

Macintosh PICI' (cont'd)

QuickDraw v2.0, sometimes known as Color QuickDraw, supports 8-bit bitmaps
as well as monochrome. There is no compression available for 8-bit Version 2.0
PICT files.

All information in Macintosh PICT files is stored in the data fork of the Macin­
tosh file pair. Although the resource fork may be present, it is left empty.
Image data is stored in binary format and consists of a series of operators and
associated data.

High-level routines in the Macintosh ToolKit are available to read and write
PICT files and are often used when writing applications that translate PICT files
to other image file formats.

File Organization
All Macintosh PICT files start with a 512-byte header, which contains informa­
tion that the Macintosh uses to keep track of the file. This is followed by three
fields describing the image size (picSize), the image frame (picFrame), and a
version number. In v2.0 files, another header follows. In both versions, the pre­
ceding information is followed by the image data. In all versions, the end of
the file is signalled by an end-of-file operator.

File Details
QuickDraw, and consequently the Macintosh PICT format, is far too complex
for us to do justice to it here, so we will merely note some details about the
start of the file. A good deal of information and codes are included on the CD­
ROM. Note that most secondary references only give examples of bitmap
encoding and ignore the vector nature of the format.

The information following the platform-specific 512-byte header is in the fol­
lowing format: ·

SHORT File size in bytes
SHORT Frame y-value of top left of image (at 72 dpi)
SHORT Frame x-value of top left of image (at 72 dpi)
SHORT Frame y-value of lower right of image (at 72 dpi)
SHORT Frame x-value of lower right of image (at 72 dpi)

in v 1.0 files, this is followed by:

BYTE Version operator(Oxll)
BYTE Version number(OxOl)

MACINTOSH PICT 545

Macintosh PIC/' (coot'd)

or, in v2.0 files, by:

SHORT
SHORT

Version operator (OxOOll)
Version number (Ox02ff)

Version 2.0 files also have a 26-byte header following the version information:

SHORT
SHORT
SHORT
LONG
LONG
SHORT
SHORT
SHORT
SHORT
LONG

Header opcode for Version 2 (OCOO)
FFEF or FFEE
Reserved (0000)
Original horizontal resolution in pixels/inch
Original vertical resolution in pixels/inch
Frame upper left y original resolution
Frame upper left x at original resolution
Frame lower right y at original resolution
Frame lower right x at original resolution
Reserved

picSize and picFrame records follow the header.

pic Size

WORD Picture size in bytes
WORD Image top
WORD Image left
WORD Image bottom
WORD Image right

picFrame (PICT v 1.0)

BYTE Version (llh)
BYTE Picture version (Olh)

This is followed by the image data. Each record in a PICT version 1 file consists
of a one-byte opcode followed by the actual data.

picFrame (PICT v2.0)

WORD
WORD
WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD
WORD
WORD
DWORD

Version (OOllh)
Picture version (02ffh)
Reserved header opcode (OcOOh)
Header opcode (OcOOh)
Picture size (bytes)
Original horizontal resolution (pixels/inch)
Original vertical resolution (pixels/inch)
y value of top left of image
x value of top left of image
y value of lower right of image
x value of lower right of image
Reserved

This is followed by the image data. Each record of a PICT v2.0 file consists of a
two-byte opcode followed by the actual data. Note that opcodes and data must

546 GRAPHICS FILE FORMATS

Macintosh PICI' (ctmt'd)

be aligned on 16-byte boundaries, and that certain opcodes in PICT vl.O and
v2.0 files are interpreted differently.

ForFurtherlnfonnatlon
For further information about the Macintosh PICT format, see the documenta­
tion and sample code included on the CD-ROM that accompanies this book.

Additional information on the Macintosh PICT format may be obtained from
Claris Corporation, a software spinoff from Apple, in the form of an update to
Apple Technical Note #27. Apple Technical Notes may be obtained from Apple
Computer and from many online information services. Contact:

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95104
Voice: 408-996-1010
Voice: 800-538-9696
FAX: 408-97 4-1725
WWW: http:/ /www.apple. com/

Claris Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168
Technical Support: 408-727-9054
Customer Relations: 408-727-8227
WWW: http:/ /www.claris.com/

Other Apple Technical Notes related to Macintosh PICT and other Apple for­
mats include:

TN #021 QuickDraw Picture Definitions

TN #041 Offscreen Bitmaps

TN #091 optimizing of the LaserWriter-Picture Comments ·

TN # 119 Color Q}tickDraw

TN #120 OJ!screen PixMap

TN #171 Things You Wanted to Know About PackBits

TN #181 Every Picture (Comment) Tells Its Story, Don~ It?

MACINTOSH PICT 547

Macintosh PICI' (cont'd)

TN #154 Displaying Large PICT Files

TN #275 32-Bit Qp,ickDraw Version 1.2Features

Additional information on the PICT format can be found in:

Apple Computer, Inside Macintosh, vols. I, V, and VI, Addison-Wesley,
Reading, MA, 1985.

These volumes are also available on the Apple Developer CDs.

548 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft Paint

MSP

Bitmap

Mono

RLE, uncompressed

64Kx64K pixels

No

Little-en dian

Microsoft Corporation

Microsoft Windows, MS-DOS

Microsoft Paint, others

No

No

Yes

Microsoft Windows Bitmap

usAGE: Black-and-white drawings, clip art

Microsoft Paint I

coMMENTs: A format that was in wider use in the early days of Microsoft Windows. It is
a simple format that is not currently suitable for deep pixel or truecolor
images.

Overview
The Microsoft Paint (MSP) image file format is used exclusively for storing
black-and-white images. The vast majority of MSP files contain line drawings
and clip art. MSP is used most often by Microsoft Windows applications, but
may be used by MS-DOs-based programs as well. The Microsoft Paint format is
apparently being replaced by the more versatile Microsoft Windows BMP for­
mat; it contains information specifically for use in the Microsoft Windows oper­
ating environment. For information on the Windows-specific use of the header
information, refer to the Microsoft Paint format specification available from
Microsoft.

MICROSOFT PAINT 549

Microsoft Paint (cont'd)

File Organization
The Microsoft Paint header is 32 bytes in length and has the following struc­
ture. In the discussion that follows, a WORD is a 16-bit unsigned value.

typedef struct _MicrosoftPaint
{

WORD Keyl;
WORD Key2;
WORD Width;
WORD Height;
WORD XARBitmap;
WORD YARBitmap;
WORD XARPrinter;
WORD YARPrinter;
WORD PrinterWidth;
WORD PrinterHeight;
WORD XAspectCorr;
WORD YAspectCorr;
WORD Checksum;
WORD Padding[3];

}MSPHEAD;

File Details

/* Magic number */
/* Magic number *I
/* Width of the bitmap in pixels */
/* Height of the bitmap in pixels *I
/* X Aspect ratio of the bitmap */
/* Y Aspect ratio of the bitmap *I
/* X Aspect ratio of the printer *I
I* Y Aspect ratio of the printer *I
/* Width of the printer in pixels */
/* Height of the printer in pixels */
/* X aspect correction (unused) */
I* Y aspect correction (unused) *I
I* Checksum of previous 24 bytes *I
/* Unused padding *I

In the Microsoft Paint header, Key1 and Key2 contain identification values
used to determine the version of the file format. For version l.x of the
Microsoft Paint format, the values of the Key1 and.Key2 fields are 6144h and
4D6Eh respectively. ~or version 2.0, the Key 1 and Key2 field values are 694Ch
and 536Eh respectively.

Width and Height are the size of the bitmap in pixels. The size of the bitmap
in bytes is calculated by dividing Width by 8 and multiplying it by Height.

XARBitmap and YARBitmap contain the aspect ratio in pixels of the screen
used to create the bitmapped image.

XARPrinter and YARPrinter contain the aspect ratio in pixels of the output
device used to render the bitmapped image. When an MSP file is created by a
non-Windows application, these four fields typically contains the same values as
the Width and Height fields.

PrinterWidth and PrinterHeight contain the size in pixels of the output device
for which the image is specifically formatted. Typical values for these fields are
the same values as those stored in Width and Height.

550 GRAPHICS FILE FORMATS

Microsoft Paint (cont'd)

XAspectCorr and YAspectCorr are used to store aspect ratio correction infor­
mation, but are not used in version 2.0 or earlier versions of the Microsoft
Paint format and should be set to 0.

Checksum contains the XORed values of the first 12 WORDs of the header.
When an MSP file is read, the first 13 WORDs, including the Checksum field,
are XORed together, and if the resulting value is 0, the header information is
considered valid.

Padding extends the header out to a full 32 bytes in length and is reserved for
future use.

The image data directly follows the header. The format of this image data
depends upon the version of the Microsoft Paint file. For image files prior to
version 2.0, the image data immediately follows the header. There are eight
pixels stored per byte, and the data is not encoded.

Each scan line in a version 2.0 or later Microsoft Paint bitmap is always RLE­
encoded to reduce the size of the data. Each encoded scan line varies in size
depending upon the bit patterns it contains. To aid in the decoding process, a
scan-line map immediately follows the header. The scan-line map is used to
seek to a specific scan line in the encoded image data without needing to
decode all image data prior to it. There is one element in the map per scan
line in the image. Each element in the scan-line map is 16 bits in size and con­
tains the number of bytes used to encode the scan line it represents. The scan­
line map starts at offset 32 in the MSP file and is sizeof(WORD).

Consider the following example. If an application needs to seek directly to the
start of scan-line 20, it adds together the first 20 values in the scan-line map.
This sum is the offset from the beginning of the image data of the 20th
encoded scan line. The scan-line map values can also be used to double-check
that the decoding process read the proper number of bytes for each scan line.

Following the scan-line map is the run-length encoded monochrome
bitmapped data. A byte-wise run-length encoding scheme is used to compress
the monochrome bitmapped data contained in an MSP-format image file. Each
scan line is encoded as a series of packets containing runs of identical byte val­
ues. If there are very few runs of identical byte values, or if all the runs are very
small, then a way to encode a literal run of different byte values may be used.

MICROSOFT PAINT 55}

Microsoft Paint (cont'd)

The following pseudocode illustrates the decoding process:

Read a BYTE value as the RunType
If the Run Type value is zero

Read next byte as the RunCount
Read the next byte as the Run Value
Write the Run Value byte RunCount times

If the Run Type value is non-zero
Use this value as the Run Count
Read and write the next RunCount bytes literally

As you can see, this is yet another variation of a simple run-length encoding
scheme. A byte is read, and if it contains a value of 0, then the following byte is
the RunCount (the number of bytes in the run). The byte following the Run­
Count is the Run Value (the value of the bytes in the run). If the byte read is
non-zero, then the byte value is used as the RunCount and the next RunCount
bytes are read literally from the encoded data stream.

ForFurtherlnfonnation
For further information about Microsoft Paint, contact:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
FAX: 206-936-7329
BBS: 206-637-9009
WWW: http://www. microsoft. com/

The Microsoft Windows Programmer's Reference Library is the master refer­
ence for programmers working with all aspects of Microsoft Windows. The
books in this library are supplied with the Microsoft Windows Software Devel­
opment Kit (SDK). The manuals supplied with the Microsoft C 7.0 Professional
Development Systems are also very helpful. You can get information about
obtaining these products from:

Microsoft Information Center
Voice: 800-426-9400

552 GRAPHICS FILE FORMATS

Microsoft Paint (cont'd)

You may also be able to get information via ITP through the Developer Rela­
tions Group at:

ftp:/ /ftp. microsoft. com/deueloper/drg/

MICROSOFT PAINT 553

I Microsoft RIFF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft RIFF

RIFF, Resource Interchange File Format, RIFX,
.WAV, .AVI, .BND, .RMI, .RDI

Multimedia

24-bit

RLE, uncompressed, audio, video

Varies

No

Little- and big-endian

Microsoft Corporation

Microsoft Windows 3.x, Windows NT

Microsoft Windows and OS/2 multimedia applica­
tions

Yes

No

No

IFF, Chapter 10, Multimedia

usAGE: RIFF is a device control interface and common file format native to the
Microsoft Windows system. It is used to store audio, video, and graphics
information used in multimedia applications.

coMMENTs: A complex format designed to accommodate various types of data for
multimedia applications. Because it is quite new and vendor-controlled,
the specification is likely to change in the future.

Overview
Microsoft RIFF (Resource Interchange File Format) is a multimedia file format
created by Microsoft for use with the Windows GUI. RIFF itself does not define
any new methods of storing data, as many of the bitmap formats described in
this book do. Instead, RIFF defines a structured framework, which may contain
existing data formats. Using this concept, you can create new, composite for­
mats consisting of two or more existing file formats.

Multimedia applications require the storage and management of a wide variety
of data, including bitmaps, audio data, video data, and pe-ripheral device

554 GRAPHICS FILE FORMATS

Microsoft RIFF (cunt'd)

control information. RIFF provides an excellent way to store all these varied
types of data. The type of data a RIFF file contains is indicated by the file exten­
sion. Examples of data that may be stored in RIFF files are:

• Audio/visual interleaved data (.AVI)

• Waveform data (.WAV)

• Bitmapped data (.RDI)

• MIDI information (.RMI)

• A bundle of other RIFF files (.BND)

NOTE

At this point, AVI files are the only type of RIFF files that have
been fully implemented using the current RIFF specification.
Although WAV files have been implemented, these files are very
simple, and their developers typically use an older specification
in constructing them.

Because RIFF is an umbrella name for a variety of multimedia files, RIFF files
are referred to by the type of data they contain, rather than by the actual for­
mat name of RIFF. For this reason, you may find RIFF files rather confusing
when you start to use them. For example, a RIFF file containing Audio/Visual
Interleaved data is normally referred to simply as an "AVI file" and not as a
"RIFF Audio/Visual Interleaved Format File." Only a programmer might ever
realize that all of these different files are the same format, or even care.

There is another area of potential confusion. Some people think that RIFF files
are somehow similar in design to TIFF (Tag Image File Format) files. While it is
true that both formats contain data structures that may be added or deleted to
a file ("tags" in TIFF and "chunks" in RIFF), the internal concept and design of
these structures within RIFF and TIFF differ greatly. Unlike TIFF, the RIFF file
format is based on the Electronic Arts Interchange File Format {IFF) structure
(see the article describing this format). And, although both formats use the
same concept of data storage, they are not compatible in their design.

File Organization
RIFF is a binary file format containing multiple nested data structures. Each
data structure within a RIFF file is called a chunk. Chunks do not have fixed
positions within a RIFF file, and therefore standard offset values cannot be used
to locate their fields. A chunk contains data such as a data structure, a data

MICROSOFT RIFF 555

Microsoft RIFF (cont'd)

stream, or another chunk called a subchunk. Every RIFF chunk has the follow­
ing basic structure:

typedef struct _Chunk
{

DWORD Chunkid; /* Chunk ID marker *I
DWORD ChunkSize; /* Size of the chunk data in bytes */
BYTE ChunkData[ChunkSize]; /*The chunk data*/

CHUNK;

Chunkld contains four ASCII characters that identify the data the chunk con­
tains. For example, the characters RIFF are used to identify chunks containing
RIFF data. If an ID is smaller than four characters, it is padded on the right
using spaces (ASCII 32). Note that RIFF files are written in little-endian byte
order. Files written using the big-endian byte ordering scheme have the identi­
fier RIFX.

ChunkSize is the length of the data stored in the ChunkData field, not includ­
ing any padding added to the data. The size of the Chunkld and ChunkSize
fields are not themselves included in this value.

ChunkData contains data that is WORD-aligned within the RIFF file. If the data
is an odd length in size, an extra byte of NULL padding is added to the end of
the data. The ChunkSize value does not include the length of the padding.

Subchunks also have the same structure as chunks. A subchunk is simply any
chunk that is contained within another chunk. The only chunks that may con­
tain subchunks are the RIFF file .chunk RIFF and the list chunk, UST
(explained in the next section). All other chunks may contain only data.

A RIFF file itself is one entire RIFF chunk. All other chunks and subchunks in
the file are contained within this chunk. If you are decoding, your RIFF reader
should ignore any chunks that the reader does not recognize or it cannot use.
If you are encoding, your RIFF writer will write out all unknown and unused
chunks that were read. Do not discard them.

File Details
RIFF files that are used to store audio and video information are called AVI
files. The RIFF AVI file format normally contains only a single AVI chunk; how­
ever, other types of chunks may also appear. An AVI reader should ignore all
chunks it does not need or recognize that are stored within a RIFF AVI file.

556 GRAPHICS FILE FORMATS

Microsoft RIFF (ctmt'd)

Although Microsoft uses a standard notation to describe the internal arrange­
ment of data structures within RIFF files, we believe it is clearer to use our own
C-like syntax to illustrate the placement of chunks and subchunks within a RIFF
AVI file. The Chunkld for each chunk is listed in the comments:

struct _RIFF I* "RIFF" *I
{

struct ~VICHUNK I* "AVI • */
{

struct _LISTHEADERCHUNK I* "hdrl" *I
{

AVIHEADER AviHeader; I* •avih" *I
struct _LISTHEADERCHUNK I* •strl" *I
{

AVIS~ER StreamHeader; I* •strh" */
AVISTREAMFORMAT StreamFormat; I* •strf• *I
AVISTREAMDATA StreamData; I* •strd" */

struct _LISTMOVIECHUNK I* •movi• *I
{

struct _LISTRECORDCHUNK I* •rec • */
{

I* Subchunk 1 */
I* Subchunk 2 */
/* Subchunk N *I

struct _AVIINDEXCHUNK I* "idxP *I
{

/* Index data *I

The above structure represents the internal data layout of a RIFF file contain­
ing only one AVI chunk. This chunk follows the format of the chunk data struc­
~re previously described. The AVI chunk is identified by the 4-character chunk
identifier "AVI " (note the final blank character). The AVI chunk contains two
mandatory UST subchunks, which indicate the format of the data stream(s)
stored in the file.

AJ'l Header Subchunk

The first mandatory UST chunk contains the main AVI header subchunk and
has the identifier hdrl. The information in the header subchunk defines the
format of the entire AVI chunk. The hdrl chunk must appear as the first chunk
within the AVI chunk. The format of the header subchunk is the following:

MICROSOFT RIFF 557

Microsoft RIFF (cont'd)

typedef struct ~VIHeader
{

DWORD TimeBetweenFrames;
DWORD MaximumDataRate;
DWORD PaddingGranularity;
DWORD Flags;
DWORD TotalNumberOfFrames;
DWORD NumberOfinitialFrames;
DWORD NumberOfStreams;
DWORD SuggestedBufferSize;
DWORD Width;
DWORD Height;
DWORD TimeScale;
DWORD DataRate;
DWORD StartTime;
DWORD DataLength;

AVIHEADER;

/* Time delay between frames */
/* Data rate of AVI data */
/* Size of single unit of padding */
I* Data parameters */
/* Number of video frame stored */
/* Number of preview frames */
/* Number of data streams in chunk*/
/* Minimum playback buffer size */
/* Width of video frame in pixels */
/* Height of video frame in pixels*/
/* Unit used to measure time */
/* Data rate of playback */
/* Starting time of AVI data */
/* Size of AVI data chunk */

TimeBetweenFrames contains a value indicating the amount of delay between
frames in microseconds.

MaximumDataRate value indicates the data rate of the AVI data in bytes per
second.

PaddingGranularity specifies the multiple size of padding used in the data in
bytes. When used, the value of this field is typically 2048.

Flags contains parameter settings specific to the AVI file and its data. The
parameters correspond to the bit values of the Flags field as follows:

Bit 4 AVI chunk contains an index subchunk (idx1).

Bit 5 Use the index data to determine how to read the AVI data, rather than
the physical order of the chunks with the RIFF file.

Bit 8 AVI file is interleaved.

Bit 16 AVI file is optimized for live video capture.

Bit 17 AVI file contains copyrighted data.

TotalNumberOfFrames indicates the total number of frames of video data
stored in the movi subchunk.

NumberOflnitialFrames specifies the number of frames in the file before the
actual AVI data. For non-interleaved data this value is 0.

558 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

NumberOfStreams holds the number of data streams in the chunk. A file with
an audio and video stream contains a value of 2 in this field, while an AVI file
containing only video data has 1. In the current version of the RIFF format,
one audio and one video stream are allowed.

SuggestedBufferSize is the minimum size of the buffer to allocate for playback
of the AVI data. For non-interleaved AVI data, this value is at least the size of
the largest chunk in the file. For interleaved AVI files, this value should be the
size of an entire AVI record.

Width and Height values indicate the size of the video image in pixels.

TimeScale is the unit used to measure time in this chunk. It is used with
DataRate to specify the time scale that the stream will use. For video streams,
this value should be the frame rate and typically has a value of 30. For audio
streams, this value is typically the audio sample rate.

DataRate is divided by the TimeScale value to calculate the number of samples
per second.

StartTime is the starting time of the AVI data and is usually 0.

DataLength is the size of the AVI chunk in the units specified by the TimeScale
value.

The hdrl subchunk also contains one or more UST chunks with the identifier
strl. There will be one of these UST chunks per data stream stored in the AVI
chunk.

Three subchunks are stored within the strl LIST chunk. The first is the Stream
Header subchunk, which has the identifier strh. This header contains informa­
tion specific to the data stream stored in the strl LIST chunk. A stream header
is required and has the following format:

typedef struct _StreamHeader
{

char DataType[4];
char DataHandler[4];
DWORD Flags;
DWORD Priority;
DWORD InitialFrames;
DWORD TimeScale;
DWORD DataRate;
DWORD StartTime;
DWORD Da taLength;
DWORD SuggestedBufferSize;

I* Chunk identifier ("strl•) *I
I* Device handler identifier *I
I* Data parameters *I
I* Set to 0 *I
I* Number of initial audio frames *I
I* Unit used to measure time *I
I* Data rate of playback *I
I* Starting time of AVI data */
I* Size of AVI data chunk *I
I* Minimum playback buffer size *I

MICROSOFT RIFF 559

Microsoft RIFF (cont'd)

DWORD Quality;
DWORD SampleSize;

STREAMHEADER;

I* Sample quailty factor *I
I* Size of the sample in bytes *I

DataType contains a 4-character identifier indicating the type of data the
stream header refers to. Identifiers supported by the current version of the·
RIFF format are: vids for video data and auds for audio data.

DataHandler may contain a 4-character identifier specifying the preferred type
of device to handle the data stream.

Flags contains a set of bit flags use to indicate parameter settings related to the
data.

Priority is set to 0.

InitialFrames indicates in seconds how far the audio is placed ahead of the
video in interleaved data.

TimeScale, DataRate, StartTime, DataLength, and SuggestedBufferSize all
have the same function as the fields of the same names in the hdr 1 chunk.

Quality is an integer in the range of 0 to 10,000, indicating the quality factor
used to encode the sample.

SampleSize is the size of a single sample of data. If this value is 0, the sample
varies in size and each sample is stored in a separate subchunk. If this value is
non-zero, then all the samples are the same size and are stored in a single sub­
chunk.

Immediately following the stream header is a stream format subchunk with the
identifier strf. This header describes the format of the stream data. Its format
varies depending on the type of data that is stored (audio or video). This sub­
chunk is also required.

Another stream data subchunk with the identifier strd can optionally follow
the stream format subchunk. The data in this chunk is used to configure the
drivers required to interpret the data. The format of this chunk also varies
depending upon the type of compression used on the stream data.

AJll Data Subchunk

The second mandatory LIST chunk contains the actual AVI data, has the identi­
fier movi, and must appear as the second chunk within the AVI chunk.

560 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

The data in the movi chunk may be grouped in the form of LIST records (a
UST chunk containing one or more subchunks each with the identifier "rec ").
Only data that is interleaved to be read from a CD-ROM is stored as a series of
UST records (data is read more efficiently from a CD-ROM when it is inter­
leaved). If the data is not interleaved, it is stored as a single block of data
within the movi chunk itself.

Index Chunk

The AVI chunk may also contain a third chunk, called an index chunk. An
index chunk has th~ identifier idxl and must appear after the hdrl and movi
chunks. This chunk contains a list of all chunks within the AVI chunk, along
with their locations, and is used for random access of audio· and video data.
The index chunk has the following format:

typedef struct _Aviindex
{

DWORD Identifier;
DWORD Flags;
DWORD Offset;
DWORD Length;

A VI INDEX;

/* Chunk identifier reference */
/* Type of chunk referenced */
/* Position of chunk in file */
/* Length of chunk in bytes */

Identifier contains the 4-byte identifier of the chunk it references (strh, strf,
strd, and so on).

Flags bits are used to indicate the type of frame the chunk contains or to iden­
tify the index structure as pointing to a LIST chunk.

Offset indicates the start of the chunk in bytes relative to the movi list chunk.

Length is the size of the chunk in bytes.

The idxl chunk contains one of these structures for every chunk and sub­
chunk in the AVI chunk. The structures need not index each chunk in the
order in which they occur within the AVI chunk. The order of the index struc­
tures in the idxl may also be used to control the presentation order of the data
stored in the AVI chunk. If an index is included in an AVI chunk, the appropri­
ate indication bit must be set in the Flags field of the AVI header chunk. If an
application reading a RIFF file decides to use the information in the index
chunk, it must first find the hdrl chunk and determine if an index chunk exists
by examining the Flags field value in the AVI header. If it does exist, the reader
will skip past all the chunks in the AVI chunk until it encounters the idxl
chunk.

MICROSOFT RIFF 561

Microsoft RIFF (cont'd)

JUNK Chunk

One other type of chunk that is commonly encountered in an AVI chunk is the
padding or JUNK chunk (so named because its chunk identifier is JUNK). This
chunk is used to pad data out to specific boundaries (for example, CO-ROMs
use 2048-byte boundaries). The size of the chunk is the number of bytes of
padding it contains. If you are reading AVI data, do not use use the data in the
JUNK chunk. Skip it when reading and preserve it when writing. The JUNK
chunk uses the standard chunk structure:

typedef struct _JunkChunk
{

DWORD Chunkid; /* Chunk ID marker (JUNK)* I
DWORD PaggingSize; /* Size of the padding in b¥tes */
BYTE Padding[ChunkSize]; /*Padding*/

} JUNKCHUNK;

ForFurtherhllonnation
For further information about the Microsoft RIFF format, see the specification
included on the CD-ROM that accompanies this book.

If you write an application that recognizes the RIFF file format, you will need to
get a copy of the Microsoft Multimedia Development Kit (MDK). The MDK
contains all the tools and documentation necessary to work with RIFF files, as
well as with the other details of Microsoft Windows multimedia.

For information about Microsoft multimedia products, including the MDK,
contact Microsoft:

Microsoft Corporation
Attn: Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, WA 98052-6399
WWW: http://www. microsoft. com/

For specific information about Microsoft AVI and the RIFF file formats, see the
following Microsoft documents:

Microsoft Corporation. Microsoft Windows Multimedia Programmer's Guide,
Microsoft Press, Redmond, WA.

Microsoft Corporation. Microsoft Windows Multimedia Programmer's Refer­
ence, Microsoft Press, Redmond, WA.

562 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

See also the discussion and additional references in Chapter 10, in this book.

You may also be able to get information via FTP through the Developer Rela­
tions Group at:

ftp:/ /ftp. microsoft. com/developer/drg/

MICROSOFT RIFF 563

I Microsoft RTF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft RTF

Rich Text Format

Metafile

256

None

NA

No

Little-en dian

Microsoft Corporation

MS-DOS

Most word processing, some spreadsheet

Yes

No

No

None

usAGE: Used for document data interchange.

coMMENTs: A least-common-denominator format used mainly in word-processor docu­
ments.

Overview
Microsoft RTF (Rich Text Format) is · a metafile standard developed by
Microsoft Corporation to encode formatted text and graphics for interchange
between applications. Normally, exporting a formatted file from one word pro­
cessor to another requires that the file be converted from its original format to
the format supported by the target application. This conversion almost never
produces a target document that is an exact functional duplicate of the origi­
nal. This is due both to the different features present in the word processor
formats, and to limitations of the format converters. If a document is stored as
an RTF file, however, and the reading application can also handle RTF files, no
intermediate conversion is necessary and therefore no data is misinterpreted
or lost.

564 GRAPHICS FILE FORMATS

Microsoft RTF (cont'd)

RTF has excellent font-handling capabilities and bitmap storage features. RTF
files contain only 7-bit ASCII characters, so the format can support documents
formatted using the ANSI, MS-DOS, and Macintosh character sets. These fea­
tures and others make the RTF format a good choice for use as a· multi­
platform interchange format.

File Organization
The encoded data in RTF files is arranged more like a stream than a fixed data
structure, so there is no definite information header that is the same in all RTF
files. Instead, an RTF code stream consists of variable-sized fields called control
words, control symbols, and groups. Each of these three types of fields begins with
a backslash character (\), followed by one or more ASCII characters. A control
word is an RTF code that contains special formatting and printing instructions.

File Details
Looking at the 22 lines of RTF code included in this section, we see the follow­
ing control codes at the beginning of the file:

\rt£1\ansi

These control codes indicate that this data stream is an RTF document, that
the code conforms to version 1 of the RTF specification, and that the docu­
ment uses the ANSI (\ansi) rather than the PC (\pc), PS/2 (\pea), or Macintosh
(\mac) character sets.

Control symbols are special escape character sequences consisting of a back­
slash that is followed by a single, nonalphabetic character. RTF control symbols
include:

\- Nonbreaking space
_ Nonbreaking hyphen
\ : Index subentry
\' Hexadecimal value xx

A group is a collection of text, control words, and control symbols, enclosed in
a set of braces ({}). In fact, the entire RTF code stream is considered a group
and is always enclosed in braces. The first control word in the group identifies
the group type. Both the backslash (\) and the brace characters ({}) have spe­
cial meanings in RTF and should be preceded by a backslash if they are to be
interpreted as text.

MICROSOFT RTF 565

Microsoft RTF (ccmt'd)

{\rtfl\ansi \deff0\deflang1024
{\fonttbl{\fO\froman Tms Rmn;}{\fl\froman Symbol;}{\f2\fswiss Helv;}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;
\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;
\red255\green255\blue0;\red255\green255\blue255;\red0\green0\blue127;
\red0\green127\blue127;\red0\green127\blue0;\red127\green0\blue127;
\red127\green0\blue0;\red127\green127\blue0;\red127\green127\blue127;
\redl92\green192\blue192;}
{\stylesheet{\fs20\lang1033 \snextO Normal;}}
{\info{\author \'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00}
{\operator \'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00}
{\creatim\yr1992\mol\dy9\hr12\min53}
{\revtim\yr1992\mol\dy9\hr12\min53}{\versionl}{\edmins3}{\nofpages0}
{\nofwords0}{\nofchars0}{\vern16504}}
\paperw12240\paperh15840\margl1800\margr1800\margt1440\margb1440\gutter0
\widowctrl\ftnbj \sectd \linexO\endnhere \pard\plain \fs20\lang1033
Four Basic Principles to Unify Mind and Body.
\par \tab 1. Keep one point.
\par \tab 2. Relax completely.
\par \tab 3. Keep weight underside.
\par \tab 4. Extend Ki.
\par }

Looking again at the RTF code in the figure, we can see a number of groups.
The first group is obviously the \rtf group, which contains the code for the
entire file.

The \fonttbl group contains the descriptions of the fonts used within the docu­
ment. This document defines Times Roman, Symbol, and Helvetica font sets.

The next group, \colortbl, is a color table used to control screen and printer
colors. This file defines a basic palette of 16 colors, with each color channel
containing an 8-bit index value in the range ofO to 255.

The \stylesheet group contains descriptions and definitions of the various styles
and formats used in the document. In this example, we can see that Normal is
the only style defined in this document.

The \info group contains one or more pieces of information about the docu­
ments, such as title, subject, author, version, keywords, and comments. In this
example, the author and operator (the person who made the last change to
the document) are blank. The remaining fields identify the creation time and
last revision time of the document and its application version number.

After the groups, we see a series of control words that define the document,
section, and paragraph formats, including the width, height, and margins. Fol­
lowing these control words is the actual text, which is one line of text followed
by four lines of tab-indented text.

566 GRAPHICS FILE FORMATS

Microsoft RTF (cont'd)

RTF can also handle bitmap images encoded in either a hexadecimal or binary
format. The control word \pict always begins a group containing bitmapped
data. A \pict group might appear in an RTF code stream as follows:

{\pict\wmetafile8\picw23918\pich14552\picwgoal13562\pichgoal8251
\picscalex63\piccaley63

The control words are the following:

• Source file type

• Image width and height

• Picture width and height

• Horizontal scaling value

• Vertical scaling value

If the image source is a bitmap (\wbitmap), then the following additional con­
trol words may appear:

• Bits per pixel

• Number of pixel planes

• Picture width in bytes

Source images may also be Macintosh PICT files.

Following the \pict group is the actual bitmap data, which is hexadecimal in
format by default (as shown in the example below). If the data is in binary for­
mat, it is preceded by the \bin control word, followed by the number of bytes of
binary data that follow.

{\rtfl\ansi \deff0\deflangl024
{\fonttbl{\fO\froman CG Times (WN);}{\fl\fdecor Symbol;}{\f2\fswiss Univers (WN);}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;
\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;
\red255\green255\blue0;\red255\green255\blue255;\red0\green0\blue127;
\red0\greenl27\bluel27;\red0\green127\blue0;\redl27\green0\bluel27;
\redl27\green0\blue0;\redl27\green127\blue0;\red127\green127\blue127;
\red192\green192\blue192;}
{\stylesheet{\fs20\lang1033 snextO Normal;}}
{\info{\author James D. Murray}
{\creatim\yr1992\mol\dy9\hr15\min31}{\printim\yrl992\mol\dy9\hr15\min32}
{\versionl}{\edmins2}{\nofpagesl}{\nofwords0}{\nofchars2}{\vern16504}}
\paperw12240\paperhl5840\margll800\margrl800\margtl440\margbl440\gutter0
\widowctrl\ftnbj \sectd \linexO\endnhere \pard\plain \fs20\lang1033
{\pict\wmetafile8\picw23918\pich14552\picwgoall3562\pichgoal8251
\picscalex63\picscaley63
01000900000328ea01000000fee901000000050000000b0200000000050000000c024c0410070500

MICROSOFT RTF 567

Microsoft RTF (cont'd)

00000b0200000000050000000c024c04100705000000090200000000050000000102ffffff00fee9
0100430f2000cc0000004c041007000000004c0410070000000028000000100700004c0400000100
OlOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOffffffOOffffffffffff
ff
ff
fffffffffffffffffffffffffff£00000300
0000}\par}

ForFurtherhdonnation
For further information, see the specification included on the CD-ROM that
accompanies this book. You may be able to get additional information by con­
tacting Microsoft:

Microsoft Corporation
Attn: Department RTF
16011 N.E. 36th Way
Box97017
Redmond, WA 98073-9717
WWW: http://www. microsoft. com/

The RTF file format is also documented in the following reference:

Microsoft Corporation. Microsoft Word Technical Reference Manual,
Microsoft Press, Redmond, WA.

This book is available in bookstores or from:

Microsoft Press
Voice: 800-677-7377

You may also be able to get information via FTP through the Developer Rela­
tions Group at:

ftp://ftp.microsoft.com/developcr/drg/

568 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft SYLK

Symbolic Link Format, SLK

Vector

NA

NA

NA

No

NA

Microsoft Corporation

MS-DOS, others

Microsoft SYLK I

Spreadsheets, business graphics applications

No

No

No

Lotus DIF

usAGE: Interchange of spreadsheet information.

coMMENTs: Yet another format used to sh~e spreadsheet information with business
graphics applications.

Overview
The Microsoft SYLK (Symbolic Link) format is used mainly for the interchange
of spreadsheet data between applications such as Microsoft Multiplan and
Excel. Files in this format might also be imported directly by business graphics
applications. SYLK files are written entirely in ASCII and, like Lotus DIF and
SDI, are application-independent. SYLK, however, incorporates several features
not found in other spreadsheet data interchange formats.

File Organization
Records in a SYLK file contain three fields: a Record Type Descriptor (RTD), a

MICROSOFT SYLK 569

Microsoft SYLK (cont'd)

Field Type Descriptor (FTD), and a variable amount of data. A SYLK record has
the following format:

<RTD>;<FTD>;<data>

File Details
The following Record Type Descriptors (RTDs) are currently defined by SYLK:

R11> Description
B Cell boundary
C Adatacell
E End of file
F Cell formatting parameter
ID SYLK file identification record
NE Link to an inactive spreadsheet file
NN Name given to a rectangluar area of cells
NU Substitute filename
P Time and date stamp formats

Each Record Type Decriptor may be followed by a single Field Type Descriptor
(FTD) if needed. Most field type descriptors have meanings unique to each
record, but a few, listed below, have meanings global to all record types:

FrD Description
W Column width
X Horizontal cell coordinate
Y Vertical cell coordinate

The SYLK file format does not contain a header and resembles a data stream in
its design. Except for the ID record, which must be the first record in every
SYLK file, RIDs may appear anywhere in the file with the following exceptions:

• The first record must be an ID record (the RTD is ID)

• All P records follow the ID record.

• All B records follow the P records.

570 GRAPHICS FILE FORMATS

Microsoft SYLK (cont'd)

• A ;D or ;G ITD must appear in a C record prior to a reference to that ITD
by another record.

• NE records always follow NU records.

• The final record must be an E record.

ForFurtherhUonnation
SYLK was created and is maintained by Microsoft Corporation. You may be able
to get information by contacting:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
Voice: 800-426-9400
FAX: 206-883-8101
WWW: http://www. microsoft. com/

The following reference also contains information about the SYLK format:

Walden, jeffrey B. File Formats for Popular PC Software,John Wiley & Sons,
New York, NY, 1986.

You may also be able to get information via ITP through the Developer Rela­
tions Group at:

ftp:/ lftp. microsoft. com/ developer I drg/

MICROSOFT SYLK 571

I Microsoft Windows Bitmap
NAME: Microsoft Windows Bitmap*

ALso KNowN As: BMP, DIB, Windows BMP, Windows DIB, Compatible
Bitmap

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

0RI!31NATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Bitmap

1-, 4-, 8-, 16-, 24-, and 32-bits

RLE, uncompressed

32Kx32K and 2Gx2G pixels

No

Little-en dian

Microsoft Corporation

Intel machines running Microsoft Windows, Win­
dows NT, Windows 95, OS/2, and MS-DOS

Too numerous to list

Yes

Yes

Yes

OS/2 Bitmap

usAGE: Used as the standard bitmap storage format in the Microsoft Windows
environment. Although it is based on Windows internal bitmap data struc­
tures, it is supported by many non-Windows and non-PC applications.

coMMENTs: A well-defined format for programmers having access to the Microsoft
Developer's Network Knowledge Base and Software Development Kits.
(SDKs). Its simple RLE compression scheme is rather inefficient for com­
plex images. Its many variations and differences from the OS/2 BMP for­
mat can be confusing.

Overview
The Microsoft Windows Bitmap (BMP) file format is one of several graphics file
formats supported by the Microsoft Windows operating environment. BMP is
the native bitmap format of Windows and is used to store virtually any type of
bitmap data. Most graphics and imaging applications running under Microsoft

* Our thanks to David Charlap for his contributions to this article.

572 GRAPHICS FILE FORMATS

