

BRUTE FORCE
CRACKING THE DATA ENCRYPTION STANDARD

Matt Curtin

INTERHACK CORPORATION

Copernicus Books

AN IMPRINT OF SPRINGER SCIENCE+BUSINESS MEDIA

© 2005 Matt Curtin

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

Published in the United States by Copernicus Books,
an imprint of Springer Science+Business Media.

Copernicus Books
Springer
233 Spring Street
New York, NY 10013

www.springeronline.com

Library of Congress Cataloging-in-Publication Data

Curtin, Matt.
Brute force : Cracking the data encryption standard / Matt Curtin.

p. cm.
Includes bibliographical references and index.
ISBN 0-387-20109-2 (alk. paper)
1. Computer security. 2. Data encryption (Computer science) I.Title.

QA76.9.A25C873 2005
005.8�2—dc22

2004058919

Manufactured in the United States of America.
Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

ISBN 0-387-20109-2 SPIN 10958636

Contents

Foreword by John Gilmore v
Preface viii
Acknowledgments x

1 Working Late 1
2 Keeping Secrets 3
3 Data Encryption Standard 11
4 Key Length 23
5 Discovery 37
6 RSA Crypto Challenges 41
7 Congress Takes Note 49
8 Supercomputer 57
9 Organizing DESCHALL 63

10 Needle in a Haystack 75
11 Spreading the Word 77
12 The Race Is On 85
13 Clients 91
14 Architecture 97
15 Progress 113
16 Trouble 121
17 Milestones 127
18 Gateways 135
19 Network 139
20 Download 141
21 Short Circuit 151
22 DESCHALL Community 159
23 Proposal 163
24 In the Lead 165
25 Recruiting 169
26 Threats 175
27 Overdrive 189
28 Distributed 199
29 An Obstacle 207
30 Export 213
31 Getting Word Out 215
32 Salvos in the Crypto Wars 229

33 New Competition 235
34 Netlag 239
35 Terminal Velocity 241
36 Duct Tape 249
37 Showdown in the Senate 255
38 Strong Cryptography Makes

the World a Safer Place 259
39 Aftermath 267
40 Staying the Course 271
41 In Retrospect 275

Notes 283
Index 287

Foreword

A big battle over privacy was fought in the 1970s, 80s, and 90s, and most
people didn’t even know it was happening.

The U.S. government deliberately restricted the ways in which people
could protect their own privacy. They did this with laws, with regulations,
and by threatening prominent activists like Ron Rivest and Phil
Zimmermann with censorship and prosecution. Most of it was unconsti-
tutional, though they got away with it for decades. But most importantly,
they restricted our privacy by keeping us ignorant and by lying to us.

A good way to keep information private is to safeguard it with encryp-
tion, a mathematical technology that scrambles information. You set it up
so that the only people who have the “key” to unscramble it are the peo-
ple that the owner intends to give access to. The government wanted to
keep a monopoly on information about encryption. This would let the gov-
ernment hide information from its citizens (and from foreigners), but its
own citizens (and foreigners) could not hide information from the gov-
ernment. The government had already threatened prominent academic
researchers, tried to cut off National Science Foundation funding for
research in encryption, and had built a “voluntary” censorship system for
research papers.

It seemed to some people that freedom to do research, freedom to
publish the results, and privacy were fundamental values of society that
were more important than any particular government desires. The early
academic researchers of cryptography, like David Chaum, Ron Rivest, and
Whitfield Diffie, were such people. The Cypherpunks, who came along a
few decades later, were also such people. I co-founded the Cypherpunks,
an open group who educated ourselves and each other about encryption,
and encouraged each other to write encryption software for free public
use. Our goal was to re-establish the freedoms that the government had
silently taken away, do the research, and publish the results, to transform
society’s expectations about privacy.

Part of the lies and ignorance created by the government was about a
system called DES—the Data Encryption Standard. The government
claimed that it was secure and private. Independent researchers claimed
that it was too easy for governments to break into the privacy of DES. But
mere claims were not enough to stop it, and the government succeeded
in getting almost everyone to use DES worldwide. Banks used it to secure

v

billions of dollars of money transfers. Satellite TV companies used it to
keep their transmissions to their customers private. Computer security
products used it. ATMs used it to guard the phone line that connects
them to their bank and tells them when to deliver cash.

DES was deliberately designed by the U.S. government to be flawed.
The government could read what was encrypted by DES, merely by
spending enough money to build a machine that would break it. And the
amount of money that it took went down every year, both as technology
evolved, and as the designer learned more about how to build such
machines. All that knowledge was hidden in the same secretive govern-
ment agencies who deliberately weakened DES.

As personal computers and chip technology rapidly became cheaper
and faster, ordinary people working together could rival the machine-
building power of the government. This book is the story of how they
proved the government was lying, twenty years after the lie, and by doing
so, energized the public to take its privacy into its own hands. The end
result was not only that government policy about encryption and privacy
was changed. Also, the process of building networks of people and
machines to do calculations by “brute force” taught us a lot about collab-
oration, about social structures in volunteer groups, about how the world
is changed by the broad distribution of consumer products that compute.
And about how to break down certain kinds of intractable problems into
small pieces, such that many people can do a piece and thus contribute
to the solution.

The panicky public reaction to the attack of 9/11 was unable to upset
the balance of relatively sane encryption policy that it had taken decades
to set right. However, the abdication of responsibility that took hold of
both the Congress and the bulk of the public has let a corrupt adminis-
tration get away with murder—literally, in the case of hundreds of thou-
sands of civilians in Iraq. Civil rights and moral standards as basic as the
prohibition on torture, the freedom to move around in your own country,
and the universal condemnation of unprovoked attacks on other coun-
tries have all fallen by the wayside.

Yet computers and networks have shown even more interesting ways
for millions of people to collaborate to solve big intractable problems like
this. As I write this, thousands of people are working for a few days from
their homes, phoning up strangers to encourage them to go out and vote
in the upcoming U.S. election. A computer network, programmed by a

vi

small number of people, has collected and connected both the callers and
the people who they should call.

We will continue to be surprised by the capabilities that human soci-
eties have, when thousands of people network through their computers
to accomplish a common purpose.

John Gilmore
Electronic Frontier Foundation
October 31, 2004

vii

Preface

In the past fifty years, society has undergone a radical shift in the storage
and processing of information, away from the physical and toward elec-
tronic representation. Important information is no longer written on a
sheet of paper and stored in a locked file cabinet or safe. Information nec-
essary to care for our health, our finances, and the institutions, public and
private, that support society is now stored electronically, in little ones and
zeroes. Encryption technology—the mathematical system used to protect
electronic information—was developed to protect all of those data from
prying eyes.

In the late 1970s, the U.S. government decided to create a national
data encryption standard in order to bring order to a market that had gen-
erated a multitude of competing and rarely complimentary encryption
products. The standard the government settled on called the data encryp-
tion standard or DES was immediately criticized for being too weak by
many security and computer experts. For years the critics demanded
stronger cryptography and for years the government ignored their
requests.

In 1997 a security company, RSA, answered DES’s critics. They
launched a contest, challenging cryptographers and computer enthusi-
asts to show the government just how weak DES was. Brute Force tells
the story of DES: how it was established, challenged, and ultimately
defeated. But more than the longevity of DES or the definition of the
standard was at stake.

Even while technologists argued over how strong the cryptographic
standard had to be, lawmakers in the United States were busy debating
the government’s role in the regulation of cryptography. At the heart of
the debate was whether or not the government would permit American
companies to export products that they couldn’t break overseas, and
whether private citizens would be permitted to use cryptography that
would shield their information from the eyes of government. Libertarians,
cryptographers, and security experts wanted to be able to use and export
the most robust encryption possible. While some in Congress supported
this view, many other members of the government, including the Clinton
administration, were wary of strong encryption, fearing it would fall into
the hands of criminals and terrorists. Brute Force tells the story of the
legislative battle over DES as well.

viii

Although cryptographic specialists will likely be familiar with parts of
this story and be eager to learn what happened behind the scenes, this is
not only a story for technologists. What happened in 1997 affects people
everywhere, even today, and will do so for years to come. So long as we
store and transmit private information on computers, we will need to pro-
tect it from those who would try to steal it.

Events of this story fall into one of three major topics: the technology
of secret writing, the story of how people who never knew each other
came together to defeat the global standard for secret writing, and the
wrangling over public policy on cryptography. The story is told not by
recounting events in a strictly chronological order but as chains of events
that place different parts of the story into context and allow the reader to
see how these events finally came crashing together, changing the face of
information management forever.

ix

Acknowledgments

This book is the product of tremendous work by many people. Thanks
must go to Peter Trei for suggesting the demonstration of a brute force
attack on the Data Encryption Standard and to RSA for sponsoring the
contest that at long last demonstrated the weakness of DES. I also offer
my heartfelt thanks to Rocke Verser for his work in starting and running
the DESCHALL project that participated in RSA’s contest. Justin Dolske,
Karl Runge, and the rest of the DESCHALL developers also put in many
hours to ensure our project’s success and were as pleasant and interest-
ing as one could hope for. Not to be forgotten are the thousands of peo-
ple who participated by running the DESCHALL client programs on their
computers, telling their friends about our project, and giving us access to
the tremendous computational power needed to verify that strong cryp-
tography makes the world a safer place. Telling the story of this signifi-
cant period in the history of cryptography in the form of the book that you
are now holding proved to become another sizable project. Gary Cornell
at Apress got me connected with the right people at Copernicus Books. I
appreciate the connection as well as the help that Anna Painter, Paul
Farrell, and the rest of the folks at Copernicus Books provided in moving
the book from a raw manuscript into its final, published form. Thanks are
also due to John Gilmore for resurrecting a recording of Martin Hellman
and Whitfield Diffie arguing with government representatives the need
for a stronger standard than what became codified in DES. The recording
and other electronic resources of interest are available at:

http://ergo-sum.us/brute-force/.

Finally I thank my wife Nicole for her continued support and thought-
ful interest in my work.

Matt Curtin
December 2004

x

To the Cypherpunks—

making the networks safe for privacy…

1

Working Late

June 17, 1997, 11:51 P.M.

Salt Lake City, Utah

A modest desktop computer quietly hummed along. It sat in the of-
fices of iNetZ Corporation, a Web services company started just a
few months earlier. This machine, just an ordinary machine with a
90 MHz Intel Pentium processor, was still hard at work in the darkness
of an office that had closed for the day several hours earlier. Running a
program called DESCHALL—pronounced “DESS-chall” by some, and
“dess-SHALL” by others—this computer was trying to read a secret
message. After all, it was practically the middle of the night, and the
machine had nothing else to do.

The secret message was protected by the U.S. government standard
for data encryption, DES. Largely as a result of the government’s fiat,
DES was used to protect sensitive data stored on computers in banking,
insurance, health care, and essentially every other industry in nearly
every part of the world. It was a U.S. standard, but in a world of
international corporations and global trade increasingly conducted by
computer, it was in everyone’s interest, or so it seemed, to standardize
on DES.

The slowest of eight iNetZ machines on which system administra-
tor Michael K. Sanders installed DESCHALL, the quiet little com-
puter was trying to find the single key out of more than 72 quadrillion
(72,000,000,000,000,000) that would unlock the secret message. Apply-
ing one key after another to the message and checking the output for
something intelligible, the machine was trying some 250,000 keys per

1

2 CHAPTER 1

second. It did not falter. It did not quit. It just kept banging away at
the problem.

Quite suddenly, just before midnight, the computer’s DESCHALL
program came to a halt.

When Sanders came to work at iNetZ the following morning, this
unassuming computer was displaying an urgent message on its screen.

Information security would never be the same.

2

Keeping Secrets

Cryptography is quite simply the practice of secret writing. The word
itself comes from two Greek words, kryptos (“hidden”) and graphein
(“writing”). With a history going back at least 4000 years, cryptogra-
phy has long been surrounded by mystery and intrigue.

Ancient Egyptians used cryptography in hieroglyphic writing on
some monuments, thus protecting some proper names and titles. Some
2000 years ago, Julius Caesar used a simple system of substituting one
letter for another to send secret messages to his generals. In the thir-
teenth century, English mathematician Roger Bacon wrote of systems
to write in secret in his “Concerning the Marvelous Power of Art and of
Nature and Concerning the Nullity of Magic.” In that document, Bacon
enumerated seven methods for secret writing and famously opined, “A
man who writes a secret is crazy unless he conceals it from the crowd
and leaves it so that it can be understood only by effort of the studious
and wise.”

Throughout its history, cryptography has primarily been a tool of
government elites because they were the ultimate keepers of military
and diplomatic secrets. Code makers and breakers alike have thus al-
most always been employed by governments to discover others’ secrets
while protecting their own.

Cryptography is important because it enables information to be
stored and transmitted secretly. The ability to control the flow of in-
formation, to enforce who may and may not know a particular fact
is precisely the kind of power that traditionally governments and in-
creasingly private businesses seek to wield against adversaries and com-
petitors. Especially when the keepers of a secret are not able to meet
together, out of the range of eavesdroppers and spies, there is a need for

3

4 CHAPTER 2

communicating secretly right in the open. As had been demonstrated
in numerous wars of the twentieth century, anyone can intercept ra-
dio signals. Telephone lines can be tapped. This is where cryptography
comes into play—locking up information so that it will remain secret
while it is being transmitted via a medium that is open to all.

Once we had passed the age of the trusted courier and locked box,
new telegraph and especially radio technologies created the need for re-
liable encryption machines. In the early twentieth century, enterprising
inventors saw an opportunity and before 1920 had invested four such
devices. At the heart of these machines was a series of three or four
rotors—wired code wheels, each with twenty-six different electrical con-
tacts on each side. To encrypt a message, the user would type a letter
on the keyboard, such as A, and electrical current would flow through
the machine, going through the rotors, and printing a completely dif-
ferent letter, such as V. The rightmost code wheel would then advance
one position, and the user pressing A again would result in another
letter being printed, such as T, before the code wheel rotated again.
Once the rotor went through all twenty-six positions, the rotor next to
it would also advance, much like an analog odometer on an automobile.

In this way, the user would type the original message, while the
machine would produce ciphertext that could safely be sent as a radio
signal. The intended recipient of the message would have a matching
cipher machine that would turn the signal back into human-readable
plaintext. In the United States, Edward H. Hebern invented his machine
in 1917, Germany’s Arthur Scherbius invented his in 1918, and 1919
saw the invention of a machine in the Netherlands by Alexander Koch
and in Sweden by Arvid Gerhard Damm. Scherbius called his machine
Enigma, and it would become the only financially successful cipher
machine from the era.

Enigma was patented by Scherbius, an electrical engineer, and E.
Richard Ritter, a certified engineer. After the eventual transfer of
patent rights, Engima would come to be marketed commercially by
Chiffriermaschinen Aktien-Gesellschaft (Cipher Machines Stock Cor-
poration), whose board of directors included Scherbius and Ritter. Sev-
eral governments began to investigate Engima, with variations of the
original design eventually coming into use throughout the German,
Italian, and Japanese armed forces.

Despite the best efforts of its producers, Engima was not generally
accepted in the world of business. Its commercial success came as a

Keeping Secrets 5

result of the Axis use of the machine to protect military and diplomatic
communications.1

With the rise of radio technology in government and military com-
munications in the early twentieth century, the danger of messages be-
ing intercepted increased dramatically. Instead of having to get physical
access to communications circuits such as telephone or telegraph lines,
operatives could simply point high-powered antennas toward their tar-
gets and start listening. Governments throughout the world developed
“signals intelligence” groups, chartered to intercept radio communica-
tions sent by other nations, and to report their findings to their own
leaders. To protect their own communications from foreign signals in-
telligence efforts, governments began to encrypt their radio signals.

Governments would not easily give up the ability to read others’
messages. Signal intelligence came to mean not just message intercep-
tion but also breaking the encryption used to protect the messages. In
the years leading up to World War II, the United States maintained
an active signal intelligence operation even while hoping to avoid being
drawn into the global conflict. In 1938, the Japanese empire began to
use a machine they called “Alphabetical Typewriter 97” for their diplo-
matic messages—a rotor machine like Germany’s Enigma. Unable to
read those messages, the U.S. Army Signals Intelligence Service (SIS)
began a project to break the Japanese system, which they had code-
named, “Purple.”

In the late 1930s, SIS cryptanalysts (code breakers) under the di-
rection of cryptographic pioneer Frank Rowlett spent eighteen months
studying intercepted Japanese diplomatic messages, looking for any
clue that would help them to unlock Purple’s secrets. One day in
September 1940, SIS cryptanalyst Genevieve Grotjan made a critical
discovery. She found important and previously undiscovered correla-
tions among different messages encrypted with Purple. After Grotjan
brought her discovery to the attention of the rest of the SIS Purple
team, they were able to build a duplicate of a machine they had never
seen—the Alphabetic Typewriter 97.2

Putting its new machine to work right away, SIS discovered that
Purple was used not simply for routine traffic, but the most sensitive
of the Japanese empire’s secrets. Intelligence gathered from intercepted
and decrypted Purple messages was so valuable that those decrypted
intercepts came to be called “Magic” within SIS.

6 CHAPTER 2

When Rowlett returned to his office from a meeting at midday on
December 3, 1941, he picked up a Magic decrypt from his in-box. That
message, intercepted just that morning, was directed to Japan’s em-
bassy in Washington. Rowlett read the bizarre orders for Japanese
diplomats to destroy their code books and even one of the two Pur-
ple machines they had. Without their code books and with only one
working Purple machine, the Japanese embassy simply would not be
able to operate normally. Colonel Otis Stadtler, who was responsible
for distributing Magic decrypts arrived as Rowlett was reading the mes-
sage. After some discussion, Stadtler realized the meaning of the order:
Japan was preparing to go to war with the United States.

On the evening of December 6, U.S. president Franklin D. Roosevelt
received analysis of the intelligence: war with Japan was inevitable,
and the Magic decrypts were used to support the conclusion. As the
Japanese military used different codes from the Japanese diplomats,
President Roosevelt had no way of knowing that on the very next day,
Japan would attack Pearl Harbor and kill over 2300 Americans. Only
five years later would there be enough time for SIS cryptanalysts to
look at the military intercepts in the months before the strike on Pearl
Harbor. Their efforts to break those messages proved successful, and
they anguished over the results of their work. Though not naming Pearl
Harbor explicitly, the Japanese military had been ordered to be on a
footing for war with the United States by November 20, 1941.3

Private industry, driving much of the revolution in communication tech-
nology of the twentieth century, also developed its interest and expertise
in cryptography. Claude E. Shannon at AT&T Bell Telephone Labo-
ratories made several critical contributions to modern communication,
computing, and cryptography. Shannon joined Bell Labs in 1941, after
completing his Ph.D. in mathematics at the Massachusetts Institute of
Technology. At Bell Labs, Shannon worked as a research mathemati-
cian and came to be known for “keeping to himself by day and riding
his unicycle down the halls at night.”4

In 1948, Shannon published “A Mathematical Theory of Commu-
nication” in the Bell System Technical Journal.5 The paper was a
breakthrough, founding the study of information theory, and coining

Keeping Secrets 7

Fig. 1. Claude E. Shan-
non, c. 1952. Property of
AT&T Archives. Reprinted
with permission of AT&T.

the term “bit” to describe a BInary uniT. Up
to that time, communication was thought to
require electromagnetic waves down a wire or
radio waves toward a receiver, but Shannon
showed how words, pictures, and sounds could
be sent across any medium that would carry
a stream of bits. The following year, Shannon
applied his work directly to cryptography in
a paper entitled, “Communication Theory of
Secrecy Systems.”6This paper founded mod-
ern mathematically-based cryptography out-
side of government intelligence agencies.

The rise of the computer and the rise of
cryptography have gone hand in hand. Com-
puting technology has made exchanging infor-

mation easier, making communication and collaboration easier. Since
people still want—and in an ever-growing number of cases, are legally
obligated—to stay in control of information in their stewardship, people
need cryptography.

Code makers and code breakers agree: the computer is both friend
and enemy. For cryptographers, computer technology makes the im-
plementation and use of flexible cryptography easier, while frustrating
the efforts of cryptanalysts. For cryptanalysts, the computer improves
efficiency in the analysis of encrypted messages and building systems
to undermine cryptography, thus making it easier to exploit any flaw
in the cryptographers’ creations.

Cryptosystems before the twentieth century required tedious man-
ual processing of messages, using code books to match what was written
to what was to be communicated, or perhaps a great deal of scratch pa-
per to perform the necessary text substitution and transposition. The
process of encrypting and decrypting messages essentially consisted of
taking a handwritten message, looking up the correct corresponding
symbol on a chart, and writing the symbol on the paper that would
actually be delivered to the recipient, who would in turn look at the
chart and convert the ciphertext back to the plaintext by hand, one
letter at a time.

Later systems like Enigma, though more convenient than the “old
way,” were still cumbersome and slow. (Early Enigma promotion mate-
rial boasted that the machine could process 300 characters per minute.)

8 CHAPTER 2

Though the internal mechanics were much more complicated, the user
of the Enigma might liken its operation to a typewriter where the keys
are randomly reassigned. The sender would type the letter according
to the keys written on the keyboard, knowing that when an A is struck,
a V, for example, will be written. The recipient will then need to know
the keyboard layout used by the sender in order to recognize that the
V in the message was created by striking the A key, and write “A” on a
scratch pad. Working letter by letter, the sender’s message becomes vis-
ible. Enigma handled this substitution work automatically, preventing
operators from needing scratch paper.

Now, with computers, recipients can often click a few buttons and
have huge amounts of deciphered information almost instantly turned
into the sender’s original message.

Perhaps no one understood the challenge and opportunity that emerged
in the post-war era better than the researchers at IBM. In the 1950s
and 1960s, with its systems designed to handle the heaviest information
processing needs of both corporations and government agencies, IBM
had to give serious consideration to the handling of sensitive data.

One of the earliest applications for computers was in the handling of
government information—some of which was protected by law. Security
was just as much a requirement for early computer systems as the
ability to store and to process information accurately.

The trend to establish standards for data security in automated
information systems became an important issue for IBM and its cus-
tomers. The possibility of computerized records being abused was not
lost on Americans, who were fascinated with computers and technol-
ogy, but also worried about the implications of their use in society. One
of the key figures in helping IBM realize a workable, powerful security
scheme was a German émigré by the name of Horst Feistel. Feistel had
arrived in the United States decades earlier, in 1934. Despite his inter-
est in cryptography, he avoided working in the field during World War
II to avoid suspicion by the American authorities.

After the war, Feistel found employment at the U.S. Air Force Cam-
bridge Research Center, where he worked on identify friend-or-foe (IFF)
systems. IFF systems were (and still are) used on the battlefield to

Keeping Secrets 9

avoid “friendly fire” incidents, where forces attack allied units instead
of the enemy. Radar systems with IFF capability, for example, report
not only the position of units in range, but whether they are friendly
or hostile—thanks to the use of cryptography.

In the middle of the twentieth century, the highly secretive U.S. Na-
tional Security Agency (NSA) had a virtual monopoly on cryptographic
research and were trying hard to maintain it. Feistel’s Air Force project
was canceled—though details are shrouded in military secrecy, NSA is
generally credited with ensuring its hasty demise.

Feistel attempted to continue his work at Mitre Corporation in the
1960s, but again ran afoul of NSA’s plans. Dependent on Department
of Defense contracts, Mitre had little choice but to ask Feistel to direct
his energies elsewhere—presumably also at NSA’s behest.

Determined to apply his hard-earned expertise in cryptography,
Feistel joined IBM before 1970, where he was finally free to continue
his work, and headed up a research project known as Lucifer. The goal
of Lucifer was to develop cryptographic systems for use in commercial
products that would address the growing need for data security. IBM
consequently was able to offer clients a means of protecting data stored
in its computers.

Commercial users of computers were finally seeing the need to
protect electronic information in their care, and an explosion began
in the commercial availability of cryptographic products. In the late
1960s, fewer than five companies were offering cryptographic products,
but by the early 1970s, more than 150 companies were active in the
marketplace—and more than fifty of them were from outside of the
U.S.

During this time, Feistel published an article in Scientific American,
describing cryptography and how it relates to protecting private infor-
mation in computers. Although much of the article focused on cipher
machines of the sort that were used in World War II, it also contained
some descriptions for mechanisms for computer software to encrypt in-
formation. Those methods, known as Feistel Networks, are the basis of
many cryptosystems today.

Because the government kept their cryptographic technology un-
der lock and key, commercial cryptographers could only guess at what
their counterparts within government research facilities like NSA had
achieved. These commercial cryptographers began with the fragments

10 CHAPTER 2

that could be assembled from historical literature and began to lay the
foundation for open (i.e., not secret) cryptologic research.

At this time, though, very little was understood about how well
various cryptographic techniques could withstand analysis. For exam-
ple, one might believe that an encrypted message would be twice as
resistant to analysis if encrypted twice. Only after years of research did
cryptographers come to realize that for many kinds of ciphers, dou-
ble encryption is no stronger than single encryption. Many questions
played into a system’s strength. How strong would a rotor-based sys-
tem be if it used four rotors instead of three? How strong is strong
enough? How strong is a rotor-based machine system by comparison
with an encryption system implemented entirely in software?

In the early 1970s, no one outside of government cryptology knew
the answers to questions like these, and it would be years before suf-
ficient work in the field would be done to find answers. Thus, the
availability of cryptographic products was of little help—people simply
didn’t know how good any of it was, and making meaningful compar-
isons was impossible. Even worse, no two vendors could agree on a
system, requiring that both sender and receiver use the same equip-
ment. It would be like buying a Ford only to discover that the nearest
gas station sold only fuel to work with Chrysler cars.

Knowing that information needed to be protected, computer system
managers had little choice but to buy something and hope for the best.

3

Data Encryption Standard

In the United States, the National Bureau of Standards (NBS) began
undertaking an effort aimed at protecting communications data. As
part of the Department of Commerce, NBS had an interest in ensuring
that both its own systems and those of the commercial entities with
which it dealt were adequately protecting the information under their
stewardship.

The NBS effort included the establishment of a single standard for
data encryption, which would allow products to be tested and certified
for compliance. The establishment of a single standard would solve
three major problems in the chaotic encryption marketplace. First,
products compliant with the standard would have to meet security spec-
ifications established by experts in cryptography; individual amateurish
efforts at merely obfuscating information would not pass muster. Sec-
ond, compliant products from different vendors would be able to work
with one another, allowing senders and recipients to buy from the ven-
dors of their choosing. And third, the tremendous costs incurred by
vendors in the creation of cryptographic systems could be reduced,
since they would be able to focus on making the systems convenient to
use, rather than spending huge amounts of money on development of
the cryptographic underpinnings.

Requirements for the standard cryptographic algorithm—the defi-
nition of the series of steps needed to turn plaintext into ciphertext and
back again—were published in the Federal Register. Among the require-
ments were a high level of security, complete and open specification,
flexibility to support many different kinds of applications, efficiency,
and exportability to the global marketplace.

11

12 CHAPTER 3

NBS received many responses, though it ultimately determined that
none of the algorithms submitted satisfied all of these requirements.
Despite this apparent setback, NBS did not consider the effort to be
a complete loss since it demonstrated that there was a substantial in-
terest in cryptography outside of military circles. The large number of
responses, in and of itself, was taken as a firm and positive step in the
right direction.

NBS published a second request in the Federal Register on August 27,
1974. Once again, several serious submissions were made. Some were
too specialized for the purposes NBS envisioned. Others were ineffec-
tive. One, however, showed great potential.

IBM’s Lucifer project had an algorithm simply named “Lucifer,”
that was already in the latter stages of its development. IBM submitted
a variation of the algorithm, one with a 112-bit key, to NBS.

Before the significance of the 112-bit key can be fully appreciated, it
is important to note that modern computers are binary. That is, they
store and process data in bits, the binary units Claude E. Shannon
described in 1948. Anything with two settings can be used to represent
bits. Consider a light bulb. It has two settings and two settings only:
on and off.

All data in binary computers are represented in terms of bits, which
are represented as 0 or 1. Absolutely everything, to be stored into a
computer, must ultimately be represented with these two, and only
these two, digits.

The easiest way to grasp the security of algorithms like IBM’s Lu-
cifer is to imagine a simple bicycle tumbler lock. Usually, such locks
are made up of four or five tumblers, each with ten positions, labeled 0
through 9. In digital computers, however, a cryptosystem with a 112-
bit key is like having a lock with 112 tumblers, each with two settings,
0 and 1.

IBM’s algorithm therefore had a total of 2112 possible settings,
only one of which was the “key” to the system, the equivalent of the
setting of a bicycle lock which would allow its opening. Seeing that
number written out—5,192,296,858,534,827,628,530,496,329,220,096—
shows why scientists prefer to use exponents when talking about large

Data Encryption Standard 13

numbers. The difference is even more pronounced (pardon the pun)
when you hear the numbers spoken. “One hundred twelve bit” is much
easier to say than “five decillion one hundred ninety-two nonillion two
hundred ninety-six octillion eight hundred fifty-eight septillion five hun-
dred thirty-four sextillion eight hundred twenty-seven quintillion six
hundred twenty-eight quadrillion five hundred thirty trillion four hun-
dred ninety-six billion three hundred twenty-nine million two hundred
twenty thousand ninety-six.” Such a vast number of possible solutions
made the Lucifer algorithm a powerful means to protect information—
satisfying two important NBS criteria at once: high security and secu-
rity coming from the key.

NBS saw IBM’s submission as promising, but it had a serious
problem—the algorithm was covered by some IBM patents which ruled
out interoperability. IBM agreed to work out rights for the patents,
such that even competitors would have the ability to produce systems
that implemented the algorithm without the need to pay IBM licens-
ing fees. Once this legal obstacle was removed, NBS went to work on
evaluation of the system itself.

Lacking a staff with its own cryptographic expertise, NBS turned to
the greatest source of cryptographic expertise known to exist—in other
words, NSA—for help in evaluating the strength of the Lucifer algo-
rithm. After careful analysis, NSA proposed two significant changes.

The first was a change in the algorithm’s S-boxes. S-boxes are the
part of the algorithm that control how the data are permutated as they
move from step to step along the process of being converted from the
readable message to the encrypted result (or vice-versa), much like the
rotors of Enigma.

The second, and more drastic, was the reduction of key length from
112 to 56 bits. This recommendation came as a result of debate inside
of NSA. While the code-making part of NSA wanted to produce a
standard that was strong and could protect U.S. interests, the code-
breaking part of NSA was concerned that if the standard were too
strong, it could be used by foreign governments to undermine NSA’s
foreign signal intelligence efforts. Ultimately, 56 bits was the key size
that won out as those two concerns were balanced.7

The difference in key size is significant. Because we’re talking about
“tumblers” that are binary here—we’re working with a base of 2. That
means that each digit added to the key doubles the key strength. That

14 CHAPTER 3

is, the number of possible settings, only one of which is the key to
unlocking the encrypted message. Consider Table 1.

Power Conventional Notation

21 2
22 4
23 8
24 16
25 32
29 512
256 72, 057, 594, 037, 927, 936
2112 5, 192, 296, 858, 534, 827, 628, 530, 496, 329, 220, 096
2128 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456

Table 1. Powers of Two

The key of IBM’s original cipher would be not just double or triple
the strength of NSA’s modification, but fifty-six times the strength. The
reduction of the key rate caused a significant stir among the nascent
group of civilian cryptographers.

In 1975, two cryptographers from Stanford became particularly crit-
ical of the 56-bit key. Whitfield Diffie, one of the two cryptographers,
took the notion of an independent cryptographer to a new level. Not
only was Diffie free from the restraints of secret government research,
but he also developed his work free of the influence of large corpo-
rations. Having graduated from MIT with a degree in mathematics
in 1965 and performed computer security work for several companies
since then, Diffie found himself becoming recognized as an expert by
his peers even without the help of a powerful support system.

Cryptographic systems long had a serious problem: getting the keys
sent between the sender and recipient of encrypted messages. After all,
if you can safely send a key in secret, why not use the same method
to send the message itself? In practice, this problem was addressed
through procedures, such as having the sender and recipient agree on
a series of keys in person. The first message would be encrypted with
the first key, the second with the next key, and so on, until they had
exhausted their supply of keys, at which point they would need again to
exchange a list of keys—whether in person or through a trusted source
like a secured courier.

Being fascinated with the problem of the distribution of crypto-
graphic keys, in particular key distribution over a global Internet, Diffie

Data Encryption Standard 15

spent a lot of time thinking about this problem. While still forming his
ideas on key distribution, Diffie visited IBM’s Thomas J. Watson Lab-
oratory to deliver a talk on cryptography, with particular emphasis on
how to manage keys safely.

After his presentation, he learned that Martin Hellman, a professor
of electrical engineering from Stanford had spoken at the same labora-
tory on the same topic not long before. Diffie took particular interest
in Hellman because most cryptographers at the time were enamored
with the algorithms themselves, leaving few to give the problem of key
distribution any serious consideration.

That evening, Diffie got into his car and started driving across the
country to meet Hellman. After arriving in Stanford, Diffie called Hell-
man, who agreed to a meeting. The two were impressed enough with
each other that they looked for a way to work together. Because Hell-
man did not have the funding to hire Diffie as a researcher, he took
Diffie on as a graduate student instead. Thus began the partnership of
Diffie and Hellman at Stanford University.8

After the criticisms Hellman and Diffie leveled against the 56-bit key
of the developing standard for data encryption throughout 1975 were
ignored by NBS, the Stanford pair authored a letter published in Com-
munications of the ACM. In that letter, they outlined their objections
to the key size and its ramifications. Because the Association for Com-
puting Machinery (ACM) is the oldest and largest association of com-
puter scientists and engineers, its Communications is well-read and
highly-regarded, seen by effectively everyone working in computing at
the time.

Hellman and Diffie knew that the help of this group would be critical
in forcing NBS to address their concerns. Even so, they recognized that
the issue of the algorithm’s security would be so far-reaching that their
concerns would be of interest to the American public. The algorithm
would protect data about the medical histories, finances, and official
records of Americans from all walks of life.

If the standard could not withstand attack, it would be the Amer-
ican people who would suffer. Recognizing the difficulty of bringing
such an obscure (albeit important) matter to the attention of the pub-

16 CHAPTER 3

lic, Hellman and Diffie wisely enlisted the help of David Kahn, author
of the highly regarded 1967 book The Codebreakers.9 Kahn wrote an
Op-Ed piece for The New York Times that was published on April 3,
1976. In that article, Kahn wrote of the proposed standard, “While
this cipher has been made just strong enough to withstand commer-
cial attempts to break it, it has been left just weak enough to yield to
government cryptanalysis.”

By this time, experts from IBM, Bell Labs, and MIT had also
weighed in on the matter: 56-bit keys were too small, they all declared.
As Kahn noted in his article, “one major New York bank has decided
not to use the proposed cipher” in part because of the criticisms of its
key size.

The uproar was sufficient to cause the U.S. House of Representa-
tives’ Government Information and Individual Rights Subcommittee
to look into the matter. NBS was forced to recognize that the field of
cryptanalysis existed beyond the walls of government, that the concerns
are real, and they must be addressed if the effort to standardize the
proposed 56-bit system was to succeed.10Consequently, NBS decided
to hold two workshops on the cipher proposed as the “data encryption
standard” (DES).

NBS held two workshops in 1976 to deal with the objections raised
by Hellman and Diffie. These were working meetings where cryptog-
raphers from across the country would be able to discuss the thorny
issues around the proposed data encryption standard face-to-face. As
part of their objections, Hellman and Diffie proposed the design of a
special-purpose computer that would use a technique called brute-force
to crack DES-encoded keys quickly. The first NBS workshop was com-
posed of hardware experts who considered the proposed special-purpose
DES cracker.

Some participants argued that the proposed DES cracking ma-
chine would not work because design and control costs would exceed
the cost of the hardware. Hellman and Diffie countered that crack-
ing DES keys would not be one large job, but many small jobs that
could be performed independently. As such, there was no need for the
microprocessors—the “brains” of the computer—to interact with one
another. Each could be given tasks to perform independent of the oth-
ers. This, Hellman and Diffie responded, meant that the objection to
the feasibility of a brute-force attack on the basis of design and control
costs did not stand.

Data Encryption Standard 17

Another matter of concern was the reliability of the computer—a
more visible concern in the computing technology of the 1970s than
it is today. The reliability of computers is directly tied to the number
of components needed to construct them. Some of the NBS workshop
participants performed calculations for a DES cracker with 1 million
components—parts for handling computer working memory, storage,
central processing, arithmetic logic, and all of the electronics to hold it
all together. Based on the average time it would take electronic equip-
ment of the day to fail, the million-component machine would not be
able to run for more than a single day before failing in some way. Such
a large system, with that level of failure, would be too big and too
complex to operate.

The Diffie-Hellman design for a DES cracker, however, called for far
fewer components—only 16,000. Furthermore, rather than using a large
number of parts that would be used only a few times in the machine,
the Diffie-Hellman design called for construction involving fewer types
of parts—allowing any parts that fail to be easily replaced, getting the
system back up and running in under ten minutes. Such a system would
give error-free operation with a relatively small number of spare parts.

Another objection on the million-chip machine was its size: 6000
large cases—known as “racks”—that were 6 feet high. Hellman and
Diffie responded with a proposal for a million chip machine in only 64
racks, suggesting that even were 1 million chips necessary, the size of
the machine was being seriously overestimated.

Still basing assumptions on the large, million-chip, 6000-rack ma-
chine, power requirements were the next objection raised by NBS and
others. Simply providing the electricity for such a machine to run would
exceed any “reasonable budget,” apparently without specifying what
would constitute “reasonable.” Hellman and Diffie proposed the use
of chips manufactured in a newer and more cost-effective manner that
would bring the operating cost to under $1500 per day, observing that
power costs could be reduced five times with newer technology.

Looking at the speed with which a message could be encrypted with
DES on readily available (general-purpose) chips, some participants
determined that those chips would be too slow and cost too much when
purchased in the quantity needed to test DES keys quickly. Looking
at available technology, Hellman and Diffie suggested that complaints
about chip speed and cost could be overcome by using a special chip,
designed for the specific purpose of searching for DES keys. A special-

18 CHAPTER 3

purpose chip would dramatically increase the speed of the operation.
Such chips, they observed, could be produced in quantity for $10 each.

In the course of this dispute, NBS even offered some of its own alter-
natives to increasing the key size. One approach they suggested was to
develop a system that made use of frequent key changes. Rather than
reusing the same key from one message to another, such a system would
give each message a unique key. That way, the illicit discovery of a key
would compromise only one message, rather than every message en-
crypted with that machine. Hellman and Diffie responded by observing
that rather than cracking the message immediately after it was sent,
some attackers might have the ability to intercept a message and then
to spend the time necessary to break any particular message. (Interest-
ingly, while cryptographers like Hellman and Diffie had no way to know
it at the time, this is precisely what happened when SIS cryptanalysts
could not keep up with the flow of Japanese military communications
in the run-up to the attack on Pearl Harbor. Recall that SIS decrypted
those messages five years after they were intercepted.) Hellman and
Diffie went on to observe that medical records needed to remain pri-
vate for ten years—that kind of long-term privacy requirement could
not be met by a system where a single message encrypted with a rela-
tively small key could be broken in a ten-year period.

Looking at the costs that would need to be borne by anyone im-
plementing commercial cryptography, some argued that increasing the
proposed standard’s length of a key to 128 or 256 bits—as Hellman
and Diffie suggested—would greatly increase the costs. The expense,
in turn, would make the construction and use of such systems less at-
tractive while also decreasing the overall use of encryption. Hellman
and Diffie countered these assertions by observing that the comput-
ing power needed to perform encryption is much less than needed to
perform brute-force search. (This works much like a scavenger hunt.
Hiding twenty items—akin to encryption—is not significantly harder
than hiding ten items, though finding those twenty—akin to brute-force
decryption—would take dramatically more time than finding ten.) The
difference in the cost of operation of a 128-bit system and a 56-bit
system was negligible, but the payoff in terms of greater security was
significant.

Finally, NBS argued that there simply was no way to tell for sure
when the right key had been found in a brute-force search, even if
someone took an encrypted message and used that key to turn it into a

Data Encryption Standard 19

readable plaintext. Hellman and Diffie argued that while a formal proof
would be difficult, the design of DES was not such that a ciphertext
message would be able to decrypt into lots of different sensible-looking
plaintext messages. The decryption process would produce either a sen-
sible message or gibberish.

Hellman and Diffie argued that none of the NBS objections was
valid and that a 56-bit key could not provide adequate security against
a dedicated attacker. They recommended devices that would support
variable key lengths. Allowing users to choose their own key lengths
would allow them to decide for themselves whether the extra security
of the larger keys was worth the extra time needed for the encryption
and decryption processes.

NBS didn’t stop with consideration of DES-cracking computers. The
following month, NBS held a second workshop on DES, focused on the
mathematical foundations for the DES algorithm. Participants in the
second workshop expressed significant concern that while the design
was available for review, the principles that guided NSA’s changes were
classified, and therefore available only to government cryptographers
sworn to secrecy. The workshop adjourned without consensus.

Nevertheless, the workshops had three important effects. First, much
concern was voiced over the possible weaknesses of DES, with the key
length being a major issue, as well as the participants’ inability to re-
view the design principles behind NSA’s S-Box changes. If NSA wanted
to implant a secret “shortcut” so that only it could decrypt messages
immediately, that would be the place to do it, and participants might
not have enough understanding of the details to identify it.

Second, few participants were convinced that the Hellman-Diffie
scheme for breaking DES keys was practical. Costs still seemed too
high, and effort needed still seemed too great to be worthwhile. Given
the technology of 1976 and the next few years, there seemed little like-
lihood that DES would be defeated by brute force.

Third, the arguments put forth by Hellman and Diffie did convince
participants that the key length provided no safety margin. Essentially,
the Hellman-Diffie designs for key-cracking computers were possible,
but not presently feasible. Anything that would change that balance,
driving the cost of computing down in an unexpected way would un-
dermine the strength of DES against brute-force attacks.

20 CHAPTER 3

NBS considered the matter as resolved as it would ever be, ulti-
mately ignoring the warnings issued by the outsiders from Stanford
and effectively declaring no need for a safety margin.

Whitfield Diffie and Martin Hellman documented their objections
to the 56-bit key of the DES cryptographic algorithm in an article
published in the June 1977 issue of IEEE Computer. Their article,
“Exhaustive Cryptanalysis of the NBS Data Encryption Standard,”
described a special-purpose machine to crack DES keys by brute force.

Building on top of the debates during the NBS DES standardization
process over the hardware requirements for DES-key-cracking comput-
ers, the published Diffie and Hellman design was estimated to cost $20
million to build, and would be able to break DES keys in roughly twelve
hours each.

Four and a half years after announcing its intention to create a stan-
dard for data encryption, NBS published its official standard in the
Federal Information Processing Standard series, a group of regulations
and standards that all of the agencies in the Federal government must
follow. At long last, FIPS 46, titled “Data Encryption Standard,” was
released.11

A private, non-profit industry association, the American National
Standards Institute (ANSI) had (and still has) a committee to handle
the standardization of information technology. Not wanting to duplicate
all of the work that NBS had undertaken in the development of its
standard, ANSI adopted exactly the same algorithm, known inside of
ANSI as the Data Encryption Algorithm (DEA). Apparently the issue
of key size would not seriously emerge again—judgment regarding that
matter was being left to NBS, which had mustered as much expertise
in open cryptography as any organization could.

Other ANSI committees, including the committee on Retail and
Banking and the Financial Institution Wholesale Security Working
Group—saw the adoption of DEA and established their own require-
ments to use the same Data Encryption Standard produced by the NBS
effort.

In view of this activity, the American Bankers Association developed
its own (voluntary) standard around the DES algorithm. The Interna-

Data Encryption Standard 21

tional Standards Organization (ISO) adopted the algorithm, calling it
DEA-1. Australia’s banking standard also was built around DES.

Given the widespread adoption of DES for data encryption, a great
deal was at stake. If DES turned out to be resistant to serious attack,
tremendous amounts of data being locked up in computers would be
safe, even against the most sophisticated attacks. On the other hand,
if anyone found an exploitable weakness or good attack against DES,
tremendous loss would be possible.

Ruth M. Davis of NBS published an article in the November 1978
issue of IEEE Communications Society about the process of forming
the Data Encryption Standard.12 In it, she wrote that the workshops
determined that DES was satisfactory as a cryptographic standard for
the next ten to fifteen years. Interestingly, she specifically observed
that, “the risks to data encrypted by the DES will come from sources
other than brute-force attacks.”

After DES was adopted as a standard, it would be subjected to many
types of attacks, and its properties would be studied exhaustively. After
years of cryptanalysis, consensus would emerge that DES was indeed
a strong algorithm, remarkably resistant to a wide variety of attacks.
Still, one criticism of the algorithm just could not be shaken. The key
length, at fifty-six bits, was proclaimed insufficient to protect against
attackers very far into the future.

Academic and industrial cryptologic research increased significantly
in the years following the standardization of DES, including signifi-
cant work done in the growing community of cryptographers outside of
government intelligence agencies. Products would continue to be devel-
oped, with increasingly sophisticated systems becoming available and
put into use. While not opening its vault of cryptologic secrets, the
U.S. government did watch the ever-increasing size and sophistication
of this community with great interest. The government’s concern was
not just with the independent domestic development of powerful new
encryption products, but with the export of those products into the
international markets.

As with other technologies that could raise national security con-
cerns, the export of cryptographic products was subject to the Inter-

22 CHAPTER 3

national Tariffs in Arms Regulations (“ITAR”), administered by the
Office of Defense Trade Controls at the Department of State. A li-
cense would be required for any U.S. companies or persons to export
such items, and that license would be subject to approval of the State
Department, which would presumably follow the recommendation of
NSA.

The purpose of ITAR was to prevent the export not just of arma-
ments but of implementations of cryptographic techniques. Working
cryptosystems could only be exported outside of the U.S. and Canada
with a key of forty bits or smaller, which would essentially mean that
only systems that could be broken easily were allowed to be exported.
There was no restriction on key length for domestic use, and by 1996
systems with keys of 128 bits and more were widely available. Even so,
DES, which was already well-established as the de facto international
benchmark, remained the standard for commercial usage.

4

Key Length

In any cryptosystem where a key allows the intended recipient to read
the message, there is always a chance that an attacker will figure out
which key will decrypt message. Longer keys are one of the simplest
and most effective mechanisms to lower the risk: a machine that could
find a fifty-six bit key every second would take 150 trillion years to
find a 128 bit key. This is why Hellman and Diffie argued for longer
keys; finding keys by trial and error would be simply ridiculous even to
contemplate.

Cryptosystems are divided into two categories: symmetric (also
called “secret key” or “conventional”) and asymmetric (also called
“public key”). In both categories, the concepts of key and the key length
are of the greatest importance.

Symmetric cryptosystems use the same key for encryption and de-
cryption. Physical locks are often symmetric.

A familiar example of a symmetric lock was mentioned on page 12: a
bicycle chain with a combination lock that holds the two ends together
until the numbers are rotated to display the proper combination. The
key in this case is not a physical piece of metal, but the combination
that the user can enter, which will cause the internal mechanisms of
the lock to align so that the end pieces can be put together and pulled
apart. If you know the combination, you can use the lock; if not, you
can’t.

All of these locks are vulnerable to an exhaustive key search, known
as a brute-force attack. Attackers simply try every single possible com-
bination until finding the one that works. Imagine a bicycle combination
lock with one tumbler, with ten positions numbered from 0 to 9. The
brute-force attack against this lock is to set the tumbler to position 0

23

24 CHAPTER 4

and to pull on the lock to see if it opens. If not, move the tumbler to
position 1 and pull on the lock to see if it opens. If not, systematically
keep changing the tumbler position until you find the right one.

Such a system has a work factor of ten operations in the attacker’s
worst case scenario, meaning there is a one in ten chance of guessing
correctly on the first try. On average, an attacker would be able to find
the combination in five tries, assuming that the keys are distributed
randomly.

One way to demonstrate random distribution, and the fact that on
average we need to try only half of the keys to find the right one, is with
a plain old six-sided die, the sides numbered 1 through 6. If we roll the
die, each number has a one in six chance of coming up. Imagine that
the die is being used to find the key for a tumbler with six positions,
labeled 1 through 6, we’ll be able to make the connection. Roll the
die a large number of times—say, 100 times—recording which number
comes up on each roll.

Now, if we set the one-tumbler, six-position lock to what comes up
on the die, we have set the “key” for the system randomly, which is
the best possible way to choose a key. If you then give the system to
a group of attackers to unlock the system, they will probably set the
lock to 1, pull it, moving on to 2 if it doesn’t work, and so on, until
they unlock it. The group can also try them all at random if they like.
Even if the group employs both strategies, the result will be the same
in the long run. If we record the number of attempts that it takes for
the attackers to unlock it, we’ll see that they have a one in six chance
of guessing correctly on the first try. They have a six in six chance
of guessing correctly through the sixth try. They have a three in six
chance of guessing correctly through the third try.

If we assume that it takes one second to set the tumbler and to see
whether the lock has disengaged, our ten-position, single-tumbler lock
would be secure only against an attacker in a very big hurry.

If we want to increase the attackers’ work factor, we can either
increase the number of settings on the tumbler or we can add another
tumbler. If we add another setting on the tumbler, we’ll increase the
attacker’s worst case work factor to eleven seconds. If we add another
ten-setting tumbler to the lock instead, we have increased the attacker’s
worst case work factor to 100 seconds.

Key Length 25

Thus, increasing the number of tumblers is much more effective than
increasing the number of settings on the tumbler. Figure 2 shows the
possible settings on our lock with two tumblers numbered 0 through 9.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0x 00 01 02 03 04 05 06 07 08 09

1x 10 11 12 13 14 15 16 17 18 19

2x 20 21 22 23 24 25 26 27 28 29

3x 30 31 32 33 34 35 36 37 38 39

4x 40 41 42 43 44 45 46 47 48 49

5x 50 51 52 53 54 55 56 57 58 59

6x 60 61 62 63 64 65 66 67 68 69

7x 70 71 72 73 74 75 76 77 78 79

8x 80 81 82 83 84 85 86 87 88 89

9x 90 91 92 93 94 95 96 97 98 99

Fig. 2. Possible Combinations For A Two-Tumbler Lock

Thus, by adding a new tumbler to the lock, the strength of the
system is increased exponentially, whereas the strength of the system
where a new position is added to the tumbler increases only linearly.

Mathematicians express this concept with simple notation like xy,
where x is the base and y is the exponent. A ten-tumbler system has a
base of 10 and an exponent of the number of tumblers, in this case ten.
Our first example, the single-tumbler lock has 101 = 10 possible com-
binations. Our second example has 102 = 100 possible combinations.
A typical bicycle tumbler lock might have four tumblers, in which case
there are 104 = 10, 000 possible combinations.

Still assuming that it takes one second to test each combination, it
would take 10,000 seconds (nearly three hours!) to try every possibility
on a four-tumbler lock. Once again, in practice, an attacker will only
need to try approximately half of the keys on average to find the right
one. So our system will be able to resist brute-force attacks for an
average of just under an hour and a half.

Finding a cryptographic key is no different. In a brute-force attack
against a cryptosystem, the attacker simply starts trying keys until one
works. Since modern computers are binary, our cryptosystems are like
tumbler locks with only two settings: 0 and 1. Instead of saying how
many “tumblers” we have in computer-based cryptosystems, we say
how many “bits” we use to represent the key. A one-bit cryptosystem
has two possible keys: 0 and 1; mathematically, this is 21 = 2. A two-bit

26 CHAPTER 4

cryptosystem has four possible keys: 00, 01, 10, and 11; mathematically,
22 = 4. A three-bit cryptosystem has eight possible combinations (23 =
8).

What’s interesting about breaking a cryptosystem, though, is that
the equivalent of pulling on the lock to see if it opens involves running
the encrypted message, trying a key that might unlock the message
through the decryption process and then examining its output. The
encrypted message will look like gibberish. Running the wrong key
through the decryption process with the message will give us more
gibberish. Running the right key through the decryption process will
give us something that looks sensible, like English text.

For example, given ciphertext of QmFzZTY0PyBQbGVhc2Uh and the
key 1101 as input, the decryption function would produce something
like UW1GelpUWTBQeUJRYkdWaGMyVWg if the key is wrong. If the key is
correct, the output would look like ATTACK AT DAWN.

This entire process can be automated with software. Consider a
brute-force attack against messages encrypted with a three-bit cryp-
tosystem. The software will need to recognize many popular data
formats, for example, standard plain text, a JPEG graphics file, an
MP3 sound file, and so on. To determine the key needed to unlock
an encrypted message, the software would run the encrypted message
through the decryption process with the first key, 000. If the output
seems to match one of the known formats, the software will report 000
as a possible match. If not, it can go to the next key, 001 and repeat
the process. Obviously, it won’t take a computer long to work through
eight possible combinations to find the right key.

The more strength we put into a system, the more it will cost us, so
a balance must be struck between our own convenience—we can’t make
it too difficult for ourselves—and the attacker’s. A lock that withstands
attacks for an hour and a half is “secure” if it needs to protect something
for an hour. A lock that withstands attacks for a year is “insecure” if
it needs to protect something for a decade.

Team sports like American football provide a good illustration of
the importance of timing in security matters. Football teams have play-
books, which are effectively code books. The quarterback calls the play,
and his own team knows what to do next. The opposing team, on the
other hand, should not be able to anticipate what the next play will
be. If someone had the time before the play starts to analyze the quar-
terback’s calls, their contexts (the down, how well the offense has been

Key Length 27

performing in its passing and running), and some history of the team’s
behavior, it’s quite likely that he could figure out the play before it
starts. But the code employed is secure because no one has time to
perform all of that analysis. The message is secret for only a few mo-
ments, but it is enough time to serve its purpose.

There is one type of symmetric system that does not have the same
weakness to brute-force attacks. This is the Vernam Cipher, developed
by Gilbert Vernam of AT&T in 1918. Some—notably, Vernam him-
self was not one of them—have suggested that the Vernam Cipher is
unbreakable, a claim which is worth considering.

The Vernam Cipher is actually a simple substitution cipher, one
of the old manual systems (as opposed to modern computer-based sys-
tems) that used scratch paper and nothing else. Before we consider how
the Vernam Cipher in particular works, we should be clear on simple
substitution ciphers in general.

Julius Caesar is known for his use of a primitive encryption system
that now bears his name. The Caesar Cipher is a simple mechanism of
substituting one letter for another, following a regular pattern. To see
how this works, write the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Write the alphabet again, just below it, starting with N (shifting
thirteen characters to the left).

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

The shifted-thirteen-places version of the alphabet is the key in the
cipher. To encrypt a message with this system, simply choose the letter
you want from the top alphabet, find the corresponding letter in the
bottom alphabet, and write that down.

Thus,

ATTACK AT DAWN

becomes

NGGNPX NG QNJA.

28 CHAPTER 4

Decryption works the same way; the intended recipient knows how
to construct the bottom alphabet. When reading the message, he’ll find
the letter in message in the second alphabet and match it up to a letter
in the first alphabet, revealing the original message.

Variations have been proposed, where instead of simply shifting the
alphabet some number of spaces, the letters of a word like QWERTY are
used to start the substitution alphabet. In such a case, the key would
become

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q W E R T Y A B C D F G H I J K L M N O P S U V X Z

and

ATTACK AT DAWN

would become

QOOQEF QO RQUI.

A big problem with simple substitution ciphers is that they are
vulnerable to a simple attack known as frequency analysis. The attacker
counts how often each letter appears and compares that to how often
each letter should appear in a message of a particular language. For
example, in English, the most frequent letter is E, followed by T, so a
cryptanalyst will begin by trying to replace the most frequently used
letter in the encrypted message with the letter E.

That does not always work, as our sample message shows. In this
case, the most frequent letter is Q, which stands for A. The second most
frequent letter, however, does match the expected distribution. O is the
second most common letter in the message, which corresponds to T,
which is the second most common letter in English. Additional analysis
will find other clues like letters appearing in double, certain letters that
appear together, and the likely position of vowels and consonants.

The strength of a substitution cipher can be increased dramatically
by replacing the substitution alphabet with a character stream invul-
nerable to frequency analysis.

The Vernam Cipher is precisely such a system. Rather than map-
ping one character to another using the same twenty-six characters, the
Vernam Cipher relies on a key that is as long as the message that is
being encrypted. So, if the message being encrypted is

Key Length 29

ATTACK AT DAWN

the system will require fourteen random characters for the key. Those
characters might be

YDRJCN MX FHMU.

Now the substitution can be made. To perform the substitution,
we look to see how far into the alphabet each letter of the key is. For
example, Y is the twenty-fifth character of the English alphabet, so we
need to advance twenty-four positions into the alphabet to reach it. So
we use the value twenty-four to perform the substitution.

Our plaintext for this digit is A, the first character in the English al-
phabet. Adding twenty-four to one gives us twenty-five, so the resulting
ciphertext for that position is Y.

For the second digit, our key is D, the fourth character in the English
alphabet, so we need to advance the next plaintext character three
positions. Thus, our plaintext T becomes W.

In the third digit, our key is R, the eighteenth character in the al-
phabet, so we need to advance the next plaintext character seventeen
positions. This T becomes L.

This process is continued until we arrive at the ciphertext of our
message,

YWLJEY MO IHIG.

Decryption of the message requires the recipient have exactly the
same one-time pad (the same key) and that the keys remain in per-
fect synchronization; if the sender starts to encrypt the next message
with the thirteenth digit of the pad and the recipient starts to decrypt
the message with the fourteenth digit of the pad, the result will be
incomprehensible.

The correspondents in our example have been careful, so they are
using the same pad and they’re correctly synchronized. The recipient
will take our ciphertext and the one-time pad, performing the same
process as the sender, but in reverse.

Seeing that the letter Y in the ciphertext is zero digits off from the
letter Y in the key is an interesting case. The recipient will look at the
plaintext English alphabet, advancing zero digits before picking the
letter. Zero digits, no advancement, gives the letter A.

Seeing that the difference between our ciphertext W (the twenty-
third letter of the alphabet) and the key’s D (the fourth character of the

30 CHAPTER 4

alphabet), we’ll see there is a difference of nineteen. Reaching nineteen
characters into the regular alphabet, we arrive at the letter T.

After examining the third character, we see that L in our ciphertext
is the twelfth character of the alphabet. The corresponding digit in the
key is R, the eighteenth character of the alphabet. Subtracting eighteen
from twelve gives us negative six, which means we have to repeat the
plain alphabet so we can move into that repeating series. (Of course,
we can simply subtract six from twenty-six—the total number of char-
acters in the English alphabet, giving us twenty—we will need to move
nineteen positions into the alphabet to reach the twentieth character.)
Advancing nineteen positions into our plain alphabet, we again arrive
at T.

For the fourth character, we see that the difference between our
ciphertext J and the key J is zero, so we advance zero digits into the
plain alphabet, again yielding A.

Again, the process is repeated for each digit until we arrive back at
the original message plaintext, ATTACK AT DAWN.

The safety of the Vernam Cipher depends on the key being perfectly
random and used only once. Any reuse of the pad would open the way
for attacks against the key (and therefore all messages ever encrypted
with the pad), as was shown by NSA’s VENONA project.

VENONA was a project started by the U.S. Army’s Signals Intel-
ligence Service—NSA’s forerunner—in 1943 to monitor Soviet diplo-
matic communications. A brilliant success of American intelligence,
VENONA gave the U.S. political leadership important insights into
the intentions of the Soviet Union, as well as details of its espionage
efforts.

VENONA is now best known for decrypting intercepted Soviet com-
munications that showed Julius and Ethel Rosenberg’s involvement in
the Soviet spy ring. The project also showed how the Soviet Union
gained information on U.S. atomic research, particularly the Manhat-
tan Project.

Over the course of VENONA’s lifetime, some 3000 intercepted mes-
sages encrypted by the Soviets with a Vernam Cipher were broken
because the system was not used properly.13

Despite the restriction on the perfect randomness of the key and the
difficulty in managing the key, the system really does have perfect se-
curity. Because the substitution happens against a randomly generated
pad, a cryptanalyst cannot tell when the right sequence of decrypted

Key Length 31

characters is ATT or THE, because any digit has an equal probability
of mapping to any other digit. Recall that frequency analysis requires
a one-to-one mapping of a plaintext letter to a ciphertext letter, such
that we can count how often a ciphertext letter appears and then to
try reading the message by making the most frequent letter E, the next
most frequent T, and so on.

Consider that when we attack a message using brute force in most
systems, we can simply tell whether we found the right key because the
result of the decryption process gives us something sensible, like plain
English text, or something in a known data format like a JPEG image
file.

The beauty of the Vernam Cipher is that when we find the key—
which we will, if we perform an exhaustive key search of all possibilities—
we’ll have no way of knowing that it’s the same key that was used by
the users of the system. Consider the following example.

Given the ciphertext,

ASPSDFAQQPJF

all of the plaintexts listed below are equally plausible solutions, because
they have the same number of digits, and each digit in the key has an
equal probability of being any given letter, as a result of being selected
randomly. (A mathematical property of a randomly-chosen character
is that it has equal probability of being any particular element of the
set. Returning to our example with the die, a fair die roll will mean
that there is no difference in the odds of a 1 coming up and the odds
of a 4 coming up.)

Consequently, a cryptanalyst who decrypts our ciphertext cannot
tell whether our original plaintext message was any one of the following,
or some other combination of letters equal in length:

CRYPTOGRAPHY

ATTACKATDAWN

BISCUITMAKER

THISISSECRET

HANDKERCHIEF

LEXICOGRAPHY.

32 CHAPTER 4

Despite the tremendous security offered by the Vernam Cipher, the
key length requirement prevents it from being used more widely. It is
only manageable for communications that are brief and infrequent. (Ru-
mor has it that a hotline established between Washington and Moscow
after the Cuban Missile Crisis of 1962 was encrypted with a Vernam
Cipher.)

With key management in symmetric cryptosystems, we have reason
to be happy for the availability of asymmetric systems. In recent years,
these have become popular, largely because the Internet has enabled
many people who have never physically met or communicated through
another means to exchange data, in the form of e-mail and through
the Web. The basic idea behind asymmetric systems is that instead of
one key, users have key pairs. One key in each pair is private, while the
other is public, published as widely as possible.

If Alice wishes to send a message to Bob, she’ll encrypt the message
with Bob’s public key. The only key that can decrypt a message en-
crypted with Bob’s public key is Bob’s private key. An interesting side
effect of encrypting with Bob’s public key is that Alice cannot decrypt
a message that she herself wrote and encrypted.

Asymmetric systems tend to be more complicated, mathematically
speaking, than symmetric systems. Symmetric systems are heavily de-
pendent on jumbling messages through processes like transposition
(where the data are rearranged) and substitution (where one datum
is replaced for another). Asymmetric systems are generally based on
mathematical functions that are easy to calculate one way, but ex-
tremely difficult to reverse.

A good example of a function easy to perform only one way is squar-
ing. Taking any number, and squaring it is easy: simply multiply it by
itself. Going backward—determining square root—isn’t so easy. Con-
sider

√
37, 636, that is, what number, multiplied by itself is 37, 636?

You’ll need to take a guess and see if it works out to be too high or too
low, then keep adjusting it until you find the right number. This takes
a lot of time.

Compare the time spent in calculating square roots with what it
takes, say, to compute 1942. The difference in time for going forward
(squaring) compared with going backward (taking square root) is what
makes for a one-way function and demonstrates why an attacker has to
spend so much more time and effort than users of a system who have
the key.

Key Length 33

By 1993, cryptography was becoming a more visible part of the emerg-
ing “Internet culture.” As more people came online, concerns over
privacy of electronic communication grew dramatically. Numerous at-
tempts were made to find ways to secure Internet-based electronic mail.
One group in particular was not about to wait for someone else to bring
privacy to the world’s electronic networks.

The second issue of a magazine called WIRED ran a black and white
photograph of three masked men, holding up an American flag on its
cover. The white masks bore numbers—one appearing as a bar code,
the other two in hexadecimal: one across the top, and another across
the eyes. Those numbers were the public key IDs of the faceless persons
on the cover.

Over the photograph was the text, “Rebels with a Cause (Your
Privacy).” Without explanation, the bottom-right corner carried the
text “PODKL�QA �ITES�!” (Russian for, “Be wired!”)

In the corresponding article, the masked rebels were identified as
the founders of a group known as Cypherpunks. Fiercely independent—
taking marching orders from neither governments nor corporations—
and strong believers in the power of cryptography, the Cypherpunks
began to look at how to address the problem of protecting information
from prying eyes.

Eric Hughes, a self-employed programmer in California and a co-
founder of the Cypherpunks described the mission succinctly in his
1993 missive, “A Cypherpunk’s Manifesto.” He wrote,

Cypherpunks write code. They know that someone has to write
code to defend their privacy, and since it’s their privacy they’re
going to write it. . . Cypherpunks will make the networks safe
for privacy.

Cypherpunks was never a group with any kind of official member-
ship. People simply called themselves cypherpunks and would show up
at occasional physical meetings, while the bulk of their collaboration
took place electronically—using the technology of the Internet to build
systems designed to secure their communications. The mailing list be-
came the virtual gathering place to discuss the politics and technology
of cryptography, which is to say protecting liberty in the digital world.

34 CHAPTER 4

August 1993
CRYPTO ’93 Conference, Santa Barbara, California

Canadian cryptographer Michael Wiener shocked his colleagues with
his presentation showing his designs for DES-cracking hardware. His
scientific paper included detailed designs, as well as cost estimates for
building various configurations of his DES cracker. A $1 million version
of his machine would be able to break DES keys by brute force in three
and a half hours. A $10 million version of his machine would be able
to do the job in twenty minutes. A $100 million version would break
DES keys in two minutes.

While Wiener had not actually built the machine, he did report that
his chip was fully designed and could be fabricated for $10.50 each in
quantity. Were someone willing to come up with the money, his machine
could be built and deployed.

Inspired by Wiener’s paper, Phil Zimmermann, the author of the
free encryption system called PGP (Pretty Good Privacy) publicly
speculated that large government intelligence agencies, particularly
NSA, had budgets that would support $100 million computers. DES
encryption was useless against the government.

Zimmermann knew that DES was not strong against a determined
attacker years before Wiener’s paper. PGP, developed over a period
of some five years before its release in mid-1991 did not use DES. In-
stead, PGP used a 128-bit symmetric cipher known as IDEA—roughly
seventy-two times more resistant to brute-force attacks than DES.

With Wiener’s paper helping to quantify just how much money
would be needed to build a computer that would render DES useless,
Zimmermann wrote, “DES is dead, dead, dead.”

October 1, 1996
Process Software Corporation, Framingham, Massachusetts

By late 1996, DES had been a standard for nineteen years. Several
designs for machines to crack DES keys had been around for years.
From time to time, someone would assert—without supporting any
evidence, of course—that the government already had machines like
the ones described early on by Hellman and Diffie and later by Wiener.
Whether the rumors about government intelligence agencies actually
having DES-cracking hardware at their disposal were true mattered less

Key Length 35

than the simple availability of designs that would crack DES-encrypted
messages quickly and the fact that, like all computers, such machines
were getting cheaper and easier to build.

Some attempts had been made to address the short key size in DES.
In particular, several modes of operation were defined where a message
would be encrypted more than once, with multiple keys. Two major
standardized versions followed, both known informally as “Triple-DES”
(or “3DES”), because a cryptographic operation was performed thrice.
In the usual two-key variant, plaintext is encrypted with one key, run
through the decryption operation with a second key, and encrypted
again with the first key, giving an effective strength of 112 bits. In
a three-key variant, plaintext is encrypted three times, each with a
different key, giving an effective strength of 168 bits.

Despite cryptographers’ lack of confidence in DES against deter-
mined attackers and the availability of stronger systems, DES contin-
ued to stand in official standards and was used very heavily. As long
as the government stood by its standard, DES would remain in heavy
use.

Cryptographer Peter Trei posted an article to Cypherpunks mailing
list entitled, “Can we kill single DES?” “Single DES” was a reference to
the original 56-bit standard for data encryption, to prevent readers from
confusing it with Triple-DES. In his message, he determined that with
the technology of the day, it was quite likely that DES keys could be
broken at no cost in roughly six months. This would take into account
the speed of computers in general use, the likelihood of how many
participants would be willing to work on such a project, and just how
much computing power would be needed to find one key out of 256.

5

Discovery

Summer 1985
Bexley Public Library, Bexley, Ohio

Like most cryptographers-to-be, I spent many of my summers off from
school studying mathematical topics that I otherwise would not learn
about until years later. I wanted to learn everything about how to ma-
nipulate numbers and symbols to determine the value of the mysterious
x. Such studies necessitated frequent trips to the library.

At twelve years old, I discovered David Kahn’s 1967 book, The
Codebreakers, sitting on the shelf of the library I frequented. Being
interested in history, mathematics, and computers, the book looked
promising. With over 1000 pages documenting the role of cryptogra-
phy in one decisive point in history after another, I found myself drawn
into a world where secrets could be written and transmitted, incompre-
hensible to unintended readers. Just as intriguing were the unintended
readers whose savvy and persistence allowed them to turn the jumble
of ciphertext into valuable plaintext.

Before long, I became fascinated with the making and breaking of
ciphers. Not content just to read about ciphers, I started to read more
about how ciphers worked, and started to write my own enciphered
messages—starting with the Caesar Cipher. Reckoning that a 2000-
year-old cipher must be universally known, I began to develop my own
systems for encrypting messages.

My first ciphers were intended to be manual systems—allowing for
messages to be enciphered and deciphered with no more advanced tech-
nology than a pencil and paper. Having practiced my own skill at break-

37

38 CHAPTER 5

ing messages enciphered with simple substitution systems (such as in
the daily newspaper’s “cryptoquote”), I started to look for ways to
make substitution ciphers more resistant to attack.

In an effort to resist frequency analysis, I found that I could normal-
ize frequency of letters and numbers appearing in ciphertext if instead
of creating a simple one-to-one relationship between plaintext and ci-
phertext (e.g., where A is always written as M), a plaintext character
could be mapped to a group (e.g., where A could be written as M or
1). Letters with higher plaintext frequency would be assigned larger
groups.

That led to a new problem: creating a mapping where some plain-
text letters had more than one ciphertext equivalent meant that I
needed more than twenty-six ciphertext characters to represent twenty-
six plaintext letters. This problem was initially solved by adding num-
bers to the mix. By requiring that all plaintext messages have numbers
spelled out, I could gain an extra ten ciphertext characters, thus al-
lowing more ciphertext letters to represent common letters like E and
T.

I kept a notebook of my ciphers, giving each a name, along with
some comments on the system’s strength and likely scenarios where
each would be appropriate to choose. At the same time, I established
a means to identify which cipher was in use.

Some of the more sophisticated systems were further resistant to
analysis, using a single ciphertext digit for plaintext letters that com-
monly appear together, such as TH, CH, and SH. As I continued to de-
velop these, I moved further away from simple substitution ciphers
that change ciphertext to plaintext one letter at a time and into codes,
where a symbol could mean a whole word or phrase. Such systems de-
manded more and more symbols to represent ciphertext, so I adopted
the use of “codegroups” (groups of numbers or letters) for ciphertext.
Once I had access to a computer, where I could create and manage
such systems more easily, I settled on a system of five-digit numbers
for my codegroups. Instead of being limited to thirty-six characters to
represent ciphertext, I suddenly had 100,000. I could make the groups
for common letters as large as I liked, add a large set of “nulls.” Nulls
were codegroups that had no plaintext equivalent: they existed only to
confuse attempts analyze the ciphertext.

Encrypting a message with such a system was tedious because such
a large table was needed. In fact, it would work very much like a foreign

Discovery 39

language dictionary that goes from one language to another in the front
part, and then back again in the second half.

To encrypt a message like:

Meet at the library after school today. The topic is
algebra.

the plaintext-to-ciphertext table would be consulted to find words or
phrases that would be defined. Most of the words in a message like
this would be defined in their entirety, such as “meet,” “at,” “library,”
and “today.” The phrases “after school” and “the topic is” would be
defined in their entirety as well. Definite articles in this case can be
safely dropped without any loss in meaning, leaving us to spell out
only “algebra.”

A few sample entries from the table below will give us what is needed
to convert the plaintext to ciphertext.

. 34134
a 34714 10398 27225 36404
after school 72191
at 47008
b 88420
library 02979
e 16628 72700 33525 73487 69419 15940
g 30148
l 46399
meet 40746
null 22604 24638 84879 71792 03858 11341

37135 11337 21715 92643 16989 67646
82998 07445 83430 10869 15653 17431

r 66911
today 65573
topic is 08565

Working through our cleartext message, constructing the ciphertext
from the codebook would create ciphertext that obfuscates not only the
letters and words used to create the message, but its general structure.
The resulting ciphertext would look like the following.

40746 47008 02979 72191 65573 34134 08565 22604
34714 46399 30148 16628 88420 66911 10398 24638

40 CHAPTER 5

Decryption would use the corresponding table that was sorted by
number, e.g.,

02979 library
08565 topic is
10398 a
16628 e
22604 null
24638 null
30148 g
34134 .
34714 a
40746 meet
46399 l
47008 at
65573 today
66911 r
72191 after school
88420 b

Using that table, the ciphertext could be converted back to plain-
text, one codegroup at a time. After I began to use computers to con-
struct these elaborate codebooks and to use them more efficiently, I
learned how data are represented in computers and how they could be
manipulated in much more powerful ways, opening a whole new world
of cryptographic capabilities. It was then, in high school, that I learned
about cryptosystems like DES and the mathematical methods used to
try to break them.

I had not realized the complexity of the field until I learned enough
that my pursuit of cryptography was no longer an absurdity.

My early cryptosystems—the most sophisticated of which I thought
to be fiendishly devious—were all a joke in the grand scheme of things.
On the other hand, they were secure for their purpose. My friends and
I were able to use my systems to keep our secret plans to rendezvous
at the library safe from the prying eyes of our “adversaries.” But the
experience was valuable and ultimately helped me to develop expertise
in cryptography that would allow me to protect information from sig-
nificantly more sophisticated cryptanalysts than teachers and parents.

6

RSA Crypto Challenges

August 12, 1982
MIT, Boston, Massachusetts

With signatures applied to a handful of documents, RSA Data Security,
Inc. came to life, a company formed to bring the work of three MIT
mathematicians—Ron Rivest, Adi Shamir, and Len Adleman—to mar-
ket. The trio invented a public key cryptosystem in 1977 and named it
“RSA” after themselves. Looking for a means to bring their algorithm
into use, Rivest, Shamir, and Adleman formed the company and, with
some financial backing from an experienced businessman, acquired the
exclusive rights from MIT to commercialize their invention, U.S. Patent
4,405,829, “Cryptographic Communications System and Method.”14

By 1996, RSA Data Security grew to be a company whose technology
was used to protect all manner of information, especially on the Inter-
net. Securing e-mail messages and Web transactions became everyday
events thanks to products incorporating RSA Data Security’s crypto-
graphic algorithms. Such systems needed not only the flagship RSA
public-key algorithm, but symmetric cryptosystems as well. To answer
this need, RSA Data Security offered symmetric algorithms, including
a system devised by MIT mathematician and RSA founder Ron Rivest.

41

42 CHAPTER 6

The RSA algorithm itself depends on a difficult mathematical prob-
lem: factoring of large numbers (i.e., finding all of the smaller numbers
that will divide evenly into a given large number). RSA key pairs are
generated mathematically, and need to be made with big numbers—
numbers so big that factoring them would take so long that by the time
an attacker factored the number, the encrypted message contents would
be worthless. Knowing how big those numbers had to be would require
staying abreast of just how quickly large numbers could be factored.

As part of its ongoing research efforts, RSA Data Security spon-
sored a series of contests, known as the RSA Factoring Challenges.
Those contests were designed to encourage researchers to factor large
numbers—over 100 digits long—and to compete against each other to
see who could factor the largest numbers in the least time. These efforts,
in turn, helped RSA researchers keep an eye on how quickly the code-
breaking technology was progressing, so that the code-implementors
would be sure to use keys large enough to keep the real attackers at
bay.

Scientists had factored large numbers on computers before. In 1988,
an effort to factor a large number was undertaken by Arjen K. Lenstra
and Mark S. Manasse. While large numbers had been factored before,
the Lenstra-Manasse effort was unique in that it used the Internet to
coordinate its participants’ efforts. Rather than having the computa-
tions performed by one large computer or by many computers from
the same lab, volunteers in the project ran special software on their
computers that would have them work with all of the other computers
running the Lenstra-Manasse software.

RSA Data Security Inc. issued its Factoring Challenge contests to
ensure that the factoring work would continue to be done. The strat-
egy worked. In 1993, RSA-129 (a 129-digit number) was successfully
factored by 600 volunteers. Since that time, many other RSA num-
bers have been factored, including RSA-160. (RSA paid cash prizes to
contest winners.)

In each of these challenges, the contestants would be given some
encrypted data, along with some information like which cryptosystem
was used for the encryption and a little bit of the text that would match
properly-decrypted plaintext. In short, this provided enough informa-
tion for researchers to be able to perform a “partial known-plaintext
attack,” a very realistic sort of attack, where a cryptanalyst knows a
little bit of the decrypted message. As the cryptanalyst finds possible

RSA Crypto Challenges 43

breaks, he checks his work against what known plaintext is available to
see whether the break is real.

October 1996
Process Software Corporation, Framingham, Massachusetts

Cryptographer Peter Trei was known not only for development of cryp-
tographic software, but for his public discussion of cryptography, its
uses, and the impact that it could have on the lives of its users. Many
read Trei’s posts to the Cypherpunks mailing list with interest. “Can
we kill single DES?” was a compelling question. Knowing that breaking
a message protected by a cryptosystem as deeply entrenched as DES
would cause a stir, Trei wisely argued that any efforts to defeat DES
must be oriented toward a legitimate target.

In response to his message to Cypherpunks, Trei received private
mail from “the R in RSA,” Ron Rivest, suggesting that he contact
Jim Bidzos, the president of RSA Data Security, Inc. Even respected
cryptographers can sometimes be mistaken for kooks—not everyone
knows where to draw the fine line between genius and insanity, so Trei
hesitated before finally writing Bidzos. When he finally wrote Bidzos,
Trei suggested some sort of sponsored contest, along the lines of the
Factoring Challenges that RSA had been doing over the years.

Jim Bidzos responded to Peter Trei’s suggestion quickly and enthu-
siastically. People from RSA Data Security began to work with Trei on
constructing a legitimate attack—a sponsored public contest, following
the model of RSA’s Factoring Challenges—on the global standard for
data encryption.

January 1997
Megasoft Online, Columbus, Ohio

In the eleven years since my discovery of The Codebreakers, I continued
my study of cryptography and information security. After developing
expertise in operating systems and network implementation, I worked
on software security in the financial services industry. After working on
computer and network security at AT&T Bell Laboratories, I landed
at an early Internet start-up company called Megasoft Online. My job
there involved security for our “Web Transporter” product, which man-
aged software distribution and installation safely—all over the Internet,

44 CHAPTER 6

without the need to use floppy disks or CD-ROMs. That meant using
cryptography and I was happy to put my experience to good use.

Like many professional and amateur cryptographers, I received an
e-mail from Trei in January of 1997 in which he updated the crypto-
graphic community on his progress in getting a DES message cracked.
He told us about RSA’s support and announced his DES Key Recovery
program, DESKR.

DESKR was written for more recent releases of the Windows oper-
ating system, such as Windows NT and Windows 95. Most individual
computer users would be able to run DESKR. Windows 3.11—the older
version of Windows that ran atop of Microsoft’s text-based DOS—was
waning in popularity to the point that it seemed pointless to go through
the extra effort to get the software to work on it. Cryptographer Steve
Gibbons adapted DESKR to work on two Unix-based systems more
frequently found in server systems in data centers, computers run-
ning the Ultrix operating system from Digital Equipment Corporation
(DEC, which later merged with Compaq, which itself later merged with
Hewlett-Packard) and from IBM.

Trei sent me a copy of DESKR, including Gibbons’ adaptations.
Since I wanted to run DESKR, I made additional modifications to
the software to run on the systems that I had—a process known as
“porting”—and send the changes back to Trei. My adaptations enabled
DESKR to run on Linux, IRIX (the Unix variant from Silicon Graphics,
Inc., known simply as SGI), Solaris 2 (the most recent Unix flavor from
Sun Microsystems, Inc.), SunOS 4 (Sun’s older Unix), and various BSD
Unix platforms.

DESKR was ready for some ten different types of computers by the
end of the month, when RSA Data Security launched its contest to
crack a DES-encrypted message.

January 28, 1997, 9:00 A.M.

Sixth Annual RSA Data Security Conference, San Francisco

RSA president Jim Bidzos officially launched the “1997 Secret Key
Challenge,” a series of contests designed to test how quickly messages
encrypted with various key lengths can be broken by brute force. RSA’s
popular annual conference was a perfect springboard from which to
launch the contest. A press release was issued and some members of
the media were there for the conference. Thirteen contests were an-

RSA Crypto Challenges 45

nounced, challenging participants to break messages encrypted with
RSA’s popular variable-strength cipher, RC5. The first contest was a
$1000 prize for breaking a message protected by 40-bit RC5, a $5000
prize for the 48-bit RC5 contest, and a purse of $10,000 went to anyone
for decrypting the message in the other contests which ranged from
56-bit to 128-bit configurations of the RC5 cipher.

RC5 wasn’t the only target of the Secret Key Challenge. In addition
to the twelve RC5 contests, a contest to crack a DES-encrypted message
was included. Its prize was set at $10,000.

12:30 P.M.

University of California, Berkeley

UC Berkeley graduate student and cryptographer Ian Goldberg read
the output from his program, designed to find a solution to RSA’s 40-
bit challenge. Running on the Network of Workstations (NOW) at UC
Berkeley, Goldberg’s program pooled together the unused processing
power of about 250 workstations, testing approximately 28 million keys
per second.

Goldberg grinned as he read the message on his screen.

The unknown message is: This is why you should use a longer
key.

Just three and a half hours after the launch of RSA’s Secret Key
Challenges, the 40-bit contest was over.

February 10, 6:52 P.M.

Swiss Federal Institute of Technology (ETH), Zurich

Germano Caronni, a graduate student working on a Ph.D. in commu-
nications and security, was distributing software for use by individu-
als on their own machines to try to find the solution to RSA’s 48-bit
challenge. Once started on a participant’s machine, Caronni’s software
would make a connection to his keyserver—a computer that would tell
the computer which keys to try. Once the computer got the message
that said where to start and where to stop searching, it would begin
working. If the computer did not find the key by the time it had tried
the entire set (or “block”) given to it by the keyserver, the computer

46 CHAPTER 6

would report back to the server that it had tried all of the keys in the
range that it had been given and ask for another range.

Germano Caronni happily saw his system report to him:

The unknown message is: The magic words are Security Dy-
namics and RSA.

Just over thirteen days after the start of the contest, Caronni’s
project found the winning key. Caronni felt a sense of vindication,
finding the solution, after having been beat to the right key by Ian
Goldberg on the 40-bit RC5 contest.

Caronni won $5000, which he donated to the non-profit Project
Gutenberg, an organization creating, maintaining, and distributing
electronic texts of books whose copyrights have expired.

I could feel a real sense of excitement building within the cryptographic
community. Like hundreds of others, I ran Caronni’s key-cracking soft-
ware on a dozen or more computers to which I had access, trying
to bring the project to a successful conclusion as quickly as possible.
Though I had helped to make Peter Trei’s DESKR software available
to more computer types, I decided not to work on the DES Challenge
until the easier 40-bit and 48-bit RC5 Challenges were answered.

Now it was obvious knew that these systems were weak and could
be broken at no cost with a small investment of time. Once the 48-bit
challenge had been answered, cryptanalysts returned their attention to
the U.S. Government standard of nineteen years, DES.

By working to break a message encrypted with DES, cryptanalysts
were doing much more than answering a contest call or engaging in a
theoretical exercise. DES was the standard in virtually every industry
in virtually every nation. It had been criticized from the beginning as
being weak against a determined adversary because of its small key
size. The time for theoretical designs, postulations, and estimates was
over. It was time to show the world that it was possible to break a
DES-encrypted message.

No one seriously believed that that attacking DES by brute force
would be easy. Though finding the right key would just be a matter of
time, the risk that presented itself was that if a cryptographic attack

RSA Crypto Challenges 47

took too long to find the right key, we strong-cryptography advocates
might undermine the very point we needed to make. If the project that
found the key for the DES challenge proceeded at the speed of the
40-bit challenge, the search would take twenty-six years. If the project
proceeded at the speed of the 48-bit challenge, the search would take
nine years. Finding the right DES key could be the largest computation
ever performed, and if we were going to succeed, we were going to need
a lot of computing horsepower to share the burden.

Once the 48-bit challenge group finished celebrating its success,
those of us who worked on the Caronni project moved quickly on to
breaking DES, renaming the project DES-Challenge. We set up mailing
lists. We discussed the architecture—the design for getting key-cracking
software running on thousands of machines to coordinate—used by
Caronni at length, its virtues, and how we might need to augment it
in order to answer the challenge successfully in a reasonable amount of
time. Graphic logos were made for people to put on Web sites to raise
awareness and to recruit “clients” (individual processors running the
DES key cracking software). We talked about how to build the DES
cracking software and how to get all of the clients working with each
other.

I wrote to Nicholas Petreley at the trade magazine Infoworld and
described the work we were engaged in as well as why we believed that
participating in the DES-cracking contest was so important. Based on
the success of the 40-bit and 48-bit challenges, I estimated that DES
keys could be broken in three to four months of effort by a dedicated
attacker with no special equipment. My estimate, more optimistic than
the one Peter Trei had proposed several months earlier, was based on
the number of people who were interested in proving that small keys
were inherently unsafe keys.

We weren’t the only ones estimating how long it would take.

7

Congress Takes Note

March 20, 1997
Capitol Hill, Washington, DC

Howard Coble, a sixty-six year-old representative from North Carolina
leaned forward to speak into his microphone. Coble, chairman of the
House Judiciary Subcommittee on Courts and Intellectual Property,
called the meeting to order.

The 105th Congress was debating several bills regarding crypto-
graphic policy. The House was considering a bill called the “Security
and Freedom Through Encryption (SAFE) Act,” the primary purpose
of which was to relax control over cryptographic technology used in the
U.S. and by U.S. citizens abroad. A similar bill called Pro-CODE was
working its way through the Senate.

Law enforcement officials widely thought that restrictions on crypto-
graphic products and access to cryptographic keys were vital weapons
against crime—both online and offline. Officials feared that cryptogra-
phy that the government cannot break would cause them to lose their
struggle against terrorists, drug traffickers, and child pornographers—
the three most oft-cited criminal elements in these debates. Since the
SAFE Act and Pro-CODE bills would largely eliminate governmental
regulation over cryptography, the Clinton administration opposed these
bills.

Government regulation of cryptography prevented U.S. companies
from exporting their security products to customers in other coun-
tries. These vendors opposed continued regulation, arguing that they
were unable to compete in a global marketplace against foreign compa-

49

50 CHAPTER 7

nies that were not subject to similar restrictions. Additional opposition
to cryptographic restrictions came from civil libertarians who worried
that the eventuality of such regulation would be a police state in which
the freedom of U.S. citizens would take second place to government
interests. Computer scientists and engineers argued that the systems
requiring government access to keys would actually reduce overall secu-
rity, since failing to protect medical, financial, and personal information
with cryptography would make criminals better able to steal such in-
formation.

This debate over the liberation of cryptography started in the early
1990s and came to be known simply as the Crypto Wars.

Laying groundwork for the discussion to follow, Coble said,

Today the subcommittee is conducting a hearing on H.R. 695,
the Security and Freedom Through Encryption (SAFE) Act,
commonly known as the SAFE Act. H.R. 695 addresses the
complex and important issue of encryption.

Encryption, as you perhaps know, is the process of encoding
data or communications in a form that only the intended recip-
ient can understand. Once the exclusive domain of the national
security agencies, encryption has become increasingly important
to persons and companies in the private sector concerned with
the security of the information they transmit.

The encryption debate encompasses two main issues. The
first is whether there should be any restriction on the domes-
tic use and sale of encryption technology and, in particular,
whether domestic users may place their keys in escrow with the
government or some neutral third party. This requirement would
provide a mechanism which would allow law enforcement and
national security agencies some ability to monitor transmissions.
Current law does not have such restrictions.

The second issue is whether there should be any restrictions
on the export of encryption technology. Current law regulates
the export of encryption technology in a manner similar to mil-
itary technology.

After hearing from two representatives, the committee heard testi-
mony from William A. Reinsch, undersecretary at the Bureau of Ex-
port Administration in the U.S. Department of Commerce. Reinsch
described the Clinton administration’s policy on cryptography: avail-

Congress Takes Note 51

ability of strong cryptography to protect commercial and personal in-
terests without sacrificing the ability to investigate alleged crimes and
to protect national security.

Implementation of the Clinton policy for encryption was centered
around key recovery and key escrow systems. Such systems make it
possible for an authorized agent to decrypt ciphertext to reveal the
original plaintext. While this is what decryption keys normally do, key
recovery systems are designed to allow decryption even if the key is lost
or if the key holder refuses to divulge it. Key escrow systems have a
similar end result, but their mechanism relies on a trusted third party,
one who essentially holds a “master key” that can be applied to decrypt
ciphertext.

As part of the administration’s attempts to implement this policy,
cryptographic products were recategorized. Instead of being considered
a munition and thus regulated by the Department of State, cryptogra-
phy would be recognized as a dual-use technology (one that would be
use in normal commercial activity in addition to government or military
operation), and thus regulated by the Department of Commerce.

In addition, export restrictions were altered, temporarily changing
the export limit from forty bits to fifty-six bits. This change explicitly
allowed DES and “equivalent products” to be exported, provided that
the exporting company submit plans to show they were working to de-
velop a “key management infrastructure” (essentially, key recovery or
key escrow). After a two-year transition period, exporters of crypto-
graphic technology would be expected to have their systems support
the sort of key management infrastructure envisioned by the adminis-
tration.

Despite the relaxation of cryptographic product control, the admin-
istration did not want simply to let go of cryptography. Reinsch made
the administration’s view quite clear in the conclusion of his testimony.

I must tell you that legislation such as H.R. 695 would not be
helpful, and the administration cannot support it. The bill has a
number of similarities to what we will shortly submit, but it pro-
poses export liberalization far beyond what the administration
can entertain and which would be contrary to our international
export control obligations. We are sympathetic to some aspects
of H.R. 695, such as penalties for unlawful use of encryption
and access to encrypted information for law enforcement pur-
poses, but the bill does not provide the balanced approach we

52 CHAPTER 7

are seeking and as a result would unnecessarily sacrifice our law
enforcement and national security needs. I defer to other wit-
nesses to describe the impact of the bill on law enforcement, but
let me describe a few of its other problems.

The bill appears to decontrol even the strongest encryption
products, thus severely limiting government review of highly
sensitive transactions. The administration has a long-standing
policy that the risks to national security and law enforcement
which could arise from widespread decontrol of encryption jus-
tify continued restrictions on exports.

In addition, whether intended or not, we believe the bill as
drafted would preclude the development of key recovery even
as an option. The administration has repeatedly stated that it
does not support mandatory key recovery, but we most certainly
endorse and encourage development of voluntary key recovery
systems, and we see a strong and growing demand for them that
we do not want to cut off.

As I have said on many occasions, Mr. Chairman, encryption
is one of the most difficult issues in public policy today, but we
are committed to solving it in cooperation with industry, the
law enforcement community, and the Congress in a way that
reinforces market principles and achieves our diverse goals. We
hope that you will work with us to facilitate that process by
passing the legislation we are proposing.

Next to testify was Robert S. Litt, a deputy assistant attorney gen-
eral in the Criminal Division of the Department of Justice. After weigh-
ing in with the Department of Justice’s view on the proposed legisla-
tion, Litt also offered his thoughts on the strength of cryptographic
keys. Litt’s remarks were focused on the systems already in use, rather
than the sorts of key escrow systems that other administration officials
were discussing.

Litt began with a high-level description of the argument put forth
by some citizens. That argument held that the fears of U.S. law en-
forcement and intelligence agencies were “overstated,” and that the
government simply did not want its own citizens communicating in a
way that would keep them safe from governmental eavesdropping. In
effect, the government would oppose any cryptography that it could not
easily break. (Cryptosystems for general export were limited to 40-bit
keys. As William Reinsch had pointed out earlier, companies willing

Congress Takes Note 53

to show how they were going to implement key recovery or key escrow
systems would be allowed to export cryptosystems with up to 56-bit
keys.)

As evidence for the argument that only weak cryptography would
be allowed, many advocates pointed to Ian Goldberg’s victory in RSA’s
40-bit key cracking contest. If Goldberg could break messages protected
with 40-bit cryptography in three and a half hours, the argument went,
the government must have the ability to break those messages as if they
were not encrypted at all.

“This argument does not withstand scrutiny,” said Litt. Pointing
out that the computational power needed to decrypt a message by
brute force rises exponentially as the key size increases, Litt attempted
to show how brute force attacks simply were not an option for law
enforcement.

“According to the National Security Agency’s estimates, the average
time needed to decrypt a single message by means of a brute force
cryptoanalytic attack on 56-bit DES—a strength whose export we are
now allowing—would be approximately one year and eighty-seven days
using a $30 million supercomputer.”

The law enforcement message to the U.S. Congress was unambigu-
ous: brute force attacks against DES were infeasible.

The day’s estimates would not stop there. William P. Crowell,
deputy director of National Security Agency was next to testify. Crow-
ell began, “I appreciate the opportunity to comment on the pending
. . . legislation and to discuss with you NSA’s involvement with the
development of the administration’s encryption policy. Since NSA has
both an information security and a foreign signals intelligence mission,
encryption touches us directly.” He went on to describe how NSA was
acting as a technical advisor on cryptography to the administration.

In his testimony, Crowell said that the use of cryptography can
be of significant benefit to the nation. From there, he outlined key
management infrastructures and how public-key cryptography works,
the need for an infrastructure to support public key cryptography, and
how such infrastructures can support key recovery.

Finally focusing on the most vocal part of the cryptography de-
bate, Crowell said, “I would like to help clarify some of the frequently-
repeated factual errors regarding encryption so we all can stand on firm
ground during the formation of the nation’s encryption policies.”

54 CHAPTER 7

Crowell argued that basing long-term cryptographic policy on key
size and brute-force attacks is shortsighted. Addressing this matter
directly, he said,

You may have heard news accounts of a University of Califor-
nia, Berkeley student who recently decrypted a message that
was encrypted with a 40-bit key using 250 workstations as part
of a contest from RSA Inc. This so-called “challenge” is often
cited as evidence that the government needs only to conduct
“brute force” attacks on messages when they are doing a crimi-
nal investigation. In reality, law enforcement does not have the
luxury to rely on headline-making brute force attacks on en-
crypted criminal communications. I think you will find it useful
to see for yourselves how increased key sizes can make encryp-
tion virtually unbreakable. Ironically, the RSA challenge proves
this point.

If that Berkeley student was faced with an RSA-supplied
task of brute forcing a single PGP based (128-bit key) encrypted
message with 250 workstations, it would take him an estimated
9 trillion times the age of the universe to decrypt a single mes-
sage. Of course, if the Berkeley student didn’t already know
the contents of part of the message RSA provided some of the
unencrypted message content to assist those who accepted the
challenge it would take even longer.15

For that matter, even if every one of the 29,634 students
enrolled at UC Berkeley in 1997 each had 250 workstations at
their disposal 7,408,500 computers (cost: $15 billion) it would
still take an estimated 100 billion times the age of the universe,
that is over 1 sextillion years (1 followed by 21 zeros), to break
a single message.

If all the personal computers in the world, 260 million com-
puters were put to work on a single PGP-encrypted message,
it would still take an estimated 12 million times the age of the
universe, on average, to break a single message (assuming that
each of those workstations had processing power similar to each
of the Berkeley student’s workstations).

Clearly, encryption technology can be made intractable against
sheer compute power, and long-term policies cannot be based on
bit lengths. Brute force attacks cannot be the primary solution
for law enforcement decryption needs. This line of argument is

Congress Takes Note 55

a distraction from the real issues at hand, and I encourage you
to help put this debate behind us.

Crowell’s argument was an interesting one. While he intended it
to be taken as evidence that brute force attacks against commonly-
available cryptosystems were simply not feasible, those who argued for
freedom in cryptography would interpret Crowell’s words much dif-
ferently. To them, NSA’s position suggested that the government was
reluctant to allow its citizens to engage in free speech and virtual as-
sociation via global networks without the prying eyes of even the most
powerful government agencies.

Crowell’s argument was also interesting from a technical point of
view. While he used a recently-publicized event to provide estimates
on how long it would take to crack a key by brute force, he used the
speed of Goldberg’s 40-bit challenge solution, rather than Germano
Caronni’s 48-bit challenge solution—even though Caronni’s was con-
siderably faster.

Another critical element of Crowell’s argument was that it assumed
that available computing power would remain constant—ignoring
Moore’s Law, which essentially says that computing power doubles ev-
ery eighteen months. Thus, a computation that might take two months
in early 1997 with “current technology” would take one month in mid
1998, and be down to two weeks at the beginning of 2000.

To many private cryptographers, it would appear that, just as it had
twenty-five years earlier, the government was overstating the difficulty
of brute force attacks.

8

Supercomputer

Testimony before the House Judiciary Subcommittee on Courts and In-
tellectual Property was compelling across the board. Everyone seemed
to agree that the stakes were high and that breaking encrypted mes-
sages by brute force was a hard, time-consuming problem, even for
well-funded government agencies.

The Justice Department’s Robert S. Litt provided some of the day’s
most interesting testimony, not only providing estimates on the diffi-
culty of cracking a cryptosystem by brute force, but specifically pro-
viding an estimate for cracking DES keys. Litt even cited the source of
his estimate—NSA, the very same intelligence agency responsible for
the brilliant cryptanalysis that uncovered Soviet spies operating in the
United States after World War II. If anyone understood cryptography,
it would be NSA.

NSA’s estimate, he said, was that even with a $30 million su-
percomputer it would take a year and several months to decrypt a
DES-encrypted message by brute force. Litt’s argument was especially
strong, drawing on the common knowledge that supercomputers were
the fastest and most powerful computers available. Indeed, supercom-
puters were very good at dealing with very complex problems, tracking
huge amounts of data, and working with gargantuan numbers.

But finding cryptographic keys in a brute-force attack isn’t a large,
complex problem. A search wouldn’t need many data and the numbers
involved weren’t very big, at least as far as computers were concerned.
Finding a key by trying every single one until the right key is discovered
was really a large number of very small problems. The security of the
system relies in the sheer number of keys that must be tested to find
the one that unlocks the message.

57

58 CHAPTER 8

You might think about a test that would require you to solve arith-
metic problems like 1 + 3 and 9 + 4. Those problems aren’t difficult at
all, but if you must finish the test in an hour and there are one million
problems, you might not be up to the challenge.

There are several ways that you can increase your chances of success.
You could have all of your friends work on the test with you, giving
each person a separate sheet of paper with some of the arithmetic prob-
lems on it. Perhaps your friends might recruit their friends, and you
could increase the number of people helping you on your test further
still. Having a mathematician join the project isn’t going to help you
much, though. While a mathematician can perform much more compli-
cated operations and can work with much larger numbers, a fifth grade
student could solve simple arithmetic just as quickly as the greatest
mathematician in the world.

Using supercomputers to find DES keys would be just as expen-
sive and inefficient as using mathematicians to solve a large number
of trivial arithmetic problems. Just as an army of fifth graders would
be cheaper and more effective in finishing a million-problem test of
arithmetic, a large number of regular computers would be much more
effective than a single supercomputer in finding a cryptographic key.

The fundamental issue here is how easily the problem can be
“parallelized”—broken into steps that can be performed simultaneously
by different computers, instead of all in order, one at a time. Engineers
often illustrate this problem by pointing out that bringing a new person
into the world is not something that can be parallelized. One woman
is pregnant for nine months before we have a new person. We cannot
expect a baby at the end of a month by impregnating nine women.

Testing cryptographic keys can be easily parallelized, just like a large
number of trivial arithmetic problems. To show how supercomputers
and desktop computers compare in this contest, let’s assume that a
supercomputer can test a cryptographic key in one second and that a
regular desktop computer can test a cryptographic key in ten seconds.
One supercomputer (at, say, $30 million) will be ten times the speed of
a single desktop computer (at, say, $3000). That same supercomputer
would be the same speed as ten desktop computers ($30,000). The same
supercomputer would be one tenth the speed of 100 desktop computers
($300,000).

Almost since the beginning of digital computing, our machines have
become smaller, less expensive, and faster. Where a single, monolithic

Supercomputer 59

machine used to serve a user community, subsequent generations of
computers have become more efficient and more numerous. By 1997,
personally-owned computers were commonplace in homes and dorms,
and those machines were many times faster than the kinds of minicom-
puters and even mainframes that were used a decade or more earlier.

At the same time, progress in telecommunications allowed comput-
ers to communicate with each other as they had not been able years
earlier. The rise of the Internet enabled this trend to the point where
every computer in the world had the ability to communicate with nearly
every other computer in the world.

Part of what made the Internet special was that it was not a network
of computers, but of networks. Having Alice put her machine on a
network would allow it to communicate with others on that network.
Bob putting his machine on a network allowed his computer to talk to
others on that network. The Internet made it possible for Alice’s and
Bob’s networks to connect to each other.

Though many academic and business environments had dedicated
connections to the Internet, individual users would typically use modems
to call an Internet Service Provider (ISP). The connection was only
temporary, though, and would only stay active as long as the user
needed to be able to exchange email, to surf the web, or to read arti-
cles.

Very large numbers of computers were out there, able to commu-
nicate with other machines on the Internet. The question was how to
get them to cooperate with one another and apply their energies to a
singular problem like finding the particular DES key needed to read
the encrypted message, thereby solving the RSA challenge.

RSA didn’t put limitations on how anyone could solve its challenges.
With 40-bit and 48-bit RC5 challenges already solved, the world’s cryp-
tographers were thinking seriously about how to increase the efficiency
of a large-scale key search computation.

Increasing the number of computers looking for the key is one way
to increase the efficiency of the search, but two other important options
are available to the cryptanalyst who wants to use a brute-force attack.
The first is to increase the efficiency of the software itself, and the
other is to wire the instructions needed to find DES keys directly into
a computer’s hardware.

Consider the first option—efficiency in software itself. This alone
can have a dramatic improvement in performance. When people write

60 CHAPTER 8

programs for computers, they typically use languages that were created
for the specific purpose of communicating an algorithm or program
specification to a computer. Computers don’t run the programs that
are created by the human programmers. Instead, programmers will
write software in a computer language like Java, Lisp, or C++. The
version of it that programmers work with is called source code. When
the software is finished, the programmer will invoke a program called
a compiler to read the source code and turn it into a form that the
machine can read and run directly, known as the binary executable or
object code.

In essence, the compiler will translate what the programmer says
into something that the computer can do. Building software this way is
economical and frankly much more practical than having people write
object code directly. By making the process of creating the software
easier, we reduce the amount of “people time” needed to create a fully
operational system and to get it running. Since general-purpose com-
puters like your typical PC, Macintosh, or Unix system are so fast and
cheap and people are so expensive, we ultimately save huge amounts
of money having computers do things for us.

If a program was generated by a compiler, its speed is nowhere near
what it would be if the programmer with the skill took the extra time
to write the program in a language that the computer can understand.

A computer language known as Assembler makes it possible for a
programmer that knows the machine very well to be able to create ex-
tremely efficient code which is tailored to a given machine and contains
very specific instructions.

An intimate understanding of the computer will allow the program-
mer to write code that performs the job in very few instructions, taking
advantage of any little feature that a particular computer has available.

Languages (like Lisp and Java, mentioned earlier) are typically
called “high level” when they allow the programmer to work on a
solution without thinking much about how the computer is actually
going to get the job done. “Low level” languages (like Assembler) re-
quire the programmer to specify exactly how the machine will store
and manipulate the data in order to solve a problem. The difference
between high-level and low-level languages is roughly the same as say-
ing “walk down the street with a little spring in your step” and saying
precisely how much to move each muscle in the body in order to move
down the street. Writing programs in Assembler is comparatively hard

Supercomputer 61

work. Relatively few programmers can write in Assembler, because it
requires much more intimate knowledge of computer hardware—a level
of knowledge that many programmers simply lack.

A program written so “close to the metal” can be extremely fast on
the system it was designed for. Any variation in that system, though,
can slow it down dramatically. Even an upgrade in processor type (from
one Pentium model to another, for example) will alter the processor’s
internal structure, making a program that ran very quickly in the old
system perform very badly in a newer and faster system.

Peter Trei was able to implement his DESKR program in relatively
little time because he didn’t take the time to make the software search
for keys as fast as the machine could possibly do it. Instead, he chose the
language that most cryptography software is written in, known as C, a
sort of mid-level language that doesn’t let the programmer completely
forget about the hardware, but doesn’t require him to specify exactly
what to do with every single bit in the entire system. That flexibility
also allowed Steve Gibbons to make relatively minor changes to the
software so that it would work on his computers and for me to make
other minor changes so it would work on my computers. If Trei had
built his software in Assembler, we would have had to write some parts
of the DESKR software almost from scratch to work on other computer
systems.

The only question remaining was whether key-searching software
written in C was fast enough to get the job done. If not, the new key-
cracking system would have to be written in Assembler, or possibly
something even faster.

Building a physical system to perform a brute-force attack in hard-
ware would increase its efficiency further, making it even faster than
Assembler. However, the issues that need to be addressed when imple-
menting a program in Assembler are still present when implementing
that same program directly in hardware. Even worse, hardware imple-
mentations require building or physically wiring special-purpose equip-
ment, which is much more expensive than reprogramming software.

Whether to crack keys with regular software written in a high-level
language, specialized software written in a low-level language, or with
custom-built hardware comes down to how fast the system needs to
find keys and how much time and money can be thrown at building
the system.

62 CHAPTER 8

Litt said a supercomputer would take over a year to crack a DES
key. If it took too long to solve RSA’s DES Challenge, the government
would have proved its point about the difficulty of breaking encrypted
messages by brute force and we would have no choice but to shut up.
The public policy debate over the freedom to use strong cryptography
in the United States could be heavily influenced by how cryptographers
would respond to the DES Challenge. We had a lot of decisions to make,
and we had to choose well.

9

Organizing DESCHALL

February 1997
Megasoft Online, Columbus, Ohio

Mindful of the computing power we would need to find DES keys,
it was important to take advantage of the momentum that had been
built up by the publicity of the 40-bit and 48-bit RSA contests. It
made perfect sense for the same group of people who ran Germano
Caronni’s 48-bit key-cracking software and communicated on mailing
lists to form a new group that would try to solve RSA’s DES Challenge.
These hobbyists, students, amateurs, and professionals from all over
the world (though heavily European) were already “assembled” on the
mailing list, already interested in the topic, and already prepared to
take on RSA’s next challenge.

Just like Caronni’s 48-bit contest effort, there would be no formal
organization, no headquarters, and no employees. People who saw work
that needed to be done would simply do it. After the software was
built, volunteers would run the key-searching programs on their own
computers and communicate via e-mail—participating from wherever
they happened to be, putting in as much time as they wanted. Because
a number of participants were from European countries that lacked
U.S.-style rules against the export of cryptographic software, many
of us thought that the group would produce software that everyone
could run. Even in countries where the export of cryptographic software
was forbidden, there were usually no prohibitions on the import of
cryptographic software from other countries. So if the software were
built in Switzerland, for example, volunteers from the U.S. could run

63

64 CHAPTER 9

the software. If U.S. programmers wrote the software, sending it to
European volunteers would probably be an illegal export of regulated
technology.

Many of us who ran Caronni’s clients wanted to move immediately
to breaking DES keys. Although I had previously worked on Peter Trei’s
DESKR system, I wanted to help with a coordinated effort—one that
would harness the computing power of many machines in an organized
way to search for the right key.

Some participants in Caronni’s effort volunteered to perform certain
vital functions for the DES Challenge early. Six volunteers agreed to
work together to direct the effort and to coordinate the activity of those
who were interested in answering the DES Challenge. Germano Caronni
agreed to be part of this group, as did Piete Brooks of Cambridge
University, Jered Floyd of MIT, Tim Newsome of CMU and a student
programmer at Megasoft Online, Thomas Roessler from Germany, and
“Thomas S.” from the University of Manchester Institute of Science
and Technology.

As the “DES-Challenge Organisation Committee” announced itself
and the work that was to be done, it unveiled a half-dozen mailing lists
to foster communication among participants, each dedicated to some
specific part of the project. On those new lists, cryptographers and
enthusiasts from all over the world discussed what would be needed to
defeat DES. The group quickly agreed that we would need a system
that could support many, many more clients than we ever had working
on RSA’s 48-bit Challenge—which peaked at roughly 4500 at once (and
roughly 7500 total working for any length of time) for a peak key testing
rate of 440 million keys per second.16

After much discussion, a general project architecture emerged. In-
stead of depending on a single server—a single place where a failure
could bring the whole effort to a halt—there would be hierarchies of
servers, each dedicated to a specific purpose. Another server would han-
dle just the highest-level coordination sitting on the network at the root
of the server hierarchies. While someone—we didn’t determine who—
would be responsible for the root server, others would be able to run
servers from wherever they were.

There would be separate servers to hand out key ranges to clients,
while others would receive the status reports from clients. Additional
servers would collect the statistical information from clients (e.g. what
kinds of operating systems were being used, how fast different sys-

Organizing DESCHALL 65

tems were running the key testing software, and how many keys had
been tested). Still other servers would subdivide key ranges into smaller
ranges for use by very slow clients. Finally, there would be servers that
would convert messages between the key testing client software and the
keyserver into a form that would traverse firewalls—devices designed
to prevent unauthorized intrusion into networks; some options we dis-
cussed included sending the messages through e-mail and the Web.

Still, when it seemed that everything was set and the European
DES-Challenge group effort was well on its way, traffic on the lists
dried up. Before long, it became clear that the actual software needed
to crack DES keys was not being written.

While the DES-Challenge team was busy debating technical details
other DES key search projects, such as the DES Violation Group (based
in the U.S.) and SolNET (based in Sweden), had gotten underway.
As the DES-Challenge team endlessly debated the details of its com-
plex scheme for allocating key space for the search, I received private
e-mail from Justin Dolske, a graduate student in the Computer and
Information Science Department at the Ohio State University. Though
Dolske and I lived less than fifteen minutes away from each other, it
was not until we both participated in Caronni’s Internet-based project
in Switzerland that we got to know each other. Dolske told me about
a project being led by a programmer named Rocke Verser. Verser’s
project had no name, no Web site, no mailing lists, and no support
staff. It only had key-cracking software. Fast software.

Looking at how the DES-Challenge team operated, it was now clear
that software didn’t spring from a project with a name and a mail-
ing list. A fully-functioning project, however, could well spring from
working software.

Fig. 3. Rocke Verser, 1997

January 1997
Loveland, Colorado

Like many freelance programmers, Rocke
Verser had spent years honing his software
skills, taking on a variety of challenges sure
to make him better able to practice his
craft. Long attracted to mathematics and
the computational machines that allowed

66 CHAPTER 9

complex calculations to be made so quickly, Verser was naturally drawn
to cryptography. Finding work in the development of cryptographic
software meant that Verser understood DES and knew ways to make
it work well.

Intimately familiar with Intel’s processors, Verser had written pro-
grams to encrypt and to decrypt data using the DES algorithm in the
kind of hand-crafted Assembler that very few people can understand,
much less write. To make his programs run even faster, he would man-
ually optimize his programs to run in ways that were counterintuitive
but ultimately faster. When a program would need to perform a series
of calculations, he would look for opportunities to reduce the number
of steps needed by changing the order of the calculations in a way that
would still produce the correct result. An example might be a program
needed to calculate how many matches a league of soccer teams would
need to hold to determine a winner. Many programmers would write
software to list the teams and put them in pairs, creating a “tree” to
represent the winner’s bracket in memory and then having the soft-
ware count the number of branches in the tree. Verser would give the
problem some thought and determine that the answer was always the
number of teams minus one and write software to find that solution.
Finding shortcuts like this would result in a program that provides the
correct result, but in a dramatically faster way than those written by
others.

It had been some time since Verser had worked on his fast DES
implementation when he saw RSA’s announcement of the challenges.
He pulled up his fast DES software, having found a way to put them
to good use again.

After some additional development, Verser looked at Germano
Caronni’s 48-bit RC5 software. Caronni’s system of messages that the
clients and server would send back to each other—“protocol” in net-
work parlance—was easy to implement, and it got the job done to solve
the 48-bit RC5 Challenge.

Verser then wrote a keyserver—a software system to coordinate
clients, telling them which section of the DES key space to search.
He built the keyserver to use the protocol adopted from Caronni, made
up of simple messages like, “Ready for keys,” “Test block number. . . ,”
“Finished block number. . . ,” and “Stop working.”

Verser’s previously-existing software and his decision to use a simple
architecture allowed him to get a basic distributed DES key-cracking

Organizing DESCHALL 67

system up and running in relatively little time. Focused on building
the system for testing DES keys, he didn’t get distracted in trying to
find an army of willing participants, setting up Web sites and mailing
lists, or even finding a clever name for his project. It was all simply
about RSA Data Security’s DES Challenge. His clients were given such
exotic names as DESCHAL4.EXE for Intel 486 processors, DESCHAL5.EXE
and Intel Pentium (“586”) processors. Verser’s DES Challenge project
would come to be known as DESCHALL.

By using the keyserver in conjunction with the DESCHALL key-
cracking clients, Verser envisioned many of these clients interacting
with the keyserver much like parts of a very large computer, spread
out all over the United States. The keyserver would be the central
coordinating unit, breaking all possible keys into blocks that could
be handed off to the clients for testing. A person with Verser’s client
software on their computer would simply start the DESCHALL client,
which would then ask the keyserver for a block of keys to test. When the
client was finished testing all of the keys in that block, it would tell the
keyserver it finished and request a new block to test. By communicating
with the participants in this way, the keyserver would keep track of
which keys had been tested and which remained to be tested. If the
right key was found, the client would immediately and automatically
contact the server to report the find.

Because of the efficiency of the protocol Verser implemented, the
keyserver could be a modest machine. Verser had such a machine, with
a 66 MHz Intel 80486 processor and IBM’s OS/2 operating system. He
implemented his keyserver in a high-level language known as REXX,
originally written for mainframe computers and later adapted for ma-
chines like the Amiga and PCs running OS/2.

Thus, Verser had the opposite problem that the European DES-
Challenge group had. Verser had a superb software system for cracking
DES, but he didn’t have anyone to help him find the right key.

Tuesday, January 21, 4:39 P.M.

Longmont, Colorado

Michael Paul Johnson, a programmer working independently on a va-
riety of projects, had an interest in cryptography and had developed
several cryptographic utilities that he wanted to distribute online.

68 CHAPTER 9

Not wanting to break the law on cryptographic software export,
Johnson developed a system that would allow his software to be dis-
tributed after providing notice that the software is subject to export
restrictions and getting some verification that the user is allowed to
download the software. Johnson’s system came to be known as the
“North American Cryptography Archive.”

To comply with the Export Administration Regulation (EAR) that
was in effect for cryptographic software, Johnson required users to enter
a name and a password. If those checked out, users would be allowed
to proceed to the archive itself, which was in a hidden location that
changed every hour.

Users could get their own names and passwords for the archive by
filling out an online form. Users would supply their e-mail addresses,
and then answer three questions:

1. Are you and the computer(s) you are operating both in the
United States of America or Canada?

2. Are you a citizen of the United States of America, a per-
manent resident (with “green card”) of the United States of
America, or a citizen of Canada?

3. Are you aware of the U.S. Export Administration Regula-
tions and similar Canadian regulations?

Users who provided affirmative answers to all three questions and
an e-mail address that appeared to be based in the U.S. or Canada
received a name and password for the site in e-mail. Non-answers and
e-mail addresses that did not appear to be from the U.S. or Canada
would result in a denial of access to the archive.

Johnson described this system on a mailing list called Cryptogra-
phy and included a generous offer to host cryptographic software for
distribution to North America.

Rocke Verser took advantage of Johnson’s offer and decided to use
the North American Cryptography Archive as the distribution point
for DESCHALL key-cracking client software.

Saturday, February 22
Megasoft Online, Columbus, Ohio

After talking with Justin Dolske about Rocke Verser’s fast key-cracking
software, I decided to contact Verser myself. After exchanging some

Organizing DESCHALL 69

pleasantries, Verser let me know where he had put the DESCHALL
clients for download. I started running his key-cracking client software
on about a half-dozen machines at my home office and a few more back
up at our company headquarters in Freehold, New Jersey.

Word was quietly spreading among people interested in RSA’s DES
Challenge that Rocke Verser’s software was really fast. By March, more
people were running Verser’s DESCHALL key-cracking clients. Verser,
Dolske, and I traded e-mail daily, discussing how to get more people
involved.

As was true with the other DES Challenge projects, the earliest
DESCHALL participants were savvy about cryptography and comput-
ers and so they needed very little help to start participating. They
handled minor differences in the way that their computers were con-
nected to the Internet, sometimes after asking Verser for a little help.
Nevertheless, most people who didn’t know about cryptography had no
idea that software like DESCHALL existed, and they had no idea why
running a DESCHALL client to help someone win the RSA contest was
a good idea.

Coordinating the efforts of a slowly growing number of people be-
came increasingly difficult. Verser, Dolske, and I all agreed that we
should have a public mailing list, where everything that we would
write about the project would be sent, allowing participants to fol-
low the conversation and to participate in it. (Of course, if we needed
to communicate privately, direct e-mail was still an option.) By having
a public mailing list, we could have people write to the mailing list
when they needed help with the DESCHALL client software, allowing
people other than Verser to answer such queries. This, in turn, allowed
Verser more time to make improvements in the DESCHALL software
itself.

Once a core group of participants had been established, we looked
at the resources that each had available. The main Megasoft offices
in Freehold had good Internet connectivity, and I ran an important
machine there, named gatekeeper. Because gatekeeper was always con-
nected to the Internet, it was the best place to host a public mailing
list to help us coordinate our attack on DES.

70 CHAPTER 9

Saturday, March 29
Megasoft Online, Freehold, New Jersey

As the sun set, I logged into gatekeeper in Freehold from my home
office in Columbus. I installed a software package known as Majordomo,
which would automatically run mailing lists and keep archives.17

Messages started to flow into the mailing list immediately. In the
first hour and a half that the list was online, participants from all over
the country started to enumerate the obstacles before us so we could
set about finding solutions.

Ironically the biggest hurdles to what would turn out to be the
world’s largest computation were not technical, but political. The U.S.
Government had engaged in a three-year criminal investigation of Phil
Zimmermann after a cryptography program he wrote called Pretty
Good Privacy (PGP) found its way onto the Internet and out of the
country in 1991.

The government claimed that its export rules for cryptographic
products had been violated and threatened to prosecute Zimmermann
as a dealer of illegal munitions. Although the investigation had been
officially dropped in early 1996, there was still no precedent—no one
had been known to export cryptography from the U.S., so anyone try-
ing would likely be the test case to see whether the government would
actually attempt to prosecute violations of cryptographic export policy.

Rocke Verser did not like the prospect of becoming the subject of a
government investigation, so he decided to limit his project to citizens
of the U.S. and Canada working in the U.S. and Canada.

Given Zimmermann’s hassles, restricting access to the clients was a
prudent move for Verser, but it did have some pretty significant con-
sequences for the DESCHALL project. Although the U.S. had played
an important role in the development of computing and the Internet,
the technology wasn’t confined to North America. It had been many
years since the U.S. and Canada contained more processing power than
could be found in the rest of the world combined. People outside the
U.S. who wanted to participate in RSA’s contest would need to find
another way.

In an article posted to the DESCHALL mailing list, Verser called
for an attorney well-versed in the law surrounding the issue of cryp-
tography, specifically its export from the U.S. to advise us. Although
there was interest, we could not find a lawyer who could help us.

Organizing DESCHALL 71

Another option that was considered was the publication of the
source code for Verser’s clients. Under the law of International Tar-
iffs in Arms Regulations (ITAR), descriptions of mechanisms were not
forbidden, but implementations were not allowed outside of the U.S.,
except to Canada. Thus, source code, printed on a piece of paper as
a description of the system could be exported, but the same software
on a floppy disk, as an implementation, could not. The problem with
this approach was that it would simply take too long to prepare soft-
ware for publishing, to have the printing and shipping done, and for
the recipients to run the paper through the necessary optical charac-
ter recognition software needed to turn the printed source code into
working software.

What we did not know at the time was that the Clinton adminis-
tration moved cryptographic software from coverage under ITAR three
months earlier. We had no idea that William A. Reinsch from the De-
partment of Commerce described regulatory policy on cryptography
just nine days earlier for the House Judiciary Subcommittee on Courts
and Intellectual Property. Even if we had known that cryptography was
now regulated under the Bureau of Export Administration (BXA), part
of the Department of Commerce, as a “dual-use” technology—that with
military and non-military uses, the rules were so new, we wouldn’t have
known how to follow them anyway.

The final and most feasible suggestion was to have clients developed
outside of the U.S. work with our project. However, this software did
not exist and as was becoming clear by demonstration in the European
DES-Challenge effort, unless an idea had software to back it up, nothing
more would come of it.

The core DESCHALL group had other problems to address, namely
barriers that prevented machines in the U.S. from participating. There
were two general classes of such machines: systems that were connected
by modems (and were thus often offline) and systems whose Internet
connections passed through restrictive network firewall systems.

The occasionally-connected were basically all of the individual ma-
chines: home computers that were used for e-mail, the Web, and games.
Without constant connectivity to the Internet, the DES key search soft-
ware would not be able to communicate with the keyserver in a timely
fashion. The keyserver gave out keys in packages that took the slower
computers about forty-five minutes to test. Once the computer fin-
ished a batch of keys, it needed to reconnect to the keyserver in order

72 CHAPTER 9

to report its results and get a new batch of keys to test. For most
people whose computers shared the household telephone line, this was
an inconvenience. The problems facing these users would be difficult
to address, so we began with an easier problem: getting the systems
behind firewalls able to participate.

Computers whose Internet connections were regulated by network
firewalls—millions of them throughout North America—had tremen-
dous computing power and could easily form the basis for the world’s
largest virtual computer, if only we could harness their power by getting
their managers to put the DESCHALL client software on them. The
simple fact that most of these machines ran behind firewalls prevented
them from being able to talk to our keyserver.

The most straightforward way to connect to corporate clients to
our keyserver would be to take advantage of the ever-growing ubiquity
of the Web. Simply stated, we needed clients to be able to talk to
the keyserver via the Web’s protocol: HTTP, the HyperText Transfer
Protocol. HTTP was basically a message format that would specify
how to format a communication between a Web server and a Web
client (like a browser). Many corporate networks already had made the
necessary changes to allow HTTP traffic through their firewalls safely.
The challenge facing us there was how to make that happen without
introducing more code into the clients—which needed to be as small
and unobtrusive as possible—and without imposing new requirements
on the keyserver.

Tuesday, April 1, 9:35 P.M.

Worcester Polytechnic Institute, Worcester, Massachusetts

From his dorm room at WPI, student Carleton Jillson was looking at
Rocke Verser’s Web site and was studying some of the basic statistics
that had been made available. Those statistics showed that eight of
the top ten contributors, in terms of keys tested, were educational in-
stitutions. Quite a lot of additional processing power was potentially
available from similar sources, and university systems could run DES-
CHALL as is, without any additional modifications needed for things
like working through firewalls.

To address the needs of the computer lab managers who wanted to
participate with all of the machines at their disposal, we would need
to provide the software not only to test keys, but to manage the key-

Organizing DESCHALL 73

testing software automatically on the dozens or hundreds of machines
that a lab would contain. Making these processes automated would
help the lab managers contribute a great deal of computational power
without a lot of time and effort.

Something else that would help to inspire lab managers to contribute
their systems’ idle cycles would be to let them see just how much pro-
cessing power they had at their disposal. If we let them see how many
keys they were testing, we might find that various lab managers would
start to compare their results with others, using some friendly rivalry
to induce them to throw still more processing power at DESCHALL.

At this point in the project, we had searched less than two tenths of
one percent of the available key space, which despite being a long way
from the conclusion, was far ahead of the other efforts. The progress
of all three public efforts is summarized in Table 2. Jillson sent a note
to the DESCHALL mailing list with his observations on our relative
standing in the contest.

Keyspace Millions of Keys Average Time
Group Completed Tested per second to Find Key

DESCHALL 0.162% 165.000 7 years
SolNET 0.013% 50.704 23 years
DES Violation 0.058% 43.000 27 years

Table 2. Status of DES Challenge Groups

Shortly after Jillson wrote his thoughts to the DESCHALL mailing
list, I read his message and reflected on our standing. Not having seen
any traffic on the European DES-Challenge mailing lists for about two
weeks, it was becoming clear to me that the group that won RSA’s
48-bit RC5 contest was simply not going to write the software needed
to solve RSA’s DES Challenge.

Thinking about the comparison among the three active public
projects, I was pretty happy to be working with DESCHALL. We were
clearly the front-runner in the contest, and our rate of 165 million keys
per second seemed impressive enough. It certainly sounds like a lot
of keys. A more useful, and sobering statistic, was the time needed
to find the right key at our current testing rate—seven years. If we
were to succeed, we needed to get a lot more people to participate in
DESCHALL.

10

Needle in a Haystack

Thursday, April 3, 4:01 P.M.

The Ohio State University, Columbus, Ohio

Justin Dolske sat in his lab and and tried to think of ways that he could
encourage more people to participate in DESCHALL. Dolske knew that
we needed to find a way to describe the nature of the problem we were
attacking.

Looking for the right key out of all possible DES keys is a big
job, basically the equivalent searching for a needle in a haystack of 72
quadrillion strands. Dolske grinned as the obvious question presented
itself: “How big is the haystack?”

“Figure that a strand of hay is a cylinder ten centimeters long and
two millimeters wide,” typed Dolske. “Then assume that the hay is
packed densely. Finally, let’s assume that a haystack is shaped roughly
like a sphere cut in half. After crunching the numbers we see that our
haystack is roughly two and a half miles wide and over a mile high.”

Dolske hit the “send” button and shot a copy of his observation to
the DESCHALL mailing list for other participants to see.

Friday, April 4
Carnegie Mellon University, Pittsburgh, Pennsylvania

CMU graduate student Bridget Spitznagel updated her Web document,
Frequently Asked Questions about DESCHALL and the DESCHALL

75

76 CHAPTER 10

effort at CMU. She thought putting the magnitude of our problem in
monetary terms might be fun.

For her calculations, Spitznagel assumed that U.S. paper currency
bills are six inches wide, two and a half inches tall, and one one-
hundredth of an inch thick. If each possible key were worth a penny,
the entire key space would amount to one square mile of $100 bills that
was twenty-two feet thick.

Put another way, if potential keys were pennies, we’d be looking for
one penny out of over $720,575,900,000,000 worth of pennies.

Friday, April 18, 5:01 P.M.

Virginia Polytechnic Institute, Blacksburg, Virginia

After reading some of the messages posted to the DESCHALL mailing
list two weeks earlier, computer science undergraduate student Alex
Bischoff started thinking about keys. He wondered, “What if cryp-
tographic keys were like keys for door and car locks?” An image of
mountains of little metal keys suddenly popped into his head.

Then he started some calculations. Assuming that such keys are two
inches long, if you laid them end to end, you’d have a line of keys long
enough to circle the sun 3894 times.

Visualizing just how many combinations we would need to try gave
us pause. To try so many possible keys, our DES key-cracking system
was going to need a lot more clients, since they would be doing the real
work of the DESCHALL project.

11

Spreading the Word

Tuesday, April 1, 10:15 P.M.

Megasoft Online, Columbus Ohio

I continued thinking about the challenge before us after reading Car-
leton Jillson’s message. If the way to defeat DES was to get more key-
cracking clients running, we needed to let a lot more people know about
the DESCHALL project and to convince them to run our client soft-
ware. We had to find the right people and we needed a compelling
message to get their attention.

Building on that initial awareness would be the hard part. We were
all pretty sure that once things got started, we could get some critical
mass of participants and then wait for one of the clients to find the right
key. We didn’t know just what would constitute critical mass, but we
knew that we were nowhere near it. At the rate we were going, we would
take eight years to find a DES key. We needed thousands of clients—
that would mean hundreds or even thousands of new participants.

To bring our message to a large number of people, we looked at
the media, with particular emphasis on the news outlets that were re-
porting on computing technology. Early conversations with writers in
the media were helpful. Once they understood what we were doing and
why anyone would want to find DES keys, they often expressed inter-
est in our project and wanted to be advised in the event of any major
milestone (in particular, once someone found the right key). Through
those conversations we learned that we didn’t have time to educate peo-
ple about cryptography, how DES was used, and cryptographic export
policy. Reporters need to know what happened so they can give their

77

78 CHAPTER 11

readers the facts. We quickly learned to adapt our message to get their
attention first and to fill in the details afterward. A typical story pitch
might go something like, “The government standard for cryptography,
used to protect the nation’s financial systems is vulnerable to attack.
I think your readers might like to know how a group of researchers,
engineers, and students are using their computers to demonstrate how
weak it is.” With that as a basis, many reporters would want to hear
more.

Not all DESCHALL participants were talking to reporters, though.
Some of us were simply looking for ways to raise awareness among
people we encountered in our daily online activities. Many of the DES-
CHALL participants were active on a system called Usenet. Usenet
works much like e-mail, except that instead of being a one-to-one com-
munication mechanism, Usenet is many-to-many. Instead of writing an
article and addressing it to a person, authors will address it to a news-
group, and servers all around the world will carry that article in that
newsgroup. Thus, people all over the world with similar interests can
read articles that people have written and post their own for others
to read. Usenet would prove to be an effective way for DESCHALL
participants to draw attention to the project.

Signature blocks have long been a part of Usenet articles and e-mail.
The basic idea is to define some block of text that will be automatically
appended to your message, rather than making you retype your name
on each message. Before long, people started adding more information
to the signature block, including contact information, thus creating
a sort of virtual business card. Pithy remarks were also included on
occasion, and some people even went so far as to create huge signature
blocks, with gaudy pictures made out of text characters, advocating a
dozen different causes. Taken to this extreme, signature blocks could
become the electronic equivalent of the bumper sticker.

Before long, messages showing up on the DESCHALL mailing list
were carrying signature blocks that advertised the project or provided a
link to the project Web site. As DESCHALL project participants went
about their business, their signature blocks advertising DESCHALL
started to spread. Usenet newsgroups, e-mail lists, and private corre-
spondence became graced with mentions of and links to DESCHALL,
usually with a simple tag like “Crack DES Now!” (Although we weren’t
technically attempting to crack DES itself—we were trying to crack a
DES-encrypted message—our experiences with the media helped us to

Spreading the Word 79

understand that opening with a long technical digression would not
catch and hold the reader’s attention. Brevity rules.)

Likewise, on their personal Web sites, participants began to describe
the project and their efforts to advance it. Invitations to join the project
were often extended on such Web pages. Oregon State University engi-
neering student Adam Haberlach and I made small graphical buttons
fashioned after the “Netscape Now!” buttons that graced so many Web
pages in 1997. In a problem akin to having a cupholder with no car to
put it in, the European DES-Challenge group that never made any soft-
ware had created a Web site and graphics. One particularly common
graphic was a “Crack DES Now!” button that came from that group.
Justin Dolske commandeered that button and put a copy on his Web
site for others to use. Since the European DES-Challenge effort had no
software, it didn’t seem that they would need the promotional graphic
themselves.

Dolske didn’t really have time to try to create new graphics of his
own. He had been drafting a “call for participation” document with a
brief description of the project and its purpose which was aimed at the
technically inclined who would be most likely to understand the project
without any explanation. Dolske’s call was posted to Usenet where it
would be seen by others involved in cryptography.

The increasing mentions of DES and DESCHALL online helped
us recruit new participants who, in turn, encouraged others to join
DESCHALL.

Thursday, April 3, 2:30 P.M.

Megasoft Online, Columbus, Ohio

A critical aspect of the promotional effort was to stress the importance
of the DESCHALL project to others who weren’t cryptographers and
might not even use computers much themselves. To find a way to relate
DES security to the concerns of a typical American citizen, I called my
own bank, KeyBank, introduced myself as a computer scientist work-
ing on a security research project, and asked to speak with someone in
the bank’s information security group. The person who answered the
phone took my name and number, promising to have someone call me
back. Shortly thereafter, my call was returned, and the bank represen-
tative and I engaged in an interesting discussion about cryptography,
specifically the use of DES. Although the bank official did not want

80 CHAPTER 11

to share details of how DES was used in the banking industry, he was
willing to verify for the record certain vague statements like “DES is
heavily used in the financial sector.” He expressed serious interest in
the project, wished us success, and said that he would be watching our
progress from “a safe distance.”

Tuesday, April 8, 7:22 A.M.

Loveland, Colorado

Among the hats that Rocke Verser wore throughout the day was that
of editor. Justin Dolske and I worked with Verser to create a press
release that would help more DESCHALL participants to talk to the
media with confidence. Draft after draft, the press release got improved.
Finally, Justin Dolske, Rocke Verser, and I had something we were
reasonably happy to share with the rest of the project participants.

Many of the newcomers to the project were very enthusiastic, but
did not have the kind of background in cryptography needed to frame
the discussion in the right context for reporters on their own. Part of
the motivation for our press release was to provide the less technical
participants with a simple fact sheet that would help them to make
the pitch to their local media outlets. Once the release was put on
my Web site and posted to the DESCHALL mailing list, participants
began calling local media, pitching a story about the project, with
a connection that would be of interest to local news organizations—
someone from the immediate community participating in a nation-wide
effort.

Hoping that if we addressed tech-savvy media would help us find
still more participants, I sent a draft of our press release to the tips
contact address at News.com.

1:30 P.M.

CNET Networks, San Francisco, California

Courtney Macavinta, a writer at CNET’s News.com found the an-
nouncement of the DESCHALL group’s formation of interest. Given
the success of the recent 48-bit and 40-bit challenges, she thought that
DESCHALL might actually have a shot at solving the challenge.

After reading the press release, she telephoned Rocke Verser and
tracked down a few more sources that could help to estimate the dif-

Spreading the Word 81

ficulty of the problem. She finished her article, and it went into the
News.com publication system.

“Users take crack at 56-bit crypto” ran on News.com with a lead-
in that clearly set forth the seriousness of our claim, as well as the
difficulty facing us. Macavinta wrote,

Thousands of American and Canadian computer users are work-
ing night and day to prove that the 56-bit encryption standard
set by the United States government is vulnerable. But the effort
could take several years.

Our objective was to draw some more attention to the project, bring-
ing in a whole new audience of potential participants. Articles like the
one that CNET ran were critical in these efforts.

Wednesday, April 9, 5:50 A.M.

Megasoft Online, Columbus, Ohio

Happy to see the success with CNET, I sent a copy of the press release
to my local paper, the Columbus Dispatch. After a long night of working
on DESCHALL, I posted a copy of the press release to the DESCHALL
Web site that I maintained.

DESCHALL GROUP SEARCHES FOR DES KEY
Sets out to prove that one of the world’s most popular

encryption algorithms is no longer secure.

COLUMBUS, OH (April 9, 1997). In answer to RSA Data Se-
curity, Inc.’s “Secret Key Challenge,” a group of students, hob-
byists, and professionals of all varieties is looking for a nee-
dle in a haystack 2.5 miles wide and 1 mile high. The “nee-
dle” is the cryptographic key used to encrypt a given mes-
sage, and the “haystack” is the huge pile of possible keys:
72,057,594,037,927,936 (that’s over 72 quadrillion) of them.

The point? To prove that the DES algorithm—which is
widely used in the financial community and elsewhere—is not
strong enough to provide protection from attackers. We be-
lieve that computing technology is sufficiently advanced that
a “brute-force” search for such a key is feasible using only the
spare cycles of general purpose computing equipment, and as a
result, unless much larger “keys” are used, the security provided

82 CHAPTER 11

by cryptosystems is minimal. Conceptually, a cryptographic key
bears many similarities to the key of a typical lock. A long key
has more possible combinations of notches than a short key.
With a very short key, it might even be feasible to try every pos-
sible combination of notches in order to find a key that matches
a given lock. In a cryptographic system, keys are measured in
length of bits, rather than notches, but the principle is the same:
unless a long enough key is used, computers can be used to figure
out every possible combination until the correct one is found.

In an electronic world, cryptography is how both individuals
and organizations keep things that need to be private from be-
coming public knowledge. Whether it’s a private conversation or
an electronic funds transfer between two financial institutions,
cryptography is what keeps the details of the data exchange
private. It has often been openly suggested that the US Gov-
ernment’s DES (Data Encryption Standard) algorithm’s 56-bit
key size is insufficient for protecting information from either a
funded attack, or a large-scale coordinated attack, where large
numbers of computers are used to figure out the text of the
message by brute force in their idle time: that is, trying every
possible combination.

Success in finding the correct key will prove that DES is not
strong enough to provide any real level of security, and win the
first person to report the correct solution to RSA $10,000.

Many more participants are sought in order to speed up the
search. The free client software (available for nearly every pop-
ular computer type, with more on the way) is available through
the Web site. One simply needs to follow the download instruc-
tions to obtain a copy of the software. Once this has been done,
the client simply needs to be started, and allowed to run in the
background. During unused cycles, the computer will work its
way through the DES keyspace, until some computer cooperat-
ing in the effort finds the answer.

If you can participate yourself, we urge you to do so. In any
case, please make those you know aware of our effort, so that
they might be able to participate. Every little bit helps, and we
need all the clients we can get to help us quickly provide an
answer to RSA’s challenge.

Spreading the Word 83

With the CNET article published and a press release on the Web site,
my workday of over twenty-four hours came to an end.

After a few hours’ sleep, I was back online, watching the mailing list,
seeing other participants describe their efforts to get more publicity
for DESCHALL. All told, local papers in Minnesota, Michigan, Ohio,
Connecticut, California, and Ottowa were contacted by participants in
those areas. Some participants contacted the national technology media
and broadcast media throughout the United States and Canada. It was
a busy day.

In the first half of 1997, few in the mainstream media understood
the significance of the Internet, what kinds of possibilities it presented,
or even why anyone should care about DES. A larger problem was that,
while most reporters were interested, they didn’t really see a story in
the beginning of an effort. If we managed to succeed, however, they
wanted to hear about it.

This reaction was not altogether surprising, but it was frustrating
in light of our early success with CNET. We were very happy with the
coverage that we did get—even if only CNET picked it up. Thanks to
that one article, we got the attention of new participants, which is just
what we needed—even if it wasn’t the worldwide mainstream media
coverage we wanted.

Thursday, April 10, 1:39 A.M.

The Ohio State University, Columbus, Ohio

Justin Dolske looked over RSA’s Web site, and its description of its
1997 Secret Key Challenge. Noticing a link called “In the News” for
the first time, he clicked on the text. Dolske noted the links to the
articles written about RSA’s 40-bit and 48-bit challenges being won.
In addition, he saw a link he did not expect to find: one to CNET’s
April 8 article.

Dolske smiled and fired off a message to the DESCHALL mailing
list. Attracting enough attention for the contest sponsors to notice us
would be important, because anyone finding out about the challenges

84 CHAPTER 11

from RSA’s site would be able to follow links to see that RSA’s DES
Challenge was being answered.

“Nice to see that RSA knows that they may need to get out their
checkbook soon,” observed Dolske in his e-mail.

As the days went on, we realized that our approach of a simple press
release that individual participants would use to base their own pitches
to local media was a good one. Rather than having a single Associated
Press story (for example) that everyone would run, each paper got to
write its own story about someone from among the readership that
was involved in a very important project dealing with the security of
cryptosystems. The press release provided the necessary background
and the rest of the story was about the involvement and the trials of
the local individuals participating.

This strategy was at its most effect when the press release was sent
to university newspapers. Many students pitched stories to their school
papers, and, taking a cue from Carleton Jillson’s April 1 message to
the mailing list, would point out their standings in comparison to rival
schools.

12

The Race Is On

The way we in the DESCHALL project saw it, friends didn’t let friends
have idle computers. This attitude helped us recruit as many partici-
pants as our publicity efforts did, perhaps even more, and this sort of
informal recruitment was particularly prevalent on college campuses.
Most of our processing power was coming from universities—not really
a surprise, given the kind of cultural differences between corporations
that wanted to reduce complexity on their production systems and the
comparatively freewheeling universities where people often run pro-
grams for no other reason than that they could. Further driving the
trend for participation from college campuses was the simple fact that
most students had their own machines in their dorm rooms, and many
large universities provided network to the campus network to dorms.

Students at Worcester Polytechnic Institute (WPI) in Massachusetts
managed to work their way to second place in the per-domain rankings
by running the DESCHALL clients on their own personal computers
in the middle of March. The twenty-four machines that were running
DESCHALL were processing more than 784 billion keys per day. The
Institute’s computer lab managers had banned the use of our clients on
their lab machines, so WPI students enlisted the help of their friends
as well as their own personal computers. As the weeks wore on, WPI
students would not be able to keep up with the key testing rates at
other universities.

Even in early April the processing power that we had harnessed at
universities was massive. On April 8, for example, DESCHALL tested a
total of 24 trillion keys. That was a rate of 277 million each second, for
every second, around the clock in that single day. That rate was roughly
ten times the rate of Ian Goldberg’s answer to the 40-bit Challenge—

85

86 CHAPTER 12

but still just over half the speed of Germano Caronni’s 48-bit Challenge
project.

Statistical analysis of our key-testing rates was critical, since partic-
ipants wanted to be able to see how the project was progressing overall.
Of more interest to many participants was the breakdown showing each
participating “domain”—the group of machines in each organization’s
online name, such as ohio-state.edu or megasoft.com.

Looking at the per-domain statistics allowed participants to see how
much they were contributing by comparison to other organizations.
This turned out to be an excellent way to foster some healthy com-
petition, particularly among universities where rivalries had developed
over the years. Table 3 shows the top participating domains for April
8.

Keys Tested Clients Contributor

4.8 Trillion 278 Oregon State University
2.3 Trillion 182 Rensselaer Polytechnic Institute
1.4 Trillion 25 Rochester Institute of Technology
1.3 Trillion 40 Worcester Polytechnic Institute
1.3 Trillion 196 Ohio State University

Table 3. April 8, Top Contributors per Domain

Wednesday, April 2
Oregon State University, Corvallis, Oregon

Unlike WPI, lab personnel at Oregon State allowed students to run the
DESCHALL clients on machines in the public computer labs. Oregon
State managed to grab the top spot for DESCHALL key searching and
to hold its title for several weeks.

An engineering student there, Adam Haberlach, was largely respon-
sible for Oregan State’s participation. Haberlach had seen a reference
to DESCHALL on a mailing list for the now-defunct DES-Challenge
group. He downloaded the client software in mid-March and ran it on
his laptop at home. Haberlach worked in a test lab run by the Business
Department there with about sixty client machines that had spent a
lot of time doing nothing, so he decided to put the computers to work.
When Haberlach got to work the next day, he promptly installed the
DESCHALL client onto his computer. Later that morning, he managed

The Race Is On 87

to persuade one of his coworkers to install the client on his machine. As
word of the DESCHALL project spread trough Haberlach’s office, more
and more employees installed the client until nearly all of Haberlach’s
coworkers were participating.

Even after harnessing all of this power, Haberlach wasn’t finished.
In the same building, at the other end of the hallway was a lab with
another 160 machines. Haberlach was eager to install DESCHALL on
all of these machines, because he knew that spring break was imminent
and soon these machines would be spending all of their time running
screen savers. Haberlach approached the management of the larger lab
about running DESCHALL on its machines. Haberlach explained the
importance of DES and the prestige the University might gain from
participating, particularly if they contributed a substantial amount of
computing power or if they found the key. The lab management were
impressed by Haberlach’s arguments and gave him permission to run
DESCHALL on all of the machines in the lab.

Within thirty minutes of the lab being closed, Haberlach and his
group had all of the machines running DESCHALL. Having seen the
impact of these machines on the project overall and the role they played
in taking Oregon State to first place, lab management started approach-
ing other lab administrators and trying to drum up more support for
the project and for Oregon State’s ranking. By the time DES fell, Ore-
gon State had tested over six trillion keys, making it one of the top ten
institutions in terms of the number of keys tested.

While Haberlach and other DESCHALL enthusiasts were rapidly in-
creasing participation at Oregan State, others were developing new
clients that would allow more people across the country to contribute
to our efforts. Several participants had developed programs for Unix
machines that would search for DES keys when the machines were idle
and then pause this search when someone was using the machine. The
end result would be that people who needed to use the computer would
not need to share any of their system’s resources with a piece of soft-
ware like DESCHALL, and that when these computers were not being
used, their spare CPU cycles could contribute large amounts of effort
to the project overall.

88 CHAPTER 12

Friday, April 11
Megasoft Online, Columbus, Ohio

I looked over our statistics to see just how much progress we were
making. Our statistical reporting was simple, but it got the job done.
Each day, we reported the number of keys that we tested that day and
the running total of keys tested. Recognizing the psychological difficulty
of running a race without knowing how far away we were from the finish
line, we had to find a way to represent the goal for our participants.
That need was satisfied by another statistic that some people found
curious—“Time to 50%.”

We didn’t want to make the goal seem too far out, and putting the
time needed to search the entire keyspace would be an unrealistically
long period of time. We had only one chance in over 72 quadrillion
of having to search the entire keyspace. On the other hand, we didn’t
want the goal to seem too unrealistically close. In the end, Rocke Verser
decided simply to use the mid-point as the goal we watched because on
average, any brute force attack would need to run through half of the
total keyspace. In any case, it was a useful metric, allowing participants
to think about how long it would take a project like DESCHALL to
crack not just one key, but DES keys in general, based on the key
testing rate that DESCHALL had achieved.

Looking over the statistics showed us several important milestones,
and how far we had managed to come in just under a month. Given
DESCHALL’s performance in mid-March, we were seventy-five years
away from finding the DES key we wanted. Organizing the project in
March gave us a boost, bringing our search time down to under ten
years. Within a few days of the mailing list being brought online, we
managed to cut that time in half. With more participants joining the
project in the past two days, we had managed to pass the point of
having searched roughly half of a percent of the total keyspace. The
day before, we managed to sustain a key search rate of 300 million keys
per second.

Looking over these statistics, I could see that about March 21, the
project started to increase its rate of progress dramatically. Seeing that
this is when we started to get some of the labs of systems sitting idle at
universities, I thought this confirmed our strategy of making the soft-
ware as easy to run as possible. In addition to making the key-cracking
client easy to start, having it operate quietly in the “background” would

The Race Is On 89

Daily Total Estimated
Date Keys Tested Keys Tested Time to 50%

03/14/97 1313404354560 14017854701568 75.0 years
03/15/97 2342485229568 16360339931136 42.0 years
03/16/97 2881570734080 19241910665216 34.0 years
03/17/97 2560471597056 21802382262272 39.0 years
03/18/97 2780831940608 24583214202880 35.0 years
03/19/97 2997157363712 27580371566592 33.0 years
03/20/97 3724239962112 31304611528704 26.0 years
03/21/97 6298259161088 37602870689792 16.0 years
03/22/97 9185290878976 46788161568768 11.0 years
03/23/97 9667770056704 56455931625472 10.0 years
03/24/97 8623505801216 65079437426688 11.0 years
03/25/97 7939918135296 73019355561984 12.0 years
03/26/97 9066726293504 82086081855488 11.0 years
03/27/97 10519398318080 92605480173568 9.0 years
03/28/97 10115017080832 102720497254400 10.0 years
03/29/97 14256128917504 116976626171904 7.0 years
03/30/97 14365398925312 131342025097216 7.0 years
03/31/97 12454079758336 143796104855552 8.0 years
04/01/97 12892275474432 156688380329984 8.0 years
04/02/97 15425928691712 172114309021696 6.0 years
04/03/97 14122640998400 186236950020096 7.0 years
04/04/97 17942393651200 204179343671296 5.5 years
04/05/97 22777738297344 226957081968640 4.3 years
04/06/97 21748321878016 248705403846656 4.3 years
04/07/97 21215989202944 269921393049600 4.6 years
04/08/97 23947613569824 293869006619424 4.1 years
04/09/97 25581437582560 319450444201984 3.9 years
04/10/97 28855494508544 348305938710528 3.4 years

Table 4. DESCHALL Statistics Through April 10

prevent many from not running DESCHALL because they believed it
somehow interfered with a computer’s normal day-to-day functions.

It has been said that it’s easier to get forgiveness than permission,
and while this may be true for a one-time event, our early experiences
indicated quite the opposite is true in an ongoing effort such as ours.
Dealing with computing management worked better than letting man-
agers discover how much of their systems’ computing power was being
devoted to the project by stumbling across it. Likewise, getting cooper-
ation from the policy makers by explaining the project, its importance,
and, perhaps most important, showing how the software didn’t inter-
fere with normal work proved itself effective. Not only were we getting

90 CHAPTER 12

permission for the specific networks in question, but we were winning
advocates to the DESCHALL cause.

13

Clients

Those statistics showed us that we had come a long way since March.
The problem was that we were still far less than one percent through
the keyspace, and we could expect that we were years away from finding
the key. We knew that we needed to make the DESCHALL project run
faster—to test more keys in a day. We already had enthusiastic par-
ticipants helping to get more systems running the DESCHALL client
software. We needed more speed, and that would have to come not only
from getting more systems working on the project but in getting that
client software to run faster. How can we get the software to run faster
when the DES algorithm itself specifies each step that must be taken
to take ciphertext and to turn it into the corresponding plaintext?

The first insight into the process of testing keys quickly is that you
don’t need to try them one at a time. One of the beauties of a procedure
with many steps is that by putting the steps in a particular order, you
can reduce the number of steps overall. To illustrate, suppose you are
packing your car for an overnight trip; you don’t take each article of
clothing out of a drawer all the way outside to your car, open the trunk,
place it inside, close the trunk, then back for the next item. Instead,
you determine what you need, place everything into bags—perhaps an
overnight bag and a garment bag—thus reducing the number of trips
from the house to the car from the number of items you’re taking to
two.

A further refinement could occur if you observe that the process of
opening and closing the trunk works the same way for each bag. You’d
notice that you are simply filling a bag, taking it to the car, opening
the trunk, placing the bag inside, closing the trunk, and then going
back to pack another bag. Once you see this and recognize that the

91

92 CHAPTER 13

process of putting a bag in the trunk is exactly the same for each bag,
you could pack both bags, carry one in each hand to the car, open the
trunk, place both bags inside, and then close the trunk.

Just as anyone who has ever packed for a trip can order and reorder
events to reduce the amount of time and effort needed, programmers
can increase their systems’ efficiency by studying a particular process
and finding ways to eliminate redundant work, a strategy called opti-
mization.

This is precisely what Rocke Verser did with our DESCHALL
clients. By studying DES, he was able to find ways to perform DES
encryption and decryption very quickly. By studying DES decryption
in greater detail, he found ways to test for valid keys even more effi-
ciently than using his fast decryption processes.

January 1997
Loveland, Colorado

While looking over the process of decrypting DES ciphertext, Rocke
Verser got an idea. There was no need to program the computer to
execute the decryption routine in its entirety with one key, then to
execute the entire decryption routine with the next key, and so on. By
looking at each step in the decryption process individually, Verser could
find ways to save himself some effort in searching lots of DES keys.

Verser watched the results of the first steps of a DES decryption
with each key with which he performed that calculation. He quickly
noticed that each DES key has another DES key that is mathematically
related to it—a complement—that behaves identically in the first few
steps of the DES decryption process. A complementary key is like a
photographic “negative.” Although the colors are backward, the first
few steps in identifying the subject of the photo (finding the outlines)
will be the same for both the photographic print and the negative.

Verser could take advantage of this property so that instead of per-
forming those initial steps for every single key to be tested, he could
perform those steps once—for both a key and its complement at the
same time. Since this worked only for the first few steps of the decryp-
tion process, it didn’t cut the number of decryptions in half, but it did
reduce the amount of work needed to test two keys.

After further study, Verser found that a key could be identified
as incorrect for the ciphertext to be decrypted well before the entire

Clients 93

decryption process would run its course. In the DESCHALL key-testing
client, Verser wrote four tests to find when a key was the wrong one so
he could make his DES key testing client run even more quickly. The
vast majority of incorrect keys would be identified by one of the first
two tests—only one out of 4096 keys passed both of these tests.

After running a few more steps through the decryption process, the
DESCHALL client would run a third test, after which only one key out
of about four billion would still be a possible match. Verser called a key
passing this test a “half-match” because half of the bits in the key were
correct, like having half of the numbers in a 56-number combination.

The DESCHALL client then performed another step in the decryp-
tion operation and then one more test. If the result of the test is what’s
expected, the key is a “full-match,” which almost certainly makes it the
correct key.

Between the early-stage reductions in processing and the late-stage
detection for non-matching keys, Verser’s method for testing DES keys
was dramatically more efficient than running each key straight through
the decryption process. DES decryption straight through takes sixteen
rounds—Verser’s method tested keys in under twelve. These perfor-
mance improvements allowed for many more keys to be tested each
second.

Verser knew that his key-testing program would need to run on
many different kinds of computers, from the engineering workstations
found at universities and in scientific institutions to desktop PCs. Even
among the PCs there would be considerable variation, since Windows,
OS/2, Linux, FreeBSD, and other operating systems would need their
own versions of the software.

The C programming language was well-suited to the task. Originally
written in 1973 at AT&T Bell Laboratories by Brian Kernighan (pro-
nounced “Kern-ih-han”) and Dennis Ritchie for the purpose of building
the Unix operating system, the language had two important properties
that mattered to Verser: it was fast and it was portable, meaning that
its code would be able to require very little effort to build on different
computer types. A computer type—defined as a particular combination
of hardware and operating system—is known as a platform.

Verser built his software in C and created clients for some of the
most popular platforms of the day—including Windows 95 on Intel,
Solaris on SPARC, and IRIX on MIPS. He had another trick up his
sleeve, though, for platforms that used Intel microprocessors. Now, C

94 CHAPTER 13

code is fast, but not nearly as fast as Assembler. (See page 60 for
discussion.) With the kind of detailed control over the chip’s operation
offered by Assembler, Verser was able to provide precise instructions to
the processor so it could have its calculations organized so they could
be performed very rapidly.

Especially with the Pentium and Pentium Pro processors, Verser’s
code was able to run at a phenomenal speed, allowing modest desktop
computers with Intel processors to run circles around $20,000 scientific
workstations.

Friday, April 4, 9:12 P.M.

Health Networks Australia, Brisbane, Australia

System administrator Andrew Glazebrook posted a message to the
DESCHALL mailing list from Down Under—not itself particularly
strange, because there was no restriction on who could join the mailing
list. Without drawing attention to where he was from, Glazebrook’s
message showed that, despite our limited-access client distribution
system meant to comply with cryptographic export policy, the DES-
CHALL client had found its way to Australia.

Glazebrook was running the DESCHALL client on three of his ma-
chines, a 90 MHz Intel Pentium running OS/2, a 66 MHz Intel 80486-
DX2 running Linux, and another Linux system, with a 133 MHz “Pen-
tium compatible” processor. Virtually all software—including operat-
ing systems, office suites, and Web browsers—was written in a high-
level language (like C++) and then turned into machine code by a
compiler for execution on the computer. Because the “compatible” pro-
cessors had the same instruction sets as the genuine Intel processor,
they could execute the same machine code.

Even though the processors from Intel and the compatible proces-
sors made by other manufacturers (like Cyrix and AMD) had the same
instructions, they had very different internal structure—each manu-
facturer’s chip was wired differently to avoid infringing on Intel’s in-
tellectual property. Usually, the difference in internal structure made
no difference to the user—software produced by a compiler would run
about the same speed on a processor from Intel or another manufac-
turer.

Rocke Verser’s key-testing software for Intel processors was not pro-
duced by a compiler, however. Because of all of the optimization that

Clients 95

the DESCHALL client had for various Intel processors, the differences
in processor internals made a huge difference. Much to Glazebrook’s dis-
may, his 133 MHz Intel-compatible system ran the DESCHALL client
much slower than his 90 MHz Intel system—at a speed more compara-
ble to his 66 MHz Intel system.

Glazebrook’s message to the DESCHALL mailing list was to see if
other participants were having similar experiences with Intel compati-
ble processors. They were, and calls for clients built for Intel-compatible
processors started to flow in.

April 9, 5:14 P.M.

Loveland, Colorado

Fig. 4. Justin Dolske, Matt Curtin, and
Guy Albertelli at the Ohio State Univer-
sity, 1997

Rocke Verser made an announce-
ment on the DESCHALL mail-
ing list: Justin Dolske and Guy
Albertelli, another graduate stu-
dent at Ohio State, were granted
access to the source code and
would soon begin work on porting
the DESCHALL client software
to work on other systems. Verser
had been looking for ways to get
his DESCHALL clients running on
other platforms—such as the hot
graphics-oriented machines from
Silicon Graphics, Inc. (SGI), the
sophisticated network-centric sys-
tems from Sun Microsystems, the datacenter-friendly RS/6000 systems
from IBM, and the lightning-fast DEC Alpha systems. Verser hoped
that with more platforms able to run the client, we could get greater
numbers of participants, in turn helping us to find the key more quickly.

In a period of a few weeks, the expanded development team pro-
duced a series of new clients. SGI machines running IRIX 6.2 on MIPS
processors got their own client. IBM’s RS/6000, running AIX 3.2, got
its own client, as did AIX 4.1-based RS/6000s. Sun’s SuperSPARC
processors under Solaris got a client of their own. Additional clients to
follow were for Digital Unix on the fast 64-bit DEC Alpha processor.
Finally, Sun’s Solaris on the Intel processors got a client.

96 CHAPTER 13

While Dolske and Albertelli worked on the clients, I continued think-
ing about the issue of connectivity. Getting those systems behind fire-
walls to be able to run DESCHALL clients would require a good look
at our overall architecture.

14

Architecture

DESCHALL’s architecture—the electronic infrastructure to support
the testing of DES keys—was a simple one. As Rocke Verser originally
designed the DESCHALL system, there were only two components: the
key-testing client software that project participants would run on their
computers and the keyserver that would keep the clients coordinated,
making sure that each DES key was being tested—and tested only once.

The DESCHALL keyserver was located in Verser’s home office in
Loveland, Colorado, about fifty miles north of Denver. As clients re-
quested blocks of keys to test, the keyserver would assign those blocks
of keys, keeping track of which blocks were assigned and when. This
keyserver would keep clients from wasting their efforts by testing keys
that other clients already tested.

This is how coordinated efforts like SolNET, DES Violation Group,
and DESCHALL differed from an uncoordinated key search system like
the DESKR software Peter Trei wrote. DESKR was called an uncoor-
dinated key search because each client would randomly pick DES keys
and test them; no two DESKR clients would coordinate their efforts
with each other. So, Trei created his DESKR software and made it
available for people to run if they chose, but he had no “project” to
manage and no way to know how much work was being done by DESKR
clients that people were running. SolNET, DES Violation Group and
DESCHALL all operated as projects independent of one another, but
each with its own architecture of key testing clients coordinated by a
keyserver.

Like the other coordinated projects, DESCHALL’s architecture re-
lied on the Internet to have clients communicate with the server. When
Verser was building the DESCHALL software in January of 1997, he

97

98 CHAPTER 14

had to decide how to get the client and server to send their messages
to each other. Adopting Germano Caronni’s protocol in a February re-
vision of the software, Verser knew what messages to send, but he still
had to decide how to send them. This was a lot like being on vacation
and sending a letter to a friend back home: you know what you’re going
to write (“Having a great time! Wish you were here!”) but you have to
decide whether you prefer the economy and convenience of a postcard
over the cost and reliability of certified mail.

Verser wanted his DESCHALL clients to run on as many systems
as possible, from all over the country. There wasn’t a need for a great
deal of information to be exchanged between clients and the keyserver—
messages could be terse, and there weren’t many possible messages that
could go between the client and server. Clients needed to ask for keys,
the keyserver needed to provide keys, the clients needed to report on
their status, and the keyserver needed to be able to tell clients when
to shut down. There simply was not much more for clients and the
keyserver to say to each other.

Since many clients needed to be supported by the keyserver, Verser
needed a communications protocol that was lightweight, keeping the
keyserver from becoming so bogged down with unpacking messages
from clients and packaging responses for the clients that it did not
have time to deal with the messages themselves. To address those re-
quirements, Verser chose to have the messages between the clients and
keyserver be sent using the Unreliable Datagram Protocol (UDP).

UDP messages (“datagrams”) are very simple, roughly the equiv-
alent of scribbling a message on to a postcard. Sending the message
is easy to do and they almost always reach the destination without
any problem. Even so, there is no guarantee that the recipient got the
message. If you want to be sure that your message has been received,
you’ll need to have your own method to verify the fact because the
postal service won’t provide proof of delivery on a postcard.

Receiving UDP messages is also very easy and like a postcard. The
computer just receives the datagram and then passes it to a program for
processing. The operating system does not need to count the number of
datagrams to be sure that it got all of the message parts—the datagram
is all there is.

An alternative to UDP is the Transport Control Protocol (TCP),
which involves a lot more work to establish and to maintain the channel
of communication between the client and the server. TCP is generally

Architecture 99

used to establish connections where there will be more than one tiny
message sent in each direction. Designed for sending larger amounts of
data, TCP can break large chunks of data into smaller “packets” that
are numbered and sent separately. The computer operating system on
the receiving end will then take the packets, put them into the right
order, and then hand the reassembled message completely intact to the
program that is listening for that message, as if it were never broken
into pieces at all.

So that messages sent via TCP are always complete, TCP provides
another important feature: guaranteed packet delivery. In this way,
TCP is like certified mail. With certified mail, you’ll need to put your
message into an envelope and at the post office, they’ll put an extra tag
on the outside for the recipient to sign, and the carrier will not release
the letter without a signature. That signature will then be sent back
to the sender as proof of delivery. With TCP, the systems establish a
connection, and then acknowledge receipt of each packet by number.
If one computer sends a TCP packet and the receiving computer does
not acknowledge the packet, the sender will resend the packet until it is
acknowledged by the recipient. The computer has to do more work to
send and receive TCP messages; computer systems can process far fewer
TCP packets at any one time than UDP datagrams for this reason. If
you need to be sure that the message is received, TCP is your best
bet—unless the extra work it requires the system to do is more than
your system can handle.

With either TCP or UDP, Verser would be relying on another proto-
col for messages to be sent from one system to another. That protocol,
Internet Protocol (IP), serves essentially the same purpose for the In-
ternet as the postal system does for global mail delivery. The postal
system defines standards so that anyone can address a message to any-
one else in the world unambiguously. Those standards make it possible
for a message to be carried toward its destination by one mail carrier
after another, until it finally arrives. IP serves the same purpose—it is
literally the protocol that defines the Internet and ties the entire world
together. IP defines the addressing scheme for computers’ global net-
work addresses (Internet addresses, such as 192.168.1.2) and the basic
framework for how to format data for transmission on the Internet,
without regard to which type of computer the recipient is using. Just
as the postal addressing scheme provides foundation so that postcards,
letters, and parcels can be properly delivered, IP provides the founda-

100 CHAPTER 14

tion that allows TCP packets, UDP datagrams, and other chunks of
data to be sent from one computer system on the Internet to another.

Messages that DESCHALL clients needed to send to and receive
from the server were small and could easily be contained in a single
datagram: things like “Ready for keys,” “Test block number. . . ,” “Fin-
ished block number. . . ,” and “Stop working.” Though the messages
were important, Verser decided that it was best to use UDP and then
to have the DESCHALL client software simply wait for a few minutes
after sending a message; if no response came back, the software would
just repeat the send-and-wait procedure until it did get a response.
This choice allowed clients to communicate reliably with the keyserver,
while also allowing the keyserver to operate efficiently enough to sup-
port many thousands of clients at a time.

Although the original architecture envisioned by Verser had only
clients and the keyserver, other needs for software arose over the course
of the project. Many of these additions were provided by the partic-
ipants running the clients themselves, developed for their own needs
and shared with other participants through the DESCHALL mailing
list.

Monday, April 7, 8:34 P.M.

Bowne Global Solutions, Piscataway, New Jersey

Unix system administrator Lee Sonko could not run DESCHALL dur-
ing the day at work, but he did not intend to let that stop him from
participating. Using his skills in the Bourne Shell programming lan-
guage, Sonko created two programs: one to start and the other to stop
the DESCHALL client. When combined with the Unix system func-
tionality for automatic process scheduling, these programs would allow
it to be run on Unix machines in Sonko’s care during off-hours, while
leaving the machines completely free for use during normal business
hours.

The week before, Sonko posted the source code for his programs so
that other Unix users would be able to have their systems automati-
cally start and stop DESCHALL clients as needed. In his case, he ran
the clients outside of the hours 5:00 A.M. to 6:00 P.M. during the week
and outside of 8:00 A.M. to 5:00 P.M. on the weekends. Although the
DESCHALL client was specifically designed to run with very low pri-
ority, ensuring that any other needs that the systems’ owners might

Architecture 101

have would be satisfied before DESCHALL took any processing time,
Sonko, like others, took the additional step of not even having the
clients running when anyone might need to use the systems.

Over the course of several days, Sonko made small improvements
over the original version of his “desstart” and “desstop” scripts. He felt
comfortable that the improvements were worthwhile and he happily
posted his new and improved programs to the DESCHALL mailing list
for others to use at their own facilities.

Thursday, April 10, 6:24 A.M.

Shrewsbury, Massachusetts

Adam D. Woodbury wanted to know what the DESCHALL clients were
reporting as they ran, but he couldn’t watch all of the machines he was
running to see what they were doing. Even if he could watch all the
screens, he had better things to do than watch DESCHALL client out-
put all day, every day. Woodbury decided to write some software that
would watch his clients’ operation for him and let him know whenever
something interesting happened.

The first issue to address would be the need to have the clients
report what they were doing in some way that could be monitored. The
DESCHALL client software didn’t have any function in it to create a
“log file”—a file containing its periodic reports on activity (the number
of keys tested, how quickly keys were tested, whether the key had been
found, etc.) That kind of status was just normal program output—so if
the client got started from the command-line, the output would appear
on-screen. Woodbury decided to create his own DESCHALL client log
file by having that program output go to a file instead of to the screen—
an extremely simple procedure with his computers, which ran the Unix
operating system.

Once his DESCHALL clients were writing their output to a file,
those log files could be easily combined to show the activity for all of
the systems. With all of the program output in one place, he could
write programs that would look through the logs for things that he
would want to have reported to him.

Woodbury noticed that when the client reached the end of a block of
keys being searched, it would report “key not found” before requesting
another block from the keyserver. This gave him an idea. He decided to
have his program that read logs and reported progress alert him if the

102 CHAPTER 14

key had been found. He did not know what exactly the client would
say if the key had been found. Searching the logs for the message that
the key was found required knowing what to search for—what exactly
the client would report in that case.

Looking at what he did see from the usual output of the program—
frequent “key not found” messages as blocks of keys were tested—
Woodbury assumed that the client would probably say something like
“key found,” or at least something about “key” without the word “not”
in it. He wrote a program that would search his logs every day at 1:00
A.M. and send him e-mail showing any messages that included the word
“key” without “not” somewhere else in the message.

Woodbury put his program into place shortly after he had joined the
DESCHALL effort in late March and it had been running since then.
When a discussion on the DESCHALL mailing list turned to what the
client would report once it had found the right key, Woodbury wrote
about what he had done and posted a copy of the source code for his
software to search the logs, thinking that perhaps someone else would
find the software useful.

10:57 A.M.

Loveland, Colorado

Rocke Verser read over the program to report messages about keys
that Woodbury posted to the mailing list. Verser recognized that the
program would successfully report the message that Woodbury knew
he was looking for (“key found”) but that it would miss several other
messages that might also be useful.

In addition to the “key found” and “key not found” messages, the
client could report informational messages from the keyserver that users
should be able to see. Verser could, for example, configure the keyserver
to check the version of the client software that a user had, and if it
was particularly old or needed to be replaced for some reason, send
an informational message back to the client encouraging the user to
upgrade to the latest version of the client software. Verser could use
the “informational message” to get any information he needed to users
through the clients, which would have gotten the message as part of
their response to a request.

Verser typed out a quick message to the mailing list, suggesting
that instead of searching for particular messages, the opposite approach

Architecture 103

be taken. Messages that participants would recognize and know they
could safely ignore should be thrown away, and all other client messages
should be reported.

Saturday, April 12, 12:40 P.M.

Rutgers University, Piscataway, New Jersey

Some users were interested in seeing more detailed information from the
logs than whether the key had been found. The same basic principle
of creating and reading log files could be used to review client status
reports on number of keys tested and aggregate them for a participant
with a large number of clients to review easily. In his dorm room, Scott
McIntyre had several Pentium machines running DESCHALL. He was
already wondering just how much he was contributing to the project
overall when he noticed some others on the mailing list talk about how
many keys they were testing in a day.

McIntyre did not know how the participants with Unix clients were
creating their log files, so he looked at his Windows-based client for
a function to create a log. Not finding one, he thought logging might
be a feature in the Unix clients not present in the Windows client, or
that someone had a program to capture and to aggregate the on-screen
output from the client.

Expressing his desire to see what his clients were doing like some
of the participants with Unix clients were, he posted a message to the
mailing list asking for ideas on how to collect the DESCHALL client
output under Windows.

3:43 P.M.

Austin, Texas

Like many other participants, Carol Harris was redirecting the output
of the DESCHALL client to a file to create a log that kept a record
of the client’s activity. Unlike most of the users who did this, she was
running the DESCHALL client on a Windows system. Interestingly,
she was gathering the client’s output the same way that participants
with Unix clients were.

The Windows operating system has a long history of borrowing fea-
tures that were implemented first in other operating systems. Windows
had with it a command line interpreter (usually started by running

104 CHAPTER 14

COMMAND or CMD), which was essentially the same as the old DOS com-
mand line. Improvements made to the DOS command language over
the years were made by people who understood Unix and were inspired
to bring some of the Unix command language features to DOS. Redi-
rection of program output was one of these features, thus allowing the
DESCHALL client to have its output sent to a plain text file instead
of appearing on the screen. That file could then be reviewed, searched,
and otherwise manipulated at the user’s leisure.

Harris used the Windows command interpreter on her 166 MHz
Cyrix “686” machine to send the DESCHALL client’s output to a file,
just like was being done by some of the Unix users. Seeing McIntyre’s
question on the list, Harris responded, showing exactly what she typed
to the command interpreter to get the desired behavior.

As more participants joined in the DESCHALL project, partici-
pants continued to help each other to overcome the obstacles they were
facing. Efforts of earlier participants to manage and to monitor the
DESCHALL client software also helped newcomers to get their sys-
tems participating more quickly.

Wednesday, April 9, 8:19 P.M.

University of New Brunswick, Canada

While one group of participants dealt with getting their clients to start
and to stop on predetermined schedules and to report client activ-
ity, another worked on strategies for participating with only dial-up
modems for Internet connectivity. Jeff Gilchrist, a student in the coop-
erative higher education program at the University of New Brunswick
in Eastern Canada was just such a participant.

Gilchrist was running the DESCHALL client on his modest 75 MHz
486DX4 system. Running Windows 95, the system was able to test
keys without any problems, but frequently had difficulty communicat-
ing with the keyserver. Gilchrist noticed that his system would finish
checking a block of keys, then it would wait to talk to the keyserver.
Since the system was not connected to the Internet all the time, it had
to wait for Gilchrist to connect to his ISP via dial-up modem. Once
online, the system would wait for several minutes before reporting its
progress to the keyserver and getting the next block of keys.

As explained on page 67, clients would need to request a block of
keys to test from the keyserver. Once the client finished testing the

Architecture 105

block of keys, it would need to report the results and to request another.
If the computer was offline, it obviously couldn’t send the message to
the server. If a client needed to communicate with the server and could
not, it would sit there and wait until a connection was established, thus
wasting time that could otherwise be spent on testing keys.

Earlier in the day, someone using the name “Icepick” posted a mes-
sage to the DESCHALL mailing list in which he mentioned a pro-
gram called freeDUM, a free “dial-up manager.” By running the free-
DUM program, DESCHALL participants could perform their usual
non-DESCHALL work, and the machine would connect to the right
Internet provider on a pre-determined schedule, set to ensure that the
system would be online about the time that the DESCHALL client
needed to communicate with the keyserver. Once the line has gone idle
for some period of time, freeDUM will hang up the line, all automat-
ically. Configuring freeDUM to make its connections every half hour
worked well, since that was about the amount of time it would take for
the DESCHALL clients to work their way through a key block.

Windows users weren’t the only ones trying to manage the problems
of participating in the project effectively via dial-up modem.

Thursday, April 10, 10:08 A.M.

Pennsylvania State University
University Park, Pennsylvania

IBM’s OS/2 operating system was well represented in the project. Not
only was the keyserver itself running on OS/2, but many clients were
being run on OS/2 machines. Rodney R. Korte was running some of
these clients on systems whose only Internet connection was a dial-up
modem.

Korte developed a program for OS/2 users with modems that would
help them to avoid any wasted time waiting for an Internet connection.
Implemented in IBM’s REXX programming language—like the DES-
CHALL keyserver itself—the program would watch the DESCHALL
client program’s output. When it saw the “Key not found” message
followed by a message that the keyserver could not be reached because
the network was down, it would run a program to get the machine
connected to the Internet.

106 CHAPTER 14

Other OS/2 users began making use of Korte’s program, thus mak-
ing sure that their machines weren’t wasting cycles that could be spent
looking for keys.

10:36 P.M.

Loveland, Colorado

Rocke Verser sat at his computer, quietly reading messages posted to
the DESCHALL mailing list. Heartened by the way that the spirit of the
project was catching on, Verser read messages posted by participants
for whom the quest to find unused computing power to harness for
DESCHALL had become almost an obsession.

As accounts of how DESCHALL was brought to computer labs
flowed in, a picture began to emerge. Enthusiastic participants were
happy to install and run the client on the computers they could reach,
but in many cases, there were obstacles to overcome.

Consider a computer lab with fifty regular desktop computers. Sup-
pose the computers are relatively new, have 200 MHz Pentium pro-
cessors, and are running Windows 95. The main obstacle to putting
DESCHALL clients on these sorts of machines is that they are running
Windows 95. As a result it isn’t always easy to add software such as
the DESCHALL client in a way that does not interfere with what a
user sitting in front of the system is trying to do. Even if the program
could run without generating pop-up Windows and the like, at the very
least, the system wanted to clutter the taskbar with the icon for the
DESCHALL client and any other software that might be running to
manage any logs being created.

Computers—sometimes even entire labs of computers—like this all
over the country were being used only for a regular eight-hour workday,
sitting idle for the other sixteen hours. If only these systems could run
DESCHALL clients outside of normal working hours, a tremendous
amount of computing power could be harnessed for our project.

Thinking about how to address this problem, Verser quietly tapped
on his keyboard, writing a message that would be sent to the DES-
CHALL mailing list.

Verser’s short note simply asked if anyone had created “DESCHALL
boot disks,” floppy diskettes that would have just enough of an oper-
ating system to boot the system, get it connected to the local area
network (which, in turn would have Internet connectivity), and then

Architecture 107

to run the DESCHALL client software. Such diskettes could easily be
created to run the Linux or FreeBSD versions of the client, explained
Verser. People could use their computers normally, then just before
leaving the lab for the day, they could put in the DESCHALL boot
disk, and reboot their system.

When the machine booted from the floppy disk, it would come on
the network, start the client with the correct parameters, and start
testing keys. Anyone who needed to use the machine would just eject
the DESCHALL disk and reboot the machine. The system would come
up in its usual environment, completely free of the DESCHALL client.

In a lab of fifty new Pentium machines, if we could use these ma-
chines for twelve hours per day, we would be able to test an additional
864 billion keys per day. That would account for roughly five percent
of the daily total project activity in the first week of April. Adding
twenty such labs would double the number of keys we could test per
day. How many such labs were in the country would be anyone’s guess.
Thousands, maybe tens of thousands. If we could harness even a small
percentage of these networks, we could test keys at a blindingly fast
rate.

In early April, I spent a lot of time thinking about how to harness
the power of systems that operated behind network firewalls. The ba-
sic architecture of clients communicating with the keyserver via UDP
datagrams simply wasn’t working—the firewalls were preventing those
messages from flowing normally. We didn’t really expect that we could
convince most sites to make changes to the way that their firewalls
worked to allow more free access between their internal systems and
the public Internet. After all, those firewall systems had been put in
place for a reason.

In the first years of the Internet’s existence as a research project
in the 1960s and 1970s, practically all Internet users knew each other.
As the network grew in popularity among researchers, the community
became less heavily interwoven, but there was still a high level of trust
among Internet users in general, since all had a vested interest in mak-
ing the Internet itself work. By 1997, though, those days were long
gone: the Internet was no longer an academic or scientific curiosity. As

108 CHAPTER 14

the global network of networks became easier to use without highly
specialized knowledge of arcane languages and computer technology,
throngs of new users joined the Internet population. In time, the Inter-
net population as a whole started to look less and less like the technical
wizards who invented it and more like the general population, with its
share of people with both good intentions and bad.

When communities are first settled, locks on the doors and windows
are uncommon. As communities grow, along with inability to know
and to trust people nearby, the use of locks increases. No one in New
York City seriously considers keeping an apartment unlocked. Likewise,
computer administrators lock up their networks (with firewalls) to deny
access from unauthorized individuals.

A firewall is simply a barrier that separates one major unit (like
the engine compartment of a car) from another (e.g., the passenger
compartment). The idea of creating the separation is to avoid exposing
the entire system to a threat affecting one unit or another.

When it comes to computer systems, firewalls on networks do the
same thing: they separate one logical unit, or “zone” (e.g., the public In-
ternet), from another (e.g., an internal network). Generally, this works
by having a special computing and networking device have two network
connections: one to the Internet and one to the internal network. With
no other connection between the Internet and the internal network,
any attempts to get traffic from one network to the other would need
to pass through the firewall. Instead of allowing everything to pass—as
happens with usual networking equipment—the firewall will look at the
data to see if the policy programmed in by the administrator will allow
the traffic to pass through.

With a few important exceptions, most firewalls would not allow
UDP datagrams to pass. So, while our lab machines at universities and
on networks directly connected to the Internet were able to talk to
the keyserver, machines protected by firewalls would have their UDP-
based messages to the keyserver blocked. The keyserver would never
see the messages from the clients, simply as a matter of network policy
forbidding traffic that the firewall administrators didn’t know about
from flowing between zones.

A lot of participants whose computers were behind firewalls were
asking for details on how the DESCHALL clients talk to the keyserver,
so they could approach their firewall administrators and ask for the
configurations to be changed to allow DESCHALL traffic. Many users

Architecture 109

had made similar requests for other things, such as streaming audio, so
finding at least a few sympathetic firewall administrators didn’t seem
out of the question. For participants who had administrative control
over their organizations’ firewalls, enabling DESCHALL traffic to pass
was easy enough to do. Since I had authority over my company’s fire-
walls, I was able to make the changes needed to allow a some of our
machines to participate without opening the entire internal network to
threats that the company wanted to avoid.

In most cases, though, the DESCHALL participants were not the
same people who were responsible for their network firewalls. Going
through the process of getting a change made—finding the right person,
explaining what DESCHALL was about, and waiting for approval on
a new policy—would take far longer than most participants would be
willing to invest. In many cases, even if participants could make their
cases to firewall administrators, their companies might decide not to
participate as a matter of policy.

Firewall systems were becoming increasingly popular, and the num-
ber of networks where people could participate in a project that could
not accommodate firewalls continued to shrink. We just had to find
a way to make our systems work with firewalls and we knew that we
had to find a way to do it without requiring special work by firewall
administrators. If only we could find a way to make DESCHALL com-
munications look like something that the firewalls already knew about
and were configured to allow, we could get so many more clients run-
ning.

Thursday, April 3, 4:55 P.M.

Lawrence Livermore National Laboratory, California

As Karl Runge read his e-mail, he came across a message that Guy
Albertelli from Ohio State had posted a few hours earlier. Albertelli
looked through the DESCHALL project statistics for April 2 and found
on the report a single system that tested over 700 billion keys and asked
if anyone knew what kind of a system could test so many keys.

Runge did some quick calculations in his head and thought that it
might be one of the latest Intel Pentium systems, with four processors
running at 200 MHz each. Even that did not seem quite right, and he
thought that it was more likely a system that was actually acting as a
proxy or go-between for a group of systems that could not talk directly

110 CHAPTER 14

to the keyserver. Runge knew something about how individual project
participants might introduce an architectural components like a proxy
to overcome obstacles they faced in getting their systems to be able to
participate in the DESCHALL project.

Five days earlier, Runge worked out a scheme to allow his computers
at home to talk with the keyserver. His home local area network (LAN)
had several systems on it and the entire LAN was connected to the
Internet over a modem. That usually served Runge’s needs very well,
but sometimes UDP datagrams like the DESCHALL messages would
not make it to their destination—UDP was at its most unreliable when
trying to work over networks with severe bandwidth limitations, as
could sometimes be the case when several computers were sharing the
bandwidth of a single modem. Runge needed to find a reliable way to
get DESCHALL messages from his computers running the clients on
his home network to the network in his laboratory, where his modem
connected.

Runge’s solution was a pair of programs written in the Perl pro-
gramming language. The first program would accept messages from
the DESCHALL clients on his network in their usual UDP format and
convert the message TCP format. (This would be like taking a message
written on a postcard and putting it into an envelope.) The program
would then forward the TCP message over Runge’s modem link to an-
other system that he had at work. That system was running another
program—one that would take the message out of its TCP format and
put it back into UDP, and forward it on to the real keyserver. Responses
from the keyserver would go through the same process in reverse.

The system that actually handed the message to the keyserver would
be the one that the keyserver thought was the client. Thus, both of
Runge’s machines would look like a single client to the keyserver. Runge
thus concluded that whoever processed 700 billion keys the day before
probably had a setup like his rather than a single top-of-the-line sys-
tem with multiple processors doing nothing but running a DESCHALL
client.

Unbeknownst to Runge, Justin Dolske and I had been privately talk-
ing about the same thing with Rocke Verser. Our system for working
through firewalls was a straightforward one, almost identical to the one
that Karl Runge created for his own system. Justin Dolske wrote a pair
of programs: one was called U2T (UDP to TCP). Instead of converting
a UDP datagram into a TCP packet, U2T formatted the data to look

Architecture 111

like a Web request—a HyperText Transfer Protocol (HTTP) message
carried inside of a TCP packet. The other was called T2U and con-
verted the TCP-based HTTP message back into a UDP datagram to
be forwarded to the keyserver.

The Web uses HTTP to communicate. HTTP is a higher-level pro-
tocol than TCP and UDP: it relies on foundation provided by “lower-
level” protocols. Protocols like TCP and UDP will get the data you
need sent from one system to another in the appropriate chunks, ac-
tually carried across the Internet infrastructure inside of IP packets.
HTTP defines the format of the message itself. It would be the equiv-
alent of the sender and recipient deciding that when they are sending
messages back and forth, they’re always going to have some lines at the
top like To, From, and Date. They would also need to agree to write in
the same language. This is the role of HTTP.

So in practice, what happens is that Web traffic is formatted in
HTTP, carried in TCP packets, which are in turn carried in IP packets.

Participants who wanted to run clients for DESCHALL behind their
corporate firewalls would download U2T and run it on a machine on
the same internal network as the clients—behind the firewall. The user
would then tell the U2T server the address of the firewall system used to
forward Web requests from internal systems to external (i.e., Internet)
Web sites. Once the U2T system was configured and started, it would
start listening for UDP datagrams that had DESCHALL client requests
in them.

After the U2T system was running, the users would then start their
DESCHALL clients, but instead of telling the clients to use the real
DESCHALL keyserver—to which the firewall would block access—the
user would tell the DESCHALL client that the U2T server was the
keyserver. That would start the client, which would contact the U2T
server and ask for keys to test.

The U2T server would receive the message in a UDP datagram
from client and put exactly the same message in the form of an HTTP
message, which would get put into a TCP packet, which would get
put into an IP packet, and then sent to the firewall with an ultimate
destination of one of the three T2U servers that Justin Dolske and I
ran at Ohio State and Megasoft, respectively. Each T2U server had the
same functionality as the others; we just used three servers so we could
spread the load among more systems.

112 CHAPTER 14

The T2U server would listen for HTTP messages inside of TCP
packets from a T2U server. Just as the participant’s U2T server took
the client request out of the UDP datagram and put it into an HTTP
message, the T2U server would take the client request out of the HTTP
message, create a new UDP datagram, put the client request into that
datagram, and then send that datagram to the keyserver.

Next, the keyserver would receive the client request in a UDP data-
gram that looked like any other client request. It would accept the
request, and send the result back to the T2U server that sent the
request—in the form of a usual DESCHALL message in a UDP data-
gram.

The T2U server would accept the response from the keyserver,
pulling the message out of the UDP datagram, creating a new HTTP
message and putting the response from the keyserver into that HTTP
message. That HTTP message would then be sent back to the U2T
server, which would then pull the response out of the HTTP message,
put it back into a new UDP datagram which would then be sent to the
original client.

Adding the T2U servers to the architecture and distributing U2T
software that participants would run behind their firewalls satisfied all
of our requirements: DESCHALL could work safely through firewalls
without requiring any changes to be made in the firewalls, the DES-
CHALL clients, or the keyserver.

Having addressed the issue of how to help clients behind firewalls to
participate, we were ready to charge ahead. With quadrillions of keys
left to test, we were going to need the help of people behind corporate
firewalls.

15

Progress

Wednesday, April 9, 8:09 P.M.

Yale University, New Haven, Connecticut

Computer science student Jensen Harris had two machines with some
extra processing power available. Like most student-owned machines,
they weren’t spectacularly powerful. Both had Pentium processors, one
90 MHz and the other 150 MHz—but they spent most of their time
sitting idle, so Harris thought it would be a good idea to contribute
their idle cycles to the DESCHALL effort.

Computer microprocessors come in many varieties, such as Intel’s
Pentium, the PowerPC from IBM and Motorola, and Sun Microsys-
tems’ SPARC family of processors. While the details on what exactly
happens inside vary dramatically from one family of processors to an-
other, all processors essentially work the same way: an instruction is
given and the processor responds by performing calculations or mov-
ing data from one place to another. Processors have a “cycle”—a tiny
period of time during which an instruction can be executed.

“Hertz” is the metric measurement of frequency, named in honor of
German physicist Heinrich Rudolf Hertz, who made several important
contributions in the field of electromagnetism. One hertz (1 Hz) is one
cycle (or event) per second. One kilohertz (1 kHz) is one thousand
cycles per second. One megahertz (1 MHz) is one million cycles per
second. One gigahertz (1 GHz) is one billion cycles per second.

Processor clock speed can be a useful measurement to compare pro-
cessors of the same family to each other—a 150 MHz Pentium is about
60 percent faster than a 90 MHz Pentium. The problem with clock

113

114 CHAPTER 15

speeds is that they are almost useless for comparing processors of dif-
ferent types to each other; there is no way to tell how a 100 MHz
PowerPC processor compares to a 100 MHz Pentium, since what each
processor will be able to do in a given cycle will vary dramatically.
Some processors, like the PowerPC will do a lot of work in a cycle,
while others like the Alpha will do very little in a single cycle.

Watching the DESCHALL client run was a great way to get a sense
of how many different things contribute to just how much work differ-
ent computers can accomplish in a given period of time. Because the
DESCHALL client would simply test one key right after another with-
out waiting for input from the user or anything else, the client would
just run and run as fast as the processor could support it. The proces-
sor’s clock speed will matter to overall system speed, but so will the
amount of work that can be done in a given cycle. How much can be
done in a cycle depends on things like how the processor is designed
and just how well the software can take advantage of that design. Rocke
Verser’s hand-optimized DES key testing software for the Pentium pro-
cessor was so fast because he was able to get more work out of each
processor cycle.

Looking over the project statistics for the past few days, reproduced
in Table 4 (on page 89), Jensen Harris saw how powerful DESCHALL
had become. At this point, we were testing 2 trillion keys per day, by
comparison to the 496 billion keys we were testing per day less than
six weeks earlier. Harris wondered about the value of having his two
mid-range desktop computers working on the project. It was clear that
there were many of other locations doing a lot more work. But at what
point, Harris asked in a message written to the DESCHALL mailing
list, does a contribution become too small to be worth the effort?

DESCHALL participants answered Harris’ question resoundingly:
every little bit helped. Unless the keyserver simply could not keep up
with demand for instructions from key-testing clients, even the slowest
of machines was valuable.

With Rocke Verser’s fast Pentium software, however, the danger of
any Pentium machine ever becoming a burden was nonexistent—the
DESCHALL key testing software ran much more slowly on many other
systems that used other processors. Those slower clients would become
a burden on the keyserver long before even the slowest of Pentium pro-
cessors. With the lightweight UDP-based protocol for communication
between clients and servers, the likelihood that the keyserver wouldn’t

Progress 115

be able to support the load put on it by the number of clients we had
was also pretty low.

Lee Sonko from Bowne Global Solutions was in agreement with the
rest of the mailing list participants, but he wanted to see just how much
the small contributors mattered to the project.

Using the statistics from April 8, Sonko was able to show how much
of the day’s work was performed by, as he called them, “big boys,”
“medium-sized domains,” and “small domains.” The “big boys” were
the five domains testing a trillion or more keys per day. The “medium-
sized domains” were the 55 domains testing between 69.8 billion and
1 trillion keys per day. The “small domains” were the rest—108 do-
mains testing between 16 million and 66.8 billion keys for the day.
After breaking them up into those three groups, he totaled the number
of keys tested, not per domain, but per group. (Table 5 summarizes his
findings.)

Group Keys Processed

Big Boys 11.16 Trillion
Medium 10.95 Trillion
Small 1.83 Trillion
Total 23.95 Trillion

Table 5. Work Performed by Size

Although the small domains were testing only one tenth of the num-
ber the large domains were testing, it was clear that their contributions
mattered. None of the DESCHALL participants wanted to lose any pro-
cessing power at all.

A total of almost 24 trillion keys were processed on April 8 by all
DESCHALL participants together. In the same day, roughly 1326 ma-
chines (as determined by unique IP addresses, a reasonable but inexact
approximation) worked on the project. That would mean that on av-
erage, each machine processed roughly 18 billion keys that day.

We used a relatively modest system as our “benchmark” to measure
how fast a “typical” machine would work its way through the DES
keyspace. That benchmark system was a 90 MHz Pentium running
FreeBSD, which ran at a rate of 454,000 keys per second. In a 24-hour
day, that machine would process some 39 billion keys. Thus, a relatively
modest 90 MHz Pentium computer, working all day, would be faster

116 CHAPTER 15

than average, meaning that it would increase the average speed per
host.

We were nowhere near running at the level of that any client would
prevent any other from getting work done. Not only were we not ready
to ask people with the slower systems to stop participating, we wanted
more clients, and we needed as many as we could get. Testing 72
quadrillion keys was a job for a lot of processors—the more, the better.
As Justin Dolske observed, “Quantity has a quality all its own.”

While we were also working to support participation through firewalls,
other projects were still searching for the key. The European SolNET
effort was still going strong. The DES Violation Group was also still
running, though by this point they were falling further behind. Each of
these efforts were, in one sense, competing with our effort, since they ran
their own keyservers and their client software was different from ours.
If DES Violation Group managed to find the key, they would get the
prize money that RSA put on the table. Even so, RSA’s DES Challenge
was a bit like a scavenger hunt where after there was a winner, a prize
would be shared with everyone: any team finding the right key would
hasten the development of a stronger standard to replace DES—a prize
for everyone—but we were all hoping to be the one that found the key.

Interestingly, DES Violation Group, like DESCHALL, was based in
North America and made the same decision that we did—to restrict the
distribution of clients to the U.S. and Canada. Also like DESCHALL,
DES Violation Group used the North American Cryptography Archive
to distribute its client software without violating U.S. cryptographic
export policy.

Of the U.S.-based systems for participating in the DES Challenge,
DESCHALL was most effective in its publicity, because, among other
factors, the tremendous speed of our clients and our participants’ zeal
in recruiting their colleagues and friends to join the project. Unfortu-
nately, the fact that there were clients in the archive for DES Violation
Group (with names beginning with “des”) and clients for DESCHALL
(starting with “deschall”) was confusing. That confusion led some peo-
ple who heard about DESCHALL to go to the site to download the

Progress 117

client and pick up the first DES Challenge client in the alphabetical
list—which was for the DES Violation Group.

Friday, April 11, 1:56 A.M.

Rensselaer Polytechnic Institute, Troy, New York

RPI student Bill Moller understood why groups in the U.S. were not
trying to get people from outside of the country to help on their efforts.
He could also see why cryptographers in the U.S. and Canada were not
especially interested in just sitting back and waiting for a group from
Europe or somewhere else to prove the point that they have been trying
to make for years—that 56-bit keys are just too small and are subject to
brute-force attacks. What Moller did not understand is why there were
multiple U.S.-based projects working on the same goal. Presumably, the
people working on both of these projects were under no legal restriction
that would prevent them from working together.

Moller posted his concerns to the DESCHALL mailing list. In par-
ticular, he wanted to know just why two U.S.-based groups were com-
peting instead of working with each other. Apparently he figured that,
say, 1000 users working together on one coordinated effort would find
the key faster than 1000 users spread across two or three competing
projects.

Answers to Moller’s question proved interesting. Some pointed out
that only DESCHALL supported their platform. (This was something
we heard over and over again throughout the course of the project,
particularly from the users of operating systems like OS/2. Although
relatively small in number, these users were advocates, able to draw
large numbers of others to the project.)

Some participants pointed out that having multiple groups working
on the same problem was good insurance, so that if a group had a
problem with its software, or for some other reason failed to find the
correct key, the other groups could pick up the slack. Still others high-
lighted the possibility of rogue clients falsely reporting that they had
tested certain keys, so having one project test keys that other projects
had presumably tested wasn’t always necessarily a bad idea. In fact,
Peter Trei’s uncoordinated DESKR software was developed specifically
to deal with these kinds of problems.

Rocke Verser suggested that if competition were a problem (and
he didn’t say that it was), the question of why we were “competing”

118 CHAPTER 15

should be directed to DES Violation Group, rather than DESCHALL.
The DESCHALL keyserver had been online since January and clients
were available to the public since February. We didn’t really know where
DES Violation Group came from or the people behind it, but it seemed
to emerge some time after DESCHALL was already up and running.

Despite the confusion about clients from two groups being dis-
tributed from the same archive, DESCHALL continued to widen its
lead over DES Violation Group. The European DES-Challenge group
that spun off from Germano Caronni’s 48-bit RC5 crack had been writ-
ten off by even most of its organizers, who had since joined the SolNET
effort.

DESCHALL was the fastest DES Challenge contestant, and was
getting faster almost every day. The basic statistical information we
did report—number of keys tested per day and total number of keys
tested to date—was enough to show our lead, but many participants
wanted to see more details. Much of this desire was probably inspired
by some competing projects, which really did have extensive statistical
reporting mechanisms on their project Web sites, showing breakdowns
per domain, creating line graphs of various participants’ effort. DES
Violation Group in particular had extremely impressive graphical re-
ports that looked much like the charts generated to support analysis of
stocks and bonds. Oregon State’s Adam Haberlach quipped that DES
Violation Group was probably using more CPU time for computing
stats than they did for testing keys.

Although DESCHALL had by far the most primitive statistical re-
ports of any coordinated effort, we were taking the need for better
reporting seriously. Justin Dolske created a program on April 4 that
would take the previous night’s raw data—as posted on Verser’s project
status Web page—and create graphs that would show our progress,
showing keys tested per day, and total keys tested. These graphs
charted the progress of the project as a whole. Participants liked to
see how the project was doing overall, but they wanted more. They
really wanted to see how their organizations were doing individually.

Dolske continued to work on ways to present DESCHALL statistics
graphically, hoping to find a way to let participants see their own con-
tributions over time. On April 21, Dolske announced his work and that
he was looking for people to test his dynamic graph-generating software
that came to be known as “Graph-O-Matic.” Rather than seeing only
the progress of the entire project, Graph-O-Matic was a web-based util-

Progress 119

ity which provided data for any domain whose progress you wanted to
check, and receive back graphs showing the progress of those domains
only.

The day before Graph-O-Matic opened for testing, Karl Runge from
Lawrence Livermore National Laboratory posted a note of his own to
the DESCHALL mailing list about some of the work that he had been
doing in looking at the project statistics. He had been using the re-
ported statistics to generate some graphs that could be used for analysis
that would help us understand what to expect in the days and weeks
ahead. By mid-April, our key testing rate really began to pick up—
doubling every seven to eight days for the past month. Runge showed
our progress on a graph plotted atop a mathematically proper exponen-
tial curve showing that participants who called our growth exponential
were not exaggerating.

Using the graphs to show past progress and to project future rates,
we could see that despite the tremendous amount of work that re-
mained, there was light at the end of the tunnel. In fact, if we could
sustain our exponential growth, we would have have half of the keys
tested after eighty-seven days of work (only fifteen days away!), and
the entire keyspace tested in ninety-six days, about the end of the first
week of June.

Runge himself called attention to a problem with using his projec-
tions to show when we would finish testing half or all of the keyspace.
On April 18, we just finished the milestone of having tested one percent
of the total DES keyspace. As any statistician will confirm, taking per-
formance for the first one percent of a project like this and using it to
predict the next 49 (or 99!) percent would be stretching the data. The
model for analysis was fine—but we were just too early in the project
to have enough data to show things like how the project would react if
it ran into any trouble.

After a month of exponential growth, we were starting to get things
moving. We needed to sustain the growth in order to continue pulling
ahead of the competition.

16

Trouble

Saturday, April 12, 11:42 P.M.

Rutgers University, Piscataway, New Jersey

At Rutgers, like universities all over the country, the semester was start-
ing to wind down. While the year had not officially drawn to a close,
in the minds of students and probably more than a few of their profes-
sors, it was effectively finished. Student Scott McIntyre started think-
ing about summer vacation—going back home, visiting old friends, and
spending time with family. As he thought about what summer would
bring, he realized that many students who were participating in DES-
CHALL might not be able to be involved in the project over the sum-
mer, particularly if they didn’t have ready access to the Internet or
large numbers of more powerful computers.

McIntyre decided to post his observation that, in another month
or so, students were going to be heading home for the summer, and
predicted a likely decrease in DESCHALL’s performance. The message
set the mailing list abuzz and the group quickly started to look at our
top key testers. (The top thirteen key testers for the day are shown
in Table 6.) Ten of the top thirteen contributors were universities and
another was a high school. If all of the students running clients on
those sites were leaving for the summer, they would take a lot of our
computing power with them.

Mailing list participants debated the severity of the problem. Some,
including Drew Hamilton of Strategy Management Laboratory Corp.
reasoned that it wouldn’t make any difference, since students were going
to be running the software on their own systems, and it didn’t make

121

122 CHAPTER 16

Keys tested Clients Contributor

4.26 Trillion 275 Oregon State University, Corvallis
3.31 Trillion 117 Rensselaer Polytechnic Institute, Troy, New York
1.98 Trillion 1 DESCHALL U2T/T2U Proxy Users (Aggregate)
1.64 Trillion 91 Michigan Technological University, Houghton
1.48 Trillion 197 Ohio State University, Columbus
1.36 Trillion 61 Rochester Institute of Technology, New York
1.17 Trillion 164 Brigham Young University, Provo, Utah
1.06 Trillion 39 Worcester Polytechnic Institute, Massachusetts
0.77 Trillion 14 Apsylog Development, Nanterre, France
0.77 Trillion 27 Duke University, Durham, North Carolina
0.72 Trillion 27 Michigan State University, East Lansing
0.71 Trillion 11 University of California, Davis
0.71 Trillion 28 Thomas Jefferson High School for Science and Tech-

nology, Alexandria, Virginia

Table 6. Top Thirteen Key Testers for April 12

any difference whether those systems were plugged into the university
network or not.

Others, including Brian Osman, a student helping to coordinate
DESCHALL participation at RPI (Rensselaer Polytechnic Institute),
pointed out how much of the total key testing was being done on
student-owned machines that would almost certainly need to use in-
convenient dial-up connections and compete for time on the telephone
line with other family members. Without easy Internet access, many
of those systems would probably not be running the clients that they
would if they were sitting in the dorms wired for constant high-speed
access delivered through permanent local area networks.

Being among the optimists, I suggested several things that would
help us to be able to continue to test keys at a phenomenal rate. First,
we needed to develop optimized clients for architectures other than
those based on Intel’s 80486, Pentium, and Pentium Pro processors.
Those kinds of systems from providers like Sun Microsystems, Silicon
Graphics, Inc. (SGI), and Digital Equipment Corporation (known gen-
erally as DEC) were plentiful in research and academic laboratories.
Even with the comparatively few graduate and summer students who
would still be using them, university computer labs would be doing
much less “real work” than they did the rest of the year, leaving more
processing power available for testing keys. Getting client software more
heavily optimized for these systems, many of which were already run-
ning DESCHALL clients, could greatly improve their efficiency. If those

Trouble 123

systems’ clients could be made to be as efficient as the Intel clients—
which would mean performing the optimization work manually—they
would be dramatically faster than the Intel systems.

Second, we could raise awareness among other computer users who
would not only run the client but would also get others to run the
client. Internet Service Providers (ISPs) might be a good way to get
many others interested. Many ISPs created little online communities
for their users, and if we could convince ISPs to encourage their users
to run the DESCHALL clients, we might be able to fan a few flames
of friendly rivalry among local and regional ISPs that we managed to
stoke among universities. Perhaps ISP system administrators would
take to checking the DESCHALL project statistics day after day, try-
ing to get their networks higher in the rankings. We had not seriously
attempted to recruit ISPs up to this point, but the idea seemed rea-
sonable enough and in any case was worth considering as a source of
potential computing power.

Finally, once DESCHALL gained the ability to work nicely with
firewalls, corporate environments, and others whose systems were pre-
viously unable to participate would be able to join in the effort. Justin
Dolske had written the code at this point. Rocke Verser and I were test-
ing the software and working with Dolske to make the proxies ready for
production. We were less than a week away from making the firewall-
friendly proxies available. The way I saw it, we had plenty of opportu-
nities to get new participants running the clients, so even if we did lose
the academic contribution, we could keep growing.

Dolske didn’t think that we needed to worry about losing the uni-
versities over the summer. Since he was a grad student and would not
be leaving for the summer, he would continue to run the client at Ohio
State. He suggested that school contributors simply find grad students
who would be around all summer and recruit them to keep the clients
running.

Besides, the statistical analysis Karl Runge just performed showed
that if we could maintain our exponential growth over the next fif-
teen to twenty days, we’d almost certainly find the key before summer
got underway. The summer vacation problem could prove to be, well,
academic.

124 CHAPTER 16

Wednesday, April 16
Yale University, New Haven, Connecticut

“Well, these are the newest computers we have and we don’t want to
wear out the processors.”

Computer science student Jensen Harris was glaring in disbelief at
the computer lab manager. With the blessing of the lab’s manager,
Harris had been running the DESCHALL client on fifteen Linux work-
stations for the past day. Each of these systems was an HP with a 166
MHz Pentium processor. After watching how the process ran, the lab
managers decided to stop them and to tell Harris that he was not al-
lowed to use the systems for DESCHALL. The systems sat completely
idle, all day long, waiting for the beginning of a project that would not
start until June.

“It probably also voids our warranty with HP to run programs like
this because it is an undue strain on the processor.”

Harris could not believe his ears: he knew perfectly well that whether
the computer was sitting idle or performing the world’s biggest com-
putation was irrelevant to the processor. For each cycle, the processor
would simply perform an operation. If it had no operation at all to
perform, it would perform a “no-op,” an operation that means “no op-
eration” and simply keeps the processor occupied until the next cycle
starts.

The lab manager continued, “Processors like these are only ‘rated’ a
couple of thousand cycles per minute—going over that is not something
we’re about to attempt without studying the effects beforehand.”

Wisely, Harris set aside the urge to engage in an act of violence.
A processor of 166 MHz was indeed ‘rated’—for 166 million cycles per
second—and nothing that could be done in software could change that.
DESCHALL had some amazing software, but the clients weren’t magic;
our client just couldn’t make a processor run at a higher speed.

“Tell them that if they can make a nice client that doesn’t run the
processor too hard, we’d be happy to help.”

Harris knew that not much could be done with someone who was
both nice enough to look at the problem and to offer help if some
accommodations could be made but clueless enough to think that the
processors could ‘wear out.’ He walked away, shaking his head. At least
he could run the client on the computer in his dorm room.

Trouble 125

Friday, April 18, 6:13 p.m.
Northwestern University, Evanston, Illinois

Yale was not be the only university to ban DESCHALL clients. Com-
puter science student Vijay S. Gadad reported that his department at
NWU wasn’t interested in working on the DESCHALL project, as they
couldn’t see “why they should be helping RSA.”

Apparently, some administrators were under the impression that
this project was somehow helpful to a private, for-profit company, and
that their resources should not be used. Upon learning that RSA was
actually giving prize money, administrators further objected on the
grounds that students would be participating in the effort for personal
profit. Administrators would often not listen to the explanation that
the university itself would actually get the money.

Many DESCHALL participants reported that they also had diffi-
culty getting system administrators and operational staff to understand
that the software was actually quite friendly to the system. Many would
just see the system devoting a lot of time to a single program and
assume that it was somehow hurting something. But nothing topped
Harris’ experience with the staff who thought that an idle CPU cycle
is somehow less demanding than a “busy” one.

Some participants were quick to heap scorn upon the lab managers
who obviously had no understanding of how computers worked. For me,
these stories were an eye-opening experience—I assumed that everyone
who worked with computers every day simply knew how they worked.
The DESCHALL project was providing an excellent opportunity for
participants who didn’t know how computers worked to learn. But
more importantly, we had DES keys to test, and we needed to get to get
more people involved. We could allow ourselves to become downhearted
if we only looked ahead at how much work yet remained. Watching a
few milestones go by would help us to stay motivated.

17

Milestones

Thursday, April 17
Loveland, Colorado

DESCHALL reached a significant milestone when we finished testing
the first one percent of the keyspace. Seven hundred twenty-one trillion
down, a few quadrillion to go.

To draw attention to the achievement, we issued our second press
release. After quickly describing the project for readers who had not
yet learned about DESCHALL, we wrote:

According to Rocke Verser, a contract programmer and consul-
tant, who developed the specialized software in his spare time,
“There are over 2500 computers now working cooperatively on
the challenge.”

Using a technique called “brute-force,” computers partici-
pating in the challenge are simply trying every possible key.
“There are over 72 quadrillion keys. A number,” Verser quips,
“about 15,000 times larger than the deficit.”

But the DESCHALL group is racing through the keys at an
incredible pace. The group is now trying over 50 trillion keys
per day—or more than 600 million keys per second.

Perhaps even more impressive, the number of computers par-
ticipating, and the rate at which they are trying keys has been
doubling every eight to eleven days for the past two months.

If the number of participants continues to double every ten
days, it should take about two months to find the key. If no

127

128 CHAPTER 17

other participants joined the effort, it should take about two
years to find the key.

Word of this cooperative effort has spread primarily by word
of mouth and the Internet equivalents—IRC, newsgroups, and
mailing lists.

No one knows where the growth of this type of cooperative
computing effort will peak.

“Members of the DESCHALL team will be in a festive mood,
Friday,” Verser predicts. “About supper time” on Friday [April
18], DESCHALL computers will have tested one percent of the
total set of 72 quadrillion keys.

As our machines continued to test keys, we put the notice up on the
Web site and participants began to distribute it to their local media
outlets. We passed the milestones as expected.

Monday, April 21, 9:39 A.M.

Megasoft Online, Columbus, Ohio

One of my DESCHALL clients finished testing a block of keys and sent
a message to the keyserver that it was finished and was ready to receive
another block. After a few minutes went by, the client attempted to
send the message again, still without response. Working on something
else, I did not immediately notice that the client was having trouble.
About an hour after the client started waiting for more work to do, I
returned to my e-mail.

Several participants sent messages to the DESCHALL mailing list
to see whether others were having difficulty reaching the keyserver. I
checked my clients and saw one waiting. I quickly started a network
utility called traceroute, which would show response times between my
system and every hop along the way to the keyserver. With traceroute
output, I would be able to tell whether my systems could reach the
keyserver, or if not, just how close I could get.

The results showed that not only was the keyserver unavailable,
but a whole section of a network that connected the keyserver to the
Internet were offline. I picked up the phone and dialed Rocke Verser’s
home number.

Milestones 129

Monday, April 21, 7:40 A.M.

Loveland, Colorado

After a long night of developing new DESCHALL clients, compiling
project statistics, managing server logs, and coordinating the efforts of
other client developers, Verser was sound asleep when the phone rang.

He picked up the phone to hear me announce that the keyserver
and its network was offline. After thanking me for calling, he went
to the keyserver in his home office and saw something that he did
not frequently see: the modem connecting his home office network to
the Internet was offline and not correcting itself. Although using a
modem, Verser did not use it as standard dial-up customers did; he
had dedicated service. The modem never disconnected unless there was
a problem, and if that happened, his system would recognize it and
immediately reconnect.

After some quick work, Verser restored the connection, and the key-
server became visible to the Internet. Messages, including the one from
my client that had been waiting, started to flow in once again. The
outage, which lasted for approximately three hours, was long enough
for only a few participants to notice. Certainly the problem could have
been much, much worse.

Verser watched to ensure the system was working properly, typed
an e-mail message to project coordinators describing the problem and
his assessment of its impact, and went back to bed.

Less than one week after passing our first major milestone (completion
of the first one percent of the keyspace), we passed another: we finished
testing 1 quadrillion keys on Tuesday, April 22. But for the remainder
of that week, our growth rate began to slow. Although still growing at
a fast pace, graphs of our progress started to show that the exponential
curve wasn’t holding.

Michael J. Gebis from Purdue looked at the DESCHALL “keys
tested per day” statistics on April 24 and noted that the number of keys
tested was starting to resemble a sigmoid curve. In a sigmoid (basically
S-shaped curve), the first part looks exponential, but then the curve

130 CHAPTER 17

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

M
ar

 1
5

M
ar

 2
2

M
ar

 2
9

A
pr

 0
5

A
pr

 1
2

A
pr

 1
9

Fig. 5. DESCHALL Keys Tested Per Day,
March 14–April 24 (in Trillions)

becomes linear until it reaches
a peak and then it levels out.
He suggested that it was possi-
ble that we had passed our ex-
ponential growth spurt, and we
might see only linear growth in
the future. Although the predic-
tion was disappointing consider-
ing the progress made over the
previous weekend, no one look-
ing at the data could seriously
advance a more optimistic argu-
ment.

Thursday, April 24, 3:57 P.M.

Lawrence Livermore National Laboratory, California

Concern over the reduction in our growth rate led some participants on
the mailing list to raise questions about competing projects “wasting”
time and effort. Karl Runge, our resident statistician, started crunching
some numbers to get some sense of how long it would take to find the
right key with two DES Challenge projects. He compared the average
search time for two cooperating servers to the average search time for
two non-cooperating servers.

DESCHALL’s overall computing power had grown tremendously
in the past six weeks. From March 14 to April 23, our growth rate
followed an exponential curve, even if the developments of the past
few days made it appear to be unsustainable. At the beginning of that
curve, we estimated that it would take us roughly seventy-five years
to find DES keys on average, and by April 24, the figure had dropped
to under fourteen months. Runge found that the average search time
would be sixty-seven days (from March 14) for two cooperating servers.
For two independent servers, average search time would be only about
two days longer. This had a lot to do with the number of keys being
tested toward the end of the project, which was the highest part of the
end of the exponential curve.

Having two cooperating projects would make more sense in the case
of linear growth, since it would spread the key testing out over a larger
period of time. With cooperating keyservers following the linear growth

Milestones 131

that was apparent from April 11 to April 23, the time to find the key
would be 109 days (from March 14) on average. Non-cooperating servers
starting on March 14 would find the right key 121 days later on average.

The diference was not very large. Obviously, a prolonged effort with
a lower growth rate over time would benefit from using multiple, coop-
erating keyservers. However in our case it was clear that it didn’t really
make sense for us to join forces with another group. Runge observed
that after all the math was done, he had learned what his two children
had been telling him for years: it doesn’t pay to cooperate.

We didn’t have to wait long for Runge’s words to prove themselves.
Within a few days, DESCHALL went on to set many new records. On
Friday, April 25, the project maintained a key testing rate of over 1
billion per second for an entire 24-hour period. On Saturday, April 26,
we tested more than 100 trillion keys in a day for the first time. At that
rate, our key testing rate was such that if simply sustained, we would
reach the halfway mark in under one year.

By Sunday, April 27, we had tested two percent of the entire
keyspace. Testing the first one percent of the keyspace took us ninety
days by RSA’s count. Testing the second percent had taken a mere ten
days.

By the end of April, DESCHALL had transformed from a sin-
gle person in Colorado with some fast DES key-testing software to
a fully-functional virtual organization, with development, project man-
agement, communications, and recruitment functions being addressed
by volunteers. Still more people started to take note and we began hear-
ing from people who could not participate but wanted to encourage us,
or whose participation would be limited.

The most visible gap in our client offerings was for Macintosh ma-
chines. We had been getting a great deal of help from the enthusiastic
OS/2 crowd. Especially since we began to report statistics showing how
many keys were being tested per platform. We were pretty sure that
we could get a big boost from the availability of a Macintosh client,
who were also known to advocate their favorite computing platform
with zeal. Many writers in the mainstream computing media had writ-
ten off the Mac and OS/2 as irrelevant, figuring that “everyone” used
Windows. The users of these marginalized systems often sought oppor-
tunities to contradict the myth of Windows ubiquity, and any study or
project that would rank participation by platform provided the kind of

132 CHAPTER 17

data that the enthusiasts needed to show that their platforms were a
force to be reckoned with.

To find how much interest there was in a DESCHALL client for
the Macintosh, pre-cognitive science undergraduate student TC Lai at
the University of California at Los Angeles posted to the DESCHALL
mailing list. After getting some favorable responses and signing the
necessary confidentiality agreements protecting the DESCHALL source
code with Rocke Verser, Lai started work for a DESCHALL client for
the Macintosh that was first released on April 29.

Mac users weren’t the only ones clamoring for new clients. Users
with relatively uncommon architectures (such as Solaris/x86, Sun’s
Unix implementation designed to run on Intel-based systems instead of
its own systems with the SPARC processor) also had lots of processing
power available and wanted to join in, as did users of various scientific
and engineering workstations. Almost all of those requests would be
answered in time.

People who were watching our progress closely were interested in
an important number that we simply did not have—the total number
of computer systems that were contributing processing power. We did
not have this figure because the key-testing clients did not have a se-
rial number. What we could do, however, was approximate, based on
several figures that were available to us. The keyserver was keeping
track of the unique Internet Protocol (IP) addresses and counting how
many addresses were checking in; we kept track of this information and
reported it in the daily statistics. However, these reports did not indi-
cate how many processors were testing keys on multiprocessor systems.
Also, all clients behind proxy-style firewalls were reported as a single
client, since all of their data would arrive at the keyserver from the
firewall, rather than from the client running the software.

In addition, participants who were using dial-up Internet access with
dynamic IP address assignment found that if they connected to the
Internet, say, ten times per day, they might well have ten different IP
addresses. Dynamic addressing was typical for home users; since their
systems were not advertising the availability of any information to the
Internet population, there was no need for its address to remain the
same for any significant period of time. Static addressing was used for
dedicated lines, whether they ran over high-speed lines leased from the
phone company or whether they ran over low-bandwidth modem lines

Milestones 133

that were permanently connected, like Rocke Verser’s home office that
housed the DESCHALL key server.

Some participants wanted to count the number of clients instead
of using these estimates. One method to get such a count was to put
a serial number into each client, so the total could be counted accu-
rately. Having clients report their serial number when checking into the
keyserver would require a change in the communication between key-
testing clients and the keyserver. Since our overriding concerns were
focused on cracking the DES challenge message, protocol changes were
a last resort and would only be employed when addressing a problem
important to the project’s core function or stability.

In the end, we just reported the numbers that we had, unique IP
addresses, and pointed out that some forces (like firewalls) tended to
deflate the number of clients, whereas others (like dynamic IP address-
ing schemes) tended to inflate the number.

The matter of reporting individual contributions to the project came
up again, although Graph-O-Matic had solved the biggest concern of
this type some three weeks earlier. Since Graph-O-Matic generated
its reports from the DESCHALL statistics, it reported contributions
of keys tested by domain name. Some participants wanted to be able
to organize themselves into teams or to have their contributions from
several different networks (such as home and work) be counted together.
SolNET provided this service by having its client software report the e-
mail address of the client operator along with the results of its testing.
Users could then configure all of the clients they wanted to be counted
together to use the same e-mail address, and enter their e-mail address
into SolNET’s graphing server. Instead of getting just one network or
another this way, all of a user’s clients statistics would be aggregated
together in the report. Since DESCHALL didn’t send e-mail addresses
between clients and servers, Graph-O-Matic could not provide that
functionality. Although DESCHALL coordinators agreed the feature
would be nice, it would require a change in the protocol between the
client and server—something that would pose too great a risk for us to
try unless it directly solved a serious obstacle to the core problem, the
testing of keys.

Another request that came in from DESCHALL participants was
the ability to request larger blocks from the keyserver than the ones
it was handing out. Dial-up users were accustomed to working offline
and going through the hassle of connecting only when interactive use

134 CHAPTER 17

of the Internet was necessary. With the DESCHALL client running
dial-up users had to reconnect to the Internet ever few hours (around
the clock) or to let the machine sit idle after finishing a block while it
waited for the next connection. Users who did not want to have their
systems connect every other hour started to ask us to give their systems
enough keys to keep them busy for longer periods of time—six, eight,
or twelve hours. Again, this would require a change in the DESCHALL
protocol so we did not implement the feature.

In reality, only individual machines were using dial-up modems and
by this point, the only systems that could not automatically connect
when the DESCHALL client needed to communicate with the keyserver
were Windows machines. Windows users would simply need to wait for
a while before their dial-up woes would be solved.

Finally, another type of request that DESCHALL participants re-
peatedly made had to do with optimizations. Highly sophisticated pro-
cessors (even 64-bit processors) performed poorly by comparison to the
hand-optimized 32-bit 486, Pentium, and Pentium Pro clients that we
had. More correctly stated, the machines with the sophisticated pro-
cessors were fast, but Verser’s optimized Intel code was awesome—with
half of the power of some sophisticated workstations, personal comput-
ers were able to get better than twice the performance. The requests
that began in early April for optimized clients for the other architec-
tures continued unabated through April. There was no doubt that we
needed optimized clients for the 64-bit processors like Alpha, Ultra-
SPARC, and MIPS, but we needed more help before we could deliver
fast code for those users.

The second optimization-oriented requests came from users of the
Intel “clone” processors from AMD and Cyrix. Ultimately, such opti-
mization would require someone who understood the internal workings
of those processors. No one with the expertise would ever step forward
to do the work—there just aren’t very many people who have that
depth of expertise, especially who also had an understanding of how to
implement a cryptographic algorithm like DES. It might even be true
that at the time, a large portion of the people who had experience with
both cryptography and such low-level code optimization were already
at work on DESCHALL or projects like it. Consequently, the users of
the so-called Intel-compatible processors would continue to use the In-
tel 486 client, because it ran the fastest on those systems—though still
nowhere near the speed on the genuine Intel hardware.

18

Gateways

Sunday, April 20
Columbus, Ohio

Justin Dolske and I put the “T2U” (TCP to UDP) gateways into pro-
duction and released the corresponding “U2T” (UDP to TCP) proxy
software that would allow people to participate in DESCHALL by run-
ning clients from behind firewalls. Then we ran into trouble.

Dolske developed the U2T gateway software in the Perl program-
ming language, which made it able to run on pretty much any kind
of computer. This was an important requirement for gateway software,
since participants on corporate networks could have any kind of sys-
tems in use and we could not put the same kind of effort into build-
ing and maintaining gateway software that we put into the key-testing
clients. Perl software could be written once and work without modifica-
tion on dozens of types of computers. One particular problem arose on
Windows-based servers, however. Although Windows systems could run
most Perl code, a critical feature that the U2T gateway needed was not
present in Windows. In corporate environments where a Unix system
could be used, they could just run U2T there. Users in Windows-only
environments were stuck so we started to look for alternatives.

I was initially very supportive of the idea of having Windows-based
gateways. After all, the job that we were trying to accomplish was huge
and we needed as many clients as possible. If Justin Dolske’s gateways
wouldn’t work for every possible participant’s computing infrastruc-
ture, it seemed to make perfect sense that other types of gateways
could be useful.

135

136 CHAPTER 18

After seeing that Dolske’s U2T software wouldn’t work on his Windows
servers, Bret Stastny started to work on U2T software specifically for
Windows systems. On April 22, Stastny posted a message to the DES-
CHALL mailing list that he wrote a U2T gateway for Windows.

Since the Dolske gateway code was already released in the form of
source code (the human-readable version of a program), thus showing
very clearly how the internal gateway needed to communicate with
the external gateways that Dolske and I were running, I assumed that
other contributions of gateways would simply be replacements for the
internal (U2T) proxy, making use of the T2U servers that Dolske and
I had in production for the whole project.

Sadly, Stastny did not just write a U2T gateway. Instead, he wrote
a completely new U2T/T2U gateway pair, using a protocol completely
incompatible with Dolske’s. Essentially, we would need to duplicate all
of Dolske’s proxy architecture on Windows to use Stastny’s software.
None of the DESCHALL coordinators had Windows servers in produc-
tion, and given the instability and management difficulty of Windows,
we didn’t want to trust a critical piece of the entire DESCHALL project
architecture to a Windows system. The production T2U proxies would
have to be stable, largely self-managing systems. We could not take on
the additional administrative load of an incompatible T2U proxy set.
We asked Stastny to get his internal gateway to work against our T2U
gateway, but that work ultimately did not lead to any success.

Other attempts were made at creating internal gateways for people
who could not run Dolske’s Perl-based U2T. On May 8, Aaron Williams
at Adaptec posted a Java version of the U2T gateway. Java, like Perl,
would run unmodified on dozens of computer types. Java did a much
better job of hiding the underlying computers’ differences better than
Perl, and a Java gateway would work unmodified on both Windows and
Unix systems. While the approach—a plug-in replacement for the inter-
nal gateway that used the production external gateways—was correct,
there were some problems. Williams hadn’t worked with us to coor-
dinate the effort and to test the software, so as released, the software
would send malformed updates to the T2U gateways. The gateways, in
turn, forwarded the request along to the keyserver, which would ignore
the message. Any work done by clients using the Java gateways would
be lost.

Gateways 137

The gateway problems didn’t end there. Williams’ subsequent at-
tempts to get his gateway tested and debugged for re-release were also
done without our cooperation. He was testing his software by having
his nascent gateway send messages to the production T2U gateways,
which dutifully passed messages that seemed to look correct on to the
keyserver. Had he coordinated with us, we could have given him the
information on the servers used for testing. Williams’ testing against
the production servers killed the keyserver on May 21. Ninety minutes
later, Verser succeeded in bringing the keyserver back online.

The following day, Verser posted a “Request for Patience and Coop-
eration” to the DESCHALL mailing list. He wrote that the outage had
occurred because a user had been testing some buggy software against
our production keyserver. He added:

I have never claimed the keyserver was bulletproof. Maybe it
should be more robust, considering it’s only handling about a
quarter-million requests per day, and only doling out around
300 trillion keys per day.

You wouldn’t believe the onslaught of strange and bogus
data that comes to the keyserver. The keyserver manages to
deal with most of it successfully. But neither the keyserver nor
my ISP are bulletproof.

If you support the DESCHALL effort, *please* do not test
your code against the production (3.5 billion key/second) key-
server!

Prior to the outage, I urged the person who took down DES-
CHALL to ask for advice on the mailing list. Here is an excerpt
of his response. This e-mail was received about an hour and a
half before the outage, while I was sleeping.

Even if you don’t have experience with firewalls, I do,
and it is a specialty of mine. The easiest way for me
would have been to integrate the tunneling code directly
into your code. Since you won’t let me do that, I will
have to write my own tunnel.

Verser added that the number of keys lost because of the outage was
the equivalent of one Pentium system testing keys non-stop for a whole
year. Verser stressed that he had no reason to suspect that Williams
intended the project any harm, but his refusal to ask for advice and to
wait a few hours for answers from the project coordinators had cost the

138 CHAPTER 18

project a bunch of keys. Though reports from many clients that never
made it to the keyserver would simply be resent until the message got
through, there was a loss of key reports in the system failure; some keys
that had been tested would simply need to be tested again. It was a
disappointing setback—and completely avoidable.

About the same time that work was being started on the gateways,
discussion on the mailing list was focused on getting key-cracking clients
that would run on as many machines as possible. University of Wash-
ington student Mike Heroux asked about creating a client in the Java
Programming Language, so that anyone, on any computing platform
would be able to run it.

Word of mouth and persuasion had worked well for us in getting new
users to run DESCHALL clients on their systems so far. Usually, re-
cruiting new system administrators to the project—or at least allowing
someone to run the clients on their machines—was a simple matter of
explaining the nature and importance of the project.

Sometimes, enlisting support got more complex. When Corey Betka
at the University of Illinois at Urbana-Champaign approached a sys-
tem administrator who had charge of over 150 machines, the system
administrator explained that she’d be happy to run the clients on all
of the machines in her care, if he was willing to help on a “project” of
hers.

The system administrator—who was never identified by name—
was collecting Beanie Babies and needed Ally the Alligator. So, DES-
CHALL would gain an additional 150 or so clients in exchange for a
Beanie Baby. We had no idea how many deals like this were made to
allow us access to additional machines to run the key-search clients,
but what we do know tells us that the users who were running our
clients and recruiting more volunteers were a dedicated lot. The will-
ingness of users to engage in horse-trades like this with people who
had much-needed computing power was testimony to the dedication of
DESCHALL participants, and a critical part of growing our computing
power.

19

Network

People working on our project—and competing projects—understood
that we were not just trying to find a needle in a haystack, but that we
were attempting to complete a huge computation—maybe the world’s
largest to date. Our “supercomputer” was unique because instead of
having many processors tied closely together, it was made up of thou-
sands of computers that were collaborating via the Internet. Sun Mi-
crosystems had been declaring, “The Network Is the Computer” since
the early 1980s: the slogan was literally true in our case.

It’s important to remember what the Internet connecting all of these
thousands of computers was like in 1997. Ease of use greatly improved
with the first graphical Web browsers from 1993 and 1994 led to rapid
acceptance of Internet technology by mainstream computer users. At
the end of 1994, there were roughly 38 million Internet users; 50.6 mil-
lion by January, 1997; and 101 million by January, 1998. All of those
users were supported by an ever-growing number of computer systems
connecting to the Internet: just over 3 million in 1994 grew to 12.9
million in mid-1996, which grew to 19.5 million in mid-1997.18 Internet
service providers (ISPs) struggled to keep up with the demand in the
face of this growth. Consider that to get a high-speed telecommunica-
tions circuit to connect a few hundred users to the Internet could take
anywhere from thirty to ninety days to come online after an order was
placed. With 1997’s growth, that could mean that just in the time that
the service provider waited for a circuit, the number of users would
have increased anywhere from just under ten percent to twenty-five
percent. In some places, the circuits simply could not be put into place
fast enough to keep up with the demand for connections.

139

140 CHAPTER 19

While the network providers struggled to accomodate the ever-
increasing traffic, DESCHALL participants, like many other Internet
users, felt the effects. Throughout the course of the project, for ex-
ample, we had repeated reports that the keyserver was down. In most
cases, the outage wasn’t a problem with the DESCHALL keyserver or
even its connection to the Internet but simply due to ISPs having more
traffic on the network than the infrastructure could support. Internet
traffic jams were unfortunately common during hours of peak demand.
These hiccups were certainly a frustration for all involved, but the sit-
uation was not entirely unexpected, given the state of the technology
available. When those exchange points were badly overloaded, what
should have felt like one, seamless Internet became a visible amalgam
of different networks; users on one part of the Internet could commu-
nicate with each other, but they would experience delays of minutes or
even hours when trying to get data to users with different providers.

Connectivity problems were not limited to the exchange points. At
the time, many homes and small offices relied on dial-up modems to
get online. Dedicated circuits that provided continuous and high-speed
Internet access were thousands of dollars monthly—and therefore only
economical when serving dozens or hundreds of users. Reliable Internet
connections were essentially limited to a rate of 28.8 kBps per second.
Even then, most ISPs would hang up on connections that had gone
idle for more than a minute or two—unless they were “dedicated dial-
up” lines that cost five times as much as standard dial-up service. If
your ISP hung up on you while you were reading a Web page, when
you clicked a hyperlink, you’d need to wait for your system to dial up
again, hope that you didn’t get a busy signal, and then wait for the
connection to be reestablished. Staying online for most individual users
and even small offices was an arduous task. This was the Internet that
we used as the basis for our distributed DES key-cracking computer.

20

Download

Friday, April 11
Yale University, New Haven, Connecticut

Jensen Harris knew what the problem was right away. He was reading a
request for help posted to the DESCHALL mailing list by Josh Weage,
a mechanical engineering student at Michigan Technological University.
Weage had just heard about the DESCHALL project and decided that
he wanted to help, so he went to the North American Cryptography
Archive to download a client for his personal Pentium machine. He
then decided to run the DESCHALL client software on one of Michi-
gan Tech’s Sun machines running the Solaris operating environment
on a SPARC processor. Like he did earlier in the day, he went to the
North American Cryptography Archive, downloaded a client for the
Solaris/SPARC platform and started it up.

The program wrote some text to the screen, but didn’t seem to be
doing any work. Weage posted what the client wrote to his screen along
with his request for help:

DES Violation Client v1.0
(C) Copyright 1997 the DES Violation Group
gethostbyname: Error 0
Obtaining keyspace from keyserver.des.violation.net.
Error connecting to server.
Waiting 2 minutes....

141

142 CHAPTER 20

Having made the same mistake himself, Harris immediately recog-
nized that Weage was not running the DESCHALL client but the DES
Violation Group client. It was an easy mistake to make: both DES-
CHALL and DES Violation Group distributed their client software
from the same site and both projects’ clients had file names starting
with “DES.” Users just hearing about DESCHALL were bound to get
confused. Most would simply hear about cracking DES keys, go to the
client download site they heard about, and download the first package
in the list that seemed to be about DES key cracking. Such users could
hardly be expected to know that there were multiple projects.

Harris posted a response back to the mailing list, pointing out ex-
actly which file to download, and then arguing the need for a separate
archive strictly for DESCHALL client software. He made the same mis-
take when he first joined the DESCHALL project, and no doubt many
others did as well. All of our efforts to promote the DESCHALL project
could be rendered useless if people heard about our project and then
started running DES Violation Group clients.

Harris didn’t need to argue his case strongly—DESCHALL partici-
pants and coordinators all knew that he was right.

Saturday, April 26, 4:09 P.M.

The Ohio State University, Columbus, Ohio

Justin Dolske finished his program for handling client distribution for
DESCHALL and decided it was ready for testing. He built the software
around the basic requirement that it be easy for new clients to be
uploaded by project coordinators and easy for eligible users to download
the right clients. Part of the challenge for Dolske to teach the software
to differentiate the eligible users from the ineligible ones. To address
these concerns, we employed a combination of policy and technology.

Michael Paul Johnson’s system for the North American Cryptog-
raphy Archive apparently worked for its intended purpose, so Dolske
built a system that would work in a similar, but not identical fashion.

Once Dolske’s system was in place, users wishing to download the
software first had to answer three questions, based on the questions for
the North American Cryptography Archive but slightly modified by
Rocke Verser:

1. Are you a citizen or national of the United States, a person
who has been lawfully admitted for permanent residence in

Download 143

the United States under the Immigration and Naturalization
Act, or a Canadian citizen?

2. Do you agree not to export the DESCHALL client software
in violation of the export control laws of the United States of
America? Or, if you are a Canadian citizen, are you obtain-
ing the DESCHALL client software for end-use in Canada
by Canadian citizens, or return to the United States, in a
manner permitted by Canadian law?

3. Do you assert that you have answered all of these questions
truthfully?

If all three questions were answered affirmatively, the software then
checked the visitor’s IP address to determine if the computer making
the request is actually located inside of the U.S. or Canada. Two dif-
ferent testing mechanisms were used: one based on the domain name
system (DNS) that maps computer system names to IP addresses and
the other based on the data from the registrars that manage domain
names.

The test based on DNS was the simplest case. It had two parts that
worked together. The first part was a DNS query by IP address to find
the name of the user’s computer. The second part was to query the DNS
for the name from the first part to find its IP address. So, if I attempted
to download the software from my computer called gatekeeper, Dolske’s
software would see that my computer’s IP address was 206.98.200.180.
The first DNS test would be to look the name up by address; that would
determine that the name of my computer was gatekeeper.megasoft.com.
The second part would look up the IP address of 206.98.200.180 to
find it name, which would be gatekeeper.megasoft.com. This was a
good test, because it would mean that two different sets of network
managers (those who manage IP address space, and those who manage
the domain name space) either agreed on the name and IP address
of a system or independently delegated naming authority to the same
person, which would also mean that person could name the machines
whatever he wanted.

This DNS test would prevent “spoofing” attacks where managers of
IP address space could make their systems look like they were really
inside of the United States. For example, take a hypothetical company
in France called C’est Vrai with the domain name of cest-vrai.fr, and
a network manager (let’s call her Renée) whose computer is called foo.
Renée might go to the DESCHALL client archive running Dolske’s

144 CHAPTER 20

software and answer “yes” to all three questions on the questionnaire.
Dolske’s software would perform its DNS lookups and see that Renée’s
machine asking to download the software is coming from the address
of 192.168.254.11, which is known as foo.cest-vrai.fr. The second part
of the test would show that foo.cest-vrai.fr really is 192.168.254.11. At
that point, Dolske’s software would then notice that the domain name
is part of “.fr,” the country code for France—and display this message
for Renée:

Error code: Export check 1 failed.
Sorry. Based on your answers and/or other information, you

are not eligible to download the DESCHALL client software. If
you believe you have received this message in error, please mail
us a note containing:
• The time and day you received this denial (so that we may

check why the server denied you access).
• The hostname of the computer you were using.
• A short note explaining that although you double-checked

your answers on the form, you should still have access and
why.

Being clever (and somewhat naughty, as network administrators
frequently are), Renée might decide that Dolske’s DESCHALL client
archive software could tell she was coming from France based on the
mapping of IP addresses to domain names, and that she could work
around that since she had authority to change the address-to-name
mappings. Renée would want change the address-to-name mapping so
that 192.168.254.11 gives an answer that suggests it is in the U.S.,
perhaps foo.cest-vrai.us.

After making such a change, Renée could go back and try again.
This time through, Dolske’s software will look up the address and get
foo.cest-vrai.us. The second part of that DNS test would try to find
the address for foo.cest-vrai.us, which would not exist. Renée would be
denied access a second time, seeing the same message with a different
error code: “Export check 2 failed.” The only way that Renée would be
able to get around this system would be to find someone in the U.S. or
Canada who was willing to modify their own DNS records to allow her
machine to look like it was part of their network, and this was unlikely.

If double-checking in the DNS showed us that the computer was part
of a domain in the U.S. or Canada, Dolske’s software would present a

Download 145

list of clients that could be downloaded—but the user only had fifty
minutes before the page wouldn’t work anymore and the questionnaire
and tests would have to be performed again. The domains that were
obviously in the U.S. or Canada were “.edu,” “.gov,” “.mil,” “.us,” and
“.ca.” Other domains, like “.org,” “.com,” and “.net” could be from
anywhere, so for these cases, Dolske’s software would go to a second
test: the registrar for Internet domains.

Return to the example of me trying to get the software from gate-
keeper.megasoft.com. Since a “.com” domain could be from anywhere
in the world, Dolske’s software would query the domain name registrar
to determine the address of the domain manager. The registrar would
show that “megasoft.com” belonged to a company in Freehold, New
Jersey, clearly inside of the U.S., and therefore grant me access. Any-
one from Canada or any of the fifty states would be granted access. Not
knowing whether allowing a download to a U.S. territory (like Puerto
Rico or the U.S. Virgin Islands) counted as “export” under the regula-
tion, Dolske decided to play it safe and deny requests from those areas.
The rest of the world, of course, would be denied.

The system wasn’t perfect, but since we were working on a project
that would last months (not years) and people requesting the client
software didn’t know how we were determining exportability, it did
serve its purpose. Plenty of people from ineligible areas of the world
did try to download our client software and were denied. To this day, I
know of no case where Dolske’s software allowed a download incorrectly.

Sometimes, the system refused to grant access for users who were
eligible to download, which is the reason why the form had a link on
it to send email to Dolske and me. Anytime that we got a request
from someone who said he should have access, we would investigate,
using basically the same methods as the software—looking at the IP
addresses and system names in the headers of the email request that we
received for additional confirmation. If the user was incorrectly denied
access, we would reply with a special password that could be fed to the
system that would allow the user to download the software. The user
could then answer the questions and put in the special password to be
granted access to the client archive.

DESCHALL key-cracking clients were available for about thirty-six
different platforms at this time, covering systems running Windows,
OS/2, many different variants of Unix, as well as a wide variety of
processor types. Within the week, new clients would be released for

146 CHAPTER 20

Macintosh systems that were optimized for the PowerPC 601 and 604
processor models. Users could download any number of clients once
they had been approved, so users with many different system types
could go through verification once and then download all of the appro-
priate clients without needing reverification.

Thursday, May 1
Megasoft Online, Freehold, New Jersey

Justin Dolske and I both ran official DESCHALL client archives—using
exactly the same software, and coordinated with each other so all of
the DESCHALL client software for download was identical. For the
first few days of operation, we advertised Dolske’s distribution site at
Ohio State as the “primary” and mine at Megasoft as “secondary,”
available in case the primary wouldn’t work for some reason. After
feeling comfortable that the system was working properly and seeing
the kind of load that the system was putting on the underpowered
computer Dolske was using at Ohio State, we decided to reverse roles,
making my newer system at Megasoft act as the primary site, with
Dolske’s site acting as secondary.

We announced that the testing period was over, and the DES-
CHALL project had a new method for client distribution. While al-
ways grateful to Michael Paul Johnson for hosting our software on his
North American Cryptography Archive from the earliest days of the
effort, DESCHALL would now only be available through its own client
distribution sites. No more confusion regarding which downloads were
for which projects.

Although it was frustrating to have to glean participants from a pool
of two countries, we felt we were making good progress nonetheless.
Just as we were passing the point of having two percent of the total
keyspace tested, however, one of our participants gave many of us cause
to wonder just how much the cryptography regulations limited our
efforts.

Download 147

Sunday, April 27, 1:15 p.m.
University of Alberta, Edmonton, Alberta

Fourth year honors computer science student Howard Cheng was check-
ing on our overseas competition and reading the SolNET project’s Web
site. Cheng read a figure that prompted him to send an urgent message
to the DESCHALL mailing list: SolNET was claiming a spike in its
search rate up to 1.5 billion keys per second, while our most recent
statistics were showing only 1.16 billion keys per second. He correctly
observed that SolNET had an advantage in being able to recruit par-
ticipants from all over the world. SolNET seemed to have support from
easily a dozen different countries, while DESCHALL, working under re-
strictions on cryptography export, was limited to the U.S. and Canada.

Not everyone was alarmed by the news. Justin Dolske observed that
our rate had actually increased a bit to 1.25 billion keys per second.
Guy Albertelli also noted that SolNET was reporting peak rates, while
we were reporting the average number of keys tested over a 24-hour
period.

Furthermore, the reason behind the sudden increase in SolNET key
testing speed was no secret. It wasn’t even the result of an effort to
recruit a large number of new participants. A single site, a university
in Taiwan, had started running 2000 SolNET clients over the weekend.

I quickly sent a message to the mailing list, reminding everyone that
our project had only really taken off in April. Our firewall-traversing
system had just been brought online and our client distribution system
had just been improved. Our best answer to any challenges would be
to recruit more people to run clients while the core DESCHALL team
continued to improve the system architecture and develop faster clients.

But where would we find more clients? Looking at really large
companies—AT&T, for example—reminded us that there were many
tens of thousands of desktop systems available in the U.S. and Canada.
If we could harness any significant part of that power, we could sustain
our amazing growth for quite some time. Considering that the previous
week had seen a 74 percent increase in speed up to a rate of 1.2 billion
keys tested per second with 3000 participating machines, the potential
seemed staggering.

By Tuesday, April 29, real comparisons were made between Sol-
NET and DESCHALL, and an online dialog began as users from both
camps debated the importance of the two organizations’ statistics. One
SolNET participant observed on its mailing list that DESCHALL was

148 CHAPTER 20

running at twice the speed of SolNET, that connectivity to our key-
server was better, and their effort had not grown significantly since
their big boost over the previous weekend from the Taiwanese univer-
sity. In fact, they had network and server problems that flattened their
search rate.

Jeremy Bradley, a SolNET participant from Bristol University in the
UK, asserted on the SolNET mailing list that DESCHALL had three
“major weaknesses:” a single keyserver with an Intel 486 processor (to
which he added, “I say no more,” as if the computational power of
the keyserver had anything to do with the rate at which the keyspace
would be searched), difficulty with statistics (as evidenced, he asserted,
by estimates being reported instead of precise figures—something we
actually had not done since the middle of March), and our modest 3000
participating client machines versus SolNET’s 15,000 clients. Bradley
concluded with a prediction that SolNET would overtake DESCHALL
within a week or two.

Adam Haberlach at Oregon State University responded with a mes-
sage posted to the DESCHALL mailing list and copied to Bradley.
Therein, Haberlach pointed out that our 486 keyserver was working
just fine and that we were more interested in computing the right key
than computing statistics. (In truth, our computers were busy search-
ing keys, leaving us to talk about statistics; we could argue that other
projects were busy computing statistics, leaving them free to talk about
searching keys.) Haberlach also argued that we actually had closer to
5000 clients—but even with one third the number of clients, we were
staying ahead of SolNET because our software was so much more effi-
cient.

Whether DESCHALL was being hindered by being restricted to
the U.S. and Canada had already been considered several times by this
point, and we knew that many contest participants overseas would run
the DESCHALL clients if they could. With competition from SolNET
becoming more intense, more participants were more urgently needed.
Because SolNET was able to recruit from the entire world—including
North America, since EAR, like ITAR before it, applied only to ex-
port of clients; people in the U.S. could import any cryptography they
wanted—we knew that we needed to continue in our recruitment efforts
and improve our clients’ speed even further.

Iowa State University student Mikael Brown wrote to the DES-
CHALL mailing list, musing that there would be some risk in a foreign

Download 149

project successfully answering the challenge. While the success of a for-
eign group like SolNET might show the futility of attempting to control
crypto export to a technocrat, Brown noted that lawmakers had a ten-
dency to view things from a very different perspective. He didn’t need
to elaborate, because many of members of the cryptographic commu-
nity had long viewed legislatures and their restrictions on cryptographic
products as irrelevant to the world around them. Many believed that
the restrictions did nothing to stop the spread of cryptography to hos-
tile entities abroad, but only prevented law-abiding citizens from being
able to address global market needs. The danger Brown worried about
was that if a foreign project like SolNET actually won the challenge,
lawmakers might even attempt to increase the restrictions on cryptog-
raphy.

What the future of this type of legislation would be was debated
vigorously during the RSA contest. The discussion was not new to
the contest, however, and was part of the arguments advanced in the
Crypto Wars, the public policy debate on cryptography.

We could clearly see that U.S. policy disallowing the general export
of cryptographic software was negatively impacting DESCHALL’s abil-
ity to grow and helping SolNET to close the gap in performance.

Once again, we knew we urgently needed to get the clients running
on more machines, and we were going to have to grow our ranks by
appealing to a larger set of of users based in the U.S. and Canada.

Monday, April 28, 2:01 P.M.

The Ohio State University, Columbus, Ohio

DESCHALL coordinators were keenly aware of the challenges before
us and were anxious to help our enthusiastic group of participants get
more involved in the project. To that end, Justin Dolske composed a
message to the DESCHALL mailing list simply entitled, “Things you
can do.”

Among the things Dolske enumerated were an improved front-end
for the key-cracking clients, one that would allow for offline processing
and better support for automatic stopping and starting so the client
software would only work when no one was using the machine. This first
request called for programmers who were familiar with the C program-
ming language and who would be able to develp clients on Windows
and Unix systems. The programmers did not need a particularly strong

150 CHAPTER 20

knowledge of DES since those requested components would not involve
the key-testing parts of the client software.

Dolske also described a number of ways that someone might be
able to enhance our progress graphs and statistical reports. Dolske was
particularly interested in seeing someone develop a program that would
allow participants to build queries of progress on particular groups
of participants, such as all of the clients from a specific company or
university, a feature that required more flexible system than the present
Graph-O-Matic. Dolske finally called for people who could help us with
publicity. We needed participants who could distribute press releases
and explain the importance of the DESCHALL project to the media.

At this point in the project, DESCHALL’s advantage of fast clients
tied together with a capable and well-managed architecture was show-
ing itself. We intentionally focused on recruiting new participants and
enhancing core functionality instead taking the advice of some partic-
ipants who wanted us to add new features and start cooperating with
other projects. Rocke Verser decided—and other developers agreed—
that having another set of client software, built and maintained by a
different group of developers (from outside of the U.S.) for working
with the DESCHALL keyserver would be a horrible distraction from
what we did well, and that would probably not be possible to manage
effectively. Dividing up the keyspace ahead of time and having, for ex-
ample, SolNET search part, while DESCHALL searched another part,
could be done if we had worked together from the beginning, but could
have proved difficult once the projects were already up and running.
Karl Runge’s April 24 calculations about expected search time showed
that the amount of return that we would have from working with an-
other project was minimal, especially in light of the additional effort
that would be required to pull it off.

21

Short Circuit

Thursday, April 10, 12:41 A.M.

Megasoft Online, Columbus, Ohio

Mike Heroux at the University of Washington asked a good question.
He wanted to know why we didn’t write a client in Java so that it
could run on any type of computer, instead of spending so much time
and energy in platform-specific versions. Answering on the DESCHALL
mailing list, I discussed the tremendous performance advantage that
some implementation strategies had over others. In particular, I pointed
to the speed of the 32-bit Pentium clients versus to the clients for
more powerful 64-bit processors. I observed that one of the best ways
to increase speed was to optimize the client heavily for the specific
processor in use, as Verser had done with the Intel clients. Another
option I mentioned was the use of the “bitslicing” method described
in a recent paper by Israeli cryptographer Eli Biham.

In typical key-search algorithms, the computer’s processor will oper-
ate as it normally does—taking blocks of data and performing a series
of functions on them. Various techniques were available for reducing
the amount of work needed to test a key to see whether it was the right
key to unlock the block of data. Biham’s bitslicing key-search method
took a rather different view of the problem.

Rather than treating a processor as a single component that works
on numbers of a particular size (say, 64 bits), the processor is treated as
64 independent 1-bit processors. Thus, rather than the 64-bit proces-
sor changing from instruction to instruction through the course of the
processing, each “independent 1-bit processor” performs the same in-

151

152 CHAPTER 21

struction at each step, but with a different bit each time. This method
can be used to reduce the total number of steps needed to test each
key, resulting in a dramatic increase in speed. The end result is that
roughly 300 instructions are needed to compute DES, where previously
over 600 were used in other fast implementations.

This was the theory, at least. It would be up to implementors to
prove just how much faster the technique would be.

Monday, April 18, 11:52 p.m.
Carnegie Mellon University, Pittsburgh, Pennsylvania

Darrell Kindred, a Ph.D. candidate at Carnegie Mellon University, had
spent the weekend implementing Eli Biham’s bitslicing method, be-
cause he was sure that if our clients could use the method, we could
increase our key search. DESCHALL’s code for the Intel processors
was already the fastest of all known DES key search software thanks
to Rocke Verser’s tremendous optimizations for that platform. If Kin-
dred could make bitslicing work for DESCHALL’s clients on the more
powerful 64-bit processors, we could get another boost in overall search
speed. We would need this help if we were to stay ahead of SolNET,
which was hard upon our heels. After performing some preliminary
tests, Kindred sent his results to some DESCHALL coordinators. The
results were very impressive.

Kindred’s tests were run on three different machines. The first test
was on a Digital Equipment Corporation (DEC) AlphaStation 255/300,
with the 21064A microprocessor running at 300 MHz. As shown in Ta-
ble 7, Kindred’s bitslice client ran 106 percent faster than the available
DESCHALL client for that system, 145 percent faster than the DES
Violation Group client, and 177 percent faster than the SolNET client.
Kindred also compared the speed of his software with bitslicing software
from Australian programmer Matthew Kwan, who also wrote some fast
DES functions.

Kindred bitslice software 1182k keys/sec
DESCHALL client 574k keys/sec
DES Violation Group client 483k keys/sec
SolNET client 427k keys/sec
Matthew Kwan’s bitslice software 361k keys/sec

Table 7. Bitslice Performance on the 300 MHz DEC Alpha Processors

Short Circuit 153

The next test was performed on a DEC AlphaStation 600 5/333
with an Alpha 21164 processor running at 333 MHz. Table 8 shows
that increases there were also significant: 135 percent faster than the
existing DESCHALL client, 175 percent faster than the DES Violation
Group client, and 216 percent faster than the SolNET client.

Kindred bitslice software 2140k keys/sec
DESCHALL client 907k keys/sec
DES Violation Group client 775k keys/sec
SolNET client 677k keys/sec
Matthew Kwan’s bitslice software 1720k keys/sec

Table 8. Bitslice Performance on the 333 MHz DEC Alpha Processor

Finally, Kindred tried his code on a different vendor’s system, one
from SGI, long known for their hot graphics computers. On an SGI
Onyx with a 194 MHz R10000 processor, Kindred’s bitslicing code ran
74 percent faster than the existing DESCHALL client, 157 percent
faster than the DES Violation Group client, and 142 percent faster
than SolNET’s client. See Table 9.

Kindred bitslice software 1430k keys/sec
DESCHALL client 823k keys/sec
DES Violation Group client 555k keys/sec
SolNET client 589k keys/sec
Matthew Kwan’s bitslice software 753k keys/sec

Table 9. Bitslice Performance on the 194 MHz MIPS R10000 Processor

DESCHALL already had the fastest clients, but Darrell Kindred
found a way to get them to run even faster. These improvements
were significant, because they showed that we could literally double
our speed on these sophisticated 64-bit processors like the Alpha and
R10000. Every 64-bit client being upgraded to a client using Kindred’s
software would be like recruiting another new machine. Pentium sys-
tems were still by far the largest contributor of processing power, but
the improvements in the 64-bit system clients would have an immediate
impact.

154 CHAPTER 21

Meanwhile, DESCHALL started getting more publicity. Communica-
tions Week ran a blurb about DESCHALL in its “Security Monitor”
column in the April 28, 1997, issue. Columnist Tim Wilson wrote:

So far, about 2500 computers already are working on [cracking]
the [DES-encrypted] message in a cooperative, “brute force”
effort to try every possible key. More than 72 quadrillion possi-
bilities exist, but the group is already trying 50 trillion keys a
day, and more participants are joining in all the time, accord-
ing to Rocke Verser, an independent consultant who developed
the cooperative software in his spare time. At its current rate
of growth, the group could decode the message in as little as
two months, Verser said. Opponents of these export restrictions
hope that if DES is cracked, the federal government will rethink
its regulatory policies.

Wednesday, April 30
Virginia Polytechnic Institute, Blacksburg, Virginia

Blacksburg Virginia, which had been written up in “USA Today” in
the summer of 1996 for being “the most wired town in the world,” (as
determined by the highest number of personal computers per capita)
had a local paper, the Roanoke Times. That newspaper ran a full-length
feature article on DESCHALL in its April 30, 1997 issue, covering the
points we made in our press release and focusing on the contributions
of local participants, including Alex Bischoff, whose picture was also
printed with the article.

Also on April 30, DESCHALL got attention on the popular Macin-
touch Web site, a daily collection of Macintosh newsbits that thousands
of people hit each day. In response to the recent release of new Mac-
intosh clients, Jim Doolittle, a student at the University of Illinois at
Urbana-Champaign tipped off the Macintouch site operators. The Mac-
intouch site then included news about DESCHALL and provided a link
to the client archive, starting a steady stream of new participants over
the next few days, with the Macintosh clients being download several
hundred times.

Thanks to the publicity—including media, advertising in online sig-
nature blocks, and word of mouth—not only were we searching more
keys every day, but the mailing list also was becoming more active.

Short Circuit 155

After the list bean receiving and distributing about thirty messages
daily, some participants who really only wanted to see announcements
started to ask for a way to keep up with the project without seeing
everything that every project participant posted.

To offer some kind of reprieve, I opened a separate mailing list
strictly for announcements relating to the project, including the re-
lease of new clients and important notes about any critical part of the
DESCHALL architecture. The new list went live on April 30.

Beginning in late April, participants would occasionally write to the
DESCHALL mailing list that they noticed delays when their clients
would check in with the keyserver. Others were carefully watching the
size of the blocks that the keyserver was handing to the clients for
processing and reporting their observations to the mailing list. From
these reports, some participants attempted to deduce the status of
the keyserver. A few participants even started talking about “when
DESCHALL adds a second keyserver,” apparently assuming that DES-
CHALL would follow SolNET’s footsteps in the addition of keyservers
to its overall architecture.

Rocke Verser posted a message to the mailing list on April 30, ad-
dressing the question of the keyserver’s status. “The keyserver is alive
and well,” wrote Verser. He continued:

Up until today, it has generally been running at about twenty
percent CPU. Today, it’s probably between thirty and fifty per-
cent. I won’t know until the end of the day if that translates
to more keys being checked or whether there were more pack-
ets being dropped on the Internet, requiring the server respond
multiple times to the same request.)

As I sit here, I can watch the “activity” light on the hub
blink in step with the server’s console log. There is no percep-
tible delay between the server receiving packets and the server
responding to those packets.

The server is easily handling over 4000 clients, and could
comfortably handle 4000 more. Since I expect more than 8000
clients, plans are in the works for an additional server. But I
emphasize, we don’t need another server, yet!

156 CHAPTER 21

In an emergency, some minor changes to the keyserver could
be made to increase the size of the average keyspace. Also, a
“backup” keyserver is configured and can be brought online on
very short notice if it becomes necessary.

Some have asked why SolNet is already using multiple
servers. I can’t answer the question with any certainty. How-
ever I’ll note that DESCHALL uses UDP [Unreliable Datagram
Protocol] packets. SolNet by contrast uses TCP [Transport Con-
trol Protocol] packets. TCP has advantages for most protocols.
But for this application, TCP is much more resource intensive
and requires several low-level packet exchanges to accomplish
what a single packet exchange in UDP can accomplish.

Questions about the keyserver subsided—at least for the time being.

Several hours before Verser’s comment on the keyserver, our Australian
participant, Andrew Glazebrook mentioned that he had a server avail-
able to use as a distribution point for DESCHALL software outside of
the United States and asked if any of the official U.S.-based Web sites
would provide links to his site for users outside of the U.S. and Canada.
I quickly responded that while we could do nothing to stop him from
doing anything that he wanted, we would not likely be able to provide
links from any “official” Web sites to his. Even though we recognized
the ultimate futility of trying to keep the software in the country, we
had no intention of skirting the regulation while it was still in effect.
Linking to a site where the software was distributed without regard to
the regulation wouldn’t be exporting the software, but a zealous pros-
ecutor might find a way to argue that we violated “the spirit of the
law,” and none of us could begin to guess where that would wind up.

Glazebrook never did say how exactly he got the software, but we
simply assumed that someone who could download the client, did, and
then exported the software.

On May 1, Glazebrook posted to the DESCHALL mailing list that
his site was distributing the DESCHALL client software for Intel pro-
cessors. In that note, he explained his rationale a bit further: he was
running OS/2 and SolNET simply didn’t have an OS/2 client, so he

Short Circuit 157

figured that he could help other potential participants in the same
predicament by having his own distribution site.

While some thought the idea was a good one, Darrell Kindred posted
a note of caution:

It seems quite possible to me that it will cause trouble for Rocke
personally and/or the DESCHALL effort as a whole. Many of us
hope to influence U.S. export policy through this contest, and I
don’t think it’s going to help our case if the contest participants
get portrayed as smugglers.

If you’re outside the U.S. and Canada, join the SolNET ef-
fort. We’re all working toward the same goal.

As it turned out, the SolNet OS/2 client was released the day after
Glazebrook posted the announcement of his Australian download site
on the DESCHALL mailing list, but it was much slower than the OS/2
client we had developed. Ronald Van Iwaarden at Hope College in Hol-
land, Michigan tried the SolNet OS/2 client once it was released, and
reported that it tested 270,000 keys per second, while the DESCHALL
client’s 480,000 keys per second.

22

DESCHALL Community

Though DESCHALL had success in getting very fast client software
developed, we still hand plenty of challenges to overcome. A real sense
of community started to develop among DESCHALL participants as
we worked through these obstacles and many users helped each other
rather than waiting for one of the project coordinators to comment.

One situation where participants were able to help one another in-
vovled tackling the issues faced by users who were connecting to the
Internet via a dial-up modem. Reports filtered in from participants on
dial-up machines. These participants found that their ability to con-
tribute to the effort was hindered, sometimes significantly. If computers
running the DESCHALL clients had to sit idle for hours, waiting for an
active connection to the keyserver so it could report their activity and
to get more work from the keyserver, any benefit realized by having
extremely fast clients on those machines would be lost.

To combat this problem, many of the people running clients on these
machines decided that they would simply remain connected for long
periods of time. Unfortunately, this wasn’t always an option. Many ISPs
at this time oversold their capacity, since not all users who subscribed
to the service would be online at once. As a result, an ISP could have
30,000 subscribers, with the capacity to serve only 15,000 at any one
moment.

To prevent users from tying up service capacity unnecessarily by
staying online continuously, ISPs would detect and disconnect users
when the line they were using remaind idle for some period of time—
anywhere from ten minutes to as little as one minute. Generally the rule
of thumb was that the more oversold the ISP, the less time it would
allow its users to remain idle online.

159

160 CHAPTER 22

Colin L. Hildinger, Games Editor at OS/2 e-Zine, posted his solu-
tion to the problem. Hildinger configured his e-mail program to check
for new mail every five minutes, thus staying under his ISP’s timeout
period while being permanently connected. By doing this, Hildinger’s
DESCHALL client was free to exchange information with the keyserver
whenever necessary.

Milton Forte II, another OS/2 user, suggested the INJOY dialer,
a program which would allow the system to use a “dial on demand”
feature. Clients using this feature would be able to run DESCHALL
normally even after their ISP dropped the connection because INJOY
would automatically reconnect with the ISP when the client needed to
communicate with the keyserver, just like the freeDUM program for
Windows mentioned on the mailing list three weeks earlier.

Discussion on the DESCHALL mailing list on May 1 showed that
freeDUM worked for only a few participants, leaving most to find more
creative ways to keep their Windows systems in communication with
the keyserver. Jason Gmoser, a participant from Florence, Kentucky,
decided that he would just stay connected by having his system initiate
a little bit of network traffic every five minutes. It worked well, but after
having been connected for about seventeen hours, his ISP disconnected
him. When Gmoser’s system reconnected, he got a message that despite
being been online all that time, he had only downloaded about five
megabytes of data, thus indicating that he was holding the line, rather
than actually using it the whole time. After getting that message from
his ISP, he decided that he needed to find another approach.

Among DESCHALL users, there was no shortage of solutions to
any problem—administrative or otherwise. Another participant work-
ing from home, Matt Clauson, quipped that Gmoser’s problem could
be solved by making a mirror of the entire software archive at Wash-
ington University—the largest collection of free software on the planet.
Over a modem, the process would literally take months. In any case,
it would prevent his ISP from complaining that he wasn’t downloading
enough during the time he was connected.

Still another participant working from home, Andrew James Alan
Welty, suggested that the strategy of checking e-mail would be more
effective if Gmoser mailed himself a twelve megabyte file. At 28.8 kbps,
the upload to the mail server would take about an hour, and the down-
load on the way back from the mail server should take another hour.

DESCHALL Community 161

Still others suggested a simple change to a different ISP with sufficient
capacity to handle a dial-up customer who was always online.

Participants frequently used the mailing list as a forum for all sorts of
DESCHALL-related issues, including announcements of their own doc-
umentation and clever solutions to various problems before them. Stu-
art Stock, a systems and security administrator at Gundaker Realtors
in St. Louis posted his “DESCHALL Linux Bootdisk Mini-HOWTO”
on May 1.

Stock’s Mini-HOWTO was a brief, technical document describing
how to create DESCHALL “bootdisks” along the lines that Rocke
Verser described in his April 10 message to the mailing list. The Mini-
HOWTO document included configuration strategy hints as well as
technical details, thus allowing system administrators to use, say, a
network of fifty Windows 3.1 machines that had been booted from the
DESCHALL Boot Disk to test keys all night long. The Mini-HOWTO
even showed how the system would be able to run until it was time for
work again, at which point the system would again reboot, but since
the bootable floppy disk had been removed (immediately after starting
the client), the system would start as usual.

The whole process was designed to be so discreet that system users
never had any idea that the systems they were using during the day
were hard at work on DESCHALL overnight. While this was no dif-
ferent from what system administrators were doing on university cam-
puses and large companies around the country, it was a significant step
forward because Windows 3.1 machines had not previously been able
to run the DESCHALL clients. Stock’s Mini-HOWTO showed partici-
pants how to bring DESCHALL to a whole new group of computers.

By this time, we had clients for nearly every platform in common use,
including Windows 95 and NT, Macintosh, OS/2, Linux, and nearly
every type of Unix workstation and server. Users of Sun’s new Ultra-
SPARC workstation and servers had just gotten a new client in the

162 CHAPTER 22

past week, bringing their performance from 640,000 keys per second up
to 700,000 keys per second.

Users of the 64-bit systems, such as Sun’s UltraSPARC, had not yet
seen Darrell Kindred’s work on the bitslice clients. Even as Kindred
sent the incredible results of his testing to DESCHALL coordinators,
users clamored for more improvement in the performance of the client
software built for systems with non-Intel processors. While our clients
were faster than those of the other projects, participants with expen-
sive engineering workstations were disappointed to see their key testing
rates compare so poorly to users with Intel-based PCs. The comparison
wasn’t really fair, since the Intel clients were so heavily optimized (see
Chapter 13), but without any other means to compare performance,
the users grew frustrated.

As Darrell Kindred continued his work on the bitslicing clients, he
promised mailing list readers that he would explain in detail how the
method worked, but not until after he finished his work and the new
bitslicing clients were available for download.

23

Proposal

Wednesday, April 30
Capitol Hill, Washington, DC

Participants in projects like DESCHALL, SolNET, and DES Violation
Group could easily get lost in technical minutiae regarding searching
algorithms, architectures, and key sizes. While the DESCHALL team
and our friends working on competing projects raced to see who could
build the fastest and largest DES key searching system in the world,
legislators in Washington were battling for the future of public policy
on cryptography in the United States and abroad.

In the U.S. House of Representatives, the Security And Freedom
through Encryption (SAFE) Act, designed to liberate cryptography,
was making progress. It had been debated extensively and, despite
the Clinton administration’s objections that its electronic surveillance
efforts would be hindered, the SAFE Act passed its first hurdle in a
Judiciary subcommittee—unanimously. (See Chapter 7 for discussion
of the bills and their rationale.)

The U.S. Senate version of the legislation was known as Pro-CODE.
It was scheduled for a vote in the Commerce Committee on May 1. After
seeing the SAFE Act’s success, Conrad Burns, a Republican senator
from Montana, led the bill’s sponsors in delaying the vote for a month
while they assessed their newly strengthened negotiating position.

“I think the administration sees the handwriting on the wall,” said
Burns’ press secretary, Matt Raymond, to CNET News. Pro-CODE
sponsors hoped that any changes that might further increase the bill’s
strength could be made by early June, at which point the bill would

163

164 CHAPTER 23

be ready to go to the full Senate for debate, and possibly even a vote.
Helpfully, the Senate’s majority leader, Republican Trent Lott of Mis-
sissippi, was a cosponsor of Pro-CODE.

Not everyone could read handwriting on walls, however. Less than
two weeks later, an outline of a new bill by Senators John McCain (R-
AZ), Bob Kerrey (D-NE), John Kerry (D-MA), and Earnest Hollings
(D-SC) appeared on the popular Fight-Censorship mailing list. Known
as the “Secure Public Networks Act,” the bill was intended to give
government officials access to information—even if encrypted. The bill
required that all Americans using cryptography submit a copy of their
encryption keys to a government-approved third party. If a government
agency present the third party with a warrant for a given key, the third
party would turn over that key to the government. Thus the McCain-
Kerrey bill allowed the government some access to Americans’ private
information, while the other bills essentially restricted it.

DESCHALL was not only racing other groups participating in
RSA’s DES Challenge contest or fighting for a stronger replacement
for the U.S. government standard for data encryption. For many par-
ticipants and observers, DESCHALL was about asserting the right of
the people to use cryptography freely. With the debate in Washington
heating up, a new sense of urgency would drive our activity through
the month of May.

24

In the Lead

Friday, May 2, 7:18 P.M.

MIT Campus, Boston, Massachusetts

Undergraduate student Ethan O’Connor started taking a look at Sol-
NET statistics and noticed that their site was reporting 2 billion keys
per second, with roughly 4000 hosts reporting in per half-hour. Using
that as the basis for his calculations, he showed that SolNET was in-
creasing in its overall search speed faster than DESCHALL. If progress
for both projects remained constant, SolNET would pull ahead of DES-
CHALL in overall search speed within the week.

Meanwhile at Ohio State, Justin Dolske performed his daily checkup
on our progress, as well as that of our friends at SolNET and DES
Violation Group. We had not paid much attention to the DES Viola-
tion Group since the mid-April comparisons of our respective statistics
pages that showed them lagging so far behind.

Instead of finding the group’s latest progress statistics, Dolske saw
a note that read:

Due to lack of support, resources, and time to invest, the DES
Violation Group has become inactive. With alternatives such
as SolNET going more than ten times faster, our effort is just
“wasting CPU cycles,” to quote an e-mail we have received. We
would like to thank all those who devoted time, effort, and CPU
cycles to our cause.

Some of the DESCHALL participants speculated that with DES
Violation Group falling so far behind and then seeing that SolNET was

165

166 CHAPTER 24

gaining on DESCHALL, DES Violation Group coordinators opted to
throw their support behind the SolNET effort. We did think it strange
that a U.S.-based project would not throw its support behind the other
U.S.-based project—and front-runner!—but we were too busy testing
keys to waste much time wondering why we didn’t get the endorsement.
Although we would have liked the DES Violation Group coordinators to
recommend that their members join us, we knew that those members’
CPU cycles were not lost to us: we were just going to have to recruit
them more actively.

While we contemplated the potential impact of reducing competi-
tion in the DES Challenge, Nelson Minar at MIT drew our attention
to an unwelcome development in the competition to recruit project
participants.

Instead of waiting for the DES Challenge to be solved, Mike Driscoll,
an engineering student at Colorado School of Mines, was organizing an
effort to respond to a different contest—RSA’s 1997 Secret Key Chal-
lenge for the 56-bit version of the RC5 cipher. (See page 44 for the
announcement of the contests.) RC5 was not an interesting target be-
cause of what it was used for (most commonly, for securing Web trans-
actions), but because attacks against RC5 were a useful way to show the
relative strength of different key sizes. As a variable-key-length cipher,
RC5 lets the implementor choose the desired key size between 40 and
128 bits. But there wasn’t any particular importance to RC5; if 56-bit
RC5 wasn’t strong enough for a particular application, the implemen-
tation could easily be made 64 times stronger with a relatively simple
configuration change to use 128-bit keys. With DES, no such reconfig-
uration was possible; it was hardwired to a 56-bit key—any variant to
increase strength would require multiple keys, which introduced still
other problems.

DESCHALL participants and coordinators were anxious to demon-
strate the weakness of 56-bit keys in general, but we were disappointed
that Driscoll was proceeding before waiting for the DES Challenge
to finish. Although the disappearance of DES Violation Group would
make more participants free to participate in either DESCHALL or Sol-
NET, the appearance of Driscoll’s group to break a 56-bit RC5 message
by brute force, known as Bovine, would pull some potential participants
away from the DES Challenge and to the RC5 Challenge.

Although DESCHALL was still going strong, Driscoll’s project
raised a couple of concerns. First, if we were to really prove the fal-

In the Lead 167

libility of DES, we needed to crack it quickly to show that DES was
too weak for practical use. A secondary problem would be the way that
an 56-bit RC5 crack taking place before a DES key crack would play
in the media. Imagine the headline, “56-bit Cryptography Cracked;
Actual Standard Still Safe.” While we could probably argue that the
Bovine project demonstrated the weakness of 56-bit keys, the point
of our project was to demonstrate how the actual standard itself was
vulnerable to brute-force attacks.

DESCHALL participants understood these issues, so we had no con-
cerns about them switching to the other contest. We did worry that
potential participants would hear about the Bovine project and choose
to participate in it instead of joining the ranks of DESCHALL.

25

Recruiting

Friday, May 2
Megasoft Online, Columbus, Ohio

While it was tempting to worry, it was too early to tell whether the
Bovine groupd would have a negative impact on DESCHALL, and
frankly, I had other, more urgent matters to address. To explain the
purpose and importance of the DESCHALL project and to help peo-
ple get started participating, I began to compile a list of frequently
asked questions and put them into a document along with the answers.
Participants who joined the effort early tended to understand cryp-
tography and computing technology pretty well, but as we got more
attention through the media, we knew that we could not count on par-
ticipants just joining us to have the same technical background. The
“Frequently Asked Questions” document was intended to allow people
who had heard about DESCHALL or the RSA DES Challenge to find
out more information about the effort, and decide if they wanted to
participate and how they could do so.

Finally, as the work week came to an end, I finished the first release
of the document and put it into place.

During our discussions about the disappearance of DES Violation
Group, the acceleration of SolNET’s key testing rate, and the possible
implications of a premature effort to recruit people to the 56-bit RC5
effort, something was quietly happening: DESCHALL experienced a
significant increase in its overall key testing rate.

169

170 CHAPTER 25

 0
 20
 40
 60
 80

 100
 120
 140
 160

M
ar

 1
5

M
ar

 2
2

M
ar

 2
9

A
pr

 0
5

A
pr

 1
2

A
pr

 1
9

A
pr

 2
6

Fig. 6. Keys Tested per Day, in Trillions

The morning of May 3 turned
out to hold good news for us.
The release of the of the previous
day’s statistics showed that we
had started testing the keyspace
much more quickly.

Nelson Minar also started
paying attention to the standings
of various teams of participants,
seeing how MIT was doing by
comparison to some other univer-
sities.

Around the same time, Colin
Hildinger compared our most re-
cent statistics with SolNET’s.

While we had searched two-tenths of one percent of the DES keyspace
the previous day, SolNet managed to search two-and-a-half-tenths of
one percent in a nearby twenty-four hour period. Because of delays
in getting statistics calculated and published, we wouldn’t know until
the following day—May 3—how exactly we would compare. But it was
obvious that DESCHALL and SolNet were running neck and neck.

Keys Clients Domain / University

17.0 Trillion 393 uiuc.edu,
University of Illinois at Urbana-Champaign

7.3 Trillion 372 orst.edu,
Oregon State University

5.9 Trillion 191 mit.edu,
Massachusetts Institute of Technology

5.7 Trillion 203 mtu.edu,
Michigan Technological University

5.4 Trillion 187 cmu.edu,
Carnegie Mellon University

Table 10. Comparison Among Universities, May 2

Although SolNET was closing on our key testing rate, we were still
far ahead in terms of total keys tested and our clients were so much
more efficient than the SolNET clients. There just wasn’t any way for

Recruiting 171

either project to back down at this point—SolNET users outside of the
U.S. couldn’t get to our software, and DESCHALL participants didn’t
want to run slower key testing software. The only option was to drive
forward, turning up the heat on one another in the process.

Meanwhile, IBM’s chess-playing computer, Deep Blue, was slated
to play against the world’s highest-rated chess player, Garry Kasparov,
in another week. (Deep Blue would go on to win in a highly-contested
match, the first time that a computer ever defeated a reigning chess
champion.) Nate Boyd, from MIT’s Computer Graphics Group, sug-
gested that we try to recruit Deep Blue for cracking keys. Boyd was
joking, but in 1998 the Electronic Frontier Foundation, an online civil
liberty group would fund the development of a DES key-cracking ma-
chine called “Deep Crack,” a special-purpose computer built for the
sole purpose of cracking DES keys faster than software ever could.

Instead of trying to recruit Deep Blue, Justin Dolske tried to get
some attention for DESCHALL by submitting an article to
comp.os.linux.announce, the same newsgroup that had carried the RC5
announcement that had so recently caused a stir among DESCHALL
participants. Given that the moderators had allowed Mike Driscoll’s
article about the RC5 Bovine effort to be released, Dolske thought
that interest in cryptography would be high enough to warrant some
publicity for DESCHALL. Dolske’s announcement, just like Driscoll’s
RC5-56 announcement, was simple and to the point: what the DES-
CHALL project is, why it is important, and how to join.

The newsgroup moderators didn’t seem to agree, and rejected
Dolske’s post, on the grounds that they just allowed something about
the RC5 effort recently. Even more strangely, after rejecting Dolske’s
message, the same moderators allowed for another post for an RC5
effort. The moderators never answered questions about their decision,
leaving some to conclude that there was some bias against DES (or in
favor of RC5) efforts. This little mystery remains.

I could think of no reason to reject Dolske’s announcement about
DESCHALL. DES was a real standard, even used in the Linux operat-
ing system. RC5’s use was not nearly as widespread, the 56-bit key size
was not a typical configuration for RC5, and there was no direct con-
nection between the Linux operating system and RC5. The decision to
reject Dolske’s post seemed completely arbitrary, and the piece might
have appeared if a different moderator happened to see the submission.

172 CHAPTER 25

After no small amount of concern about if (and when) SolNET was
going to surpass our key search speed, we started taking a harder look
at the numbers in order to get a better grasp on the progress being
made by both projects.

SolNET’s progress statistics were based on the number of clients
that checked in with the keyserver during a given half-hour period.
Some DESCHALL participants thought that all of SolNET’s clients
were checking in every half-hour and thus assumed that the statistics
reflected the combined efforts of the entire project. On May 4, Rocke
Verser pointed out that computers running the client software report-
ing their progress in that half-hour window were most likely reporting
more than one half-hour’s worth of work; many other clients were busy
testing keys, but did not have any results to report back to the key-
server during that time. Applying the same metric to our own progress,
Verser wrote, “In the last 60 seconds, 180 DESCHALL clients reported
122 billion keys tested. (Wow! We’re testing over 2 billion keys per
second with only 180 clients!)”

As it turned out, the keyserver numbers were really only useful for
showing how much of a load the keyservers were maintaining. SolNET’s
keyservers were taking roughly two hits per second from their clients,
whereas the DESCHALL keyserver was taking about three hits per
second from the clients.

Looking at total project speed for comparison, Verser could see that
SolNET was testing just under 2 billion keys per second, whereas DES-
CHALL was testing just over 2 billion keys per second.

Verser correctly concluded that SolNET had more clients—more
than three times as many computers running their client software—
but DESCHALL had faster clients.

Unfortunately for SolNET, their numbers turned out to be less im-
pressive then they had intially appeared. Fredrik Lindgren confirmed
on SolNET’s DES-Announce mailing list that some machines in Fin-
land were pretending to run SolNET clients, but actually were not.
Basically, someone examined the protocol running between client and
server in order to figure out what exactly to send to a keyserver to im-
personate a client. Having figured out the protocol between client and
server, the malicious client would simply send a “block finished, but
key not found” message to a SolNET keyserver, without ever having

Recruiting 173

tested a single key. The goal of such an attack was to make the key-
server incorrectly record blocks as being tested, potentially preventing
the real key from being found.

This was exactly the kind of thing that everyone involved in dis-
tributed computing efforts worried about. No one really gets anything
out of an attack like this, but if it’s easy enough to do, some idiot
somewhere in the world is certain to try it. Lindgren and other Sol-
NET coordinators had their hands full trying to assess the damage and
building a plan for recovery, so they did not bother trying to figure out
who was behind it.

Many DESCHALL participants began to ask what we were doing to
prevent this kind of attack on our systems. I raised the issue privately
with Rocke Verser and Justin Dolske; we talked about the problem and
some of the defenses that we had in place, but never directly answered
the questions presented by general participants. If the attackers were
reading DESCHALL’s lists, we didn’t want to give them any clues
about what our weak points might be.

SolNET would not be completely undone by this attack, but it was
a setback. The bogus reports came from a particular network on the
Internet, allowing for all of those reports to be discarded, ensuring that
those keys would be tested by another client later. If any legitimate
testing had been done, those would be lost, but the integrity of the
project was critical and it was better to retest a key that had been
tested once than to miss a key that was falsely reported as tested.

26

Threats

While SolNET was recovering from its attack, the DESCHALL team
turned to other issues. Having enabled the basic mechanism for search-
ing for DES keys on thousands of machines, of dozens of types, from
all over the United States and Canada, our project had become quite
visible, and it was possible that the same attackers who targeted Sol-
NET might try to foil us. We did not want just to worry about what
kinds of bad things could happen; we wanted to anticipate the most
likely threats so that we could methodically address them.

Sunday, May 4, 2:20 A.M.

University of Texas at Austin

As DESCHALL participant Seth Johnson read CNET news, he found
an article that discussed a math bug in the Intel Pentium Pro micro-
processor. The article specifically described a problem that could cause
some calculations to be done incorrectly. Users wouldn’t generally no-
tice the problem; it was the kind of obscure thing that only people
performing heavily numerical scientific work would ever encounter in a
meaningful way.

Ordinarily Johnson would not have been interested in the problem,
since his Macintosh did not use an Intel processor, but now that he was
participating in DESCHALL, he had cause for concern since so much of
what DESCHALL was accomplishing was on Intel processors. If the bug
affected the way that DESCHALL ran on Pentium Pro processors, we
might need to throw out huge amounts of completed work to calculate
those key blocks correctly. A problem like that would be a terrible
setback—possibly setting us back more than a month.

175

176 CHAPTER 26

Since the new problem affected relatively few applications, Johnson
didn’t want to create panic, but he did want to know whether this was
a serious concern for DESCHALL.

Fortunately, the integrity of the DESCHALL results was not af-
fected. As it turned out, the bug was limited to the floating-point unit
of the microprocessor, where operations on “floating-point” numbers—
numbers with decimals like 3.141592654—would be handled.

Since computing DES keys was done by working with 56-bit bi-
nary numbers and never performing any division operations that could
leave a remainder, DESCHALL software had no need for floating-point
operations, using only integer—“whole number”—operations.

While that particular processor bug did not affect DESCHALL, it
did give us cause to think about some potential setbacks. Among those
concerns were the possibility of long-term network outages making the
keyserver unreachable and our potential vulnerability to attacks from
malicious clients reporting bogus results back to the keyserver.

In general, a network outage wasn’t likely to be a big problem.
A DESCHALL client would work through the keys assigned by the
keyserver. Once it was finished, it would attempt to report an update to
the keyserver and to request a new block of keys to test. If the keyserver
could not be reached, the client would simply resend its request at a
later time. If some of the clients have to wait for a few minutes, this
isn’t a big problem, but if the keyserver is offline for a longer period of
time, the impact grows quite a bit.

Assume for the purposes of illustration that the typical DESCHALL
client needs to talk to the keyserver every other hour. Also assume that
the other participating clients were started at evenly-distributed points
throughout any two-hour window. A network outage of fifteen minutes
would mean that the keyserver would be unavailable to respond to
clients during a time when one-eighth of the total number of clients
needed to check in. A thirty-minute outage would idle one-quarter of
our clients for some period of time. After two hours, virtually the en-
tire project would be at a standstill, with almost all clients waiting to
connect to the keyserver. Given our key testing rate at the beginning
of May, that would mean that 7.2 trillion keys per hour would not be
tested.

In reality, clients would not be started to evenly, but the assumptions
above demonstrate a critical point of the actual project: with less than

Threats 177

a half-day of unavailability, the world’s fastest distributed computer
would grind to a halt.

The concern about malicious clients reporting bad results back to
the server was one that came up on the Coderpunks mailing list, an
offshoot of the Cypherpunks list. While Cypherpunks dealt with polit-
ical, economic, and cultural issues as well as technical concerns about
cryptography, Coderpunks focused specifically on the implementation
of cryptosystems. Many Coderpunks readers were watching all of the
RSA Secret Key Challenge contest projects, and more than a few were
participating in one of the projects.

After a discussion of various ways to deal with the problem, Coder-
punks subscribers concluded that the only sure way was to verify each
of the test results. Trying to find the right key among 256 was hard
enough. Checking each key twice was less appealing. However, if the
author of a malicious client was smart enough, there was no other sure
way of knowing that we were dealing with good results.

DESCHALL clients did have some safety features built in, though,
and thus was not wholly vulnerable. Although we did not reveal this
in detail to the DESCHALL mailing list, DESCHALL client devel-
opers knew that DESCHALL clients weren’t going to be too easy to
spoof. “Half-matches,” (see Chapter 13) for example, were reported,
and some number of half-matches would be expected over a set of a
certain size, so if Rocke Verser noticed a change in the expected half-
matches, that could indicate that someone was reporting bogus results
to the keyserver. Still, in spite of the precautions that we had taken, a
determined attacker would be nearly impossible to stop. We really were
just hoping that we could make it more difficult than it was worth.

Another problem that could arise would be if a client could somehow
prevent a “key found” message from being reported back to the server.
The client could, for example, get a key block, disconnect from the
network, and test the keys offline. Normally, if the client found the key,
it would send a message back to the keyserver. A malicious participant
might prevent his client from giving the “key found” message to the
keyserver, allowing the malicious participant to keep all of the prize
money.

Of course, after the fact, the keyserver would show that the key
had been given out for testing, but the results were never returned, a
fact that would raise more than a few red flags. A little investigation
would turn up where the key came from—though there is probably

178 CHAPTER 26

some legitimate question about whether that kind of evidence would
be enough proof for RSA to refuse to award all of the money to the
client operator.

While Rocke Verser, Justin Dolske, and I wrestled with these po-
tential problems, some of our participants were dealing with issues of
their own.

Tuesday, May 6, 2:22 A.M.

Western Michigan University, Kalamazoo, Michigan

A student named Jay, going by the alias “A Psychedelic Psychopath,”
was working with a few other students to run DESCHALL clients on
some fairly powerful computers. Having access to two groups of Sun
SPARC 5/20 systems they decided to put some of those machines’
cycles to work for the project.

Then two system administrators noticed their efforts. One killed
off the programs, claiming that the DESCHALL client programs were
putting too much load on the systems, and the other disabled the stu-
dents’ accounts and reported Jay and his friends to the dean of students.
Nothing serious happened to the students, but the incident did get us
thinking about how to deal with system administrators who ran the
powerful systems that so many participants wanted to use for testing
keys.

Prompted by the report of what happened, Colin L. Hildinger asked
if it might make more sense to give the program a more academic-
sounding name. Some participants thought this was a good idea and
favored giving them names like “lab3,” at least in departments where
students were given assignments to write programs. In that case, in-
stead of system administrators seeing that students were running DES-
CHALL software on school systems, the clients would look like home-
work.

Vincent Fox, a system administrator at Georgia Tech, weighed with
some helpful advice to anyone who might be trying to find a way to
work around system administrators. “Better to go to your admin,”
wrote Fox to the DESCHALL mailing list, “and enlist their aid in this
project in the first place.”

“I know of very few who wouldn’t actively help out if asked to
be a part of the project rather than having it inflicted on them. You
might find that they can in fact toss more resources and butt-covering

Threats 179

your way than you can possibly imagine. We [administrators] usually
have access to more hardware than you [students] do, and [have] less
accountability.”

Fox was right, as we would see repeatedly. People taking the time to
enlist the help of administrators were much more successful in getting
more systems to be used for key testing than those who tried to be
more covert. Nevertheless, getting cooperation was simply not possible
everywhere. Some organizations would actively encourage participation
in this kind of project, while others wouldn’t allow it for a moment.
In general, large, highly formal organizations like a bank would not al-
low DESCHALL or similar projects, while more dynamic organizations
with highly-empowered employees would encourage it.

Most were somewhere in between, and DESCHALL participants
quickly learned just where.

Tuesday, May 6
IBM Almaden Research Center, San Jose, California

That cryptography had gone mainstream was clear, thanks to regular
news stories on the progress of the DES Challenge contest and pub-
lic policy debates. IBM was about to test just how closely the media
wanted to follow developments in the field.

IBM’s public relations machine put the word out on a paper that
IBM computer scientists Miklós Ajtai and Cynthia Dwork presented
at the Association for Computing Machinery’s Symposium on The-
ory of Computing. Scientific papers are presented at computing theory
conferences all the time without fanfare, but the implications of this
particular paper were apparently too great for IBM to resist drawing
greater attention to it. The result was a lesson for DESCHALL coor-
dinators that getting the story wrong and missing the point were two
very real possibilities if the information did not get presented to the
press just so.

Prompted by the public relations behind the Ajtai-Dwork paper, PC
Week Online ran a story that began, “Researchers at IBM’s Almaden
Research Center Lab in San Jose, Calif., claim they have discovered
public key encryption that is uncrackable, solving a problem that has
defied mathematicians for 150 years.”

The Ajtai-Dwork system was not “uncrackable,” as the media would
claim it was, but it was an interesting new system for encrypting data

180 CHAPTER 26

based on a different mathematical basis from those used in other cryp-
tosystems. The “uncrackable” part of the story came from a mathe-
matical proof included in the paper that demonstrated that a random
attempt to guess the key is the equivalent of the hardest possible case.
In other words, with the Ajtai-Dwork system, it’s not possible to pick
a weak key by accident, thus making decrypting a message easier than
it should be.

Using a mathematical proof of security was a bold step, very dif-
ferent from how cryptosystems are usually presented to the scientific
community. The way that it usually works is that someone will come
up with a new cryptographic algorithm and publish it in a paper, so
others can study it for weaknesses. Over a period of several years, the
algorithm will be attacked in various ways, and cryptographers will see
how resistant the algorithm is to the attacks that are used against it.
Over that period of time, confidence in the algorithm will increase, be-
cause the longer than an algorithm is studied by the world’s smartest
cryptographers without a break, the less likely that such a break will
be found before computer technology progresses to the point where
messages encrypted with the system could be broken by brute force.

This method tends to work pretty well, albeit slowly, and has re-
sulted in the development of some very good algorithms, including DES.
The problem is that if someone were to find a brand new kind of at-
tack against a technique used in well-established algorithms, it could
be a nasty surprise for everyone. New attacks that work against real ci-
phers don’t come to light every day, but they are discovered frequently
enough to keep cryptanalysts all over the world looking for more. Some-
times, systems are in use for years before a practical attack is found
against them. On a few occasions, systems being presented at scientific
conferences have been broken while the paper is still being presented.
Building and breaking ciphers is hard work and full of uncertainty. We
have many systems that are “probably secure” and many others that
were “probably secure” until someone figured out how to break them.

Using a “provably secure” cryptosystem—one whose correctness was
supported by a formal mathematical proof—was another matter en-
tirely. In a provably secure system, each possible way to decrypting the
ciphertext is represented mathematically. Then proving which is the
easiest way to deduce the corresponding plaintext will prove the actual
strength of the cipher. This is somewhat like proving the strength of

Threats 181

each link in a chain. Finding the weakest link will prove the strength
of the chain as a whole.

The problem with provably secure systems is that they have to
make a lot of assumptions about the world around them. For example,
someone who accidentally lets someone else discover a key would open
up an avenue of attack that would be very practical in the real world,
but would not ever make it into a mathematical model. Provably secure
is a long way away from unbreakable.

By the time the media was putting the discovery in front of people,
IBM had invented an unbreakable cryptosystem. Not provably secure,
but unbreakable. DESCHALL coordinators would take seriously the
lesson of how esoteric scientific discoveries can take on lives of their
own once in the hands of the media. While wanting to use the media
to get an important story to potential participants, we did not want
the attention at the expense of accuracy in what we were doing. When
it came time to talk to the press, we would take great care to ensure
that we were being both as precise and clear as possible.

The lesson came at an apropos time: media coverage of DESCHALL
was increasing.

MIT’s student newspaper, the Tech, carried an article about DES-
CHALL and the efforts of MIT students there to help with the search
for the key. The next day Nelson Minar told the DESCHALL mailing
list that, within fifteen hours of the paper’s release, 120 new machines
at MIT joined in the DESCHALL project—an increase of fifty percent.

Three days later, Michael Nelson informed the list that the Utah
State University student paper, the Statesman, ran a front-page article
on DESCHALL. Although the article jumbled significant technical de-
tails, they correctly quoted Nelson: “I think we should push past BYU
[Brigham Young University]. It is a good way to show that BYU isn’t
the only university in the state.”

As more students started to join the efforts going on at their schools,
rivalry began to grow—and this competition would work to our advan-
tage.

When Nelson Minar reported the increase in activity due to the
article in MIT’s the Tech, he also predicted that MIT would overtake

182 CHAPTER 26

the University of Illinois at Urbana-Champaign (UIUC) in the total
number of machines participating and perhaps even in number of keys
tested per day.

Forty-five minutes later, UIUC Unix systems engineer Joe Gross
responded with a post back to the DESCHALL mailing list. “We’ll
have to see about that,” wrote Gross, before describing the fifty high-
end UltraSPARC machines from Sun Microsystems that had just been
brought online and were about to start running DESCHALL clients.
Gross added, that “once finals end next Friday,” UIUC would start
running DESCHALL clients on 300 high-end workstations.

Back at MIT, Nate Boyd wrote, “That just ain’t fair. The NCSA
is definitely contributing big!” NCSA—National Center for Supercom-
puting Applications, located on the UIUC campus—had lots of horse-
power available, and was, coincidentally, where Marc Andreessen and
friends wrote Mosaic, the first graphical Web browser. As it turned
out, Gross was not talking about getting any of the supercomputers
to run DESCHALL, but the idea that the university was making such
a big contribution was enough to turn a little heat onto the healthy
rivalry that was already driving university students and staff to get
more systems running DESCHALL clients.

Adam Haberlach at Oregon State caught the spirit of threatening
the use of supercomputers and joked to the DESCHALL mailing list,
“Don’t make me try and get time on our Oceanography Department’s
CM5. Or the CS department’s Maiko.” (For all of the posturing that
students from schools with powerful supercomputers were doing, the
simple fact was that supercomputers really wouldn’t help much, even
if we did have DESCHALL clients that they could run, as described on
page 58.)

MIT undergraduate Will Koffel observed that the MIT wasn’t really
doing anything to support DESCHALL or the users trying to find places
to run the clients. He wrote, “I’d like to see UIUC test 16 trillion keys
a day with dorm room computers!” Koffel noted that MIT had some
die-hard DESCHALL fans on campus, who were sneaking into their
labs and firing up clients on all the SPARC 20s and Pentium machines
they could find. Koffel proclaimed, “We’ll take the peak yet!”

Jeff Gilchrist was coordinating DESCHALL activity at University
of New Brunswick (UNB) in Canada. He had spoken with the faculty
of Computer Science and Computing Services about DESCHALL, and
was given permission to run some of the clients in a few different de-

Threats 183

partment labs. He had even managed to get some of the professors to
run it on their machines. While not “sponsoring” Gilchrist, the univer-
sity administration were certainly aware of his work and approved of
his running the clients.

Adam Haberlach was in a similar situation at Oregon State. Though
not formally backed by the University, individual departments were
giving him some support. Many students and staff members at Oregon
State were participating, a few labs were running the clients, and some
Web pages were describing the efforts on campus and explaining how
others could join in. Among the departments participating, the Busi-
ness Department was actually the biggest contributor. Oregon State’s
rankings went from first to second in early May, and then lower, when
the DESCHALL supporter there took a trip to a big trade show in
early May. Haberlach added with a smile, “We’ll be back.”

Like Haberlach and Gilchrist, Benjamin Peterson at Notre Dame
wasn’t getting direct support either, but had managed to coordinate
things so that there would be no interference with people using the ma-
chines. He had 170 Sun UltraSPARC 1 machines and ten SGI machines
working on the project. Between 8:00 A.M. and midnight, if someone
logged into the console, the DESCHALL client would be killed. When
no one was logged into the machine’s console, or outside of those “day-
time” hours, Peterson’s program would be sure that no one was logged
into the machine and working remotely. If the machine was being used
that way, his program would stop the DESCHALL program—putting it
in a kind of suspended animation. If the users on the machine all went
idle for more than ten minutes, his program would tell DESCHALL to
continue, picking up right where it left off. With some additional checks
to suspend and to continue the process depending on the load of the
machine, Peterson’s contribution to our efforts was significant. His pro-
gram was also so well designed that no one would have any reason to
complain about the program using too much system resources.

Peterson wasn’t the only participant who built additional software
to manage the clients on a large number of machines. At the Bowman
Gray School of Medicine, system administrator Dave Ahn wanted to
run the DESCHALL clients on his SGI systems with their fast 64-
bit R10000 processors. On May 9, he released WFU, the Watch Fork
Utility for DESCHALL.

As summer grew near and students began working on year-end
projects, daytime activity on the machines Peterson was using would

184 CHAPTER 26

tend to peak at about twenty of the Sun machines active at any point.
After the year-end projects were finished, most points of the day had
between fifty and eighty machines active.

Beyond that, a few more students and staff were running the clients
in their labs. Unfortunately, support at Notre Dame didn’t grow like it
did in some other environments, and as the summer rapidly approached,
many of the students that were participating from all over the country,
including Benjamin Peterson, were leaving campus for home.

While some DESCHALL participants were preparing to head home
for the summer, others continued to join the project. As the first full
week of May wound down, the DESCHALL keyserver accepted a re-
port of some keys tested from an unlikely contributor, whose report of
some 30 billion keys tested earned a subtle entry toward the end of the
DESCHALL status report for May 8.

Keys Clients Domain

30 Billion 1 sollentuna.se

Table 11. Surprise Entry in May 8 Report

Friday, May 9, 4:20 P.M.

Sollentuna, Sweden

SolNET DES project coordinator Fredrik Lindgren grinned as he read
the DESCHALL mailing list and saw the question, “Hey, don’t they
have their own project?” The day before, Lindren went to Andrew
Glazebrook’s Web site in Australia and downloaded a copy of the DES-
CHALL client. Lindgren posted a friendly note to the DESCHALL
mailing list explaining that he simply wanted to see how the DES-
CHALL client ran and wished us well.

Some DESCHALL participants suggested that it made sense for
someone from SolNET to check our progress so that they wouldn’t test
the keys that we’ve already tested. Someone else then suggested that we
should “respond” to the “offense” by blocking requests to the keyserver
from their domain and changing the way that we assign blocks of keys
to test.

Threats 185

Justin Dolske sardonically responded to the suggestion of block-
ing SolNET’s communication with our keyserver with a mock-paranoid
message posted to the DESCHALL list. He wrote:

That wouldn’t help. Sollentuna is run by the NSA [National
Security Agency], and they’re already using alien technology
to read Rocke’s brainwaves. In fact, part of the [non-disclosure
agreement] the rest of the developers have signed requires us to
wear a hat wrapped in tinfoil, to try and protect our thoughts.

Additionally, we are starting to suspect that most of the do-
mains “helping” DESCHALL are, in fact, fronts for the NSA,
FBI, BATF [Bureau of Alcohol, Tobacco, and Firearms], PBS
[Public Broadcasting System], and UN [United Nations]. In the
next few days, we will be locking out all of the currently partic-
ipating domains, in order to keep out these secret government
agencies.

Many others responded more seriously, pointing out that we’re really
all working for the same goal. Rocke Verser summarized the issues
nicely in his response. He wrote:

SolNET has placed us twelve seconds closer to the solution.
It’s not my concern how they got the software. I suppose it’s

the concern of the FBI. All I know is they didn’t get it from me.
The U.S. border leaks like a sieve with respect to cryptography
products. (Another example of how U.S. law hurts U.S. indus-
try: the products get to foreign soil anyway but royalties don’t
come back to the U.S.)

SolNET has announced that they preassigned their “master”
keyblocks in a random order, and that they are distributing their
keyspace in the order preassigned.

DESCHALL does not issue its keys sequentially, but it’s not
entirely random, either. How DESCHALL assigns and processes
keyspace is subject to the Non-Disclosure Agreement our devel-
opers have signed, so further comment is inappropriate.

As far as blocking their requests—I have no intention of
blocking anybody’s request unless they somehow abuse the key-
server.

As far as disallowing their access to the mailing list—I trust
that Matt will continue to allow everybody to read our mailing
list! (I read SolNET’S mailing list.)

186 CHAPTER 26

SolNET and DESCHALL are working competitively, toward
a common goal. I certainly hope that a DESCHALL client finds
the key. But if the Probability Gods gave me the choice of letting
SolNet find the key tomorrow or DESCHALL finding the key in
forty-four weeks, I’d let SolNET find it tomorrow.

And finally, the SolNET organizers are a class act. They have
never said or done anything distasteful or disparaging towards
DESCHALL.

They were forthcoming when they discovered their server
had been [attacked]. (They could have pretended it wasn’t hap-
pening; they could have continued to claim a highly inflated
keyspace rate, but they didn’t.)

As I said in my posting to their mailing list a few days ago:
“If U.S. export laws weren’t what they are, I suspect we would
be collaborating.”

The campus rivalry that had been stirred up continued over the course
of the next several days—this time with UIUC and Georgia Tech.
Statistics showing progress on May 10 put UIUC at the top of the
heap.

Keys Clients Domain

22.28 Trillion 543 uiuc.edu
22.21 Trillion 683 gatech.edu

Table 12. UIUC Ahead of Georgia Tech, May 10

Georgia Tech’s Perry Minyard found another important entry in the
logs. A group of four machines working in the network address space
of 130.207.0.0 did not have names in the reverse DNS—the mapping
of IP addresses to names. Hence, they showed up as IP addresses in
the statistics, and not part of the record for gatech.edu. Looking at
those statistics together produced a different result. Minyard proudly
proclaimed Georgia Tech the site leader in keys tested.

Dave Terrell and Jay G. Lickfett, both at UIUC, then noticed an-
other important line in the same DESCHALL progress report. A client

Threats 187

Keys Clients Domain

22.30 Trillion 687 gatech.edu and 130.207
22.28 Trillion 543 uiuc.edu

Table 13. Georgia Tech Ahead of UIUC, May 10

was participating from the network 128.174.0.0 without reverse DNS.
The 128.174.0.0 network belonged to none other than UIUC. Terrell
and Lickfett recalculated the results with glee.

Keys Clients Domain

22.31 Trillion 544 uiuc.edu and 128.174
22.30 Trillion 687 gatech.edu and 130.207

Table 14. UIUC Ahead of Georgia Tech Again, May 10

Kees Cook at UIUC took a look at the graphs to see total keys
tested and found that UIUC had tested roughly 350 trillion keys in
total, while Georgia Tech had so far tested about 80 trillion keys. Giving
credit where it was due, though, Cook noted how quickly Georgia Tech
brought so much computing power online.

Getting that many clients cranked up in such a hurry was indeed an
accomplishment. Those Georgia Tech guys knew just what to do. Geor-
gia Tech student Jason Bennett relayed the story on the DESCHALL
mailing list.

Actually, there’s a great story here. A few weeks ago, [Sports
Illustrated] released a poll saying the University [sic] of Georgia
has the best mascot. Well, the local paper decided to run its
own little poll on its Web site. Unfortunately, they forgot to
check for multiple votes. So, some Tech people go on the [local
Georgia Tech] newsgroups and persuaded some others to run
scripts and hit the server with tons of votes. We won the poll.

Flash forward a week or so, and Vincent (I think) posts a
message about needing more people on DES, since MIT and
[another] school [were] beating us. Like moths to a flame!

Just before the UIUC and Georgia Tech battle for first started,
Rocke Verser made an important announcement.

27

Overdrive

Tuesday, May 6, 3:05 P.M.

The Ohio State University, Columbus, Ohio

Part of building the world’s fastest DES-cracking system was getting as
many “nodes” as possible—computers running DESCHALL client soft-
ware. Ohio State graduate students Guy Albertelli and Justin Dolske
were making sure that people who wanted to participate would be able
to do so, even if they didn’t have equipment that was exactly main-
stream.

Among the machines that Ohio State had were the sleek black com-
puters produced by NeXT Computer, Inc. Apple founder Steve Jobs
started NeXT after losing a boardroom showdown with then-CEO John
Sculley in 1985. Despite never enjoying the huge commercial success of
Jobs’ other projects, including the Macintosh and the Apple II, NeXT
machines could be found in universities and other institutions popu-
lated by early adopters of new technology around the country.

Albertelli produced a DESCHALL client for the black NeXT com-
puters by porting Rocke Verser’s key-testing software written in the
C programming language. (See page 93 for a description.) Though the
number of NeXT computers running in the U.S. and Canada was small
by comparison to other platforms, they still numbered in the tens of
thousands. Enlisting the aid of these machines would not prove diffi-
cult because even in the companies and universities that had the black
NeXT computers, the machines had largely fallen into disuse, meaning
that there would be little competition for their resources.

189

190 CHAPTER 27

After building the NeXT DESCHALL client, Albertelli put the soft-
ware through the testing and quality control process that Verser im-
posed on all developers. Once the tests were finished and Verser gave
approval to release the client, Dolske put the client into the DESCHALL
client distribution archive at Ohio State and I did the same at Megasoft
Online. Albertelli drafted a quick message to the mailing list that the
NeXT client would be available soon. Over the course of several hours,
several dozen distinctive NeXT computers joined the hunt for the key.

From his own NeXT computer (which was now running the DES-
CHALL client), project participant Michael D. Stanfill thanked every-
one who worked on the production of the NeXT client. He noted that
while the aging NeXT machine was testing a modest 2.4 billion keys
in its first day of operation, it was happily contributing what power it
had. Stanfill’s fast 64-bit computers from SGI were testing keys at a
much faster rate, but he started to wonder about the promised bitslic-
ing clients for his 64-bit machines. It had about a week since Kindred
shared the results of his tests with the DESCHALL mailing list readers,
so Stanfill asked for an update on when those clients would be released.

While the mailing list had been quiet on the topic of bitslicing for a
week, the developers were thinking of little else as Friday approached.
Throughout the week, Kindred’s bitslicing work was being integrated
with Verser’s fast DES key testing method, and the other developers
built, tested, rebuilt, and retested the client software under their care.
On Friday morning, the new version of the client software made it
through the last tests and Verser sent the whole set to Dolske and me
for inclusion into the DESCHALL client distribution sites.

Friday, May 9, 3:21 P.M.

Loveland, Colorado

Users of high-end engineering workstations with 64-bit microprocessors
such as DEC’s Alpha and SGI’s MIPS had long been using the slower,
portable client implemented in the C programming language. Fast, ex-
pensive machines with that slower key-testing software simply could
not test anywhere near the number of keys per second that the rela-
tively slow and cheap machines running Verser’s fast software could.
High-end system users’ frustration would soon end.

A grueling week of client software integration, building, and testing
was about to come to an end, but to make the most of it, Verser had

Overdrive 191

to get his message posted before the majority of participants in the
Eastern time zone went home for the weekend—and it was already
approaching 5:30 P.M. there.

After receiving word from Justin Dolske and me that the DES-
CHALL distribution sites were ready, Rocke Verser posted a message
to DESCHALL’s announcement mailing list.

In a message entitled, “Ultrafast 64-bit clients!” Verser wrote,

If you’ve got a 64-bit Alpha or SGI—stop running the DES-
CHALL client that you’ve got right now. Run (don’t walk!) over
to the DESCHALL archive and download the NEW client for
your platform. These new clients implement a derivative of the
Biham’s bitslice method for doing DES encryption, and they’re
blazing fast.

These new clients, using the bitslicing method (described on page
151), more than tripled the speed of some of the clients. Considering
that many of the largest contributors of processing power were univer-
sities with the kind of high-end systems that used these 64-bit proces-
sors, we expected the overall DESCHALL key testing rate to increase
dramatically as soon as the new clients got put into place.

Keys per second
(in thousands) Relative

Machine Old New Speed

SGI Onyx2 (194 MHz R10000) 829 1943 230%
SGI Indy (180 MHz R5000) 370 820 220%
AlphaStation 255/233 451 1297 290%
AlphaStation 600 5/333 916 2944 320%
DEC Alpha 3000/400 200 600 300%
SGI PowerChallenge2 (R8000, 90 MHz) 233 820 350%

Table 15. Performance of First DESCHALL Bitslice Clients

DESCHALL long had the fastest DES key testing software—and
some of the clients had just gotten much, much faster.

The day after the release of 64-bit clients for SGI and DEC sys-
tems, a new 64-bit DESCHALL client was released for high-end ma-
chines made by HAL Computer Systems, a subsidiary of Fujitsu. HAL’s
newest servers used the new 64-bit UltraSPARC chip designed by Sun
Microsystems. Not many HAL systems were in use, but the increase

192 CHAPTER 27

in speed was dramatic enough to make the release worthwhile. In the
first few days of the new 64-bit clients’ availability, they were down-
loaded several hundred times. Sun’s own UltraSPARC machines were
much more popular, but a significant technical problem prevented us
from being able to release a 64-bit client for Sun’s UltraSPARC ma-
chines: even though the hardware was 64-bit, the operating system that
governed Sun’s computer was still 32-bit.

What the release of all of these bitsliced clients can be understood
by analogy. Computers move data through their various parts like cars
moving through a highway system. If a 32-bit system is like a highway of
32 lanes and 64-bit system is like having a highway with 64 lanes, a 64-
bit processor with a 32-bit operating system is akin to a highway that
is wide enough for 64 lanes but has only been painted for 32. Despite
the extra width of the road, the painted “instructions” for how to use
the road keep the traffic from being able to use the extra capacity.

Sun’s first 64-bit operating system, Solaris 2.6, was still in the beta
testing stage at the time—although Sun customers who really wanted it
could get a copy of that operating system, it was not recommended for
production systems. Since DESCHALL software was designed specif-
ically not to interfere with normal operation, we did not encourage
participants to upgrade their operating system solely for the benefit of
DESCHALL. Any “upgrade” to a beta version of the operating system
was out of the question. Hence, the only 64-bit client we issued for
UltraSPARC-based systems were for the relatively rare HAL systems;
the popular Sun UltraSPARC systems would keep needing to run the
regular, comparatively slow 32-bit SPARC client.

Traffic coming into the keyserver was also increasing significantly.
The keyserver software had a means of managing its own traffic load:
it issued fast clients larger blocks of keys to test than slower clients.
By managing block sizes, the keyserver could give clients enough work
to keep them busy for an approximate period of time—with the target
being about two hours.

Despite this safeguard, the bitslicing clients that we had released
were taking the largest blocks that the keyserver would hand out and
burning through them in just twelve minutes. Logs were kept on the
keyserver, showing which clients got which blocks and what response
the clients sent back to the keyserver. The amount of log data was
growing, as we had not only more clients connecting every day, but
because the clients were faster and thus connecting more often.

Overdrive 193

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2

A
pr

 2
8

A
pr

 3
0

M
ay

 0
2

M
ay

 0
4

M
ay

 0
6

M
ay

 0
8

M
ay

 1
0

Fig. 7. DESCHALL Key Testing Rate
(Billions per Second), April 28–May 10

Sunday, May 11, 12:07 A.M.

Loveland, Colorado

As he did every night just after
midnight, Rocke Verser looked at
the log data for the previous day.
As he was analyzing the data,
Verser realized that two impor-
tant thresholds had been crossed.
Saturday’s average key test rate
ran at over 3 billion keys per sec-
ond for the entire day, just a day
after first achieving the rate of 2.5
billion keys per second. In addi-
tion to the sustained key testing
speed, the total number of keys tested by DESCHALL thus far ex-
ceeded 3.6 quadrillion—five percent of the entire keyspace. As Verser
was thinking about how far we had come, he started to notice some
problems.

Packets of data containing messages from key-testing clients coming
in through one of the two T2U gateways were malformed. This meant
the packets were useless to the keyserver, and possibly indicative of
a grave problem with some of the clients. Malformed messages would
not only mean that the keys would need to be tested again, but that
the additional load on the keyserver could push the system beyond its
capacity and make it stop serving legitimate client requests.

Drawing upon years of training and experience as an engineer to stay
focused on the problem, Verser observed the traffic closely, looking for
what exactly was wrong with the malformed packets, comparing them
to what they should look like, and considering what could introduce
the problem.

At 1:54 A.M., the bad packets stopped hitting the keyserver. That
was the good news. The bad news was that all of the other traffic to
the keyserver had also stopped.

Verser tried to remain focused on the facts, not allowing himself to
consider the consequences of reports for 3 billion keys per second being
lost. Verser quickly performed a series of tests to identify where exactly
the problem was located. The first test checked the connection between
the keyserver and the ISP that connected it to the Internet. With that

194 CHAPTER 27

link responding properly, Verser looked at the next set of connections
out toward the Internet.

Verser’s ISP, Front Range Internet, Inc. (FRII) in Boulder, had re-
dundant Internet connections, so if one of their Internet connections
disappeared, the other should have picked up the slack. Verser’s second
test showed that the outage was between FRII and its connection to
the Boulder Coop.

The next question was why FRII’s other Internet feed, MCI, was
not picking up the traffic. Verser remembered that the previous day,
MCI had been experiencing network trouble, causing problems with
packet loss between some of the clients and the keyserver. He thought
that perhaps MCI was still having trouble while the FRII link to the
Boulder Coop was down. The situation turned out to be much worse.

Routers are the special-purpose network computers that shepherd
traffic around the Internet. Routers do this by keeping track of which
networks they’re connected to and which networks other routers are
connected to. By keeping track of these “routes,” routers know where
to send an IP packet in order to get it closer to its destination. Routers
direct packets from one network to another until they finally make it
to their destination.

The Boulder Coop’s routers should have detected the problem with
the link and stopped advising other routers that they can deliver traf-
fic to the network that fed the DESCHALL keyserver. Those routers,
though, did not notice the problem, so packets destined for the key-
server continued to flow into the Boulder Coop, where they would sit,
waiting to be sent over a connection that was down. After trying to
send the packet to the next router for two minutes without success, the
router would quit trying. Like a postcard sent to a nonexistent address,
the UDP datagram with a message for the keyserver would be lost.

With the problem beyond his control, Verser proceeded with the
routine he performed every night, working with the project statistics.
After Verser logged into the system where he and Karl Runge did their
statistical work, he decided to copy some of the data on to a writable
CD-ROM.

Since the beginning of the project, Verser had been keeping copies
of the keyserver log data by burning the logs to CD-ROM. Instead of
using a different CD-ROM disc each time he made copies, Verser used
a newer type of CD-ROM, the “multisession” discs—which would allow
small parts of the disc to be used. Thus, instead of needing to use five

Overdrive 195

discs for five different backups, Verser could use five “sessions” on the
same disc to store those data as long as there was enough room.

Verser put one of his multisession discs into the statistics server. The
CD-ROM drive spun up, and the server immediately stopped working.
Verser could not get the system to eject the disc. Typing on the key-
board did no good: the system was completely frozen. Left with no
option but to force a reboot by turning off the system’s power and
turning it back on, Verser hit the power switch.

When Verser turned the server’s switch back into the “on” position,
he watched the screen as the system went through its tests and began
to boot. As the system attempted to bring its filesystems—formatted
chunks of the internal hard drives—online, it reported that a problem
had been found, and attempted to correct the problem. Verser blankly
stared at the screen, hoping that the damage could be undone. When
the first repair attempt failed, Verser finally began to worry. He took
the system into its administrative mode and set to work on repairing
the damaged filesystems.

After several more attempts, Verser got the structures repaired so
the computer could bring the filesystems online. One final reboot, and
the system came up properly.

Hoping to get something to work right before the night was out,
Verser returned to the task of reporting of the previous day’s project
statistics. Although the structure of the filesystems had been repaired,
Runge’s statistics programs and directories had been destroyed. Fortu-
nately, Verser still had copies of the data and the programs, but the
statistical reports on the previous day’s work needed to be rerun.

Sunday, May 11, 6:11 A.M.

Front Range Internet Inc, Fort Collins, Colorado

As technicians finally restored connectivity between the Boulder Coop
and FRII, the circuit came to life and a burst of data flew over the
circuit, headed for the DESCHALL keyserver. In the nearly four and a
half hours of downtime, reports for 43 trillion keys were lost, requiring
that those keys to be retested later.

Still awake, though weary and frustrated from the night’s events,
Verser noticed the flood of incoming traffic. He watched the traffic
pour in to the keyserver from all of the clients requesting new blocks of
keys to test and waited for the keyserver to catch up with the demand.

196 CHAPTER 27

As the traffic normalized and returned to the regular, steady stream of
reports and requests, Verser noticed another client beginning to flood
the keyserver—sending the same message over and over. He made an
entry to his firewall system to block the traffic from the misbehaving
client.

With everything returning to normal by about 7:45 A.M., Verser sent
private email to DESCHALL coordinators detailing what had happened
throughout the night and then turned in for some much-needed and
well-deserved sleep.

Karl Runge logged into the server for calculating statistics, restored
his programs, and went to work, rerunning the calculations. By Mon-
day, all was back to normal.

Monday, May 12, 10:52 P.M.

The Ohio State University, Columbus, Ohio

Looking over Sunday’s statistics, Justin Dolske excitedly reported to
the DESCHALL mailing list that while participants at the University of
Illinois at Urbana-Champaign and Georgia Tech were fighting for first
place, CMU snuck up from behind and took the number one position,
as shown in Table 16.

Keys Tested Clients Site

20.06 Trillion 538 Carnegie-Mellon
20.05 Trillion 542 UIUC
19.09 Trillion 720 Georgia Tech

Table 16. Top Three DESCHALL Contributors, May 11

Organizations like the large universities could easily see their stand-
ings in the overall project statistics, which were reported by their do-
main name, such as uiuc.edu or gatech.edu. As the May 10 battle for
first place between UIUC and Georgia Tech showed, not all participat-
ing systems had properly-working DNS. In such cases, the DESCHALL
statistics was unable to report the contribution by domain name and
would have to rely on abbreviated IP address in its reports. That turned
out not to be the only anomaly in reporting.

James F. Eyrich, a network manager at Hoopeston Area Schools in
Illinois, had been running DESCHALL clients on many of the machines
in the school system. Like everyone else running the clients, Eyrich was

Overdrive 197

interested in not only the overall project statistics, but the stats for
systems under his control.

When Eyrich would go to Justin Dolske’s Graph-O-Matic statistics
site, instead of getting a pretty graph showing the domain’s activity, he
would get an error message, “no data found.” On May 9, Eyrich finally
sent email to Dolske to find out what the problem was.

Dolske searched through his raw logs and found an entry for Hoope-
ston, but it wound up with a different label from what would normally
be expected. Usually, domains would be reported by the rightmost part
of the domain (e.g., ohio-state.edu, frii.com, etc.) As it turned out,
the domain was being handled as a special case, since it was hoope-
ston.k12.il.us. Searching for hoopeston.k12 would find the appropriate
graph showing activity to date.

Armed with the new reports, Eyrich was prepared to show graphs
of the project, and of the school’s contribution to his boss, who had
taken an interest in the DESCHALL project, and show him how the
school’s computers were contributing.

28

Distributed

Monday, May 5, 5:39 P.M.

MIT, Boston, Massachusetts

As the DESCHALL project started to acquire a large number of par-
ticipants who had been working on the project for a while, the nature
of the discussion on the mailing list began to change. In addition to the
tactical discussions about how to keep the project growing, participants
started to talk more philosophically about what implications projects
like DESCHALL might have on the future of computing.

In his research at MIT, Nelson Minar was looking at how to build
large, distributed computing grids. His interest in DESCHALL wasn’t
primarily driven by the cryptographic or public policy impact it could
have. In his mind, no one who really understood cryptography had
any illusions about DES being secure against a determined attacker,
and burning off a thousand years’ worth of Pentium Pro computations
wasn’t likely to change anyone’s mind one way or the other.

On the other hand, there were serious questions about whether dis-
tributed computing could ever develop into a kind of global network of
computing power that could be coordinated to attack large, complex
problems.

The idea of having many clients work on problems that can be paral-
lelized wasn’t new either. Ever since the 1970s, when Xerox’s Palo Alto
Research Center (PARC) started working with “worm” programs that
would copy themselves from one computer to another, researchers have
thought about how to harness the power of many independent comput-
ers working together, cooperatively performing some computation that

199

200 CHAPTER 28

could not be done by one machine in a reasonable amount of time. By
the mid 1990s, many universities were using the techniques on various
computer networks for handling problems like rendering graphics.

Universities and research facilities weren’t the only ones working in
the area either. In 1995, Pixar amazed the world with its full-length
feature film Toy Story. To render the photo-realistic images needed
to create the film, Pixar used a network of Sun UltraSPARC systems
working cooperatively as if they were one huge computer.

DESCHALL was different from these distributed computing efforts
in a critical way, however. Rather than being a highly centralized ef-
fort to coordinate the effort of many computers all under the same
ownership and administration, DESCHALL was only loosely coordi-
nated. Like the projects that worked on RSA’s factoring challenges
since 1993, machines participating in DESCHALL had many differ-
ent owners, with many different computing platforms involved, could
start and stop their participation freely, and were communicating over
a public network that had no single owner.

Some other distributed computing projects like DESCHALL were
around. Adam L. Beberg and some others who had started on the
RC5 Bovine project decided that it would be a good idea to have
a single place to coordinate large-scale computations that could be
tackled using distributed-computing methods. Besides the RSA Se-
cret Key Challenge and Factoring Challenge contests, there were other
groups harnessing computing power in the same way. One such project
is SETI@HOME, a scientific experiment that uses Internet-connected
computers in the Search for Extraterrestrial Intelligence (SETI). Partic-
ipants run a free program that downloads and analyzes radio telescope
data.

Another project is the Great Internet Mersenne Prime Search
(GIMPS), which looks for prime numbers—those divisible only by
themselves and one—in the special form of being one less than a power
of two (that is, 2P − 1). For example, 10 is not prime because it is
divisible by 2 and 5, in addition to 1 and itself. Five is a prime number,
but it is not a Mersenne prime because it is not 1 less than a power of
2. Seven is a Mersenne prime, because not only is it prime, but it is 1
less than the eighth power of 2, i.e., 28 − 1 = 7.

Seeing the success with earlier RC5 key cracks, factoring of RSA
keys, and the progress of DESCHALL, RC5 Bovine coordinators had
plenty of evidence to support their suspicion that distributed comput-

Distributed 201

ing was ready to be taken beyond the realm of single organizations
trying to harness the power of their own machines and into the age of
the Internet tying together coordinating clients to perform large-scale
computations. With this view of the future clearly in mind, Beberg reg-
istered the domain distributed.net and described the goal of his project
as bringing together all the computing power possible to tackle a sin-
gle task. From that domain, the RC5 Bovine group would undertake
numerous large-scale computations after DESCHALL finished its work.

Meanwhile, the Coderpunks mailing list carried a debate on how to
manage the integrity of such distributed computing projects and how
to convince people to run the software needed to participate in those
projects.

Minar watched the Coderpunks discussion but decided against par-
ticipating in it directly. Instead, when the topic came up on the DES-
CHALL mailing list, he pointed out a key social aspect of the project
that people looking at motivations from a purely theoretical standpoint
were consistently missing. As his own experience with DESCHALL
demonstrated, he had fun checking the project statistics every day,
watching his university’s progress, seeing how others ranked in compar-
ison, and keeping track of just how many keys the project was testing
per second overall.

Having some active role in a project that was testing over 2 billion
keys per second and working with others had a simple social appeal
that was proving critical for getting new participants and keeping them
involved in the project after they started running the client software.

Saturday, May 10, 2:06 P.M.

MIT, Boston, Massachusetts

Even though our project was really moving, we had no time to rest on
our laurels.

Since late April, Karl Runge performed statistical calculations to
report not only overall progress, but to try to predict how our growth
rates would continue. By plotting the number of keys that we had
tested per day, Runge could predict what our growth was likely be in
the future. By knowing the rate at which we could expect to increase
our processing power and the amount of processing power needed to
search the entire keyspace, Runge could predict when we would likely

202 CHAPTER 28

Fig. 8. DESCHALL Key Testing Rate, Com-
pared to Statistical Curves

be finished and what our
chances were of finding the key
at various points between the
present and total exhaustion of
the keyspace.

Runge plotted the DES-
CHALL project’s progress on
a graph and sent it to the mail-
ing list. In addition to the ac-
tual daily progress (the jittery
line), Runge plotted a straight
line showing linear growth,
and a smoothly curved line
showing exponential growth.
Seeing the progress graphically
was powerful, but when trying
to predict where the project
would be fifteen days in the fu-
ture, there was plenty of room
for debate. The difference be-
tween linear and exponential
growth was not pronounced at this stage of the game, but it would
make a big difference soon.

Looking at the same data, Dennis Okon at MIT did some analysis
of his own. He built a model that showed how long it would take DES-
CHALL to get through the keyspace if the key testing rate followed
an exponential growth curve, a steep linear curve that would plot to
roughly sixty degrees, and a less aggressive linear curve that would plot
to forty-five degrees. In that model, Okon showed that if exponential
growth held, the DESCHALL project had a 50 percent chance of find-
ing the right key by May 31 and a 100 percent chance of finding the
key by June 8. If the linear growth remained aggressive, Okon’s model
showed a fifty percent chance of finding the key by July 10 and a 100
percent chance by August 8. Finally, moderate linear growth would get
us to the halfway point on September 4 and through the entire keyspace
on November 11.

When looking at data through May 10, Okon concluded that we
actually reached the end of our exponential growth spurt and that
we were instead following a path of aggressive linear growth, along

Distributed 203

the lines of Runge’s linear growth prediction. After performing this
analysis, Okon conceded that we really couldn’t be sure of the impact
of summer breaks on our computing power, although he thought that
the school holidays could have a dramatic impact on his projections as
the summer began.

Wednesday, May 14, 11:43 P.M.

The Ohio State University, Columbus, Ohio

Addressing the DESCHALL mailing list, Justin Dolske recounted the
progress of the last few days. Sustaining a search rate of over 3 bil-
lion keys per second with 9600 computers running our client software,
we crossed another threshold: a total of 4.4 quadrillion keys tested,
amounting to just over six percent of the total DES keyspace.

While encouraging participants to continue to find new machines
and new volunteers was important, DESCHALL developers and co-
ordinators had to be much more than cheerleaders: we had to keep
producing software that would make people feel motivated to stay in-
volved.

Dolske’s announcement included three new bitslice clients for 64-
bit machines, namely Hewlett-Packard PA-RISC, HAL SPARC64, and
SGI MIPS. We also had an improved version of the gateway software.
Since the keyserver was keeping track of how clients were participat-
ing based on the IP addresses of the computers reporting keys tested,
all participants using the gateways had their reports appear to come
from the same computer as all other users of that gateway. The end
result for the statistics was that all gateway users were participating
anonymously—all gateway activity got lumped together and reported
in aggregate. Some gateway users wanted to have their contributions
reported uniquely so they could show their contributions just like other
DESCHALL participants could. The new version of the U2T/T2U gate-
way software gave them that option.

Finally, a new Macintosh client was available. That Mac client was
produced by the latest participant to join the ranks of DESCHALL
developers, Andrew Meggs of Antennahead Industries, Inc. While the
footers of his e-mail messages would carry titles like “Defender of the
Universe,” “Content Provider,” and “Head 3D Superfreak,” Meggs
proved himself a first-rate programmer with an excellent mastery of the
low-level workings of the PowerPC processor—the brains of the Mac-

204 CHAPTER 28

intosh. Putting his prowess to work less than a day after hearing about
DESCHALL, Meggs worked with Verser to produce a hand-optimized
version of the DESCHALL client for Macintosh systems. As a result,
the same kinds of clever tricks employed to make the Verser’s Intel
clients so fast were now available to Macintosh users with PowerPC
processors. That the complex and tedious work of hand-optimizing the
client software for the PowerPC was finished less than two weeks after
it started was nothing short of tremendous.

Unbeknownst to the project participants as a whole, Karl Runge had
been compiling some great statistics on the DESCHALL client activity
per platform. Seeing how many keys were being tested per platform
became an important tool for us to see whether bringing the software
to new platforms would likely be worth the effort. As we suspected,
showing keys tested per platform became yet another way to encour-
age friendly competition among participants: the zealous Linux, Mac-
intosh, and OS/2 users participating in the project could employ the
statistics to convince their likeminded friends to run the DESCHALL
client software on their own systems, so as to demonstrate for the world
the popularity of their favorite computing platform.

Keys Tested Platform

1322.516 trillion Windows-Intel
446.102 trillion Sun-Sparc
317.628 trillion Linux-Intel
235.998 trillion Unknown
200.052 trillion MacOS/PPC
71.292 trillion NetBSD-Intel
67.078 trillion HP/UX-hppa
66.635 trillion OS/2-Intel
56.358 trillion AIX-rs6000
55.330 trillion Irix-Mips
50.289 trillion DEC-Alpha
43.722 trillion SolarisX86-Intel
42.170 trillion ?
27.315 trillion BSDI-Intel
24.766 trillion DigitalUNIX
14.225 trillion IRIX-Mips
1.838 trillion MacOS/68k
1.088 trillion Linux-Alpha
0.318 trillion Linux-Sparc

Table 17. Platform Rankings from April 24 to May 12

Distributed 205

Runge showed the number of keys tested per platform between April
24 and May 12 (Table 17), the one-week period from May 5 to May 12
(Table 18), and then just for May 12 (Table 19).

The per-platform rankings were a bit strange in that they showed
minor differences in some versions of the same client for a platform. For
example, the older clients for the SGI systems reported their platform
as “Irix-Mips” while the newer clients were reported as “IRIX-Mips.”
The platform rankings included such different clients separately.

The Windows-Intel platform dominated the keysearching, due in
part of the popularity of the platform and in part because of the sheer
speed advantage of Verser’s lightning code for the Intel processor. As
clients for various other platforms were improved and as users of the
less popular systems recruited like-minded advocates, client rankings
changed slowly over time. Looking at the rankings for the past week, for
example, showed that the Macintosh client for the PowerPC processor
family (MacOS/PPC) became more important to the project overall.

Keys Tested Platform

656.481 trillion Windows-Intel
238.486 trillion Sun-Sparc
156.061 trillion Linux-Intel
120.894 trillion MacOS/PPC
86.783 trillion Unknown
40.444 trillion ?
35.889 trillion NetBSD-Intel
31.935 trillion OS/2-Intel
31.895 trillion Irix-Mips
30.183 trillion HP/UX-hppa
28.764 trillion AIX-rs6000
24.766 trillion DigitalUNIX
22.412 trillion SolarisX86-Intel
19.512 trillion DEC-Alpha
14.872 trillion BSDI-Intel
13.926 trillion IRIX-Mips
1.229 trillion MacOS/68k
0.905 trillion Linux-Alpha
0.205 trillion Linux-Sparc

Table 18. Platform Rankings from May 5 to May 12

Unfortunately, there were several other issues with the platform
rankings. The keyserver couldn’t always tell which platform originated
a report on keys tested. Two different clients fell into the category—

206 CHAPTER 28

though we knew both were some variant of Unix—one was reported
with a “?” and the other was reported as “Unknown.” Whatever “?”
was, it tested more keys than “Unknown” on May 12, though it was still
behind for the week. Probably a number of the “?” clients were brought
online and would need a few days before their total contribution would
surpass that of “Unknown.”

Keys Tested Platform

115.0642 trillion Windows-Intel
37.340 trillion Sun-Sparc
27.084 trillion Linux-Intel
19.229 trillion MacOS/PPC
12.787 trillion ?
11.809 trillion Unknown
6.585 trillion NetBSD-Intel
5.437 trillion AIX-rs6000
4.728 trillion DigitalUNIX
4.374 trillion OS/2-Intel
3.842 trillion IRIX-Mips
3.658 trillion HP/UX-hppa
3.440 trillion Irix-Mips
2.606 trillion SolarisX86-Intel
2.086 trillion BSDI-Intel
1.618 trillion DEC-Alpha
0.186 trillion MacOS/68k
0.093 trillion Linux-Alpha
0.064 trillion Linux-Sparc

Table 19. Platform Rankings for May 12

29

An Obstacle

Saturday, May 16
Loveland, Colorado

Failures to route packets properly to and from the keyserver would not
be the only obstacle for DESCHALL to overcome. While DESCHALL
was setting DES key testing rate records during the weekend of May 9–
11, participants were watching their machines’ performance carefully.
Demand for per-domain contribution reports from Justin Dolske’s Web-
based Graph-O-Matic soared far beyond the capacity of the machine
to keep up: it simply didn’t have enough processing power to issue the
reports at the rate they were being requested.

Normally, such a hammering wouldn’t have been a big problem.
In this case, though, the Graph-O-Matic server turned out to be
commissioned for several jobs—as was often the case in university
environments—and all of them required memory and processing time.
Besides trying to keep up with all of that Graph-O-Matic traffic, the
machine was also serving network filesystems and routing traffic from
one network to another. A machine like that crashing or otherwise being
unable to keep up with the load was sure to get someone’s attention.

Dolske turned off Graph-O-Matic and sent me a note to hasten the
migration of the software to my site, which had a faster processor that
would be better able to handle the onslaught of requests.

As I was working on the Graph-O-Matic migration, I received an
e-mail message from Rocke Verser. Integrity of the DESCHALL project
was critical, so coordinators typically encrypted and signed e-mail to
other project coordinators with PGP, keeping the contents safe from

207

208 CHAPTER 29

prying eyes and assuring us that we received a true copy. After decrypt-
ing the message, I read its ominous contents: all developers should verify
the security of our computer systems and the safety of the DESCHALL
source code.

Verser’s warning was prompted by the news that someone had bro-
ken into a DESCHALL developer’s computer. The target of the attack
was apparently DESCHALL project secrets, possibly including source
code for the clients or detailed design specification. Another possible
target could have been the DESCHALL project integrity, perhaps mak-
ing malicious modifications to the DESCHALL client software that
would undermine our project or harm the users who ran the client
software. SolNET withstood an attack already, so we weren’t really
surprised to find ourselves in the crosshairs of some nitwit.

Analysis of the compromised machine showed that no confidential
DESCHALL material was exposed. Apparently frustrated by the inabil-
ity to get DESCHALL information, the perpetrator maliciously harmed
the system, doing some damage to data unrelated to DESCHALL.

Verser asked each of us to ensure that DESCHALL confidential in-
formation was protected against unauthorized disclosure and damage.
Although we had been taking precautions, such as encrypting source
code and confidential e-mail among coordinators and developers, we
needed to be vigilant and keep our guard up. DESCHALL project in-
tegrity was no longer an abstraction: someone, somewhere wanted to
do our project, and possibly our users, harm.

Even though no one outside of the group of DESCHALL devel-
opers learned of the attack, there was widespread discussion of the
risks involved with distributed computing projects like DESCHALL
and SolNET that week. Much of the fuss was started by an article
that appeared in issue 19.14 of the highly-regarded electronic newslet-
ter RISKS Digest, published by distinguished security researcher Peter
G. Neumann at SRI in Menlo Park, California. An article on client
software integrity was submitted by Thomas König, a SolNET partici-
pant and graduate student at the University of Karlsruhe in Germany.
Prompted to write about the issue of client integrity assurance by the
recent attacks against SolNET from Finland, König stated that,

You may remember RISKS-19.09, in which I discussed the
risks in a network-wide attack on the RSA DES challenge: the
Swedish group at http://www.des.sollentuna.se/ didn’t give out

An Obstacle 209

its source, so the client could, in fact, do anything, such as crack
a master EC-card key. The reason given was client integrity.

Well, a month after this, the promised source code release has
not happened. Instead, it appears that somebody disassembled
part of the client, made a version that reported fake “done”
blocks, and then sent these to the servers.

Moral? Don’t ever think that nobody can read compiled
code. Don’t try to run a cooperative effort like this in a closed
development model.

Although DESCHALL developers agreed with one of König’s con-
clusions (even compiled code can be read by someone with enough
expertise), the criticism of the “closed development model” was signif-
icantly more controversial. Presumably König meant that distributed
computing projects should give out the source code to their client soft-
ware to prevent problems like SolNET’s. König did not explain how
giving out the source code would have prevented SolNET from being
vulnerable to the attack from Finland.

Some DESCHALL participants would sometimes complain that we
were putting DESCHALL at risk by keeping the source code and client
development so heavily under wraps. We generally did not address
these requests or criticisms. There was too much work to be done to
get drawn into every possible philosophical debate. Fortunately, some
DESCHALL participants were willing to address other, less sensitive
projects and to take the initiative to get them done.

Dial-up users continued to contribute what they could to the effort, in
spite of the tremeondous difficulty of keeping them in communication
with the keyserver for long periods of time. These were some of our
most dedicated volunteers, willing to put up with far more hassle to
participate than more typical users who usually had access to faster
and more reliable Internet connections.

We worried about more “typical” users, though, because we wanted
them to join our effort. DESCHALL still needed more clients; on May
11, we had finished testing just five percent of the total keyspace. We
needed more clients running and we needed things to be easy for would-
be participants if we were going to get time on their machines.

210 CHAPTER 29

Windows programmer Randy Weems joined the DESCHALL project
in the first week of May. Just a little more than a week later, Weems
posted an announcement of his own to the DESCHALL mailing list: the
availability of a piece of software he wrote to help Windows users with
dial-up Internet access manage their DESCHALL clients. His software
was a graphical user interface for the standard DESCHALL client for
Windows. He called his software DESGUI.

DESGUI ran as a small icon in the task bar, creating a hidden
console window. It started the DESCHALL client and watched the
output, but instead of just showing the DESCHALL client’s text output
to the user, DESGUI drew a graphical display of the client’s progress
and statistics. It also provided the ability to have the log files redirected
to a file, so users who had software that read the DESCHALL client
output could use DESGUI and whatever software they wrote at the
same time.

Doing more than just providing cool features, the real motivation to
use the software was to address the problems with dial-up networking
in Windows. The most critical feature of DESGUI was its ability to
connect to the Internet over a dial-up modem about one minute before
the DESCHALL client would need to connect to the keyserver. By the
time the client was ready to report its status and to ask for another
block of keys to test, the system would be online. After the transaction
with the keyserver, DESGUI would drop the connection. Operating this
way, Windows users participating over a modem would be able to stay
just as productive as the users of systems that were always connected
to the Internet.

Because DESGUI was strictly a front-end for the DESCHALL client
software, it was not actually testing any keys and was not actually a
part of the DESCHALL client. This also meant that there was no need
to coordinate the work needed to get the software tested and integrated
into the core DESCHALL code.

Reaction was swift and clear. It was a big hit, a must-have for Win-
dows users with dial-up connectivity to the Internet. There were a few
bugs in the initial release, which were pretty quickly fixed, and DES-
GUI version 1.2 was released. Users reporting problems in the earlier
releases reported that all was well with the new version.

Now that participants running Windows had DESCHALL client
management software, Toronto-based system administrator Ken Chase
asked how long a client had to report their findings before the keyserver

An Obstacle 211

would ignore the report. Chase naturally assumed that a report from
a client about a block of keys that had not been assigned would be
ignored because it was a false report. He also assumed that a report
from a client about a block of keys that had been assigned a month
earlier would also be ignored as a false report because anything with
even the computing power of a wristwatch should be able to get through
a block of keys in that period of time. But just how long did a client
have to issue a report to the keyserver that would not be treated as a
false report?

Chase asked the question because with DESGUI and the client man-
agement programs like the one that Benjamin Peterson at Notre Dame
built and the one that he wrote himself, it seemed possible that one of
those programs could stop a client from working for some reason, and
keep the program stopped so long that the report would be ignored by
the keyserver once it did finally finish. Based on some earlier commen-
tary on the mailing list, Chase worked with the assumption that the
timeout period was two hours and thought that the way his software
worked might be problematic. Chase’s software ran on Unix systems
running DESCHALL clients. When a user logged into the machine,
Chase’s software would suspend the DESCHALL program’s execution
and wait for the user to finish with the computer. Once the user logged
out, Chase’s software would restart the DESCHALL client, letting it
pick up right where it left off—although that could be hours later.

The concern was a valid one, but it turned out that the keyserver
would not ignore such reports. Rocke Verser posted a reply to Chase’s
question and answered definitively: the keyserver was not presently tim-
ing out blocks at all. Of course, it knew which it had issued and when,
and which had not been returned, so reissuing blocks could be done
easily enough if they did turn out to be abandoned. With only six per-
cent of the keyspace tested, though, there was no need to worry about
retesting abandoned keys. Verser went on to say that in the begin-
ning, the keyserver was automatically expiring such blocks it thought
were abandoned, and it could do so again—but that the timeout period
would be set for a day or two, not just a few hours.

The automated methods for key management were safe.

30

Export

Wednesday, May 14
Capitol Hill, Washington, D.C.

The House Judiciary Committee continued its work on liberating cryp-
tography with the SAFE Act, which survived its first hurdle just two
weeks earlier. At issue now was a provision that even many of the bill’s
supporters did not like: specification of new criminal penalties for the
use of cryptography in committing a crime.

This provision prompted a letter to the bill’s sponsor, Rep. Bob
Goodlatte. Signed by representatives from twenty-six organizations (in-
cluding American Civil Liberties Union, Americans for Tax Reform,
Center for Democracy and Technology, and Internet Society), the let-
ter argued that the provision tended to draw attention away from the
criminal act itself and to cast “a shadow over a valuable technology
that should not be criminalized.”

The letter then discussed how such a provision would affect other
more familiar and readily understood technology. “It may, for instance,
be the case that a typewritten ransom note poses a more difficult chal-
lenge for forensic investigators than a handwritten note,” wrote the
authors. “But it would be a mistake to criminalize the use of a type-
writer simply because it could make it more difficult to investigate
crime in some circumstances.”

During the two weeks since the letter was received, committee
members had plenty of time to consider the argument. Representa-
tive William Dellahunt, a Democrat from Massachusetts, addressed the

213

214 CHAPTER 30

committee. Dellahunt proposed an amendment to the bill designed to
limit the provision that caused concern among many of its supporters.

Following acceptance of Dellahunt’s amendment, the committee
passed the bill by voice vote, sending it along to the House Interna-
tional Relations Committee for consideration.

While Washington debated the future of cryptographic policy, corpora-
tions and individuals all over the world continued to buy cryptography
products to protect themselves and their information against threats to
confidentiality and integrity. Among the American companies unhappy
to sit idle as foreign competitors continued to meet the worldwide de-
mand for cryptographic protection was Sun Microsystems, based in
Santa Clara, California.

Known as a pioneer in enterprise computing, Sun intended to ad-
dress this important global market. The Wall Street Journal reported
on May 19 that Sun would sell encryption software internationally
through a Russian supplier, Elvis+Co., founded by former Soviet rocket
scientists. Elvis+Co. would license the software from Sun and deliver
it to customers overseas.

Sun officials said that they had not made the deal to subvert the
cryptography export restrictions, but to deliver solutions that its inter-
national clients needed.

31

Getting Word Out

Friday, May 23, 8:50 A.M.

Megasoft Online, Columbus, Ohio

Looking for still more ways to publicize DESCHALL, I considered ways
to reach people without relying on the Internet to get to them. Li-
braries, computer labs, and schools all seemed likely sources of poten-
tial participants, but we had no promotional material to hand out to
people who might want to know more and then join the effort later.
Hoping to encourage some creative thinking for flyer designs to fit this
purpose, I wrote to the mailing list about my progress on developing
different designs for DESCHALL fliers to be printed on standard U.S.-
letter paper. I also added that I would post any good designs on my
Web site, where they would be found easily.

David E. Eison of Georgia Tech responsed to my note and men-
tioned he had a friend design a DESCHALL flyer, suitable for posting
anywhere. The flyer included a critical visual—a pixelized version of
Georgia Tech’s mascot (a hornet named “Buzz”)—which would not
make sense for other sites. Nevertheless, he offered a few design tips
that would prove useful for others making flyers of their own.

First, the text should actually be minimal, allowing for large and
clear letters to be used. Second, the handout should include a Web
address where interested people can go for more information; he also
suggested having some tear-off tags along the bottom so people could
take one instead of having to remember the address. Third, Eison sug-
gested enumerating reasons for joining the effort. He observed that
those reasons should include some serious incentives like cash reward

215

216 CHAPTER 31

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

M
ay

 0
8

M
ay

 1
0

M
ay

 1
2

M
ay

 1
4

M
ay

 1
6

M
ay

 1
8

M
ay

 2
0

Fig. 9. DESCHALL Key Testing Rate
(Billions per Second), May 7–21, 1997

and influence over government
policy as well as some humorous
ones like “giving your computer a
hobby.”

Later in the day, Brian Young,
an Internet systems administra-
tor at Oral Roberts University,
thought about our need to recruit
more participants. Looking over
the number of keys tested per
day in the past two weeks (Fig-
ure 9), he noted that our progress
wasn’t anywhere near the rapid
pace that it had been earlier in
the month. In fact, our rate of keys tested per second actually de-
creased over the past week. He wondered if the decrease in peak search
rate might have something to do with university students being away
and not running the clients on as many machines when they weren’t at
school.

Yes, we were slowing, but Young also noticed something that was
more promising: we had passed the ten percent mark—more than 7.2
quadrillion keys had been tested by us so far. He suggested we consider
a post-ten-percent press release in order to recruit new participants and
inspire those who were already helping us.

Meanwhile, David Eison, who was also reviewing the most recent
statistics, noticed that Georgia Tech’s participation in DESCHALL had
dropped off in the past few days. In response to Brian Young’s questions
about the general drop-off in key testing rates, Eison noted that Georgia
Tech too had seen a decrease in its on-campus activity, although classes
were not scheduled to end for another two weeks.

Wondering why this might be the case, he suggested that initial
interest could be tapering off. Indeed, many people had, out of cu-
riosity, been willing to download some clients and run them on their
personal computers. Because their interest, Eison guessed, was more
casual, these participants wouldn’t install a DESCHALL client into
their startup programs, and they wouldn’t make any effort to keep the
clients running. Thus, over time, as systems got rebooted, more and
more clients run by people who only had a passing interest stopped
working.

Getting Word Out 217

Since I was running the mailing lists, I saw some important data
about interest in the project. In the week before May 23, I had seen
more than 200 returned e-mail messages, almost exclusively from people
at universities. Typically, mailing list administrators will see returned
messages when subscribers abandon their addresses and the abandoned
mailboxes become full, or when e-mail accounts used to read the mailing
list are closed. We had plenty of subscribers in both categories. Either
way, it looked like students had started to return home for the summer
and were not reading their e-mail.

In other cases, people were running large numbers of clients with-
out the knowledge or approval of their organization’s management or
system administration staff. As system administrators at different in-
stitutions became aware of the DESCHALL clients, they were deciding
to ban the clients from their networks.

Something had to be done to ensure that DESCHALL clients would
keep running. Eison and others he knew at Georgia Tech intended to
organize a significant effort to keep DESCHALL clients running on
campus and to spread the word about the project, hoping to counteract
the effect of students going home for the summer. Eison hoped that
others would do the same at their own universities.

While we were considering possible causes for decreases in activity,
Eison noticed that no DESCHALL client was running at one of the
buildings on the Georgia Tech campus where he knew they were in-
stalled. The key search rate for the project overall as well as Georgia
Tech had been slowing in recent days, and this was something that
would not help to reverse that trend.

Eison did some checking into the problem soon found the culprit.
It turned out that one of the Sun machines had crashed while DES-
CHALL was running. Someone on the administrative staff there made
an executive decision to terminate all DESCHALL participation in the
building, believing that the DESCHALL program was responsible for
the system’s crash.

Unable to get any more details on what else was happening, Eison
posted to the DESCHALL mailing list to find out if anyone else had
experienced similar problems with their clients.

As Nelson Minar at MIT read David Eison’s e-mail, he shook his
head at the idea of a whole building full of computers unable to run
DESCHALL because someone thought that a user process can crash a
Sun machine. Incredible.

218 CHAPTER 31

Operating systems like OS/2, Unix, and Windows are programs,
Minar knew very well, but they’re a little different from most other
kinds of programs. The primary purpose of operating systems isn’t
for the sake of users, but for the sake of other programs. Operating
systems provide an interface to the hardware for other programs, so
that applications like word processors and web browsers don’t need to
know lots of intimate details about things like your video card, hard
drive, and other components of your computer.

Another special property of operating systems is that they actually
run other programs inside of them. So your word processor is actually
a program that is running inside of another program—your operating
system.

Programs do crash sometimes, when something happens and they
reach some kind of situation that the designers never imaged. The “Y2K
bug” that spooked computer users in 1998 and 1999 is a good example.
If a program is designed to represent a year with two digits, that might
be written as 97. Suppose that the program then has to perform a
calculation that adds three to the year. Performing the simple addition
of 3 to 97 will result in 100, which is obviously three digits long. If a
program was written so that it could handle only two digits, putting a
three-digit number into that part of the program’s memory would cause
a condition the programmer never foresaw, and the program would
crash.

When people encounter something that they didn’t expect, they
might get confused, but they tend to recover quickly. For example,
someone adding 3 to 97 would get 100, but would not try to put a
three-digit number in place. A mistake like that by a person would be
amusing, but that would be the extent of the “problem.”

This difference between people and software is critical, and an excel-
lent way to demonstrate how brittle most of the software built today
really is. Obviously, programs that are written properly should not
crash. Never crashing at all really isn’t a practical goal for software
developers, but we can eliminate enough problems in software that the
mean-time between failures (MTBF) is so large that some other prob-
lem (like hardware failure) is likely to take the system down before our
software crashes.

Operating systems tend to be especially robust software. If anything
is supposed to be well-debugged and tested to be sure that MTBF is
a “really long time” (months or years) it will be the operating system.

Getting Word Out 219

Most Unix-based operating systems had achieved quite a significant
level of stability and correctness by 1997, with many being able to
run for years without a reboot or a crash. IBM’s OS/2 tended to be
pretty good about stability at this time. Like Unix, OS/2 had protected
memory, where programs could not write into parts of the computer’s
memory used by other programs.

To understand protected memory, let’s reconsider the example of
our program that added 3 to 97 and tried to store it in a place where
only two digits were reserved. In an operating system without protected
memory, the program would put the digits 100 into memory, starting at
a given location. The 10 would fit, but then the next 0 would get writ-
ten into the next section of memory—which might be used by another
program. So now instead of having one program with a nonsensical
value in memory, the program running next to it now was also com-
promised. The damaged portion of the program might not have been
a number at all, but a letter, or a symbol. When that program tries to
get that value back, it’s going to get a 0 where something else used to
be, possibly causing that program to crash as well.

Working under an operating system with protected memory, the
buggy program that tried to put a three-digit value into a two-digit
memory slot might crash, but it would not be able to make any other
programs, or the operating system itself, crash.

Apple’s MacOS could be wildly variant in stability, depending on
which applications were running, since it didn’t offer protected memory.
Microsoft’s Windows 3.1 was notorious for its instability, often requir-
ing daily reboots, and sometimes more, frequently because an error in
a program that the user was running would overwrite another part of
memory, one used by the operating system itself. Once that happened,
only restarting the system would correct the problem.

Sun’s computers ran Solaris, a robust implementation of the Unix
operating system—one with protected memory that could not be
crashed because of any program that a user would run on the system.

Bearing all of this in mind, Minar posted the following response to
the DESCHALL mailing list later in the afternoon:

It’s amazing how DESCHALL reveals what people don’t un-
derstand about how computers work. Wearing out CPUs. Low
priority processes pigging machines. And now, user processes
crashing operating systems.

220 CHAPTER 31

The idea of DESCHALL crashing the operating system is
ridiculous. If a user process as simple as DESCHALL can crash
a Unix kernel [the core of the operating system] then that Unix
is severely broken. Unix isn’t Windows. [On the other hand],
if the Unix system is truly that broken and I were [the system
administrator] I would probably try to get people not to run
programs on it, either.

As we considered how DESCHALL client software impacted the
systems running it, one of our participants noticed a problem with how
the client worked.

Friday, May 23, 9:43 A.M.

University of Oregon, Portland

Chris Schleicher decided to put some Sun machines running Solaris
and some SGI machines running IRIX to work running DESCHALL
clients during their idle moments. The Sun clients worked smoothly, but
Schleicher noticed something a little different with the IRIX machines.

On several occasions, when someone tried to use the computer, the
DESCHALL client didn’t yield the processor the way that he expected,
or the way that was happening on other Unix implementations. This
was a problem because if DESCHALL took processing time away from
users, Schleicher would not be able to run DESCHALL clients on those
systems. If it was a problem with the client, he wouldn’t be the only
one who would have to pull the plug—other participants would have
the same problem and probably have to quit running the client. Before
we got to that point, we had to figure out why the client insisted on
running when IRIX user programs had something to do.

The operating system’s process scheduler is designed to work with
the processor so that for each cycle (or, “tick”) of the processor, the
process scheduler will decide which program gets to be on the processor.
Remember, a 200 MHz machine has some 200 million cycles per second;
it’s this fast moving among different programs that actually gives the
user the illusion of running multiple programs at once. The process
scheduler should be looking to see which programs want time on the
processor and letting the DESCHALL client run only when no other
program wants the processor.

Under the IRIX operating system, the DESCHALL client was still
getting time on the processor, even when the user was running other

Getting Word Out 221

programs that needed the system’s processor. The end result was that
users noticed a performance degradation when DESCHALL was run-
ning, which was something that we explicitly advertised would not
happen.

Schleicher wanted to know whether the IRIX clients were faulty, or
whether there was some problem with the way that the IRIX operating
system was handling process scheduling. On the mailing list, we started
to discuss how DESCHALL worked with process schedulers and to look
into an answer for Schleicher’s question.

The way that we were preventing the DESCHALL client from im-
pacting system users was dependent on the “priority” value that we
used when starting the software. This feature allows the process sched-
uler to understand when it has more than one program that wants the
processor, which one should go first.

Most computer programs spend a lot of time in idle loops. That
means that they’re literally just sitting there, waiting for something
(like input from the user) to happen. For example, a word processor
will need to perform many functions: it will need to be able to accept
input from the keyboard, figure out how to place the text, and draw
the letters on the screen. Taxing as this might seem, the computer has
much more processing power than what is needed for that particular
job. The result is that other programs can run for tiny slice of time
(the cycles, or ticks) between a user’s keystrokes.

A problem could develop if, for example, the user were trying to
use the word processor while sending a fax at the same time. If the fax
program gets just as much time on the processor as the word processor,
the user would wind up waiting for the fax program to yield its time so
the word processor could receive and process all of the input the user
gave it. To address this problem, modern operating systems have what
is known as a process scheduler, a part of the operating system that
will look at all of the programs that want to run and then decide which
program will get to run for each cycle of the processor’s time.

At this point it’s important to note that not all of the programs run-
ning on a given computer have the same priority. Programs that users
work with interactively need to be very responsive and thus cannot
jockey with other programs for time on the processor.

Other kinds of programs do not have such tight time constraints.
Performing a large scientific calculation, for example, can take days
or weeks. Whether it takes an extra ten seconds or ten minutes will

222 CHAPTER 31

make no difference to the user. The user perception makes this kind
of program dramatically different from a word processor, which could
not make a user wait for a second before displaying a typed letter on
screen.

The Unix family of operating systems has a basic facility for han-
dling these issues. Each process runs at what is known as a nice level.
That nice level is a number that represents priority on a scale between
−20 (the highest priority) and 20 (the lowest priority). Programs have
a nice level of 0 by default.

Nice levels help divvy up the system’s processing power appropri-
ately, since it allows more interactive programs to run at a higher prior-
ity than things that can go about their business without much concern
over whether the job is taking thirty or thirty-five hours.

In theory, very low priority processes would be things that you
wouldn’t want to have running at all unless absolutely nothing else
would run. This was the kind of priority that we intended to attach to
DESCHALL clients. In practice, this turned out to be a litle bit harder
than we originally thought. During the course of the project, we started
to discover some minor differences in the way that various operating
systems—even different operating systems that came from the same set
of source code before they diverged—would handle process scheduling.

Darrell Kindred at Carnegie Mellon University was running DES-
CHALL on a variety of machines—some of which were running IRIX—
so he took particular interest in Schleicher’s question. Kindred noticed
that the other Unix systems were behaving as expected, so he started
to zero in on the way that IRIX specifically handled process scheduling.
What he saw is that IRIX offered a much greater level of control over
just how to share system processor.

IRIX provided a new command—npri—which set a program’s pri-
ority, not in terms of the standard Unix nice value, but in terms of
IRIX’s granular pri value.

After having done this investigation, Kindred decided to start DES-
CHALL clients with a pri value of 150, which he understood to mean
that any other process asking for time on the processor would get it.
This solution was a much easier way to run DESCHALL than the nice
command would allow.

Kindred always liked to know what was really happening in the
computer. After posting his observations about IRIX’s handling of pro-
cess priority, he started to look at other Unix systems around the lab

Getting Word Out 223

he worked in. He set about performing a series of tests during which
he would start programs with very low priority set by nice, and then
would run another program that wanted a lot of time on the processor
to see just how much time the operating system would grant to the
low-priority process. (Among the systems that he went about testing
were an older SunOS 4 system, the newer Solaris, known also as SunOS
5, Hewlett-Packard’s HP-UX, IBM’s Unix implementation called AIX,
NetBSD, and Linux.)

Something especially interesting—and rather frustrating—was that
AIX did not provide the granular control over processes that IRIX did,
and neither did a nice of 19 set the process priority to the low level that
one might expect. Some investigation led to the discovery that under
AIX, it was possible to do better than what nice was allowing.

Four hours after starting to look at the problem, Kindred posted
again to the DESCHALL mailing list, summarizing his findings, and
including the source code to a new program that he had written for
AIX, which he called verynice.

At last, we had definitive answers to how we could ensure that DES-
CHALL clients would not interfere with normal system operations, even
on operating systems that had non-standard ways of setting system
priority. Schleicher simply used npri, and AIX users could use Kin-
dred’s verynice program. Other Unix implementations correctly han-
dled the scheduling—not giving DESCHALL any time unless nothing
else needed the processor.

Friday, May 23 was a frustrating day overall as we tried to under-
stand why the DESCHALL key testing rate had slowed, saw students
abandon their mailboxes, had DESCHALL clients banned from entire
university buildings, and tried to track down strange platform-specific
process scheduling problems. But across the Atlantic, things were much,
much worse.

SolNET had been keeping hard on our heels. As a project, they were
testing over 2 billion keys per second, compared to our 3.6 billion.
Besides having so many systems running its clients, SolNET had been
improving the speed of its clients. Though never as fast as DESCHALL

224 CHAPTER 31

clients, SolNET clients were getting faster, thanks in part to the work
that SolNET did on its own bitslicing clients.

While DESCHALL participants discussed process scheduling in
minute detail, the coordinators of SolNET were managing a real crisis.
Analysis revealed that some of the clients that were already released
were not testing all of the keyspace that they had been assigned. After
removing the problematic clients from the distribution points, Fredrik
Lindgren got the job of alerting SolNET users to the problem.

“We’ve found an ugly bug in the 32-bit bitslice clients,” wrote Lind-
gren to the SolNET mailing list. “This will require everybody to up-
grade their clients since we have to shut out all broken 1.11 clients.
Sorry for this screwup.”

Saturday, May 24, 11:58 A.M.

MIT, Boston, Massachusetts

Nelson Minar sighed as he read Lindgren’s message. None of the par-
ticipants really wanted to see any of the projects suffer any serious
setbacks, even if they were our competitors.

After looking over the SolNET project statistics page, he posted his
reaction to the DESCHALL mailing list.

Since the announcement [SolNET’s] keyrate has dropped from
their recent 2 billion keys per second to 738 million keys per
second. . .

It’s worth taking a step back and learning from SolNET’s re-
cent mishap. Is anyone on this list actively following SolNET’s
development? What exactly was the bug? Can someone com-
ment on their quality control versus ours?

Minar asked good questions. Something that Rocke Verser took very
seriously was the process of client development, control over the process
of integration of source code, and testing of the clients before their
release. Not knowing SolNET’s development process, though, we could
only speculate what might have happened there.

Minar continued,

The costs of a bug in this type of computation are very high.
I don’t want this or my earlier e-mail comparing keyrates

to sound like I’m denegrating SolNET. They are doing an ex-
cellent job of cracking DES [keys]. Our efforts are compatible,

Getting Word Out 225

any competition between DESCHALL and SolNET should be
entirely friendly.

SolNET should be commended for their organization and
openness. They have great mailing list archives, including an
open development list. They are giving out source code for their
clients (albeit with a small piece missing—you can’t actually
use the client to run on their keyservers). Making inforomation
available makes it much easier to understand what is going on
when a problem is discovered.

Saturday, May 24, 2:26 P.M.

Sun Microsystems, San Diego, California

Even while DESCHALL participants puzzled over SolNET’s setback,
we received some welcome news. Someone at Sun Microsystems had
come on board. For the past two days, software engineer John Falken-
thal had been running around trying to get everything that he needed
to participate in DESCHALL.

Since Sun used firewalls to limit the connectivity between its inter-
nal networks and the Internet, Falkenthal needed to get Justin Dolske’s
U2T software working inside of Sun to work through the firewall. Once
he got the necessary software up and running, he started running DES-
CHALL clients on the Sun systems at Sun’s San Diego engineering
facility.

The results of his first day of recruiting were impressive. Sun ap-
peared in the DESCHALL statistics as one of the top ten sites testing
keys on May 23.

Word continued to spread inside of Sun, and with other Sun employ-
ees starting to help by running DESCHALL client software on their ma-
chines, Sun Microsystems started making headway against other sites
participating in the effort.

A few days later, Nelson Minar would smile as he read over the
previous days statistics. John Falkenthal’s efforts inside of Sun seemed
to be paying off. Sun reached fourth place in keys tested May 27, passing
both MIT and Georgia Tech.

226 CHAPTER 31

 0

 2

 4

 6

 8

 10

 12

 14

M
ar

 1
5

M
ar

 2
9

A
pr

 1
2

A
pr

 2
6

M
ay

 1
0

M
ay

 2
4

Fig. 10. Sum of DES Keys Tested, as a
Percent of Total, March 14–May 29

Monday, May 26
Loveland, Colorado

Rocke Verser looked at the speed
the DESCHALL project was
searching the DES keyspace. It
had taken us roughly two months
to search one percent of the
keyspace. We passed the two per-
cent mark nine days later, the
three percent mark six days af-
ter that, and the four percent
mark in another four days. As
we built momentum and raced
through the keyspace at an ever-increasing rate, our “Estimated Time
to Fifty Percent Completion” statistic became less useful. Sure, it would
be a good figure to have if we wanted to show how long it would take
us to find DES keys on average with the DESCHALL project, but we
were looking for one key, and we wanted participants to know when to
expect to find the one key we wanted before they became distracted or
discouraged and dropped out of the race.

Verser’s answer was a “Time of Completion” report, posted to the
DESCHALL list for the first time on May 28, analyzing the previ-
ous day’s activity. In the report, he noted that DESCHALL’s previous
“time to fifty percent completion” figure rapidly became a meaning-
less statistic, that a more accurate measure was the time remaining to
searching fifty percent of the remaining keys. Additionally, instead of
statistically assuming that DESCHALL was the only project working
on the problem, Verser built a model that looked at both DESCHALL
and SolNET’s activity. Verser’s first report was as follows.

Given the “factual data” and the “assumptions” below, the “re-
sults” of this model are believed (not guaranteed) to be mathe-
matically correct to within one day and to within two percentage
points.

Getting Word Out 227

Factual data:

DESCHALL keyrate
over last 24 hours

4.014 billion keys/sec.

SolNET keyrate
over last 24 hours

1.738 billion keys/sec.

DESCHALL keyspace [tested] 12.193%
SolNET keyspace [tested] 7.849%

Assumptions:
• DESCHALL and SolNET are working independently.
• Each group’s keyspace rate remains constant at the levels

shown above.
• Nobody else on the planet is working on the RSA DES Chal-

lenge.

Results:
• 50% done: 54 days from now. (This is when 1

2 of the to-
tal keyspace will have been searched by DESCHALL and/or
SolNET.)

• Expected date of solution: 73 days from now. (There is a 50%
chance the solution will be found prior to this date, and a
50% chance the solution will be found after this date. This
is the date on which we should expect to have searched 50%
of the remaining keyspace.)

• Probability that a DESCHALL client will find the key: 79%
• Probability that a SolNET client will find the key: 21%

Verser’s new model provided a much more comprehensible view of a
difficult problem inherently full of uncertainty. The more we could do
to help regular computer users, members of the press, and average
citizens understand what we were doing and what to expect, the better
the chances that they would listen to our point and see the need for
a new standard for data encryption. Verser’s model was a big step in
that direction.

32

Salvos in the Crypto Wars

Wednesday, May 21
Murray Hill, New Jersey

Bell Labs computer scientist Matt Blaze was well known for his work
in cryptography. Neither was he a stranger to the place where cryptog-
raphy and public policy met head-to-head. Among Blaze’s work was
a 1994 paper entitled, “Protocol Failure in the Escrowed Encryption
Standard,” in which he detailed a pair of attacks against the “Clipper
Chip” cryptography products that were the centerpiece of the Clinton
administration’s key escrow system.

Blaze was updating the final version of a new report to his personal
Web site, www.crypto.com. His co-authors included some of the most
recognized and respected names in computing and security. A few of
the names were Ross Anderson, professor of security engineering at the
University of Cambridge; Steven M. Bellovin, AT&T Bell Labs distin-
guished member of technical staff and longtime contributor to Internet
security; Whitfield Diffie, longtime critic of short cryptographic keys
and coinventor of public-key cryptography; and Peter G. Neumann,
distinguished computer security researcher and moderator of the pop-
ular RISKS Digest.

Entitled “The Risks of Key Recovery, Escrow, and Trusted Third-
Party Encryption,” the report documented the findings of the first thor-
ough consideration of risks and implications of government-designed
key-recovery systems by respected authorities on cryptography and
security.19 Among its observations came a pronouncement that would

229

230 CHAPTER 32

call into question the feasibility of implementing the Clinton adminis-
tration’s cryptographic policy:

The deployment of a general key-recovery-based encryption in-
frastructure to meet law enforcement’s stated requirements will
result in substantial sacrifices in security and cost to the end
user. Building a secure infrastructure of the breathtaking scale
and complexity demanded by these requirements is far beyond
the experience and current competency of the field.

For four years, the Clinton administration had made strenuous ef-
forts to restrict the deployment and use of cryptography, largely in the
name of making the Internet a safer place—by allowing governments
the ability to police the Net. The first serious report considering the
likely effect of such a policy was now out, and it argued that the policy
would have exactly the opposite effect intended.

Reaction to the report was swift. The very day of its release, a
statement was issued by Senator Patrick Leahy from Vermont. Leahy,
the ranking Democratic member of the Senate Judiciary Committee,
was working feverishly on legislation that would liberate cryptography
from such tight government regulation. Aside from his own “Encrypted
Communications Privacy Act,” Leahy was chief co-sponsor of the Pro-
CODE bill.

In response to the report issued by Blaze and other respected cryp-
tographers, Leahy wrote:

Last year the National Research Council concluded that ag-
gressive promotion by the U.S. government of global key re-
covery encryption is not appropriate at this time. This new
study by nine world-renowned cryptographers further shows the
real-world problems with the government’s proposal. It is even
clearer now that the time for global key recovery encryption is
still not right, and it may never be right. The U.S. government
acts as though it doesn’t understand the issue.

Many of us fully expect that some users—maybe even many—
will want and voluntarily choose to use key recovery encryption
systems for some purposes. For example, no company wants to
be left without a key to decode important business information
stored in encrypted form on computer discs.

The government apparently already is spending about $8
million on pilot projects to test key recovery systems, and that

Salvos in the Crypto Wars 231

is just a drop in the bucket. According to the cryptographers’
report “a global key recovery infrastructure can be expected
to be extraordinarily complex and costly.” As Congress exam-
ines the Administration’s proposals for key recovery systems, we
need to ask the questions about how much their proposals will
cost the government, businesses and Internet users who want
the strongest but cheapest security possible for their computer
communications.

Federal law enforcement officials contend that their objective
is simple: easy, surreptitious access to both encrypted communi-
cations and encrypted stored data. The experts do not think this
is so simple. The cryptographers’ report observes: “We simply
do not know how to build a secure key management infrastruc-
ture of this size, let alone operate one.” When the experts say
they do not know how to do it, we in Congress should think
twice before legislating encryption commandments that may be
impossible to afford and enforce.

Even while the rules for cryptography regulation were being de-
bated, some companies were using the new Export Administration Reg-
ulation framework so their products could be used globally by American
companies. After the government’s investigation into Phil Zimmermann
over the appearance of his Pretty Good Privacy (PGP) software on the
Internet in 1996, Zimmermann went on to start a company to bring
the system to market. PGP, Inc., based in San Mateo, California,
announced on Wednesday, May 28 that the U.S. Department of Com-
merce had approved the export of its 128-bit encryption software to the
overseas offices of the largest companies in the United States. The only
restriction was that the offices were not located in any of the countries
on the U.S. State Department’s “T-7” list of terror-sponsoring nations,
namely Cuba, Iran, Iraq, Libya, North Korea, Sudan, or Syria.

This made PGP the only U.S. company currently authorized to ex-
port strong encryption technology not requiring key recovery to foreign
subsidiaries and branches of the largest American companies. Any other
company wishing to export cryptography would have to limit their sys-
tems to the weak 40-bit systems like the one Ian Goldberg defeated in
under four hours, or enter into an agreement with the government to
develop a key recovery or key escrow system—and even then only up
to 56-bit systems could be released.

232 CHAPTER 32

More than half of the Fortune 100 companies already used PGP
domestically to secure their corporate data and communications. PGP
and 128-bit systems like it were preferred by people who wanted to keep
information confidential for long periods of time because its strength
against brute-force attacks was simply staggering. Recall that just two
months earlier, Deputy Director of NSA William P. Crowell testified to
Congress (see chapter 7) that all of the computers in the world in 1997
working on breaking a 128-bit PGP message using brute force would
need 12 million times the age of the universe to find the key. With
a 56-bit key length, DES was rapidly moving toward falling to brute
force attack with only a few thousand computers over a period of a few
months.

With the announcement, Robert H. Kohn, PGP vice president and
general counsel said that the company “still oppose[d] export controls
on cryptographic software, but this license is a major step toward meet-
ing the global security needs of American companies.”

PGP’s announcement was not the only cryptographic news of the
week. Weekly newspaper Business First in Columbus, Ohio, carried
a “Tech Watch” column, where ongoing developments in technology
would be reported to business readers. John Frees’ Tech Watch col-
umn carried the headline, “Scientist questions standard for encryption
technology.” That column explored the important technical, political,
and business issues at stake, and even published the address for the
DESCHALL Web site.

The business press was not alone in starting to look at the issue of
cryptographic policy. Business leaders themselves were also deeply con-
cerned. On June 4, major computer industry heads openly called upon
President Clinton to drop efforts to regulate encryption technology. In
an open letter to the president, Microsoft’s Bill Gates, along with the
heads of Adobe Systems, Autodesk, Bentley Systems, Compaq, Intel,
SCO, Symantec, Claris, Digital Equipment, Lotus Development, Novell
and Sybase said that U.S. competitiveness in electronic commerce was
at stake in the debate.

“Network users must have confidence that their communications,
whether personal letters, financial transactions, or sensitive business
information, are secure and private,” Gates and his colleagues wrote
as members of the industry trade group, Business Software Alliance
(BSA).

Salvos in the Crypto Wars 233

As the BSA letter began to circulate, FBI director Louis Freeh tes-
tified before the Senate Judiciary Committee. He said that Congress
must give FBI “the capability to deal with current and future tech-
nology” by increasing the Bureau’s electronic surveillance authority.
Freeh’s testimony described how unbreakable encryption would “allow
drug lords, terrorists, and even gangs to communicate with impunity.”

Freeh then outlined his support for the kinds of controls sought by
the Clinton administration and opponents to the SAFE Act. He said
that key recovery or escrow systems must be put in place—going so far
as to argue that these must be required even for domestic use.

What Freeh did not address is how making “unbreakable encryp-
tion” illegal would stop drug lords, terrorists, and gangs from using it,
or why Congress could expect that people already committing crimes
would be inspired not to commit the crime of encrypting their commu-
nications.

In their letter to President Clinton, the computer executives said
governments should not impose import or export controls on encryp-
tion products nor “attempt to force use of government-mandated key
management infrastructures.” This position was in agreement with the
analysis of the risks of key escrow systems detailed two weeks earlier
by Matt Blaze and his colleagues.

As more weighed in on the debate, the lines hardened: business and
technology experts demanded free cryptography, while the government
demanded the ability to read encrypted electronic messages.

33

New Competition

By June 1, our principal rival in the race to defeat DES had recovered
from the bug in its client software. SolNET released new clients and
within a week, participants had upgraded, resulting in a recovery to a
key testing rate of nearly 2.2 billion keys per second. In the meantime,
DESCHALL had increased to over 4.2 billion keys per second. But we
were in for a surprise.

With the late-May appearance of Sun Microsystems on our list of
sites contributing processing power, speculation was growing about the
absence of several other large technology companies. Attention focused
especially on one of Sun’s biggest competitors, Silicon Graphics, Inc.,
known simply as SGI.

On June 3, Sun’s John Falkenthal posted some details of a rumor
that he heard involving SGI’s attempts to find the DES key, apparently
hoping that someone else might be able to fill in the details. In addition
to having an internal project of its own, Falkenthal wrote, SGI’s effort
rumored to be ahead of DESCHALL. He didn’t know anything more—
how far ahead, when it had started, or its key testing rate.

If an effort were seriously underway at SGI, it could very well have
been ahead of DESCHALL. As a premier developer of high-end com-
puting equipment, SGI had tremendous computing power available on
its in-house machines. Furthermore, SGI would have the talent needed
to create heavily optimized clients for various models of SGI computers.
Even in 1997, all of SGI’s computers were 64-bit machines and would
have had the potential for extremely fast clients. SGI clients could have
been running for months at speeds that DESCHALL clients were just
beginning to see, and it could have thousands of fast, high-end ma-
chines at work. We had nowhere near enough information to guess just

235

236 CHAPTER 33

how many machines they were using, just how fast their clients were,
or how far along they were, but we could guess that SGI might really
be the front-runner by a large margin that would be hard to close.

Like any company with hot technology, SGI was usually pretty anx-
ious to show off what it could do, which is why its absence in a contest
like RSA Data Security Inc.’s was so noticeable. A secret internal SGI
team working on the contest was certainly plausible and would explain
why neither DESCHALL nor SolNET received support from inside of
SGI.

The most interesting detail of the rumor was that although SGI was
ahead of DESCHALL in total keys tested, we were actually sustaining a
higher key testing rate. So even if the rumor turned out to be true, SGI
might not be the front-runner forever, and DESCHALL could overtake
them.

Not long after Falkenthal’s message was posted, a follow-up was
sent to the DESCHALL mailing list. A DESCHALL participant using
the name “Stunt Borg” posted that he asked a friend of his at SGI
about the rumored effort and soon after received a firsthand account
of SGI’s private DES Challenge project. “There is quite a campaign
internally,” reported the SGI employee whose name was removed from
the message. E-mail notifications were being widely distributed, Web
pages were put up internally, and even a pop-up window announcing
the project was sent to all internal users. A survey was even issued to
determine who was contributing and how much spare processing power
they had available.

That night, Ken Chase in Toronto received a curious e-mail message
that contained a table showing the top contributors to SGI’s effort.
Although the numbers leaked would not allow for highly meaningful
comparison of the effort’s total progress, the “identifier” column of
the “top 20 participants” table did show participation from a broad
cross-section of SGI. Participants were at SGI proper and Cray, the
famed supercomputer maker, which SGI had purchased some time ear-
lier. (Interestingly, Cray was also the manufacturer of the “$30 million
supercomputer” that Robert S. Litt from the Department of Justice
said would need over a year to crack a DES message.) Looking with
more detail, Chase saw that even within these business units, various
offices were contributing cycles, as were departments including security,
marketing, and software development projects.

New Competition 237

Chase forwarded the message to the DESCHALL mailing list in
the late evening. Several hours later, Chase somewhat sheepishly com-
posed another message to the DESCHALL mailing list. It turned out
that he had received two messages about SGI’s effort—the one that
he had forwarded and one with more details on the effort’s status. He
overlooked the message containing the details. (Chase’s error was a
textbook demonstration of how making major changes in a comput-
ing environment tends to lead to strange changes in behavior. Chase
had just switched to the Dvorak keyboard layout, which positioned its
keys differently from the QWERTY system that is most common. The
switch increased the amount of effort needed to use the keyboard, since
Chase was still training his fingers to go to the correct positions. Con-
sequently, Chase was typing less than he might otherwise, and would
therefore avoiding opening messages that looked like they might require
a response unless he was ready to put forth the effort to type with the
Dvorak keyboard.)

Realizing what he had skipped over, Chase typed a brief explanation
and forwarded the other message from inside of SGI to the DESCHALL
mailing list.

While not detailing the scope or progress of the effort, the message
did show that there was a fair bit of activity; it named the organizers
and gave compelling evidence that the organizers had made every effort
to make participation within SGI as easy as possible. Much of what
they had on their internal Web site advertising the need for clients was
what we had on our web site, that is, an explanation of the contest,
the benefits involved, and how to participate.

On June 5, Rocke Verser privately reported to Justin Dolske and
me that he had sent e-mail to the coordinators of SGI’s DES Challenge
effort. The leaks that we had been seeing included things like the or-
ganizers’ contact information, and the name of the internal lists used
for coordinating the effort. So why not try to contact them?

If there was truth to rumors about the extent to which SGI was
working through the keyspace, it could have quite a significant impact
on Verser’s “Expected Date of Completion” reports, and he wanted to
be sure that he was using the most complete information. A model that
reflected SGI data in addition to DESCHALL and SolNET would be
more accurate.

Now brought into the open, the coordinators of the SGI project were
forthcoming and revealed two important sets of statistics.

238 CHAPTER 33

The first statistic was the amount of keyspace tested. SGI had al-
ready finished just over 19 percent of the total 56-bit keyspace, notable
because that was the greatest amount of keyspace covered by any of
the known efforts. Second place went to DESCHALL at about sixteen
percent, and third went to SolNET at just under ten percent.

The second statistic was the approximate key search rate, weighing
in at about 2.8 billion keys per second. That came in a bit ahead of the
2.1 billion keys per second tested by SolNET, but significantly behind
the 4 billion keys per second being tested by DESCHALL.

Overall, the figures showed SGI was in the lead, but DESCHALL
was gaining fast and would soon pull ahead.

34

Netlag

The Internet’s growing pains continued into June of 1997. One symp-
tom was that some people could not access our keyserver from time
to time due to small network failures. The DESCHALL mailing list
became peppered with messages from participants who were having
trouble reaching the server and who wanted to know whether others
were having similar problems.

This leads us to a second “ailment” that afflicted the Internet’s
health at this time. Operations that used to take just a few seconds
could take minutes, or even hours, as evidenced by lag time on the
mailing list. Some people started to notice that there were delays in
getting their messages posted to the DESCHALL list, and some users
complained that it often took hours for the mail server to deliver their
messages.

As it turned out, the mail server was working just fine, but sev-
eral sites had difficulty with their domain name service (DNS) servers,
the directory service that converted people-friendly names like frii.com
to computer-friendly network address numbers like 216.17.184.30 and
back again. Partly as an anti-spam measure, mail servers were just
starting to refuse to talk to each other without being able to look up
names and numbers in the DNS correctly. As a result, sites with DNS
problems could sometimes sit idle for hours before our mail server could
communicate with theirs and let the mail exchange properly.

The combination of these two problems could make for a frustrating
experience. Someone thinks that the keyserver might be down and then
posts a message to the list asking whether the problem is local or more
widespread. Thanks to the sluggishness of different e-mail servers, an
hour or two might pass before anyone received the concerned user’s

239

240 CHAPTER 34

message. Meanwhile, whatever problem prompted the message in the
first place—either a keyserver problem or an overload of traffic on some
ISP—had been resolved.

Naturally, people getting the “Keyserver down?” messages would
see that they could easily connect to the keyserver and quickly reply
that all was working as expected. So not only was the original query
rendered irrelevant by its delay, but it tended to prompt a flood of
unnecessary responses.

The Internet basically worked and our project never would have
been possible without it, but four or five years of exponential growth
took a toll in the form of quality of service. Normally, no one would
notice delays in e-mail delivery, but working on a project like DES-
CHALL, where everyone was tied together by way of the Internet and
often trading time-sensitive information, would very quickly give one a
heightened sense of how cumbersome the current Internet infrastruc-
ture still was.

35

Terminal Velocity

Thursday, June 5, 9:37 P.M.

The Ohio State University, Columbus

Our project’s key testing rate depended on two factors: fast clients
and many participants running those clients. DESCHALL’s clients were
already faster than any other project’s, so it seemed to make sense that
at some point, we were going to reach a limit on just how fast we could
make the software work reliably. At that point, the only way to increase
the project’s overall key testing rate would be to get the key-testing
software running on more computers.

But having software that was faster than the programs our com-
petitors were using wasn’t good enough. Justin Dolske posted an an-
nouncement to the DESCHALL mailing list on June 5: new clients were
available, and they ran faster than ever.

Leading up to the June 5 release, Darrell Kindred improved the
performance of his bitslice software again and then adapted it so the
technique would also work on 32-bit platforms. Consequently, many
clients experienced a performance increase, ranging from five percent
to eighty-two percent.

The eighty-two percent performance increase went to the users of
Sun UltraSPARC systems. Other Sun systems, based on older vari-
eties of the SPARC processor had a forty-five percent increase. Clients
for HP systems increased fifty-seven percent, Alpha clients increased
twenty-five to forty percent, and AIX clients had a twenty percent per-
formance boost. The same software release also included a new Macin-

241

242 CHAPTER 35

tosh client—complete with a slick graphical interface and a nice five to
ten percent performance increase.

Almost immediately, the reports started to flow in: people were see-
ing dramatic speed improvements.

Several hours after Dolske’s announcement, Rocke Verser was look-
ing at the project statistics back in Loveland. Having updated his model
for determining the expected date for a solution to the RSA DES Chal-
lenge, he put June 5’s figures into the model.

What made the new model different was that it factored in three
projects, rather than only two—adding SGI to the contenders for the
solution. Using the data available on SGI’s effort, Verser showed the
key testing rates for all three projects.

Recent DESCHALL keyrate: 4.125 billion keys per second
Recent SolNet keyrate: 2.125 billion keys per second
Recent SGI keyrate: 2.890 billion keys per second

Table 20. June 5 Key Testing Rate Comparisons

In addition, Verser reported how much of the keyspace each project
tested up to that point. For many participants, the report would be
the first time that they saw how far ahead SGI was.

DESCHALL keyspace complete: 16.503%
Solnet keyspace complete: 10.090%
SGI keyspace complete: 19.573%

Table 21. June 5 Keyspace Completed Comparison

Working with the same fundamental assumptions as in the previous
model—that each project was working independently, that their key
testing rates remained constant, and that nobody else was working on
the contest—some predictions could be made with Verser’s statistical
model. In particular, we could expect to find the right key in fifty-six
days.

On Saturday, June 7, Karl Runge looked over the statistics he gen-
erated from DESCHALL keyserver logs. As he realized that he was
looking at a report for another record day for DESCHALL, he smiled.
The previous day’s key search rate worked out to 4.4 billion keys per
second.

Terminal Velocity 243

Probability that a DESCHALL client will find the key: 51%
Probability that a SolNet client will find the key: 18%
Probability that a SGI client will find the key: 31%

Table 22. June 5 Probability of Success Comparison

Later on the same day in Reston, Virginia, Erik Fitchner, a Unix
system administrator quietly contributing his machines’ spare cycles to
DESCHALL was paying close attention to the number of keys that his
machines were testing. His 166 MHz Alpha machine started out testing
200,000 keys per second, and the first bitslice client for that platform
brought performance up to 540,000 keys per second. He couldn’t believe
his eyes as the latest client reported that it was testing 940,000 keys
per second.

Back in Toronto, Ken Chase was floored as he looked over the
statistics for June 6. Like a race commentator watching the running
order change as the leaders head into the home stretch, he excitedly
reported the changes in the participants standings. Sun Microsystems
had dropped to fifteenth place, Apple Computer jumped up to third
place, and Penn State University dropped to fifth place. After rattling
off the rest of the changes, Chase posted, “What’s going on?”

At Sun Microsystems in San Diego, software engineer John Falken-
thal read Chase’s report. Determined to have Sun regain its position
in the standings, he started up the new ultrafast client for the Ultra-
SPARC processor on the latest, fastest, hottest machine that Sun Mi-
crosystems made—the brand new “Starfire” (Enterprise 10000) server,
which had sixty-four processors.

That one Starfire server reported that it was processing 120 million
keys per second—the same rate that the entire DESCHALL project
sustained just about nine weeks earlier.

During the next week, I kept close tabs on our statistics. As client
improvements started to stack up, we were testing keys at a phenomenal
rate that just kept increasing. Back in April, when the project got going
in earnest, we had used press releases to get the word out. After that
time, we missed the opportunity to issue releases on our progress when
we had tested ten percent and twenty percent of the keyspace. With
twenty-five percent rapidly approaching and Rocke Verser’s “expected
date of solution” calculation going from hundreds of years down to
weeks, it was now time to start thinking in less abstract terms about
what to do when we found the key. Specifically, we had to be prepared

244 CHAPTER 35

to explain a lot of things to reporters and to help them to understand
why this DES Challenge contest should matter to people who didn’t
know anything about cryptography.

Although the DESCHALL project coordinators all recognized the
importance of handling the media correctly, we didn’t get to begin any
serious planning for when we found the key—a more pressing matter
was before us.

Friday, June 13, 3:31 P.M.

Loveland, Colorado

About a week after releasing the most blazing fast clients imaginable,
Rocke Verser composed a new announcement. The UltraSPARC users,
long in a strange position because their 64-bit hardware was running
a 32-bit operating system (Solaris 2.5), were about to find out that
Darrell Kindred had performed a Herculean technical task.

Like a traffic engineer who could find a way to maintain 64 lanes
of traffic on a 32-lane highway without causing any collisions, Kindred
found a way to make UltraSPARC processors perform 64-bit operations
reliably even though the operating system could only keep track of 32
bits at a time.

In addition, Verser found a way to improve the efficiency of the DES
algorithm’s “S-box” implementations on the UltraSPARC processor by
ordering the events carefully and using extended logical instructions
provided on the UltraSPARC processor.

The result was another increase in speed—of ninety-seven percent
over the UltraSPARC clients released just the week before. An Ultra-
SPARC system always running the latest client would have gone from
testing 669,000 keys per second two weeks ago to testing 1.22 million
keys per second last week, and then up to 2.4 million keys per second
with this new client.

On the following afternoon, John Falkenthal at Sun fired up the
latest client on one of the 64-processor Starfire systems. He gleefully
reported to the DESCHALL mailing list that the one machine was now
testing 239 million keys per second—more than the entire DESCHALL
project was before April 5.

Putting the new client on a dual-processor UltraSPARC desktop
(with 336 MHz processors), Falkenthal watched it sustain a testing

Terminal Velocity 245

rate of 9.716 million keys per second—roughly the processing power of
the project in the first week of March.

On Sunday, June 15, Virginia Tech computing engineering junior
Scott Coleman examined his university’s statistics through Graph-
O-Matic. With no small amount of pride, Coleman pointed out the
tremendous leap in their standings was due to a single machine run-
ning the new client.

In Seattle, Washington, Scott McDermott, a system administrator
for the King County Library System, was also running the UltraSPARC
clients. Confirming Coleman’s observations, he noted,

I’ve only got three machines running: a pair of [older SPARC
systems] and an Ultra 1. We were placed in the bottom half of
the 300s [near 400th place in keys tested] Friday. I switched the
Ultra to the new client and we jumped up to 213 on Saturday.
I was most impressed!

Also on Sunday, at Oklahoma State University in Stillwater, Colin
L. Hildinger noticed that DESCHALL wasn’t alone in making advance-
ments. Hildinger went over to the SolNET Web site and noticed that
they had just released a new, faster Windows client, boasting speeds
close to the speed of the Pentium clients offered by DESCHALL. While
SolNET struggled to keep pace with DESCHALL on the Pentium pro-
cessors, the latest round of DESCHALL clients for 64-bit processors
further widened the gap in key testing speed.

DESCHALL clients were already running faster than many of us
would have thought possible at the beginning of the project. We had
used so many tricks to get the key-testing clients to run so quickly
that we simply could not rely on improving overall DESCHALL test-
ing speed by increasing key-testing software speed further. We needed
more clients running, which meant finding more participants, but that
weekend, we weren’t going to worry about it. We just let the new su-
perfast clients do their work while we tried to unwind from a stressful
week of getting new software out the door.

DESCHALL developers could use the rest. Not only had we been
working to get the new UltraSPARC clients released, but we spent
extra time going through keyserver and gateway logs to ensure that
the key reports we were getting were legitimate. The alarm that drove
us to perform the extra work came up just as we were preparing to
release the ultrafast 64-bit UltraSPARC client for Solaris, when Justin
Dolske checked SolNET’s mailing list to see how they were doing.

246 CHAPTER 35

Thursday, June 12, 10:39 P.M.

The Ohio State University, Columbus

Dolske took interest in a thread of discussion on the SolNET mailing
list about a surge of activity. Michael Fahlbusch, a SolNET participant
from the Technische Universität München in Munich noticed a huge
spike in SolNET clients from the Czech Republic. Excited to see so
many clients coming online at once, he asked how the Czechs managed
it, hoping to find the method they used to get more people participating
in the SolNET project.

Jan Pazdziora, a network administrator and graduate student from
the Czech Republic was also participating in the SolNET project.
Pazdziora looked at the SolNET statistics for the Czech Republic after
seeing Fahlbusch’s message and came to an unnerving conclusion: an-
other set of hostile clients had been launched to make false key testing
reports to the SolNET key server.

Dolske wondered if the attackers attempted to get the DESCHALL
clients before deciding to cause problems for SolNET. If that were the
case, they would have had to attempt to download a DESCHALL client,
so Dolske examined his client download logs to see whether we had been
getting any requests from the Czech Republic. There was one attempt—
which had (correctly) been rejected—three weeks earlier, but it wasn’t
from a university, much less the same one from which the attack against
SolNET was launched.

Dolske next wrote to Rocke Verser, Karl Runge, and me pointing out
that SolNET had been attacked again, and named the Czech network
from which the attacker hit SolNET.

After getting Dolske’s note, I checked the log for the client download
site under my control, and did not find evidence that our clients were
sought by SolNET’s attackers.

In addition to looking for evidence of attempted downloads, Dolske
also recommended that we do some additional analysis of the key-
server’s logs and check for any blocks that did not have the expected
reports of “half-matches” (see page 93) that legitimate DESCHALL
clients would make while testing keys. Blocks that had unusual patterns
or amounts of half-match reports could be indicative of a false-report
attack, so the extra step of detection would aid in recovering from an
attack should it occur.

We really didn’t have a lot of time to deal with things like extra
analysis, but integrity of the project was of the utmost importance, so

Terminal Velocity 247

when there was a particular need, we’d make an attempt to deal with it.
In the end, we don’t know why attackers chose SolNET and left DES-
CHALL alone. We speculated at the time that the attackers sending
false reports to the keyservers were engaging in the least interesting and
most blatantly annoying kind of attack against the keyservers—just for
a cheap thrill.

Because DESCHALL never published its source code or protocol
specification, an attacker would have had to get the client and observe
how it works, which messages it knew how to send, and how exactly
it would format those messages. The relative difficulty of that reverse
engineering work combined with the difficulty of actually getting the
clients if not based in the U.S. or Canada might have been what saved
DESCHALL from dealing with the attacks it did. Secrecy is not a
sustainable strategy, but it might well have kept us from being the sort
of “low-hanging fruit” that thrill seekers tend to target.

On the other hand, when DESCHALL did manage to get in the
attackers’ cross-hairs, the attack tended to be much more severe than
false client reports, as the mid-May attack against a DESCHALL de-
veloper demonstrated.

36

Duct Tape

When asked, Internet engineers—particularly when living through the
exponential growth in demand of 1997—will claim that much of the
global computing infrastructure is held together by duct tape and bail-
ing wire. Users rarely saw problems like delays in the mailing list when
something behind the scenes broke; more often, participants would not
notice or would only observe some strange side effects. During the DES-
CHALL project, we had plenty of occasions to work around some part
of the infrastructure that decided to break for one reason or another.

Scott M. Hinnrichs, a participant from California went to the DES-
CHALL client archive on Saturday, June 14, to get updated client soft-
ware. When presented with the question, “Are you a citizen or na-
tional of the United States, a person who has been lawfully admitted
for permanent residence in the United States under the Immigration
and Naturalization Act, or a Canadian citizen,” he clicked “Yes.”

Next he was asked, “Do you agree not to export the DESCHALL
client software in violation of the export control laws of the United
States of America? Or, if you are a Canadian citizen, are you obtaining
the DESCHALL client software for end-use in Canada by Canadian
citizens, or return to the United States, in a manner permitted by
Canadian law?” He clicked “Yes.”

Finally, he was presented with, “Do you assert that you have an-
swered all of these questions truthfully?” Again, he clicked “Yes,” after
which, he moved his mouse over to click the “Submit” button.

Then he waited. Never having experienced a problem downloading
the client software before, Hinnrichs sat there drumming his fingers,
figuring that the server was just overloaded and that it would eventually
give him the link to the clients.

249

250 CHAPTER 36

At last, the server answered. Instead of providing the list of clients
available for download, it displayed a message: “Export status not de-
termined.” Our download software would show this message when it
was unable to determine from which country the request came.

Thinking that perhaps his computer’s name and IP address were
not mapping correctly, Hinnrichs checked his site’s DNS. His tests con-
firmed that DNS was working correctly in both directions: name-to-
address and address-to-name. That ruled out his site as the source of
the problem, so he sent a message off to the DESCHALL mailing list
asking what might be happening.

After he and I exchanged a few messages, I looked at the logs for
the client distribution server. While far from overloaded, there was a
problem.

Our client archive was designed not just to ask people if they were
in the U.S. or Canada, but to make an attempt to verify the likelihood
of the claim. As described on page 145, the software did this by looking
at the verified domain name of the requesting machine and then finding
that domain’s country of origin by querying the domain name registry
service provided by InterNIC.

InterNIC was established in January 1993 as a cooperative part-
nership among AT&T, General Atomics, and Network Solutions, Inc.
to develop and to operate various services for the Internet community
with funding from the National Science Foundation. These services,
collectively part of an Internet-wide network information center (NIC),
included whois, a service that would report the names and organizations
behind registered Internet domain names and networks. By looking at
the registration information for the domains and networks of the users
requesting the client software, we could reasonably verify that people
claiming to be in the U.S. or Canada probably were.

At the time that Hinnrichs was experiencing problems, our distribu-
tion server was timing out on those whois queries. The InterNIC system
simply never responded, and after two minutes, our server would give
up, and our software would report that export status could not be de-
termined. I tried some manual queries against the InterNIC’s whois
server, to no avail. The service was simply not working, and even the
web site for the InterNIC registry service was down. There was nothing
to do but wait, the last thing that anyone wants to do in a race.

On the same day that the InterNIC registry service was down, Rocke
Verser’s Internet service provider continued making network changes

Duct Tape 251

that had started the previous day. Details of the move were not made
clear, as usually happened for customers with “dedicated” connections
that were always on; Verser was only told that changes were in the
works.

Keeping DESCHALL operating under such conditions was like try-
ing to operate a business whose customers placed telephone orders at
the rate of three per second while the main number was being changed
and without the “owner” knowing what the new telephone number
would be once “changes” were complete. Without details on the net-
work changes, we could not work around any outages or other related
problems. The best we could do was sit around and wait for things to
break and hope that we could respond before any participants’ clients
needed to contact the keyserver.

Fortunately, Verser had the foresight to build a feature into the
client to handle a situation like this long before the problem arose: the
software would notice changes in the keyserver’s address and use the
new address in the event of a change. With nothing left to be done,
Verser kept in close contact with his Internet service provider so he
could update the keyserver’s IP address as soon as it changed. Once
that change was made, the feature in his client software would enable
it to adapt. In the short term, changes like this presented a significant
challenge—not unlike trying to write a document in a word processor at
the same that someone else was upgrading the operating system. Even
with these troubles, we did not worry about the long-term effects, since
the Internet had time and again proved itself surprisingly resilient.

For applications like e-mail, an outage of several hours wasn’t a big
problem. Not that many people—particularly on Saturday afternoon—
were going to be responding immediately to e-mail. DESCHALL was
different, though. Our clients were testing tens of trillions of keys per
hour, and our project would experience a huge setback if a significant
portion of our clients couldn’t reach the key server for a couple of hours.

At the close of what turned out otherwise to be a relatively un-
eventful weekend, at least in terms of efforts needed to keep systems
running, Justin Dolske noticed another problem at about half past mid-
night, early on Monday morning. A network file system (NFS) server
at Ohio State had died, taking down both of Dolske’s DESCHALL
T2U gateways that helped clients running behind firewalls communi-
cate with the keyserver. Dolske dashed a message off to Verser, telling
him of the urgent need to remove the Ohio State servers from the list

252 CHAPTER 36

of available T2U gateways. Verser quickly made the changes, leaving
only my T2U gateway at Megasoft Online in New Jersey.

As soon as the change had been made, Dolske sent a note to the
DESCHALL mailing list explaining what happened. He wrote:

The two gateway systems based at [Ohio State University] will
be dead for awhile, as their NFS server appears to have gone
belly-up for the night. The third gateway server should not be
affected by this.

The DNS records for “deschall-gateway.verser.frii.com” have
been updated to remove these [two] systems, so everything
should be working smoothly shortly. Until your local DNS server
gets the new records, gateway users will continue to see a num-
ber of “connection refused” or “timed out” messages.

Unfortunately, these things happen.

The recovery time, measured by usual people-time was fast—only
an hour or two, but at the rate we were going, that delay would cost
DESCHALL a few trillion keys.

 440
 460
 480
 500
 520
 540
 560
 580
 600
 620

Ju
n

09

Ju
n

10

Ju
n

11

Ju
n

12

Ju
n

13

Ju
n

14

Ju
n

15

Fig. 11. DESCHALL Keys Tested Per
Day (in Trillions), June 9–15

During the weekend of June
13–15, we had seen amazing
growth, thanks to the release of
the new, blindingly fast clients.
At the beginning of the DES-
CHALL effort, the large cor-
porate and university campuses
with the sophisticated 64-bit ma-
chines were at a serious disadvan-
tage (using only a few optimiza-
tion techniques, showing mild
performance gains) by compar-
ison to the PC users who had
highly optimized clients. (Since
the smaller computers are much
more common, performance gains made there would have a greater im-
pact, so starting with the most common systems made the most sense.
At the time that Verser was writing his fast DES routines, optimization
methods for 64-bit systems like bitslicing had not yet been published.)
The tables were now tipping heavily in the other direction: the more
sophisticated machines were finally getting the clients that would take
advantage of their capabilities.

Duct Tape 253

A look over the top site rankings and the performance per platform
readily showed this to anyone who even glanced at those statistics.

As part of the fallout for that weekend’s activity, people were once
again asking whether people who were contributing relatively small
amounts of processing power were going to drop out, with the likes
of Sun, Carnegie Mellon University, and others putting extremely fast
hardware with heavily optimized clients on the job.

After hashing out the issue once again, the conclusion was the same
as it had always been: until such a point where we have so many clients
that we are inhibiting the keyserver’s ability to respond, each client
mattered.

While the debate about the importance of small contributors contin-
ued on the DESCHALL mailing list, Verser composed a private message
to several of us who had been discussing the issue on the list.

Addressing the issue of morale among the participants, Verser wrote
that one week earlier, we had considered reporting how much of the to-
tal computational power each domain was contributing. In the end,
though, we decided against it, because the statistics could easily be
calculated by interested participants. Verser and others were also con-
cerned that smaller organizations might give up, figuring that they were
contributing “nothing” in the face of the horsepower that the likes of
Sun Microsystems were throwing at the project.

Verser noted that daily statistics showed that roughly forty percent
of the work was being done by small domains—those contributing less
than one percent of the total processing power. Another ten percent
was being done by even smaller domains—those contributing less than
one-half percent of the total.

Having seen numerous universities and companies learn of DES-
CHALL and organize themselves to run the client software time and
again, Verser wrote, “The nature of this project is that a given [or-
ganization] tends to rise rapidly to a peak, as the organization rapidly
mobilizes most of their available computing power; and then (compared
to others) the organization gradually declines.” No matter how big an
organization is, there’s always one bigger, and no site can continue to
double the work it was contributing every week, every other week, or
even every month, as had been happening with the big campuses lately.

There was another reason for the smaller domains to continue par-
ticipating. Ironically, as the “big fish” continued to join the project and
to contribute more processing power, the odds of a “little fish” finding

254 CHAPTER 36

the key were actually increasing—on the basis of likelihood per pro-
cessing cycle expended. At the beginning of the project, the chances
of each key being tested was roughly one in 72 quadrillion (that’s 72
thousand billion). By mid-June, the chances had improved to one in
55 quadrillion. As more keys got eliminated from the list of possible
matches, the odds continued to improve—eventually reaching a one in
one chance in the unlikely event that the correct key was the very last
key scheduled to be tested.

Verser concluded that he was grateful for all contributions—each
helped to bring the “expected date of completion” from some 200 years
down to thirty-six days.

Tuesday, June 17, 8:29 P.M.

Northfield, Massachusetts

Seth D. Schoen was participating in DESCHALL in his senior year
at Northfield Mount Hermon, a college-preparatory boarding school.
After graduating earlier that month, he was able to spend more time on
DESCHALL and began to think about the milestone that the project
was rapidly approaching.

Because of working tirelessly week after week, we were going to cross
the threshold of twenty-five percent of the total keyspace being tested
in the next day or two.

Thinking that it had been a while since our last press release, or
at least seeing the opportunity for a party, Schoen posted to the DES-
CHALL mailing list, asking “Is anybody planning either a party or a
press release for the forthcoming twenty-five percent of keyspace com-
pletion?”

After articulating a few different angles that we could use in a press
release to recruit more participants, Schoen concluded with, “If AP
[Associated Press] picked up on DESCHALL . . . I think the keyrate
could get a pretty nice boost.” It was a nice thought, and indeed ev-
ery major news organization around the world would soon report on
DESCHALL.

37

Showdown in the Senate

Tuesday, June 17
Capitol Hill, Washington, D.C.

The Secure Public Networks Act of 1997 was officially introduced by
its sponsors, John McCain and Bob Kerrey in the Senate Commerce
Committee. Offered as a compromise on the contentious cryptography
policy issue, the bill had a striking resemblance to the draft legisla-
tion that the Clinton administration proposed in March—essentially
requiring government access to keys used to encrypt data.

The other major cryptography legislation in the Senate—in many
ways the opposite of the McCain-Kerrey bill (and the Clinton admin-
istration’s proposals)—was the the Promotion of Commerce Online in
the Digital Era, or Pro-CODE, Act, which was sponsored by Sena-
tors Conrad Burns and Patrick Leahy. Like the SAFE Act making its
way through the House, Pro-CODE was intended to reform encryption
policy, acknowledging that cryptography was already widely available,
and allowing U.S. companies to participate in these international mar-
kets that were already being served by foreign competitors. The Senate
Commerce Committee, chaired by Senator McCain, was set to vote on
the Pro-CODE bill on Thursday, June 19.

The McCain-Kerrey bill tried to keep cryptography from being used
by criminals against law enforcement officials but in reality did nothing
to protect the privacy of Internet users or the security of their electronic
transactions. In fact, it would require U.S. citizens to use key recovery
systems approved by the federal government, require electronic com-
merce transactions to be conducted with government-approved key-

255

256 CHAPTER 37

recovery systems, allow the federal government access the keys needed
to read encrypted messages without a court order, create new criminal
penalties for people who used cryptography that was not on the gov-
ernment’s list of approved systems, and codify the 56-bit key as the
limit on products for export. All of this was proposed in the name of
preventing criminals from using cryptography that could prevent gov-
ernment investigators from discovering and prosecuting them. Arguing
that to allow strong cryptography is to be soft on crime makes for a
tempting sound bite for political purposes, but hardly makes sense.
Imagine seeing legislation proposed that requires citizens to leave the
doors to their homes unlocked or to give a copy of their keys to the
federal government, all for the purpose of making fighting crime easier.
The notion is absurd.

Tuesday, June 17
Center for Democracy and Technology, Washington, D.C.

As soon as the text of the McCain-Kerrey bill was available, two
Washington computer privacy advocacy groups went into action. The
two groups—the Center for Democracy and Technology and Voters
Telecommunications Watch—issued a press release and posted a call
for action in the Crypto-News newsletter. The release characterized
the new McCain-Kerrey bill as a false compromise which would do
“nothing to protect the privacy and security of Internet users.”

Instead, the new bill represented, the alert cautioned readers, “a full
scale assault on your right to protect the privacy and confidentiality of
your online communications.”

In its description of the status of the situation, Crypto-News said:

On Thursday, June 19, the Senate Commerce Committee is
scheduled to hold a vote on S. 377, the Promotion of Com-
merce Online in the Digital Era (Pro-CODE) Act—an Internet-
friendly encryption reform bill sponsored by Senators Burns (R-
MT) and Leahy (D-VT).

Senator McCain, the Commerce Committee Chairman, is
expected to try and substitute his proposal for Pro-CODE—
gutting the proposal and inserting provisions which would all
but mandate guaranteed government access to your private com-
munications.

Showdown in the Senate 257

Please take a few moments to help protect your privacy and
security in the Information Age by following the simple instruc-
tions below.

Following this call to action came a list of Senate Commerce Com-
mittee members. Readers were asked to call their senators, if they were
on the list, and urge them to oppose the McCain-Kerrey bill. Read-
ers whose senators were not on the list could go to a Web site and
“Adopt a Legislator”—which would entail signing up to get targeted
alerts whenever the adopted legislator would be nearing a vote on some
Internet-related issue.

The people watching the legislative front of the Crypto Wars weren’t
the only ones were were foregoing sleep in the early hours of June 18,
1997.

38

“Strong Cryptography Makes the World a
Safer Place”

Tuesday, June 17, 11:51 P.M.

Loveland, Colorado

A message contained in a UDP datagram made its way across the Inter-
net at the speed of light. Originating in Salt Lake City, the datagram
travelled up from a small local area network, to be handed off to a
larger, wide-area network. Racing eastward, the datagram arrived in
Loveland, Colorado at the DESCHALL key server.

The DESCHALL key server issued a message of its own to RSA’s au-
tomated contest server, which almost immediately acknowledge our vic-
tory. Rocke Verser felt a jolt of excitement shoot through his body when
he saw the “Key Found!” message flash across his computer screen.

Verser quickly wrote a message to DESCHALL coordinators and
sent it on its way, encrypted with PGP, as was standard practice when
writing about project details that were not yet public.

Wednesday, June 18, 2:12 A.M.

The Ohio State University, Columbus, Ohio

When Justin Dolske got the good news, he was ecstatic. As his moti-
vation was to demonstrate the weakness of 56-bit keys, he would have
been happy to hear that the key had been found by anyone, but being
on the winning team made the victory all the more sweet.

Dolske laid out the steps necessary to notify the DESCHALL and
SolNET mailing lists and to issue a press release. Leaving the message

259

260 CHAPTER 38

for the mailing lists to Verser, Dolske went straight to work on the
draft of the official press release. His first draft would be circulated to
DESCHALL coordinators at 2:56 A.M.

Wednesday, 8:04 A.M.

Megasoft Online, Freehold, New Jersey

I was spending the early part of the week in Freehold with the rest of
my company’s software development team. While I had been working
in my hotel room into the wee hours of the morning, I was doing so
completely without Internet connectivity and I had not checked my
voice mail throughout the night.

When I arrived at the office on Wednesday morning, the receptionist
handed me a handwritten message scrawled onto a torn-off piece of
“greenbar” data processing paper.

The message was simple. “Call Rocke Verser. ‘We found it!’ ”
I promptly sounded my “barbaric yawp” in the fine tradition of

Walt Whitman and ran up the stairs and through the hallway leading
to the software development offices. Finding a phone, I dialed Verser’s
number and waited for him to answer.

Rocke Verser had spent the entire night drafting the notices for
the project participants, looking over drafts of the press release, and
ensuring that the news was ready to be released to the world. Normally,
this would be about the time that he’d be trying to catch a few hours’
sleep, but that wasn’t likely to happen today.

After a few congratulatory remarks, I put down the phone and got
to work. We’d made history, and it was time for the world to know.

Coordination was critical to getting the story out right, because we
needed to explain the project and its significance in a way that would
make sense to readers and reporters who did not have a background
in cryptography. The stories that we had seen so far were not partic-
ularly urgent in nature—mostly they had been local interest stories,
where someone from the publication’s readership was participating in
a large-scale Internet-coordinated project. That kind of thing could be
published any day of the week, and so any extra time needed to work
through technical details could be taken. Now, the media would be in
a race to get the story together and to get it out quickly—and that
would mean less time for checking facts.

“Strong Cryptography Makes the World a Safer Place” 261

About an hour after the phone call with me, Verser had working
drafts of the announcement for the mailing lists, the press release, and
a data sheet with details of the facts of the project, intended to help
reporters get the information they needed to get their stories together.
RSA Data Security contacted Verser and worked with us to coordinate
our press release with theirs.

Later in the day, when everything was in order, and the world was
ready to know that it was a safer place because of cryptography, RSA
and DESCHALL press releases were issued at the same time, and Verser
proudly posted the message he had drafted earlier.

In an article entitled “WE FOUND IT!” Verser wrote to the DES-
CHALL mailing list:

“Strong cryptography makes the world a safer place.”
That’s the message RSA has been waiting for us to decipher.
And we did it!

The correct key (8558891AB0C851B6) was reported to RSA
Data Security shortly before midnight last night (Mountain
Time). RSA’s automated server acknowledged our win!

The winning computer is a Pentium 90 MHz, operated by
iNetZ Corporation of Salt Lake City, Utah. Their employee,
Michael K. Sanders, was the individual who was running the
DESCHALL client.

Congratulations, Michael. And congratulations to all who
participated!

After acknowledging many individuals, he graciously turned to “our
only public ‘competitor,’ SolNET,” which he called “a class outfit.”
Verser continued:

In a sense, the “win” belongs to all of us, who contributed CPU
cycles and clients and ideas and innovations. We searched less
than 1

4 of the keyspace. Worldwide, over half of the keyspace was
searched. A DESCHALL client may have found “the” key, but
you [SolNET] deserve credit for helping to bring the “expected
date of completion” significantly ahead.

Your Web site gave us a goal to shoot for. A goal which we
never met. Your clients had many features our users wished for.
There is no shame in not finding the key. But I know the anguish
you must feel after putting your hearts and souls into a project
for three to four months and not being “the” winner.

262 CHAPTER 38

In my eyes, everyone who participated, whether working for
the DESCHALL team or the SolNET team is a winner!

Elation followed on the DESCHALL mailing list, with congratula-
tions and thanks flowing in from all around. Across the Atlantic, Sol-
NET coordinator Lindgren Fredrik sent an announcement of his own
to the SolNET mailing list. He wrote:

The challenge is over . . .
. . . and we “lost.” On June 17 around midnight one of

our competitors, DESCHALL, found the secret key and de-
crypted the secret text prepared by RSA Data Security Inc
(http://www.rsa.com).

The goal of the DES Challenge was to show that DES en-
cryption could be cracked, and that better encryption is needed
to keep data safe. In my opinion this goal has been accomplished.

Although it’s not that fun being a runner up, I must say that
it has been an enjoyable couple of months running this effort. As
much as it been a goal to show the weaknesses of 56-bit crypto,
it’s been very nice to be able to show the enormous amount
of “surplus” computing power that is available on the Internet.
Not to mention the warm and fuzzy feeling it gives me to think
of everybody that’s been working together towards the common
goal of answering the challenge.

The SolNET DES Team would like to thank everybody who
has been participating and sharing their spare computing re-
sources in our project. Without you none of this would have
been possible.

Lindgren extended his thanks to many who contributed their re-
sources and talents to run SolNET’s keyservers, work on clients, and
otherwise keep their effort running. He then pointed out the opportu-
nities for additional work to be done, on the 56-bit RC5 Bovine effort,
as well as the Great Internet Mersenne Prime Search.

Wednesday, June 18, 7:44 P.M.

The Ohio State University, Columbus, Ohio

Now it was time for the media to pick up the story and to weigh in. Late
on Wednesday, June 18, Dolske was one of the first to be contacted, and
answered questions for someone from “the Internet video show State of

“Strong Cryptography Makes the World a Safer Place” 263

the Net.” None of the coordinators had heard the program before, and
we had no idea of its audience size. Dolske wasn’t even sure that he
was talking to a reporter, but the person with the questions was clearly
interested in what had happened, so Dolske answered his questions.

After the conversation, he checked a search engine for “State of the
Net,” but couldn’t find anything. Given the proliferation of “cybercul-
ture” shows on television, electronic magazines, and streaming video,
one could never really be sure. But it was someone interested, and it
just might have been some of the first press the key-breaking received.

Verser meanwhile had spoken with reporters from Channel 2 in Salt
Lake City, ZDNet, MSNBC, and the Chronicle of Higher Education.
Obviously, the press releases were having their effect and the stories
were being written. Some of these articles also included parts of inter-
views with Mike Sanders, whose machine found the key, and RSA Data
Security officials.

RSA Data Security Inc., issued a press release of its own, at the same
time as ours. In that release, RSA president Jim Bizdos was quoted,
tying together the debate before Congress and the DES Challenge.

RSA congratulates the DESCHALL team for their achievement
in cracking the 56-bit DES message,” said Jim Bidzos, presi-
dent of RSA. “This demonstrates that a determined group us-
ing easily available desktop computers can crack DES-encrypted
messages, making short 56-bit key lengths and unscaleable algo-
rithms unacceptable as national standards for use in commercial
applications.

“This event dramatically highlights the fatal flaws in the
most recent administration proposal, Bill S.909, ‘The Secure
Public Networks Act of 1997,’ introduced by Senator John Mc-
Cain (R-AZ) and Senator Bob Kerrey (D-NE). This bill, if
passed, would severely hamper U.S. industry by limiting export
to the 56-bit DES standard.”

We would discover that yet another press release had been issued,
without our knowledge, much less coordination. Sameer Parekh, an en-
terprising user of cryptography ran a company he started called C2Net
Software, Inc. to bring products with strong cryptography to the mar-
kets. Never one to miss a media opportunity, Parekh sprang into ac-
tion upon seeing that the DES Challenge had been won. Quickly he
placed a call to iNetZ Corporation, where the 90 MHz Pentium ma-
chine run by Michael Sanders had found the right key. He got Jon Gay,

264 CHAPTER 38

a vice president at iNetZ to agree to a quote, wherein he hoped that
the demonstration would cause users to demand strong cryptography
in their products—“such as the 128-bit security provided by C2Net’s
Stronghold product, rather than the weak 56-bit ciphers used in many
other platforms.”

Parekh also got a quote from the respected cryptographer Ian Gold-
berg, recently of 40-bit Challenge fame. Goldberg’s remark, “This ef-
fort emphasizes that security systems based on 56-bit DES or ‘export-
quality’ cryptography are out-of-date, and should be phased out,” was
buried in an alarmist press release entitled, “Hackers Smash U.S. Gov-
ernment Encryption Standard.” C2Net’s press release failed to cite any-
thing authoritative from either RSA or the DESCHALL coordinators,
pointing instead to its own Web site that gave no additional informa-
tion on the contest. The C2Net statement was entirely devoid of useful
content about RSA’s DES Challenge or the project that answered it;
its entire purpose was to use DESCHALL’s win as a platform from
which to tell the world, in Parekh’s words, “We refuse to sell weak
products that might provide a false sense of security.” Members of the
press who saw Parekh’s blatantly opportunistic commercial received it
with some skepticism, some of which would unfortunately carry over
into reporting into the facts of the DES Challenge.

DESCHALL coordinators granted many interviews that day, un-
aware of the C2Net press release. Had we known about the C2Net re-
lease, we could have taken the opportunity to put the matter into more
balanced perspective than to suggest that the standard itself had been
broken by “hackers.” Reporters’ deadlines finally came and the calls
died down as the articles started to get written. As the reports started
to make their way around the world, DESCHALL’s coordinators got
some well-deserved rest.

Thursday, June 19, 8:02 A.M.

Megasoft Online, Freehold, New Jersey

I was pleased to see the Wall Street Journal article on DESCHALL. A
well-written article by Don Clark covered the contest and its impact,
stuck to the story, and remained technically accurate. Many other re-
porters called on Thursday, following up with their own stories after
seeing the early coverage of the news.

“Strong Cryptography Makes the World a Safer Place” 265

On Friday, the largest wave of media coverage came, and as DES-
CHALL participants saw the coverage, they posted their observations
on the articles to the DESCHALL mailing list. Nelson Minar at MIT
noted that the CNN article covering our work was subtitled, “But it
took four months.” Most media coverage had roughly the same flavor.

MSNBC’s article managed to botch the story pretty badly, going so
far as to assert that the entire keyspace had been tested as opposed
to the one-quarter of the keyspace that actually had been tested. The
Money Daily article carried the basic premise that our success was
alarming, but readers didn’t need to tear up their ATM card right
away.

DESCHALL project did manage to get the attention of the main-
stream media at a critical moment—as the capability to break messages
encrypted with the standard came into the hands of even modestly
funded groups of people and as the future of public policy was being
debated. The success of the RSA DES Challenge would ultimately come
not from what the media would say immediately, but whether we suc-
ceeded in “killing single DES,” as Peter Trei wrote to the Cypherpunks
on October 1, 1996.

39

Aftermath

Cracking a message encrypted with DES was a watershed event in
the history of cryptography because we, private-sector cryptographers,
participated in a large-scale demonstration of distributed computing
to make our point. We knew that DES, the sitting standard for data
encryption for twenty years, was vulnerable to brute-force attacks. We
knew that finding a key wouldn’t require a thirty-million dollar super-
computer and more than a year’s time. So we quit estimating what it
would take and just did it.

The contest wasn’t just about cryptography in 1997. Cryptography’s
future was also at stake: we knew that long-term public policy was being
debated by lawmakers in Washington under the influence of information
specifically released to support the Clinton administration’s legislative
agenda.

We knew that the data encryption standard needed to be replaced,
but no one would listen to us when we presented them with calculations.
People would not listen unless we actually broke a message encrypted
with the same system that was protecting sensitive information like
their financial and medical records. So that’s what we did. And then
the world wanted to hear all about it and what to do about it.

Thursday, June 19
Gundaker Realtors, St. Louis, Missouri

Systems and security administrator Stuart Stock, who wrote the “DES-
CHALL Linux Bootdisk Mini-HOWTO,” had been a participant for
most of the project’s duration. His efforts, and those of many peo-
ple like him, got the project access to many computing cycles—easily

267

268 CHAPTER 39

twelve hours daily and two whole days weekly—that would have been
otherwise unused.

Concerned that management might not have sanctioned the effort,
Stock requested that his contribution be identified as an “anonymous”
site in our statistical reporting—a request which we happily granted.

On the morning of June 19, Stock found himself answering some
questions from the head of the company, who had seen the article in
the morning’s copy of The Wall Street Journal entitled “Group Cracks
Financial-Data Encryption Code.” The article got the head of the com-
pany thinking about the importance of strong cryptography in ensuring
the safety of financial transactions and electronic communications.

Feeling more confident that he was making a connection and getting
a sympathetic audience, Stock revealed to his boss that their company
had been involved in the effort, finishing twenty-fourth in terms of
contributed processing power.

After learning that Stock’s method of contributing processing power
had not interfered with business operations in any way, his boss relaxed.

Stock was satisfied with his contribution. The head of his company
simply had no idea that cryptography was something he needed to
consider. Like many people, he just assumed that things were “safe.”
Thanks to our project and the subsequent publicity, he was asking
good questions and even being shown how to protect himself with Phil
Zimmerman’s Pretty Good Privacy cryptography software.

Since its beginning, Netscape had produced two versions of its soft-
ware: one for domestic U.S. use and one for international use. The
international use products were limited to 40-bit key strength, while
the domestic versions used 128 bits.

On June 24, less than a week after our success in the DESCHALL
project, Netscape finally was able to release its products with strong
cryptography for export to the outside world with the permission of the
U.S. Department of Commerce. Instead of having to fill out an online
affidavit and go through verification that your system was based in the
United States, users from all over the world could simply download the
strong-cryptography version of the Netscape browser.

Aftermath 269

In addition, Netscape banking customers overseas could buy Net-
scape’s server products with strong cryptography enabled.

“The ability to export our products with strong encryption enables
Netscape to provide its customers worldwide with client and server
software that can improve the security of their information and appli-
cations,” said Taher Elgamal, chief scientist at Netscape in the press
release announcing the change. “This approval is another example of
Netscape’s leadership in the privacy and security arenas and is espe-
cially important due to the recent breaking of 56-bit DES by the DES-
CHALL group last week.”

On the same day, Microsoft announced that it got the same ap-
proval that Netscape did. In consequence, Microsoft would build 128-
bit cryptography into its Internet Explorer 4.0, Money 98, and Internet
Information Server products.

On June 27, Senate Majority Leader Trent Lott made a speech on
the floor of the Senate, addressing the cryptography debate and the
Commerce Committee’s consideration of the Pro-CODE and McCain-
Kerrey bills earlier in the month. As feared by proponents of unfettered
cryptography, the McCain-Kerrey bill passed by voice vote in commit-
tee with very few changes, essentially gutting Pro-CODE and leaving
the McCain-Kerrey Secure Public Networks Act as the main cryptog-
raphy bill before the senate.

Senator Lott said,

Mr. President, the demand for strong information security will
not abate. Individuals, industry, and governments need the best
information security technology to protect their information.
The Administration’s policy and the McCain-Kerrey bill al-
low export of 56-bit encryption, with key recovery requirements.
How secure is 56-bit encryption? That question was answered
the day before the Senate Commerce Committee acted. Re-
sponding to a challenge, a secret message encoded with 56-bit
encryption was decoded in a brute force supercomputing effort
known as the “DESCHALL Effort.” The message that was de-
coded said “Strong cryptography makes the world a safer place.”

Now that 56-bit encryption has been cracked by individu-
als working together over the Internet, information protected
by that technology is vulnerable. The need to allow stronger
security to protect information is more acute than ever.

270 CHAPTER 39

Conrad Burns, the Senator for Montana who was co-sponsor of the
Pro-CODE legislation followed Senator Lott’s address. Having heard
law enforcement’s concerns about child pornographers using cryptog-
raphy that could circumvent investigators’ ability to intercept suspects’
online messages all throughout the debate, Senator Burns made an in-
teresting observation. He said:

As I sat through the markup last week, it occurred to me that we
had allowed the issue of encryption to be framed as the issue of
child pornography or gambling. I want to be sure that all parties
understand that the reform of encryption security standards is
not related to these issues.

I have often said that encryption is simply like putting a
stamp on an envelope rather than sending a postcard because
you don’t want others to read your mail. Encryption is simply
about people protecting their private information, about compa-
nies and governments protecting their information, from medical
records to tax returns to intellectual property from unautho-
rized access. Hackers, espionage agents, and those just wanting
to cause mischief must be restrained from access to private in-
formation over the Internet.

When used correctly, encryption can enable citizens in re-
mote locations to have access to the same information, the same
technology, the same quality of health care, that citizens of our
largest cities have. Perhaps most importantly, it is about en-
suring that American companies have the tools they need to
continue to develop and provide the leading technology in the
global marketplace. Without this leadership, our national secu-
rity and sovereignty will surely be threatened.

40

Staying the Course

Wednesday, June 18
Chicago, Illinois

Adam L. Beberg and some like-minded volunteers had been working
on creating a central site for Internet computing projects. Among the
projects that caught their interest was the next of the RSA Secret Key
Challenges, 56-bit RC5, often abbreviated as RC5-56.20

Beberg’s distributed.net had started on the RC5-56 contest more
than a month earlier (see page 201) but did not actively recruit from
among the DES Challenge participants.

Happy to see the DES challenge solved, Beberg changed gears,
openly and actively inviting veterans of the DES Challenge contest
to his RC5-56 effort. “This time, we’re all on the same team. DES-
CHALL, SolNET, [and] even SGI is invited,” he wrote in his invitation
posted to the DESCHALL mailing list.

Like Ian Goldberg (which defeated RC5-40 in three and a half
hours), Germano Caronni (who defeated RC5-48 in 313 hours), and
Rocke Verser’s DESCHALL (who defeated DES in 140 days), the dis-
tributed.net group searched for a secret key needed to unlock an en-
crypted message.

On October 20, 1997, 265 days after RSA announced the contest, the
distributed.net team located the secret key needed to read the contest
message: “It’s time to move to a longer key length.”

RSA Data Security announced additional key-searching contests at
its annual conference on January 13, 1998. The “DES Challenge II”
was a pair of contests, just like the DES Challenge that DESCHALL

271

272 CHAPTER 40

answered the year before—with an important difference. The amount
of the cash prize varied, depending on the amount of time needed to
crack the message: if the winner found the key in one quarter (or less) of
the time needed by the previous winner, the prize would be $10,000. A
$5000 prize would go to a winner finding the key in up to half of the time
of the previous winner; a $1000 prize would go to the winner finding the
key in up to three-quarters of the time needed by the previous winner.

On February 24, 1998, distributed.net DES Challenge II (DES-II-1)
project coordinator David McNett announced that DES had once again
fallen to a brute-force search. The message “Many hands make light
work” was decrypted—not in the 140 days that it took DESCHALL to
find the key, but in a mere thirty-nine days. Especially interesting was
the fact that rather than searching only one quarter of the keyspace, as
DESCHALL had, the distributed.net DES-II-1 answer came only after
search more than ninety percent of the keyspace.

On July 13, RSA launched the second DES Challenge II contest
(DES-II-2). Again, distributed.net turned its attention to the contest.
With the additional computing power that became available in the
six months that had passed, and the fact that almost certainly less of
the total keyspace would need to be searched, the previous record was
certain to be beaten again.

Fifty-six hours after the start of the contest, DES-II-2 was solved,
not by distributed.net but by the Electronic Frontier Foundation
(EFF), a non-profit civil liberty advocacy group, in conjunction with
Cryptography Research, a firm headed by cryptographer Paul Kocher.

With funding from EFF and the support of civil libertarian, EFF
board member, and cypherpunk John Gilmore, Paul Kocher and his
team at Cryptography Research designed and implemented “Deep
Crack,” a custom-built machine created for the specific purpose of
cracking DES keys. Proving the assertions made by private-sector
cryptographers true, Deep Crack showed that customized hardware—
coming in at a cost of roughly $250,000—could crack cryptographic
keys dramatically faster than any software.

Finally, in December 1998, RSA announced another contest to crack
a DES message: DES Challenge III, to begin on January 18, 1999. The
first to crack the message would receive a prize of $10,000 if doing the
job was completed in under twenty-four hours, $5000 if it took under
forty-eight hours, and $1000 if it took fifty-six hours. Anything longer
would get no cash prize.

Staying the Course 273

Twenty-two hours and fifteen minutes after the beginning of the
contest, the message “See you in Rome ([at the] second AES Confer-
ence, March 22–23, 1999)” was extracted from the challenge ciphertext.
The method was once again brute force, this time with distributed.net
and Deep Crack working cooperatively and achieving a key search rate
of 245 billion keys per second when the correct key was found.

The secret message in the DES Challenge III had special significance
for cryptographers: the second AES Conference to be held in March
1999 was part of NIST’s effort to find a replacement for DES, which had
reigned as the U.S. government standard for more than twenty years.
The effort to define AES, the Advanced Encryption Standard, had been
announced in the January 2, 1997 issue of The Federal Register. That
article carried a note of particular interest. “It is NIST’s view that
a multi-year transition period will be necessary to move toward any
new encryption standard and that DES will continue to be of sufficient
strength for many applications.”

Now more than two years after the announcement of the AES ef-
fort, it was clear that a multi-year period for the definition of a new
standard would be needed. Also clear was the insufficiency of DES for
any commercial or governmental application.

41

In Retrospect

Understanding an event’s significance is usually pretty difficult at the
time. Putting it into historical perspective and looking at how it in-
fluenced other events, though, can help a great deal. Since June 1997,
there has been plenty of time to think about what we accomplished.

Could the Internet be the basis of a future computing platform—
“the supercomputer for everyman” as Rocke Verser called it? Many
people believe so.

Since the mid-1990s, and continuing through today, there are several
kinds of projects that are attempting to harness this kind of computa-
tional power.

Other projects related to cryptography include key cracking projects,
such as the distributed.net Bovine effort formed during the height of
DESCHALL and started in earnest after the first fall of DES. That
project has since solved RSA’s first DES Challenge II and the DES
Challenge III, as well as RSA’s 56-bit and 64-bit bit RC5 Secret Key
Challenges.

Finding large prime numbers is another example of a large comput-
ing project. The largest such project on the Internet is still running,
the Great Internet Mersenne Prime Search (GIMPS), coordinated by
George Woltman. (That project is being run from www.mersenne.org.)

We have shown time and again that the kind of computing power
that can be harnessed using the Internet to coordinate many processors
is phenomenal. Not all large computing problems are well-suited for this
approach, but for a great many that are—problems that are actually
made up of many small and independent problems—the possibilities
are endless.

275

276 CHAPTER 41

While the social and technical issues that DESCHALL and projects
like it have addressed are of interest, ultimately, DESCHALL is a story
about cryptography.

Even at the time, no one who understood cryptography and comput-
ing was surprised by what DESCHALL accomplished. That DES keys
could be broken by brute force was understood from the beginning—
even if the feasibility of such attacks was up for debate. We understand
that exhaustive key search is an effective means of defeating any sym-
metric cryptosystem, save the Vernam Cipher, which is better known
as the One-Time Pad.

Like the rest of security, cryptography is a tool that allows the de-
fender to change the variables in the game against the attacker. At its
most fundamental level, cryptography is simply a matter of economics.
The whole idea is to make the target harder to reach for an attacker
than the attacker thinks it’s worth.

Make an attacker spend one million dollars to steal one million dol-
lars, and you have taken away his economic incentive. The same fun-
damental principle is true even when the attacker’s motivation is not
money. Whatever it is that the attacker wants, if he has to spend too
much of whatever he has to achieve it, he’s better off simply following
the policy that defines expected use and behavior.

We were able to demonstrate to the world what all of us already
knew by calculation: 56-bit ciphers just aren’t secure against dedi-
cated attackers. Even with no better attack than brute force avail-
able, attackers without special equipment would be able to break the
messages quickly enough to be worthwhile against information whose
value extended beyond a few months. Subsequent breaks of DES mes-
sages demonstrated that the curve continued. At the end Deep Crack
demonstrated that with a relatively modest initial investment (of, say,
$250,000), a machine could be designed and implemented to break DES
keys in a matter of hours.

Some might be inclined to argue that the cost of breaking DES keys
at this point had become $250,000 and one day. I do not share this
view. The amount of time needed to break DES-encrypted messages
with such a system would indeed be one day, but $250,000 was not the
cost for breaking the message—that was the cost for getting into the
message-breaking business. Designing and building Deep Crack was a
one-time expense.

In Retrospect 277

Had EFF wanted, it could well start a key recovery business: by
deploying the key-cracking system so that it would crack one message
after another, continuously working around the clock and throughout
the year, the entire cost of the hardware design and implementation
could be covered in a single year by charging $685 to crack a DES
message. The cost could drop further by processing enough volume to
require a second Deep Crack system—the majority of the cost was in
design (which would not need to be undertaken again), rather than
in implementation (the only cost incurred in bringing a second Deep
Crack online).

With this kind of startup fee and pricing schedule, even a small
company could get into this business—as could any modestly-funded
criminal or terrorist organization.

Considering how long medical records, credit card numbers, census
data, and other kinds of information need to remain confidential, min-
imally attackers were shown to be a real threat to the security of this
information. Funded attackers were barely slowed down by the defense
of cryptosystems with 56-bit keys.

In reality, finding a replacement for DES was no more critical be-
cause of the RSA DES challenges. The security of DES was the same
as it had always been and its susceptibility to brute-force attacks was
in line with what we had predicted. But as a result of Peter Trei’s
October 1996 challenge to the Cypherpunks and RSA Data Security’s
support, thousands of cryptographers, programmers, civil libertarians,
and hobbyists took the time to demonstrate for the public the critical
need to heed our warnings.

At long last, an alternative to DES became a standard. On Novem-
ber 26, 2001, NIST Federal Information Processing Standard Publica-
tion 197, “The Advanced Encryption Standard” (AES) was published.
The multi-year process of moving away from DES could at least begin.
On July 26, 2004, NIST announced its proposal to withdraw DES as a
standard altogether. In that announcement, NIST said simply, “DES
is now vulnerable to key exhaustion using massive, parallel computa-
tions.” The proposal’s request for comments period ended on Septem-
ber 9, 2004. It would seem that in answer to Peter Trei’s October 1,
1996 question, yes, we can kill single DES.

Instead being limited to 56-bit keys, we now have a standard in
AES with variable key sizes available, providing as much as 256 bits of
protection.

278 CHAPTER 41

DES might have been replaced without the RSA DES Challenges—
the process for replacement did start at NIST before DES fell to a brute
force attack. On the other hand, NIST’s AES announcement did come
after RSA announced that it would launch the contests, and the failure
of DES to withstand three public brute force attacks between 1997 and
1999 might have proved to be just what was needed to keep pressure
on NIST to follow through with the standard.

What is less clear is whether cryptography would be free today
without the DES Challenges. DESCHALL and its successors were of-
ten cited by lawmakers who kept efforts to repeal restrictions on cryp-
tography alive in Congress; efforts of lawmakers to limit cryptography
failed in 1997. Subsequent debate over cryptography continued, until
the SAFE bill—reintroduced into congress yet again in 1999—began to
pick up broad support. Even Senator John McCain, who had worked
to defeat cryptography liberalization efforts in the Senate, became a
believer in the virtues of free cryptography and supported SAFE.

In December 1999, even the White House had changed its position.
New cryptography regulations were released, allowing for a wide va-
riety of “automatic exemptions” from export restrictions. Subsequent
tinkering led to an even more liberal policy: with a few exceptions, even
the strongest cryptography could be exported directly overseas by U.S.
companies.

The pressure exerted by news of RSA’s DES Challenges might well
have been just the force needed to cause the Clinton administration to
reverse its position and to stop fighting industry efforts to address the
global marketplace.

Today, software is different from what it was in 1997. Now, products
come with strong cryptography built in. From both the perspective of
forcing DES into retirement and allowing U.S. companies to participate
in the global market for cryptography, the Crypto Wars—the battle
to liberate cryptography—were won. While neither the DESCHALL
group nor the RSA Secret Key Challenges can take sole credit, both
are rightly seen as major contributors to one of the most critical battles.

While cryptography today is free in practice—through the absence
of restrictions—it is noteworthy that the SAFE bill never did make it
to the Senate floor, and its provisions prohibiting the government from
introducing requirements for restricted cryptography never became law.

As a result of improved protection and reclaimed liberty, in 2004,
many more people are accustomed to the idea of encryption and how

In Retrospect 279

it protects their information against threats to confidentiality and in-
tegrity. While they don’t usually understand what exactly it means,
they know the difference between “secure” and “unsecured” when
they’re shopping online. The infrastructure that supports electronic
commerce and global communication is safer against a wide variety of
attacks, and citizens are free to communicate privately with whomever
they choose thanks to cryptography’s accessibility.

We should not conclude that privacy is “solved” because we now have
the freedom to encrypt.

The need to employ cryptography is becoming increasingly obvi-
ous, and not just for the purpose of transmission of information. In-
formation stored in computers is now being encrypted with greater
frequency. Even where information technology users have not histori-
cally been especially sophisticated (such as health care), industry reg-
ulation designed to improve the accountability of information handling
now requires encryption of certain types of information under certain
circumstances.

Cryptography is now also being used for more controversial pur-
poses, and what appears to be the sequel to the Crypto Wars is already
underway. This time, it isn’t the balance of rights between individuals
and their government, but consumers and the vendors who sell them
things.

Consider the use of cryptography in new media, such as DVD play-
ers. Most DVDs produced are now encrypted, such that the discs will
not play on devices that have not licensed the key needed to unlock the
video stream. The idea is that by having discs secured against playback
except on devices where the manufacturers have agreed to pay a fee to
disc producers and to enforce certain rules, an exclusive club can be es-
tablished for the playback of copyrighted work. Film producers expect
that the exclusive club would effectively protect against the production
of illegally copied discs.

Of course, cryptography is not a tool that prevents the copying of
data. Cryptography is a tool that makes data—even if copied—useless
to anyone without the key. Thus, cryptography’s use in DVD players
does nothing to prevent DVDs from being copied. Cryptography in

280 CHAPTER 41

DVD players only provides an artificial extension of producer’s rights
to playback devices. It’s a little like selling you a copy of this book
but having the text be impossible to read unless you also buy a pair
of glasses with a special chip that only I can sell. You can buy your
glasses from anyone you choose, produced by any manufacturer you
like, but the critical component needed to read the book you’ve already
purchased must always be supplied by me.

That might sound like an anti-consumer position, and lawyers can
(and have been) debating about the legalities involved. In addition
to the law that has been historically applied in cases like this, the
Digital Millennium Copyright Act (DMCA) is being argued. DMCA,
which became effective in October 2000, updated U.S. copyright law,
strengthening it considerably in favor of copyright holders.

In particular, DMCA prohibits any attempt to defeat an “effective”
technical means of copyright enforcement. Putting the obvious logi-
cal question aside—an effective mechanism would withstand attack, so
what’s the point of prohibiting attack?—we are still left with a trou-
bling question. If consumers cannot independently verify the security of
such systems and if we cannot understand how these systems are likely
to fail, how are we supposed to ensure their validity? Do we naively
assume that “someone else” has taken care of it?

When faced with a technology that claims to protect publishers’
rights without infringing consumers’ rights, should consumers and
copyright holders simply accept such claims at face value? Why would
such claims not be subject to the same kind of public dissection and
commentary that affect other rights, as was the case with cryptogra-
phy?

Princeton professor Edward Felten led a team that responded to a
challenge to crack technologies under consideration for the protection of
digital information put forth by an industry group, the Secure Digital
Music Initiative (SDMI). Felton’s paper describing his inquiry and find-
ings was scheduled for publication in a scientific context, at the Fourth
International Data Hiding Workshop in April 2001. Upon learning that
Felton’s paper was to be published, SDMI and the Recording Industry
Association of America (RIAA) threatened to sue Felton for violating
DMCA because Felten’s analysis of their digital “watermarking” meth-
ods showed how they could be defeated. After some threats of litigation
were dropped and others resulted in suits being filed, the paper was fi-
nally published in August 2001 at the USENIX Security Symposium.21

In Retrospect 281

(Other researchers have chosen to censor themselves rather than face
threats of litigation by large industry cartels.22)

Imagine a system designed to track the activity of Web users sur-
reptitiously, employing cryptographic mechanisms to hide its activity—
many of these systems have been discovered and documented.23 If the
user of a system wants to see what’s happening, would he simply have
to take the software manufacturer’s word at face value? Would a man-
ufacturer attempt to use DMCA to prevent analysis and commentary
on technology that impacts the lives of its users?

In his book Code and Other Laws of Cyberspace, Lawrence Lessig
makes a compelling argument that the technology all around us, the
basis of our information infrastructure, is not inherently resistant to
centralized control. Among the forces affecting the way that these sys-
tems work is the law. Because law also affects other forces, such as the
market, it has a disproportionate influence.

As a consequence of DMCA, there is a body of law granting rights to
copyright holders over how consumers may use their own devices, that
they may not use them in such a way that mechanisms to protect the
content are subverted. Indeed, part of that “protection mechanism”
could involve having playback devices “phone home” to report user
activity to the vendor.

As a result of the Crypto Wars, there is now largely an absence of law
regarding the government’s control of cryptography; citizens may use
cryptography to communicate without government inspection. Copy-
right owners may also use cryptography to prevent consumers from
seeing what playback devices are reporting when “phoning home.”

Hence, increasingly strong publishers’ rights in combination with the
freedom of cryptography can present a danger to consumers. Simson
Garfinkel’s Database Nation covers the topic of privacy more generally,
but one important point should be made here: privacy is not a “solved
problem” because we are free to use cryptography. The people and
organizations who want to watch our actions, whether for profit, to do
us harm, or simply to get a cheap thrill are also free to encrypt.

Efforts to liberate cryptography have succeeded, and the world is
now different as a result. In many ways, we’re safer. In other ways, we’re
not. What is important to understand is that technology is amoral; it
is neither good nor bad. Only people—free moral agents—can act to
good or bad effect. Whether the freedom to encrypt helps us or hurts
us ultimately depends on what we do with that freedom.

Notes

1Cipher Deavours and Louis Kruh. The Commercial Enigma: Be-
ginnings of Machine Cryptography. Cryptologia, 26(1), January 2002.

2Jennifer Wilcox. Sharing the Burden: Women in Cryptology during
World War II. NSA Web Site, March 1998. [online]
http://www.nsa.gov/publications/publi00014.cfm.

3Stephen Budiansky. Battle of Wits. Free Press, 2002.

4G Johnson. Claude Shannon, Mathematician, Dies at 84. The New
York Times, February 27, 2001.

5Claude E. Shannon. A Mathematical Theory of Communication.
Bell System Technical Journal. 27:379-423 and 623-656, July and Oc-
tober 1948.

6Claude E. Shannon. Communication Theory of Secrecy Systems.
Bell System Technical Journal. 28:656-715, October 1949

7Tom Athanasiou. DES and NSA’s New Codes. In Peter G. Neu-
mann, editor, RISKS Digest, volume 6, January 1987.

8Simon Singh. The Code Book. Anchor, 1999.

9D. Kahn. The Codebreakers: The Story of Secret Writing. Macmil-
lan Publishing Company, New York, USA, 1967

283

284 NOTES

10Robert Morris. The Data Encryption Standard—Retrospective
and Prospects. IEEE Communications Society Magazine, 16(6):11–14,
November 1978.

11National Bureau of Standards. Data Encryption Standard. Fed-
eral Information Processing Standards Pub. 46, Washington, D.C., Jan.
1977.

12Ruth M. Davis. Data Encyption Standard in Perspective. IEEE
Communications Society, November 1978.

13Hayden B. Peake. The VENONA Progeny. Naval War College Re-
view, 53(3), Summer 2000.

14Steven Levy. Crypto. Viking, 2001.

15Technically speaking, searching the keyspace would not take longer,
but there would be more post-production work required to separate a
possible match from a correct match. The difference, in practice, is
negligible.

16Germano Caronni and Matt Robshaw. “How Exhausting is Ex-
haustive Search?” CryptoBytes 2(3), Winter 1997.

17The DESCHALL mailing list archives are still available online at
http://www.interhack.net/projects/deschall/.

18András Salamon. Internet Statistics. [online]
http://www.dns.net/andras/stats.html, February 1998.

19The first edition is online at http://www.crypto.com/papers/.

20The official abbreviation, which appears in RSA’s documentation
specifies more detail about the exact configuration of RC5 than just
the key size. RSA wrote the fifty-six-bit version of RC5 as “RC5-
32/12/7,” which specified the “word size” (thirty-two bits), the number
of “rounds” (twelve) the cipher would use, and the number of bytes for
the key (seven, times eight bits for each byte gives us fifty-six bits).

21Information on the controversy and the paper itself can be down-
loaded from Princeton at http://www.princeton.edu/sip/sdmi/.

NOTES 285

22Cryptographer Niels Ferguson has an essay on this topic, “Censor-
ship in action: Why I don’t publish my HDCP results.” It can be found
online at http://www.macfergus.com/niels/dmca/cia.html.

23One such system, PC Friendly, comes standard on many DVDs.
See http://www.interhack.net/pubs/pcfriendly/.

Index

1997 Secret Key Challenge, 44–45

Adleman, Len, 41
Advanced Encryption Standard, 273
Ahn, Dave, 183
AIX, 44, 95
Ajtai, Miklós, 179
Albertelli, Guy, 95, 147, 189
Alphabetical Typewriter 97, 5
American Bankers Association, 20
American Civil Liberties Union, 213
American National Standards Institute,

20
Americans for Tax Reform, 213
Anderson, Ross, 229
Apple Computer, 243
AT&T, 6, 27, 43, 93, 250

Bacon, Roger, 3
Beanie Babies, 138
Beberg, Adam L., 200, 271
Bell Labs, see AT&T
Bellovin, Steven M., 229
Bennett, Jason, 187
Betka, Corey, 138
Bexley Public Library, 37
Bidzos, Jim, 43
Biham, Eli, 151
binary, 12
Bischoff, Alex, 76, 154
bitslicing, 151–153, 162, 190–192
Bizdos, Jim, 263
Blaze, Matt, 229
Boyd, Nate, 171, 182

Bradley, Jeremy, 148
Brooks, Piete, 64
Brown, Mikael, 148
brute force, 16, 19–21, 23–27, 53–55, 57,

127
DES Challenge II, 271
DES Challenge III, 272
hardware, 61
of 56-bit RC5, 271
parallelization, 58
software, 59–61

BSD Unix, 44
Bureau of Export Administration, 71
Burns, Conrad, 163, 255, 269

Caesar Cipher, 27
Caesar, Julius, 3, 27
Carnegie Mellon University, 196
Caronni, Germano, 45, 64
Center for Democracy and Technology,

213, 256
Chase, Ken, 210, 236, 243
Chaum, David, XIII
Cheng, Howard, 147
Clauson, Matt, 160
Clipper Chip, 229
CMU, see Carnegie Mellon University
Coble, Howard, 49
Coderpunks, 177, 201
Coleman, Scott, 245
Columbus Dispatch, 81
Communications of the ACM, 15
Congress, 16, 49–55, 163, 213–214, 255

failure to pass legislation, 278

287

288 Index

Cook, Kees, 187
Cray Research, 236
Crowell, William P., 53
cryptography

asymmetric, 23, 32
Clinton administration policy, 50,

149, 230
codes, 26
commercial, 9
comparison to tumbler lock, 12, 23
computer, 7–8
controversial uses of, 279–281
export of, XVIII, 51, 68, 70–71, 148,

214, 231, 268–269
government, XIII, 9
history, 3–10
Japanese, 5
machine, 4

Enigma, 7
perfect, 30
regulation of, XVII, 49–50, 149,

232–233
security, 26
substitution cipher, 27–28
symmetric, 23
today, 278
unbreakable, 27, 179
uses of, XIII, XIV, 3, 276

Cypherpunks, XIII, 33, 35, 43, 177

Damm, Arvid Gerhard, 4
Data Encryption Standard, XIV, 22

development of, 11
justification of, 11
publication, 20
weakness, XIV, XIX, 13–21, 34–35,

53
withdrawn as a standard, 277

Data Encryption Standard, weakness,
166

Davis, Ruth M., 21
Deep Blue, 171
Deep Crack, 272
Dellahunt, William, 213
Department of Commerce, 51, 71
Department of State, 22, 51
DES key-cracking machine, 16–19, 34

Deep Crack, 171

DES Violation Group, 65, 116, 118,
165–166

mistaken for DESCHALL, 116,
141–146

DES-Challenge Team, 65, 71, 73, 79
design, 64–65
Organisation Committee, 64

DESCHALL
attacked, 207–208
birth of, 66–67
bootdisk, 161
client distribution, 142–146, 249–250

independent, 156, 184
client support, 117, 161
competition, 117–118, 152–153, 166,

172, 186
counting total clients, 132–133
design, 97–112, 150
development, 92
dial-up modems and, 71, 132,

159–161, 209
estimating project completion, 226
exponential growth, 119
firewalls and, 71, 135–138
full-match, 93
half-match, 93, 177, 246
in Australia, 94
keyserver, 97, 155–156, 192, 240
mailing list, 70, 155, 216
optimization, 91–95, 114, 134, 152,

190
limits of, 241

outage, 128–129, 137–138, 193–196,
250–252

false alarms, 140
portability, 93
process scheduling, 221
progress, 73, 85–90, 114, 118, 129,

169
promotion, 77–84, 127–128, 169, 215

foiled, 171
pronunciation, 1
publicity, 154–155, 265
rapid growth, 252
speed of software, 69
what was proved by, 276

DESGUI, 209–211
DESKR (software), 44, 46, 61, 117
Diffie, Whitfield, XIII, XIX, 14–15, 229

Index 289

Digital Millennium Copyright Act, 280
Digital Unix, 95
distributed.net, 201, 271, 275
Dolske, Justin, XIX, 65, 75, 80, 95, 118,

123, 135, 142, 147, 149, 165, 171,
184, 189, 196, 241, 259

Doolittle, Jim, 154
Driscoll, Mike, 166
Dwork, Cynthia, 179

Eison, David E., 215
Electronic Frontier Foundation, XV,

171, 272
Elvis+Co., 214
Encrypted Communications Privacy

Act, 230
Enigma, 4–5
Export Administration Regulation, 68
Eyrich, James F., 196

Fahlbusch, Michael, 246
Falkenthal, John, 225, 235, 243
Feistel, Horst, 8–9
Felten, Edward, 280
Fitchner, Erik, 243
Floyd, Jered, 64
Forte, Milton, II, 160
Fox, Vincent, 178
Fredrik, Lindgren, 262
FreeBSD, 93, 107, 115
Freeh, Louis, 233
Front Range Internet, Inc., 194

Gadad, Vijay S., 125
Gebis, Michael J., 129
General Atomics, 250
Georgia Tech, 196
Gibbons, Steve, 44
Gilchrist, Jeff, 182
Gilmore, John, XIII–XV, XIX, 272
Glazebrook, Andrew, 94, 156
Gmoser, Jason, 160
Goldberg, Ian, 45
Goodlatte, Bob, 213
Graph-O-Matic, 118, 150, 197, 207, 245
Great Internet Mersenne Prime Search,

200, 262, 275
Gross, Joe, 182
Grotjan, Genevieve, 5

Haberlach, Adam, 79, 86, 118, 148, 182,
183

Hamilton, Drew, 121
Harris, Jensen, 113, 114, 124, 141
Hebern, Edward H., 4
Hellman, Martin, XIX, 15
Heroux, Mike, 138, 151
Hertz, Heinrich Rudolf, 113
Hildinger, Colin L., 159, 170, 178, 245
Hinnrichs, Scott M., 249
Hollings, Earnest, 164

IBM Corporation, 8, 179
Thomas J. Watson Laboratory, 15

IEEE Communications Society, 21
iNetZ Corporation, 1
intelligence

signal, 6
signals, 5

International Tariffs in Arms Regula-
tions, 21, 71

Internet, 14, 59
culture, 33
growth, 139–140, 239–240
use of duct tape and bailing wire, 249

Internet Society, 213
InterNIC, 250
IRIX, 44, 93, 95
ITAR, see International Tariffs in Arms

Regulations

Jillson, Carleton, 72
Johnson, Michael Paul, 67, 142
Johnson, Seth, 175

Kahn, David, 16
Kasparov, Garry, 171
Kernighan, Brian, 93
Kerrey, Bob, 164, 255
Kerry, John, 164
key

distribution, 14–15
escrow, 51
management, 32
recovery, 51
size, 13–14, 23–35

KeyBank, 79
Kindred, Darrell, 152, 157, 222, 241,

244

290 Index

Koch, Alexander, 4
Kocher, Paul, 272
König, Thomas, 208
Koffel, Will, 182
Kohn, Robert H., 232
Kwan, Matthew, 152

Lai, TC, 132
Leahy, Patrick, 230, 255
Lenstra, Arjen K., 42
Lickfett, Jay G., 186
Lindgren, Fredrik, 172, 184, 224
Linux, 44, 93, 107
Litt, Robert S., 52
lock

tumbler, 12, 23
Lott, Trent, 164, 269
Lucifer, 9, 12–13

patents, 13

Macavinta, Courtney, 80
Macintosh, 131, 154, 203
Macintouch Web site, 154
Magic, 5
Manasse, Mark S., 42
Manhattan Project, 30
McCain, John, 164, 255, 278
McDermott, Scott, 245
McIntyre, Scott, 121
Megasoft Online, 43, 146
Meggs, Andrew, 203
Minar, Nelson, 166, 170, 181, 199, 217,

224, 265
Minyard, Perry, 186
Moller, Bill, 117

National Bureau of Standards, 11, 16
DES workshops, 16–20

National Center for Supercomputing
Applications, 182

National Science Foundation, XIII, 250
National Security Agency, 9–13, 30, 53,

57
NBS, see National Bureau of Standards
Nelson, Michael, 181
network

collaboration, XV
Network Solutions, Inc., 250
Neumann, Peter G., 208, 229

New York Times, 16
Newsome, Tim, 64
NeXT Computer, 189
North American Cryptography Archive,

68, 116, 141
NSA, see National Security Agency
NSF, see National Science Foundation

O’Connor, Ethan, 165
Office of Defense Trade Controls, 22
Ohio State University, 65, 146
Okon, Dennis, 202
One-Time Pad

seeVernam Cipher, 276
Oregon State University, 86
OS/2, 93
Osman, Brian, 122

Parekh, Sameer, 263
Pazdziora, Jan, 246
Pearl Harbor, 6
Penn State University, 243
Peterson, Benjamin, 183, 211
Petreley, Nicholas, 47
PGP, Inc., 231
podkl�qa�ites�, 33
Pretty Good Privacy, 34, 70, 231
Pro-CODE, 49, 163–164, 230
Pro-CODE Act, 255, 269
processor, 113–114

Alpha, 134
AMD, 94, 134
Cyrix, 94, 134
Intel, 94, 134

bug, 175–176
MIPS, 93, 134
Pentium compatible, 94
SPARC, 93
UltraSPARC, 134, 191
wearing out, 124

Project Gutenberg, 46
protected memory, 219
Purple, 5

Raymond, Matt, 163
RC5 Bovine, 166, 200, 262
Recording Industry Association of

America, 280
Reinsch, William A., 50
Ritchie, Dennis, 93

Index 291

Rivest, Ron, XIII, 41, 43
Roessler, Thomas, 64
Roosevelt, Franklin D., 6
Rosenberg, Julius and Ethel, 30
Rowlett, Frank, 5
RSA (algorithm), 41
RSA Data Security, Inc., XVII, 41–43,

263
Factoring Challenges, 42–43
noticing DESCHALL, 84

Runge, Karl, XIX, 119, 130, 196, 201,
204, 242

SAFE Act, 49, 163, 213, 255, 278
Sanders, Michael K., 1, 261
Scherbius, Arthur, 4
Schleicher, Chris, 220
Schoen, Seth D., 254
Secure Digital Music Initiative, 280
Secure Public Networks Act, 164, 255,

269
SETI@HOME, 200
SGI, 235–238
Shamir, Adi, 41
Shannon, Claude E., 6–7, 12
Signals Intelligence Service, 5, 30
Silicon Graphics, Inc., see SGI
Solaris, 44, 93, 95
SolNET

client bug, 224
SolNET Team, 65, 116, 152

attacked, 172–173, 208–209, 246
comparison to DESCHALL, 147–149,

165
Sonko, Lee, 115
Soviet Union, 30
Spitznagel, Bridget, 75
Stadtler, Otis, 6
Stanfill, Michael D., 190
Stanford University, 14–15
Stastny, Bret, 136
Stock, Stuart, 161, 267
Sun Microsystems, 214, 225, 243

Starfire, 243

supercomputer, 53, 57, 236
unsuitability for brute-force attacks,

57–58

Terrell, Dave, 186
Toy Story, 200
Trei, Peter, XIX, 35, 43, 61

UIUC, see University of Illinois at
Urbana-Champaign

Ultrix, 44
University of California, Berkeley, 45
University of Illinois at Urbana-

Champaign, 196
Unix, 93
Usenet, 78

comp.os.linux.announce, 171

Van Iwaarden, Ronald, 157
VENONA, 30
Vernam Cipher, 27–32, 276

drawbacks, 32
Vernam, Gilbert, 27
Verser, Rocke, XIX, 65–67, 70, 80, 92,

97, 123, 127, 150, 155, 172, 185,
191, 193, 207, 226, 237, 259

Voters Telecommunications Watch, 256

watermarking, 280
Weage, Josh, 141
Weems, Randy, 210
Welty, Andrew James Alan, 160
whois failure, 250
Wiener, Michael, 34
Williams, Aaron, 136
Windows, 93
WIRED, 33
Woltman, George, 275
Worcester Polytechnic Institute, 85

Young, Brian, 216

Zimmermann, Phil, XIII, 34, 70
threatened prosecution of, 70, 231

	cover-image-large_004.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	fulltext_019.pdf
	fulltext_020.pdf
	fulltext_021.pdf
	fulltext_022.pdf
	fulltext_023.pdf
	fulltext_024.pdf
	fulltext_025.pdf
	fulltext_026.pdf
	fulltext_027.pdf
	fulltext_028.pdf
	fulltext_029.pdf
	fulltext_030.pdf
	fulltext_031.pdf
	fulltext_032.pdf
	fulltext_033.pdf
	fulltext_034.pdf
	fulltext_035.pdf
	fulltext_036.pdf
	fulltext_037.pdf
	fulltext_038.pdf
	fulltext_039.pdf
	fulltext_040.pdf
	back-matter.pdf

