 are	 the	 files	 as	 seen	 in	 the	 right	 pane	 of	 the	 above	 window.	

4.2. Autoruns Download and Setup
This section describes the process to download and setup the Autoruns Utility to

support our script. Once the folder structure is in place, perform the following steps to

setup the Autoruns Utility our script requires.

1) Open the following Microsoft web page for the Autoruns Utility.

http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

2) Click the green arrow to start the download for Autoruns.

3) When the File Download window prompts to open or save the file, click Save.

4) Save the file to a location of your choosing.

5) Once the file is saved, extract the contents.

6) Copy the “autorunsc.exe” file to the base folder you created in section 4.1, in

our example it is C:\ARCheck. The other files are not needed for our process,

but you may want to keep them around to use for manual investigations.

We now have the Autoruns Utility configured as we need it to be for our script.

We can now move on to download the next utility we need, Diff Utils.

4.3. DiffUtils for Windows Download and Setup
This section describes the process to download and setup the DiffUtils for

Windows package along with the supporting dependencies and documentation. We will

need to download and extract two files for our diff.exe command to function correctly.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
0 	

Author	 Name,	 email@address	 	 	

We will also download and extract a third file so we have the DiffUtils documentation on

hand.

1. Open the following SourceForge web page for DiffUtils for Windows.

http://gnuwin32.sourceforge.net/packages/diffutils.htm

2. In the Download section, download the following three files and save them as

you did the Autoruns download.

3. Extract the diffutils-2.8.7-1-bin.zip file and copy .\bin\diff.exe file to the base

folder you created (C:\ARCheck).

4. Extract the diffutils-2.8.7-1-dep.zip file and copy .\bin*.dll files (libiconv2.dll

and libintl3.dll) to the base folder you created (C:\ARCheck).

5. Extract the diffutils-2.8.7-1-doc.zip file to a location to save the

documentation pdf for future reference.

We now have all the support files download, extracted and put in the correct

location for our script. At this point, all we need to do is build the script file to execute.

4.4. ARCheck-SA.vbs script
Here	 is	 the	 commented	 script	 to	 copy	 and	 store	 in	 a	 file	 in	 the	 base	 folder	

(C:\ARCheck).	 	 For	 our	 example	 we	 named	 the	 file	 “ARCheck-‐SA.vbs”.	 	 Copy	 the	

following	 script	 into	 a	 Notepad	 document	 and	 save	 the	 file	 in	 the	 base	 folder	 as	

“ARCheck-‐SA.vbs”.	 	 At	 this	 point	 you	 will	 be	 able	 to	 run	 the	 script	 according	 to	 the	

schedule	 you	 have	 decided	 on.	

'************	 Start	 VBScript	 **********************************	
'Turn	 on	 error	 checking	
On	 Error	 Resume	 Next	
	
'Set	 up	 variables	 and	 constants	
'Constant	 to	 use	 in	 file	 opening	 for	 read	 only	 	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
1 	

Author	 Name,	 email@address	 	 	

Const	 intForReading	 =	 1	 	
'Constant	 to	 use	 for	 file	 overwrite	 	
Const	 booOverwrite	 =	 True	 	
'Constant	 used	 to	 tell	 Shell	 Object	 to	 wait	 for	 command	 completion	 before	
continuing	
Const	 booWait	 =	 True	 	
'Constant	 to	 tell	 Shell	 Object	 to	 not	 wait	 for	 command	 completion	 before	 continuing	
Const	 booNoWait	 =	 False	 	
	
'Versioning	 number	 to	 track	 program	 version	 and	 display	 in	 report	 	
strVersion	 =	 "1.0.0"	 	
'Path	 to	 program	 root	 folder	
strPath	 =	 "C:\ARCheck\"	 	
'Current	 system	 date	 and	 time	 for	 this	 report	 	
strStart	 =	 Now	 	
'Pull	 current	 system	 date	 for	 report	
strDate	 =	 DatePart("m",strStart)	 &	 DatePart("d",strStart)	 &	 _	 	 	
	 DatePart("yyyy",strStart)	 	
'Pull	 current	 time	 for	 report	 	
strTime	 =	 FormatDateTime(strStart,4)	 	
'Combine	 date	 and	 time	 into	 a	 string	 as	 mdyyyyhhmm	 	
strDateTime	 =	 strDate	 &	 Mid(strTime,1,2)	 &	 Mid(strTime,4,2)	 	
	
'Create	 object	 for	 system	 information	 	
Set	 objSI	 =	 CreateObject("WinNTSystemInfo")	 	
'Get	 host	 name	 from	 the	 system	 information	 object	 	
strHost	 =	 UCase(objSI.ComputerName)	 	
'Get	 user	 name	 from	 the	 system	 information	 object	
strUser	 =	 UCase(objSI.UserName)	
'Free	 memory	 in	 use	 for	 system	 information	 object	
Set	 objSI	 =	 Nothing	
'Check	 to	 see	 if	 user	 is	 blank.	 	 If	 so	 assign	 it	 an	 unknown	 value	
If	 strUser	 =	 ""	 Then	 strUser	 =	 "UNKNOWN"	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
2 	

Author	 Name,	 email@address	 	 	

	
'Output	 path	 for	 snapshot	 working	 folder	
strOutputPath	 =	 strPath	 &	 "Process\"	
'Set	 name	 for	 current	 snapshot	 file	
strCurrentFile	 =	 	 strOutputPath	 &	 strHost	 &	 "-‐snap.curr"	
'Set	 name	 for	 previous	 snapshot	 file	
strPreviousFile	 =	 strOutputPath	 &	 strHost	 &	 "-‐snap.last"	
'Set	 name	 for	 difference	 file	 that	 will	 be	 created	 to	 generate	 report	
strDiffFile	 =	 strOutputPath	 &	 strHost	 &	 "-‐snap.diff"	
'Set	 path	 of	 location	 to	 write	 reports	
strReportPath	 =	 strPath	 &	 "Reports\"	
'Set	 filename	 for	 report	
strReportFile	 =	 strReportPath	 &	 strHost	 &	 "-‐"	 &	 	 strDateTime	 &	 ".report"	
	
'Create	 an	 object	 to	 work	 with	 the	 file	 system	
Set	 objFSO	 =	 CreateObject("Scripting.FileSystemObject")	
	
'Verify	 file	 system	 is	 in	 order	
'Check	 to	 see	 if	 working	 folder	 exists	
If	 Not	 objFSO.FolderExists(strOutputPath)	 Then	 	
	 'If	 not	 then	 create	 it	 	
	 objFSO.CreateFolder(strOutputPath)	
	 'If	 it	 cannot	 be	 created	 call	 Error	 Handling	 procedure	 	
	 If	 Err	 <>	 0	 Then	 Call	 ErrHandler(Err,"Output	 Path",strOutputPath)	
End	 If	
	
'Check	 to	 see	 if	 report	 folder	 exists	
If	 Not	 objFSO.FolderExists(strReportPath)	 Then	
	 'If	 not	 then	 create	 it	 	
	 objFSO.CreateFolder(strReportPath)	
	 'If	 it	 cannot	 be	 created	 call	 Error	 Handling	 procedure	
	 If	 Err	 <>	 0	 Then	 Call	 ErrHandler(Err,"Report	 Path",strReportPath)	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
3 	

Author	 Name,	 email@address	 	 	

End	 If	
	
'File	 handling	 for	 snapshot	 rotation	
'Delete	 previous	 file	
objFSO.DeleteFile(strPreviousFile)	
'Check	 to	 see	 if	 there	 is	 a	 current	 snapshot	 file	
If	 Not	 objFSO.FileExists(strCurrentFile)	 Then	
	 'If	 it	 doesn't	 exist	 then	 create	 an	 empty	 previous	 file,	 so	 we	 have	
	 'something	 (in	 this	 case	 nothing)	 in	 which	 to	 compare	 the	 current	 snapshot.	
	 objFSO.CreateTextFile(strPreviousFile)	
	 'Set	 indicator	 so	 we	 know	 this	 is	 the	 first	 run	 and	 there	 is	 no	 	
	 'historical	 snapshot	
	 booNoHistory	 =	 True	
Else	
	 'If	 there	 is	 a	 current	 snapshot	 file,	 move	 it	 into	 the	 previous	
	 'snapshot	 file	 for	 historical	 comparison	
	 objFSO.MoveFile	 strCurrentFile,strPreviousFile	
	 'Set	 indicator	 so	 we	 know	 this	 is	 a	 subsequent	 run	
	 booNoHistory	 =	 False	
End	 IF	
	
'Make	 snapshot	
'Set	 our	 command	 string	 for	 the	 command	 to	 make	 our	 current	 snapshot	 file	
'Note	 the	 "/accepteula"	 parameter	 that	 is	 needed	 to	 avoid	 license	 agreement	 	
'acceptance	 request	 that	 is	 seen	 the	 first	 time	 Autorunsc	 is	 run	 on	 a	 system	
strCommand	 ="%ComSpec%	 /c	 "	 &	 strPath	 &	 "autorunsc.exe	 /accepteula	 -‐avc	 >"	 &	 _	 	
	 	 strCurrentFile	
'Call	 procedure	 to	 run	 command	 with	 a	 Window	 style	 of	 0	 and	 wait	 for	 return	 	
Call	 RunCommand(strCommand,0,booWait)	
	
'Compare	 snapshots	
'Set	 our	 command	 string	 for	 the	 command	 we	 want	 to	 run	 to	 compare	 our	 snapshots	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
4 	

Author	 Name,	 email@address	 	 	

'and	 output	 the	 results	 into	 our	 difference	 file	
strCommand	 =	 "%ComSpec%	 /c	 "	 &	 strPath	 &	 "diff.exe	 "	 &	 strPreviousFile	 &	 "	 "	 &	 _	
	 	 strCurrentFile	 &	 "	 >"	 &	 strDiffFile	
'Call	 procedure	 to	 run	 command	 with	 a	 Window	 style	 of	 0	 and	 wait	 for	 return	 	
Call	 RunCommand(strCommand,0,booWait)	
	
'Build	 Report	
'Open	 report	 file	 for	 writing	 report,	 overwrite	 file	 if	 it	 exists	
Set	 objReportFile	 =	 objFSO.CreateTextFile(strReportFile,	 booOverwrite)	
'Create	 header	 for	 report	
objReportFile.WriteLine("Report	 for	 Auto-‐Run	 areas	 on:	 "	 &	 strHost	 &	 "	 by	 "	 &	 _	 	
	 strUser)	
objReportFile.WriteLine("====================================="	 &	 _	 	
	 	 "===")	
objReportFile.WriteLine("ARAnalyzer	 Version:	 "	 &	 strVersion)	
If	 booNoHistory	 Then	 objReportFile.WriteLine("***	 No	 previous	 history	 "	 &	 _	 	
	 	 	 	 	 	 "detected:	 reporting	 everything.")	
objReportFile.WriteLine("Date/Time:	 "	 &	 strStart)	
objReportFile.WriteLine("Report	 File:	 "	 &	 strReportFile)	
objReportFile.WriteLine("====================================="	 &	 _	 	
	 	 "===")	
objReportFile.WriteLine()	
	
'Set	 indicator	 to	 detect	 if	 we	 have	 changes	 to	 report	 	
booChanges	 =	 False	
'Set	 variable	 to	 hold	 additions	 to	 be	 reported	
strAdditions	 =	 ""	
'Set	 variable	 to	 hold	 deletions	 to	 be	 reported	
strDeletions	 =	 ""	
'Open	 our	 difference	 file	 for	 processing	 information	 to	 include	 in	 report	
Set	 objDiffFile	 =	 objFSO.OpenTextFile(strDiffFile,	 IntForReading)	
'Enter	 loop	 to	 read	 through	 difference	 file	 line	 by	 line	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
5 	

Author	 Name,	 email@address	 	 	

Do	 Until	 objDiffFile.AtEndOfStream	 	
	 	 	 	 	 'Read	 an	 entry	 from	 the	 difference	 file	
	 	 strOutput	 =	 objDiffFile.ReadLine()	
	 	 'Check	 to	 see	 if	 the	 entry	 is	 an	 addition	 ">"	 or	 deletion	 "<"	
	 	 Select	 Case	 Left(strOutput,1)	
	 	 	 Case	 ">"	 'Addition	
	 	 	 	 'Add	 addition	 entry	 to	 additions	 area	 for	 report	
	 	 	 	 strAdditions	 =	 strAdditions	 &	 strOutput	 &	 vbCrLf	
	 	 	 	 'Change	 indicator	 to	 indicate	 changes	 were	 detected	
	 	 	 	 booChanges	 =	 True	
	 	 	 Case	 "<"	 'Deletion	
	 	 	 	 'Add	 deletion	 entry	 to	 deletions	 area	 for	 report	
	 	 	 	 strDeletions	 =	 strDeletions	 &	 strOutput	 &	 vbCrLf	
	 	 	 	 'Change	 indicator	 to	 indicate	 changes	 were	 detected	
	 	 	 	 booChanges	 =	 True	
	 	 	 Case	 Else	
	 	 	 	 'Do	 nothing	 -‐	 entry	 line	 was	 either	 header	 or	 whitespace	
	 	 End	 Select	
Loop	
	
'Check	 to	 see	 if	 changes	 were	 detected	
If	 Not	 booChanges	 Then	 	
	 'If	 no	 changes,	 indicate	 that	 it	 report	
	 objReportFile.WriteLine("No	 changes	 were	 detected	 since	 last	 run.")	
Else	
	 'If	 changes	 were	 detected	
	 'Write	 additions	 to	 report	 first	
	 objReportFile.WriteLine("Additions:")	
	 objReportFile.WriteLine("-‐"	 &	 _	 	
	 	 	 	 	 	 	 "-‐")	
	 'Check	 to	 see	 if	 additions	 were	 detected	 	
	 If	 strAdditions	 =	 ""	 Then	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
6 	

Author	 Name,	 email@address	 	 	

	 	 'If	 no	 additions	 were	 detected	 tell	 that	 in	 report	
	 	 objReportFile.WriteLine("No	 additions	 to	 report."	 &	 vbCrLf)	
	 Else	
	 	 'If	 additions	 were	 detected	 write	 them	 to	 the	 report	
	 	 objReportFile.WriteLine(strAdditions)	
	 End	 If	
	 'Write	 deletions	 to	 report	
	 objReportFile.WriteLine("==============================="	 &	 _	 	 	
	 	 	 	 	 	
	 "===")	
	 objReportFile.WriteLine("Deletions:")	
	 objReportFile.WriteLine("-‐"	 &	 _	 	
	 	 	 	 	 	 	 "-‐")	
	 'Check	 to	 see	 if	 deletions	 were	 detected	 	
	 If	 strDeletions	 =	 ""	 Then	
	 	 'If	 no	 deletions	 were	 detected	 tell	 that	 in	 report	
	 	 objReportFile.WriteLine("No	 deletions	 to	 report."	 &	 vbCrLf)	
	 Else	
	 	 'If	 deletions	 were	 detected	 write	 them	 to	 the	 report	
	 	 objReportFile.WriteLine(strDeletions)	
	 End	 If	
End	 If	
	
'Close	 file	 objects	
objReportFile.Close	
objDiffFile.Close	
	
'Display	 report	
'Here	 we	 will	 use	 notepad	 to	 display	 report	 if	 changes	 were	 detected	
'Set	 up	 our	 command	 to	 open	 the	 report	 using	 notepad	
strCommand	 =	 "notepad.exe	 "	 &	 strReportFile	
'Check	 to	 see	 if	 changes	 were	 detected,	 if	 so	 then	 open	 report	 with	 notepad.	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
7 	

Author	 Name,	 email@address	 	 	

If	 booChanges	 Then	 Call	 RunCommand(strCommand,7,booNoWait)	
	
'Cleanup	 filesystem	 and	 memory	
'Delete	 difference	 file	
objFSO.DeleteFile(strDiffFile)	
'Free	 memory	 used	 by	 script	
Set	 objReportFile	 =	 Nothing	
Set	 objDiffFile	 =	 Nothing	
	
'Exit	 Script	 by	 calling	 exit	 procedure	
ExitScript	
	
'Procedures	 and	 Functions	
Sub	 ErrHandler(iErrNum,strErrDesc,StrErrFile)	
	 'This	 procedure	 will	 output	 an	 error	 message	 to	 the	 screen	 and	 the	 call	 the	 	
	 'script	 to	 exit	 our	 script.	
	 'Inputs	
	 '	 	 	 iErrNum	 -‐	 error	 number	 returned	
	 '	 	 	 strErrDesc	 -‐	 error	 description	 message	 set	 be	 script	 not	 system	
	 '	 	 	 strErrFile	 -‐	 file	 path	 that	 error	 is	 concerning	
	 'Write	 message	 to	 screen	
	 WScript.Echo	 "Error	 with	 "	 &	 strErrDesc	 &	 vbCrLf	 &	 _	
	 	 "File:	 "	 &	 strErrFile	 &	 vbCrLf	 &	 "Error	 number:	 "	 &	 iErrNum	 	
	 'Add	 additional	 message	 based	 on	 error	 code	 return	
	 Select	 Case	 iErrNum	
	 	 Case	 70	 'Error	 number	 70	 is	 generated	 due	 to	 bad	 permissions	
	 	 	 WScript.Echo	 "Access	 Denied!"	
	 End	 Select	
	 'Call	 procedure	 to	 exit	 script	
	 ExitScript	
End	 Sub	
	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
8 	

Author	 Name,	 email@address	 	 	

Sub	 ExitScript()	
	 'This	 procedure	 returns	 memory	 and	 exits	 our	 script.	
	 Set	 objFSO	 =	 Nothing	
	 WScript.Quit	
End	 Sub	
	
Sub	 RunCommand(strCmd,intWinStyle,booWaitDone)	
	 'This	 procedure	 runs	 our	 commands	
	 'Inputs	
	 '	 	 	 strCmd	 -‐	 our	 command	 line	 string	 to	 run	
	 '	 	 	 intWinStyle	 -‐	 window	 style	 to	 run	 our	 comman	 in	 -‐	 0	 =	 hidden	
	 '	 	 	 booWaitDone	 -‐	 should	 our	 command	 complete	 before	 we	 continue?	
	 'Create	 shell	 object	 to	 run	 our	 command	
	 Set	 objShell	 =	 createobject("wscript.shell")	
	 'Execute	 our	 command	
	 objShell.Run	 strCmd,intWinStyle,booWaitDone	
	 'Give	 the	 memory	 back	 	
	 Set	 objShell	 =	 Nothing	
End	 Sub	
'************	 End	 VBScript	 *********************************	

4.5. ARCheck-SA.vbs variables
The following list explains the purpose of some of the variables and constants you

find in the script in section 4.4. These are some values you can customize for your

environment. Following these are constants and variables that should not be changed.

• strVersion – Helps you track versions of the script. The version is used in the

report so we know which version of the script created the report. You can use

this Constant to perform version tracking as you customize the script over

time.

• strPath – This is the base folder path where all the script and command files

are located. See Appendix, Section 4.1, for information about our folder

structure. This can remain pointed to the local hard drive, or can be changed

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 5
9 	

Author	 Name,	 email@address	 	 	

to a mapped drive or UNC path. You can customize this to fit the needs of

your environment and structure desires. Holds a value of “C:\ARCheck\”.

• StrOutputPath – gets assigned the output path for the Process folder described

in the Appendix, section 4.1. Built off of the strPath variable and holds the

value: “{strPath}Process\”.

• strCurrentFile - gets assigned the output path and filename for our current

snapshot file. Built off of the strOutputPath and strHost variables. Holds a

value of “{strOutputPath}{strHost}-snapp.curr”.

• strPreviousFile – gets assigned the output path and filename for our previous

snapshot file. Built off of the strOutputPath and strHost variables. Holds a

variable of “{strOutputPath}{strHost}-snapp.last”.

• strDiffFile – gets assigned the output path and filename for our difference file.

Built off of the strOutputPath variable. Built off of the strOutputPath and

strHost variables. Holds a variable of “{strOutputPath}{strHost}-snapp.diff”.

• strReportPath – gets assigned the output path for the Reports folder described

in the Appendix, section 4.1. Built off of the strPath variable and holds the

value: “{strPath}Reports\”.

• strReportFile – gets assigned the output path and filename for our report file.

Built off of the strReportPath, strHost and strDateTime variables. Holds the

value of “{strReportPath}{strHost}-{strDateTime}.report”.

• strCommand – defined in “Make snapshot”, “Compare snapshots” and

“Display reports” sections. Used to build the autorunsc.exe and diff.exe

commands as we discussed earlier. It is also used to build the command to

open our report with notepad.exe. If you wish to modify these commands,

these are the areas where you do it.

The following variables and constants are used in the script. However these

should not be changed.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 6
0 	

Author	 Name,	 email@address	 	 	

• intForReading – This variable is used to set the IOMode when opening a file

object. This is used when opening an object to the difference file. The

IOMode value of 1 is for read only, hence the variable name.

• booOverwrite – used when performing operations on our output files. When

we create our report file on the file system, we tell the object to overwrite the

file if it exists.

• Err – built in variable that is used by Windows Scripting Host as a return

variable for command success of failure codes.

• booWait – boolean variable used to tell the script to wait for our command to

finish running before continuing with the script. Holds a value of True.

• booNoWait - boolean variable used to tell the script NOT to wait for our

command to finish running before continuing with the script. Holds a value of

False.

• strStart – gets assigned the current system time.

• strDate – gets assigned a MMDDYY value from the strStart variable.

• strTime – gets assigned a HHMM value from the strStart variable.

• strDateTime – concatenation of the strDate and strTime variables to use when

formatting our report name.

• strHost – variable that holds the host named pulled from the System

Information object.

• strUser – variable that holds the username pulled from the System Information

object. If no username can be determined from the System Information

object, this variable is assigned the value “UNKNOWN”.

• booNoHistory – defined in “File and error handling” section. When

determining if this is the first time the program is running on the system or if

there was a missing previous snapshot. This variable is used in report

building to inform you the script thinks the report is a first time run.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 6
1 	

Author	 Name,	 email@address	 	 	

• booChanges – defined in “Build report” section. Determines if the report

needs to be displayed. If there is an entry added to the report, this variable is

set to TRUE to run the notepad.exe command to display our report.

• strAdditions - defined in “Build report” section. When parsing the difference

file, addition entries are added to this variable. If this variable is not empty

when building the report output, it will add the addition entries to our report.

If this variable is empty, it will add an entry to the report telling us “No

additions to report”.

• strDeletions - defined in “Build report” section. When parsing the difference

file, deletion entries are added to this variable. If this variable is not empty

when building the report output, it will add the deletion entries to our report.

If this variable is empty, it will add an entry to the report telling us “No

deletions to report”.

• strOutput - defined in “Build report” section. This variable holds each

individual entry from our difference file as it is read and processed line-by-

line.

• iErrNum – used in ErrHandler Procedure. The return code is from the built-in

Err variable. Used when displaying error output.

• strErrDesc - used in ErrHandler Procedure. An error description passed when

the procedure is called. Used when displaying error output.

• strErrorFile - used in ErrHandler Procedure. A string that is passed to the

procedure and reports which file in which we are having errors. Used when

displaying error output.

• strCmd – used in RunCommand Procedure. It is set to a command string that

gets passed to our procedure. The RunCommand procedure the uses this

string to execute our various commands when it is called.

• intWinStyle - used in RunCommand Procedure. It is set to the Windows style

we pass to our procedure to tell what kind of Window to run the command in.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Utilizing “AutoRuns” To Catch Malware	 6
2 	

Author	 Name,	 email@address	 	 	

We use two different styles; a 0 (zero) tells it to use a hidden windows and a 7

tells it to open a regular window in the background.

• booWaitDone - used in RunCommand Procedure. Boolean variable that tells

the command weather to wait or not to wait for completion of the command

before continuing with our script.

Objects defined in script

• objSI – System Information object. Opens an interface to system properties

for us to gather the hostname (strHost) and username (strUser).

• objFSO – File System object. Opens an interface to the file system so we can

interact with the files.

• objReportFile – File object. Opens an interface with our report file so we can

output out findings.

• objDiffFile – File object. Opens an interface with our difference file so we

can parse the differences in our file and create a report.

• objShell – Shell object. Opens a shell interface to allow us to run our

commands on the system.

Last Updated: November 23rd, 2016

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

MGT517 - Managing Security Ops Washington, DCUS Nov 28, 2016 - Dec 02, 2016 Live Event

SANS Hyderabad 2016 Hyderabad, IN Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cologne 2016 Cologne, DE Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Dublin 2016 Dublin, IE Dec 05, 2016 - Dec 10, 2016 Live Event

SEC560 @ SANS Seoul 2016 Seoul, KR Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cyber Defense Initiative 2016 Washington, DCUS Dec 10, 2016 - Dec 17, 2016 Live Event

SANS Amsterdam 2016 Amsterdam, NL Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Frankfurt 2016 Frankfurt, DE Dec 12, 2016 - Dec 17, 2016 Live Event

SANS Security East 2017 New Orleans, LAUS Jan 09, 2017 - Jan 14, 2017 Live Event

SANS SEC401 Hamburg (In English) Hamburg, DE Jan 16, 2017 - Jan 21, 2017 Live Event

SANS Brussels Winter 2017 Brussels, BE Jan 16, 2017 - Jan 21, 2017 Live Event

Cloud Security Summit San Francisco, CAUS Jan 17, 2017 - Jan 19, 2017 Live Event

SANS Las Vegas 2017 Las Vegas, NVUS Jan 23, 2017 - Jan 30, 2017 Live Event

Cyber Threat Intelligence Summit & Training Arlington, VAUS Jan 25, 2017 - Feb 01, 2017 Live Event

SANS Dubai 2017 Dubai, AE Jan 28, 2017 - Feb 02, 2017 Live Event

SANS Southern California - Anaheim 2017 Anaheim, CAUS Feb 06, 2017 - Feb 11, 2017 Live Event

SANS Oslo 2017 Oslo, NO Feb 06, 2017 - Feb 11, 2017 Live Event

RSA Conference 2017 San Francisco, CAUS Feb 12, 2017 - Feb 13, 2017 Live Event

SANS Munich Winter 2017 Munich, DE Feb 13, 2017 - Feb 18, 2017 Live Event

SANS Secure Japan 2017 Tokyo, JP Feb 13, 2017 - Feb 25, 2017 Live Event

SANS Scottsdale 2017 Scottsdale, AZUS Feb 20, 2017 - Feb 25, 2017 Live Event

SANS Secure India 2017 Bangalore, IN Feb 20, 2017 - Mar 14, 2017 Live Event

SANS San Francisco 2016 OnlineCAUS Nov 27, 2016 - Dec 02, 2016 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=46525
http://www.sans.org/mgt517-washington-dc-2016
http://www.sans.org/link.php?id=41642
http://www.sans.org/hyderabad-2016
http://www.sans.org/link.php?id=45892
http://www.sans.org/cologne-2016
http://www.sans.org/link.php?id=45022
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=45732
http://www.sans.org/sec560-sans-seoul-2016
http://www.sans.org/link.php?id=27544
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43867
http://www.sans.org/amsterdam-2016
http://www.sans.org/link.php?id=43952
http://www.sans.org/frankfurt-2016
http://www.sans.org/link.php?id=45567
http://www.sans.org/security-east-2017
http://www.sans.org/link.php?id=47552
http://www.sans.org/hamburg-401
http://www.sans.org/link.php?id=45007
http://www.sans.org/brussels-winter-2017
http://www.sans.org/link.php?id=47257
http://www.sans.org/cloud-security-summit-2017
http://www.sans.org/link.php?id=45632
http://www.sans.org/las-vegas-2017
http://www.sans.org/link.php?id=45002
http://www.sans.org/cyber-threat-intelligence-summit-2017
http://www.sans.org/link.php?id=45485
http://www.sans.org/dubai-2017
http://www.sans.org/link.php?id=45637
http://www.sans.org/anaheim-2017
http://www.sans.org/link.php?id=47092
http://www.sans.org/oslo-2017
http://www.sans.org/link.php?id=47317
http://www.sans.org/rsa-conference-2017
http://www.sans.org/link.php?id=45490
http://www.sans.org/munich-winter-2017
http://www.sans.org/link.php?id=45607
http://www.sans.org/secure-japan-2017
http://www.sans.org/link.php?id=45642
http://www.sans.org/scottsdale-2017
http://www.sans.org/link.php?id=45612
http://www.sans.org/secure-india-2017
http://www.sans.org/link.php?id=43372
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

