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ABSTRACT
Recent work has established the importance of automatic reverse
engineering of protocol or file format specifications. However, the
formats reverse engineered by previous tools have missed impor-
tant information that is critical for security applications. In this
paper, we present Tupni, a tool that can reverse engineer an input
format with a rich set of information, including record sequences,
record types, and input constraints. Tupni can generalize the for-
mat specification over multiple inputs. We have implemented a
prototype of Tupni and evaluated it on 10 different formats: five
file formats (WMF, BMP, JPG, PNG and TIF) and five network
protocols (DNS, RPC, TFTP, HTTP and FTP). Tupni identified all
record sequences in the test inputs. We also show that, by aggre-
gating over multiple WMF files, Tupni can derive a more complete
format specification for WMF. Furthermore, we demonstrate the
utility of Tupni by using the rich information it provides for zero-
day vulnerability signature generation, which was not possible with
previous reverse engineering tools.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms
Security

Keywords
protocol reverse engineering, binary analysis

1. INTRODUCTION
Recent work [6, 12, 26, 42] has established the importance of

automatic reverse engineering of protocol or file format specifi-
cations. For example, the availability of such specifications gives
security applications like firewalls [5,41] or intrusion detection sys-
tems [32, 33] the context information of a network communication
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or file parsing session, which is crucial for accurately detecting or
preventing intrusions. Being able to automatically reverse engi-
neer such protocol or file format specifications alleviates the time-
consuming and error-prone manual effort.

Discoverer [12] and Polyglot [6] pilot the initial explorations
in this research direction. Discoverer assumes no software access
and performs automatic reverse engineering purely from network
traces. Polyglot assumes software access and performs dynamic
data flow analysis for reverse engineering. Both Discoverer and
Polyglot reverse engineer network messages as a “flat” sequence
of fields. With software access and dynamic data flow analysis,
Polyglot has the advantage of being able to reverse engineer binary
fields and certain dependencies (e.g., length fields). In addition to
Polyglot, Lin et al. in [26] and Wondracek et al. in [42] developed
new tools to reverse engineer network message formats by observ-
ing how a program processes network messages.

However, the formats reverse engineered by previous tools have
missed important information that is critical for security applica-
tions. First, many input formats include arbitrary sequences of data
elements (records). For example, most media files consist of se-
quences of chunks of compressed media data. Second, input fields
may have arbitrary dependencies which cannot be captured by pre-
defined semantics. For example, there are many different ways to
compute checksums. The ShieldGen system [14] has shown that
it is important to understand record sequences and various data de-
pendencies in an attack instance for constructing a high-quality vul-
nerability signature for a zero-day vulnerability.

In this paper, we present Tupni, a tool that can reverse engi-
neer an input format with a rich set of information, given one or
more inputs of the unknown format and a program that can process
these inputs. The main novelty in Tupni is the identification and
analysis of arbitrary record sequences. Unlike previous tools that
either ignore record sequences [6] or only work for some special
cases [26,42], Tupni can identify arbitrary record sequences by an-
alyzing loops in a program, using the fact that a program usually
processes an unbounded record sequence in a loop. Tupni can also
cluster records into a small set of types based on the set of instruc-
tions that process a record. In addition, Tupni can infer constraints
of various, not pre-defined dependencies across fields or messages
(e.g., checksums or sequence numbers) by tracking symbolic pred-
icates from dynamic data flow analysis. Furthermore, to mitigate
a fundamental problem of dynamic analysis that our view is lim-
ited by the execution path associated with a particular input, Tupni
can derive a more complete format specification by aggregating the
format information inferred from multiple inputs.

We have implemented a prototype of Tupni and evaluated it on
ten different inputs: five file formats (WMF, BMP, JPG, PNG and



TIF) and five network protocols (DNS, RPC, TFTP, HTTP and
FTP). We manually compared the formats reverse engineered by
Tupni with published format specifications to evaluate Tupni’s ac-
curacy. Our experimental results show that Tupni can correctly
identify all fields except for those that were ignored by the pro-
gram, and it can identify all record sequences in the published for-
mat specification. We also show that, by aggregating over multiple
WMF files, Tupni can derive a more complete format specifica-
tion for WMF. Furthermore, we demonstrate the utility of Tupni
by using its reverse engineered format for zero-day vulnerability
signature generation, which was not possible with previous reverse
engineering tools.

The rest of this paper is organized as follows. After defining the
goals of this paper in Section 2, we describe the design of Tupni
in Section 3. Then we present our evaluation results in Section 4
and demonstrate the utility of Tupni for zero-day vulnerability sig-
nature generation in Section 5. We compare Tupni to related work
in Section 6 and discuss its limitations and potential future research
directions in Section 7. Finally, we conclude the paper in Section 8.

2. GOALS

2.1 Scope of the Problem
Most application-level protocols involve the concept of an appli-

cation session, which consists of a series of messages exchanged
between two hosts that accomplishes a specific task. Correspond-
ingly, there are two essential components in an application-level
protocol specification: protocol state machine and message format.
The former characterizes all possible legitimate sequences of mes-
sages, while the latter specifies the format for all possible legitimate
messages. Files are a special case of protocols in the sense that each
file is a single “message” and there is no “session” concept in a file
specification.

In this paper, we focus on deriving the network message or file
format and leave the inference of the protocol state machine to fu-
ture work. We uniformly refer to both network message formats
and file formats as input formats. We assume the boundaries of
network messages can be identified.

2.2 Goals
Our goal is to design an algorithm that, given one or more inputs

(files, network messages) of an unknown format and an application
that can process these inputs, outputs a specification of the input
format. More precisely, the format specification we seek to gener-
ate contains the following pieces of information:

• Field boundaries: An input instance (e.g., a particular RPC
request) typically is a sequence of fields. We aim to recover
the boundaries of the fields in the input.

• Record sequences: The identification of base fields by it-
self is sufficient for simple fixed input formats, i.e., formats
such as TFTP in which every input instance has the same
fields and only the field values differ. Most input formats
do not fall into this simple class. A very common pattern is
for a format to allow arbitrary sequences of records. Ex-
pressed in BNF notation, such record sequences have the
form (R1|R2| . . . |Rn)∗, where R1, R2, . . . , Rn are differ-
ent record types each of which may comprise different se-
quences of fields. An example of a record sequence are the
property-value pairs (records) that may appear in arbitrary
sequences in HTTP inputs. Other examples are records in
WMF files, video and audio chunks in a number of multime-
dia and streaming formats (WMA, WMV, ASF, AVI, MPG,

etc.) and tags in HTML. One of our goals is to recognize
such sequences.

• Constraints: In addition to the structural information pro-
vided by knowledge of fields and record sequences, we aim
to derive information about the values of fields. In the sim-
plest case, the input format may mandate that certain fields
must have certain constant values. More generally, fields in
a valid input may have to satisfy certain constraints. Exam-
ples are length fields, where one field specifies the length of
an array field, and checksum fields, where the value of the
checksum field depends on the values of other (possibly all
other) fields in the input.

3. DESIGN
We begin by giving a high-level overview of the algorithm. Fig-

ure 1 shows the sequence of processing stages performed by Tupni.
A raw input is first segmented into basic fields (Section 3.3). The
next processing stage identifies record sequences (Section 3.4). We
then classify the records we have identified in the previous stage
(Section 3.5). This gives us record types. We look for constraints
at several processing stages. Our techniques for identifying con-
straints are described in Section 3.6.

Most of the processing stages combine a baseline algorithm with
an error correction scheme. The baseline algorithm captures the
main idea underlying the processing stage. The error correction
scheme accounts for the fact that real world applications do not
always conform to the baseline algorithm.

Most of the descriptions in this section show how Tupni analyzes
a single run of a parsing application on a particular input. At the
end of the section, we describe how Tupni aggregates the results of
its analysis over several runs of the same application on different
inputs. For a single run of the application, the sequence of instruc-
tions that is executed during this run is called the execution trace of
the run. Each execution trace is associated with the list of binaries
that were loaded during the run and the base addresses at which the
binaries were loaded. This information is readily available from
tools such as iDNA [4] that capture program execution traces.

We refer to the byte positions in the input as offsets. We use the
term position to identify instructions in the execution trace. For ex-
ample, a particular mov instruction in the application binary may
appear at multiple positions in the execution trace. We refer to
sequences of contiguous positions in the execution trace as subse-
quences.

3.1 Background
Tupni assumes the availability of a taint tracking engine such

as [10, 11, 31, 38]. These systems associate data structures with
addresses in the application’s address space and update them as
the application executes. In the simplest case, the data structures
indicate whether the value stored at an address depends on input.
When input data arrive in the application’s address space, the mem-
ory locations storing them are marked as tainted. Whenever an
instruction reads and writes data, the data structure for the desti-
nation operand is updated depending on whether any of the source
operands was tainted.

More complex data structures allow more detailed information to
be tracked, including which bytes in the input the value at a tainted
memory location depends on or how that value was computed. We
call the latter data structure a data flow graph [10].
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Figure 1: The processing stages of Tupni
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Figure 2: Running example input.

1 BYTE input[ BUF_SIZE ]
2 ULONG num_records, i=0, offset=4
3 USHORT record_type, record_size
4 FCT_PTR record_hdlr[NUM_REC_TYPES]

5 call read_input( input )
6 mov num_records, (ULONG *)&input[0]

7 loop: cmp i, num_records
8 jeq end

9 mov record_type, (USHORT *)&input[offset]
10 mov record_size, (USHORT *)&input[offset+2]

11 call record_hdlr[record_type](&input[offset])

12 add offset, record_size
13 inc i
14 jmp loop
15 end:

Figure 3: Example application.

3.2 Running Example
Throughout this section we will use a running example to help

illustrate the stages of Tupni. For ease of exposition, we use a very
simple synthetic input format and a similarly simple application
that processes inputs from this format.

The input format consists of a header followed by a sequence of
records. The header has only one field. It specifies the number of
records that follow. Each record starts with a two-byte field that
specifies the record type, followed by a second two-byte field that
specifies the size of the record in bytes. The remaining bytes of
each record depend on the record type. This simple format is struc-
turally similar to real world formats such as WMF, PNG, WMA
and WMV.

Figure 2 shows an example input from this format. The first field
specifies the number of records as 2. The next 13 bytes make up the
first record, and the following ten bytes make up the second record.
These lengths are specified in the second field of each record. The
first field of each record specifies its type (as types 1 and 5, respec-
tively).

Figure 3 shows a simple application that parses inputs from our
example format. Our pseudo assembly notation can be mapped
to working x86 machine code by assigning x86 registers to our
variables and adding instructions to pass function call parameters.
Line 5 reads the input into a sufficiently large buffer (input).
Line 6 reads the first four bytes of input into num_records,
which tells the application how many records it needs to process.
Each iteration of the following loop (lines 7 to 14) processes one
record. Lines 7 and 8 exit the loop after the last record has been

processed (i == num_records). Lines 9 and 10 read the type
field and the length field of the record. Line 11 calls the handler
function for the given record type. We assume that the function
pointer array record_hdlr has been initialized with a handler
function for each record type. These handler functions are part of
the application, but not displayed in Figure 3 to keep the example
manageable. Finally, line 12 sets offset to the beginning of the
next record, and line 13 increments the index variable that counts
how many records have been processed.

The execution trace of running this program on the example in-
put is 5,6,7,...,14,7,...,14,7, 8,15. That is, after ex-
ecuting lines 5 and 6, the trace contains two full iterations of the
loop. Each segment 7,...,14 contains the instructions of the
handler function between lines 11 and 12.

3.3 Field Identification
This first step partitions the input into short sequences of consec-

utive bytes that are likely to correspond to basic fields in the input
format. Typically, several consecutive input bytes will be mapped
to a larger field such as a 32-bit integer. We deduce this mapping by
observing the operands of CPU instructions. Given an operand of a
CPU instruction in the execution trace, we call the longest sequence
of tainted bytes from contiguous offsets contained in the operand
a chunk. Our algorithm identifies all chunks in the execution trace
by stepping through the trace and inspecting the operands of each
instruction for taint. We ignore move instructions as they do not
process the operand and contain little information about field sizes.

Any byte of the input that is read by the application will be con-
tained in at least one chunk. In general, a chunk may be accessed by
multiple instructions. We keep track of this by assigning a weight
w(c) to each chunk c. The weight of a chunk is simply the number
of instructions in the execution trace that access the chunk (ignor-
ing move instructions).

In this way, by observing the operands of x86 instructions, we
can identify chunks contained in 8-, 16-, 32- and 64-bit integer
operands as well as floating point chunks. We can also recognize
big-endian integers if we see a chunk with reversed bytes. Cur-
rently we track input chunks at byte granularity; we believe it takes
only engineering efforts to refine this to bit granularity.

Running Example.
The first time the application reaches line 7, the second operand

of the cmp instruction is tainted with the first four bytes of the in-
put. This causes Tupni to create a chunk [0, 3] for offsets 0 to 3 and
to assign it weight 1. Note that the mov instruction in line 6 does
not create a chunk. It simply propagates taint into num_records.
Analogous statements apply to lines 9 and 10.

The next chunk [4, 5] is created in line 11 because record_type
is tainted with offsets 4 and 5. The instructions executed by the
record handler function called in line 11 will typically create further
chunks for the offsets inside the record. Since our simple example
does not specify handler functions, we ignore this part of the exe-
cution trace. Line 12 creates the chunk [6, 7] since record_size
is tainted with offsets 6 and 7.



In the second loop iteration, line 7 increases the weight of [0, 3]
to 2, and lines 11 and 12 act as in the previous iteration, creating
chunks [17, 18] and [19, 20], respectively. Finally, the third exe-
cution of line 7 raises the weight of [0, 3] to 3. The final set of
chunks is [0, 3], [4, 5], [6, 7], [17, 18] and [19, 20]; plus any chunks
generated by the handler functions.

3.3.1 Error Correction
The next step is to map chunks to fields. A general difficulty is

that, during the course of its execution, an application may access
the same offset using different operand types. Thus, an offset may
be contained in different chunks. The most common application
behavior that gives rise to such inconsistencies includes (a) bulk
accesses (memory copies, checksums, etc.) in which the applica-
tion reads a part of the input without concern for field boundaries
and (b) optimized string processing code that uses 32-bit (or larger)
operations to process an ASCII or unicode string.

The goal is to find a consistent subset S of chunks such that we
can identify each chunk in S with a field. Tupni has to find a subset
S of chunks such that all chunks in S are disjoint and the combined
weight of the chunks in S is maximized. This is an instance of the
weighted Maximum k-Set Packing problem. While it is intractable
to even approximate the optimal solution under worst-case analy-
sis [21], the problem instances we obtain from real-world execution
traces are quite simple with little overlap among chunks. We use
the greedy algorithm [7] to compute S and identify the chunks in S
with input fields. Based on our evaluation (Section 4), this simple
algorithm seems sufficient.

In general, the fields we have found may not cover the entire
input. In many cases, the application never accesses certain parts
of the input. Thus, observing the application reveals no information
about these parts. All Tupni can do is to mark the contiguous gaps
between fields as virtual fields.

In our simple example, all chunks are disjoint. Thus, Tupni pro-
motes all chunks into fields. Again, ignoring the handler functions,
offsets [8, 16] and [21, 26] are gaps between fields. Tupni adds
[8, 16], [21, 26] as virtual fields.

3.3.2 Strings
We consider strings as regular record sequences. Thus, we have

no string fields. Given a string, Tupni will recognize the string
characters as fields. The next section will describe how Tupni infers
that these character fields form a string as part of the more general
framework for recognizing record sequences.

A special problem arises for strings because many applications
use optimized string processing code that uses 32-bit rather than 8-
bit or 16-bit instructions to access strings. This could cause string
characters to be misclassified as 32-bit integers. Fortunately, the
optimized string processing code is easy to recognize. All instances
we have observed on Windows and Linux involve boolean and
comparison operations with two or three specific constants. If we
recognize optimized string processing code, we ignore the corre-
sponding instructions in the calculation of chunk weights.

3.4 Identification of Record Sequences
This section describes how we identify record sequences. As

defined in Section 2.2, a record sequence covers a contiguous se-
quence of offsets in the input. Our algorithm is based on the obser-
vation that applications have to use a loop or recursive calls to pro-
cess an unbounded sequence of records. We have developed Tupni
for the common case of loops. We believe that similar techniques
can be used to handle recursive calls.

The algorithm proceeds in the following three steps: (a) Identify

all loops that are executed in the execution trace; (b) For each loop,
find the relevant input fields that are accessed in each loop iteration;
(c) For each loop that processes relevant input fields, identify the
record boundaries. The rest of the section describes each of the
three steps in detail.

3.4.1 Loop Identification
The first problem is to find loops in the application. The solution

is to search for cycles in the control flow graph (e.g., [3]). This
method yields a complete list of loops and their relationship. We
only consider loops with a single entry point.

The next task is to map the loop information to the execution
trace. Given a loop (a cycle in the control flow graph), we can map
each instruction in that cycle to the program counter (EIP) value
at which the instruction was stored when the execution trace was
created. This makes use of the information about loaded binaries
mentioned in Section 3.1. For each loop, we maintain a compact
representation of the set of EIP values of the instructions in the
loop. We also store the EIP of the unique entry point of each loop.

Tupni tests for each position in the trace and for each loop whether
the EIP value at that position is contained in the set of EIP values
of the loop. The result of this process is the list of all subsequences
of the execution trace that correspond to the execution of a loop
(labeled with an identifier for that loop).

Finally, we identify the individual loop iterations within each
subsequence. We mark the beginning of an iteration at the points
where the execution trace hits the (unique) entry point of the loop.

Running Example.
The code in Figure 3 has a single loop (cycle in the control flow

graph) in lines 7 to 14. Line 7 is the only entry point of this loop.
Let A be a label for this loop. There may be further loops in the
handler functions. Those would be recognized as nested within
loop A. Since the execution trace in Section 3.2 uses line numbers
rather than EIP values, there is no mapping to be done. Otherwise,
we would have to look up at what base address the application bi-
nary was loaded when the execution trace was created. Comparing
the line numbers in the execution trace in Section 3.2 with the line
numbers of our loop (7 to 14), we find that the subsequence that
starts at the third instruction in the trace and ends right before the
last instruction corresponds to the execution of loop A.

Tupni identifies iterations by looking for the entry point of loop
A (line 7) within the subsequence. It finds three occurrences of
line 7 in the subsequence (at the very beginning, toward the middle
and at the end. Thus, Tupni splits the subsequence into three itera-
tions at these three positions. The third iteration contains only lines
7 and 8.

3.4.2 Identifying Relevant Fields
In the following, we will also use the term loop as a shorthand

for “a subsequence of the execution trace labeled by a loop iden-
tifier”. Most loops executed by applications do not process record
sequences from the input. We are only interested in those loops
that iterate over multiple input fields. In this step, we identify such
loops.

Consider a loop l and let n be the number of iterations that were
executed. We define sets Ii (1 ≤ i ≤ n) as follows: An instruction
(identified by its instruction pointer (EIP) value) is contained in Ii

if the instruction accesses a field during the i-th loop iteration that
it does not access in any other iteration of l.

If In is empty then we treat the loop as if it had only n − 1
iterations. This special case is necessary since the last iteration of a
loop is often not a true iteration, but only a check of the termination



FindRecordBoundaries(
1. IN n, // number of loop iterations
2. IN (I1, . . . , In), // iteration dependent instructions for each loop iteration
3. OUT (s1, . . . , sn),// start offset of each record
4. OUT (e1, . . . , en) )// end offset of each record
5.
6. for ( j from 1 to n ) sj = −1; // mark start of record j as unknown
7.
8. for ( j from 1 to n ) {
9. if ( sj == −1 )
10. then sj = min{ Offset( Field( inst ) ) : inst ∈ Ij }
11. I = { inst∈ Ij : Offset( Field( inst ) ) = sj }
12. for ( i from j + 1 to n )
13. if ( I ∩ Ii 6= {} )
14. si = min{ Offset( Field( inst ) ) : inst ∈ Ii ∩ I}
15. }
16.
17. for ( j from 1 to n− 1 ) ej = sj+1 − 1;
18. en = max{ Offset( Field( inst ) ) +

sizeof( Field( inst ) ) : inst ∈ In}

Figure 4: Identification of record boundaries

condition (as in our example, where the third iterations consists
only of lines 7 and 8).

We call
S

i Ii the set of iteration dependent instructions. We call
a loop iteration dependent if Ii 6= {} for all i ∈ {1, . . . , n− 1}.

We compute the sets Ii for all loops identified in the previous
step. At the end of this analysis, we obtain the list of iteration
dependent loops in the execution trace and, for each iteration de-
pendent loop, the sets Ii of its iteration dependent instructions.

Running Example.
I1 = {9, 10, 11} and I2 = {9, 10, 11}. Thus, the loop is itera-

tion dependent. For example, line 9 accesses field [4, 5] in the first
iteration and only in the first iteration. Thus, it belongs to I1, It
also accesses field [17, 18] in the second iteration and in no other
iteration. Thus, it also belongs to I2. On the other hand, line 7
is not iteration dependent. It accesses the same field ([0, 3]) in all
iterations.

3.4.3 Identifying Record Boundaries
In this step, we group fields into records and identify the record

boundaries. We make use of the fact that, given the definitions
of Section 2.2, a record is a contiguous sequence of fields and a
record sequence consists of contiguous records. Furthermore, we
assume that the loop processes records in the order in which they
appear in the input. Loops that do not satisfy this assumption are
ignored. However, we can handle loops whose iterations access
fields in records outside the record currently being processed.

Our algorithm is shown in Figure 4. Tupni calls this algorithm
for every iteration dependent loop. For ease of presentation, the
figure assumes that each iteration dependent instruction inst ac-
cesses only one field (Field(inst)). This assumption has no
fundamental importance. Its only purpose is to remove tedious de-
tails from Figure 4.

For any field f, let Offset(f) denote the offset in the input of
the first byte of f. The algorithm sets the start of the first record to
min{ Offset(f)}, where the minimum is taken over all fields
that are accessed by iteration dependent instructions in the first it-
eration of the loop (line 10). Next, in line 11, it identifies the set
I of iteration dependent instructions that access the field at the be-
ginning of the first record in the first iteration. The scheme now
uses the heuristic that the instructions in I are likely to access the
beginning of a record whenever they appear. Thus, it looks for in-
structions from I in each iteration (line 13) and sets the start of
the corresponding record accordingly (line 14). The process is re-

peated (line 8) for the case that an iteration does not use any in-
struction from I . Finally, the end of each record is set to the offset
immediately before the start of the next record (line 17). The end of
the last record is set to the last input byte accessed by any iteration
dependent instruction in the last iteration (line 18). This procedure
is performed for all iteration dependent loops. A loop is ignored if
the computed record start addresses are not increasing.

Running Example.
The algorithm sets s1 = 4 (line 10), since I1 = {9, 10, 11},

Field(9) = [4, 5] and Offset([4, 5]) = 4. That is, 4 is the
smallest offset accessed by instructions in I1. Line 11 sets I =
{9, 11} since both instructions accessed field [4, 5] in the first iter-
ation. Next, it sets s2 = 17 since instructions 9 and 11 access field
[17, 18] in the second iteration. Line 17 sets e1 = s2−1 = 16. Fi-
nally, line 18 sets e2 = 20 the largest offset accessed by an instruc-
tion from I2. While all other values are correct, e2 is somewhat too
small. This is primarily the result of the fact that we have ignored
the handler functions called in line 11 of the example application.

3.4.4 Length Determination
We also output for each record sequence how its length is de-

termined. We consider the following three cases: (a) The length
is determined by a termination record (e.g., null terminated ASCII
strings); (b) The length is determined by a separate length field;
(c) The length is fixed and implicitly determined by the protocol
specification.

Tupni identifies case (a) (termination record) by checking all
equality comparisons between a constant and the value of a field ac-
cessed by an iteration dependent instruction. We classify the record
sequence as case (a) if we observe a constant for which there is such
an equality check that evaluates to false in each iteration (up to but
not including the last iteration) and if the last iteration contains an
equality check with the same constant that succeeds. For case (b)
(length fields), we use a technique from Polyglot [6]: We iden-
tify fields that are accessed to compute the termination condition of
loops. If we do not recognize case (a) or (b), we classify the record
sequence as case (c) (implicit length).

3.5 Record Type Identification
Typical formats specify record sequences such that records come

from a small set of classes (the record types of Section 2.2). So far,
we have identified record sequences, found out how the length of
the record sequence is determined and found the boundaries of the
individual records in a sequence. In this step, Tupni tries to find the
record type for each record. More precisely, Tupni considers two
records as belonging to the same record type if the loop iterations
that process the records execute “mostly” the same instructions.
This is based on the observation that applications typically have a
separate handler function for each record type.

The problem is complicated by the fact that record sequences
may be nested. That is, there are sequences whose records contain
other sequences. If a record contains a child record sequence then
the instructions that process it may depend heavily on the particu-
lar instance of the child record sequence it contains. Thus simply
looking for similar instruction sequences will not solve the prob-
lem.

Let l be an iteration dependent loop, and let r be the record
sequence l processes. Let n be the number of records in r. For
i ∈ {1, . . . , n}, we define Qi to be the subset of instructions from
Ii that access fields in the i-th record of r. We compute the sets Qi

for every record sequence we have identified in the previous step.
The set Qi is a superset of the set of instructions that we consider



relevant. As outlined above, if records in r contain nested record
sequences then records of the same record type may have widely
different sets Qi. Therefore the next step of our algorithm is to
transform each set Qi into a set Q′i as follows.

Tupni collapses every segment of the instruction trace that con-
tains an execution of a child loop into a single virtual instruction.
This instruction is assigned a virtual identifier (virtual EIP) such
that two virtual instructions have the same identifier if and only if
they correspond to executions of the same loop. Q′i is set to Qi,
except that all instructions in the child loop execution are removed
from the Qi and replaced by the identifier of the virtual instruction
that represents the child loop. The net effect of this transformation
is that iteration dependent loops that process child record sequences
contribute a single virtual instruction to the Q′i of the parent record.
This way, it only matters whether the child loop was executed, but
not what happened during its execution.

In summary, Tupni considers each record sequence r that was
identified in the previous step and computes Q′i for every record i
in r. Tupni classifies two records i, j as having the same type if
Q′i = Q′j .

Running Example.
Recall that, in the previous step, Tupni had identified one record

sequence with two records. We have Q1 = {9, 10, 11} ∪ h1 and
Q2 = {9, 10, 11}∪h5, where h1 and h5 denote the instructions in
record_hdlr[1] and record_hdlr[5], respectively, that
access the record sequence. Typically, h1 and h5 will be differ-
ent.

If neither of the two records contains a nested record sequence
then Q′1 = Q1 and Q′2 = Q2. In order to examine the other
case, let record_hdlr[1] contain a loop that iterates byte-by-
byte over the payload of record 1 (offsets 8 to 16). In this case, h1

contains up to 9 different instructions (for the nine loop iterations
from offset 8 to offset 16). Q′1 would now be Q′1 = {9, 10, 11, v1},
where v1 is a unique identifier for the loop in record_hdlr[1].

3.6 Constraint Identification
This section describes how Tupni identifies conditions on the

values of fields that an input must satisfy to be valid. This includes
relations between the values of multiple fields. We call such condi-
tions constraints. Tupni considers three types of constraints.

Symbolic Predicates.
The dynamic data flow analysis engine [10] used by Tupni out-

puts a sequence of conditions on the input (symbolic predicates)
that were checked by the application during its execution. These
conditions encode the application’s execution path. In general,
some of these conditions will represent properties that any valid
input must have while other conditions simply represent properties
of the particular input the application was run on. For the purpose
of gathering constraints on the format, we are interested in the for-
mer, but not in the latter.

Tupni generates constraints on the value of single fields (single-
value constraints) as follows. For each input field i, Tupni outputs
the conjunction of all symbolic predicates of the form f(input[i]){<
, =, >, 6=}y, where f is a function that depends on nothing but in-
put values and constants that are hard coded into the application
(e.g., immediate operands of x86 instructions). In addition, we ig-
nore all symbolic predicates associated with checks for termination
values of record sequences, as the information contained in them is
already accounted for by the analysis of length determination (Sec-
tion 3.4).

Tupni also outputs symbolic predicates of the form input[x] =

f(input[y], input[z], . . .), where f is a function that depends on
nothing but input values and constants that are hard coded into
the application. This type of constraint can capture many types
of checksum calculations. We call such constraints functional con-
straints.

The constraints generated by this simple procedure may be par-
ticular to the input the application was run on and may not represent
the input format in general. This is a general limitation of dynamic
analysis. Recent systems such as Bouncer [9] and ShieldGen [14]
were designed to overcome this limitation in a different application
domain. We believe that the techniques employed by these systems
could be used to eliminate most of the remaining input specific con-
ditions.

Inter-Message Dependencies.
An inter-message constraint for a multi-message network proto-

col determines the value of a field in a later message based on the
values of one or more fields in an earlier message. Typical exam-
ples include session IDs and sequence numbers.

Tupni inspects all attempts by the application to send data to the
network. If it finds tainted data in an outgoing message, it outputs
the associated data flow graph that describes how the tainted output
field depends on the previous input.

Length Fields.
Tupni uses three techniques for identifying length fields. The

first technique makes use of the semantics of certain platform func-
tions as described in Section 3.7. The other two techniques are
similar to techniques used in Polyglot: identifying fields used to
compute pointers that are used to access other input fields and iden-
tifying fields that are accessed to compute the termination condition
of loops that process record sequences.

3.7 Platform-Specific Functions
Knowledge of the semantics of platform specific functions such

as system calls, application programming interface (API) functions
and functions in runtime libraries can significantly enhance the ac-
curacy and functionality of Tupni. The idea of using the semantics
of library calls has been used in Bouncer [9]. However, the way in
which Tupni makes use of function calls is quite different from the
method in Bouncer. As a preliminary step, we have added specifi-
cations of six string processing functions and 20 memory allocation
functions to Tupni. These specifications are used in the following
areas:

• Field identification: Use of an input chunk as a function pa-
rameter can provide strong evidence that the chunk is a field.
This evidence is incorporated into the field recognition step
by increasing the weight w(c) of the chunk if Tupni sees a
call to a known function in the execution trace. More exten-
sive use of function semantics has the potential of providing
very detailed information about the types and semantics of
input fields. We leave this for future work.

• Identification of record sequences: Functions may have record
sequences (or pointers to them) as parameters. For example,
a call to a standard string processing function with a char-
pointer that points to tainted data provides strong evidence
that the pointer marks the start of a string.

• Constraint identification: function calls may provide infor-
mation about different kinds of constraints. We have used
knowledge of memory allocation functions to identify length
fields. For example, a call to malloc with a tainted size



parameter provides evidence that this parameter is a length
field.

In general, we do not consider the parts of the execution trace
that are spent inside any of the known functions in our analysis.
Effectively, this collapses calls to these functions into a single vir-
tual instruction with special semantics.

3.8 Output Format
Input ::= F1 :D

S1[F1]

S1 ::= R1 |
R2 |
...

R1 ::= F2 :W
F3 :W { F3 = SIZE(R1) }
...

R2 ::= F4 :W
F5 :W { F5 = SIZE(R2) }
...

Figure 5: The output format for the running example.

At this point, Tupni’s analysis of a single input is complete.
Tupni outputs the fields and record sequences it identifies in an
enhanced BNF format. An example of this output format is shown
in Figure 3.8 for the running example. Tupni generates a rule that
lists the top-level fields and record sequences in the order of their
positions in the input. We refer to this rule as the root rule. For
each record sequence, Tupni generates an alternation rule to cover
all its record types. For each record type Tupni generates a rule to
list its fields and child record sequences. This process continues
recursively for all record sequences and record types. In addition,
Tupni outputs constraints in the enhanced BNF format.

3.9 Aggregation over Multiple Inputs
So far, we have discussed how Tupni analyzes a single execution

trace – corresponding to a single input. If multiple inputs of the
unknown format are available, the application can be run on each
of them, and Tupni can perform its analysis on each of the resulting
execution traces. The last step is to combine the individual results
into a single format specification.

To do so, Tupni matches fields, record sequences, and record
types across different execution traces. Consider two execution
traces from the same application, but different inputs. Tupni con-
siders two base fields from two execution traces to match if they
are accessed by the same set of instructions. Tupni considers two
record sequences from two execution traces to match if they are
processed by the same loops (identified by the unique loop entry
point). Finally, Tupni considers two records from matching record
sequences to have the same type if their respective sets Q′i are
equal.

After identifying all matching fields, record sequences and record
types in the two execution traces, Tupni merges the BNF rules for
each of the execution traces into a single set of BNF rules. Tupni
first identifies the pairs of BNF rules that can be merged. These
include the root rules and the BNF rules of matched record se-
quences and record types. To merge BNF rules of matched record
sequences, Tupni simply creates a new alternation rule that includes
all record types in the old rules. Tupni merges the root rules and
rules of matched record types in two steps. It first aligns the list of
fields and record sequences using the type-based sequence align-
ment technique proposed in [12]. If all fields and record sequences

are perfectly matched, it means that the two rules are identical;
Tupni simply keeps one. Otherwise, it creates a new alternation
rule for each pair of unmatched fields or record sequences. Then
it creates a new rule that lists matched fields and record sequences
as well as the alternation rules for unmatched fields or record se-
quences.

4. IMPLEMENTATION AND EVALUATION
We have developed a prototype of Tupni. Our dynamic data

flow engine was built on a re-implementation of the Vigilante sys-
tem [10]. Our prototype system uses iDNA [4], a binary program
translator, to capture and replay program execution traces. Our sys-
tem works on x86 instructions directly. Excluding the code of the
original Vigilante and iDNA, our Tupni prototype has 14,000 lines
of C++ and 4,100 lines of Perl.

In this section, we first describe our experimental setup and eval-
uation methodology. After that, we present our experimental re-
sults.

4.1 Experimental Setup
Our evaluation is divided into two parts. We first tested how

accurately Tupni can reverse engineer the format of a single input
message or file. Then we evaluated its capability of generalizing
the input format over multiple inputs.

In the first set of experiments, we evaluated Tupni on both files
and network messages. We tested five binary files (WMF, BMP,
JPG, PNG and TIF), three binary network messages (DNS response,
TFTP data and RPC bind request), and two text network messages
(HTTP GET request and FTP port command). We selected these
input formats because they are representative protocols and were
studied in previous work. We intentionally avoided types of input
formats for which we knew a priori that our prototype would per-
form poorly (see Section 7 for a discussion of these formats). For
instance, our prototype does not work well if the field boundaries
of a format do not coincide with byte boundaries due to its byte-
based taint tracking. For the compressed image files among our
test cases, we used Tupni to reverse engineer the container file for-
mat and ignored the format of the compressed data blobs. We used
WMF, the DNS response message, and the HTTP request message
to guide our design. We ran the remaining seven test cases without
changing the prototype.

For each input, we recorded an execution trace of a binary pro-
gram parsing and processing it on Windows XP Professional SP2.
Then we fed the execution trace to Tupni to reverse engineer the
format. The inputs and binary programs are listed in Table 1. In
all our test cases, Tupni can reverse engineer the formats in at most
5 minutes on a 3GHz machine running Windows XP Professional
SP2.

4.2 Evaluation Methodology
In our first set of experiments on single test inputs, we focused

our evaluation on accuracy, that is, how accurately Tupni can iden-
tify the fields, record sequences, record types, and constraints in the
test inputs. Tupni automatically outputs the reverse engineered for-
mats in an enhanced BNF format (referred to as the Tupni format).
In order to evaluate the accuracy of Tupni’s output, we compare
the format specification Tupni produced for each test case with the
published specification [1, 2, 16, 20, 28, 34, 37, 39, 40] (referred to
as the published format) for the same format and identify discrep-
ancies. In our second set of experiments, we focus our evaluation
on completeness, that is, how well Tupni can infer a more complete
input format over multiple inputs.

It is hard to compare our results with previous work [6, 12, 26,



Format Name Application Execution Trace (instructions) Input Size (B) Run Time (min)
WMF gdi32.dll 3.2M 4594 5
BMP mspaint.exe 12.0M 3126 1
JPG gdiplus.dll 15.7M 3224 3
PNG gdi32.dll 12.2M 3543 3
TIF gdiplus.dll 12.0M 4337 3
DNS response nslookup.exe 4.7M 46 <1
RPC bind rpcss.dll 128K 164 <1
TFTP data tftp.exe 5.5M 28 <1
HTTP request inetinfo.exe 156M 107 3
FTP port ftpsvc2.dll 121M 28 3

Table 1: Summary of test inputs in the evaluation.

Input WMF BMP JPG PNG TIF DNS RPC TFTP HTTP FTP
Error Fields 2 3 0 889 2 4 6 0 0 0
Total Fields 2257 3087 3211 1551 4220 32 137 26 23 4

Table 2: Summary of field identification results.

42] quantitatively as these tools are not publicly available, and we
used different file/protocol formats for evaluation. We will give a
qualitative comparison in Section 6.

In the rest of this section, we will first summarize our experimen-
tal results on the ten test cases and discuss why Tupni made errors
in reverse engineering the formats. After that, we will analyze the
aggregation of format information across multiple inputs.

4.3 Experimental Results on Single Inputs

4.3.1 Field Identification
To evaluate the accuracy of field identification, we counted the

number of fields in the published format that were identified incor-
rectly by Tupni. The results are shown in Table 2.

By analyzing the execution traces and source code, we found
that most of these errors have the same cause—a program ignores
certain parts of an input. When this happens, Tupni will mark these
gaps as virtual fields. For example, there are 127 virtual fields in
the PNG test. This happens because the first 128 chunks in the
PNG test file are identical, and the parsing program ignored the
data bytes in all but the first chunk. Since the application never ac-
cessed the data bytes, Tupni had to create one virtual field for each
chunk that covers all the data bytes in the chunk. The published
specification defines seven fields on these data bytes. This results
in a misclassification of 889 fields (7 fields per chunk times 127
chunks).

One of the errors in the DNS test case occurs because the pro-
gram processed each byte in a two-byte flag field separately.

4.3.2 Record Sequence Identification
We evaluated the accuracy of record sequence identification by

measuring the number of record sequences that are in the published
format but missed by Tupni and the number of record sequences
that are not in the published format but identified by Tupni. We
refer to the former as false negative (FN) sequences and to the latter
as false positive (FP) sequences. The results are shown in Table 3.
Tupni did not miss any record sequences in the published format
of any of the ten test cases. This confirms our observation that a
parsing program usually parses and processes record sequences in
loops.

Tupni output false positive sequences in three test cases. By an-
alyzing the applications, we found that, in most cases, this happens

because the application uses a loop to process input fields that do
not belong to a record sequence in the published format. In the
PNG case, Tupni identified two false positive sequences from ex-
ecution loops in decoding the image file. In the JPG test, Tupni
identified the first two bytes ffd8 as a sequence because the pars-
ing program compared them with a two byte string to look for the
start of image. Tupni found extra record sequences in the HTTP
test because the program processed some substrings in loops.

4.3.3 Record Type Identification
Ideally, the set of record types identified by Tupni (referred to as

the Tupni record types) should correspond one-to-one to the record
types in the published format (referred to as the published record
types). There may be two kinds of inaccuracies. First, records
of a single Tupni record type may belong to multiple published
record types. Second, records of multiple Tupni record types may
belong to a single published record type. In our evaluation, we
analyzed these two kinds of errors for each record type seen in
the test cases. For the first kind of error, we counted the num-
ber of Tupni record types that have records belonging to multiple
published record types. We will refer to them as under-classified
record types. For the second kind of error, we counted the number
of published record types that contain records assigned to multiple
Tupni record types. We will refer to them as over-classified record
types. We did not analyze the FTP and HTTP test cases in this
evaluation because all their record sequences are ASCII strings and
have trivial record types. The results are shown in Table 4. Tupni
did not make any errors of the first kind, and it made two errors of
the second kind.

By analyzing the execution traces and source code, we found
that these two errors arise because a record type defined in the pub-
lished specification may be an abstraction of a complex object that
has multiple semantics, which causes the parsing program to be-
have differently on records of the same record type. In the WMF
test case, the published record type associated with the error is
CreateBrushIndirect whose parameters contain three flags
that control many different behaviors of Brush objects. In the JPG
test case, Tupni assigned DHT marker segments (records) to two
different record types. We found that this happens because DHT
marker segments can define two different types of Huffman tables
(lossy and lossless) that are processed differently.



Input WMF BMP JPG PNG TIF DNS RPC TFTP HTTP FTP
FN Sequences 0 0 0 0 0 0 0 0 0 0
FP Sequences 0 0 1 2 0 0 0 0 3 0
True Sequences 35 0 15 4 1 4 6 1 12 3

Table 3: Summary of record sequence identification results.

Input WMF BMP JPG PNG TIF DNS RPC TFTP
Under-Classified Record Types 0 0 0 0 0 0 0 0
Over-Classified Record Types 1 0 1 0 0 0 0 0

Table 4: Summary of record type identification results.

4.3.4 Constraint Identification
In this section, we discuss Tupni’s accuracy on constraint iden-

tification. Tupni can identify three kinds of constraints: symbolic-
predicate, inter-message, and length. Since length field identifica-
tion has been widely studied in previous work and Tupni achieved
similar performance, we will not discuss length constraints but fo-
cus on the other two kinds.
Symbolic-Predicate Constraints: Our evaluation on functional
constraints was focused on whether Tupni can identify all check-
sum dependencies. In the ten test cases, only two input formats,
WMF and PNG, have checksum fields. Tupni identified one func-
tional constraint in the WMF test that captures the dependency be-
tween the checksum field in the WMF header and the rest of the
header. A PNG file [40] has a sequence of chunks and each chunk
has a 4-byte CRC checksum field calculated on the preceding bytes
in the chunk. Tupni did not find functional constraints that reflect
these checksum dependencies. By analyzing the execution trace,
we found that this happens because the parsing program ignored
the checksums while parsing each chunk.

Tupni also identified single-value constraints in every test case,
many of which revealed interesting insights into the input formats.
For example, Tupni inferred that the first byte of a marker segment
in the JPG file must be 0xff; the size field of a draw record in the
WMF file must be at least 3; there are at most 20 context elements
in the RPC bind message. We also observed that there are con-
straints that are particular to the input. For example, Tupni inferred
that the version of the WMF file must be 0x0300; however, by ana-
lyzing the source code we found that it can also be 0x0100. This is
a general limitation of dynamic analysis. We will discuss this issue
further in Section 7.
Inter-Message Constraints: In the ten test cases, only three net-
work protocols, DNS, RPC and TFTP, have inter-message con-
straints. To identify the inter-message constraints in DNS and RPC,
one must track the server program but we tracked the client pro-
gram in our tests. Thus, TFTP is our only test case with an inter-
message constraint. Tupni correctly identified this constraint. In
particular, by tracking how the ACK message was generated after
receiving the data message, Tupni identified that the AckNum in
the acknowledge message must equal the BlockNum in the data
message.

4.4 Experimental Results on Multiple Inputs
In this section, we present the experimental results of running

Tupni over 150 WMF files to generate a more complete WMF for-
mat specification. The 150 files were randomly selected from a
test template repository at Microsoft. The average file size is 1,577
bytes. The average number of draw records per file was 63. We
first examine how accurately Tupni can match fields and record se-
quences across multiple inputs, then describe how much improve-
ment on format coverage Tupni can achieve over multiple inputs.

We do not present results on matching record types since we
have evaluated how accurately Tupni can identify record types in
Section 4.3.3. To evaluate the accuracy on matching fields, we in-
spected the first 17 fields identified in the 150 Tupni formats gen-
erated on each individual file. These 17 fields correspond to the
metafile header in a WMF file. We say two fields have the same
type if they match. For each field position, we counted the num-
ber of different types. We found that 12 out of the 17 field posi-
tions have only one field type, which ensured a correct alignment
of BNF rules from different inputs. Also, there are at most three dif-
ferent types for a field position. By analyzing the traces and source
code, we found that the different types appear because the program
took different execution paths based on different parameters (e.g.,
whether the file size is the same as specified in the MetaFile_Size
field). There are ten different record sequences in the 150 WMF
files. Tupni matched all record sequences correctly.

To evaluate the improvement on format coverage, we counted
the number of distinct draw record types in each WMF file and
in the 150 files together. The minimum number of distinct draw
record types in a single file is 9. However, there are 80 distinct
draw record types in the 150 files. The aggregated output of Tupni
included these 80 record types. These results show that Tupni can
significantly improve the format coverage by aggregating multiple
inputs.

5. TUPNI FOR ZERO-DAY VULNERABIL-
ITY SIGNATURE GENERATION

We have shown that Tupni can automatically reverse engineer
the input formats with high accuracy in the ten test cases. In this
section, we evaluate Tupni’s effectiveness by using its reverse engi-
neered formats in a real-world security application: zero-day vul-
nerability signature generation. Tupni can also be used for other
security applications such as fuzzing tests. Fuzzing tests can toler-
ate more inaccuracies than vulnerability signature generation since
the latter constructs a vulnerability signature based on the reverse
engineered format while the former only uses it to generate new
test inputs.

ShieldGen [14] is a system for automatically generating a signa-
ture for an unknown vulnerability, given a zero-day attack instance.
ShieldGen requires a specification of the data format to generate
new potential attack instances (probes). The architecture of the
original ShieldGen system is shown in Figure 6. When presented
with a potential exploit, ShieldGen feeds the suspicious traffic into
an attack detector such as [10]. If the detector recognizes an attack,
ShieldGen feeds the exploit into its data analyzer component [5].
The data analyzer uses the format specification to parse the input
and feeds the result into the probe generator. The probe generator
will generate variants of the original input (probes) and use the de-
tector to determine if a probe still exploits the vulnerability. The
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most important aspect of this search is the removal of all records
from probes that are not required to exploit the vulnerability. Thus,
information about record sequences and associated constraints in
the input specification is critical for ShieldGen.

In our experiments, we replaced the Data Analyzer module with
Tupni and replaced the Data Format with the vulnerable program.
The new architecture is shown in Figure 7. Then we repeated the
case study of the WMF vulnerability in the ShieldGen paper [14]
with this new signature generation system. The new system auto-
matically generated the same vulnerability signature as in [14].

None of the existing reverse engineering tools [6,12,26,42] lends
itself to the ShieldGen application because they fail to reliably iden-
tify record sequences in a sufficiently broad class of input formats.
In the case of WMF, without identifying record sequences, the sys-
tem will not be able to eliminate iterative elements, and the gen-
erated vulnerability signature will be particular to the attack in-
stance and may have thousands of conditions if the attack instance
is crafted with thousands of draw records. On the other hand, Tupni
can identify not only fields but also record sequences and important
constraints. Therefore, it can potentially be used to generate high-
quality vulnerability signatures.

6. RELATED WORK
Network protocols and file formats have been subject to painstak-

ing manual reverse engineering [18, 36]. Recently, there has been
rising interest in automatic protocol reverse engineering.

The Protocol Informatics Project [35] and Discoverer [12] an-
alyzed network traces to infer protocol formats. Fisher et al. [17]
have presented a system that automatically infers the structure of an
ad hoc data source and that produces a format specification in the
PADS data description language. Specifically, the system infers
several structural relationships based on the histogram of the fre-
quencies of all tokens in the input. These systems are useful when
a parsing program is unavailable. However, leveraging a parsing
program can significantly improve the quality of the reverse engi-
neered format.

Polyglot [6] uses dynamic data flow analysis to reverse engi-
neer network message formats. With the rich information revealed
by how a program consumes an input, Polyglot can identify ba-
sic fields and certain dependencies (e.g., length fields). Compared
to Tupni, the main limitation of Polyglot is that it infers a mes-
sage format as a “flat” sequence of fields, and cannot infer record
sequences that are common in network protocol and file formats.
Furthermore, Polyglot does not generalize a network message for-
mat over multiple message samples.

AutoFormat [26] reverse engineers network message formats by
using context-aware monitored execution. To identify fields, it

groups contiguous inputs accessed consecutively in a function as a
field. This heuristic works well for ASCII strings but is likely to fail
for complex data structures. For example, different binary fields
will be clustered into a single field if an application makes two
subsequent accesses to adjacent input fields in a function. To iden-
tify record sequences, it identifies input positions that have been
read by the same functions and declares each of them to be the start
of a record. The input data between two subsequent record start
markers is considered to belong to the first record. This heuristic
may produce arbitrary false positives when confronted with com-
plex input formats. For example, if an application accesses the first
and the last byte of the input in the same functions, AutoFormat
will conclude that the entire input is a record sequence. It also does
not recognize nested record sequences such as those in WMF, JPG
and PNG. AutoFormat does not attempt to identify record types or
aggregate the analysis over multiple input samples.

In [42], Wondracek et al. propose a system for automatic net-
work protocol analysis. When identifying basic fields, the system
breaks an input chunk that cannot be attributed to any semantics
(e.g., delimiters, lengths) into individual bytes and thus may fail
to identify binary fields with more than one byte. For record se-
quences, the system can only identify those in which all records are
structurally identical. Therefore, it cannot identify complex record
sequences such as those in HTTP, WMF, JPG, PNG and TIF. It
also does not identify record types. Unlike Polyglot and AutoFor-
mat, the system in [42] can generalize a network message format
over multiple messages. However, its sequence alignment algo-
rithm may introduce more inaccuracies than Tupni because it does
not have type information for individual byte fields and assumes
any byte field can be matched with any other byte field. In contrast,
Tupni infers field types based on the set of instructions that operate
on each field and aligns fields based on their types.

Compared to previous efforts [6,26,42] that reverse engineer net-
work message formats by observing how a program processes net-
work messages, Tupni makes significant advances in the follow-
ing ways: (1) It can identify arbitrary record sequences, includ-
ing nested ones, by analyzing loops in a program; (2) It can infer
field or record types by comparing the set of instructions that pro-
cess each field or record; (3) It can derive constraints of various,
not pre-defined dependencies across fields or messages by tracking
symbolic predicates from dynamic data flow analysis; (4) It can
improve its format specifications by aggregating its analysis over
multiple inputs.

In parallel to our work, Lin and Zhang [27] developed two dy-
namic analysis techniques to derive syntactic structures of inputs
with top-down or bottom-up grammars. The dynamic analysis on
inputs with top-down grammars makes the assumption that pro-



gram control dependence follows the parsing structure. However,
real-world programs may not follow this assumption (e.g., a pro-
gram may scan an input multiple times). Unlike Tupni, this system
does not attempt to aggregate the analysis over multiple inputs or
infer input constraints.

Besides using dynamic analysis, Lim et al. [25] have proposed
FFE/X86, a binary static analysis tool that infers file formats based
on the program’s output routines. The system can generate gram-
mars with alternation and repetition, but requires manual annota-
tions to the executable.

Previous work has also studied reverse engineering for specific
applications such as replay. RolePlayer [13] and ScriptGen [23,
24] leverage byte-wise sequence alignment techniques to achieve
application-level replay. Replayer [29] uses binary analysis to re-
play an application dialog. Kannan et al. semi-automatically dis-
cover session structures [22]. Christodorescu et al. perform bi-
nary static analysis to infer all possible strings at a given program
point [8].

Dynamic data flow analysis has been used in many security ap-
plications, including exploit detection, patch generation, worm con-
tainment, and fuzz testing [10, 11, 14, 15, 19, 30, 31].

7. LIMITATIONS AND FUTURE WORK
In this section, we discuss the limitations of Tupni and describe

future research directions for solving these limitations.
A fundamental limitation faced by Tupni is that the coverage of

its reverse engineered format is dependent on the diversity of the
input samples. We can mitigate this limitation from two perspec-
tives. First, ShieldGen [14] and SAGE [19] have shown that one
can construct new inputs to probe a program, which leads to bet-
ter code coverage. Second, it is also possible to combine dynamic
analysis with static analysis. However, it remains a research prob-
lem to integrate them effectively for reverse engineering a complete
input format.

Another fundamental limitation in Tupni is that the constraints
identified by Tupni may be specific to the input samples, which is a
general limitation of dynamic analysis. This limitation can be mit-
igated by techniques presented in ShieldGen [14] and Bouncer [9].

Currently, Tupni does not work well for certain classes of input
formats. The first class are formats whose field boundaries do not
coincide with byte boundaries. This includes many encrypted and
compressed file formats. The reason is that the Tupni prototype
tracks taint at the byte level. We believe that this problem could be
resolved by a more sophisticated implementation.

Another class of inputs that causes problems for Tupni are for-
mats that cannot be described as regular expressions. For example,
attempts to generate a C language specification by having Tupni
analyze execution traces of a compiler would most likely produce
poor results.

In addition, the quality of Tupni’s output depends on the qual-
ity of the parsing application. Applications that neglect to compute
checksums, ignore fields or deviate in other ways from the pub-
lished specification reveal no information about those aspects of
the format specification. This was the main cause of errors in our
experiments. Any system that attempts to use a parsing application
to obtain a format specification faces this problem. A possible way
to mitigate this problem is to run multiple parsing applications on
the input samples.

8. CONCLUSIONS
We have presented Tupni, a tool to reverse engineer input for-

mats. Based on the observation that an application usually pro-

cesses iterative data records in a loop, Tupni can automatically
identify (nested) record sequences, and record types in input for-
mats. Tupni also can find different types of constraints on the val-
ues of fields. Furthermore, Tupni can generalize input formats over
multiple inputs. We have demonstrated that Tupni can effectively
reverse engineer 10 common, real-world file and network message
formats. Given the rich set of information available in the input
formats reverse engineered by Tupni, it can potentially be used for
security applications such as zero-day vulnerability signature gen-
eration.
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